Linux Audio

Check our new training course

Loading...
  1/*
  2 *
  3 *  linux/arch/cris/kernel/setup.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 *  Copyright (c) 2001  Axis Communications AB
  7 */
  8
  9/*
 10 * This file handles the architecture-dependent parts of initialization
 11 */
 12
 13#include <linux/init.h>
 14#include <linux/mm.h>
 15#include <linux/bootmem.h>
 16#include <asm/pgtable.h>
 17#include <linux/seq_file.h>
 18#include <linux/screen_info.h>
 19#include <linux/utsname.h>
 20#include <linux/pfn.h>
 21#include <linux/cpu.h>
 22#include <asm/setup.h>
 23#include <arch/system.h>
 24
 25/*
 26 * Setup options
 27 */
 28struct screen_info screen_info;
 29
 30extern int root_mountflags;
 31extern char _etext, _edata, _end;
 32
 33char __initdata cris_command_line[COMMAND_LINE_SIZE] = { 0, };
 34
 35extern const unsigned long text_start, edata; /* set by the linker script */
 36extern unsigned long dram_start, dram_end;
 37
 38extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
 39
 40static struct cpu cpu_devices[NR_CPUS];
 41
 42extern void show_etrax_copyright(void);		/* arch-vX/kernel/setup.c */
 43
 44/* This mainly sets up the memory area, and can be really confusing.
 45 *
 46 * The physical DRAM is virtually mapped into dram_start to dram_end
 47 * (usually c0000000 to c0000000 + DRAM size). The physical address is
 48 * given by the macro __pa().
 49 *
 50 * In this DRAM, the kernel code and data is loaded, in the beginning.
 51 * It really starts at c0004000 to make room for some special pages -
 52 * the start address is text_start. The kernel data ends at _end. After
 53 * this the ROM filesystem is appended (if there is any).
 54 *
 55 * Between this address and dram_end, we have RAM pages usable to the
 56 * boot code and the system.
 57 *
 58 */
 59
 60void __init setup_arch(char **cmdline_p)
 61{
 62	extern void init_etrax_debug(void);
 63	unsigned long bootmap_size;
 64	unsigned long start_pfn, max_pfn;
 65	unsigned long memory_start;
 66
 67	/* register an initial console printing routine for printk's */
 68
 69	init_etrax_debug();
 70
 71	/* we should really poll for DRAM size! */
 72
 73	high_memory = &dram_end;
 74
 75	if(romfs_in_flash || !romfs_length) {
 76		/* if we have the romfs in flash, or if there is no rom filesystem,
 77		 * our free area starts directly after the BSS
 78		 */
 79		memory_start = (unsigned long) &_end;
 80	} else {
 81		/* otherwise the free area starts after the ROM filesystem */
 82		printk("ROM fs in RAM, size %lu bytes\n", romfs_length);
 83		memory_start = romfs_start + romfs_length;
 84	}
 85
 86	/* process 1's initial memory region is the kernel code/data */
 87
 88	init_mm.start_code = (unsigned long) &text_start;
 89	init_mm.end_code =   (unsigned long) &_etext;
 90	init_mm.end_data =   (unsigned long) &_edata;
 91	init_mm.brk =        (unsigned long) &_end;
 92
 93	/* min_low_pfn points to the start of DRAM, start_pfn points
 94	 * to the first DRAM pages after the kernel, and max_low_pfn
 95	 * to the end of DRAM.
 96	 */
 97
 98        /*
 99         * partially used pages are not usable - thus
100         * we are rounding upwards:
101         */
102
103        start_pfn = PFN_UP(memory_start);  /* usually c0000000 + kernel + romfs */
104	max_pfn =   PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */
105
106        /*
107         * Initialize the boot-time allocator (start, end)
108	 *
109	 * We give it access to all our DRAM, but we could as well just have
110	 * given it a small slice. No point in doing that though, unless we
111	 * have non-contiguous memory and want the boot-stuff to be in, say,
112	 * the smallest area.
113	 *
114	 * It will put a bitmap of the allocated pages in the beginning
115	 * of the range we give it, but it won't mark the bitmaps pages
116	 * as reserved. We have to do that ourselves below.
117	 *
118	 * We need to use init_bootmem_node instead of init_bootmem
119	 * because our map starts at a quite high address (min_low_pfn).
120         */
121
122	max_low_pfn = max_pfn;
123	min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;
124
125	bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
126					 min_low_pfn,
127					 max_low_pfn);
128
129	/* And free all memory not belonging to the kernel (addr, size) */
130
131	free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));
132
133        /*
134         * Reserve the bootmem bitmap itself as well. We do this in two
135         * steps (first step was init_bootmem()) because this catches
136         * the (very unlikely) case of us accidentally initializing the
137         * bootmem allocator with an invalid RAM area.
138	 *
139	 * Arguments are start, size
140         */
141
142	reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size, BOOTMEM_DEFAULT);
143
144	/* paging_init() sets up the MMU and marks all pages as reserved */
145
146	paging_init();
147
148	*cmdline_p = cris_command_line;
149
150#ifdef CONFIG_ETRAX_CMDLINE
151        if (!strcmp(cris_command_line, "")) {
152		strlcpy(cris_command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE);
153		cris_command_line[COMMAND_LINE_SIZE - 1] = '\0';
154	}
155#endif
156
157	/* Save command line for future references. */
158	memcpy(boot_command_line, cris_command_line, COMMAND_LINE_SIZE);
159	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
160
161	/* give credit for the CRIS port */
162	show_etrax_copyright();
163
164	/* Setup utsname */
165	strcpy(init_utsname()->machine, cris_machine_name);
166}
167
168static void *c_start(struct seq_file *m, loff_t *pos)
169{
170	return *pos < nr_cpu_ids ? (void *)(int)(*pos + 1) : NULL;
171}
172
173static void *c_next(struct seq_file *m, void *v, loff_t *pos)
174{
175	++*pos;
176	return c_start(m, pos);
177}
178
179static void c_stop(struct seq_file *m, void *v)
180{
181}
182
183extern int show_cpuinfo(struct seq_file *m, void *v);
184
185const struct seq_operations cpuinfo_op = {
186	.start = c_start,
187	.next  = c_next,
188	.stop  = c_stop,
189	.show  = show_cpuinfo,
190};
191
192static int __init topology_init(void)
193{
194	int i;
195
196	for_each_possible_cpu(i) {
197		 return register_cpu(&cpu_devices[i], i);
198	}
199
200	return 0;
201}
202
203subsys_initcall(topology_init);
204