Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright (C) 2004-2006 Atmel Corporation
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 */
  8#ifndef __ASM_AVR32_PGTABLE_H
  9#define __ASM_AVR32_PGTABLE_H
 10
 11#include <asm/addrspace.h>
 12
 13#ifndef __ASSEMBLY__
 14#include <linux/sched.h>
 15
 16#endif /* !__ASSEMBLY__ */
 17
 18/*
 19 * Use two-level page tables just as the i386 (without PAE)
 20 */
 21#include <asm/pgtable-2level.h>
 22
 23/*
 24 * The following code might need some cleanup when the values are
 25 * final...
 26 */
 27#define PMD_SIZE	(1UL << PMD_SHIFT)
 28#define PMD_MASK	(~(PMD_SIZE-1))
 29#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 30#define PGDIR_MASK	(~(PGDIR_SIZE-1))
 31
 32#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
 33#define FIRST_USER_ADDRESS	0
 34
 35#ifndef __ASSEMBLY__
 36extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 37extern void paging_init(void);
 38
 39/*
 40 * ZERO_PAGE is a global shared page that is always zero: used for
 41 * zero-mapped memory areas etc.
 42 */
 43extern struct page *empty_zero_page;
 44#define ZERO_PAGE(vaddr) (empty_zero_page)
 45
 46/*
 47 * Just any arbitrary offset to the start of the vmalloc VM area: the
 48 * current 8 MiB value just means that there will be a 8 MiB "hole"
 49 * after the uncached physical memory (P2 segment) until the vmalloc
 50 * area starts. That means that any out-of-bounds memory accesses will
 51 * hopefully be caught; we don't know if the end of the P1/P2 segments
 52 * are actually used for anything, but it is anyway safer to let the
 53 * MMU catch these kinds of errors than to rely on the memory bus.
 54 *
 55 * A "hole" of the same size is added to the end of the P3 segment as
 56 * well. It might seem wasteful to use 16 MiB of virtual address space
 57 * on this, but we do have 512 MiB of it...
 58 *
 59 * The vmalloc() routines leave a hole of 4 KiB between each vmalloced
 60 * area for the same reason.
 61 */
 62#define VMALLOC_OFFSET	(8 * 1024 * 1024)
 63#define VMALLOC_START	(P3SEG + VMALLOC_OFFSET)
 64#define VMALLOC_END	(P4SEG - VMALLOC_OFFSET)
 65#endif /* !__ASSEMBLY__ */
 66
 67/*
 68 * Page flags. Some of these flags are not directly supported by
 69 * hardware, so we have to emulate them.
 70 */
 71#define _TLBEHI_BIT_VALID	9
 72#define _TLBEHI_VALID		(1 << _TLBEHI_BIT_VALID)
 73
 74#define _PAGE_BIT_WT		0  /* W-bit   : write-through */
 75#define _PAGE_BIT_DIRTY		1  /* D-bit   : page changed */
 76#define _PAGE_BIT_SZ0		2  /* SZ0-bit : Size of page */
 77#define _PAGE_BIT_SZ1		3  /* SZ1-bit : Size of page */
 78#define _PAGE_BIT_EXECUTE	4  /* X-bit   : execute access allowed */
 79#define _PAGE_BIT_RW		5  /* AP0-bit : write access allowed */
 80#define _PAGE_BIT_USER		6  /* AP1-bit : user space access allowed */
 81#define _PAGE_BIT_BUFFER	7  /* B-bit   : bufferable */
 82#define _PAGE_BIT_GLOBAL	8  /* G-bit   : global (ignore ASID) */
 83#define _PAGE_BIT_CACHABLE	9  /* C-bit   : cachable */
 84
 85/* If we drop support for 1K pages, we get two extra bits */
 86#define _PAGE_BIT_PRESENT	10
 87#define _PAGE_BIT_ACCESSED	11 /* software: page was accessed */
 88
 89/* The following flags are only valid when !PRESENT */
 90#define _PAGE_BIT_FILE		0 /* software: pagecache or swap? */
 91
 92#define _PAGE_WT		(1 << _PAGE_BIT_WT)
 93#define _PAGE_DIRTY		(1 << _PAGE_BIT_DIRTY)
 94#define _PAGE_EXECUTE		(1 << _PAGE_BIT_EXECUTE)
 95#define _PAGE_RW		(1 << _PAGE_BIT_RW)
 96#define _PAGE_USER		(1 << _PAGE_BIT_USER)
 97#define _PAGE_BUFFER		(1 << _PAGE_BIT_BUFFER)
 98#define _PAGE_GLOBAL		(1 << _PAGE_BIT_GLOBAL)
 99#define _PAGE_CACHABLE		(1 << _PAGE_BIT_CACHABLE)
100
101/* Software flags */
102#define _PAGE_ACCESSED		(1 << _PAGE_BIT_ACCESSED)
103#define _PAGE_PRESENT		(1 << _PAGE_BIT_PRESENT)
104#define _PAGE_FILE		(1 << _PAGE_BIT_FILE)
105
106/*
107 * Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is
108 * usually called _PAGE_PROTNONE on other architectures.
109 *
110 * XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If
111 * so, we can encode all possible page sizes (although we can't really
112 * support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED
113 * bits)
114 *
115 */
116#define _PAGE_TYPE_MASK		((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1))
117#define _PAGE_TYPE_NONE		(0 << _PAGE_BIT_SZ0)
118#define _PAGE_TYPE_SMALL	(1 << _PAGE_BIT_SZ0)
119#define _PAGE_TYPE_MEDIUM	(2 << _PAGE_BIT_SZ0)
120#define _PAGE_TYPE_LARGE	(3 << _PAGE_BIT_SZ0)
121
122/*
123 * Mask which drop software flags. We currently can't handle more than
124 * 512 MiB of physical memory, so we can use bits 29-31 for other
125 * stuff.  With a fixed 4K page size, we can use bits 10-11 as well as
126 * bits 2-3 (SZ)
127 */
128#define _PAGE_FLAGS_HARDWARE_MASK	0xfffff3ff
129
130#define _PAGE_FLAGS_CACHE_MASK	(_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT)
131
132/* Flags that may be modified by software */
133#define _PAGE_CHG_MASK		(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \
134				 | _PAGE_FLAGS_CACHE_MASK)
135
136#define _PAGE_FLAGS_READ	(_PAGE_CACHABLE	| _PAGE_BUFFER)
137#define _PAGE_FLAGS_WRITE	(_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY)
138
139#define _PAGE_NORMAL(x)	__pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL	\
140				 | _PAGE_ACCESSED)
141
142#define PAGE_NONE	(_PAGE_ACCESSED | _PAGE_TYPE_NONE)
143#define PAGE_READ	(_PAGE_FLAGS_READ | _PAGE_USER)
144#define PAGE_EXEC	(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER)
145#define PAGE_WRITE	(_PAGE_FLAGS_WRITE | _PAGE_USER)
146#define PAGE_KERNEL	_PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL)
147#define PAGE_KERNEL_RO	_PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL)
148
149#define _PAGE_P(x)	_PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY))
150#define _PAGE_S(x)	_PAGE_NORMAL(x)
151
152#define PAGE_COPY	_PAGE_P(PAGE_WRITE | PAGE_READ)
153#define PAGE_SHARED	_PAGE_S(PAGE_WRITE | PAGE_READ)
154
155#ifndef __ASSEMBLY__
156/*
157 * The hardware supports flags for write- and execute access. Read is
158 * always allowed if the page is loaded into the TLB, so the "-w-",
159 * "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx",
160 * respectively.
161 *
162 * The "---" case is handled by software; the page will simply not be
163 * loaded into the TLB if the page type is _PAGE_TYPE_NONE.
164 */
165
166#define __P000	__pgprot(PAGE_NONE)
167#define __P001	_PAGE_P(PAGE_READ)
168#define __P010	_PAGE_P(PAGE_WRITE)
169#define __P011	_PAGE_P(PAGE_WRITE | PAGE_READ)
170#define __P100	_PAGE_P(PAGE_EXEC)
171#define __P101	_PAGE_P(PAGE_EXEC | PAGE_READ)
172#define __P110	_PAGE_P(PAGE_EXEC | PAGE_WRITE)
173#define __P111	_PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
174
175#define __S000	__pgprot(PAGE_NONE)
176#define __S001	_PAGE_S(PAGE_READ)
177#define __S010	_PAGE_S(PAGE_WRITE)
178#define __S011	_PAGE_S(PAGE_WRITE | PAGE_READ)
179#define __S100	_PAGE_S(PAGE_EXEC)
180#define __S101	_PAGE_S(PAGE_EXEC | PAGE_READ)
181#define __S110	_PAGE_S(PAGE_EXEC | PAGE_WRITE)
182#define __S111	_PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
183
184#define pte_none(x)	(!pte_val(x))
185#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
186
187#define pte_clear(mm,addr,xp)					\
188	do {							\
189		set_pte_at(mm, addr, xp, __pte(0));		\
190	} while (0)
191
192/*
193 * The following only work if pte_present() is true.
194 * Undefined behaviour if not..
195 */
196static inline int pte_write(pte_t pte)
197{
198	return pte_val(pte) & _PAGE_RW;
199}
200static inline int pte_dirty(pte_t pte)
201{
202	return pte_val(pte) & _PAGE_DIRTY;
203}
204static inline int pte_young(pte_t pte)
205{
206	return pte_val(pte) & _PAGE_ACCESSED;
207}
208static inline int pte_special(pte_t pte)
209{
210	return 0;
211}
212
213/*
214 * The following only work if pte_present() is not true.
215 */
216static inline int pte_file(pte_t pte)
217{
218	return pte_val(pte) & _PAGE_FILE;
219}
220
221/* Mutator functions for PTE bits */
222static inline pte_t pte_wrprotect(pte_t pte)
223{
224	set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW));
225	return pte;
226}
227static inline pte_t pte_mkclean(pte_t pte)
228{
229	set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY));
230	return pte;
231}
232static inline pte_t pte_mkold(pte_t pte)
233{
234	set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED));
235	return pte;
236}
237static inline pte_t pte_mkwrite(pte_t pte)
238{
239	set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW));
240	return pte;
241}
242static inline pte_t pte_mkdirty(pte_t pte)
243{
244	set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY));
245	return pte;
246}
247static inline pte_t pte_mkyoung(pte_t pte)
248{
249	set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED));
250	return pte;
251}
252static inline pte_t pte_mkspecial(pte_t pte)
253{
254	return pte;
255}
256
257#define pmd_none(x)	(!pmd_val(x))
258#define pmd_present(x)	(pmd_val(x))
259
260static inline void pmd_clear(pmd_t *pmdp)
261{
262	set_pmd(pmdp, __pmd(0));
263}
264
265#define	pmd_bad(x)	(pmd_val(x) & ~PAGE_MASK)
266
267/*
268 * Permanent address of a page. We don't support highmem, so this is
269 * trivial.
270 */
271#define pages_to_mb(x)	((x) >> (20-PAGE_SHIFT))
272#define pte_page(x)	(pfn_to_page(pte_pfn(x)))
273
274/*
275 * Mark the prot value as uncacheable and unbufferable
276 */
277#define pgprot_noncached(prot)						\
278	__pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE))
279
280/*
281 * Mark the prot value as uncacheable but bufferable
282 */
283#define pgprot_writecombine(prot)					\
284	__pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER)
285
286/*
287 * Conversion functions: convert a page and protection to a page entry,
288 * and a page entry and page directory to the page they refer to.
289 *
290 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
291 */
292#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
293
294static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
295{
296	set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK)
297			    | pgprot_val(newprot)));
298	return pte;
299}
300
301#define page_pte(page)	page_pte_prot(page, __pgprot(0))
302
303#define pmd_page_vaddr(pmd)	pmd_val(pmd)
304#define pmd_page(pmd)		(virt_to_page(pmd_val(pmd)))
305
306/* to find an entry in a page-table-directory. */
307#define pgd_index(address)	(((address) >> PGDIR_SHIFT)	\
308				 & (PTRS_PER_PGD - 1))
309#define pgd_offset(mm, address)	((mm)->pgd + pgd_index(address))
310
311/* to find an entry in a kernel page-table-directory */
312#define pgd_offset_k(address)	pgd_offset(&init_mm, address)
313
314/* Find an entry in the third-level page table.. */
315#define pte_index(address)				\
316	((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
317#define pte_offset(dir, address)					\
318	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
319#define pte_offset_kernel(dir, address)					\
320	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
321#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
322#define pte_unmap(pte)		do { } while (0)
323
324struct vm_area_struct;
325extern void update_mmu_cache(struct vm_area_struct * vma,
326			     unsigned long address, pte_t *ptep);
327
328/*
329 * Encode and decode a swap entry
330 *
331 * Constraints:
332 *   _PAGE_FILE at bit 0
333 *   _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE)
334 *   _PAGE_PRESENT at bit 10
335 *
336 * We encode the type into bits 4-9 and offset into bits 11-31. This
337 * gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per
338 * device, and 64 possible types.
339 *
340 * NOTE: We should set ZEROs at the position of _PAGE_PRESENT
341 *       and _PAGE_PROTNONE bits
342 */
343#define __swp_type(x)		(((x).val >> 4) & 0x3f)
344#define __swp_offset(x)		((x).val >> 11)
345#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
346#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
347#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
348
349/*
350 * Encode and decode a nonlinear file mapping entry. We have to
351 * preserve _PAGE_FILE and _PAGE_PRESENT here. _PAGE_TYPE_* isn't
352 * necessary, since _PAGE_FILE implies !_PAGE_PROTNONE (?)
353 */
354#define PTE_FILE_MAX_BITS	30
355#define pte_to_pgoff(pte)	(((pte_val(pte) >> 1) & 0x1ff)		\
356				 | ((pte_val(pte) >> 11) << 9))
357#define pgoff_to_pte(off)	((pte_t) { ((((off) & 0x1ff) << 1)	\
358					    | (((off) >> 9) << 11)	\
359					    | _PAGE_FILE) })
360
361typedef pte_t *pte_addr_t;
362
363#define kern_addr_valid(addr)	(1)
364
365#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)	\
366	remap_pfn_range(vma, vaddr, pfn, size, prot)
367
368/* No page table caches to initialize (?) */
369#define pgtable_cache_init()	do { } while(0)
370
371#include <asm-generic/pgtable.h>
372
373#endif /* !__ASSEMBLY__ */
374
375#endif /* __ASM_AVR32_PGTABLE_H */