Linux Audio

Check our new training course

Loading...
  1#ifndef _ASM_IA64_PGTABLE_H
  2#define _ASM_IA64_PGTABLE_H
  3
  4/*
  5 * This file contains the functions and defines necessary to modify and use
  6 * the IA-64 page table tree.
  7 *
  8 * This hopefully works with any (fixed) IA-64 page-size, as defined
  9 * in <asm/page.h>.
 10 *
 11 * Copyright (C) 1998-2005 Hewlett-Packard Co
 12 *	David Mosberger-Tang <davidm@hpl.hp.com>
 13 */
 14
 15
 16#include <asm/mman.h>
 17#include <asm/page.h>
 18#include <asm/processor.h>
 19#include <asm/types.h>
 20
 21#define IA64_MAX_PHYS_BITS	50	/* max. number of physical address bits (architected) */
 22
 23/*
 24 * First, define the various bits in a PTE.  Note that the PTE format
 25 * matches the VHPT short format, the firt doubleword of the VHPD long
 26 * format, and the first doubleword of the TLB insertion format.
 27 */
 28#define _PAGE_P_BIT		0
 29#define _PAGE_A_BIT		5
 30#define _PAGE_D_BIT		6
 31
 32#define _PAGE_P			(1 << _PAGE_P_BIT)	/* page present bit */
 33#define _PAGE_MA_WB		(0x0 <<  2)	/* write back memory attribute */
 34#define _PAGE_MA_UC		(0x4 <<  2)	/* uncacheable memory attribute */
 35#define _PAGE_MA_UCE		(0x5 <<  2)	/* UC exported attribute */
 36#define _PAGE_MA_WC		(0x6 <<  2)	/* write coalescing memory attribute */
 37#define _PAGE_MA_NAT		(0x7 <<  2)	/* not-a-thing attribute */
 38#define _PAGE_MA_MASK		(0x7 <<  2)
 39#define _PAGE_PL_0		(0 <<  7)	/* privilege level 0 (kernel) */
 40#define _PAGE_PL_1		(1 <<  7)	/* privilege level 1 (unused) */
 41#define _PAGE_PL_2		(2 <<  7)	/* privilege level 2 (unused) */
 42#define _PAGE_PL_3		(3 <<  7)	/* privilege level 3 (user) */
 43#define _PAGE_PL_MASK		(3 <<  7)
 44#define _PAGE_AR_R		(0 <<  9)	/* read only */
 45#define _PAGE_AR_RX		(1 <<  9)	/* read & execute */
 46#define _PAGE_AR_RW		(2 <<  9)	/* read & write */
 47#define _PAGE_AR_RWX		(3 <<  9)	/* read, write & execute */
 48#define _PAGE_AR_R_RW		(4 <<  9)	/* read / read & write */
 49#define _PAGE_AR_RX_RWX		(5 <<  9)	/* read & exec / read, write & exec */
 50#define _PAGE_AR_RWX_RW		(6 <<  9)	/* read, write & exec / read & write */
 51#define _PAGE_AR_X_RX		(7 <<  9)	/* exec & promote / read & exec */
 52#define _PAGE_AR_MASK		(7 <<  9)
 53#define _PAGE_AR_SHIFT		9
 54#define _PAGE_A			(1 << _PAGE_A_BIT)	/* page accessed bit */
 55#define _PAGE_D			(1 << _PAGE_D_BIT)	/* page dirty bit */
 56#define _PAGE_PPN_MASK		(((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
 57#define _PAGE_ED		(__IA64_UL(1) << 52)	/* exception deferral */
 58#define _PAGE_PROTNONE		(__IA64_UL(1) << 63)
 59
 60/* Valid only for a PTE with the present bit cleared: */
 61#define _PAGE_FILE		(1 << 1)		/* see swap & file pte remarks below */
 62
 63#define _PFN_MASK		_PAGE_PPN_MASK
 64/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
 65#define _PAGE_CHG_MASK	(_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
 66
 67#define _PAGE_SIZE_4K	12
 68#define _PAGE_SIZE_8K	13
 69#define _PAGE_SIZE_16K	14
 70#define _PAGE_SIZE_64K	16
 71#define _PAGE_SIZE_256K	18
 72#define _PAGE_SIZE_1M	20
 73#define _PAGE_SIZE_4M	22
 74#define _PAGE_SIZE_16M	24
 75#define _PAGE_SIZE_64M	26
 76#define _PAGE_SIZE_256M	28
 77#define _PAGE_SIZE_1G	30
 78#define _PAGE_SIZE_4G	32
 79
 80#define __ACCESS_BITS		_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
 81#define __DIRTY_BITS_NO_ED	_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
 82#define __DIRTY_BITS		_PAGE_ED | __DIRTY_BITS_NO_ED
 83
 84/*
 85 * How many pointers will a page table level hold expressed in shift
 86 */
 87#define PTRS_PER_PTD_SHIFT	(PAGE_SHIFT-3)
 88
 89/*
 90 * Definitions for fourth level:
 91 */
 92#define PTRS_PER_PTE	(__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
 93
 94/*
 95 * Definitions for third level:
 96 *
 97 * PMD_SHIFT determines the size of the area a third-level page table
 98 * can map.
 99 */
100#define PMD_SHIFT	(PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
101#define PMD_SIZE	(1UL << PMD_SHIFT)
102#define PMD_MASK	(~(PMD_SIZE-1))
103#define PTRS_PER_PMD	(1UL << (PTRS_PER_PTD_SHIFT))
104
105#ifdef CONFIG_PGTABLE_4
106/*
107 * Definitions for second level:
108 *
109 * PUD_SHIFT determines the size of the area a second-level page table
110 * can map.
111 */
112#define PUD_SHIFT	(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
113#define PUD_SIZE	(1UL << PUD_SHIFT)
114#define PUD_MASK	(~(PUD_SIZE-1))
115#define PTRS_PER_PUD	(1UL << (PTRS_PER_PTD_SHIFT))
116#endif
117
118/*
119 * Definitions for first level:
120 *
121 * PGDIR_SHIFT determines what a first-level page table entry can map.
122 */
123#ifdef CONFIG_PGTABLE_4
124#define PGDIR_SHIFT		(PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
125#else
126#define PGDIR_SHIFT		(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
127#endif
128#define PGDIR_SIZE		(__IA64_UL(1) << PGDIR_SHIFT)
129#define PGDIR_MASK		(~(PGDIR_SIZE-1))
130#define PTRS_PER_PGD_SHIFT	PTRS_PER_PTD_SHIFT
131#define PTRS_PER_PGD		(1UL << PTRS_PER_PGD_SHIFT)
132#define USER_PTRS_PER_PGD	(5*PTRS_PER_PGD/8)	/* regions 0-4 are user regions */
133#define FIRST_USER_ADDRESS	0
134
135/*
136 * All the normal masks have the "page accessed" bits on, as any time
137 * they are used, the page is accessed. They are cleared only by the
138 * page-out routines.
139 */
140#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_A)
141#define PAGE_SHARED	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
142#define PAGE_READONLY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
143#define PAGE_COPY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
144#define PAGE_COPY_EXEC	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
145#define PAGE_GATE	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
146#define PAGE_KERNEL	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX)
147#define PAGE_KERNELRX	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
148#define PAGE_KERNEL_UC	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX | \
149				 _PAGE_MA_UC)
150
151# ifndef __ASSEMBLY__
152
153#include <linux/sched.h>	/* for mm_struct */
154#include <linux/bitops.h>
155#include <asm/cacheflush.h>
156#include <asm/mmu_context.h>
157
158/*
159 * Next come the mappings that determine how mmap() protection bits
160 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The
161 * _P version gets used for a private shared memory segment, the _S
162 * version gets used for a shared memory segment with MAP_SHARED on.
163 * In a private shared memory segment, we do a copy-on-write if a task
164 * attempts to write to the page.
165 */
166	/* xwr */
167#define __P000	PAGE_NONE
168#define __P001	PAGE_READONLY
169#define __P010	PAGE_READONLY	/* write to priv pg -> copy & make writable */
170#define __P011	PAGE_READONLY	/* ditto */
171#define __P100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
172#define __P101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
173#define __P110	PAGE_COPY_EXEC
174#define __P111	PAGE_COPY_EXEC
175
176#define __S000	PAGE_NONE
177#define __S001	PAGE_READONLY
178#define __S010	PAGE_SHARED	/* we don't have (and don't need) write-only */
179#define __S011	PAGE_SHARED
180#define __S100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
181#define __S101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
182#define __S110	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
183#define __S111	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
184
185#define pgd_ERROR(e)	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
186#ifdef CONFIG_PGTABLE_4
187#define pud_ERROR(e)	printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
188#endif
189#define pmd_ERROR(e)	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
190#define pte_ERROR(e)	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
191
192
193/*
194 * Some definitions to translate between mem_map, PTEs, and page addresses:
195 */
196
197
198/* Quick test to see if ADDR is a (potentially) valid physical address. */
199static inline long
200ia64_phys_addr_valid (unsigned long addr)
201{
202	return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
203}
204
205/*
206 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
207 * memory.  For the return value to be meaningful, ADDR must be >=
208 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
209 * require a hash-, or multi-level tree-lookup or something of that
210 * sort) but it guarantees to return TRUE only if accessing the page
211 * at that address does not cause an error.  Note that there may be
212 * addresses for which kern_addr_valid() returns FALSE even though an
213 * access would not cause an error (e.g., this is typically true for
214 * memory mapped I/O regions.
215 *
216 * XXX Need to implement this for IA-64.
217 */
218#define kern_addr_valid(addr)	(1)
219
220
221/*
222 * Now come the defines and routines to manage and access the three-level
223 * page table.
224 */
225
226
227#define VMALLOC_START		(RGN_BASE(RGN_GATE) + 0x200000000UL)
228#ifdef CONFIG_VIRTUAL_MEM_MAP
229# define VMALLOC_END_INIT	(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
230extern unsigned long VMALLOC_END;
231#else
232#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
233/* SPARSEMEM_VMEMMAP uses half of vmalloc... */
234# define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
235# define vmemmap		((struct page *)VMALLOC_END)
236#else
237# define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
238#endif
239#endif
240
241/* fs/proc/kcore.c */
242#define	kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
243#define	kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
244
245#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
246#define RGN_MAP_LIMIT	((1UL << RGN_MAP_SHIFT) - PAGE_SIZE)	/* per region addr limit */
247
248/*
249 * Conversion functions: convert page frame number (pfn) and a protection value to a page
250 * table entry (pte).
251 */
252#define pfn_pte(pfn, pgprot) \
253({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
254
255/* Extract pfn from pte.  */
256#define pte_pfn(_pte)		((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
257
258#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
259
260/* This takes a physical page address that is used by the remapping functions */
261#define mk_pte_phys(physpage, pgprot) \
262({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
263
264#define pte_modify(_pte, newprot) \
265	(__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
266
267#define pte_none(pte) 			(!pte_val(pte))
268#define pte_present(pte)		(pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
269#define pte_clear(mm,addr,pte)		(pte_val(*(pte)) = 0UL)
270/* pte_page() returns the "struct page *" corresponding to the PTE: */
271#define pte_page(pte)			virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
272
273#define pmd_none(pmd)			(!pmd_val(pmd))
274#define pmd_bad(pmd)			(!ia64_phys_addr_valid(pmd_val(pmd)))
275#define pmd_present(pmd)		(pmd_val(pmd) != 0UL)
276#define pmd_clear(pmdp)			(pmd_val(*(pmdp)) = 0UL)
277#define pmd_page_vaddr(pmd)		((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
278#define pmd_page(pmd)			virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
279
280#define pud_none(pud)			(!pud_val(pud))
281#define pud_bad(pud)			(!ia64_phys_addr_valid(pud_val(pud)))
282#define pud_present(pud)		(pud_val(pud) != 0UL)
283#define pud_clear(pudp)			(pud_val(*(pudp)) = 0UL)
284#define pud_page_vaddr(pud)		((unsigned long) __va(pud_val(pud) & _PFN_MASK))
285#define pud_page(pud)			virt_to_page((pud_val(pud) + PAGE_OFFSET))
286
287#ifdef CONFIG_PGTABLE_4
288#define pgd_none(pgd)			(!pgd_val(pgd))
289#define pgd_bad(pgd)			(!ia64_phys_addr_valid(pgd_val(pgd)))
290#define pgd_present(pgd)		(pgd_val(pgd) != 0UL)
291#define pgd_clear(pgdp)			(pgd_val(*(pgdp)) = 0UL)
292#define pgd_page_vaddr(pgd)		((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
293#define pgd_page(pgd)			virt_to_page((pgd_val(pgd) + PAGE_OFFSET))
294#endif
295
296/*
297 * The following have defined behavior only work if pte_present() is true.
298 */
299#define pte_write(pte)	((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
300#define pte_exec(pte)		((pte_val(pte) & _PAGE_AR_RX) != 0)
301#define pte_dirty(pte)		((pte_val(pte) & _PAGE_D) != 0)
302#define pte_young(pte)		((pte_val(pte) & _PAGE_A) != 0)
303#define pte_file(pte)		((pte_val(pte) & _PAGE_FILE) != 0)
304#define pte_special(pte)	0
305
306/*
307 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
308 * access rights:
309 */
310#define pte_wrprotect(pte)	(__pte(pte_val(pte) & ~_PAGE_AR_RW))
311#define pte_mkwrite(pte)	(__pte(pte_val(pte) | _PAGE_AR_RW))
312#define pte_mkold(pte)		(__pte(pte_val(pte) & ~_PAGE_A))
313#define pte_mkyoung(pte)	(__pte(pte_val(pte) | _PAGE_A))
314#define pte_mkclean(pte)	(__pte(pte_val(pte) & ~_PAGE_D))
315#define pte_mkdirty(pte)	(__pte(pte_val(pte) | _PAGE_D))
316#define pte_mkhuge(pte)		(__pte(pte_val(pte)))
317#define pte_mkspecial(pte)	(pte)
318
319/*
320 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
321 * sync icache and dcache when we insert *new* executable page.
322 *  __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
323 * if necessary.
324 *
325 *  set_pte() is also called by the kernel, but we can expect that the kernel
326 *  flushes icache explicitly if necessary.
327 */
328#define pte_present_exec_user(pte)\
329	((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
330		(_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
331
332extern void __ia64_sync_icache_dcache(pte_t pteval);
333static inline void set_pte(pte_t *ptep, pte_t pteval)
334{
335	/* page is present && page is user  && page is executable
336	 * && (page swapin or new page or page migraton
337	 *	|| copy_on_write with page copying.)
338	 */
339	if (pte_present_exec_user(pteval) &&
340	    (!pte_present(*ptep) ||
341		pte_pfn(*ptep) != pte_pfn(pteval)))
342		/* load_module() calles flush_icache_range() explicitly*/
343		__ia64_sync_icache_dcache(pteval);
344	*ptep = pteval;
345}
346
347#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
348
349/*
350 * Make page protection values cacheable, uncacheable, or write-
351 * combining.  Note that "protection" is really a misnomer here as the
352 * protection value contains the memory attribute bits, dirty bits, and
353 * various other bits as well.
354 */
355#define pgprot_cacheable(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
356#define pgprot_noncached(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
357#define pgprot_writecombine(prot)	__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
358
359struct file;
360extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
361				     unsigned long size, pgprot_t vma_prot);
362#define __HAVE_PHYS_MEM_ACCESS_PROT
363
364static inline unsigned long
365pgd_index (unsigned long address)
366{
367	unsigned long region = address >> 61;
368	unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
369
370	return (region << (PAGE_SHIFT - 6)) | l1index;
371}
372
373/* The offset in the 1-level directory is given by the 3 region bits
374   (61..63) and the level-1 bits.  */
375static inline pgd_t*
376pgd_offset (const struct mm_struct *mm, unsigned long address)
377{
378	return mm->pgd + pgd_index(address);
379}
380
381/* In the kernel's mapped region we completely ignore the region number
382   (since we know it's in region number 5). */
383#define pgd_offset_k(addr) \
384	(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
385
386/* Look up a pgd entry in the gate area.  On IA-64, the gate-area
387   resides in the kernel-mapped segment, hence we use pgd_offset_k()
388   here.  */
389#define pgd_offset_gate(mm, addr)	pgd_offset_k(addr)
390
391#ifdef CONFIG_PGTABLE_4
392/* Find an entry in the second-level page table.. */
393#define pud_offset(dir,addr) \
394	((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
395#endif
396
397/* Find an entry in the third-level page table.. */
398#define pmd_offset(dir,addr) \
399	((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
400
401/*
402 * Find an entry in the third-level page table.  This looks more complicated than it
403 * should be because some platforms place page tables in high memory.
404 */
405#define pte_index(addr)	 	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
406#define pte_offset_kernel(dir,addr)	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
407#define pte_offset_map(dir,addr)	pte_offset_kernel(dir, addr)
408#define pte_unmap(pte)			do { } while (0)
409
410/* atomic versions of the some PTE manipulations: */
411
412static inline int
413ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
414{
415#ifdef CONFIG_SMP
416	if (!pte_young(*ptep))
417		return 0;
418	return test_and_clear_bit(_PAGE_A_BIT, ptep);
419#else
420	pte_t pte = *ptep;
421	if (!pte_young(pte))
422		return 0;
423	set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
424	return 1;
425#endif
426}
427
428static inline pte_t
429ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
430{
431#ifdef CONFIG_SMP
432	return __pte(xchg((long *) ptep, 0));
433#else
434	pte_t pte = *ptep;
435	pte_clear(mm, addr, ptep);
436	return pte;
437#endif
438}
439
440static inline void
441ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
442{
443#ifdef CONFIG_SMP
444	unsigned long new, old;
445
446	do {
447		old = pte_val(*ptep);
448		new = pte_val(pte_wrprotect(__pte (old)));
449	} while (cmpxchg((unsigned long *) ptep, old, new) != old);
450#else
451	pte_t old_pte = *ptep;
452	set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
453#endif
454}
455
456static inline int
457pte_same (pte_t a, pte_t b)
458{
459	return pte_val(a) == pte_val(b);
460}
461
462#define update_mmu_cache(vma, address, ptep) do { } while (0)
463
464extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
465extern void paging_init (void);
466
467/*
468 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
469 *	 bits in the swap-type field of the swap pte.  It would be nice to
470 *	 enforce that, but we can't easily include <linux/swap.h> here.
471 *	 (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
472 *
473 * Format of swap pte:
474 *	bit   0   : present bit (must be zero)
475 *	bit   1   : _PAGE_FILE (must be zero)
476 *	bits  2- 8: swap-type
477 *	bits  9-62: swap offset
478 *	bit  63   : _PAGE_PROTNONE bit
479 *
480 * Format of file pte:
481 *	bit   0   : present bit (must be zero)
482 *	bit   1   : _PAGE_FILE (must be one)
483 *	bits  2-62: file_offset/PAGE_SIZE
484 *	bit  63   : _PAGE_PROTNONE bit
485 */
486#define __swp_type(entry)		(((entry).val >> 2) & 0x7f)
487#define __swp_offset(entry)		(((entry).val << 1) >> 10)
488#define __swp_entry(type,offset)	((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
489#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
490#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
491
492#define PTE_FILE_MAX_BITS		61
493#define pte_to_pgoff(pte)		((pte_val(pte) << 1) >> 3)
494#define pgoff_to_pte(off)		((pte_t) { ((off) << 2) | _PAGE_FILE })
495
496#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
497		remap_pfn_range(vma, vaddr, pfn, size, prot)
498
499/*
500 * ZERO_PAGE is a global shared page that is always zero: used
501 * for zero-mapped memory areas etc..
502 */
503extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
504extern struct page *zero_page_memmap_ptr;
505#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
506
507/* We provide our own get_unmapped_area to cope with VA holes for userland */
508#define HAVE_ARCH_UNMAPPED_AREA
509
510#ifdef CONFIG_HUGETLB_PAGE
511#define HUGETLB_PGDIR_SHIFT	(HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
512#define HUGETLB_PGDIR_SIZE	(__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
513#define HUGETLB_PGDIR_MASK	(~(HUGETLB_PGDIR_SIZE-1))
514#endif
515
516
517#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
518/*
519 * Update PTEP with ENTRY, which is guaranteed to be a less
520 * restrictive PTE.  That is, ENTRY may have the ACCESSED, DIRTY, and
521 * WRITABLE bits turned on, when the value at PTEP did not.  The
522 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
523 *
524 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
525 * having to worry about races.  On SMP machines, there are only two
526 * cases where this is true:
527 *
528 *	(1) *PTEP has the PRESENT bit turned OFF
529 *	(2) ENTRY has the DIRTY bit turned ON
530 *
531 * On ia64, we could implement this routine with a cmpxchg()-loop
532 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
533 * However, like on x86, we can get a more streamlined version by
534 * observing that it is OK to drop ACCESSED bit updates when
535 * SAFELY_WRITABLE is FALSE.  Besides being rare, all that would do is
536 * result in an extra Access-bit fault, which would then turn on the
537 * ACCESSED bit in the low-level fault handler (iaccess_bit or
538 * daccess_bit in ivt.S).
539 */
540#ifdef CONFIG_SMP
541# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
542({									\
543	int __changed = !pte_same(*(__ptep), __entry);			\
544	if (__changed && __safely_writable) {				\
545		set_pte(__ptep, __entry);				\
546		flush_tlb_page(__vma, __addr);				\
547	}								\
548	__changed;							\
549})
550#else
551# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
552({									\
553	int __changed = !pte_same(*(__ptep), __entry);			\
554	if (__changed) {						\
555		set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry);	\
556		flush_tlb_page(__vma, __addr);				\
557	}								\
558	__changed;							\
559})
560#endif
561
562#  ifdef CONFIG_VIRTUAL_MEM_MAP
563  /* arch mem_map init routine is needed due to holes in a virtual mem_map */
564#   define __HAVE_ARCH_MEMMAP_INIT
565    extern void memmap_init (unsigned long size, int nid, unsigned long zone,
566			     unsigned long start_pfn);
567#  endif /* CONFIG_VIRTUAL_MEM_MAP */
568# endif /* !__ASSEMBLY__ */
569
570/*
571 * Identity-mapped regions use a large page size.  We'll call such large pages
572 * "granules".  If you can think of a better name that's unambiguous, let me
573 * know...
574 */
575#if defined(CONFIG_IA64_GRANULE_64MB)
576# define IA64_GRANULE_SHIFT	_PAGE_SIZE_64M
577#elif defined(CONFIG_IA64_GRANULE_16MB)
578# define IA64_GRANULE_SHIFT	_PAGE_SIZE_16M
579#endif
580#define IA64_GRANULE_SIZE	(1 << IA64_GRANULE_SHIFT)
581/*
582 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
583 */
584#define KERNEL_TR_PAGE_SHIFT	_PAGE_SIZE_64M
585#define KERNEL_TR_PAGE_SIZE	(1 << KERNEL_TR_PAGE_SHIFT)
586
587/*
588 * No page table caches to initialise
589 */
590#define pgtable_cache_init()	do { } while (0)
591
592/* These tell get_user_pages() that the first gate page is accessible from user-level.  */
593#define FIXADDR_USER_START	GATE_ADDR
594#ifdef HAVE_BUGGY_SEGREL
595# define FIXADDR_USER_END	(GATE_ADDR + 2*PAGE_SIZE)
596#else
597# define FIXADDR_USER_END	(GATE_ADDR + 2*PERCPU_PAGE_SIZE)
598#endif
599
600#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
601#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
602#define __HAVE_ARCH_PTEP_SET_WRPROTECT
603#define __HAVE_ARCH_PTE_SAME
604#define __HAVE_ARCH_PGD_OFFSET_GATE
605
606
607#ifndef CONFIG_PGTABLE_4
608#include <asm-generic/pgtable-nopud.h>
609#endif
610#include <asm-generic/pgtable.h>
611
612#endif /* _ASM_IA64_PGTABLE_H */