Linux Audio

Check our new training course

Loading...
  1#ifndef _ASM_POWERPC_PGTABLE_H
  2#define _ASM_POWERPC_PGTABLE_H
  3#ifdef __KERNEL__
  4
  5#ifndef __ASSEMBLY__
  6#include <asm/processor.h>		/* For TASK_SIZE */
  7#include <asm/mmu.h>
  8#include <asm/page.h>
  9
 10struct mm_struct;
 11
 12#ifdef CONFIG_DEBUG_VM
 13extern void assert_pte_locked(struct mm_struct *mm, unsigned long addr);
 14#else /* CONFIG_DEBUG_VM */
 15static inline void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
 16{
 17}
 18#endif /* !CONFIG_DEBUG_VM */
 19
 20#endif /* !__ASSEMBLY__ */
 21
 22#if defined(CONFIG_PPC64)
 23#  include <asm/pgtable-ppc64.h>
 24#else
 25#  include <asm/pgtable-ppc32.h>
 26#endif
 27
 28#ifndef __ASSEMBLY__
 29
 30/* Generic accessors to PTE bits */
 31static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
 32static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
 33static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
 34static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
 35static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
 36static inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_PRESENT; }
 37static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
 38static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
 39
 40/* Conversion functions: convert a page and protection to a page entry,
 41 * and a page entry and page directory to the page they refer to.
 42 *
 43 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 44 * long for now.
 45 */
 46static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
 47	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
 48		     pgprot_val(pgprot)); }
 49static inline unsigned long pte_pfn(pte_t pte)	{
 50	return pte_val(pte) >> PTE_RPN_SHIFT; }
 51
 52/* Keep these as a macros to avoid include dependency mess */
 53#define pte_page(x)		pfn_to_page(pte_pfn(x))
 54#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
 55
 56/* Generic modifiers for PTE bits */
 57static inline pte_t pte_wrprotect(pte_t pte) {
 58	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
 59static inline pte_t pte_mkclean(pte_t pte) {
 60	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
 61static inline pte_t pte_mkold(pte_t pte) {
 62	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 63static inline pte_t pte_mkwrite(pte_t pte) {
 64	pte_val(pte) |= _PAGE_RW; return pte; }
 65static inline pte_t pte_mkdirty(pte_t pte) {
 66	pte_val(pte) |= _PAGE_DIRTY; return pte; }
 67static inline pte_t pte_mkyoung(pte_t pte) {
 68	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 69static inline pte_t pte_mkspecial(pte_t pte) {
 70	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
 71static inline pte_t pte_mkhuge(pte_t pte) {
 72	return pte; }
 73static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 74{
 75	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
 76	return pte;
 77}
 78
 79
 80/* Insert a PTE, top-level function is out of line. It uses an inline
 81 * low level function in the respective pgtable-* files
 82 */
 83extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
 84		       pte_t pte);
 85
 86/* This low level function performs the actual PTE insertion
 87 * Setting the PTE depends on the MMU type and other factors. It's
 88 * an horrible mess that I'm not going to try to clean up now but
 89 * I'm keeping it in one place rather than spread around
 90 */
 91static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 92				pte_t *ptep, pte_t pte, int percpu)
 93{
 94#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
 95	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
 96	 * helper pte_update() which does an atomic update. We need to do that
 97	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
 98	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
 99	 * the hash bits instead (ie, same as the non-SMP case)
100	 */
101	if (percpu)
102		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
103			      | (pte_val(pte) & ~_PAGE_HASHPTE));
104	else
105		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
106
107#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
108	/* Second case is 32-bit with 64-bit PTE.  In this case, we
109	 * can just store as long as we do the two halves in the right order
110	 * with a barrier in between. This is possible because we take care,
111	 * in the hash code, to pre-invalidate if the PTE was already hashed,
112	 * which synchronizes us with any concurrent invalidation.
113	 * In the percpu case, we also fallback to the simple update preserving
114	 * the hash bits
115	 */
116	if (percpu) {
117		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
118			      | (pte_val(pte) & ~_PAGE_HASHPTE));
119		return;
120	}
121#if _PAGE_HASHPTE != 0
122	if (pte_val(*ptep) & _PAGE_HASHPTE)
123		flush_hash_entry(mm, ptep, addr);
124#endif
125	__asm__ __volatile__("\
126		stw%U0%X0 %2,%0\n\
127		eieio\n\
128		stw%U0%X0 %L2,%1"
129	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
130	: "r" (pte) : "memory");
131
132#elif defined(CONFIG_PPC_STD_MMU_32)
133	/* Third case is 32-bit hash table in UP mode, we need to preserve
134	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
135	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
136	 * and see we need to keep track that this PTE needs invalidating
137	 */
138	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
139		      | (pte_val(pte) & ~_PAGE_HASHPTE));
140
141#else
142	/* Anything else just stores the PTE normally. That covers all 64-bit
143	 * cases, and 32-bit non-hash with 32-bit PTEs.
144	 */
145	*ptep = pte;
146#endif
147}
148
149
150#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
151extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
152				 pte_t *ptep, pte_t entry, int dirty);
153
154/*
155 * Macro to mark a page protection value as "uncacheable".
156 */
157
158#define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
159			 _PAGE_WRITETHRU)
160
161#define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
162				            _PAGE_NO_CACHE | _PAGE_GUARDED))
163
164#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
165				            _PAGE_NO_CACHE))
166
167#define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
168				            _PAGE_COHERENT))
169
170#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
171				            _PAGE_COHERENT | _PAGE_WRITETHRU))
172
173#define pgprot_cached_noncoherent(prot) \
174		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
175
176#define pgprot_writecombine pgprot_noncached_wc
177
178struct file;
179extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
180				     unsigned long size, pgprot_t vma_prot);
181#define __HAVE_PHYS_MEM_ACCESS_PROT
182
183/*
184 * ZERO_PAGE is a global shared page that is always zero: used
185 * for zero-mapped memory areas etc..
186 */
187extern unsigned long empty_zero_page[];
188#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
189
190extern pgd_t swapper_pg_dir[];
191
192extern void paging_init(void);
193
194/*
195 * kern_addr_valid is intended to indicate whether an address is a valid
196 * kernel address.  Most 32-bit archs define it as always true (like this)
197 * but most 64-bit archs actually perform a test.  What should we do here?
198 */
199#define kern_addr_valid(addr)	(1)
200
201#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
202		remap_pfn_range(vma, vaddr, pfn, size, prot)
203
204#include <asm-generic/pgtable.h>
205
206
207/*
208 * This gets called at the end of handling a page fault, when
209 * the kernel has put a new PTE into the page table for the process.
210 * We use it to ensure coherency between the i-cache and d-cache
211 * for the page which has just been mapped in.
212 * On machines which use an MMU hash table, we use this to put a
213 * corresponding HPTE into the hash table ahead of time, instead of
214 * waiting for the inevitable extra hash-table miss exception.
215 */
216extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
217
218extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr,
219		      unsigned long end, int write, struct page **pages, int *nr);
220
221#endif /* __ASSEMBLY__ */
222
223#endif /* __KERNEL__ */
224#endif /* _ASM_POWERPC_PGTABLE_H */