Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   4 *
   5 * Authors:
   6 *    Paul Mackerras <paulus@au1.ibm.com>
   7 *    Alexander Graf <agraf@suse.de>
   8 *    Kevin Wolf <mail@kevin-wolf.de>
   9 *
  10 * Description: KVM functions specific to running on Book 3S
  11 * processors in hypervisor mode (specifically POWER7 and later).
  12 *
  13 * This file is derived from arch/powerpc/kvm/book3s.c,
  14 * by Alexander Graf <agraf@suse.de>.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License, version 2, as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include <linux/err.h>
  23#include <linux/slab.h>
  24#include <linux/preempt.h>
  25#include <linux/sched.h>
  26#include <linux/delay.h>
  27#include <linux/export.h>
  28#include <linux/fs.h>
  29#include <linux/anon_inodes.h>
  30#include <linux/cpumask.h>
  31#include <linux/spinlock.h>
  32#include <linux/page-flags.h>
  33
  34#include <asm/reg.h>
  35#include <asm/cputable.h>
  36#include <asm/cacheflush.h>
  37#include <asm/tlbflush.h>
  38#include <asm/uaccess.h>
  39#include <asm/io.h>
  40#include <asm/kvm_ppc.h>
  41#include <asm/kvm_book3s.h>
  42#include <asm/mmu_context.h>
  43#include <asm/lppaca.h>
  44#include <asm/processor.h>
  45#include <asm/cputhreads.h>
  46#include <asm/page.h>
  47#include <asm/hvcall.h>
  48#include <asm/switch_to.h>
  49#include <linux/gfp.h>
  50#include <linux/vmalloc.h>
  51#include <linux/highmem.h>
  52#include <linux/hugetlb.h>
  53
  54/* #define EXIT_DEBUG */
  55/* #define EXIT_DEBUG_SIMPLE */
  56/* #define EXIT_DEBUG_INT */
  57
  58static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  59static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
  60
  61void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  62{
  63	struct kvmppc_vcore *vc = vcpu->arch.vcore;
  64
  65	local_paca->kvm_hstate.kvm_vcpu = vcpu;
  66	local_paca->kvm_hstate.kvm_vcore = vc;
  67	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  68		vc->stolen_tb += mftb() - vc->preempt_tb;
  69}
  70
  71void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
  72{
  73	struct kvmppc_vcore *vc = vcpu->arch.vcore;
  74
  75	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  76		vc->preempt_tb = mftb();
  77}
  78
  79void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
  80{
  81	vcpu->arch.shregs.msr = msr;
  82	kvmppc_end_cede(vcpu);
  83}
  84
  85void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
  86{
  87	vcpu->arch.pvr = pvr;
  88}
  89
  90void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  91{
  92	int r;
  93
  94	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  95	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
  96	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  97	for (r = 0; r < 16; ++r)
  98		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
  99		       r, kvmppc_get_gpr(vcpu, r),
 100		       r+16, kvmppc_get_gpr(vcpu, r+16));
 101	pr_err("ctr = %.16lx  lr  = %.16lx\n",
 102	       vcpu->arch.ctr, vcpu->arch.lr);
 103	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 104	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 105	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 106	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 107	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 108	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 109	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
 110	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
 111	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 112	pr_err("fault dar = %.16lx dsisr = %.8x\n",
 113	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 114	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 115	for (r = 0; r < vcpu->arch.slb_max; ++r)
 116		pr_err("  ESID = %.16llx VSID = %.16llx\n",
 117		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 118	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 119	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
 120	       vcpu->arch.last_inst);
 121}
 122
 123struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 124{
 125	int r;
 126	struct kvm_vcpu *v, *ret = NULL;
 127
 128	mutex_lock(&kvm->lock);
 129	kvm_for_each_vcpu(r, v, kvm) {
 130		if (v->vcpu_id == id) {
 131			ret = v;
 132			break;
 133		}
 134	}
 135	mutex_unlock(&kvm->lock);
 136	return ret;
 137}
 138
 139static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 140{
 141	vpa->shared_proc = 1;
 142	vpa->yield_count = 1;
 143}
 144
 145/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 146struct reg_vpa {
 147	u32 dummy;
 148	union {
 149		u16 hword;
 150		u32 word;
 151	} length;
 152};
 153
 154static int vpa_is_registered(struct kvmppc_vpa *vpap)
 155{
 156	if (vpap->update_pending)
 157		return vpap->next_gpa != 0;
 158	return vpap->pinned_addr != NULL;
 159}
 160
 161static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 162				       unsigned long flags,
 163				       unsigned long vcpuid, unsigned long vpa)
 164{
 165	struct kvm *kvm = vcpu->kvm;
 166	unsigned long len, nb;
 167	void *va;
 168	struct kvm_vcpu *tvcpu;
 169	int err;
 170	int subfunc;
 171	struct kvmppc_vpa *vpap;
 172
 173	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 174	if (!tvcpu)
 175		return H_PARAMETER;
 176
 177	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 178	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 179	    subfunc == H_VPA_REG_SLB) {
 180		/* Registering new area - address must be cache-line aligned */
 181		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 182			return H_PARAMETER;
 183
 184		/* convert logical addr to kernel addr and read length */
 185		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 186		if (va == NULL)
 187			return H_PARAMETER;
 188		if (subfunc == H_VPA_REG_VPA)
 189			len = ((struct reg_vpa *)va)->length.hword;
 190		else
 191			len = ((struct reg_vpa *)va)->length.word;
 192		kvmppc_unpin_guest_page(kvm, va);
 193
 194		/* Check length */
 195		if (len > nb || len < sizeof(struct reg_vpa))
 196			return H_PARAMETER;
 197	} else {
 198		vpa = 0;
 199		len = 0;
 200	}
 201
 202	err = H_PARAMETER;
 203	vpap = NULL;
 204	spin_lock(&tvcpu->arch.vpa_update_lock);
 205
 206	switch (subfunc) {
 207	case H_VPA_REG_VPA:		/* register VPA */
 208		if (len < sizeof(struct lppaca))
 209			break;
 210		vpap = &tvcpu->arch.vpa;
 211		err = 0;
 212		break;
 213
 214	case H_VPA_REG_DTL:		/* register DTL */
 215		if (len < sizeof(struct dtl_entry))
 216			break;
 217		len -= len % sizeof(struct dtl_entry);
 218
 219		/* Check that they have previously registered a VPA */
 220		err = H_RESOURCE;
 221		if (!vpa_is_registered(&tvcpu->arch.vpa))
 222			break;
 223
 224		vpap = &tvcpu->arch.dtl;
 225		err = 0;
 226		break;
 227
 228	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
 229		/* Check that they have previously registered a VPA */
 230		err = H_RESOURCE;
 231		if (!vpa_is_registered(&tvcpu->arch.vpa))
 232			break;
 233
 234		vpap = &tvcpu->arch.slb_shadow;
 235		err = 0;
 236		break;
 237
 238	case H_VPA_DEREG_VPA:		/* deregister VPA */
 239		/* Check they don't still have a DTL or SLB buf registered */
 240		err = H_RESOURCE;
 241		if (vpa_is_registered(&tvcpu->arch.dtl) ||
 242		    vpa_is_registered(&tvcpu->arch.slb_shadow))
 243			break;
 244
 245		vpap = &tvcpu->arch.vpa;
 246		err = 0;
 247		break;
 248
 249	case H_VPA_DEREG_DTL:		/* deregister DTL */
 250		vpap = &tvcpu->arch.dtl;
 251		err = 0;
 252		break;
 253
 254	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
 255		vpap = &tvcpu->arch.slb_shadow;
 256		err = 0;
 257		break;
 258	}
 259
 260	if (vpap) {
 261		vpap->next_gpa = vpa;
 262		vpap->len = len;
 263		vpap->update_pending = 1;
 264	}
 265
 266	spin_unlock(&tvcpu->arch.vpa_update_lock);
 267
 268	return err;
 269}
 270
 271static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 272{
 273	struct kvm *kvm = vcpu->kvm;
 274	void *va;
 275	unsigned long nb;
 276	unsigned long gpa;
 277
 278	/*
 279	 * We need to pin the page pointed to by vpap->next_gpa,
 280	 * but we can't call kvmppc_pin_guest_page under the lock
 281	 * as it does get_user_pages() and down_read().  So we
 282	 * have to drop the lock, pin the page, then get the lock
 283	 * again and check that a new area didn't get registered
 284	 * in the meantime.
 285	 */
 286	for (;;) {
 287		gpa = vpap->next_gpa;
 288		spin_unlock(&vcpu->arch.vpa_update_lock);
 289		va = NULL;
 290		nb = 0;
 291		if (gpa)
 292			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
 293		spin_lock(&vcpu->arch.vpa_update_lock);
 294		if (gpa == vpap->next_gpa)
 295			break;
 296		/* sigh... unpin that one and try again */
 297		if (va)
 298			kvmppc_unpin_guest_page(kvm, va);
 299	}
 300
 301	vpap->update_pending = 0;
 302	if (va && nb < vpap->len) {
 303		/*
 304		 * If it's now too short, it must be that userspace
 305		 * has changed the mappings underlying guest memory,
 306		 * so unregister the region.
 307		 */
 308		kvmppc_unpin_guest_page(kvm, va);
 309		va = NULL;
 310	}
 311	if (vpap->pinned_addr)
 312		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
 313	vpap->pinned_addr = va;
 314	if (va)
 315		vpap->pinned_end = va + vpap->len;
 316}
 317
 318static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 319{
 320	spin_lock(&vcpu->arch.vpa_update_lock);
 321	if (vcpu->arch.vpa.update_pending) {
 322		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 323		init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 324	}
 325	if (vcpu->arch.dtl.update_pending) {
 326		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 327		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 328		vcpu->arch.dtl_index = 0;
 329	}
 330	if (vcpu->arch.slb_shadow.update_pending)
 331		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 332	spin_unlock(&vcpu->arch.vpa_update_lock);
 333}
 334
 335static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 336				    struct kvmppc_vcore *vc)
 337{
 338	struct dtl_entry *dt;
 339	struct lppaca *vpa;
 340	unsigned long old_stolen;
 341
 342	dt = vcpu->arch.dtl_ptr;
 343	vpa = vcpu->arch.vpa.pinned_addr;
 344	old_stolen = vcpu->arch.stolen_logged;
 345	vcpu->arch.stolen_logged = vc->stolen_tb;
 346	if (!dt || !vpa)
 347		return;
 348	memset(dt, 0, sizeof(struct dtl_entry));
 349	dt->dispatch_reason = 7;
 350	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
 351	dt->timebase = mftb();
 352	dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
 353	dt->srr0 = kvmppc_get_pc(vcpu);
 354	dt->srr1 = vcpu->arch.shregs.msr;
 355	++dt;
 356	if (dt == vcpu->arch.dtl.pinned_end)
 357		dt = vcpu->arch.dtl.pinned_addr;
 358	vcpu->arch.dtl_ptr = dt;
 359	/* order writing *dt vs. writing vpa->dtl_idx */
 360	smp_wmb();
 361	vpa->dtl_idx = ++vcpu->arch.dtl_index;
 362}
 363
 364int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 365{
 366	unsigned long req = kvmppc_get_gpr(vcpu, 3);
 367	unsigned long target, ret = H_SUCCESS;
 368	struct kvm_vcpu *tvcpu;
 369
 370	switch (req) {
 371	case H_ENTER:
 372		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
 373					      kvmppc_get_gpr(vcpu, 5),
 374					      kvmppc_get_gpr(vcpu, 6),
 375					      kvmppc_get_gpr(vcpu, 7));
 376		break;
 377	case H_CEDE:
 378		break;
 379	case H_PROD:
 380		target = kvmppc_get_gpr(vcpu, 4);
 381		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 382		if (!tvcpu) {
 383			ret = H_PARAMETER;
 384			break;
 385		}
 386		tvcpu->arch.prodded = 1;
 387		smp_mb();
 388		if (vcpu->arch.ceded) {
 389			if (waitqueue_active(&vcpu->wq)) {
 390				wake_up_interruptible(&vcpu->wq);
 391				vcpu->stat.halt_wakeup++;
 392			}
 393		}
 394		break;
 395	case H_CONFER:
 396		break;
 397	case H_REGISTER_VPA:
 398		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 399					kvmppc_get_gpr(vcpu, 5),
 400					kvmppc_get_gpr(vcpu, 6));
 401		break;
 402	default:
 403		return RESUME_HOST;
 404	}
 405	kvmppc_set_gpr(vcpu, 3, ret);
 406	vcpu->arch.hcall_needed = 0;
 407	return RESUME_GUEST;
 408}
 409
 410static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 411			      struct task_struct *tsk)
 412{
 413	int r = RESUME_HOST;
 414
 415	vcpu->stat.sum_exits++;
 416
 417	run->exit_reason = KVM_EXIT_UNKNOWN;
 418	run->ready_for_interrupt_injection = 1;
 419	switch (vcpu->arch.trap) {
 420	/* We're good on these - the host merely wanted to get our attention */
 421	case BOOK3S_INTERRUPT_HV_DECREMENTER:
 422		vcpu->stat.dec_exits++;
 423		r = RESUME_GUEST;
 424		break;
 425	case BOOK3S_INTERRUPT_EXTERNAL:
 426		vcpu->stat.ext_intr_exits++;
 427		r = RESUME_GUEST;
 428		break;
 429	case BOOK3S_INTERRUPT_PERFMON:
 430		r = RESUME_GUEST;
 431		break;
 432	case BOOK3S_INTERRUPT_PROGRAM:
 433	{
 434		ulong flags;
 435		/*
 436		 * Normally program interrupts are delivered directly
 437		 * to the guest by the hardware, but we can get here
 438		 * as a result of a hypervisor emulation interrupt
 439		 * (e40) getting turned into a 700 by BML RTAS.
 440		 */
 441		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
 442		kvmppc_core_queue_program(vcpu, flags);
 443		r = RESUME_GUEST;
 444		break;
 445	}
 446	case BOOK3S_INTERRUPT_SYSCALL:
 447	{
 448		/* hcall - punt to userspace */
 449		int i;
 450
 451		if (vcpu->arch.shregs.msr & MSR_PR) {
 452			/* sc 1 from userspace - reflect to guest syscall */
 453			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
 454			r = RESUME_GUEST;
 455			break;
 456		}
 457		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
 458		for (i = 0; i < 9; ++i)
 459			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
 460		run->exit_reason = KVM_EXIT_PAPR_HCALL;
 461		vcpu->arch.hcall_needed = 1;
 462		r = RESUME_HOST;
 463		break;
 464	}
 465	/*
 466	 * We get these next two if the guest accesses a page which it thinks
 467	 * it has mapped but which is not actually present, either because
 468	 * it is for an emulated I/O device or because the corresonding
 469	 * host page has been paged out.  Any other HDSI/HISI interrupts
 470	 * have been handled already.
 471	 */
 472	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
 473		r = kvmppc_book3s_hv_page_fault(run, vcpu,
 474				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 475		break;
 476	case BOOK3S_INTERRUPT_H_INST_STORAGE:
 477		r = kvmppc_book3s_hv_page_fault(run, vcpu,
 478				kvmppc_get_pc(vcpu), 0);
 479		break;
 480	/*
 481	 * This occurs if the guest executes an illegal instruction.
 482	 * We just generate a program interrupt to the guest, since
 483	 * we don't emulate any guest instructions at this stage.
 484	 */
 485	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
 486		kvmppc_core_queue_program(vcpu, 0x80000);
 487		r = RESUME_GUEST;
 488		break;
 489	default:
 490		kvmppc_dump_regs(vcpu);
 491		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
 492			vcpu->arch.trap, kvmppc_get_pc(vcpu),
 493			vcpu->arch.shregs.msr);
 494		r = RESUME_HOST;
 495		BUG();
 496		break;
 497	}
 498
 499	return r;
 500}
 501
 502int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 503                                  struct kvm_sregs *sregs)
 504{
 505	int i;
 506
 507	sregs->pvr = vcpu->arch.pvr;
 508
 509	memset(sregs, 0, sizeof(struct kvm_sregs));
 510	for (i = 0; i < vcpu->arch.slb_max; i++) {
 511		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
 512		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
 513	}
 514
 515	return 0;
 516}
 517
 518int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 519                                  struct kvm_sregs *sregs)
 520{
 521	int i, j;
 522
 523	kvmppc_set_pvr(vcpu, sregs->pvr);
 524
 525	j = 0;
 526	for (i = 0; i < vcpu->arch.slb_nr; i++) {
 527		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
 528			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
 529			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
 530			++j;
 531		}
 532	}
 533	vcpu->arch.slb_max = j;
 534
 535	return 0;
 536}
 537
 538int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
 539{
 540	int r = -EINVAL;
 541
 542	switch (reg->id) {
 543	case KVM_REG_PPC_HIOR:
 544		r = put_user(0, (u64 __user *)reg->addr);
 545		break;
 546	default:
 547		break;
 548	}
 549
 550	return r;
 551}
 552
 553int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
 554{
 555	int r = -EINVAL;
 556
 557	switch (reg->id) {
 558	case KVM_REG_PPC_HIOR:
 559	{
 560		u64 hior;
 561		/* Only allow this to be set to zero */
 562		r = get_user(hior, (u64 __user *)reg->addr);
 563		if (!r && (hior != 0))
 564			r = -EINVAL;
 565		break;
 566	}
 567	default:
 568		break;
 569	}
 570
 571	return r;
 572}
 573
 574int kvmppc_core_check_processor_compat(void)
 575{
 576	if (cpu_has_feature(CPU_FTR_HVMODE))
 577		return 0;
 578	return -EIO;
 579}
 580
 581struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
 582{
 583	struct kvm_vcpu *vcpu;
 584	int err = -EINVAL;
 585	int core;
 586	struct kvmppc_vcore *vcore;
 587
 588	core = id / threads_per_core;
 589	if (core >= KVM_MAX_VCORES)
 590		goto out;
 591
 592	err = -ENOMEM;
 593	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 594	if (!vcpu)
 595		goto out;
 596
 597	err = kvm_vcpu_init(vcpu, kvm, id);
 598	if (err)
 599		goto free_vcpu;
 600
 601	vcpu->arch.shared = &vcpu->arch.shregs;
 602	vcpu->arch.last_cpu = -1;
 603	vcpu->arch.mmcr[0] = MMCR0_FC;
 604	vcpu->arch.ctrl = CTRL_RUNLATCH;
 605	/* default to host PVR, since we can't spoof it */
 606	vcpu->arch.pvr = mfspr(SPRN_PVR);
 607	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
 608	spin_lock_init(&vcpu->arch.vpa_update_lock);
 609
 610	kvmppc_mmu_book3s_hv_init(vcpu);
 611
 612	/*
 613	 * We consider the vcpu stopped until we see the first run ioctl for it.
 614	 */
 615	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
 616
 617	init_waitqueue_head(&vcpu->arch.cpu_run);
 618
 619	mutex_lock(&kvm->lock);
 620	vcore = kvm->arch.vcores[core];
 621	if (!vcore) {
 622		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
 623		if (vcore) {
 624			INIT_LIST_HEAD(&vcore->runnable_threads);
 625			spin_lock_init(&vcore->lock);
 626			init_waitqueue_head(&vcore->wq);
 627			vcore->preempt_tb = mftb();
 628		}
 629		kvm->arch.vcores[core] = vcore;
 630	}
 631	mutex_unlock(&kvm->lock);
 632
 633	if (!vcore)
 634		goto free_vcpu;
 635
 636	spin_lock(&vcore->lock);
 637	++vcore->num_threads;
 638	spin_unlock(&vcore->lock);
 639	vcpu->arch.vcore = vcore;
 640	vcpu->arch.stolen_logged = vcore->stolen_tb;
 641
 642	vcpu->arch.cpu_type = KVM_CPU_3S_64;
 643	kvmppc_sanity_check(vcpu);
 644
 645	return vcpu;
 646
 647free_vcpu:
 648	kmem_cache_free(kvm_vcpu_cache, vcpu);
 649out:
 650	return ERR_PTR(err);
 651}
 652
 653void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
 654{
 655	spin_lock(&vcpu->arch.vpa_update_lock);
 656	if (vcpu->arch.dtl.pinned_addr)
 657		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
 658	if (vcpu->arch.slb_shadow.pinned_addr)
 659		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
 660	if (vcpu->arch.vpa.pinned_addr)
 661		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
 662	spin_unlock(&vcpu->arch.vpa_update_lock);
 663	kvm_vcpu_uninit(vcpu);
 664	kmem_cache_free(kvm_vcpu_cache, vcpu);
 665}
 666
 667static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
 668{
 669	unsigned long dec_nsec, now;
 670
 671	now = get_tb();
 672	if (now > vcpu->arch.dec_expires) {
 673		/* decrementer has already gone negative */
 674		kvmppc_core_queue_dec(vcpu);
 675		kvmppc_core_prepare_to_enter(vcpu);
 676		return;
 677	}
 678	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
 679		   / tb_ticks_per_sec;
 680	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
 681		      HRTIMER_MODE_REL);
 682	vcpu->arch.timer_running = 1;
 683}
 684
 685static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
 686{
 687	vcpu->arch.ceded = 0;
 688	if (vcpu->arch.timer_running) {
 689		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
 690		vcpu->arch.timer_running = 0;
 691	}
 692}
 693
 694extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
 695extern void xics_wake_cpu(int cpu);
 696
 697static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
 698				   struct kvm_vcpu *vcpu)
 699{
 700	struct kvm_vcpu *v;
 701
 702	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
 703		return;
 704	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
 705	--vc->n_runnable;
 706	++vc->n_busy;
 707	/* decrement the physical thread id of each following vcpu */
 708	v = vcpu;
 709	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
 710		--v->arch.ptid;
 711	list_del(&vcpu->arch.run_list);
 712}
 713
 714static int kvmppc_grab_hwthread(int cpu)
 715{
 716	struct paca_struct *tpaca;
 717	long timeout = 1000;
 718
 719	tpaca = &paca[cpu];
 720
 721	/* Ensure the thread won't go into the kernel if it wakes */
 722	tpaca->kvm_hstate.hwthread_req = 1;
 723
 724	/*
 725	 * If the thread is already executing in the kernel (e.g. handling
 726	 * a stray interrupt), wait for it to get back to nap mode.
 727	 * The smp_mb() is to ensure that our setting of hwthread_req
 728	 * is visible before we look at hwthread_state, so if this
 729	 * races with the code at system_reset_pSeries and the thread
 730	 * misses our setting of hwthread_req, we are sure to see its
 731	 * setting of hwthread_state, and vice versa.
 732	 */
 733	smp_mb();
 734	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
 735		if (--timeout <= 0) {
 736			pr_err("KVM: couldn't grab cpu %d\n", cpu);
 737			return -EBUSY;
 738		}
 739		udelay(1);
 740	}
 741	return 0;
 742}
 743
 744static void kvmppc_release_hwthread(int cpu)
 745{
 746	struct paca_struct *tpaca;
 747
 748	tpaca = &paca[cpu];
 749	tpaca->kvm_hstate.hwthread_req = 0;
 750	tpaca->kvm_hstate.kvm_vcpu = NULL;
 751}
 752
 753static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
 754{
 755	int cpu;
 756	struct paca_struct *tpaca;
 757	struct kvmppc_vcore *vc = vcpu->arch.vcore;
 758
 759	if (vcpu->arch.timer_running) {
 760		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
 761		vcpu->arch.timer_running = 0;
 762	}
 763	cpu = vc->pcpu + vcpu->arch.ptid;
 764	tpaca = &paca[cpu];
 765	tpaca->kvm_hstate.kvm_vcpu = vcpu;
 766	tpaca->kvm_hstate.kvm_vcore = vc;
 767	tpaca->kvm_hstate.napping = 0;
 768	vcpu->cpu = vc->pcpu;
 769	smp_wmb();
 770#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 771	if (vcpu->arch.ptid) {
 772		kvmppc_grab_hwthread(cpu);
 773		xics_wake_cpu(cpu);
 774		++vc->n_woken;
 775	}
 776#endif
 777}
 778
 779static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
 780{
 781	int i;
 782
 783	HMT_low();
 784	i = 0;
 785	while (vc->nap_count < vc->n_woken) {
 786		if (++i >= 1000000) {
 787			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
 788			       vc->nap_count, vc->n_woken);
 789			break;
 790		}
 791		cpu_relax();
 792	}
 793	HMT_medium();
 794}
 795
 796/*
 797 * Check that we are on thread 0 and that any other threads in
 798 * this core are off-line.
 799 */
 800static int on_primary_thread(void)
 801{
 802	int cpu = smp_processor_id();
 803	int thr = cpu_thread_in_core(cpu);
 804
 805	if (thr)
 806		return 0;
 807	while (++thr < threads_per_core)
 808		if (cpu_online(cpu + thr))
 809			return 0;
 810	return 1;
 811}
 812
 813/*
 814 * Run a set of guest threads on a physical core.
 815 * Called with vc->lock held.
 816 */
 817static int kvmppc_run_core(struct kvmppc_vcore *vc)
 818{
 819	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
 820	long ret;
 821	u64 now;
 822	int ptid, i, need_vpa_update;
 823
 824	/* don't start if any threads have a signal pending */
 825	need_vpa_update = 0;
 826	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
 827		if (signal_pending(vcpu->arch.run_task))
 828			return 0;
 829		need_vpa_update |= vcpu->arch.vpa.update_pending |
 830			vcpu->arch.slb_shadow.update_pending |
 831			vcpu->arch.dtl.update_pending;
 832	}
 833
 834	/*
 835	 * Initialize *vc, in particular vc->vcore_state, so we can
 836	 * drop the vcore lock if necessary.
 837	 */
 838	vc->n_woken = 0;
 839	vc->nap_count = 0;
 840	vc->entry_exit_count = 0;
 841	vc->vcore_state = VCORE_RUNNING;
 842	vc->in_guest = 0;
 843	vc->napping_threads = 0;
 844
 845	/*
 846	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
 847	 * which can't be called with any spinlocks held.
 848	 */
 849	if (need_vpa_update) {
 850		spin_unlock(&vc->lock);
 851		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 852			kvmppc_update_vpas(vcpu);
 853		spin_lock(&vc->lock);
 854	}
 855
 856	/*
 857	 * Make sure we are running on thread 0, and that
 858	 * secondary threads are offline.
 859	 * XXX we should also block attempts to bring any
 860	 * secondary threads online.
 861	 */
 862	if (threads_per_core > 1 && !on_primary_thread()) {
 863		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 864			vcpu->arch.ret = -EBUSY;
 865		goto out;
 866	}
 867
 868	/*
 869	 * Assign physical thread IDs, first to non-ceded vcpus
 870	 * and then to ceded ones.
 871	 */
 872	ptid = 0;
 873	vcpu0 = NULL;
 874	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
 875		if (!vcpu->arch.ceded) {
 876			if (!ptid)
 877				vcpu0 = vcpu;
 878			vcpu->arch.ptid = ptid++;
 879		}
 880	}
 881	if (!vcpu0)
 882		return 0;		/* nothing to run */
 883	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 884		if (vcpu->arch.ceded)
 885			vcpu->arch.ptid = ptid++;
 886
 887	vc->stolen_tb += mftb() - vc->preempt_tb;
 888	vc->pcpu = smp_processor_id();
 889	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
 890		kvmppc_start_thread(vcpu);
 891		kvmppc_create_dtl_entry(vcpu, vc);
 892	}
 893	/* Grab any remaining hw threads so they can't go into the kernel */
 894	for (i = ptid; i < threads_per_core; ++i)
 895		kvmppc_grab_hwthread(vc->pcpu + i);
 896
 897	preempt_disable();
 898	spin_unlock(&vc->lock);
 899
 900	kvm_guest_enter();
 901	__kvmppc_vcore_entry(NULL, vcpu0);
 902	for (i = 0; i < threads_per_core; ++i)
 903		kvmppc_release_hwthread(vc->pcpu + i);
 904
 905	spin_lock(&vc->lock);
 906	/* disable sending of IPIs on virtual external irqs */
 907	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
 908		vcpu->cpu = -1;
 909	/* wait for secondary threads to finish writing their state to memory */
 910	if (vc->nap_count < vc->n_woken)
 911		kvmppc_wait_for_nap(vc);
 912	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
 913	vc->vcore_state = VCORE_EXITING;
 914	spin_unlock(&vc->lock);
 915
 916	/* make sure updates to secondary vcpu structs are visible now */
 917	smp_mb();
 918	kvm_guest_exit();
 919
 920	preempt_enable();
 921	kvm_resched(vcpu);
 922
 923	now = get_tb();
 924	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
 925		/* cancel pending dec exception if dec is positive */
 926		if (now < vcpu->arch.dec_expires &&
 927		    kvmppc_core_pending_dec(vcpu))
 928			kvmppc_core_dequeue_dec(vcpu);
 929
 930		ret = RESUME_GUEST;
 931		if (vcpu->arch.trap)
 932			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
 933						 vcpu->arch.run_task);
 934
 935		vcpu->arch.ret = ret;
 936		vcpu->arch.trap = 0;
 937
 938		if (vcpu->arch.ceded) {
 939			if (ret != RESUME_GUEST)
 940				kvmppc_end_cede(vcpu);
 941			else
 942				kvmppc_set_timer(vcpu);
 943		}
 944	}
 945
 946	spin_lock(&vc->lock);
 947 out:
 948	vc->vcore_state = VCORE_INACTIVE;
 949	vc->preempt_tb = mftb();
 950	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
 951				 arch.run_list) {
 952		if (vcpu->arch.ret != RESUME_GUEST) {
 953			kvmppc_remove_runnable(vc, vcpu);
 954			wake_up(&vcpu->arch.cpu_run);
 955		}
 956	}
 957
 958	return 1;
 959}
 960
 961/*
 962 * Wait for some other vcpu thread to execute us, and
 963 * wake us up when we need to handle something in the host.
 964 */
 965static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
 966{
 967	DEFINE_WAIT(wait);
 968
 969	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
 970	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
 971		schedule();
 972	finish_wait(&vcpu->arch.cpu_run, &wait);
 973}
 974
 975/*
 976 * All the vcpus in this vcore are idle, so wait for a decrementer
 977 * or external interrupt to one of the vcpus.  vc->lock is held.
 978 */
 979static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
 980{
 981	DEFINE_WAIT(wait);
 982	struct kvm_vcpu *v;
 983	int all_idle = 1;
 984
 985	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
 986	vc->vcore_state = VCORE_SLEEPING;
 987	spin_unlock(&vc->lock);
 988	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
 989		if (!v->arch.ceded || v->arch.pending_exceptions) {
 990			all_idle = 0;
 991			break;
 992		}
 993	}
 994	if (all_idle)
 995		schedule();
 996	finish_wait(&vc->wq, &wait);
 997	spin_lock(&vc->lock);
 998	vc->vcore_state = VCORE_INACTIVE;
 999}
1000
1001static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1002{
1003	int n_ceded;
1004	int prev_state;
1005	struct kvmppc_vcore *vc;
1006	struct kvm_vcpu *v, *vn;
1007
1008	kvm_run->exit_reason = 0;
1009	vcpu->arch.ret = RESUME_GUEST;
1010	vcpu->arch.trap = 0;
1011
1012	/*
1013	 * Synchronize with other threads in this virtual core
1014	 */
1015	vc = vcpu->arch.vcore;
1016	spin_lock(&vc->lock);
1017	vcpu->arch.ceded = 0;
1018	vcpu->arch.run_task = current;
1019	vcpu->arch.kvm_run = kvm_run;
1020	prev_state = vcpu->arch.state;
1021	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1022	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1023	++vc->n_runnable;
1024
1025	/*
1026	 * This happens the first time this is called for a vcpu.
1027	 * If the vcore is already running, we may be able to start
1028	 * this thread straight away and have it join in.
1029	 */
1030	if (prev_state == KVMPPC_VCPU_STOPPED) {
1031		if (vc->vcore_state == VCORE_RUNNING &&
1032		    VCORE_EXIT_COUNT(vc) == 0) {
1033			vcpu->arch.ptid = vc->n_runnable - 1;
1034			kvmppc_start_thread(vcpu);
1035		}
1036
1037	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
1038		--vc->n_busy;
1039
1040	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1041	       !signal_pending(current)) {
1042		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
1043			spin_unlock(&vc->lock);
1044			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1045			spin_lock(&vc->lock);
1046			continue;
1047		}
1048		vc->runner = vcpu;
1049		n_ceded = 0;
1050		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1051			n_ceded += v->arch.ceded;
1052		if (n_ceded == vc->n_runnable)
1053			kvmppc_vcore_blocked(vc);
1054		else
1055			kvmppc_run_core(vc);
1056
1057		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1058					 arch.run_list) {
1059			kvmppc_core_prepare_to_enter(v);
1060			if (signal_pending(v->arch.run_task)) {
1061				kvmppc_remove_runnable(vc, v);
1062				v->stat.signal_exits++;
1063				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1064				v->arch.ret = -EINTR;
1065				wake_up(&v->arch.cpu_run);
1066			}
1067		}
1068		vc->runner = NULL;
1069	}
1070
1071	if (signal_pending(current)) {
1072		if (vc->vcore_state == VCORE_RUNNING ||
1073		    vc->vcore_state == VCORE_EXITING) {
1074			spin_unlock(&vc->lock);
1075			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1076			spin_lock(&vc->lock);
1077		}
1078		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1079			kvmppc_remove_runnable(vc, vcpu);
1080			vcpu->stat.signal_exits++;
1081			kvm_run->exit_reason = KVM_EXIT_INTR;
1082			vcpu->arch.ret = -EINTR;
1083		}
1084	}
1085
1086	spin_unlock(&vc->lock);
1087	return vcpu->arch.ret;
1088}
1089
1090int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1091{
1092	int r;
1093
1094	if (!vcpu->arch.sane) {
1095		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1096		return -EINVAL;
1097	}
1098
1099	kvmppc_core_prepare_to_enter(vcpu);
1100
1101	/* No need to go into the guest when all we'll do is come back out */
1102	if (signal_pending(current)) {
1103		run->exit_reason = KVM_EXIT_INTR;
1104		return -EINTR;
1105	}
1106
1107	/* On the first time here, set up VRMA or RMA */
1108	if (!vcpu->kvm->arch.rma_setup_done) {
1109		r = kvmppc_hv_setup_rma(vcpu);
1110		if (r)
1111			return r;
1112	}
1113
1114	flush_fp_to_thread(current);
1115	flush_altivec_to_thread(current);
1116	flush_vsx_to_thread(current);
1117	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1118	vcpu->arch.pgdir = current->mm->pgd;
1119
1120	do {
1121		r = kvmppc_run_vcpu(run, vcpu);
1122
1123		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1124		    !(vcpu->arch.shregs.msr & MSR_PR)) {
1125			r = kvmppc_pseries_do_hcall(vcpu);
1126			kvmppc_core_prepare_to_enter(vcpu);
1127		}
1128	} while (r == RESUME_GUEST);
1129	return r;
1130}
1131
1132
1133/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1134   Assumes POWER7 or PPC970. */
1135static inline int lpcr_rmls(unsigned long rma_size)
1136{
1137	switch (rma_size) {
1138	case 32ul << 20:	/* 32 MB */
1139		if (cpu_has_feature(CPU_FTR_ARCH_206))
1140			return 8;	/* only supported on POWER7 */
1141		return -1;
1142	case 64ul << 20:	/* 64 MB */
1143		return 3;
1144	case 128ul << 20:	/* 128 MB */
1145		return 7;
1146	case 256ul << 20:	/* 256 MB */
1147		return 4;
1148	case 1ul << 30:		/* 1 GB */
1149		return 2;
1150	case 16ul << 30:	/* 16 GB */
1151		return 1;
1152	case 256ul << 30:	/* 256 GB */
1153		return 0;
1154	default:
1155		return -1;
1156	}
1157}
1158
1159static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1160{
1161	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1162	struct page *page;
1163
1164	if (vmf->pgoff >= ri->npages)
1165		return VM_FAULT_SIGBUS;
1166
1167	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1168	get_page(page);
1169	vmf->page = page;
1170	return 0;
1171}
1172
1173static const struct vm_operations_struct kvm_rma_vm_ops = {
1174	.fault = kvm_rma_fault,
1175};
1176
1177static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1178{
1179	vma->vm_flags |= VM_RESERVED;
1180	vma->vm_ops = &kvm_rma_vm_ops;
1181	return 0;
1182}
1183
1184static int kvm_rma_release(struct inode *inode, struct file *filp)
1185{
1186	struct kvmppc_linear_info *ri = filp->private_data;
1187
1188	kvm_release_rma(ri);
1189	return 0;
1190}
1191
1192static struct file_operations kvm_rma_fops = {
1193	.mmap           = kvm_rma_mmap,
1194	.release	= kvm_rma_release,
1195};
1196
1197long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1198{
1199	struct kvmppc_linear_info *ri;
1200	long fd;
1201
1202	ri = kvm_alloc_rma();
1203	if (!ri)
1204		return -ENOMEM;
1205
1206	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1207	if (fd < 0)
1208		kvm_release_rma(ri);
1209
1210	ret->rma_size = ri->npages << PAGE_SHIFT;
1211	return fd;
1212}
1213
1214static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1215				     int linux_psize)
1216{
1217	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1218
1219	if (!def->shift)
1220		return;
1221	(*sps)->page_shift = def->shift;
1222	(*sps)->slb_enc = def->sllp;
1223	(*sps)->enc[0].page_shift = def->shift;
1224	(*sps)->enc[0].pte_enc = def->penc;
1225	(*sps)++;
1226}
1227
1228int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1229{
1230	struct kvm_ppc_one_seg_page_size *sps;
1231
1232	info->flags = KVM_PPC_PAGE_SIZES_REAL;
1233	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1234		info->flags |= KVM_PPC_1T_SEGMENTS;
1235	info->slb_size = mmu_slb_size;
1236
1237	/* We only support these sizes for now, and no muti-size segments */
1238	sps = &info->sps[0];
1239	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1240	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1241	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1242
1243	return 0;
1244}
1245
1246/*
1247 * Get (and clear) the dirty memory log for a memory slot.
1248 */
1249int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1250{
1251	struct kvm_memory_slot *memslot;
1252	int r;
1253	unsigned long n;
1254
1255	mutex_lock(&kvm->slots_lock);
1256
1257	r = -EINVAL;
1258	if (log->slot >= KVM_MEMORY_SLOTS)
1259		goto out;
1260
1261	memslot = id_to_memslot(kvm->memslots, log->slot);
1262	r = -ENOENT;
1263	if (!memslot->dirty_bitmap)
1264		goto out;
1265
1266	n = kvm_dirty_bitmap_bytes(memslot);
1267	memset(memslot->dirty_bitmap, 0, n);
1268
1269	r = kvmppc_hv_get_dirty_log(kvm, memslot);
1270	if (r)
1271		goto out;
1272
1273	r = -EFAULT;
1274	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1275		goto out;
1276
1277	r = 0;
1278out:
1279	mutex_unlock(&kvm->slots_lock);
1280	return r;
1281}
1282
1283static unsigned long slb_pgsize_encoding(unsigned long psize)
1284{
1285	unsigned long senc = 0;
1286
1287	if (psize > 0x1000) {
1288		senc = SLB_VSID_L;
1289		if (psize == 0x10000)
1290			senc |= SLB_VSID_LP_01;
1291	}
1292	return senc;
1293}
1294
1295int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1296				struct kvm_userspace_memory_region *mem)
1297{
1298	unsigned long npages;
1299	unsigned long *phys;
1300
1301	/* Allocate a slot_phys array */
1302	phys = kvm->arch.slot_phys[mem->slot];
1303	if (!kvm->arch.using_mmu_notifiers && !phys) {
1304		npages = mem->memory_size >> PAGE_SHIFT;
1305		phys = vzalloc(npages * sizeof(unsigned long));
1306		if (!phys)
1307			return -ENOMEM;
1308		kvm->arch.slot_phys[mem->slot] = phys;
1309		kvm->arch.slot_npages[mem->slot] = npages;
1310	}
1311
1312	return 0;
1313}
1314
1315static void unpin_slot(struct kvm *kvm, int slot_id)
1316{
1317	unsigned long *physp;
1318	unsigned long j, npages, pfn;
1319	struct page *page;
1320
1321	physp = kvm->arch.slot_phys[slot_id];
1322	npages = kvm->arch.slot_npages[slot_id];
1323	if (physp) {
1324		spin_lock(&kvm->arch.slot_phys_lock);
1325		for (j = 0; j < npages; j++) {
1326			if (!(physp[j] & KVMPPC_GOT_PAGE))
1327				continue;
1328			pfn = physp[j] >> PAGE_SHIFT;
1329			page = pfn_to_page(pfn);
1330			SetPageDirty(page);
1331			put_page(page);
1332		}
1333		kvm->arch.slot_phys[slot_id] = NULL;
1334		spin_unlock(&kvm->arch.slot_phys_lock);
1335		vfree(physp);
1336	}
1337}
1338
1339void kvmppc_core_commit_memory_region(struct kvm *kvm,
1340				struct kvm_userspace_memory_region *mem)
1341{
1342}
1343
1344static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
1345{
1346	int err = 0;
1347	struct kvm *kvm = vcpu->kvm;
1348	struct kvmppc_linear_info *ri = NULL;
1349	unsigned long hva;
1350	struct kvm_memory_slot *memslot;
1351	struct vm_area_struct *vma;
1352	unsigned long lpcr, senc;
1353	unsigned long psize, porder;
1354	unsigned long rma_size;
1355	unsigned long rmls;
1356	unsigned long *physp;
1357	unsigned long i, npages;
1358
1359	mutex_lock(&kvm->lock);
1360	if (kvm->arch.rma_setup_done)
1361		goto out;	/* another vcpu beat us to it */
1362
1363	/* Look up the memslot for guest physical address 0 */
1364	memslot = gfn_to_memslot(kvm, 0);
1365
1366	/* We must have some memory at 0 by now */
1367	err = -EINVAL;
1368	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1369		goto out;
1370
1371	/* Look up the VMA for the start of this memory slot */
1372	hva = memslot->userspace_addr;
1373	down_read(&current->mm->mmap_sem);
1374	vma = find_vma(current->mm, hva);
1375	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1376		goto up_out;
1377
1378	psize = vma_kernel_pagesize(vma);
1379	porder = __ilog2(psize);
1380
1381	/* Is this one of our preallocated RMAs? */
1382	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1383	    hva == vma->vm_start)
1384		ri = vma->vm_file->private_data;
1385
1386	up_read(&current->mm->mmap_sem);
1387
1388	if (!ri) {
1389		/* On POWER7, use VRMA; on PPC970, give up */
1390		err = -EPERM;
1391		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1392			pr_err("KVM: CPU requires an RMO\n");
1393			goto out;
1394		}
1395
1396		/* We can handle 4k, 64k or 16M pages in the VRMA */
1397		err = -EINVAL;
1398		if (!(psize == 0x1000 || psize == 0x10000 ||
1399		      psize == 0x1000000))
1400			goto out;
1401
1402		/* Update VRMASD field in the LPCR */
1403		senc = slb_pgsize_encoding(psize);
1404		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1405			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1406		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1407		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1408		kvm->arch.lpcr = lpcr;
1409
1410		/* Create HPTEs in the hash page table for the VRMA */
1411		kvmppc_map_vrma(vcpu, memslot, porder);
1412
1413	} else {
1414		/* Set up to use an RMO region */
1415		rma_size = ri->npages;
1416		if (rma_size > memslot->npages)
1417			rma_size = memslot->npages;
1418		rma_size <<= PAGE_SHIFT;
1419		rmls = lpcr_rmls(rma_size);
1420		err = -EINVAL;
1421		if (rmls < 0) {
1422			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1423			goto out;
1424		}
1425		atomic_inc(&ri->use_count);
1426		kvm->arch.rma = ri;
1427
1428		/* Update LPCR and RMOR */
1429		lpcr = kvm->arch.lpcr;
1430		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1431			/* PPC970; insert RMLS value (split field) in HID4 */
1432			lpcr &= ~((1ul << HID4_RMLS0_SH) |
1433				  (3ul << HID4_RMLS2_SH));
1434			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1435				((rmls & 3) << HID4_RMLS2_SH);
1436			/* RMOR is also in HID4 */
1437			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1438				<< HID4_RMOR_SH;
1439		} else {
1440			/* POWER7 */
1441			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1442			lpcr |= rmls << LPCR_RMLS_SH;
1443			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1444		}
1445		kvm->arch.lpcr = lpcr;
1446		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1447			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1448
1449		/* Initialize phys addrs of pages in RMO */
1450		npages = ri->npages;
1451		porder = __ilog2(npages);
1452		physp = kvm->arch.slot_phys[memslot->id];
1453		spin_lock(&kvm->arch.slot_phys_lock);
1454		for (i = 0; i < npages; ++i)
1455			physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1456		spin_unlock(&kvm->arch.slot_phys_lock);
1457	}
1458
1459	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1460	smp_wmb();
1461	kvm->arch.rma_setup_done = 1;
1462	err = 0;
1463 out:
1464	mutex_unlock(&kvm->lock);
1465	return err;
1466
1467 up_out:
1468	up_read(&current->mm->mmap_sem);
1469	goto out;
1470}
1471
1472int kvmppc_core_init_vm(struct kvm *kvm)
1473{
1474	long r;
1475	unsigned long lpcr;
1476
1477	/* Allocate hashed page table */
1478	r = kvmppc_alloc_hpt(kvm);
1479	if (r)
1480		return r;
1481
1482	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1483
1484	kvm->arch.rma = NULL;
1485
1486	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1487
1488	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1489		/* PPC970; HID4 is effectively the LPCR */
1490		unsigned long lpid = kvm->arch.lpid;
1491		kvm->arch.host_lpid = 0;
1492		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1493		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1494		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1495			((lpid & 0xf) << HID4_LPID5_SH);
1496	} else {
1497		/* POWER7; init LPCR for virtual RMA mode */
1498		kvm->arch.host_lpid = mfspr(SPRN_LPID);
1499		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1500		lpcr &= LPCR_PECE | LPCR_LPES;
1501		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1502			LPCR_VPM0 | LPCR_VPM1;
1503		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1504			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1505	}
1506	kvm->arch.lpcr = lpcr;
1507
1508	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1509	spin_lock_init(&kvm->arch.slot_phys_lock);
1510	return 0;
1511}
1512
1513void kvmppc_core_destroy_vm(struct kvm *kvm)
1514{
1515	unsigned long i;
1516
1517	if (!kvm->arch.using_mmu_notifiers)
1518		for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1519			unpin_slot(kvm, i);
1520
1521	if (kvm->arch.rma) {
1522		kvm_release_rma(kvm->arch.rma);
1523		kvm->arch.rma = NULL;
1524	}
1525
1526	kvmppc_free_hpt(kvm);
1527	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1528}
1529
1530/* These are stubs for now */
1531void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1532{
1533}
1534
1535/* We don't need to emulate any privileged instructions or dcbz */
1536int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1537                           unsigned int inst, int *advance)
1538{
1539	return EMULATE_FAIL;
1540}
1541
1542int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1543{
1544	return EMULATE_FAIL;
1545}
1546
1547int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1548{
1549	return EMULATE_FAIL;
1550}
1551
1552static int kvmppc_book3s_hv_init(void)
1553{
1554	int r;
1555
1556	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1557
1558	if (r)
1559		return r;
1560
1561	r = kvmppc_mmu_hv_init();
1562
1563	return r;
1564}
1565
1566static void kvmppc_book3s_hv_exit(void)
1567{
1568	kvm_exit();
1569}
1570
1571module_init(kvmppc_book3s_hv_init);
1572module_exit(kvmppc_book3s_hv_exit);