Linux Audio

Check our new training course

Loading...
  1/*
  2 * Physical mapping layer for MTD using the Axis partitiontable format
  3 *
  4 * Copyright (c) 2001-2007 Axis Communications AB
  5 *
  6 * This file is under the GPL.
  7 *
  8 * First partition is always sector 0 regardless of if we find a partitiontable
  9 * or not. In the start of the next sector, there can be a partitiontable that
 10 * tells us what other partitions to define. If there isn't, we use a default
 11 * partition split defined below.
 12 *
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/init.h>
 19#include <linux/slab.h>
 20
 21#include <linux/mtd/concat.h>
 22#include <linux/mtd/map.h>
 23#include <linux/mtd/mtd.h>
 24#include <linux/mtd/mtdram.h>
 25#include <linux/mtd/partitions.h>
 26
 27#include <linux/cramfs_fs.h>
 28
 29#include <asm/axisflashmap.h>
 30#include <asm/mmu.h>
 31
 32#define MEM_CSE0_SIZE (0x04000000)
 33#define MEM_CSE1_SIZE (0x04000000)
 34
 35#define FLASH_UNCACHED_ADDR  KSEG_E
 36#define FLASH_CACHED_ADDR    KSEG_F
 37
 38#define PAGESIZE (512)
 39
 40#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
 41#define flash_data __u8
 42#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
 43#define flash_data __u16
 44#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
 45#define flash_data __u32
 46#endif
 47
 48/* From head.S */
 49extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
 50extern unsigned long romfs_start, romfs_length;
 51extern unsigned long nand_boot; /* 1 when booted from nand flash */
 52
 53struct partition_name {
 54	char name[6];
 55};
 56
 57/* The master mtd for the entire flash. */
 58struct mtd_info* axisflash_mtd = NULL;
 59
 60/* Map driver functions. */
 61
 62static map_word flash_read(struct map_info *map, unsigned long ofs)
 63{
 64	map_word tmp;
 65	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
 66	return tmp;
 67}
 68
 69static void flash_copy_from(struct map_info *map, void *to,
 70			    unsigned long from, ssize_t len)
 71{
 72	memcpy(to, (void *)(map->map_priv_1 + from), len);
 73}
 74
 75static void flash_write(struct map_info *map, map_word d, unsigned long adr)
 76{
 77	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
 78}
 79
 80/*
 81 * The map for chip select e0.
 82 *
 83 * We run into tricky coherence situations if we mix cached with uncached
 84 * accesses to we only use the uncached version here.
 85 *
 86 * The size field is the total size where the flash chips may be mapped on the
 87 * chip select. MTD probes should find all devices there and it does not matter
 88 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
 89 * probes will ignore them.
 90 *
 91 * The start address in map_priv_1 is in virtual memory so we cannot use
 92 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
 93 * address of cse0.
 94 */
 95static struct map_info map_cse0 = {
 96	.name = "cse0",
 97	.size = MEM_CSE0_SIZE,
 98	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 99	.read = flash_read,
100	.copy_from = flash_copy_from,
101	.write = flash_write,
102	.map_priv_1 = FLASH_UNCACHED_ADDR
103};
104
105/*
106 * The map for chip select e1.
107 *
108 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
109 * address, but there isn't.
110 */
111static struct map_info map_cse1 = {
112	.name = "cse1",
113	.size = MEM_CSE1_SIZE,
114	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
115	.read = flash_read,
116	.copy_from = flash_copy_from,
117	.write = flash_write,
118	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
119};
120
121#define MAX_PARTITIONS			7
122#ifdef CONFIG_ETRAX_NANDBOOT
123#define NUM_DEFAULT_PARTITIONS		4
124#define DEFAULT_ROOTFS_PARTITION_NO	2
125#define DEFAULT_MEDIA_SIZE              0x2000000 /* 32 megs */
126#else
127#define NUM_DEFAULT_PARTITIONS		3
128#define DEFAULT_ROOTFS_PARTITION_NO	(-1)
129#define DEFAULT_MEDIA_SIZE              0x800000 /* 8 megs */
130#endif
131
132#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
133#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
134#endif
135
136/* Initialize the ones normally used. */
137static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
138	{
139		.name = "part0",
140		.size = CONFIG_ETRAX_PTABLE_SECTOR,
141		.offset = 0
142	},
143	{
144		.name = "part1",
145		.size = 0,
146		.offset = 0
147	},
148	{
149		.name = "part2",
150		.size = 0,
151		.offset = 0
152	},
153	{
154		.name = "part3",
155		.size = 0,
156		.offset = 0
157	},
158	{
159		.name = "part4",
160		.size = 0,
161		.offset = 0
162	},
163	{
164		.name = "part5",
165		.size = 0,
166		.offset = 0
167	},
168	{
169		.name = "part6",
170		.size = 0,
171		.offset = 0
172	},
173};
174
175
176/* If no partition-table was found, we use this default-set.
177 * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
178 * likely the size of one flash block and "filesystem"-partition needs
179 * to be >=5 blocks to be able to use JFFS.
180 */
181static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
182	{
183		.name = "boot firmware",
184		.size = CONFIG_ETRAX_PTABLE_SECTOR,
185		.offset = 0
186	},
187	{
188		.name = "kernel",
189		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
190		.offset = CONFIG_ETRAX_PTABLE_SECTOR
191	},
192#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
193#ifdef CONFIG_ETRAX_NANDBOOT
194	{
195		.name = "rootfs",
196		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
197		.offset = FILESYSTEM_SECTOR
198	},
199#undef FILESYSTEM_SECTOR
200#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
201#endif
202	{
203		.name = "rwfs",
204		.size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
205		.offset = FILESYSTEM_SECTOR
206	}
207};
208
209#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
210/* Main flash device */
211static struct mtd_partition main_partition = {
212	.name = "main",
213	.size = 0,
214	.offset = 0
215};
216#endif
217
218/* Auxiliary partition if we find another flash */
219static struct mtd_partition aux_partition = {
220	.name = "aux",
221	.size = 0,
222	.offset = 0
223};
224
225/*
226 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
227 * chips in that order (because the amd_flash-driver is faster).
228 */
229static struct mtd_info *probe_cs(struct map_info *map_cs)
230{
231	struct mtd_info *mtd_cs = NULL;
232
233	printk(KERN_INFO
234	       "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
235	       map_cs->name, map_cs->size, map_cs->map_priv_1);
236
237#ifdef CONFIG_MTD_CFI
238	mtd_cs = do_map_probe("cfi_probe", map_cs);
239#endif
240#ifdef CONFIG_MTD_JEDECPROBE
241	if (!mtd_cs)
242		mtd_cs = do_map_probe("jedec_probe", map_cs);
243#endif
244
245	return mtd_cs;
246}
247
248/*
249 * Probe each chip select individually for flash chips. If there are chips on
250 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
251 * so that MTD partitions can cross chip boundries.
252 *
253 * The only known restriction to how you can mount your chips is that each
254 * chip select must hold similar flash chips. But you need external hardware
255 * to do that anyway and you can put totally different chips on cse0 and cse1
256 * so it isn't really much of a restriction.
257 */
258extern struct mtd_info* __init crisv32_nand_flash_probe (void);
259static struct mtd_info *flash_probe(void)
260{
261	struct mtd_info *mtd_cse0;
262	struct mtd_info *mtd_cse1;
263	struct mtd_info *mtd_total;
264	struct mtd_info *mtds[2];
265	int count = 0;
266
267	if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
268		mtds[count++] = mtd_cse0;
269	if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
270		mtds[count++] = mtd_cse1;
271
272	if (!mtd_cse0 && !mtd_cse1) {
273		/* No chip found. */
274		return NULL;
275	}
276
277	if (count > 1) {
278		/* Since the concatenation layer adds a small overhead we
279		 * could try to figure out if the chips in cse0 and cse1 are
280		 * identical and reprobe the whole cse0+cse1 window. But since
281		 * flash chips are slow, the overhead is relatively small.
282		 * So we use the MTD concatenation layer instead of further
283		 * complicating the probing procedure.
284		 */
285		mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
286		if (!mtd_total) {
287			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
288				map_cse0.name, map_cse1.name);
289
290			/* The best we can do now is to only use what we found
291			 * at cse0. */
292			mtd_total = mtd_cse0;
293			map_destroy(mtd_cse1);
294		}
295	} else
296		mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
297
298	return mtd_total;
299}
300
301/*
302 * Probe the flash chip(s) and, if it succeeds, read the partition-table
303 * and register the partitions with MTD.
304 */
305static int __init init_axis_flash(void)
306{
307	struct mtd_info *main_mtd;
308	struct mtd_info *aux_mtd = NULL;
309	int err = 0;
310	int pidx = 0;
311	struct partitiontable_head *ptable_head = NULL;
312	struct partitiontable_entry *ptable;
313	int ptable_ok = 0;
314	static char page[PAGESIZE];
315	size_t len;
316	int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
317	int part;
318
319	/* We need a root fs. If it resides in RAM, we need to use an
320	 * MTDRAM device, so it must be enabled in the kernel config,
321	 * but its size must be configured as 0 so as not to conflict
322	 * with our usage.
323	 */
324#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
325	if (!romfs_in_flash && !nand_boot) {
326		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
327		       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
328		panic("This kernel cannot boot from RAM!\n");
329	}
330#endif
331
332#ifndef CONFIG_ETRAX_VCS_SIM
333	main_mtd = flash_probe();
334	if (main_mtd)
335		printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
336		       main_mtd->name, main_mtd->size);
337
338#ifdef CONFIG_ETRAX_NANDFLASH
339	aux_mtd = crisv32_nand_flash_probe();
340	if (aux_mtd)
341		printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
342			aux_mtd->name, aux_mtd->size);
343
344#ifdef CONFIG_ETRAX_NANDBOOT
345	{
346		struct mtd_info *tmp_mtd;
347
348		printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
349		       "making NAND flash primary device.\n");
350		tmp_mtd = main_mtd;
351		main_mtd = aux_mtd;
352		aux_mtd = tmp_mtd;
353	}
354#endif /* CONFIG_ETRAX_NANDBOOT */
355#endif /* CONFIG_ETRAX_NANDFLASH */
356
357	if (!main_mtd && !aux_mtd) {
358		/* There's no reason to use this module if no flash chip can
359		 * be identified. Make sure that's understood.
360		 */
361		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
362	}
363
364#if 0 /* Dump flash memory so we can see what is going on */
365	if (main_mtd) {
366		int sectoraddr, i;
367		for (sectoraddr = 0; sectoraddr < 2*65536+4096;
368				sectoraddr += PAGESIZE) {
369			main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
370				page);
371			printk(KERN_INFO
372			       "Sector at %d (length %d):\n",
373			       sectoraddr, len);
374			for (i = 0; i < PAGESIZE; i += 16) {
375				printk(KERN_INFO
376				       "%02x %02x %02x %02x "
377				       "%02x %02x %02x %02x "
378				       "%02x %02x %02x %02x "
379				       "%02x %02x %02x %02x\n",
380				       page[i] & 255, page[i+1] & 255,
381				       page[i+2] & 255, page[i+3] & 255,
382				       page[i+4] & 255, page[i+5] & 255,
383				       page[i+6] & 255, page[i+7] & 255,
384				       page[i+8] & 255, page[i+9] & 255,
385				       page[i+10] & 255, page[i+11] & 255,
386				       page[i+12] & 255, page[i+13] & 255,
387				       page[i+14] & 255, page[i+15] & 255);
388			}
389		}
390	}
391#endif
392
393	if (main_mtd) {
394		main_mtd->owner = THIS_MODULE;
395		axisflash_mtd = main_mtd;
396
397		loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
398
399		/* First partition (rescue) is always set to the default. */
400		pidx++;
401#ifdef CONFIG_ETRAX_NANDBOOT
402		/* We know where the partition table should be located,
403		 * it will be in first good block after that.
404		 */
405		int blockstat;
406		do {
407			blockstat = mtd_block_isbad(main_mtd, ptable_sector);
408			if (blockstat < 0)
409				ptable_sector = 0; /* read error */
410			else if (blockstat)
411				ptable_sector += main_mtd->erasesize;
412		} while (blockstat && ptable_sector);
413#endif
414		if (ptable_sector) {
415			mtd_read(main_mtd, ptable_sector, PAGESIZE, &len,
416				 page);
417			ptable_head = &((struct partitiontable *) page)->head;
418		}
419
420#if 0 /* Dump partition table so we can see what is going on */
421		printk(KERN_INFO
422		       "axisflashmap: flash read %d bytes at 0x%08x, data: "
423		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
424		       len, CONFIG_ETRAX_PTABLE_SECTOR,
425		       page[0] & 255, page[1] & 255,
426		       page[2] & 255, page[3] & 255,
427		       page[4] & 255, page[5] & 255,
428		       page[6] & 255, page[7] & 255);
429		printk(KERN_INFO
430		       "axisflashmap: partition table offset %d, data: "
431		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
432		       PARTITION_TABLE_OFFSET,
433		       page[PARTITION_TABLE_OFFSET+0] & 255,
434		       page[PARTITION_TABLE_OFFSET+1] & 255,
435		       page[PARTITION_TABLE_OFFSET+2] & 255,
436		       page[PARTITION_TABLE_OFFSET+3] & 255,
437		       page[PARTITION_TABLE_OFFSET+4] & 255,
438		       page[PARTITION_TABLE_OFFSET+5] & 255,
439		       page[PARTITION_TABLE_OFFSET+6] & 255,
440		       page[PARTITION_TABLE_OFFSET+7] & 255);
441#endif
442	}
443
444	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
445	    && (ptable_head->size <
446		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
447		PARTITIONTABLE_END_MARKER_SIZE))
448	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
449				  ptable_head->size -
450				  PARTITIONTABLE_END_MARKER_SIZE)
451		== PARTITIONTABLE_END_MARKER)) {
452		/* Looks like a start, sane length and end of a
453		 * partition table, lets check csum etc.
454		 */
455		struct partitiontable_entry *max_addr =
456			(struct partitiontable_entry *)
457			((unsigned long)ptable_head + sizeof(*ptable_head) +
458			 ptable_head->size);
459		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
460		unsigned char *p;
461		unsigned long csum = 0;
462
463		ptable = (struct partitiontable_entry *)
464			((unsigned long)ptable_head + sizeof(*ptable_head));
465
466		/* Lets be PARANOID, and check the checksum. */
467		p = (unsigned char*) ptable;
468
469		while (p <= (unsigned char*)max_addr) {
470			csum += *p++;
471			csum += *p++;
472			csum += *p++;
473			csum += *p++;
474		}
475		ptable_ok = (csum == ptable_head->checksum);
476
477		/* Read the entries and use/show the info.  */
478		printk(KERN_INFO "axisflashmap: "
479		       "Found a%s partition table at 0x%p-0x%p.\n",
480		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
481		       max_addr);
482
483		/* We have found a working bootblock.  Now read the
484		 * partition table.  Scan the table.  It ends with 0xffffffff.
485		 */
486		while (ptable_ok
487		       && ptable->offset != PARTITIONTABLE_END_MARKER
488		       && ptable < max_addr
489		       && pidx < MAX_PARTITIONS - 1) {
490
491			axis_partitions[pidx].offset = offset + ptable->offset;
492#ifdef CONFIG_ETRAX_NANDFLASH
493			if (main_mtd->type == MTD_NANDFLASH) {
494				axis_partitions[pidx].size =
495					(((ptable+1)->offset ==
496					  PARTITIONTABLE_END_MARKER) ?
497					  main_mtd->size :
498					  ((ptable+1)->offset + offset)) -
499					(ptable->offset + offset);
500
501			} else
502#endif /* CONFIG_ETRAX_NANDFLASH */
503				axis_partitions[pidx].size = ptable->size;
504#ifdef CONFIG_ETRAX_NANDBOOT
505			/* Save partition number of jffs2 ro partition.
506			 * Needed if RAM booting or root file system in RAM.
507			 */
508			if (!nand_boot &&
509			    ram_rootfs_partition < 0 && /* not already set */
510			    ptable->type == PARTITION_TYPE_JFFS2 &&
511			    (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
512				PARTITION_FLAGS_READONLY)
513				ram_rootfs_partition = pidx;
514#endif /* CONFIG_ETRAX_NANDBOOT */
515			pidx++;
516			ptable++;
517		}
518	}
519
520	/* Decide whether to use default partition table. */
521	/* Only use default table if we actually have a device (main_mtd) */
522
523	struct mtd_partition *partition = &axis_partitions[0];
524	if (main_mtd && !ptable_ok) {
525		memcpy(axis_partitions, axis_default_partitions,
526		       sizeof(axis_default_partitions));
527		pidx = NUM_DEFAULT_PARTITIONS;
528		ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
529	}
530
531	/* Add artificial partitions for rootfs if necessary */
532	if (romfs_in_flash) {
533		/* rootfs is in directly accessible flash memory = NOR flash.
534		   Add an overlapping device for the rootfs partition. */
535		printk(KERN_INFO "axisflashmap: Adding partition for "
536		       "overlapping root file system image\n");
537		axis_partitions[pidx].size = romfs_length;
538		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
539		axis_partitions[pidx].name = "romfs";
540		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
541		ram_rootfs_partition = -1;
542		pidx++;
543	} else if (romfs_length && !nand_boot) {
544		/* romfs exists in memory, but not in flash, so must be in RAM.
545		 * Configure an MTDRAM partition. */
546		if (ram_rootfs_partition < 0) {
547			/* None set yet, put it at the end */
548			ram_rootfs_partition = pidx;
549			pidx++;
550		}
551		printk(KERN_INFO "axisflashmap: Adding partition for "
552		       "root file system image in RAM\n");
553		axis_partitions[ram_rootfs_partition].size = romfs_length;
554		axis_partitions[ram_rootfs_partition].offset = romfs_start;
555		axis_partitions[ram_rootfs_partition].name = "romfs";
556		axis_partitions[ram_rootfs_partition].mask_flags |=
557			MTD_WRITEABLE;
558	}
559
560#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
561	if (main_mtd) {
562		main_partition.size = main_mtd->size;
563		err = mtd_device_register(main_mtd, &main_partition, 1);
564		if (err)
565			panic("axisflashmap: Could not initialize "
566			      "partition for whole main mtd device!\n");
567	}
568#endif
569
570	/* Now, register all partitions with mtd.
571	 * We do this one at a time so we can slip in an MTDRAM device
572	 * in the proper place if required. */
573
574	for (part = 0; part < pidx; part++) {
575		if (part == ram_rootfs_partition) {
576			/* add MTDRAM partition here */
577			struct mtd_info *mtd_ram;
578
579			mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
580			if (!mtd_ram)
581				panic("axisflashmap: Couldn't allocate memory "
582				      "for mtd_info!\n");
583			printk(KERN_INFO "axisflashmap: Adding RAM partition "
584			       "for rootfs image.\n");
585			err = mtdram_init_device(mtd_ram,
586						 (void *)partition[part].offset,
587						 partition[part].size,
588						 partition[part].name);
589			if (err)
590				panic("axisflashmap: Could not initialize "
591				      "MTD RAM device!\n");
592			/* JFFS2 likes to have an erasesize. Keep potential
593			 * JFFS2 rootfs happy by providing one. Since image
594			 * was most likely created for main mtd, use that
595			 * erasesize, if available. Otherwise, make a guess. */
596			mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
597				CONFIG_ETRAX_PTABLE_SECTOR);
598		} else {
599			err = mtd_device_register(main_mtd, &partition[part],
600						  1);
601			if (err)
602				panic("axisflashmap: Could not add mtd "
603					"partition %d\n", part);
604		}
605	}
606#endif /* CONFIG_EXTRAX_VCS_SIM */
607
608#ifdef CONFIG_ETRAX_VCS_SIM
609	/* For simulator, always use a RAM partition.
610	 * The rootfs will be found after the kernel in RAM,
611	 * with romfs_start and romfs_end indicating location and size.
612	 */
613	struct mtd_info *mtd_ram;
614
615	mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
616	if (!mtd_ram) {
617		panic("axisflashmap: Couldn't allocate memory for "
618		      "mtd_info!\n");
619	}
620
621	printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
622	       "at %u, size %u\n",
623	       (unsigned) romfs_start, (unsigned) romfs_length);
624
625	err = mtdram_init_device(mtd_ram, (void *)romfs_start,
626				 romfs_length, "romfs");
627	if (err) {
628		panic("axisflashmap: Could not initialize MTD RAM "
629		      "device!\n");
630	}
631#endif /* CONFIG_EXTRAX_VCS_SIM */
632
633#ifndef CONFIG_ETRAX_VCS_SIM
634	if (aux_mtd) {
635		aux_partition.size = aux_mtd->size;
636		err = mtd_device_register(aux_mtd, &aux_partition, 1);
637		if (err)
638			panic("axisflashmap: Could not initialize "
639			      "aux mtd device!\n");
640
641	}
642#endif /* CONFIG_EXTRAX_VCS_SIM */
643
644	return err;
645}
646
647/* This adds the above to the kernels init-call chain. */
648module_init(init_axis_flash);
649
650EXPORT_SYMBOL(axisflash_mtd);