Linux Audio

Check our new training course

Loading...
  1/*
  2 * parse_vdso.c: Linux reference vDSO parser
  3 * Written by Andrew Lutomirski, 2011.
  4 *
  5 * This code is meant to be linked in to various programs that run on Linux.
  6 * As such, it is available with as few restrictions as possible.  This file
  7 * is licensed under the Creative Commons Zero License, version 1.0,
  8 * available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
  9 *
 10 * The vDSO is a regular ELF DSO that the kernel maps into user space when
 11 * it starts a program.  It works equally well in statically and dynamically
 12 * linked binaries.
 13 *
 14 * This code is tested on x86_64.  In principle it should work on any 64-bit
 15 * architecture that has a vDSO.
 16 */
 17
 18#include <stdbool.h>
 19#include <stdint.h>
 20#include <string.h>
 21#include <elf.h>
 22
 23/*
 24 * To use this vDSO parser, first call one of the vdso_init_* functions.
 25 * If you've already parsed auxv, then pass the value of AT_SYSINFO_EHDR
 26 * to vdso_init_from_sysinfo_ehdr.  Otherwise pass auxv to vdso_init_from_auxv.
 27 * Then call vdso_sym for each symbol you want.  For example, to look up
 28 * gettimeofday on x86_64, use:
 29 *
 30 *     <some pointer> = vdso_sym("LINUX_2.6", "gettimeofday");
 31 * or
 32 *     <some pointer> = vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
 33 *
 34 * vdso_sym will return 0 if the symbol doesn't exist or if the init function
 35 * failed or was not called.  vdso_sym is a little slow, so its return value
 36 * should be cached.
 37 *
 38 * vdso_sym is threadsafe; the init functions are not.
 39 *
 40 * These are the prototypes:
 41 */
 42extern void vdso_init_from_auxv(void *auxv);
 43extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
 44extern void *vdso_sym(const char *version, const char *name);
 45
 46
 47/* And here's the code. */
 48
 49#ifndef __x86_64__
 50# error Not yet ported to non-x86_64 architectures
 51#endif
 52
 53static struct vdso_info
 54{
 55	bool valid;
 56
 57	/* Load information */
 58	uintptr_t load_addr;
 59	uintptr_t load_offset;  /* load_addr - recorded vaddr */
 60
 61	/* Symbol table */
 62	Elf64_Sym *symtab;
 63	const char *symstrings;
 64	Elf64_Word *bucket, *chain;
 65	Elf64_Word nbucket, nchain;
 66
 67	/* Version table */
 68	Elf64_Versym *versym;
 69	Elf64_Verdef *verdef;
 70} vdso_info;
 71
 72/* Straight from the ELF specification. */
 73static unsigned long elf_hash(const unsigned char *name)
 74{
 75	unsigned long h = 0, g;
 76	while (*name)
 77	{
 78		h = (h << 4) + *name++;
 79		if (g = h & 0xf0000000)
 80			h ^= g >> 24;
 81		h &= ~g;
 82	}
 83	return h;
 84}
 85
 86void vdso_init_from_sysinfo_ehdr(uintptr_t base)
 87{
 88	size_t i;
 89	bool found_vaddr = false;
 90
 91	vdso_info.valid = false;
 92
 93	vdso_info.load_addr = base;
 94
 95	Elf64_Ehdr *hdr = (Elf64_Ehdr*)base;
 96	Elf64_Phdr *pt = (Elf64_Phdr*)(vdso_info.load_addr + hdr->e_phoff);
 97	Elf64_Dyn *dyn = 0;
 98
 99	/*
100	 * We need two things from the segment table: the load offset
101	 * and the dynamic table.
102	 */
103	for (i = 0; i < hdr->e_phnum; i++)
104	{
105		if (pt[i].p_type == PT_LOAD && !found_vaddr) {
106			found_vaddr = true;
107			vdso_info.load_offset =	base
108				+ (uintptr_t)pt[i].p_offset
109				- (uintptr_t)pt[i].p_vaddr;
110		} else if (pt[i].p_type == PT_DYNAMIC) {
111			dyn = (Elf64_Dyn*)(base + pt[i].p_offset);
112		}
113	}
114
115	if (!found_vaddr || !dyn)
116		return;  /* Failed */
117
118	/*
119	 * Fish out the useful bits of the dynamic table.
120	 */
121	Elf64_Word *hash = 0;
122	vdso_info.symstrings = 0;
123	vdso_info.symtab = 0;
124	vdso_info.versym = 0;
125	vdso_info.verdef = 0;
126	for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
127		switch (dyn[i].d_tag) {
128		case DT_STRTAB:
129			vdso_info.symstrings = (const char *)
130				((uintptr_t)dyn[i].d_un.d_ptr
131				 + vdso_info.load_offset);
132			break;
133		case DT_SYMTAB:
134			vdso_info.symtab = (Elf64_Sym *)
135				((uintptr_t)dyn[i].d_un.d_ptr
136				 + vdso_info.load_offset);
137			break;
138		case DT_HASH:
139			hash = (Elf64_Word *)
140				((uintptr_t)dyn[i].d_un.d_ptr
141				 + vdso_info.load_offset);
142			break;
143		case DT_VERSYM:
144			vdso_info.versym = (Elf64_Versym *)
145				((uintptr_t)dyn[i].d_un.d_ptr
146				 + vdso_info.load_offset);
147			break;
148		case DT_VERDEF:
149			vdso_info.verdef = (Elf64_Verdef *)
150				((uintptr_t)dyn[i].d_un.d_ptr
151				 + vdso_info.load_offset);
152			break;
153		}
154	}
155	if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
156		return;  /* Failed */
157
158	if (!vdso_info.verdef)
159		vdso_info.versym = 0;
160
161	/* Parse the hash table header. */
162	vdso_info.nbucket = hash[0];
163	vdso_info.nchain = hash[1];
164	vdso_info.bucket = &hash[2];
165	vdso_info.chain = &hash[vdso_info.nbucket + 2];
166
167	/* That's all we need. */
168	vdso_info.valid = true;
169}
170
171static bool vdso_match_version(Elf64_Versym ver,
172			       const char *name, Elf64_Word hash)
173{
174	/*
175	 * This is a helper function to check if the version indexed by
176	 * ver matches name (which hashes to hash).
177	 *
178	 * The version definition table is a mess, and I don't know how
179	 * to do this in better than linear time without allocating memory
180	 * to build an index.  I also don't know why the table has
181	 * variable size entries in the first place.
182	 *
183	 * For added fun, I can't find a comprehensible specification of how
184	 * to parse all the weird flags in the table.
185	 *
186	 * So I just parse the whole table every time.
187	 */
188
189	/* First step: find the version definition */
190	ver &= 0x7fff;  /* Apparently bit 15 means "hidden" */
191	Elf64_Verdef *def = vdso_info.verdef;
192	while(true) {
193		if ((def->vd_flags & VER_FLG_BASE) == 0
194		    && (def->vd_ndx & 0x7fff) == ver)
195			break;
196
197		if (def->vd_next == 0)
198			return false;  /* No definition. */
199
200		def = (Elf64_Verdef *)((char *)def + def->vd_next);
201	}
202
203	/* Now figure out whether it matches. */
204	Elf64_Verdaux *aux = (Elf64_Verdaux*)((char *)def + def->vd_aux);
205	return def->vd_hash == hash
206		&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
207}
208
209void *vdso_sym(const char *version, const char *name)
210{
211	unsigned long ver_hash;
212	if (!vdso_info.valid)
213		return 0;
214
215	ver_hash = elf_hash(version);
216	Elf64_Word chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
217
218	for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
219		Elf64_Sym *sym = &vdso_info.symtab[chain];
220
221		/* Check for a defined global or weak function w/ right name. */
222		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
223			continue;
224		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
225		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
226			continue;
227		if (sym->st_shndx == SHN_UNDEF)
228			continue;
229		if (strcmp(name, vdso_info.symstrings + sym->st_name))
230			continue;
231
232		/* Check symbol version. */
233		if (vdso_info.versym
234		    && !vdso_match_version(vdso_info.versym[chain],
235					   version, ver_hash))
236			continue;
237
238		return (void *)(vdso_info.load_offset + sym->st_value);
239	}
240
241	return 0;
242}
243
244void vdso_init_from_auxv(void *auxv)
245{
246	Elf64_auxv_t *elf_auxv = auxv;
247	for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
248	{
249		if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
250			vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
251			return;
252		}
253	}
254
255	vdso_info.valid = false;
256}