Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
  53#define pr_fmt(fmt) "TCP: " fmt
  54
  55#include <linux/bottom_half.h>
  56#include <linux/types.h>
  57#include <linux/fcntl.h>
  58#include <linux/module.h>
  59#include <linux/random.h>
  60#include <linux/cache.h>
  61#include <linux/jhash.h>
  62#include <linux/init.h>
  63#include <linux/times.h>
  64#include <linux/slab.h>
 
  65
  66#include <net/net_namespace.h>
  67#include <net/icmp.h>
  68#include <net/inet_hashtables.h>
  69#include <net/tcp.h>
  70#include <net/transp_v6.h>
  71#include <net/ipv6.h>
  72#include <net/inet_common.h>
  73#include <net/timewait_sock.h>
  74#include <net/xfrm.h>
  75#include <net/netdma.h>
  76#include <net/secure_seq.h>
  77#include <net/tcp_memcontrol.h>
  78
  79#include <linux/inet.h>
  80#include <linux/ipv6.h>
  81#include <linux/stddef.h>
  82#include <linux/proc_fs.h>
  83#include <linux/seq_file.h>
 
 
  84
  85#include <linux/crypto.h>
  86#include <linux/scatterlist.h>
  87
  88int sysctl_tcp_tw_reuse __read_mostly;
  89int sysctl_tcp_low_latency __read_mostly;
  90EXPORT_SYMBOL(sysctl_tcp_low_latency);
  91
  92
  93#ifdef CONFIG_TCP_MD5SIG
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  96#endif
  97
  98struct inet_hashinfo tcp_hashinfo;
  99EXPORT_SYMBOL(tcp_hashinfo);
 100
 101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 102{
 103	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 104					  ip_hdr(skb)->saddr,
 105					  tcp_hdr(skb)->dest,
 106					  tcp_hdr(skb)->source);
 107}
 108
 109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 110{
 
 
 111	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 112	struct tcp_sock *tp = tcp_sk(sk);
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	/* With PAWS, it is safe from the viewpoint
 115	   of data integrity. Even without PAWS it is safe provided sequence
 116	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 117
 118	   Actually, the idea is close to VJ's one, only timestamp cache is
 119	   held not per host, but per port pair and TW bucket is used as state
 120	   holder.
 121
 122	   If TW bucket has been already destroyed we fall back to VJ's scheme
 123	   and use initial timestamp retrieved from peer table.
 124	 */
 125	if (tcptw->tw_ts_recent_stamp &&
 126	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 127			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 128		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 129		if (tp->write_seq == 0)
 130			tp->write_seq = 1;
 131		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 132		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 133		sock_hold(sktw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134		return 1;
 135	}
 136
 137	return 0;
 138}
 139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 140
 141static int tcp_repair_connect(struct sock *sk)
 
 142{
 143	tcp_connect_init(sk);
 144	tcp_finish_connect(sk, NULL);
 
 
 
 
 145
 146	return 0;
 
 
 147}
 148
 149/* This will initiate an outgoing connection. */
 150int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 151{
 152	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 153	struct inet_sock *inet = inet_sk(sk);
 154	struct tcp_sock *tp = tcp_sk(sk);
 
 
 155	__be16 orig_sport, orig_dport;
 156	__be32 daddr, nexthop;
 157	struct flowi4 *fl4;
 158	struct rtable *rt;
 159	int err;
 160	struct ip_options_rcu *inet_opt;
 161
 162	if (addr_len < sizeof(struct sockaddr_in))
 163		return -EINVAL;
 164
 165	if (usin->sin_family != AF_INET)
 166		return -EAFNOSUPPORT;
 167
 168	nexthop = daddr = usin->sin_addr.s_addr;
 169	inet_opt = rcu_dereference_protected(inet->inet_opt,
 170					     sock_owned_by_user(sk));
 171	if (inet_opt && inet_opt->opt.srr) {
 172		if (!daddr)
 173			return -EINVAL;
 174		nexthop = inet_opt->opt.faddr;
 175	}
 176
 177	orig_sport = inet->inet_sport;
 178	orig_dport = usin->sin_port;
 179	fl4 = &inet->cork.fl.u.ip4;
 180	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 181			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 182			      IPPROTO_TCP,
 183			      orig_sport, orig_dport, sk, true);
 184	if (IS_ERR(rt)) {
 185		err = PTR_ERR(rt);
 186		if (err == -ENETUNREACH)
 187			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 188		return err;
 189	}
 190
 191	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 192		ip_rt_put(rt);
 193		return -ENETUNREACH;
 194	}
 195
 196	if (!inet_opt || !inet_opt->opt.srr)
 197		daddr = fl4->daddr;
 198
 199	if (!inet->inet_saddr)
 200		inet->inet_saddr = fl4->saddr;
 201	inet->inet_rcv_saddr = inet->inet_saddr;
 
 
 
 
 
 
 
 
 202
 203	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 204		/* Reset inherited state */
 205		tp->rx_opt.ts_recent	   = 0;
 206		tp->rx_opt.ts_recent_stamp = 0;
 207		if (likely(!tp->repair))
 208			tp->write_seq	   = 0;
 209	}
 210
 211	if (tcp_death_row.sysctl_tw_recycle &&
 212	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 213		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 214		/*
 215		 * VJ's idea. We save last timestamp seen from
 216		 * the destination in peer table, when entering state
 217		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 218		 * when trying new connection.
 219		 */
 220		if (peer) {
 221			inet_peer_refcheck(peer);
 222			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 223				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 224				tp->rx_opt.ts_recent = peer->tcp_ts;
 225			}
 226		}
 227	}
 228
 229	inet->inet_dport = usin->sin_port;
 230	inet->inet_daddr = daddr;
 231
 232	inet_csk(sk)->icsk_ext_hdr_len = 0;
 233	if (inet_opt)
 234		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 235
 236	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 237
 238	/* Socket identity is still unknown (sport may be zero).
 239	 * However we set state to SYN-SENT and not releasing socket
 240	 * lock select source port, enter ourselves into the hash tables and
 241	 * complete initialization after this.
 242	 */
 243	tcp_set_state(sk, TCP_SYN_SENT);
 244	err = inet_hash_connect(&tcp_death_row, sk);
 245	if (err)
 246		goto failure;
 247
 
 
 248	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 249			       inet->inet_sport, inet->inet_dport, sk);
 250	if (IS_ERR(rt)) {
 251		err = PTR_ERR(rt);
 252		rt = NULL;
 253		goto failure;
 254	}
 
 255	/* OK, now commit destination to socket.  */
 256	sk->sk_gso_type = SKB_GSO_TCPV4;
 257	sk_setup_caps(sk, &rt->dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259	if (!tp->write_seq && likely(!tp->repair))
 260		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 261							   inet->inet_daddr,
 262							   inet->inet_sport,
 263							   usin->sin_port);
 264
 265	inet->inet_id = tp->write_seq ^ jiffies;
 
 
 
 266
 267	if (likely(!tp->repair))
 268		err = tcp_connect(sk);
 269	else
 270		err = tcp_repair_connect(sk);
 271
 272	rt = NULL;
 273	if (err)
 274		goto failure;
 275
 276	return 0;
 277
 278failure:
 279	/*
 280	 * This unhashes the socket and releases the local port,
 281	 * if necessary.
 282	 */
 283	tcp_set_state(sk, TCP_CLOSE);
 
 284	ip_rt_put(rt);
 285	sk->sk_route_caps = 0;
 286	inet->inet_dport = 0;
 287	return err;
 288}
 289EXPORT_SYMBOL(tcp_v4_connect);
 290
 291/*
 292 * This routine does path mtu discovery as defined in RFC1191.
 
 
 293 */
 294static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 295{
 296	struct dst_entry *dst;
 297	struct inet_sock *inet = inet_sk(sk);
 
 
 298
 299	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 300	 * send out by Linux are always <576bytes so they should go through
 301	 * unfragmented).
 302	 */
 303	if (sk->sk_state == TCP_LISTEN)
 304		return;
 305
 306	/* We don't check in the destentry if pmtu discovery is forbidden
 307	 * on this route. We just assume that no packet_to_big packets
 308	 * are send back when pmtu discovery is not active.
 309	 * There is a small race when the user changes this flag in the
 310	 * route, but I think that's acceptable.
 311	 */
 312	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 313		return;
 314
 315	dst->ops->update_pmtu(dst, mtu);
 316
 317	/* Something is about to be wrong... Remember soft error
 318	 * for the case, if this connection will not able to recover.
 319	 */
 320	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 321		sk->sk_err_soft = EMSGSIZE;
 322
 323	mtu = dst_mtu(dst);
 324
 325	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 
 326	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 327		tcp_sync_mss(sk, mtu);
 328
 329		/* Resend the TCP packet because it's
 330		 * clear that the old packet has been
 331		 * dropped. This is the new "fast" path mtu
 332		 * discovery.
 333		 */
 334		tcp_simple_retransmit(sk);
 335	} /* else let the usual retransmit timer handle it */
 336}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337
 338/*
 339 * This routine is called by the ICMP module when it gets some
 340 * sort of error condition.  If err < 0 then the socket should
 341 * be closed and the error returned to the user.  If err > 0
 342 * it's just the icmp type << 8 | icmp code.  After adjustment
 343 * header points to the first 8 bytes of the tcp header.  We need
 344 * to find the appropriate port.
 345 *
 346 * The locking strategy used here is very "optimistic". When
 347 * someone else accesses the socket the ICMP is just dropped
 348 * and for some paths there is no check at all.
 349 * A more general error queue to queue errors for later handling
 350 * is probably better.
 351 *
 352 */
 353
 354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 355{
 356	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 357	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 358	struct inet_connection_sock *icsk;
 359	struct tcp_sock *tp;
 360	struct inet_sock *inet;
 361	const int type = icmp_hdr(icmp_skb)->type;
 362	const int code = icmp_hdr(icmp_skb)->code;
 363	struct sock *sk;
 364	struct sk_buff *skb;
 365	__u32 seq;
 366	__u32 remaining;
 367	int err;
 368	struct net *net = dev_net(icmp_skb->dev);
 369
 370	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374
 375	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 376			iph->saddr, th->source, inet_iif(icmp_skb));
 
 377	if (!sk) {
 378		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 379		return;
 380	}
 381	if (sk->sk_state == TCP_TIME_WAIT) {
 
 
 382		inet_twsk_put(inet_twsk(sk));
 383		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384	}
 385
 386	bh_lock_sock(sk);
 387	/* If too many ICMPs get dropped on busy
 388	 * servers this needs to be solved differently.
 
 
 389	 */
 390	if (sock_owned_by_user(sk))
 391		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 392
 
 393	if (sk->sk_state == TCP_CLOSE)
 394		goto out;
 395
 396	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 397		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 398		goto out;
 
 
 
 399	}
 400
 401	icsk = inet_csk(sk);
 402	tp = tcp_sk(sk);
 403	seq = ntohl(th->seq);
 
 
 404	if (sk->sk_state != TCP_LISTEN &&
 405	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 406		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 407		goto out;
 408	}
 409
 410	switch (type) {
 
 
 
 
 411	case ICMP_SOURCE_QUENCH:
 412		/* Just silently ignore these. */
 413		goto out;
 414	case ICMP_PARAMETERPROB:
 415		err = EPROTO;
 416		break;
 417	case ICMP_DEST_UNREACH:
 418		if (code > NR_ICMP_UNREACH)
 419			goto out;
 420
 421		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 422			if (!sock_owned_by_user(sk))
 423				do_pmtu_discovery(sk, iph, info);
 
 
 
 
 
 
 
 
 
 
 
 
 424			goto out;
 425		}
 426
 427		err = icmp_err_convert[code].errno;
 428		/* check if icmp_skb allows revert of backoff
 429		 * (see draft-zimmermann-tcp-lcd) */
 430		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 431			break;
 432		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 433		    !icsk->icsk_backoff)
 434			break;
 435
 436		if (sock_owned_by_user(sk))
 437			break;
 438
 439		icsk->icsk_backoff--;
 440		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 441			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 442		tcp_bound_rto(sk);
 443
 444		skb = tcp_write_queue_head(sk);
 445		BUG_ON(!skb);
 446
 447		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 448				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 449
 450		if (remaining) {
 451			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 452						  remaining, TCP_RTO_MAX);
 453		} else {
 454			/* RTO revert clocked out retransmission.
 455			 * Will retransmit now */
 456			tcp_retransmit_timer(sk);
 457		}
 458
 459		break;
 460	case ICMP_TIME_EXCEEDED:
 461		err = EHOSTUNREACH;
 462		break;
 463	default:
 464		goto out;
 465	}
 466
 467	switch (sk->sk_state) {
 468		struct request_sock *req, **prev;
 469	case TCP_LISTEN:
 470		if (sock_owned_by_user(sk))
 471			goto out;
 472
 473		req = inet_csk_search_req(sk, &prev, th->dest,
 474					  iph->daddr, iph->saddr);
 475		if (!req)
 476			goto out;
 477
 478		/* ICMPs are not backlogged, hence we cannot get
 479		   an established socket here.
 480		 */
 481		WARN_ON(req->sk);
 482
 483		if (seq != tcp_rsk(req)->snt_isn) {
 484			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 485			goto out;
 486		}
 487
 488		/*
 489		 * Still in SYN_RECV, just remove it silently.
 490		 * There is no good way to pass the error to the newly
 491		 * created socket, and POSIX does not want network
 492		 * errors returned from accept().
 493		 */
 494		inet_csk_reqsk_queue_drop(sk, req, prev);
 495		goto out;
 496
 497	case TCP_SYN_SENT:
 498	case TCP_SYN_RECV:  /* Cannot happen.
 499			       It can f.e. if SYNs crossed.
 500			     */
 501		if (!sock_owned_by_user(sk)) {
 502			sk->sk_err = err;
 503
 504			sk->sk_error_report(sk);
 505
 506			tcp_done(sk);
 507		} else {
 508			sk->sk_err_soft = err;
 509		}
 510		goto out;
 511	}
 512
 513	/* If we've already connected we will keep trying
 514	 * until we time out, or the user gives up.
 515	 *
 516	 * rfc1122 4.2.3.9 allows to consider as hard errors
 517	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 518	 * but it is obsoleted by pmtu discovery).
 519	 *
 520	 * Note, that in modern internet, where routing is unreliable
 521	 * and in each dark corner broken firewalls sit, sending random
 522	 * errors ordered by their masters even this two messages finally lose
 523	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 524	 *
 525	 * Now we are in compliance with RFCs.
 526	 *							--ANK (980905)
 527	 */
 528
 529	inet = inet_sk(sk);
 530	if (!sock_owned_by_user(sk) && inet->recverr) {
 531		sk->sk_err = err;
 532		sk->sk_error_report(sk);
 533	} else	{ /* Only an error on timeout */
 534		sk->sk_err_soft = err;
 535	}
 536
 537out:
 538	bh_unlock_sock(sk);
 539	sock_put(sk);
 
 540}
 541
 542static void __tcp_v4_send_check(struct sk_buff *skb,
 543				__be32 saddr, __be32 daddr)
 544{
 545	struct tcphdr *th = tcp_hdr(skb);
 546
 547	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 548		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 549		skb->csum_start = skb_transport_header(skb) - skb->head;
 550		skb->csum_offset = offsetof(struct tcphdr, check);
 551	} else {
 552		th->check = tcp_v4_check(skb->len, saddr, daddr,
 553					 csum_partial(th,
 554						      th->doff << 2,
 555						      skb->csum));
 556	}
 557}
 558
 559/* This routine computes an IPv4 TCP checksum. */
 560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 561{
 562	const struct inet_sock *inet = inet_sk(sk);
 563
 564	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 565}
 566EXPORT_SYMBOL(tcp_v4_send_check);
 567
 568int tcp_v4_gso_send_check(struct sk_buff *skb)
 569{
 570	const struct iphdr *iph;
 571	struct tcphdr *th;
 572
 573	if (!pskb_may_pull(skb, sizeof(*th)))
 574		return -EINVAL;
 575
 576	iph = ip_hdr(skb);
 577	th = tcp_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579	th->check = 0;
 580	skb->ip_summed = CHECKSUM_PARTIAL;
 581	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 582	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583}
 584
 585/*
 586 *	This routine will send an RST to the other tcp.
 587 *
 588 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 589 *		      for reset.
 590 *	Answer: if a packet caused RST, it is not for a socket
 591 *		existing in our system, if it is matched to a socket,
 592 *		it is just duplicate segment or bug in other side's TCP.
 593 *		So that we build reply only basing on parameters
 594 *		arrived with segment.
 595 *	Exception: precedence violation. We do not implement it in any case.
 596 */
 597
 598static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 599{
 600	const struct tcphdr *th = tcp_hdr(skb);
 601	struct {
 602		struct tcphdr th;
 603#ifdef CONFIG_TCP_MD5SIG
 604		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 605#endif
 606	} rep;
 
 
 607	struct ip_reply_arg arg;
 608#ifdef CONFIG_TCP_MD5SIG
 609	struct tcp_md5sig_key *key;
 610	const __u8 *hash_location = NULL;
 611	unsigned char newhash[16];
 612	int genhash;
 613	struct sock *sk1 = NULL;
 
 614#endif
 
 
 615	struct net *net;
 
 616
 617	/* Never send a reset in response to a reset. */
 618	if (th->rst)
 619		return;
 620
 621	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 
 
 
 622		return;
 623
 624	/* Swap the send and the receive. */
 625	memset(&rep, 0, sizeof(rep));
 626	rep.th.dest   = th->source;
 627	rep.th.source = th->dest;
 628	rep.th.doff   = sizeof(struct tcphdr) / 4;
 629	rep.th.rst    = 1;
 630
 631	if (th->ack) {
 632		rep.th.seq = th->ack_seq;
 633	} else {
 634		rep.th.ack = 1;
 635		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 636				       skb->len - (th->doff << 2));
 637	}
 638
 639	memset(&arg, 0, sizeof(arg));
 640	arg.iov[0].iov_base = (unsigned char *)&rep;
 641	arg.iov[0].iov_len  = sizeof(rep.th);
 642
 
 
 
 
 
 
 
 
 
 643#ifdef CONFIG_TCP_MD5SIG
 644	hash_location = tcp_parse_md5sig_option(th);
 645	if (!sk && hash_location) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646		/*
 647		 * active side is lost. Try to find listening socket through
 648		 * source port, and then find md5 key through listening socket.
 649		 * we are not loose security here:
 650		 * Incoming packet is checked with md5 hash with finding key,
 651		 * no RST generated if md5 hash doesn't match.
 652		 */
 653		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
 654					     &tcp_hashinfo, ip_hdr(skb)->daddr,
 655					     ntohs(th->source), inet_iif(skb));
 
 656		/* don't send rst if it can't find key */
 657		if (!sk1)
 658			return;
 659		rcu_read_lock();
 660		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
 661					&ip_hdr(skb)->saddr, AF_INET);
 
 
 
 
 662		if (!key)
 663			goto release_sk1;
 
 
 
 
 
 664
 665		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
 666		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 667			goto release_sk1;
 668	} else {
 669		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
 670					     &ip_hdr(skb)->saddr,
 671					     AF_INET) : NULL;
 672	}
 673
 674	if (key) {
 675		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 676				   (TCPOPT_NOP << 16) |
 677				   (TCPOPT_MD5SIG << 8) |
 678				   TCPOLEN_MD5SIG);
 679		/* Update length and the length the header thinks exists */
 680		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 681		rep.th.doff = arg.iov[0].iov_len / 4;
 682
 683		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 684				     key, ip_hdr(skb)->saddr,
 685				     ip_hdr(skb)->daddr, &rep.th);
 686	}
 687#endif
 
 
 
 
 
 
 
 
 
 
 
 688	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 689				      ip_hdr(skb)->saddr, /* XXX */
 690				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 691	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 692	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 
 693	/* When socket is gone, all binding information is lost.
 694	 * routing might fail in this case. using iif for oif to
 695	 * make sure we can deliver it
 696	 */
 697	arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
 
 
 
 
 698
 699	net = dev_net(skb_dst(skb)->dev);
 700	arg.tos = ip_hdr(skb)->tos;
 701	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 702		      &arg, arg.iov[0].iov_len);
 703
 704	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 705	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707#ifdef CONFIG_TCP_MD5SIG
 708release_sk1:
 709	if (sk1) {
 710		rcu_read_unlock();
 711		sock_put(sk1);
 712	}
 713#endif
 714}
 715
 716/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 717   outside socket context is ugly, certainly. What can I do?
 718 */
 719
 720static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 721			    u32 win, u32 ts, int oif,
 722			    struct tcp_md5sig_key *key,
 723			    int reply_flags, u8 tos)
 
 724{
 725	const struct tcphdr *th = tcp_hdr(skb);
 726	struct {
 727		struct tcphdr th;
 728		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 729#ifdef CONFIG_TCP_MD5SIG
 730			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 731#endif
 732			];
 733	} rep;
 
 734	struct ip_reply_arg arg;
 735	struct net *net = dev_net(skb_dst(skb)->dev);
 
 736
 737	memset(&rep.th, 0, sizeof(struct tcphdr));
 738	memset(&arg, 0, sizeof(arg));
 739
 740	arg.iov[0].iov_base = (unsigned char *)&rep;
 741	arg.iov[0].iov_len  = sizeof(rep.th);
 742	if (ts) {
 743		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 744				   (TCPOPT_TIMESTAMP << 8) |
 745				   TCPOLEN_TIMESTAMP);
 746		rep.opt[1] = htonl(tcp_time_stamp);
 747		rep.opt[2] = htonl(ts);
 748		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 749	}
 750
 751	/* Swap the send and the receive. */
 752	rep.th.dest    = th->source;
 753	rep.th.source  = th->dest;
 754	rep.th.doff    = arg.iov[0].iov_len / 4;
 755	rep.th.seq     = htonl(seq);
 756	rep.th.ack_seq = htonl(ack);
 757	rep.th.ack     = 1;
 758	rep.th.window  = htons(win);
 759
 760#ifdef CONFIG_TCP_MD5SIG
 761	if (key) {
 762		int offset = (ts) ? 3 : 0;
 763
 764		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 765					  (TCPOPT_NOP << 16) |
 766					  (TCPOPT_MD5SIG << 8) |
 767					  TCPOLEN_MD5SIG);
 768		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 769		rep.th.doff = arg.iov[0].iov_len/4;
 770
 771		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 772				    key, ip_hdr(skb)->saddr,
 773				    ip_hdr(skb)->daddr, &rep.th);
 774	}
 775#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776	arg.flags = reply_flags;
 777	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 778				      ip_hdr(skb)->saddr, /* XXX */
 779				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 780	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 781	if (oif)
 782		arg.bound_dev_if = oif;
 783	arg.tos = tos;
 784	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 785		      &arg, arg.iov[0].iov_len);
 786
 787	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 791{
 792	struct inet_timewait_sock *tw = inet_twsk(sk);
 793	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 
 797			tcptw->tw_ts_recent,
 798			tw->tw_bound_dev_if,
 799			tcp_twsk_md5_key(tcptw),
 800			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 801			tw->tw_tos
 802			);
 803
 804	inet_twsk_put(tw);
 805}
 806
 807static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 808				  struct request_sock *req)
 809{
 810	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 811			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 812			req->ts_recent,
 813			0,
 814			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
 815					  AF_INET),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 817			ip_hdr(skb)->tos);
 
 
 
 818}
 819
 820/*
 821 *	Send a SYN-ACK after having received a SYN.
 822 *	This still operates on a request_sock only, not on a big
 823 *	socket.
 824 */
 825static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 
 826			      struct request_sock *req,
 827			      struct request_values *rvp,
 828			      u16 queue_mapping)
 
 829{
 830	const struct inet_request_sock *ireq = inet_rsk(req);
 831	struct flowi4 fl4;
 832	int err = -1;
 833	struct sk_buff * skb;
 
 834
 835	/* First, grab a route. */
 836	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 837		return -1;
 838
 839	skb = tcp_make_synack(sk, dst, req, rvp);
 840
 841	if (skb) {
 842		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 
 
 
 
 
 
 
 
 
 
 843
 844		skb_set_queue_mapping(skb, queue_mapping);
 845		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 846					    ireq->rmt_addr,
 847					    ireq->opt);
 
 
 848		err = net_xmit_eval(err);
 849	}
 850
 851	dst_release(dst);
 852	return err;
 853}
 854
 855static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 856			      struct request_values *rvp)
 857{
 858	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 859	return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
 860}
 861
 862/*
 863 *	IPv4 request_sock destructor.
 864 */
 865static void tcp_v4_reqsk_destructor(struct request_sock *req)
 866{
 867	kfree(inet_rsk(req)->opt);
 868}
 869
 
 870/*
 871 * Return true if a syncookie should be sent
 
 
 872 */
 873bool tcp_syn_flood_action(struct sock *sk,
 874			 const struct sk_buff *skb,
 875			 const char *proto)
 876{
 877	const char *msg = "Dropping request";
 878	bool want_cookie = false;
 879	struct listen_sock *lopt;
 880
 
 
 881
 
 
 
 
 882
 883#ifdef CONFIG_SYN_COOKIES
 884	if (sysctl_tcp_syncookies) {
 885		msg = "Sending cookies";
 886		want_cookie = true;
 887		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 888	} else
 889#endif
 890		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 891
 892	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 893	if (!lopt->synflood_warned) {
 894		lopt->synflood_warned = 1;
 895		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
 896			proto, ntohs(tcp_hdr(skb)->dest), msg);
 897	}
 898	return want_cookie;
 899}
 900EXPORT_SYMBOL(tcp_syn_flood_action);
 901
 902/*
 903 * Save and compile IPv4 options into the request_sock if needed.
 904 */
 905static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 906						  struct sk_buff *skb)
 907{
 908	const struct ip_options *opt = &(IPCB(skb)->opt);
 909	struct ip_options_rcu *dopt = NULL;
 
 
 
 
 910
 911	if (opt && opt->optlen) {
 912		int opt_size = sizeof(*dopt) + opt->optlen;
 
 
 
 913
 914		dopt = kmalloc(opt_size, GFP_ATOMIC);
 915		if (dopt) {
 916			if (ip_options_echo(&dopt->opt, skb)) {
 917				kfree(dopt);
 918				dopt = NULL;
 919			}
 
 
 
 
 
 
 
 
 
 
 
 
 920		}
 
 
 
 921	}
 922	return dopt;
 923}
 
 924
 925#ifdef CONFIG_TCP_MD5SIG
 926/*
 927 * RFC2385 MD5 checksumming requires a mapping of
 928 * IP address->MD5 Key.
 929 * We need to maintain these in the sk structure.
 930 */
 931
 932/* Find the Key structure for an address.  */
 933struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
 934					 const union tcp_md5_addr *addr,
 935					 int family)
 936{
 937	struct tcp_sock *tp = tcp_sk(sk);
 938	struct tcp_md5sig_key *key;
 939	struct hlist_node *pos;
 940	unsigned int size = sizeof(struct in_addr);
 941	struct tcp_md5sig_info *md5sig;
 942
 943	/* caller either holds rcu_read_lock() or socket lock */
 944	md5sig = rcu_dereference_check(tp->md5sig_info,
 945				       sock_owned_by_user(sk) ||
 946				       lockdep_is_held(&sk->sk_lock.slock));
 947	if (!md5sig)
 948		return NULL;
 949#if IS_ENABLED(CONFIG_IPV6)
 950	if (family == AF_INET6)
 951		size = sizeof(struct in6_addr);
 952#endif
 953	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
 
 954		if (key->family != family)
 955			continue;
 956		if (!memcmp(&key->addr, addr, size))
 
 
 
 
 
 957			return key;
 958	}
 959	return NULL;
 960}
 961EXPORT_SYMBOL(tcp_md5_do_lookup);
 962
 963struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 964					 struct sock *addr_sk)
 965{
 966	union tcp_md5_addr *addr;
 
 967
 968	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
 969	return tcp_md5_do_lookup(sk, addr, AF_INET);
 
 
 970}
 971EXPORT_SYMBOL(tcp_v4_md5_lookup);
 972
 973static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 974						      struct request_sock *req)
 975{
 976	union tcp_md5_addr *addr;
 
 
 
 
 
 977
 978	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
 979	return tcp_md5_do_lookup(sk, addr, AF_INET);
 
 
 980}
 981
 982/* This can be called on a newly created socket, from other files */
 983int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
 984		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
 
 985{
 986	/* Add Key to the list */
 987	struct tcp_md5sig_key *key;
 988	struct tcp_sock *tp = tcp_sk(sk);
 989	struct tcp_md5sig_info *md5sig;
 990
 991	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
 992	if (key) {
 993		/* Pre-existing entry - just update that one. */
 994		memcpy(key->key, newkey, newkeylen);
 995		key->keylen = newkeylen;
 
 
 
 
 
 
 
 
 
 
 
 
 996		return 0;
 997	}
 998
 999	md5sig = rcu_dereference_protected(tp->md5sig_info,
1000					   sock_owned_by_user(sk));
1001	if (!md5sig) {
1002		md5sig = kmalloc(sizeof(*md5sig), gfp);
1003		if (!md5sig)
1004			return -ENOMEM;
1005
1006		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007		INIT_HLIST_HEAD(&md5sig->head);
1008		rcu_assign_pointer(tp->md5sig_info, md5sig);
1009	}
1010
1011	key = sock_kmalloc(sk, sizeof(*key), gfp);
1012	if (!key)
1013		return -ENOMEM;
1014	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015		sock_kfree_s(sk, key, sizeof(*key));
1016		return -ENOMEM;
1017	}
1018
1019	memcpy(key->key, newkey, newkeylen);
1020	key->keylen = newkeylen;
1021	key->family = family;
 
 
 
1022	memcpy(&key->addr, addr,
1023	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1024				      sizeof(struct in_addr));
1025	hlist_add_head_rcu(&key->node, &md5sig->head);
1026	return 0;
1027}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
 
 
1031{
1032	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	struct tcp_md5sig_key *key;
1034	struct tcp_md5sig_info *md5sig;
1035
1036	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037	if (!key)
1038		return -ENOENT;
1039	hlist_del_rcu(&key->node);
1040	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041	kfree_rcu(key, rcu);
1042	md5sig = rcu_dereference_protected(tp->md5sig_info,
1043					   sock_owned_by_user(sk));
1044	if (hlist_empty(&md5sig->head))
1045		tcp_free_md5sig_pool();
1046	return 0;
1047}
1048EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050void tcp_clear_md5_list(struct sock *sk)
1051{
1052	struct tcp_sock *tp = tcp_sk(sk);
1053	struct tcp_md5sig_key *key;
1054	struct hlist_node *pos, *n;
1055	struct tcp_md5sig_info *md5sig;
1056
1057	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059	if (!hlist_empty(&md5sig->head))
1060		tcp_free_md5sig_pool();
1061	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062		hlist_del_rcu(&key->node);
1063		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064		kfree_rcu(key, rcu);
1065	}
1066}
1067
1068static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069				 int optlen)
1070{
1071	struct tcp_md5sig cmd;
1072	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
 
 
 
 
 
1073
1074	if (optlen < sizeof(cmd))
1075		return -EINVAL;
1076
1077	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078		return -EFAULT;
1079
1080	if (sin->sin_family != AF_INET)
1081		return -EINVAL;
1082
1083	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085				      AF_INET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088		return -EINVAL;
1089
1090	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092			      GFP_KERNEL);
 
 
 
 
 
1093}
1094
1095static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096					__be32 daddr, __be32 saddr, int nbytes)
 
1097{
1098	struct tcp4_pseudohdr *bp;
1099	struct scatterlist sg;
 
1100
1101	bp = &hp->md5_blk.ip4;
1102
1103	/*
1104	 * 1. the TCP pseudo-header (in the order: source IP address,
1105	 * destination IP address, zero-padded protocol number, and
1106	 * segment length)
1107	 */
1108	bp->saddr = saddr;
1109	bp->daddr = daddr;
1110	bp->pad = 0;
1111	bp->protocol = IPPROTO_TCP;
1112	bp->len = cpu_to_be16(nbytes);
1113
1114	sg_init_one(&sg, bp, sizeof(*bp));
1115	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
 
 
 
 
 
 
1116}
1117
1118static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120{
1121	struct tcp_md5sig_pool *hp;
1122	struct hash_desc *desc;
1123
1124	hp = tcp_get_md5sig_pool();
1125	if (!hp)
1126		goto clear_hash_noput;
1127	desc = &hp->md5_desc;
1128
1129	if (crypto_hash_init(desc))
1130		goto clear_hash;
1131	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132		goto clear_hash;
1133	if (tcp_md5_hash_header(hp, th))
1134		goto clear_hash;
1135	if (tcp_md5_hash_key(hp, key))
1136		goto clear_hash;
1137	if (crypto_hash_final(desc, md5_hash))
1138		goto clear_hash;
1139
1140	tcp_put_md5sig_pool();
1141	return 0;
1142
1143clear_hash:
1144	tcp_put_md5sig_pool();
1145clear_hash_noput:
1146	memset(md5_hash, 0, 16);
1147	return 1;
1148}
1149
1150int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151			const struct sock *sk, const struct request_sock *req,
1152			const struct sk_buff *skb)
1153{
1154	struct tcp_md5sig_pool *hp;
1155	struct hash_desc *desc;
1156	const struct tcphdr *th = tcp_hdr(skb);
 
1157	__be32 saddr, daddr;
1158
1159	if (sk) {
1160		saddr = inet_sk(sk)->inet_saddr;
1161		daddr = inet_sk(sk)->inet_daddr;
1162	} else if (req) {
1163		saddr = inet_rsk(req)->loc_addr;
1164		daddr = inet_rsk(req)->rmt_addr;
1165	} else {
1166		const struct iphdr *iph = ip_hdr(skb);
1167		saddr = iph->saddr;
1168		daddr = iph->daddr;
1169	}
1170
1171	hp = tcp_get_md5sig_pool();
1172	if (!hp)
1173		goto clear_hash_noput;
1174	desc = &hp->md5_desc;
1175
1176	if (crypto_hash_init(desc))
1177		goto clear_hash;
1178
1179	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180		goto clear_hash;
1181	if (tcp_md5_hash_header(hp, th))
1182		goto clear_hash;
1183	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184		goto clear_hash;
1185	if (tcp_md5_hash_key(hp, key))
1186		goto clear_hash;
1187	if (crypto_hash_final(desc, md5_hash))
1188		goto clear_hash;
1189
1190	tcp_put_md5sig_pool();
1191	return 0;
1192
1193clear_hash:
1194	tcp_put_md5sig_pool();
1195clear_hash_noput:
1196	memset(md5_hash, 0, 16);
1197	return 1;
1198}
1199EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202{
1203	/*
1204	 * This gets called for each TCP segment that arrives
1205	 * so we want to be efficient.
1206	 * We have 3 drop cases:
1207	 * o No MD5 hash and one expected.
1208	 * o MD5 hash and we're not expecting one.
1209	 * o MD5 hash and its wrong.
1210	 */
1211	const __u8 *hash_location = NULL;
1212	struct tcp_md5sig_key *hash_expected;
1213	const struct iphdr *iph = ip_hdr(skb);
1214	const struct tcphdr *th = tcp_hdr(skb);
1215	int genhash;
1216	unsigned char newhash[16];
1217
1218	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219					  AF_INET);
1220	hash_location = tcp_parse_md5sig_option(th);
 
 
 
1221
1222	/* We've parsed the options - do we have a hash? */
1223	if (!hash_expected && !hash_location)
1224		return false;
 
1225
1226	if (hash_expected && !hash_location) {
1227		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228		return true;
1229	}
 
 
1230
1231	if (!hash_expected && hash_location) {
1232		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233		return true;
1234	}
1235
1236	/* Okay, so this is hash_expected and hash_location -
1237	 * so we need to calculate the checksum.
1238	 */
1239	genhash = tcp_v4_md5_hash_skb(newhash,
1240				      hash_expected,
1241				      NULL, NULL, skb);
1242
1243	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245				     &iph->saddr, ntohs(th->source),
1246				     &iph->daddr, ntohs(th->dest),
1247				     genhash ? " tcp_v4_calc_md5_hash failed"
1248				     : "");
1249		return true;
1250	}
1251	return false;
1252}
1253
1254#endif
1255
1256struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257	.family		=	PF_INET,
1258	.obj_size	=	sizeof(struct tcp_request_sock),
1259	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1260	.send_ack	=	tcp_v4_reqsk_send_ack,
1261	.destructor	=	tcp_v4_reqsk_destructor,
1262	.send_reset	=	tcp_v4_send_reset,
1263	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1264};
1265
 
 
1266#ifdef CONFIG_TCP_MD5SIG
1267static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1269	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1270};
1271#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274{
1275	struct tcp_extend_values tmp_ext;
1276	struct tcp_options_received tmp_opt;
1277	const u8 *hash_location;
1278	struct request_sock *req;
1279	struct inet_request_sock *ireq;
1280	struct tcp_sock *tp = tcp_sk(sk);
1281	struct dst_entry *dst = NULL;
1282	__be32 saddr = ip_hdr(skb)->saddr;
1283	__be32 daddr = ip_hdr(skb)->daddr;
1284	__u32 isn = TCP_SKB_CB(skb)->when;
1285	bool want_cookie = false;
1286
1287	/* Never answer to SYNs send to broadcast or multicast */
1288	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289		goto drop;
1290
1291	/* TW buckets are converted to open requests without
1292	 * limitations, they conserve resources and peer is
1293	 * evidently real one.
1294	 */
1295	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297		if (!want_cookie)
1298			goto drop;
1299	}
1300
1301	/* Accept backlog is full. If we have already queued enough
1302	 * of warm entries in syn queue, drop request. It is better than
1303	 * clogging syn queue with openreqs with exponentially increasing
1304	 * timeout.
1305	 */
1306	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307		goto drop;
1308
1309	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310	if (!req)
1311		goto drop;
1312
1313#ifdef CONFIG_TCP_MD5SIG
1314	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315#endif
1316
1317	tcp_clear_options(&tmp_opt);
1318	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1320	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322	if (tmp_opt.cookie_plus > 0 &&
1323	    tmp_opt.saw_tstamp &&
1324	    !tp->rx_opt.cookie_out_never &&
1325	    (sysctl_tcp_cookie_size > 0 ||
1326	     (tp->cookie_values != NULL &&
1327	      tp->cookie_values->cookie_desired > 0))) {
1328		u8 *c;
1329		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333			goto drop_and_release;
1334
1335		/* Secret recipe starts with IP addresses */
1336		*mess++ ^= (__force u32)daddr;
1337		*mess++ ^= (__force u32)saddr;
1338
1339		/* plus variable length Initiator Cookie */
1340		c = (u8 *)mess;
1341		while (l-- > 0)
1342			*c++ ^= *hash_location++;
1343
1344		want_cookie = false;	/* not our kind of cookie */
1345		tmp_ext.cookie_out_never = 0; /* false */
1346		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347	} else if (!tp->rx_opt.cookie_in_always) {
1348		/* redundant indications, but ensure initialization. */
1349		tmp_ext.cookie_out_never = 1; /* true */
1350		tmp_ext.cookie_plus = 0;
1351	} else {
1352		goto drop_and_release;
1353	}
1354	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356	if (want_cookie && !tmp_opt.saw_tstamp)
1357		tcp_clear_options(&tmp_opt);
1358
1359	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360	tcp_openreq_init(req, &tmp_opt, skb);
1361
1362	ireq = inet_rsk(req);
1363	ireq->loc_addr = daddr;
1364	ireq->rmt_addr = saddr;
1365	ireq->no_srccheck = inet_sk(sk)->transparent;
1366	ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368	if (security_inet_conn_request(sk, skb, req))
1369		goto drop_and_free;
1370
1371	if (!want_cookie || tmp_opt.tstamp_ok)
1372		TCP_ECN_create_request(req, skb);
1373
1374	if (want_cookie) {
1375		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376		req->cookie_ts = tmp_opt.tstamp_ok;
1377	} else if (!isn) {
1378		struct inet_peer *peer = NULL;
1379		struct flowi4 fl4;
1380
1381		/* VJ's idea. We save last timestamp seen
1382		 * from the destination in peer table, when entering
1383		 * state TIME-WAIT, and check against it before
1384		 * accepting new connection request.
1385		 *
1386		 * If "isn" is not zero, this request hit alive
1387		 * timewait bucket, so that all the necessary checks
1388		 * are made in the function processing timewait state.
1389		 */
1390		if (tmp_opt.saw_tstamp &&
1391		    tcp_death_row.sysctl_tw_recycle &&
1392		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393		    fl4.daddr == saddr &&
1394		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395			inet_peer_refcheck(peer);
1396			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397			    (s32)(peer->tcp_ts - req->ts_recent) >
1398							TCP_PAWS_WINDOW) {
1399				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400				goto drop_and_release;
1401			}
1402		}
1403		/* Kill the following clause, if you dislike this way. */
1404		else if (!sysctl_tcp_syncookies &&
1405			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406			  (sysctl_max_syn_backlog >> 2)) &&
1407			 (!peer || !peer->tcp_ts_stamp) &&
1408			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409			/* Without syncookies last quarter of
1410			 * backlog is filled with destinations,
1411			 * proven to be alive.
1412			 * It means that we continue to communicate
1413			 * to destinations, already remembered
1414			 * to the moment of synflood.
1415			 */
1416			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417				       &saddr, ntohs(tcp_hdr(skb)->source));
1418			goto drop_and_release;
1419		}
1420
1421		isn = tcp_v4_init_sequence(skb);
1422	}
1423	tcp_rsk(req)->snt_isn = isn;
1424	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426	if (tcp_v4_send_synack(sk, dst, req,
1427			       (struct request_values *)&tmp_ext,
1428			       skb_get_queue_mapping(skb)) ||
1429	    want_cookie)
1430		goto drop_and_free;
1431
1432	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433	return 0;
1434
1435drop_and_release:
1436	dst_release(dst);
1437drop_and_free:
1438	reqsk_free(req);
1439drop:
 
1440	return 0;
1441}
1442EXPORT_SYMBOL(tcp_v4_conn_request);
1443
1444
1445/*
1446 * The three way handshake has completed - we got a valid synack -
1447 * now create the new socket.
1448 */
1449struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450				  struct request_sock *req,
1451				  struct dst_entry *dst)
 
 
1452{
1453	struct inet_request_sock *ireq;
 
1454	struct inet_sock *newinet;
1455	struct tcp_sock *newtp;
1456	struct sock *newsk;
1457#ifdef CONFIG_TCP_MD5SIG
 
1458	struct tcp_md5sig_key *key;
 
1459#endif
1460	struct ip_options_rcu *inet_opt;
1461
1462	if (sk_acceptq_is_full(sk))
1463		goto exit_overflow;
1464
1465	newsk = tcp_create_openreq_child(sk, req, skb);
1466	if (!newsk)
1467		goto exit_nonewsk;
1468
1469	newsk->sk_gso_type = SKB_GSO_TCPV4;
 
1470
1471	newtp		      = tcp_sk(newsk);
1472	newinet		      = inet_sk(newsk);
1473	ireq		      = inet_rsk(req);
1474	newinet->inet_daddr   = ireq->rmt_addr;
1475	newinet->inet_rcv_saddr = ireq->loc_addr;
1476	newinet->inet_saddr	      = ireq->loc_addr;
1477	inet_opt	      = ireq->opt;
1478	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479	ireq->opt	      = NULL;
1480	newinet->mc_index     = inet_iif(skb);
1481	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1482	newinet->rcv_tos      = ip_hdr(skb)->tos;
1483	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484	if (inet_opt)
1485		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486	newinet->inet_id = newtp->write_seq ^ jiffies;
 
 
 
 
 
 
1487
1488	if (!dst) {
1489		dst = inet_csk_route_child_sock(sk, newsk, req);
1490		if (!dst)
1491			goto put_and_exit;
1492	} else {
1493		/* syncookie case : see end of cookie_v4_check() */
1494	}
1495	sk_setup_caps(newsk, dst);
1496
1497	tcp_mtup_init(newsk);
 
1498	tcp_sync_mss(newsk, dst_mtu(dst));
1499	newtp->advmss = dst_metric_advmss(dst);
1500	if (tcp_sk(sk)->rx_opt.user_mss &&
1501	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1503
1504	tcp_initialize_rcv_mss(newsk);
1505	if (tcp_rsk(req)->snt_synack)
1506		tcp_valid_rtt_meas(newsk,
1507		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508	newtp->total_retrans = req->retrans;
1509
1510#ifdef CONFIG_TCP_MD5SIG
 
1511	/* Copy over the MD5 key from the original socket */
1512	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513				AF_INET);
1514	if (key != NULL) {
1515		/*
1516		 * We're using one, so create a matching key
1517		 * on the newsk structure. If we fail to get
1518		 * memory, then we end up not copying the key
1519		 * across. Shucks.
1520		 */
1521		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1523		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1524	}
1525#endif
 
 
 
 
1526
1527	if (__inet_inherit_port(sk, newsk) < 0)
1528		goto put_and_exit;
1529	__inet_hash_nolisten(newsk, NULL);
 
 
 
 
 
 
1530
 
 
 
 
 
 
 
 
 
1531	return newsk;
1532
1533exit_overflow:
1534	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535exit_nonewsk:
1536	dst_release(dst);
1537exit:
1538	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539	return NULL;
1540put_and_exit:
1541	tcp_clear_xmit_timers(newsk);
1542	tcp_cleanup_congestion_control(newsk);
1543	bh_unlock_sock(newsk);
1544	sock_put(newsk);
1545	goto exit;
1546}
1547EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1548
1549static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1550{
1551	struct tcphdr *th = tcp_hdr(skb);
1552	const struct iphdr *iph = ip_hdr(skb);
1553	struct sock *nsk;
1554	struct request_sock **prev;
1555	/* Find possible connection requests. */
1556	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557						       iph->saddr, iph->daddr);
1558	if (req)
1559		return tcp_check_req(sk, skb, req, prev);
1560
1561	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562			th->source, iph->daddr, th->dest, inet_iif(skb));
1563
1564	if (nsk) {
1565		if (nsk->sk_state != TCP_TIME_WAIT) {
1566			bh_lock_sock(nsk);
1567			return nsk;
1568		}
1569		inet_twsk_put(inet_twsk(nsk));
1570		return NULL;
1571	}
1572
1573#ifdef CONFIG_SYN_COOKIES
 
 
1574	if (!th->syn)
1575		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576#endif
1577	return sk;
1578}
1579
1580static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
 
1581{
1582	const struct iphdr *iph = ip_hdr(skb);
1583
1584	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585		if (!tcp_v4_check(skb->len, iph->saddr,
1586				  iph->daddr, skb->csum)) {
1587			skb->ip_summed = CHECKSUM_UNNECESSARY;
1588			return 0;
1589		}
1590	}
1591
1592	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593				       skb->len, IPPROTO_TCP, 0);
1594
1595	if (skb->len <= 76) {
1596		return __skb_checksum_complete(skb);
1597	}
1598	return 0;
 
1599}
1600
1601
 
1602/* The socket must have it's spinlock held when we get
1603 * here.
1604 *
1605 * We have a potential double-lock case here, so even when
1606 * doing backlog processing we use the BH locking scheme.
1607 * This is because we cannot sleep with the original spinlock
1608 * held.
1609 */
1610int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1611{
 
1612	struct sock *rsk;
1613#ifdef CONFIG_TCP_MD5SIG
1614	/*
1615	 * We really want to reject the packet as early as possible
1616	 * if:
1617	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1618	 *  o There is an MD5 option and we're not expecting one
1619	 */
1620	if (tcp_v4_inbound_md5_hash(sk, skb))
1621		goto discard;
1622#endif
1623
1624	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
 
 
 
 
 
1625		sock_rps_save_rxhash(sk, skb);
1626		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627			rsk = sk;
1628			goto reset;
 
 
 
 
 
1629		}
 
1630		return 0;
1631	}
1632
1633	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1634		goto csum_err;
1635
1636	if (sk->sk_state == TCP_LISTEN) {
1637		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1638		if (!nsk)
1639			goto discard;
1640
 
 
1641		if (nsk != sk) {
1642			sock_rps_save_rxhash(nsk, skb);
1643			if (tcp_child_process(sk, nsk, skb)) {
1644				rsk = nsk;
1645				goto reset;
1646			}
1647			return 0;
1648		}
1649	} else
1650		sock_rps_save_rxhash(sk, skb);
1651
1652	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
 
1653		rsk = sk;
1654		goto reset;
1655	}
1656	return 0;
1657
1658reset:
1659	tcp_v4_send_reset(rsk, skb);
1660discard:
1661	kfree_skb(skb);
1662	/* Be careful here. If this function gets more complicated and
1663	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1664	 * might be destroyed here. This current version compiles correctly,
1665	 * but you have been warned.
1666	 */
1667	return 0;
1668
1669csum_err:
1670	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
 
1671	goto discard;
1672}
1673EXPORT_SYMBOL(tcp_v4_do_rcv);
1674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675/*
1676 *	From tcp_input.c
1677 */
1678
1679int tcp_v4_rcv(struct sk_buff *skb)
1680{
 
 
 
 
1681	const struct iphdr *iph;
1682	const struct tcphdr *th;
 
1683	struct sock *sk;
1684	int ret;
1685	struct net *net = dev_net(skb->dev);
1686
 
1687	if (skb->pkt_type != PACKET_HOST)
1688		goto discard_it;
1689
1690	/* Count it even if it's bad */
1691	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1692
1693	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694		goto discard_it;
1695
1696	th = tcp_hdr(skb);
1697
1698	if (th->doff < sizeof(struct tcphdr) / 4)
 
1699		goto bad_packet;
 
1700	if (!pskb_may_pull(skb, th->doff * 4))
1701		goto discard_it;
1702
1703	/* An explanation is required here, I think.
1704	 * Packet length and doff are validated by header prediction,
1705	 * provided case of th->doff==0 is eliminated.
1706	 * So, we defer the checks. */
1707	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708		goto bad_packet;
1709
1710	th = tcp_hdr(skb);
1711	iph = ip_hdr(skb);
1712	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714				    skb->len - th->doff * 4);
1715	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716	TCP_SKB_CB(skb)->when	 = 0;
1717	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718	TCP_SKB_CB(skb)->sacked	 = 0;
1719
1720	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
 
 
 
 
 
1721	if (!sk)
1722		goto no_tcp_socket;
1723
1724process:
1725	if (sk->sk_state == TCP_TIME_WAIT)
1726		goto do_time_wait;
1727
1728	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730		goto discard_and_relse;
1731	}
1732
1733	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
 
1734		goto discard_and_relse;
1735	nf_reset(skb);
1736
1737	if (sk_filter(sk, skb))
 
 
 
1738		goto discard_and_relse;
 
 
 
 
1739
1740	skb->dev = NULL;
1741
 
 
 
 
 
 
 
1742	bh_lock_sock_nested(sk);
 
1743	ret = 0;
1744	if (!sock_owned_by_user(sk)) {
1745#ifdef CONFIG_NET_DMA
1746		struct tcp_sock *tp = tcp_sk(sk);
1747		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748			tp->ucopy.dma_chan = net_dma_find_channel();
1749		if (tp->ucopy.dma_chan)
1750			ret = tcp_v4_do_rcv(sk, skb);
1751		else
1752#endif
1753		{
1754			if (!tcp_prequeue(sk, skb))
1755				ret = tcp_v4_do_rcv(sk, skb);
1756		}
1757	} else if (unlikely(sk_add_backlog(sk, skb,
1758					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759		bh_unlock_sock(sk);
1760		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761		goto discard_and_relse;
1762	}
1763	bh_unlock_sock(sk);
1764
1765	sock_put(sk);
 
 
1766
1767	return ret;
1768
1769no_tcp_socket:
 
1770	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771		goto discard_it;
1772
1773	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
 
 
 
 
 
 
1774bad_packet:
1775		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776	} else {
1777		tcp_v4_send_reset(NULL, skb);
1778	}
1779
1780discard_it:
 
1781	/* Discard frame. */
1782	kfree_skb(skb);
1783	return 0;
1784
1785discard_and_relse:
1786	sock_put(sk);
 
 
1787	goto discard_it;
1788
1789do_time_wait:
1790	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
1791		inet_twsk_put(inet_twsk(sk));
1792		goto discard_it;
1793	}
1794
1795	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
 
1797		inet_twsk_put(inet_twsk(sk));
1798		goto discard_it;
1799	}
1800	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801	case TCP_TW_SYN: {
1802		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803							&tcp_hashinfo,
 
 
1804							iph->daddr, th->dest,
1805							inet_iif(skb));
 
1806		if (sk2) {
1807			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808			inet_twsk_put(inet_twsk(sk));
1809			sk = sk2;
 
 
1810			goto process;
1811		}
1812		/* Fall through to ACK */
1813	}
 
 
1814	case TCP_TW_ACK:
1815		tcp_v4_timewait_ack(sk, skb);
1816		break;
1817	case TCP_TW_RST:
1818		goto no_tcp_socket;
 
 
1819	case TCP_TW_SUCCESS:;
1820	}
1821	goto discard_it;
1822}
1823
1824struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1825{
1826	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827	struct inet_sock *inet = inet_sk(sk);
1828	struct inet_peer *peer;
1829
1830	if (!rt ||
1831	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833		*release_it = true;
1834	} else {
1835		if (!rt->peer)
1836			rt_bind_peer(rt, inet->inet_daddr, 1);
1837		peer = rt->peer;
1838		*release_it = false;
1839	}
1840
1841	return peer;
1842}
1843EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845void *tcp_v4_tw_get_peer(struct sock *sk)
1846{
1847	const struct inet_timewait_sock *tw = inet_twsk(sk);
1848
1849	return inet_getpeer_v4(tw->tw_daddr, 1);
1850}
1851EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1852
1853static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1855	.twsk_unique	= tcp_twsk_unique,
1856	.twsk_destructor= tcp_twsk_destructor,
1857	.twsk_getpeer	= tcp_v4_tw_get_peer,
1858};
1859
 
 
 
 
 
 
 
 
 
 
 
1860const struct inet_connection_sock_af_ops ipv4_specific = {
1861	.queue_xmit	   = ip_queue_xmit,
1862	.send_check	   = tcp_v4_send_check,
1863	.rebuild_header	   = inet_sk_rebuild_header,
 
1864	.conn_request	   = tcp_v4_conn_request,
1865	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1866	.get_peer	   = tcp_v4_get_peer,
1867	.net_header_len	   = sizeof(struct iphdr),
1868	.setsockopt	   = ip_setsockopt,
1869	.getsockopt	   = ip_getsockopt,
1870	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1871	.sockaddr_len	   = sizeof(struct sockaddr_in),
1872	.bind_conflict	   = inet_csk_bind_conflict,
1873#ifdef CONFIG_COMPAT
1874	.compat_setsockopt = compat_ip_setsockopt,
1875	.compat_getsockopt = compat_ip_getsockopt,
1876#endif
1877};
1878EXPORT_SYMBOL(ipv4_specific);
1879
1880#ifdef CONFIG_TCP_MD5SIG
1881static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
 
1882	.md5_lookup		= tcp_v4_md5_lookup,
1883	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1884	.md5_parse		= tcp_v4_parse_md5_keys,
 
 
 
 
 
 
 
1885};
1886#endif
1887
1888/* NOTE: A lot of things set to zero explicitly by call to
1889 *       sk_alloc() so need not be done here.
1890 */
1891static int tcp_v4_init_sock(struct sock *sk)
1892{
1893	struct inet_connection_sock *icsk = inet_csk(sk);
1894
1895	tcp_init_sock(sk);
1896
1897	icsk->icsk_af_ops = &ipv4_specific;
1898
1899#ifdef CONFIG_TCP_MD5SIG
1900	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901#endif
1902
1903	return 0;
1904}
1905
 
 
 
 
 
 
 
 
 
 
 
 
1906void tcp_v4_destroy_sock(struct sock *sk)
1907{
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
 
 
1910	tcp_clear_xmit_timers(sk);
1911
1912	tcp_cleanup_congestion_control(sk);
1913
 
 
1914	/* Cleanup up the write buffer. */
1915	tcp_write_queue_purge(sk);
1916
 
 
 
1917	/* Cleans up our, hopefully empty, out_of_order_queue. */
1918	__skb_queue_purge(&tp->out_of_order_queue);
1919
1920#ifdef CONFIG_TCP_MD5SIG
1921	/* Clean up the MD5 key list, if any */
1922	if (tp->md5sig_info) {
 
 
 
1923		tcp_clear_md5_list(sk);
1924		kfree_rcu(tp->md5sig_info, rcu);
1925		tp->md5sig_info = NULL;
1926	}
1927#endif
1928
1929#ifdef CONFIG_NET_DMA
1930	/* Cleans up our sk_async_wait_queue */
1931	__skb_queue_purge(&sk->sk_async_wait_queue);
1932#endif
1933
1934	/* Clean prequeue, it must be empty really */
1935	__skb_queue_purge(&tp->ucopy.prequeue);
1936
1937	/* Clean up a referenced TCP bind bucket. */
1938	if (inet_csk(sk)->icsk_bind_hash)
1939		inet_put_port(sk);
1940
1941	/*
1942	 * If sendmsg cached page exists, toss it.
1943	 */
1944	if (sk->sk_sndmsg_page) {
1945		__free_page(sk->sk_sndmsg_page);
1946		sk->sk_sndmsg_page = NULL;
1947	}
1948
1949	/* TCP Cookie Transactions */
1950	if (tp->cookie_values != NULL) {
1951		kref_put(&tp->cookie_values->kref,
1952			 tcp_cookie_values_release);
1953		tp->cookie_values = NULL;
1954	}
1955
1956	sk_sockets_allocated_dec(sk);
1957	sock_release_memcg(sk);
1958}
1959EXPORT_SYMBOL(tcp_v4_destroy_sock);
1960
1961#ifdef CONFIG_PROC_FS
1962/* Proc filesystem TCP sock list dumping. */
1963
1964static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
 
 
1965{
1966	return hlist_nulls_empty(head) ? NULL :
1967		list_entry(head->first, struct inet_timewait_sock, tw_node);
 
 
 
1968}
1969
1970static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
 
 
 
1971{
1972	return !is_a_nulls(tw->tw_node.next) ?
1973		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974}
1975
1976/*
1977 * Get next listener socket follow cur.  If cur is NULL, get first socket
1978 * starting from bucket given in st->bucket; when st->bucket is zero the
1979 * very first socket in the hash table is returned.
1980 */
1981static void *listening_get_next(struct seq_file *seq, void *cur)
1982{
1983	struct inet_connection_sock *icsk;
 
1984	struct hlist_nulls_node *node;
 
1985	struct sock *sk = cur;
1986	struct inet_listen_hashbucket *ilb;
1987	struct tcp_iter_state *st = seq->private;
1988	struct net *net = seq_file_net(seq);
1989
1990	if (!sk) {
1991		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992		spin_lock_bh(&ilb->lock);
1993		sk = sk_nulls_head(&ilb->head);
1994		st->offset = 0;
1995		goto get_sk;
1996	}
1997	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998	++st->num;
1999	++st->offset;
2000
2001	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002		struct request_sock *req = cur;
2003
2004		icsk = inet_csk(st->syn_wait_sk);
2005		req = req->dl_next;
2006		while (1) {
2007			while (req) {
2008				if (req->rsk_ops->family == st->family) {
2009					cur = req;
2010					goto out;
2011				}
2012				req = req->dl_next;
2013			}
2014			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015				break;
2016get_req:
2017			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2018		}
2019		sk	  = sk_nulls_next(st->syn_wait_sk);
2020		st->state = TCP_SEQ_STATE_LISTENING;
2021		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022	} else {
2023		icsk = inet_csk(sk);
2024		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026			goto start_req;
2027		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028		sk = sk_nulls_next(sk);
2029	}
2030get_sk:
2031	sk_nulls_for_each_from(sk, node) {
2032		if (!net_eq(sock_net(sk), net))
2033			continue;
2034		if (sk->sk_family == st->family) {
2035			cur = sk;
2036			goto out;
2037		}
2038		icsk = inet_csk(sk);
2039		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041start_req:
2042			st->uid		= sock_i_uid(sk);
2043			st->syn_wait_sk = sk;
2044			st->state	= TCP_SEQ_STATE_OPENREQ;
2045			st->sbucket	= 0;
2046			goto get_req;
2047		}
2048		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049	}
2050	spin_unlock_bh(&ilb->lock);
2051	st->offset = 0;
2052	if (++st->bucket < INET_LHTABLE_SIZE) {
2053		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054		spin_lock_bh(&ilb->lock);
2055		sk = sk_nulls_head(&ilb->head);
2056		goto get_sk;
2057	}
2058	cur = NULL;
2059out:
2060	return cur;
 
 
 
2061}
2062
2063static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2064{
2065	struct tcp_iter_state *st = seq->private;
2066	void *rc;
2067
2068	st->bucket = 0;
2069	st->offset = 0;
2070	rc = listening_get_next(seq, NULL);
2071
2072	while (rc && *pos) {
2073		rc = listening_get_next(seq, rc);
2074		--*pos;
2075	}
2076	return rc;
2077}
2078
2079static inline bool empty_bucket(struct tcp_iter_state *st)
 
2080{
2081	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083}
2084
2085/*
2086 * Get first established socket starting from bucket given in st->bucket.
2087 * If st->bucket is zero, the very first socket in the hash is returned.
2088 */
2089static void *established_get_first(struct seq_file *seq)
2090{
 
2091	struct tcp_iter_state *st = seq->private;
2092	struct net *net = seq_file_net(seq);
2093	void *rc = NULL;
2094
2095	st->offset = 0;
2096	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097		struct sock *sk;
2098		struct hlist_nulls_node *node;
2099		struct inet_timewait_sock *tw;
2100		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
 
2101
2102		/* Lockless fast path for the common case of empty buckets */
2103		if (empty_bucket(st))
2104			continue;
2105
2106		spin_lock_bh(lock);
2107		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108			if (sk->sk_family != st->family ||
2109			    !net_eq(sock_net(sk), net)) {
2110				continue;
2111			}
2112			rc = sk;
2113			goto out;
2114		}
2115		st->state = TCP_SEQ_STATE_TIME_WAIT;
2116		inet_twsk_for_each(tw, node,
2117				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2118			if (tw->tw_family != st->family ||
2119			    !net_eq(twsk_net(tw), net)) {
2120				continue;
2121			}
2122			rc = tw;
2123			goto out;
2124		}
2125		spin_unlock_bh(lock);
2126		st->state = TCP_SEQ_STATE_ESTABLISHED;
2127	}
2128out:
2129	return rc;
2130}
2131
2132static void *established_get_next(struct seq_file *seq, void *cur)
2133{
2134	struct sock *sk = cur;
2135	struct inet_timewait_sock *tw;
2136	struct hlist_nulls_node *node;
2137	struct tcp_iter_state *st = seq->private;
2138	struct net *net = seq_file_net(seq);
 
2139
2140	++st->num;
2141	++st->offset;
2142
2143	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144		tw = cur;
2145		tw = tw_next(tw);
2146get_tw:
2147		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148			tw = tw_next(tw);
2149		}
2150		if (tw) {
2151			cur = tw;
2152			goto out;
2153		}
2154		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155		st->state = TCP_SEQ_STATE_ESTABLISHED;
2156
2157		/* Look for next non empty bucket */
2158		st->offset = 0;
2159		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160				empty_bucket(st))
2161			;
2162		if (st->bucket > tcp_hashinfo.ehash_mask)
2163			return NULL;
2164
2165		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167	} else
2168		sk = sk_nulls_next(sk);
2169
2170	sk_nulls_for_each_from(sk, node) {
2171		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172			goto found;
2173	}
2174
2175	st->state = TCP_SEQ_STATE_TIME_WAIT;
2176	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177	goto get_tw;
2178found:
2179	cur = sk;
2180out:
2181	return cur;
2182}
2183
2184static void *established_get_idx(struct seq_file *seq, loff_t pos)
2185{
2186	struct tcp_iter_state *st = seq->private;
2187	void *rc;
2188
2189	st->bucket = 0;
2190	rc = established_get_first(seq);
2191
2192	while (rc && pos) {
2193		rc = established_get_next(seq, rc);
2194		--pos;
2195	}
2196	return rc;
2197}
2198
2199static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2200{
2201	void *rc;
2202	struct tcp_iter_state *st = seq->private;
2203
2204	st->state = TCP_SEQ_STATE_LISTENING;
2205	rc	  = listening_get_idx(seq, &pos);
2206
2207	if (!rc) {
2208		st->state = TCP_SEQ_STATE_ESTABLISHED;
2209		rc	  = established_get_idx(seq, pos);
2210	}
2211
2212	return rc;
2213}
2214
2215static void *tcp_seek_last_pos(struct seq_file *seq)
2216{
 
2217	struct tcp_iter_state *st = seq->private;
 
2218	int offset = st->offset;
2219	int orig_num = st->num;
2220	void *rc = NULL;
2221
2222	switch (st->state) {
2223	case TCP_SEQ_STATE_OPENREQ:
2224	case TCP_SEQ_STATE_LISTENING:
2225		if (st->bucket >= INET_LHTABLE_SIZE)
2226			break;
2227		st->state = TCP_SEQ_STATE_LISTENING;
2228		rc = listening_get_next(seq, NULL);
2229		while (offset-- && rc)
2230			rc = listening_get_next(seq, rc);
2231		if (rc)
2232			break;
2233		st->bucket = 0;
2234		/* Fallthrough */
2235	case TCP_SEQ_STATE_ESTABLISHED:
2236	case TCP_SEQ_STATE_TIME_WAIT:
2237		st->state = TCP_SEQ_STATE_ESTABLISHED;
2238		if (st->bucket > tcp_hashinfo.ehash_mask)
 
 
2239			break;
2240		rc = established_get_first(seq);
2241		while (offset-- && rc)
2242			rc = established_get_next(seq, rc);
2243	}
2244
2245	st->num = orig_num;
2246
2247	return rc;
2248}
2249
2250static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2251{
2252	struct tcp_iter_state *st = seq->private;
2253	void *rc;
2254
2255	if (*pos && *pos == st->last_pos) {
2256		rc = tcp_seek_last_pos(seq);
2257		if (rc)
2258			goto out;
2259	}
2260
2261	st->state = TCP_SEQ_STATE_LISTENING;
2262	st->num = 0;
2263	st->bucket = 0;
2264	st->offset = 0;
2265	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2266
2267out:
2268	st->last_pos = *pos;
2269	return rc;
2270}
 
2271
2272static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273{
2274	struct tcp_iter_state *st = seq->private;
2275	void *rc = NULL;
2276
2277	if (v == SEQ_START_TOKEN) {
2278		rc = tcp_get_idx(seq, 0);
2279		goto out;
2280	}
2281
2282	switch (st->state) {
2283	case TCP_SEQ_STATE_OPENREQ:
2284	case TCP_SEQ_STATE_LISTENING:
2285		rc = listening_get_next(seq, v);
2286		if (!rc) {
2287			st->state = TCP_SEQ_STATE_ESTABLISHED;
2288			st->bucket = 0;
2289			st->offset = 0;
2290			rc	  = established_get_first(seq);
2291		}
2292		break;
2293	case TCP_SEQ_STATE_ESTABLISHED:
2294	case TCP_SEQ_STATE_TIME_WAIT:
2295		rc = established_get_next(seq, v);
2296		break;
2297	}
2298out:
2299	++*pos;
2300	st->last_pos = *pos;
2301	return rc;
2302}
 
2303
2304static void tcp_seq_stop(struct seq_file *seq, void *v)
2305{
 
2306	struct tcp_iter_state *st = seq->private;
2307
2308	switch (st->state) {
2309	case TCP_SEQ_STATE_OPENREQ:
2310		if (v) {
2311			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2313		}
2314	case TCP_SEQ_STATE_LISTENING:
2315		if (v != SEQ_START_TOKEN)
2316			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317		break;
2318	case TCP_SEQ_STATE_TIME_WAIT:
2319	case TCP_SEQ_STATE_ESTABLISHED:
2320		if (v)
2321			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322		break;
2323	}
2324}
 
2325
2326int tcp_seq_open(struct inode *inode, struct file *file)
2327{
2328	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329	struct tcp_iter_state *s;
2330	int err;
2331
2332	err = seq_open_net(inode, file, &afinfo->seq_ops,
2333			  sizeof(struct tcp_iter_state));
2334	if (err < 0)
2335		return err;
2336
2337	s = ((struct seq_file *)file->private_data)->private;
2338	s->family		= afinfo->family;
2339	s->last_pos 		= 0;
2340	return 0;
2341}
2342EXPORT_SYMBOL(tcp_seq_open);
2343
2344int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2345{
2346	int rc = 0;
2347	struct proc_dir_entry *p;
2348
2349	afinfo->seq_ops.start		= tcp_seq_start;
2350	afinfo->seq_ops.next		= tcp_seq_next;
2351	afinfo->seq_ops.stop		= tcp_seq_stop;
2352
2353	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354			     afinfo->seq_fops, afinfo);
2355	if (!p)
2356		rc = -ENOMEM;
2357	return rc;
2358}
2359EXPORT_SYMBOL(tcp_proc_register);
2360
2361void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362{
2363	proc_net_remove(net, afinfo->name);
2364}
2365EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368			 struct seq_file *f, int i, int uid, int *len)
2369{
2370	const struct inet_request_sock *ireq = inet_rsk(req);
2371	int ttd = req->expires - jiffies;
2372
2373	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375		i,
2376		ireq->loc_addr,
2377		ntohs(inet_sk(sk)->inet_sport),
2378		ireq->rmt_addr,
2379		ntohs(ireq->rmt_port),
2380		TCP_SYN_RECV,
2381		0, 0, /* could print option size, but that is af dependent. */
2382		1,    /* timers active (only the expire timer) */
2383		jiffies_to_clock_t(ttd),
2384		req->retrans,
2385		uid,
 
2386		0,  /* non standard timer */
2387		0, /* open_requests have no inode */
2388		atomic_read(&sk->sk_refcnt),
2389		req,
2390		len);
2391}
2392
2393static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394{
2395	int timer_active;
2396	unsigned long timer_expires;
2397	const struct tcp_sock *tp = tcp_sk(sk);
2398	const struct inet_connection_sock *icsk = inet_csk(sk);
2399	const struct inet_sock *inet = inet_sk(sk);
 
2400	__be32 dest = inet->inet_daddr;
2401	__be32 src = inet->inet_rcv_saddr;
2402	__u16 destp = ntohs(inet->inet_dport);
2403	__u16 srcp = ntohs(inet->inet_sport);
2404	int rx_queue;
 
2405
2406	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
 
 
2407		timer_active	= 1;
2408		timer_expires	= icsk->icsk_timeout;
2409	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410		timer_active	= 4;
2411		timer_expires	= icsk->icsk_timeout;
2412	} else if (timer_pending(&sk->sk_timer)) {
2413		timer_active	= 2;
2414		timer_expires	= sk->sk_timer.expires;
2415	} else {
2416		timer_active	= 0;
2417		timer_expires = jiffies;
2418	}
2419
2420	if (sk->sk_state == TCP_LISTEN)
2421		rx_queue = sk->sk_ack_backlog;
 
2422	else
2423		/*
2424		 * because we dont lock socket, we might find a transient negative value
2425		 */
2426		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
 
2427
2428	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430		i, src, srcp, dest, destp, sk->sk_state,
2431		tp->write_seq - tp->snd_una,
2432		rx_queue,
2433		timer_active,
2434		jiffies_to_clock_t(timer_expires - jiffies),
2435		icsk->icsk_retransmits,
2436		sock_i_uid(sk),
2437		icsk->icsk_probes_out,
2438		sock_i_ino(sk),
2439		atomic_read(&sk->sk_refcnt), sk,
2440		jiffies_to_clock_t(icsk->icsk_rto),
2441		jiffies_to_clock_t(icsk->icsk_ack.ato),
2442		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443		tp->snd_cwnd,
2444		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445		len);
 
2446}
2447
2448static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449			       struct seq_file *f, int i, int *len)
2450{
 
2451	__be32 dest, src;
2452	__u16 destp, srcp;
2453	int ttd = tw->tw_ttd - jiffies;
2454
2455	if (ttd < 0)
2456		ttd = 0;
2457
2458	dest  = tw->tw_daddr;
2459	src   = tw->tw_rcv_saddr;
2460	destp = ntohs(tw->tw_dport);
2461	srcp  = ntohs(tw->tw_sport);
2462
2463	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467		atomic_read(&tw->tw_refcnt), tw, len);
2468}
2469
2470#define TMPSZ 150
2471
2472static int tcp4_seq_show(struct seq_file *seq, void *v)
2473{
2474	struct tcp_iter_state *st;
2475	int len;
2476
 
2477	if (v == SEQ_START_TOKEN) {
2478		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479			   "  sl  local_address rem_address   st tx_queue "
2480			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2481			   "inode");
2482		goto out;
2483	}
2484	st = seq->private;
2485
2486	switch (st->state) {
2487	case TCP_SEQ_STATE_LISTENING:
2488	case TCP_SEQ_STATE_ESTABLISHED:
2489		get_tcp4_sock(v, seq, st->num, &len);
2490		break;
2491	case TCP_SEQ_STATE_OPENREQ:
2492		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493		break;
2494	case TCP_SEQ_STATE_TIME_WAIT:
2495		get_timewait4_sock(v, seq, st->num, &len);
2496		break;
2497	}
2498	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499out:
 
2500	return 0;
2501}
2502
2503static const struct file_operations tcp_afinfo_seq_fops = {
2504	.owner   = THIS_MODULE,
2505	.open    = tcp_seq_open,
2506	.read    = seq_read,
2507	.llseek  = seq_lseek,
2508	.release = seq_release_net
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2509};
2510
2511static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512	.name		= "tcp",
2513	.family		= AF_INET,
2514	.seq_fops	= &tcp_afinfo_seq_fops,
2515	.seq_ops	= {
2516		.show		= tcp4_seq_show,
2517	},
2518};
2519
2520static int __net_init tcp4_proc_init_net(struct net *net)
2521{
2522	return tcp_proc_register(net, &tcp4_seq_afinfo);
 
 
 
2523}
2524
2525static void __net_exit tcp4_proc_exit_net(struct net *net)
2526{
2527	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528}
2529
2530static struct pernet_operations tcp4_net_ops = {
2531	.init = tcp4_proc_init_net,
2532	.exit = tcp4_proc_exit_net,
2533};
2534
2535int __init tcp4_proc_init(void)
2536{
2537	return register_pernet_subsys(&tcp4_net_ops);
2538}
2539
2540void tcp4_proc_exit(void)
2541{
2542	unregister_pernet_subsys(&tcp4_net_ops);
2543}
2544#endif /* CONFIG_PROC_FS */
2545
2546struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547{
2548	const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550	switch (skb->ip_summed) {
2551	case CHECKSUM_COMPLETE:
2552		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553				  skb->csum)) {
2554			skb->ip_summed = CHECKSUM_UNNECESSARY;
2555			break;
2556		}
2557
2558		/* fall through */
2559	case CHECKSUM_NONE:
2560		NAPI_GRO_CB(skb)->flush = 1;
2561		return NULL;
2562	}
2563
2564	return tcp_gro_receive(head, skb);
2565}
2566
2567int tcp4_gro_complete(struct sk_buff *skb)
2568{
2569	const struct iphdr *iph = ip_hdr(skb);
2570	struct tcphdr *th = tcp_hdr(skb);
2571
2572	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573				  iph->saddr, iph->daddr, 0);
2574	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576	return tcp_gro_complete(skb);
2577}
 
2578
2579struct proto tcp_prot = {
2580	.name			= "TCP",
2581	.owner			= THIS_MODULE,
2582	.close			= tcp_close,
 
2583	.connect		= tcp_v4_connect,
2584	.disconnect		= tcp_disconnect,
2585	.accept			= inet_csk_accept,
2586	.ioctl			= tcp_ioctl,
2587	.init			= tcp_v4_init_sock,
2588	.destroy		= tcp_v4_destroy_sock,
2589	.shutdown		= tcp_shutdown,
2590	.setsockopt		= tcp_setsockopt,
2591	.getsockopt		= tcp_getsockopt,
 
 
2592	.recvmsg		= tcp_recvmsg,
2593	.sendmsg		= tcp_sendmsg,
2594	.sendpage		= tcp_sendpage,
2595	.backlog_rcv		= tcp_v4_do_rcv,
 
2596	.hash			= inet_hash,
2597	.unhash			= inet_unhash,
2598	.get_port		= inet_csk_get_port,
 
 
 
 
2599	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
 
2600	.sockets_allocated	= &tcp_sockets_allocated,
2601	.orphan_count		= &tcp_orphan_count,
 
2602	.memory_allocated	= &tcp_memory_allocated,
 
 
2603	.memory_pressure	= &tcp_memory_pressure,
2604	.sysctl_wmem		= sysctl_tcp_wmem,
2605	.sysctl_rmem		= sysctl_tcp_rmem,
 
2606	.max_header		= MAX_TCP_HEADER,
2607	.obj_size		= sizeof(struct tcp_sock),
2608	.slab_flags		= SLAB_DESTROY_BY_RCU,
2609	.twsk_prot		= &tcp_timewait_sock_ops,
2610	.rsk_prot		= &tcp_request_sock_ops,
2611	.h.hashinfo		= &tcp_hashinfo,
2612	.no_autobind		= true,
2613#ifdef CONFIG_COMPAT
2614	.compat_setsockopt	= compat_tcp_setsockopt,
2615	.compat_getsockopt	= compat_tcp_getsockopt,
2616#endif
2617#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618	.init_cgroup		= tcp_init_cgroup,
2619	.destroy_cgroup		= tcp_destroy_cgroup,
2620	.proto_cgroup		= tcp_proto_cgroup,
2621#endif
2622};
2623EXPORT_SYMBOL(tcp_prot);
2624
2625static int __net_init tcp_sk_init(struct net *net)
2626{
2627	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629}
2630
2631static void __net_exit tcp_sk_exit(struct net *net)
2632{
2633	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634}
2635
2636static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2637{
2638	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
 
 
 
 
 
 
 
 
2639}
2640
2641static struct pernet_operations __net_initdata tcp_sk_ops = {
2642       .init	   = tcp_sk_init,
2643       .exit	   = tcp_sk_exit,
2644       .exit_batch = tcp_sk_exit_batch,
2645};
2646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647void __init tcp_v4_init(void)
2648{
2649	inet_hashinfo_init(&tcp_hashinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650	if (register_pernet_subsys(&tcp_sk_ops))
2651		panic("Failed to create the TCP control socket.\n");
 
 
 
 
2652}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
 
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
 
 
 
 
 
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60#include <linux/sched.h>
  61
  62#include <net/net_namespace.h>
  63#include <net/icmp.h>
  64#include <net/inet_hashtables.h>
  65#include <net/tcp.h>
  66#include <net/transp_v6.h>
  67#include <net/ipv6.h>
  68#include <net/inet_common.h>
  69#include <net/timewait_sock.h>
  70#include <net/xfrm.h>
 
  71#include <net/secure_seq.h>
  72#include <net/busy_poll.h>
  73
  74#include <linux/inet.h>
  75#include <linux/ipv6.h>
  76#include <linux/stddef.h>
  77#include <linux/proc_fs.h>
  78#include <linux/seq_file.h>
  79#include <linux/inetdevice.h>
  80#include <linux/btf_ids.h>
  81
  82#include <crypto/hash.h>
  83#include <linux/scatterlist.h>
  84
  85#include <trace/events/tcp.h>
 
 
 
  86
  87#ifdef CONFIG_TCP_MD5SIG
  88static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  89			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  90#endif
  91
  92struct inet_hashinfo tcp_hashinfo;
  93EXPORT_SYMBOL(tcp_hashinfo);
  94
  95static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
  96
  97static u32 tcp_v4_init_seq(const struct sk_buff *skb)
  98{
  99	return secure_tcp_seq(ip_hdr(skb)->daddr,
 100			      ip_hdr(skb)->saddr,
 101			      tcp_hdr(skb)->dest,
 102			      tcp_hdr(skb)->source);
 103}
 104
 105static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 106{
 107	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 
 
 
 108}
 109
 110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 111{
 112	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 113	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 114	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 115	struct tcp_sock *tp = tcp_sk(sk);
 116
 117	if (reuse == 2) {
 118		/* Still does not detect *everything* that goes through
 119		 * lo, since we require a loopback src or dst address
 120		 * or direct binding to 'lo' interface.
 121		 */
 122		bool loopback = false;
 123		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 124			loopback = true;
 125#if IS_ENABLED(CONFIG_IPV6)
 126		if (tw->tw_family == AF_INET6) {
 127			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 128			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 129			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 130			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 131				loopback = true;
 132		} else
 133#endif
 134		{
 135			if (ipv4_is_loopback(tw->tw_daddr) ||
 136			    ipv4_is_loopback(tw->tw_rcv_saddr))
 137				loopback = true;
 138		}
 139		if (!loopback)
 140			reuse = 0;
 141	}
 142
 143	/* With PAWS, it is safe from the viewpoint
 144	   of data integrity. Even without PAWS it is safe provided sequence
 145	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 146
 147	   Actually, the idea is close to VJ's one, only timestamp cache is
 148	   held not per host, but per port pair and TW bucket is used as state
 149	   holder.
 150
 151	   If TW bucket has been already destroyed we fall back to VJ's scheme
 152	   and use initial timestamp retrieved from peer table.
 153	 */
 154	if (tcptw->tw_ts_recent_stamp &&
 155	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 156					    tcptw->tw_ts_recent_stamp)))) {
 157		/* inet_twsk_hashdance() sets sk_refcnt after putting twsk
 158		 * and releasing the bucket lock.
 159		 */
 160		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
 161			return 0;
 162
 163		/* In case of repair and re-using TIME-WAIT sockets we still
 164		 * want to be sure that it is safe as above but honor the
 165		 * sequence numbers and time stamps set as part of the repair
 166		 * process.
 167		 *
 168		 * Without this check re-using a TIME-WAIT socket with TCP
 169		 * repair would accumulate a -1 on the repair assigned
 170		 * sequence number. The first time it is reused the sequence
 171		 * is -1, the second time -2, etc. This fixes that issue
 172		 * without appearing to create any others.
 173		 */
 174		if (likely(!tp->repair)) {
 175			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 176
 177			if (!seq)
 178				seq = 1;
 179			WRITE_ONCE(tp->write_seq, seq);
 180			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 181			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 182		}
 183
 184		return 1;
 185	}
 186
 187	return 0;
 188}
 189EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 190
 191static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 192			      int addr_len)
 193{
 194	/* This check is replicated from tcp_v4_connect() and intended to
 195	 * prevent BPF program called below from accessing bytes that are out
 196	 * of the bound specified by user in addr_len.
 197	 */
 198	if (addr_len < sizeof(struct sockaddr_in))
 199		return -EINVAL;
 200
 201	sock_owned_by_me(sk);
 202
 203	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
 204}
 205
 206/* This will initiate an outgoing connection. */
 207int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 208{
 209	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 210	struct inet_timewait_death_row *tcp_death_row;
 211	struct inet_sock *inet = inet_sk(sk);
 212	struct tcp_sock *tp = tcp_sk(sk);
 213	struct ip_options_rcu *inet_opt;
 214	struct net *net = sock_net(sk);
 215	__be16 orig_sport, orig_dport;
 216	__be32 daddr, nexthop;
 217	struct flowi4 *fl4;
 218	struct rtable *rt;
 219	int err;
 
 220
 221	if (addr_len < sizeof(struct sockaddr_in))
 222		return -EINVAL;
 223
 224	if (usin->sin_family != AF_INET)
 225		return -EAFNOSUPPORT;
 226
 227	nexthop = daddr = usin->sin_addr.s_addr;
 228	inet_opt = rcu_dereference_protected(inet->inet_opt,
 229					     lockdep_sock_is_held(sk));
 230	if (inet_opt && inet_opt->opt.srr) {
 231		if (!daddr)
 232			return -EINVAL;
 233		nexthop = inet_opt->opt.faddr;
 234	}
 235
 236	orig_sport = inet->inet_sport;
 237	orig_dport = usin->sin_port;
 238	fl4 = &inet->cork.fl.u.ip4;
 239	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 240			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 241			      orig_dport, sk);
 
 242	if (IS_ERR(rt)) {
 243		err = PTR_ERR(rt);
 244		if (err == -ENETUNREACH)
 245			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 246		return err;
 247	}
 248
 249	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 250		ip_rt_put(rt);
 251		return -ENETUNREACH;
 252	}
 253
 254	if (!inet_opt || !inet_opt->opt.srr)
 255		daddr = fl4->daddr;
 256
 257	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 258
 259	if (!inet->inet_saddr) {
 260		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 261		if (err) {
 262			ip_rt_put(rt);
 263			return err;
 264		}
 265	} else {
 266		sk_rcv_saddr_set(sk, inet->inet_saddr);
 267	}
 268
 269	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 270		/* Reset inherited state */
 271		tp->rx_opt.ts_recent	   = 0;
 272		tp->rx_opt.ts_recent_stamp = 0;
 273		if (likely(!tp->repair))
 274			WRITE_ONCE(tp->write_seq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 276
 277	inet->inet_dport = usin->sin_port;
 278	sk_daddr_set(sk, daddr);
 279
 280	inet_csk(sk)->icsk_ext_hdr_len = 0;
 281	if (inet_opt)
 282		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 283
 284	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 285
 286	/* Socket identity is still unknown (sport may be zero).
 287	 * However we set state to SYN-SENT and not releasing socket
 288	 * lock select source port, enter ourselves into the hash tables and
 289	 * complete initialization after this.
 290	 */
 291	tcp_set_state(sk, TCP_SYN_SENT);
 292	err = inet_hash_connect(tcp_death_row, sk);
 293	if (err)
 294		goto failure;
 295
 296	sk_set_txhash(sk);
 297
 298	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 299			       inet->inet_sport, inet->inet_dport, sk);
 300	if (IS_ERR(rt)) {
 301		err = PTR_ERR(rt);
 302		rt = NULL;
 303		goto failure;
 304	}
 305	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
 306	/* OK, now commit destination to socket.  */
 307	sk->sk_gso_type = SKB_GSO_TCPV4;
 308	sk_setup_caps(sk, &rt->dst);
 309	rt = NULL;
 310
 311	if (likely(!tp->repair)) {
 312		if (!tp->write_seq)
 313			WRITE_ONCE(tp->write_seq,
 314				   secure_tcp_seq(inet->inet_saddr,
 315						  inet->inet_daddr,
 316						  inet->inet_sport,
 317						  usin->sin_port));
 318		WRITE_ONCE(tp->tsoffset,
 319			   secure_tcp_ts_off(net, inet->inet_saddr,
 320					     inet->inet_daddr));
 321	}
 322
 323	atomic_set(&inet->inet_id, get_random_u16());
 
 
 
 
 324
 325	if (tcp_fastopen_defer_connect(sk, &err))
 326		return err;
 327	if (err)
 328		goto failure;
 329
 330	err = tcp_connect(sk);
 
 
 
 331
 
 332	if (err)
 333		goto failure;
 334
 335	return 0;
 336
 337failure:
 338	/*
 339	 * This unhashes the socket and releases the local port,
 340	 * if necessary.
 341	 */
 342	tcp_set_state(sk, TCP_CLOSE);
 343	inet_bhash2_reset_saddr(sk);
 344	ip_rt_put(rt);
 345	sk->sk_route_caps = 0;
 346	inet->inet_dport = 0;
 347	return err;
 348}
 349EXPORT_SYMBOL(tcp_v4_connect);
 350
 351/*
 352 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 353 * It can be called through tcp_release_cb() if socket was owned by user
 354 * at the time tcp_v4_err() was called to handle ICMP message.
 355 */
 356void tcp_v4_mtu_reduced(struct sock *sk)
 357{
 
 358	struct inet_sock *inet = inet_sk(sk);
 359	struct dst_entry *dst;
 360	u32 mtu;
 361
 362	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 
 
 
 
 363		return;
 364	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 365	dst = inet_csk_update_pmtu(sk, mtu);
 366	if (!dst)
 
 
 
 
 
 367		return;
 368
 
 
 369	/* Something is about to be wrong... Remember soft error
 370	 * for the case, if this connection will not able to recover.
 371	 */
 372	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 373		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
 374
 375	mtu = dst_mtu(dst);
 376
 377	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 378	    ip_sk_accept_pmtu(sk) &&
 379	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 380		tcp_sync_mss(sk, mtu);
 381
 382		/* Resend the TCP packet because it's
 383		 * clear that the old packet has been
 384		 * dropped. This is the new "fast" path mtu
 385		 * discovery.
 386		 */
 387		tcp_simple_retransmit(sk);
 388	} /* else let the usual retransmit timer handle it */
 389}
 390EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 391
 392static void do_redirect(struct sk_buff *skb, struct sock *sk)
 393{
 394	struct dst_entry *dst = __sk_dst_check(sk, 0);
 395
 396	if (dst)
 397		dst->ops->redirect(dst, sk, skb);
 398}
 399
 400
 401/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 402void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 403{
 404	struct request_sock *req = inet_reqsk(sk);
 405	struct net *net = sock_net(sk);
 406
 407	/* ICMPs are not backlogged, hence we cannot get
 408	 * an established socket here.
 409	 */
 410	if (seq != tcp_rsk(req)->snt_isn) {
 411		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 412	} else if (abort) {
 413		/*
 414		 * Still in SYN_RECV, just remove it silently.
 415		 * There is no good way to pass the error to the newly
 416		 * created socket, and POSIX does not want network
 417		 * errors returned from accept().
 418		 */
 419		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 420		tcp_listendrop(req->rsk_listener);
 421	}
 422	reqsk_put(req);
 423}
 424EXPORT_SYMBOL(tcp_req_err);
 425
 426/* TCP-LD (RFC 6069) logic */
 427void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 428{
 429	struct inet_connection_sock *icsk = inet_csk(sk);
 430	struct tcp_sock *tp = tcp_sk(sk);
 431	struct sk_buff *skb;
 432	s32 remaining;
 433	u32 delta_us;
 434
 435	if (sock_owned_by_user(sk))
 436		return;
 437
 438	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 439	    !icsk->icsk_backoff)
 440		return;
 441
 442	skb = tcp_rtx_queue_head(sk);
 443	if (WARN_ON_ONCE(!skb))
 444		return;
 445
 446	icsk->icsk_backoff--;
 447	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 448	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 449
 450	tcp_mstamp_refresh(tp);
 451	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 452	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 453
 454	if (remaining > 0) {
 455		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 456					  remaining, TCP_RTO_MAX);
 457	} else {
 458		/* RTO revert clocked out retransmission.
 459		 * Will retransmit now.
 460		 */
 461		tcp_retransmit_timer(sk);
 462	}
 463}
 464EXPORT_SYMBOL(tcp_ld_RTO_revert);
 465
 466/*
 467 * This routine is called by the ICMP module when it gets some
 468 * sort of error condition.  If err < 0 then the socket should
 469 * be closed and the error returned to the user.  If err > 0
 470 * it's just the icmp type << 8 | icmp code.  After adjustment
 471 * header points to the first 8 bytes of the tcp header.  We need
 472 * to find the appropriate port.
 473 *
 474 * The locking strategy used here is very "optimistic". When
 475 * someone else accesses the socket the ICMP is just dropped
 476 * and for some paths there is no check at all.
 477 * A more general error queue to queue errors for later handling
 478 * is probably better.
 479 *
 480 */
 481
 482int tcp_v4_err(struct sk_buff *skb, u32 info)
 483{
 484	const struct iphdr *iph = (const struct iphdr *)skb->data;
 485	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 
 486	struct tcp_sock *tp;
 487	const int type = icmp_hdr(skb)->type;
 488	const int code = icmp_hdr(skb)->code;
 
 489	struct sock *sk;
 490	struct request_sock *fastopen;
 491	u32 seq, snd_una;
 
 492	int err;
 493	struct net *net = dev_net(skb->dev);
 
 
 
 
 
 494
 495	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 496				       iph->daddr, th->dest, iph->saddr,
 497				       ntohs(th->source), inet_iif(skb), 0);
 498	if (!sk) {
 499		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 500		return -ENOENT;
 501	}
 502	if (sk->sk_state == TCP_TIME_WAIT) {
 503		/* To increase the counter of ignored icmps for TCP-AO */
 504		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
 505		inet_twsk_put(inet_twsk(sk));
 506		return 0;
 507	}
 508	seq = ntohl(th->seq);
 509	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 510		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 511				     type == ICMP_TIME_EXCEEDED ||
 512				     (type == ICMP_DEST_UNREACH &&
 513				      (code == ICMP_NET_UNREACH ||
 514				       code == ICMP_HOST_UNREACH)));
 515		return 0;
 516	}
 517
 518	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
 519		sock_put(sk);
 520		return 0;
 521	}
 522
 523	bh_lock_sock(sk);
 524	/* If too many ICMPs get dropped on busy
 525	 * servers this needs to be solved differently.
 526	 * We do take care of PMTU discovery (RFC1191) special case :
 527	 * we can receive locally generated ICMP messages while socket is held.
 528	 */
 529	if (sock_owned_by_user(sk)) {
 530		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 531			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 532	}
 533	if (sk->sk_state == TCP_CLOSE)
 534		goto out;
 535
 536	if (static_branch_unlikely(&ip4_min_ttl)) {
 537		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 538		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 539			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 540			goto out;
 541		}
 542	}
 543
 
 544	tp = tcp_sk(sk);
 545	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 546	fastopen = rcu_dereference(tp->fastopen_rsk);
 547	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 548	if (sk->sk_state != TCP_LISTEN &&
 549	    !between(seq, snd_una, tp->snd_nxt)) {
 550		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 551		goto out;
 552	}
 553
 554	switch (type) {
 555	case ICMP_REDIRECT:
 556		if (!sock_owned_by_user(sk))
 557			do_redirect(skb, sk);
 558		goto out;
 559	case ICMP_SOURCE_QUENCH:
 560		/* Just silently ignore these. */
 561		goto out;
 562	case ICMP_PARAMETERPROB:
 563		err = EPROTO;
 564		break;
 565	case ICMP_DEST_UNREACH:
 566		if (code > NR_ICMP_UNREACH)
 567			goto out;
 568
 569		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 570			/* We are not interested in TCP_LISTEN and open_requests
 571			 * (SYN-ACKs send out by Linux are always <576bytes so
 572			 * they should go through unfragmented).
 573			 */
 574			if (sk->sk_state == TCP_LISTEN)
 575				goto out;
 576
 577			WRITE_ONCE(tp->mtu_info, info);
 578			if (!sock_owned_by_user(sk)) {
 579				tcp_v4_mtu_reduced(sk);
 580			} else {
 581				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 582					sock_hold(sk);
 583			}
 584			goto out;
 585		}
 586
 587		err = icmp_err_convert[code].errno;
 588		/* check if this ICMP message allows revert of backoff.
 589		 * (see RFC 6069)
 590		 */
 591		if (!fastopen &&
 592		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 593			tcp_ld_RTO_revert(sk, seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594		break;
 595	case ICMP_TIME_EXCEEDED:
 596		err = EHOSTUNREACH;
 597		break;
 598	default:
 599		goto out;
 600	}
 601
 602	switch (sk->sk_state) {
 603	case TCP_SYN_SENT:
 604	case TCP_SYN_RECV:
 605		/* Only in fast or simultaneous open. If a fast open socket is
 606		 * already accepted it is treated as a connected one below.
 
 
 
 
 
 
 
 
 607		 */
 608		if (fastopen && !fastopen->sk)
 609			break;
 
 
 
 
 610
 611		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 
 
 
 
 
 
 
 612
 
 
 
 
 613		if (!sock_owned_by_user(sk)) {
 614			WRITE_ONCE(sk->sk_err, err);
 615
 616			sk_error_report(sk);
 617
 618			tcp_done(sk);
 619		} else {
 620			WRITE_ONCE(sk->sk_err_soft, err);
 621		}
 622		goto out;
 623	}
 624
 625	/* If we've already connected we will keep trying
 626	 * until we time out, or the user gives up.
 627	 *
 628	 * rfc1122 4.2.3.9 allows to consider as hard errors
 629	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 630	 * but it is obsoleted by pmtu discovery).
 631	 *
 632	 * Note, that in modern internet, where routing is unreliable
 633	 * and in each dark corner broken firewalls sit, sending random
 634	 * errors ordered by their masters even this two messages finally lose
 635	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 636	 *
 637	 * Now we are in compliance with RFCs.
 638	 *							--ANK (980905)
 639	 */
 640
 641	if (!sock_owned_by_user(sk) &&
 642	    inet_test_bit(RECVERR, sk)) {
 643		WRITE_ONCE(sk->sk_err, err);
 644		sk_error_report(sk);
 645	} else	{ /* Only an error on timeout */
 646		WRITE_ONCE(sk->sk_err_soft, err);
 647	}
 648
 649out:
 650	bh_unlock_sock(sk);
 651	sock_put(sk);
 652	return 0;
 653}
 654
 655void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 
 656{
 657	struct tcphdr *th = tcp_hdr(skb);
 658
 659	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 660	skb->csum_start = skb_transport_header(skb) - skb->head;
 661	skb->csum_offset = offsetof(struct tcphdr, check);
 
 
 
 
 
 
 
 662}
 663
 664/* This routine computes an IPv4 TCP checksum. */
 665void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 666{
 667	const struct inet_sock *inet = inet_sk(sk);
 668
 669	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 670}
 671EXPORT_SYMBOL(tcp_v4_send_check);
 672
 673#define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
 
 
 
 
 
 
 674
 675static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
 676				 const struct tcp_ao_hdr *aoh,
 677				 struct ip_reply_arg *arg, struct tcphdr *reply,
 678				 __be32 reply_options[REPLY_OPTIONS_LEN])
 679{
 680#ifdef CONFIG_TCP_AO
 681	int sdif = tcp_v4_sdif(skb);
 682	int dif = inet_iif(skb);
 683	int l3index = sdif ? dif : 0;
 684	bool allocated_traffic_key;
 685	struct tcp_ao_key *key;
 686	char *traffic_key;
 687	bool drop = true;
 688	u32 ao_sne = 0;
 689	u8 keyid;
 690
 691	rcu_read_lock();
 692	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
 693				 &key, &traffic_key, &allocated_traffic_key,
 694				 &keyid, &ao_sne))
 695		goto out;
 696
 697	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
 698				 (aoh->rnext_keyid << 8) | keyid);
 699	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
 700	reply->doff = arg->iov[0].iov_len / 4;
 701
 702	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
 703			    key, traffic_key,
 704			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 705			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 706			    reply, ao_sne))
 707		goto out;
 708	drop = false;
 709out:
 710	rcu_read_unlock();
 711	if (allocated_traffic_key)
 712		kfree(traffic_key);
 713	return drop;
 714#else
 715	return true;
 716#endif
 717}
 718
 719/*
 720 *	This routine will send an RST to the other tcp.
 721 *
 722 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 723 *		      for reset.
 724 *	Answer: if a packet caused RST, it is not for a socket
 725 *		existing in our system, if it is matched to a socket,
 726 *		it is just duplicate segment or bug in other side's TCP.
 727 *		So that we build reply only basing on parameters
 728 *		arrived with segment.
 729 *	Exception: precedence violation. We do not implement it in any case.
 730 */
 731
 732static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
 733{
 734	const struct tcphdr *th = tcp_hdr(skb);
 735	struct {
 736		struct tcphdr th;
 737		__be32 opt[REPLY_OPTIONS_LEN];
 
 
 738	} rep;
 739	const __u8 *md5_hash_location = NULL;
 740	const struct tcp_ao_hdr *aoh;
 741	struct ip_reply_arg arg;
 742#ifdef CONFIG_TCP_MD5SIG
 743	struct tcp_md5sig_key *key = NULL;
 
 744	unsigned char newhash[16];
 
 745	struct sock *sk1 = NULL;
 746	int genhash;
 747#endif
 748	u64 transmit_time = 0;
 749	struct sock *ctl_sk;
 750	struct net *net;
 751	u32 txhash = 0;
 752
 753	/* Never send a reset in response to a reset. */
 754	if (th->rst)
 755		return;
 756
 757	/* If sk not NULL, it means we did a successful lookup and incoming
 758	 * route had to be correct. prequeue might have dropped our dst.
 759	 */
 760	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 761		return;
 762
 763	/* Swap the send and the receive. */
 764	memset(&rep, 0, sizeof(rep));
 765	rep.th.dest   = th->source;
 766	rep.th.source = th->dest;
 767	rep.th.doff   = sizeof(struct tcphdr) / 4;
 768	rep.th.rst    = 1;
 769
 770	if (th->ack) {
 771		rep.th.seq = th->ack_seq;
 772	} else {
 773		rep.th.ack = 1;
 774		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 775				       skb->len - (th->doff << 2));
 776	}
 777
 778	memset(&arg, 0, sizeof(arg));
 779	arg.iov[0].iov_base = (unsigned char *)&rep;
 780	arg.iov[0].iov_len  = sizeof(rep.th);
 781
 782	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 783
 784	/* Invalid TCP option size or twice included auth */
 785	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
 786		return;
 787
 788	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
 789		return;
 790
 791#ifdef CONFIG_TCP_MD5SIG
 792	rcu_read_lock();
 793	if (sk && sk_fullsock(sk)) {
 794		const union tcp_md5_addr *addr;
 795		int l3index;
 796
 797		/* sdif set, means packet ingressed via a device
 798		 * in an L3 domain and inet_iif is set to it.
 799		 */
 800		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 801		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 802		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 803	} else if (md5_hash_location) {
 804		const union tcp_md5_addr *addr;
 805		int sdif = tcp_v4_sdif(skb);
 806		int dif = inet_iif(skb);
 807		int l3index;
 808
 809		/*
 810		 * active side is lost. Try to find listening socket through
 811		 * source port, and then find md5 key through listening socket.
 812		 * we are not loose security here:
 813		 * Incoming packet is checked with md5 hash with finding key,
 814		 * no RST generated if md5 hash doesn't match.
 815		 */
 816		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 817					     NULL, 0, ip_hdr(skb)->saddr,
 818					     th->source, ip_hdr(skb)->daddr,
 819					     ntohs(th->source), dif, sdif);
 820		/* don't send rst if it can't find key */
 821		if (!sk1)
 822			goto out;
 823
 824		/* sdif set, means packet ingressed via a device
 825		 * in an L3 domain and dif is set to it.
 826		 */
 827		l3index = sdif ? dif : 0;
 828		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 829		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 830		if (!key)
 831			goto out;
 832
 833
 834		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 835		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
 836			goto out;
 837
 
 
 
 
 
 
 
 838	}
 839
 840	if (key) {
 841		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 842				   (TCPOPT_NOP << 16) |
 843				   (TCPOPT_MD5SIG << 8) |
 844				   TCPOLEN_MD5SIG);
 845		/* Update length and the length the header thinks exists */
 846		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 847		rep.th.doff = arg.iov[0].iov_len / 4;
 848
 849		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 850				     key, ip_hdr(skb)->saddr,
 851				     ip_hdr(skb)->daddr, &rep.th);
 852	}
 853#endif
 854	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 855	if (rep.opt[0] == 0) {
 856		__be32 mrst = mptcp_reset_option(skb);
 857
 858		if (mrst) {
 859			rep.opt[0] = mrst;
 860			arg.iov[0].iov_len += sizeof(mrst);
 861			rep.th.doff = arg.iov[0].iov_len / 4;
 862		}
 863	}
 864
 865	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 866				      ip_hdr(skb)->saddr, /* XXX */
 867				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 868	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 869	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 870
 871	/* When socket is gone, all binding information is lost.
 872	 * routing might fail in this case. No choice here, if we choose to force
 873	 * input interface, we will misroute in case of asymmetric route.
 874	 */
 875	if (sk) {
 876		arg.bound_dev_if = sk->sk_bound_dev_if;
 877		if (sk_fullsock(sk))
 878			trace_tcp_send_reset(sk, skb);
 879	}
 880
 881	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 882		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 
 
 883
 884	arg.tos = ip_hdr(skb)->tos;
 885	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 886	local_bh_disable();
 887	ctl_sk = this_cpu_read(ipv4_tcp_sk);
 888	sock_net_set(ctl_sk, net);
 889	if (sk) {
 890		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 891				   inet_twsk(sk)->tw_mark : sk->sk_mark;
 892		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 893				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
 894		transmit_time = tcp_transmit_time(sk);
 895		xfrm_sk_clone_policy(ctl_sk, sk);
 896		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
 897			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
 898	} else {
 899		ctl_sk->sk_mark = 0;
 900		ctl_sk->sk_priority = 0;
 901	}
 902	ip_send_unicast_reply(ctl_sk,
 903			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 904			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 905			      &arg, arg.iov[0].iov_len,
 906			      transmit_time, txhash);
 907
 908	xfrm_sk_free_policy(ctl_sk);
 909	sock_net_set(ctl_sk, &init_net);
 910	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 911	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 912	local_bh_enable();
 913
 914#ifdef CONFIG_TCP_MD5SIG
 915out:
 916	rcu_read_unlock();
 
 
 
 917#endif
 918}
 919
 920/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 921   outside socket context is ugly, certainly. What can I do?
 922 */
 923
 924static void tcp_v4_send_ack(const struct sock *sk,
 925			    struct sk_buff *skb, u32 seq, u32 ack,
 926			    u32 win, u32 tsval, u32 tsecr, int oif,
 927			    struct tcp_key *key,
 928			    int reply_flags, u8 tos, u32 txhash)
 929{
 930	const struct tcphdr *th = tcp_hdr(skb);
 931	struct {
 932		struct tcphdr th;
 933		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
 
 
 
 
 934	} rep;
 935	struct net *net = sock_net(sk);
 936	struct ip_reply_arg arg;
 937	struct sock *ctl_sk;
 938	u64 transmit_time;
 939
 940	memset(&rep.th, 0, sizeof(struct tcphdr));
 941	memset(&arg, 0, sizeof(arg));
 942
 943	arg.iov[0].iov_base = (unsigned char *)&rep;
 944	arg.iov[0].iov_len  = sizeof(rep.th);
 945	if (tsecr) {
 946		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 947				   (TCPOPT_TIMESTAMP << 8) |
 948				   TCPOLEN_TIMESTAMP);
 949		rep.opt[1] = htonl(tsval);
 950		rep.opt[2] = htonl(tsecr);
 951		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 952	}
 953
 954	/* Swap the send and the receive. */
 955	rep.th.dest    = th->source;
 956	rep.th.source  = th->dest;
 957	rep.th.doff    = arg.iov[0].iov_len / 4;
 958	rep.th.seq     = htonl(seq);
 959	rep.th.ack_seq = htonl(ack);
 960	rep.th.ack     = 1;
 961	rep.th.window  = htons(win);
 962
 963#ifdef CONFIG_TCP_MD5SIG
 964	if (tcp_key_is_md5(key)) {
 965		int offset = (tsecr) ? 3 : 0;
 966
 967		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 968					  (TCPOPT_NOP << 16) |
 969					  (TCPOPT_MD5SIG << 8) |
 970					  TCPOLEN_MD5SIG);
 971		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 972		rep.th.doff = arg.iov[0].iov_len/4;
 973
 974		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 975				    key->md5_key, ip_hdr(skb)->saddr,
 976				    ip_hdr(skb)->daddr, &rep.th);
 977	}
 978#endif
 979#ifdef CONFIG_TCP_AO
 980	if (tcp_key_is_ao(key)) {
 981		int offset = (tsecr) ? 3 : 0;
 982
 983		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
 984					  (tcp_ao_len(key->ao_key) << 16) |
 985					  (key->ao_key->sndid << 8) |
 986					  key->rcv_next);
 987		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
 988		rep.th.doff = arg.iov[0].iov_len / 4;
 989
 990		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
 991				key->ao_key, key->traffic_key,
 992				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 993				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 994				&rep.th, key->sne);
 995	}
 996#endif
 997	arg.flags = reply_flags;
 998	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 999				      ip_hdr(skb)->saddr, /* XXX */
1000				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1001	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1002	if (oif)
1003		arg.bound_dev_if = oif;
1004	arg.tos = tos;
1005	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1006	local_bh_disable();
1007	ctl_sk = this_cpu_read(ipv4_tcp_sk);
1008	sock_net_set(ctl_sk, net);
1009	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1010			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1011	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1012			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1013	transmit_time = tcp_transmit_time(sk);
1014	ip_send_unicast_reply(ctl_sk,
1015			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1016			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1017			      &arg, arg.iov[0].iov_len,
1018			      transmit_time, txhash);
1019
1020	sock_net_set(ctl_sk, &init_net);
1021	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1022	local_bh_enable();
1023}
1024
1025static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1026{
1027	struct inet_timewait_sock *tw = inet_twsk(sk);
1028	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1029	struct tcp_key key = {};
1030#ifdef CONFIG_TCP_AO
1031	struct tcp_ao_info *ao_info;
1032
1033	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1034		/* FIXME: the segment to-be-acked is not verified yet */
1035		ao_info = rcu_dereference(tcptw->ao_info);
1036		if (ao_info) {
1037			const struct tcp_ao_hdr *aoh;
1038
1039			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1040				inet_twsk_put(tw);
1041				return;
1042			}
1043
1044			if (aoh)
1045				key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1046		}
1047	}
1048	if (key.ao_key) {
1049		struct tcp_ao_key *rnext_key;
1050
1051		key.traffic_key = snd_other_key(key.ao_key);
1052		key.sne = READ_ONCE(ao_info->snd_sne);
1053		rnext_key = READ_ONCE(ao_info->rnext_key);
1054		key.rcv_next = rnext_key->rcvid;
1055		key.type = TCP_KEY_AO;
1056#else
1057	if (0) {
1058#endif
1059#ifdef CONFIG_TCP_MD5SIG
1060	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1061		key.md5_key = tcp_twsk_md5_key(tcptw);
1062		if (key.md5_key)
1063			key.type = TCP_KEY_MD5;
1064#endif
1065	}
1066
1067	tcp_v4_send_ack(sk, skb,
1068			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1069			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1070			tcp_tw_tsval(tcptw),
1071			tcptw->tw_ts_recent,
1072			tw->tw_bound_dev_if, &key,
 
1073			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1074			tw->tw_tos,
1075			tw->tw_txhash);
1076
1077	inet_twsk_put(tw);
1078}
1079
1080static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1081				  struct request_sock *req)
1082{
1083	struct tcp_key key = {};
1084
1085	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1086	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1087	 */
1088	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1089					     tcp_sk(sk)->snd_nxt;
1090
1091#ifdef CONFIG_TCP_AO
1092	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1093	    tcp_rsk_used_ao(req)) {
1094		const union tcp_md5_addr *addr;
1095		const struct tcp_ao_hdr *aoh;
1096		int l3index;
1097
1098		/* Invalid TCP option size or twice included auth */
1099		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1100			return;
1101		if (!aoh)
1102			return;
1103
1104		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1105		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1106		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1107					      aoh->rnext_keyid, -1);
1108		if (unlikely(!key.ao_key)) {
1109			/* Send ACK with any matching MKT for the peer */
1110			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1111			/* Matching key disappeared (user removed the key?)
1112			 * let the handshake timeout.
1113			 */
1114			if (!key.ao_key) {
1115				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1116						     addr,
1117						     ntohs(tcp_hdr(skb)->source),
1118						     &ip_hdr(skb)->daddr,
1119						     ntohs(tcp_hdr(skb)->dest));
1120				return;
1121			}
1122		}
1123		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1124		if (!key.traffic_key)
1125			return;
1126
1127		key.type = TCP_KEY_AO;
1128		key.rcv_next = aoh->keyid;
1129		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1130#else
1131	if (0) {
1132#endif
1133#ifdef CONFIG_TCP_MD5SIG
1134	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1135		const union tcp_md5_addr *addr;
1136		int l3index;
1137
1138		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1139		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1140		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1141		if (key.md5_key)
1142			key.type = TCP_KEY_MD5;
1143#endif
1144	}
1145
1146	/* RFC 7323 2.3
1147	 * The window field (SEG.WND) of every outgoing segment, with the
1148	 * exception of <SYN> segments, MUST be right-shifted by
1149	 * Rcv.Wind.Shift bits:
1150	 */
1151	tcp_v4_send_ack(sk, skb, seq,
1152			tcp_rsk(req)->rcv_nxt,
1153			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
1154			tcp_rsk_tsval(tcp_rsk(req)),
1155			READ_ONCE(req->ts_recent),
1156			0, &key,
1157			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1158			ip_hdr(skb)->tos,
1159			READ_ONCE(tcp_rsk(req)->txhash));
1160	if (tcp_key_is_ao(&key))
1161		kfree(key.traffic_key);
1162}
1163
1164/*
1165 *	Send a SYN-ACK after having received a SYN.
1166 *	This still operates on a request_sock only, not on a big
1167 *	socket.
1168 */
1169static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1170			      struct flowi *fl,
1171			      struct request_sock *req,
1172			      struct tcp_fastopen_cookie *foc,
1173			      enum tcp_synack_type synack_type,
1174			      struct sk_buff *syn_skb)
1175{
1176	const struct inet_request_sock *ireq = inet_rsk(req);
1177	struct flowi4 fl4;
1178	int err = -1;
1179	struct sk_buff *skb;
1180	u8 tos;
1181
1182	/* First, grab a route. */
1183	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1184		return -1;
1185
1186	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1187
1188	if (skb) {
1189		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1190
1191		tos = READ_ONCE(inet_sk(sk)->tos);
1192
1193		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1194			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1195			      (tos & INET_ECN_MASK);
1196
1197		if (!INET_ECN_is_capable(tos) &&
1198		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1199			tos |= INET_ECN_ECT_0;
1200
1201		rcu_read_lock();
1202		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1203					    ireq->ir_rmt_addr,
1204					    rcu_dereference(ireq->ireq_opt),
1205					    tos);
1206		rcu_read_unlock();
1207		err = net_xmit_eval(err);
1208	}
1209
 
1210	return err;
1211}
1212
 
 
 
 
 
 
 
1213/*
1214 *	IPv4 request_sock destructor.
1215 */
1216static void tcp_v4_reqsk_destructor(struct request_sock *req)
1217{
1218	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1219}
1220
1221#ifdef CONFIG_TCP_MD5SIG
1222/*
1223 * RFC2385 MD5 checksumming requires a mapping of
1224 * IP address->MD5 Key.
1225 * We need to maintain these in the sk structure.
1226 */
 
 
 
 
 
 
 
1227
1228DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1229EXPORT_SYMBOL(tcp_md5_needed);
1230
1231static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1232{
1233	if (!old)
1234		return true;
1235
1236	/* l3index always overrides non-l3index */
1237	if (old->l3index && new->l3index == 0)
1238		return false;
1239	if (old->l3index == 0 && new->l3index)
1240		return true;
 
 
 
1241
1242	return old->prefixlen < new->prefixlen;
 
 
 
 
 
 
1243}
 
1244
1245/* Find the Key structure for an address.  */
1246struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1247					   const union tcp_md5_addr *addr,
1248					   int family, bool any_l3index)
 
1249{
1250	const struct tcp_sock *tp = tcp_sk(sk);
1251	struct tcp_md5sig_key *key;
1252	const struct tcp_md5sig_info *md5sig;
1253	__be32 mask;
1254	struct tcp_md5sig_key *best_match = NULL;
1255	bool match;
1256
1257	/* caller either holds rcu_read_lock() or socket lock */
1258	md5sig = rcu_dereference_check(tp->md5sig_info,
1259				       lockdep_sock_is_held(sk));
1260	if (!md5sig)
1261		return NULL;
1262
1263	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1264				 lockdep_sock_is_held(sk)) {
1265		if (key->family != family)
1266			continue;
1267		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1268		    key->l3index != l3index)
1269			continue;
1270		if (family == AF_INET) {
1271			mask = inet_make_mask(key->prefixlen);
1272			match = (key->addr.a4.s_addr & mask) ==
1273				(addr->a4.s_addr & mask);
1274#if IS_ENABLED(CONFIG_IPV6)
1275		} else if (family == AF_INET6) {
1276			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1277						  key->prefixlen);
1278#endif
1279		} else {
1280			match = false;
1281		}
1282
1283		if (match && better_md5_match(best_match, key))
1284			best_match = key;
1285	}
1286	return best_match;
1287}
1288EXPORT_SYMBOL(__tcp_md5_do_lookup);
1289
1290static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1291						      const union tcp_md5_addr *addr,
1292						      int family, u8 prefixlen,
1293						      int l3index, u8 flags)
 
 
 
 
 
 
 
1294{
1295	const struct tcp_sock *tp = tcp_sk(sk);
1296	struct tcp_md5sig_key *key;
 
1297	unsigned int size = sizeof(struct in_addr);
1298	const struct tcp_md5sig_info *md5sig;
1299
1300	/* caller either holds rcu_read_lock() or socket lock */
1301	md5sig = rcu_dereference_check(tp->md5sig_info,
1302				       lockdep_sock_is_held(sk));
 
1303	if (!md5sig)
1304		return NULL;
1305#if IS_ENABLED(CONFIG_IPV6)
1306	if (family == AF_INET6)
1307		size = sizeof(struct in6_addr);
1308#endif
1309	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1310				 lockdep_sock_is_held(sk)) {
1311		if (key->family != family)
1312			continue;
1313		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1314			continue;
1315		if (key->l3index != l3index)
1316			continue;
1317		if (!memcmp(&key->addr, addr, size) &&
1318		    key->prefixlen == prefixlen)
1319			return key;
1320	}
1321	return NULL;
1322}
 
1323
1324struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1325					 const struct sock *addr_sk)
1326{
1327	const union tcp_md5_addr *addr;
1328	int l3index;
1329
1330	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1331						 addr_sk->sk_bound_dev_if);
1332	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1333	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1334}
1335EXPORT_SYMBOL(tcp_v4_md5_lookup);
1336
1337static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
 
1338{
1339	struct tcp_sock *tp = tcp_sk(sk);
1340	struct tcp_md5sig_info *md5sig;
1341
1342	md5sig = kmalloc(sizeof(*md5sig), gfp);
1343	if (!md5sig)
1344		return -ENOMEM;
1345
1346	sk_gso_disable(sk);
1347	INIT_HLIST_HEAD(&md5sig->head);
1348	rcu_assign_pointer(tp->md5sig_info, md5sig);
1349	return 0;
1350}
1351
1352/* This can be called on a newly created socket, from other files */
1353static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1354			    int family, u8 prefixlen, int l3index, u8 flags,
1355			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1356{
1357	/* Add Key to the list */
1358	struct tcp_md5sig_key *key;
1359	struct tcp_sock *tp = tcp_sk(sk);
1360	struct tcp_md5sig_info *md5sig;
1361
1362	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1363	if (key) {
1364		/* Pre-existing entry - just update that one.
1365		 * Note that the key might be used concurrently.
1366		 * data_race() is telling kcsan that we do not care of
1367		 * key mismatches, since changing MD5 key on live flows
1368		 * can lead to packet drops.
1369		 */
1370		data_race(memcpy(key->key, newkey, newkeylen));
1371
1372		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1373		 * Also note that a reader could catch new key->keylen value
1374		 * but old key->key[], this is the reason we use __GFP_ZERO
1375		 * at sock_kmalloc() time below these lines.
1376		 */
1377		WRITE_ONCE(key->keylen, newkeylen);
1378
1379		return 0;
1380	}
1381
1382	md5sig = rcu_dereference_protected(tp->md5sig_info,
1383					   lockdep_sock_is_held(sk));
 
 
 
 
1384
1385	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
 
 
 
 
 
1386	if (!key)
1387		return -ENOMEM;
 
 
 
 
1388
1389	memcpy(key->key, newkey, newkeylen);
1390	key->keylen = newkeylen;
1391	key->family = family;
1392	key->prefixlen = prefixlen;
1393	key->l3index = l3index;
1394	key->flags = flags;
1395	memcpy(&key->addr, addr,
1396	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1397								 sizeof(struct in_addr));
1398	hlist_add_head_rcu(&key->node, &md5sig->head);
1399	return 0;
1400}
1401
1402int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1403		   int family, u8 prefixlen, int l3index, u8 flags,
1404		   const u8 *newkey, u8 newkeylen)
1405{
1406	struct tcp_sock *tp = tcp_sk(sk);
1407
1408	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1409		if (tcp_md5_alloc_sigpool())
1410			return -ENOMEM;
1411
1412		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1413			tcp_md5_release_sigpool();
1414			return -ENOMEM;
1415		}
1416
1417		if (!static_branch_inc(&tcp_md5_needed.key)) {
1418			struct tcp_md5sig_info *md5sig;
1419
1420			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1421			rcu_assign_pointer(tp->md5sig_info, NULL);
1422			kfree_rcu(md5sig, rcu);
1423			tcp_md5_release_sigpool();
1424			return -EUSERS;
1425		}
1426	}
1427
1428	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1429				newkey, newkeylen, GFP_KERNEL);
1430}
1431EXPORT_SYMBOL(tcp_md5_do_add);
1432
1433int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1434		     int family, u8 prefixlen, int l3index,
1435		     struct tcp_md5sig_key *key)
1436{
1437	struct tcp_sock *tp = tcp_sk(sk);
1438
1439	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1440		tcp_md5_add_sigpool();
1441
1442		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1443			tcp_md5_release_sigpool();
1444			return -ENOMEM;
1445		}
1446
1447		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1448			struct tcp_md5sig_info *md5sig;
1449
1450			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1451			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1452			rcu_assign_pointer(tp->md5sig_info, NULL);
1453			kfree_rcu(md5sig, rcu);
1454			tcp_md5_release_sigpool();
1455			return -EUSERS;
1456		}
1457	}
1458
1459	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1460				key->flags, key->key, key->keylen,
1461				sk_gfp_mask(sk, GFP_ATOMIC));
1462}
1463EXPORT_SYMBOL(tcp_md5_key_copy);
1464
1465int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1466		   u8 prefixlen, int l3index, u8 flags)
1467{
1468	struct tcp_md5sig_key *key;
 
1469
1470	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1471	if (!key)
1472		return -ENOENT;
1473	hlist_del_rcu(&key->node);
1474	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1475	kfree_rcu(key, rcu);
 
 
 
 
1476	return 0;
1477}
1478EXPORT_SYMBOL(tcp_md5_do_del);
1479
1480void tcp_clear_md5_list(struct sock *sk)
1481{
1482	struct tcp_sock *tp = tcp_sk(sk);
1483	struct tcp_md5sig_key *key;
1484	struct hlist_node *n;
1485	struct tcp_md5sig_info *md5sig;
1486
1487	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1488
1489	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
 
 
1490		hlist_del_rcu(&key->node);
1491		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1492		kfree_rcu(key, rcu);
1493	}
1494}
1495
1496static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1497				 sockptr_t optval, int optlen)
1498{
1499	struct tcp_md5sig cmd;
1500	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1501	const union tcp_md5_addr *addr;
1502	u8 prefixlen = 32;
1503	int l3index = 0;
1504	bool l3flag;
1505	u8 flags;
1506
1507	if (optlen < sizeof(cmd))
1508		return -EINVAL;
1509
1510	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1511		return -EFAULT;
1512
1513	if (sin->sin_family != AF_INET)
1514		return -EINVAL;
1515
1516	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1517	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1518
1519	if (optname == TCP_MD5SIG_EXT &&
1520	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1521		prefixlen = cmd.tcpm_prefixlen;
1522		if (prefixlen > 32)
1523			return -EINVAL;
1524	}
1525
1526	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1527	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1528		struct net_device *dev;
1529
1530		rcu_read_lock();
1531		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1532		if (dev && netif_is_l3_master(dev))
1533			l3index = dev->ifindex;
1534
1535		rcu_read_unlock();
1536
1537		/* ok to reference set/not set outside of rcu;
1538		 * right now device MUST be an L3 master
1539		 */
1540		if (!dev || !l3index)
1541			return -EINVAL;
1542	}
1543
1544	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1545
1546	if (!cmd.tcpm_keylen)
1547		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1548
1549	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1550		return -EINVAL;
1551
1552	/* Don't allow keys for peers that have a matching TCP-AO key.
1553	 * See the comment in tcp_ao_add_cmd()
1554	 */
1555	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1556		return -EKEYREJECTED;
1557
1558	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1559			      cmd.tcpm_key, cmd.tcpm_keylen);
1560}
1561
1562static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1563				   __be32 daddr, __be32 saddr,
1564				   const struct tcphdr *th, int nbytes)
1565{
1566	struct tcp4_pseudohdr *bp;
1567	struct scatterlist sg;
1568	struct tcphdr *_th;
1569
1570	bp = hp->scratch;
 
 
 
 
 
 
1571	bp->saddr = saddr;
1572	bp->daddr = daddr;
1573	bp->pad = 0;
1574	bp->protocol = IPPROTO_TCP;
1575	bp->len = cpu_to_be16(nbytes);
1576
1577	_th = (struct tcphdr *)(bp + 1);
1578	memcpy(_th, th, sizeof(*th));
1579	_th->check = 0;
1580
1581	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1582	ahash_request_set_crypt(hp->req, &sg, NULL,
1583				sizeof(*bp) + sizeof(*th));
1584	return crypto_ahash_update(hp->req);
1585}
1586
1587static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1588			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1589{
1590	struct tcp_sigpool hp;
 
1591
1592	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1593		goto clear_hash_nostart;
 
 
1594
1595	if (crypto_ahash_init(hp.req))
1596		goto clear_hash;
1597	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1598		goto clear_hash;
1599	if (tcp_md5_hash_key(&hp, key))
1600		goto clear_hash;
1601	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1602	if (crypto_ahash_final(hp.req))
 
1603		goto clear_hash;
1604
1605	tcp_sigpool_end(&hp);
1606	return 0;
1607
1608clear_hash:
1609	tcp_sigpool_end(&hp);
1610clear_hash_nostart:
1611	memset(md5_hash, 0, 16);
1612	return 1;
1613}
1614
1615int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1616			const struct sock *sk,
1617			const struct sk_buff *skb)
1618{
 
 
1619	const struct tcphdr *th = tcp_hdr(skb);
1620	struct tcp_sigpool hp;
1621	__be32 saddr, daddr;
1622
1623	if (sk) { /* valid for establish/request sockets */
1624		saddr = sk->sk_rcv_saddr;
1625		daddr = sk->sk_daddr;
 
 
 
1626	} else {
1627		const struct iphdr *iph = ip_hdr(skb);
1628		saddr = iph->saddr;
1629		daddr = iph->daddr;
1630	}
1631
1632	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1633		goto clear_hash_nostart;
 
 
1634
1635	if (crypto_ahash_init(hp.req))
1636		goto clear_hash;
1637
1638	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1639		goto clear_hash;
1640	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1641		goto clear_hash;
1642	if (tcp_md5_hash_key(&hp, key))
1643		goto clear_hash;
1644	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1645	if (crypto_ahash_final(hp.req))
 
1646		goto clear_hash;
1647
1648	tcp_sigpool_end(&hp);
1649	return 0;
1650
1651clear_hash:
1652	tcp_sigpool_end(&hp);
1653clear_hash_nostart:
1654	memset(md5_hash, 0, 16);
1655	return 1;
1656}
1657EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1658
1659#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661static void tcp_v4_init_req(struct request_sock *req,
1662			    const struct sock *sk_listener,
1663			    struct sk_buff *skb)
1664{
1665	struct inet_request_sock *ireq = inet_rsk(req);
1666	struct net *net = sock_net(sk_listener);
1667
1668	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1669	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1670	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1671}
1672
1673static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1674					  struct sk_buff *skb,
1675					  struct flowi *fl,
1676					  struct request_sock *req)
1677{
1678	tcp_v4_init_req(req, sk, skb);
1679
1680	if (security_inet_conn_request(sk, skb, req))
1681		return NULL;
 
 
1682
1683	return inet_csk_route_req(sk, &fl->u.ip4, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684}
1685
 
 
1686struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1687	.family		=	PF_INET,
1688	.obj_size	=	sizeof(struct tcp_request_sock),
1689	.rtx_syn_ack	=	tcp_rtx_synack,
1690	.send_ack	=	tcp_v4_reqsk_send_ack,
1691	.destructor	=	tcp_v4_reqsk_destructor,
1692	.send_reset	=	tcp_v4_send_reset,
1693	.syn_ack_timeout =	tcp_syn_ack_timeout,
1694};
1695
1696const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1697	.mss_clamp	=	TCP_MSS_DEFAULT,
1698#ifdef CONFIG_TCP_MD5SIG
1699	.req_md5_lookup	=	tcp_v4_md5_lookup,
 
1700	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
 
1701#endif
1702#ifdef CONFIG_TCP_AO
1703	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1704	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1705	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1706#endif
1707#ifdef CONFIG_SYN_COOKIES
1708	.cookie_init_seq =	cookie_v4_init_sequence,
1709#endif
1710	.route_req	=	tcp_v4_route_req,
1711	.init_seq	=	tcp_v4_init_seq,
1712	.init_ts_off	=	tcp_v4_init_ts_off,
1713	.send_synack	=	tcp_v4_send_synack,
1714};
1715
1716int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1717{
 
 
 
 
 
 
 
 
 
 
 
 
1718	/* Never answer to SYNs send to broadcast or multicast */
1719	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1720		goto drop;
1721
1722	return tcp_conn_request(&tcp_request_sock_ops,
1723				&tcp_request_sock_ipv4_ops, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725drop:
1726	tcp_listendrop(sk);
1727	return 0;
1728}
1729EXPORT_SYMBOL(tcp_v4_conn_request);
1730
1731
1732/*
1733 * The three way handshake has completed - we got a valid synack -
1734 * now create the new socket.
1735 */
1736struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1737				  struct request_sock *req,
1738				  struct dst_entry *dst,
1739				  struct request_sock *req_unhash,
1740				  bool *own_req)
1741{
1742	struct inet_request_sock *ireq;
1743	bool found_dup_sk = false;
1744	struct inet_sock *newinet;
1745	struct tcp_sock *newtp;
1746	struct sock *newsk;
1747#ifdef CONFIG_TCP_MD5SIG
1748	const union tcp_md5_addr *addr;
1749	struct tcp_md5sig_key *key;
1750	int l3index;
1751#endif
1752	struct ip_options_rcu *inet_opt;
1753
1754	if (sk_acceptq_is_full(sk))
1755		goto exit_overflow;
1756
1757	newsk = tcp_create_openreq_child(sk, req, skb);
1758	if (!newsk)
1759		goto exit_nonewsk;
1760
1761	newsk->sk_gso_type = SKB_GSO_TCPV4;
1762	inet_sk_rx_dst_set(newsk, skb);
1763
1764	newtp		      = tcp_sk(newsk);
1765	newinet		      = inet_sk(newsk);
1766	ireq		      = inet_rsk(req);
1767	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1768	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1769	newsk->sk_bound_dev_if = ireq->ir_iif;
1770	newinet->inet_saddr   = ireq->ir_loc_addr;
1771	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1772	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1773	newinet->mc_index     = inet_iif(skb);
1774	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1775	newinet->rcv_tos      = ip_hdr(skb)->tos;
1776	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1777	if (inet_opt)
1778		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1779	atomic_set(&newinet->inet_id, get_random_u16());
1780
1781	/* Set ToS of the new socket based upon the value of incoming SYN.
1782	 * ECT bits are set later in tcp_init_transfer().
1783	 */
1784	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1785		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1786
1787	if (!dst) {
1788		dst = inet_csk_route_child_sock(sk, newsk, req);
1789		if (!dst)
1790			goto put_and_exit;
1791	} else {
1792		/* syncookie case : see end of cookie_v4_check() */
1793	}
1794	sk_setup_caps(newsk, dst);
1795
1796	tcp_ca_openreq_child(newsk, dst);
1797
1798	tcp_sync_mss(newsk, dst_mtu(dst));
1799	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
 
 
 
1800
1801	tcp_initialize_rcv_mss(newsk);
 
 
 
 
1802
1803#ifdef CONFIG_TCP_MD5SIG
1804	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1805	/* Copy over the MD5 key from the original socket */
1806	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1807	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1808	if (key && !tcp_rsk_used_ao(req)) {
1809		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1810			goto put_and_exit;
1811		sk_gso_disable(newsk);
 
 
 
 
 
 
1812	}
1813#endif
1814#ifdef CONFIG_TCP_AO
1815	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1816		goto put_and_exit; /* OOM, release back memory */
1817#endif
1818
1819	if (__inet_inherit_port(sk, newsk) < 0)
1820		goto put_and_exit;
1821	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1822				       &found_dup_sk);
1823	if (likely(*own_req)) {
1824		tcp_move_syn(newtp, req);
1825		ireq->ireq_opt = NULL;
1826	} else {
1827		newinet->inet_opt = NULL;
1828
1829		if (!req_unhash && found_dup_sk) {
1830			/* This code path should only be executed in the
1831			 * syncookie case only
1832			 */
1833			bh_unlock_sock(newsk);
1834			sock_put(newsk);
1835			newsk = NULL;
1836		}
1837	}
1838	return newsk;
1839
1840exit_overflow:
1841	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1842exit_nonewsk:
1843	dst_release(dst);
1844exit:
1845	tcp_listendrop(sk);
1846	return NULL;
1847put_and_exit:
1848	newinet->inet_opt = NULL;
1849	inet_csk_prepare_forced_close(newsk);
1850	tcp_done(newsk);
 
1851	goto exit;
1852}
1853EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1854
1855static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1856{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857#ifdef CONFIG_SYN_COOKIES
1858	const struct tcphdr *th = tcp_hdr(skb);
1859
1860	if (!th->syn)
1861		sk = cookie_v4_check(sk, skb);
1862#endif
1863	return sk;
1864}
1865
1866u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1867			 struct tcphdr *th, u32 *cookie)
1868{
1869	u16 mss = 0;
1870#ifdef CONFIG_SYN_COOKIES
1871	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1872				    &tcp_request_sock_ipv4_ops, sk, th);
1873	if (mss) {
1874		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1875		tcp_synq_overflow(sk);
 
 
 
 
 
 
 
 
1876	}
1877#endif
1878	return mss;
1879}
1880
1881INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1882							   u32));
1883/* The socket must have it's spinlock held when we get
1884 * here, unless it is a TCP_LISTEN socket.
1885 *
1886 * We have a potential double-lock case here, so even when
1887 * doing backlog processing we use the BH locking scheme.
1888 * This is because we cannot sleep with the original spinlock
1889 * held.
1890 */
1891int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1892{
1893	enum skb_drop_reason reason;
1894	struct sock *rsk;
 
 
 
 
 
 
 
 
 
 
1895
1896	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1897		struct dst_entry *dst;
1898
1899		dst = rcu_dereference_protected(sk->sk_rx_dst,
1900						lockdep_sock_is_held(sk));
1901
1902		sock_rps_save_rxhash(sk, skb);
1903		sk_mark_napi_id(sk, skb);
1904		if (dst) {
1905			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1906			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1907					     dst, 0)) {
1908				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1909				dst_release(dst);
1910			}
1911		}
1912		tcp_rcv_established(sk, skb);
1913		return 0;
1914	}
1915
1916	if (tcp_checksum_complete(skb))
1917		goto csum_err;
1918
1919	if (sk->sk_state == TCP_LISTEN) {
1920		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
 
 
1921
1922		if (!nsk)
1923			return 0;
1924		if (nsk != sk) {
1925			reason = tcp_child_process(sk, nsk, skb);
1926			if (reason) {
1927				rsk = nsk;
1928				goto reset;
1929			}
1930			return 0;
1931		}
1932	} else
1933		sock_rps_save_rxhash(sk, skb);
1934
1935	reason = tcp_rcv_state_process(sk, skb);
1936	if (reason) {
1937		rsk = sk;
1938		goto reset;
1939	}
1940	return 0;
1941
1942reset:
1943	tcp_v4_send_reset(rsk, skb);
1944discard:
1945	kfree_skb_reason(skb, reason);
1946	/* Be careful here. If this function gets more complicated and
1947	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1948	 * might be destroyed here. This current version compiles correctly,
1949	 * but you have been warned.
1950	 */
1951	return 0;
1952
1953csum_err:
1954	reason = SKB_DROP_REASON_TCP_CSUM;
1955	trace_tcp_bad_csum(skb);
1956	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1957	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1958	goto discard;
1959}
1960EXPORT_SYMBOL(tcp_v4_do_rcv);
1961
1962int tcp_v4_early_demux(struct sk_buff *skb)
1963{
1964	struct net *net = dev_net(skb->dev);
1965	const struct iphdr *iph;
1966	const struct tcphdr *th;
1967	struct sock *sk;
1968
1969	if (skb->pkt_type != PACKET_HOST)
1970		return 0;
1971
1972	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1973		return 0;
1974
1975	iph = ip_hdr(skb);
1976	th = tcp_hdr(skb);
1977
1978	if (th->doff < sizeof(struct tcphdr) / 4)
1979		return 0;
1980
1981	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1982				       iph->saddr, th->source,
1983				       iph->daddr, ntohs(th->dest),
1984				       skb->skb_iif, inet_sdif(skb));
1985	if (sk) {
1986		skb->sk = sk;
1987		skb->destructor = sock_edemux;
1988		if (sk_fullsock(sk)) {
1989			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1990
1991			if (dst)
1992				dst = dst_check(dst, 0);
1993			if (dst &&
1994			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1995				skb_dst_set_noref(skb, dst);
1996		}
1997	}
1998	return 0;
1999}
2000
2001bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2002		     enum skb_drop_reason *reason)
2003{
2004	u32 tail_gso_size, tail_gso_segs;
2005	struct skb_shared_info *shinfo;
2006	const struct tcphdr *th;
2007	struct tcphdr *thtail;
2008	struct sk_buff *tail;
2009	unsigned int hdrlen;
2010	bool fragstolen;
2011	u32 gso_segs;
2012	u32 gso_size;
2013	u64 limit;
2014	int delta;
2015
2016	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2017	 * we can fix skb->truesize to its real value to avoid future drops.
2018	 * This is valid because skb is not yet charged to the socket.
2019	 * It has been noticed pure SACK packets were sometimes dropped
2020	 * (if cooked by drivers without copybreak feature).
2021	 */
2022	skb_condense(skb);
2023
2024	skb_dst_drop(skb);
2025
2026	if (unlikely(tcp_checksum_complete(skb))) {
2027		bh_unlock_sock(sk);
2028		trace_tcp_bad_csum(skb);
2029		*reason = SKB_DROP_REASON_TCP_CSUM;
2030		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2031		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2032		return true;
2033	}
2034
2035	/* Attempt coalescing to last skb in backlog, even if we are
2036	 * above the limits.
2037	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2038	 */
2039	th = (const struct tcphdr *)skb->data;
2040	hdrlen = th->doff * 4;
2041
2042	tail = sk->sk_backlog.tail;
2043	if (!tail)
2044		goto no_coalesce;
2045	thtail = (struct tcphdr *)tail->data;
2046
2047	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2048	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2049	    ((TCP_SKB_CB(tail)->tcp_flags |
2050	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2051	    !((TCP_SKB_CB(tail)->tcp_flags &
2052	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2053	    ((TCP_SKB_CB(tail)->tcp_flags ^
2054	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2055#ifdef CONFIG_TLS_DEVICE
2056	    tail->decrypted != skb->decrypted ||
2057#endif
2058	    !mptcp_skb_can_collapse(tail, skb) ||
2059	    thtail->doff != th->doff ||
2060	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2061		goto no_coalesce;
2062
2063	__skb_pull(skb, hdrlen);
2064
2065	shinfo = skb_shinfo(skb);
2066	gso_size = shinfo->gso_size ?: skb->len;
2067	gso_segs = shinfo->gso_segs ?: 1;
2068
2069	shinfo = skb_shinfo(tail);
2070	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2071	tail_gso_segs = shinfo->gso_segs ?: 1;
2072
2073	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2074		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2075
2076		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2077			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2078			thtail->window = th->window;
2079		}
2080
2081		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2082		 * thtail->fin, so that the fast path in tcp_rcv_established()
2083		 * is not entered if we append a packet with a FIN.
2084		 * SYN, RST, URG are not present.
2085		 * ACK is set on both packets.
2086		 * PSH : we do not really care in TCP stack,
2087		 *       at least for 'GRO' packets.
2088		 */
2089		thtail->fin |= th->fin;
2090		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2091
2092		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2093			TCP_SKB_CB(tail)->has_rxtstamp = true;
2094			tail->tstamp = skb->tstamp;
2095			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2096		}
2097
2098		/* Not as strict as GRO. We only need to carry mss max value */
2099		shinfo->gso_size = max(gso_size, tail_gso_size);
2100		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2101
2102		sk->sk_backlog.len += delta;
2103		__NET_INC_STATS(sock_net(sk),
2104				LINUX_MIB_TCPBACKLOGCOALESCE);
2105		kfree_skb_partial(skb, fragstolen);
2106		return false;
2107	}
2108	__skb_push(skb, hdrlen);
2109
2110no_coalesce:
2111	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2112	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2113	 * sk_rcvbuf in normal conditions.
2114	 */
2115	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2116
2117	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2118
2119	/* Only socket owner can try to collapse/prune rx queues
2120	 * to reduce memory overhead, so add a little headroom here.
2121	 * Few sockets backlog are possibly concurrently non empty.
2122	 */
2123	limit += 64 * 1024;
2124
2125	limit = min_t(u64, limit, UINT_MAX);
2126
2127	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2128		bh_unlock_sock(sk);
2129		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2130		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2131		return true;
2132	}
2133	return false;
2134}
2135EXPORT_SYMBOL(tcp_add_backlog);
2136
2137int tcp_filter(struct sock *sk, struct sk_buff *skb)
2138{
2139	struct tcphdr *th = (struct tcphdr *)skb->data;
2140
2141	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2142}
2143EXPORT_SYMBOL(tcp_filter);
2144
2145static void tcp_v4_restore_cb(struct sk_buff *skb)
2146{
2147	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2148		sizeof(struct inet_skb_parm));
2149}
2150
2151static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2152			   const struct tcphdr *th)
2153{
2154	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2155	 * barrier() makes sure compiler wont play fool^Waliasing games.
2156	 */
2157	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2158		sizeof(struct inet_skb_parm));
2159	barrier();
2160
2161	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2162	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2163				    skb->len - th->doff * 4);
2164	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2165	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2166	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
2167	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2168	TCP_SKB_CB(skb)->sacked	 = 0;
2169	TCP_SKB_CB(skb)->has_rxtstamp =
2170			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2171}
2172
2173/*
2174 *	From tcp_input.c
2175 */
2176
2177int tcp_v4_rcv(struct sk_buff *skb)
2178{
2179	struct net *net = dev_net(skb->dev);
2180	enum skb_drop_reason drop_reason;
2181	int sdif = inet_sdif(skb);
2182	int dif = inet_iif(skb);
2183	const struct iphdr *iph;
2184	const struct tcphdr *th;
2185	bool refcounted;
2186	struct sock *sk;
2187	int ret;
 
2188
2189	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2190	if (skb->pkt_type != PACKET_HOST)
2191		goto discard_it;
2192
2193	/* Count it even if it's bad */
2194	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2195
2196	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2197		goto discard_it;
2198
2199	th = (const struct tcphdr *)skb->data;
2200
2201	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2202		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2203		goto bad_packet;
2204	}
2205	if (!pskb_may_pull(skb, th->doff * 4))
2206		goto discard_it;
2207
2208	/* An explanation is required here, I think.
2209	 * Packet length and doff are validated by header prediction,
2210	 * provided case of th->doff==0 is eliminated.
2211	 * So, we defer the checks. */
 
 
2212
2213	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2214		goto csum_error;
 
 
 
 
 
 
 
2215
2216	th = (const struct tcphdr *)skb->data;
2217	iph = ip_hdr(skb);
2218lookup:
2219	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2220			       skb, __tcp_hdrlen(th), th->source,
2221			       th->dest, sdif, &refcounted);
2222	if (!sk)
2223		goto no_tcp_socket;
2224
2225process:
2226	if (sk->sk_state == TCP_TIME_WAIT)
2227		goto do_time_wait;
2228
2229	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2230		struct request_sock *req = inet_reqsk(sk);
2231		bool req_stolen = false;
2232		struct sock *nsk;
2233
2234		sk = req->rsk_listener;
2235		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2236			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2237		else
2238			drop_reason = tcp_inbound_hash(sk, req, skb,
2239						       &iph->saddr, &iph->daddr,
2240						       AF_INET, dif, sdif);
2241		if (unlikely(drop_reason)) {
2242			sk_drops_add(sk, skb);
2243			reqsk_put(req);
2244			goto discard_it;
2245		}
2246		if (tcp_checksum_complete(skb)) {
2247			reqsk_put(req);
2248			goto csum_error;
2249		}
2250		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2251			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2252			if (!nsk) {
2253				inet_csk_reqsk_queue_drop_and_put(sk, req);
2254				goto lookup;
2255			}
2256			sk = nsk;
2257			/* reuseport_migrate_sock() has already held one sk_refcnt
2258			 * before returning.
2259			 */
2260		} else {
2261			/* We own a reference on the listener, increase it again
2262			 * as we might lose it too soon.
2263			 */
2264			sock_hold(sk);
2265		}
2266		refcounted = true;
2267		nsk = NULL;
2268		if (!tcp_filter(sk, skb)) {
2269			th = (const struct tcphdr *)skb->data;
2270			iph = ip_hdr(skb);
2271			tcp_v4_fill_cb(skb, iph, th);
2272			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2273		} else {
2274			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2275		}
2276		if (!nsk) {
2277			reqsk_put(req);
2278			if (req_stolen) {
2279				/* Another cpu got exclusive access to req
2280				 * and created a full blown socket.
2281				 * Try to feed this packet to this socket
2282				 * instead of discarding it.
2283				 */
2284				tcp_v4_restore_cb(skb);
2285				sock_put(sk);
2286				goto lookup;
2287			}
2288			goto discard_and_relse;
2289		}
2290		nf_reset_ct(skb);
2291		if (nsk == sk) {
2292			reqsk_put(req);
2293			tcp_v4_restore_cb(skb);
2294		} else {
2295			drop_reason = tcp_child_process(sk, nsk, skb);
2296			if (drop_reason) {
2297				tcp_v4_send_reset(nsk, skb);
2298				goto discard_and_relse;
2299			}
2300			sock_put(sk);
2301			return 0;
2302		}
2303	}
2304
2305	if (static_branch_unlikely(&ip4_min_ttl)) {
2306		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2307		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2308			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2309			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2310			goto discard_and_relse;
2311		}
2312	}
2313
2314	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2315		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2316		goto discard_and_relse;
2317	}
2318
2319	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2320				       AF_INET, dif, sdif);
2321	if (drop_reason)
2322		goto discard_and_relse;
 
2323
2324	nf_reset_ct(skb);
2325
2326	if (tcp_filter(sk, skb)) {
2327		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2328		goto discard_and_relse;
2329	}
2330	th = (const struct tcphdr *)skb->data;
2331	iph = ip_hdr(skb);
2332	tcp_v4_fill_cb(skb, iph, th);
2333
2334	skb->dev = NULL;
2335
2336	if (sk->sk_state == TCP_LISTEN) {
2337		ret = tcp_v4_do_rcv(sk, skb);
2338		goto put_and_return;
2339	}
2340
2341	sk_incoming_cpu_update(sk);
2342
2343	bh_lock_sock_nested(sk);
2344	tcp_segs_in(tcp_sk(sk), skb);
2345	ret = 0;
2346	if (!sock_owned_by_user(sk)) {
2347		ret = tcp_v4_do_rcv(sk, skb);
2348	} else {
2349		if (tcp_add_backlog(sk, skb, &drop_reason))
2350			goto discard_and_relse;
 
 
 
 
 
 
 
 
 
 
 
 
 
2351	}
2352	bh_unlock_sock(sk);
2353
2354put_and_return:
2355	if (refcounted)
2356		sock_put(sk);
2357
2358	return ret;
2359
2360no_tcp_socket:
2361	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2362	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2363		goto discard_it;
2364
2365	tcp_v4_fill_cb(skb, iph, th);
2366
2367	if (tcp_checksum_complete(skb)) {
2368csum_error:
2369		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2370		trace_tcp_bad_csum(skb);
2371		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2372bad_packet:
2373		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2374	} else {
2375		tcp_v4_send_reset(NULL, skb);
2376	}
2377
2378discard_it:
2379	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2380	/* Discard frame. */
2381	kfree_skb_reason(skb, drop_reason);
2382	return 0;
2383
2384discard_and_relse:
2385	sk_drops_add(sk, skb);
2386	if (refcounted)
2387		sock_put(sk);
2388	goto discard_it;
2389
2390do_time_wait:
2391	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2392		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2393		inet_twsk_put(inet_twsk(sk));
2394		goto discard_it;
2395	}
2396
2397	tcp_v4_fill_cb(skb, iph, th);
2398
2399	if (tcp_checksum_complete(skb)) {
2400		inet_twsk_put(inet_twsk(sk));
2401		goto csum_error;
2402	}
2403	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2404	case TCP_TW_SYN: {
2405		struct sock *sk2 = inet_lookup_listener(net,
2406							net->ipv4.tcp_death_row.hashinfo,
2407							skb, __tcp_hdrlen(th),
2408							iph->saddr, th->source,
2409							iph->daddr, th->dest,
2410							inet_iif(skb),
2411							sdif);
2412		if (sk2) {
2413			inet_twsk_deschedule_put(inet_twsk(sk));
 
2414			sk = sk2;
2415			tcp_v4_restore_cb(skb);
2416			refcounted = false;
2417			goto process;
2418		}
 
2419	}
2420		/* to ACK */
2421		fallthrough;
2422	case TCP_TW_ACK:
2423		tcp_v4_timewait_ack(sk, skb);
2424		break;
2425	case TCP_TW_RST:
2426		tcp_v4_send_reset(sk, skb);
2427		inet_twsk_deschedule_put(inet_twsk(sk));
2428		goto discard_it;
2429	case TCP_TW_SUCCESS:;
2430	}
2431	goto discard_it;
2432}
2433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434static struct timewait_sock_ops tcp_timewait_sock_ops = {
2435	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2436	.twsk_unique	= tcp_twsk_unique,
2437	.twsk_destructor= tcp_twsk_destructor,
 
2438};
2439
2440void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2441{
2442	struct dst_entry *dst = skb_dst(skb);
2443
2444	if (dst && dst_hold_safe(dst)) {
2445		rcu_assign_pointer(sk->sk_rx_dst, dst);
2446		sk->sk_rx_dst_ifindex = skb->skb_iif;
2447	}
2448}
2449EXPORT_SYMBOL(inet_sk_rx_dst_set);
2450
2451const struct inet_connection_sock_af_ops ipv4_specific = {
2452	.queue_xmit	   = ip_queue_xmit,
2453	.send_check	   = tcp_v4_send_check,
2454	.rebuild_header	   = inet_sk_rebuild_header,
2455	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2456	.conn_request	   = tcp_v4_conn_request,
2457	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
 
2458	.net_header_len	   = sizeof(struct iphdr),
2459	.setsockopt	   = ip_setsockopt,
2460	.getsockopt	   = ip_getsockopt,
2461	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2462	.sockaddr_len	   = sizeof(struct sockaddr_in),
2463	.mtu_reduced	   = tcp_v4_mtu_reduced,
 
 
 
 
2464};
2465EXPORT_SYMBOL(ipv4_specific);
2466
2467#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2468static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2469#ifdef CONFIG_TCP_MD5SIG
2470	.md5_lookup		= tcp_v4_md5_lookup,
2471	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2472	.md5_parse		= tcp_v4_parse_md5_keys,
2473#endif
2474#ifdef CONFIG_TCP_AO
2475	.ao_lookup		= tcp_v4_ao_lookup,
2476	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2477	.ao_parse		= tcp_v4_parse_ao,
2478	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2479#endif
2480};
2481#endif
2482
2483/* NOTE: A lot of things set to zero explicitly by call to
2484 *       sk_alloc() so need not be done here.
2485 */
2486static int tcp_v4_init_sock(struct sock *sk)
2487{
2488	struct inet_connection_sock *icsk = inet_csk(sk);
2489
2490	tcp_init_sock(sk);
2491
2492	icsk->icsk_af_ops = &ipv4_specific;
2493
2494#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2495	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2496#endif
2497
2498	return 0;
2499}
2500
2501#ifdef CONFIG_TCP_MD5SIG
2502static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2503{
2504	struct tcp_md5sig_info *md5sig;
2505
2506	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2507	kfree(md5sig);
2508	static_branch_slow_dec_deferred(&tcp_md5_needed);
2509	tcp_md5_release_sigpool();
2510}
2511#endif
2512
2513void tcp_v4_destroy_sock(struct sock *sk)
2514{
2515	struct tcp_sock *tp = tcp_sk(sk);
2516
2517	trace_tcp_destroy_sock(sk);
2518
2519	tcp_clear_xmit_timers(sk);
2520
2521	tcp_cleanup_congestion_control(sk);
2522
2523	tcp_cleanup_ulp(sk);
2524
2525	/* Cleanup up the write buffer. */
2526	tcp_write_queue_purge(sk);
2527
2528	/* Check if we want to disable active TFO */
2529	tcp_fastopen_active_disable_ofo_check(sk);
2530
2531	/* Cleans up our, hopefully empty, out_of_order_queue. */
2532	skb_rbtree_purge(&tp->out_of_order_queue);
2533
2534#ifdef CONFIG_TCP_MD5SIG
2535	/* Clean up the MD5 key list, if any */
2536	if (tp->md5sig_info) {
2537		struct tcp_md5sig_info *md5sig;
2538
2539		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2540		tcp_clear_md5_list(sk);
2541		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2542		rcu_assign_pointer(tp->md5sig_info, NULL);
2543	}
2544#endif
2545	tcp_ao_destroy_sock(sk, false);
 
 
 
 
 
 
 
2546
2547	/* Clean up a referenced TCP bind bucket. */
2548	if (inet_csk(sk)->icsk_bind_hash)
2549		inet_put_port(sk);
2550
2551	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
 
 
 
 
 
 
2552
2553	/* If socket is aborted during connect operation */
2554	tcp_free_fastopen_req(tp);
2555	tcp_fastopen_destroy_cipher(sk);
2556	tcp_saved_syn_free(tp);
 
 
2557
2558	sk_sockets_allocated_dec(sk);
 
2559}
2560EXPORT_SYMBOL(tcp_v4_destroy_sock);
2561
2562#ifdef CONFIG_PROC_FS
2563/* Proc filesystem TCP sock list dumping. */
2564
2565static unsigned short seq_file_family(const struct seq_file *seq);
2566
2567static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2568{
2569	unsigned short family = seq_file_family(seq);
2570
2571	/* AF_UNSPEC is used as a match all */
2572	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2573		net_eq(sock_net(sk), seq_file_net(seq)));
2574}
2575
2576/* Find a non empty bucket (starting from st->bucket)
2577 * and return the first sk from it.
2578 */
2579static void *listening_get_first(struct seq_file *seq)
2580{
2581	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2582	struct tcp_iter_state *st = seq->private;
2583
2584	st->offset = 0;
2585	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2586		struct inet_listen_hashbucket *ilb2;
2587		struct hlist_nulls_node *node;
2588		struct sock *sk;
2589
2590		ilb2 = &hinfo->lhash2[st->bucket];
2591		if (hlist_nulls_empty(&ilb2->nulls_head))
2592			continue;
2593
2594		spin_lock(&ilb2->lock);
2595		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2596			if (seq_sk_match(seq, sk))
2597				return sk;
2598		}
2599		spin_unlock(&ilb2->lock);
2600	}
2601
2602	return NULL;
2603}
2604
2605/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2606 * If "cur" is the last one in the st->bucket,
2607 * call listening_get_first() to return the first sk of the next
2608 * non empty bucket.
2609 */
2610static void *listening_get_next(struct seq_file *seq, void *cur)
2611{
2612	struct tcp_iter_state *st = seq->private;
2613	struct inet_listen_hashbucket *ilb2;
2614	struct hlist_nulls_node *node;
2615	struct inet_hashinfo *hinfo;
2616	struct sock *sk = cur;
 
 
 
2617
 
 
 
 
 
 
 
 
2618	++st->num;
2619	++st->offset;
2620
2621	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622	sk_nulls_for_each_from(sk, node) {
2623		if (seq_sk_match(seq, sk))
2624			return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625	}
2626
2627	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2628	ilb2 = &hinfo->lhash2[st->bucket];
2629	spin_unlock(&ilb2->lock);
2630	++st->bucket;
2631	return listening_get_first(seq);
2632}
2633
2634static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2635{
2636	struct tcp_iter_state *st = seq->private;
2637	void *rc;
2638
2639	st->bucket = 0;
2640	st->offset = 0;
2641	rc = listening_get_first(seq);
2642
2643	while (rc && *pos) {
2644		rc = listening_get_next(seq, rc);
2645		--*pos;
2646	}
2647	return rc;
2648}
2649
2650static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2651				const struct tcp_iter_state *st)
2652{
2653	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
 
2654}
2655
2656/*
2657 * Get first established socket starting from bucket given in st->bucket.
2658 * If st->bucket is zero, the very first socket in the hash is returned.
2659 */
2660static void *established_get_first(struct seq_file *seq)
2661{
2662	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2663	struct tcp_iter_state *st = seq->private;
 
 
2664
2665	st->offset = 0;
2666	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2667		struct sock *sk;
2668		struct hlist_nulls_node *node;
2669		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2670
2671		cond_resched();
2672
2673		/* Lockless fast path for the common case of empty buckets */
2674		if (empty_bucket(hinfo, st))
2675			continue;
2676
2677		spin_lock_bh(lock);
2678		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2679			if (seq_sk_match(seq, sk))
2680				return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681		}
2682		spin_unlock_bh(lock);
 
2683	}
2684
2685	return NULL;
2686}
2687
2688static void *established_get_next(struct seq_file *seq, void *cur)
2689{
2690	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
 
 
2691	struct tcp_iter_state *st = seq->private;
2692	struct hlist_nulls_node *node;
2693	struct sock *sk = cur;
2694
2695	++st->num;
2696	++st->offset;
2697
2698	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700	sk_nulls_for_each_from(sk, node) {
2701		if (seq_sk_match(seq, sk))
2702			return sk;
2703	}
2704
2705	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2706	++st->bucket;
2707	return established_get_first(seq);
 
 
 
 
2708}
2709
2710static void *established_get_idx(struct seq_file *seq, loff_t pos)
2711{
2712	struct tcp_iter_state *st = seq->private;
2713	void *rc;
2714
2715	st->bucket = 0;
2716	rc = established_get_first(seq);
2717
2718	while (rc && pos) {
2719		rc = established_get_next(seq, rc);
2720		--pos;
2721	}
2722	return rc;
2723}
2724
2725static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2726{
2727	void *rc;
2728	struct tcp_iter_state *st = seq->private;
2729
2730	st->state = TCP_SEQ_STATE_LISTENING;
2731	rc	  = listening_get_idx(seq, &pos);
2732
2733	if (!rc) {
2734		st->state = TCP_SEQ_STATE_ESTABLISHED;
2735		rc	  = established_get_idx(seq, pos);
2736	}
2737
2738	return rc;
2739}
2740
2741static void *tcp_seek_last_pos(struct seq_file *seq)
2742{
2743	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2744	struct tcp_iter_state *st = seq->private;
2745	int bucket = st->bucket;
2746	int offset = st->offset;
2747	int orig_num = st->num;
2748	void *rc = NULL;
2749
2750	switch (st->state) {
 
2751	case TCP_SEQ_STATE_LISTENING:
2752		if (st->bucket > hinfo->lhash2_mask)
2753			break;
2754		rc = listening_get_first(seq);
2755		while (offset-- && rc && bucket == st->bucket)
 
2756			rc = listening_get_next(seq, rc);
2757		if (rc)
2758			break;
2759		st->bucket = 0;
 
 
 
2760		st->state = TCP_SEQ_STATE_ESTABLISHED;
2761		fallthrough;
2762	case TCP_SEQ_STATE_ESTABLISHED:
2763		if (st->bucket > hinfo->ehash_mask)
2764			break;
2765		rc = established_get_first(seq);
2766		while (offset-- && rc && bucket == st->bucket)
2767			rc = established_get_next(seq, rc);
2768	}
2769
2770	st->num = orig_num;
2771
2772	return rc;
2773}
2774
2775void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2776{
2777	struct tcp_iter_state *st = seq->private;
2778	void *rc;
2779
2780	if (*pos && *pos == st->last_pos) {
2781		rc = tcp_seek_last_pos(seq);
2782		if (rc)
2783			goto out;
2784	}
2785
2786	st->state = TCP_SEQ_STATE_LISTENING;
2787	st->num = 0;
2788	st->bucket = 0;
2789	st->offset = 0;
2790	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2791
2792out:
2793	st->last_pos = *pos;
2794	return rc;
2795}
2796EXPORT_SYMBOL(tcp_seq_start);
2797
2798void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2799{
2800	struct tcp_iter_state *st = seq->private;
2801	void *rc = NULL;
2802
2803	if (v == SEQ_START_TOKEN) {
2804		rc = tcp_get_idx(seq, 0);
2805		goto out;
2806	}
2807
2808	switch (st->state) {
 
2809	case TCP_SEQ_STATE_LISTENING:
2810		rc = listening_get_next(seq, v);
2811		if (!rc) {
2812			st->state = TCP_SEQ_STATE_ESTABLISHED;
2813			st->bucket = 0;
2814			st->offset = 0;
2815			rc	  = established_get_first(seq);
2816		}
2817		break;
2818	case TCP_SEQ_STATE_ESTABLISHED:
 
2819		rc = established_get_next(seq, v);
2820		break;
2821	}
2822out:
2823	++*pos;
2824	st->last_pos = *pos;
2825	return rc;
2826}
2827EXPORT_SYMBOL(tcp_seq_next);
2828
2829void tcp_seq_stop(struct seq_file *seq, void *v)
2830{
2831	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2832	struct tcp_iter_state *st = seq->private;
2833
2834	switch (st->state) {
 
 
 
 
 
2835	case TCP_SEQ_STATE_LISTENING:
2836		if (v != SEQ_START_TOKEN)
2837			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2838		break;
 
2839	case TCP_SEQ_STATE_ESTABLISHED:
2840		if (v)
2841			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2842		break;
2843	}
2844}
2845EXPORT_SYMBOL(tcp_seq_stop);
2846
2847static void get_openreq4(const struct request_sock *req,
2848			 struct seq_file *f, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849{
2850	const struct inet_request_sock *ireq = inet_rsk(req);
2851	long delta = req->rsk_timer.expires - jiffies;
2852
2853	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2854		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2855		i,
2856		ireq->ir_loc_addr,
2857		ireq->ir_num,
2858		ireq->ir_rmt_addr,
2859		ntohs(ireq->ir_rmt_port),
2860		TCP_SYN_RECV,
2861		0, 0, /* could print option size, but that is af dependent. */
2862		1,    /* timers active (only the expire timer) */
2863		jiffies_delta_to_clock_t(delta),
2864		req->num_timeout,
2865		from_kuid_munged(seq_user_ns(f),
2866				 sock_i_uid(req->rsk_listener)),
2867		0,  /* non standard timer */
2868		0, /* open_requests have no inode */
2869		0,
2870		req);
 
2871}
2872
2873static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2874{
2875	int timer_active;
2876	unsigned long timer_expires;
2877	const struct tcp_sock *tp = tcp_sk(sk);
2878	const struct inet_connection_sock *icsk = inet_csk(sk);
2879	const struct inet_sock *inet = inet_sk(sk);
2880	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2881	__be32 dest = inet->inet_daddr;
2882	__be32 src = inet->inet_rcv_saddr;
2883	__u16 destp = ntohs(inet->inet_dport);
2884	__u16 srcp = ntohs(inet->inet_sport);
2885	int rx_queue;
2886	int state;
2887
2888	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2889	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2890	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2891		timer_active	= 1;
2892		timer_expires	= icsk->icsk_timeout;
2893	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2894		timer_active	= 4;
2895		timer_expires	= icsk->icsk_timeout;
2896	} else if (timer_pending(&sk->sk_timer)) {
2897		timer_active	= 2;
2898		timer_expires	= sk->sk_timer.expires;
2899	} else {
2900		timer_active	= 0;
2901		timer_expires = jiffies;
2902	}
2903
2904	state = inet_sk_state_load(sk);
2905	if (state == TCP_LISTEN)
2906		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2907	else
2908		/* Because we don't lock the socket,
2909		 * we might find a transient negative value.
2910		 */
2911		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2912				      READ_ONCE(tp->copied_seq), 0);
2913
2914	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2915			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2916		i, src, srcp, dest, destp, state,
2917		READ_ONCE(tp->write_seq) - tp->snd_una,
2918		rx_queue,
2919		timer_active,
2920		jiffies_delta_to_clock_t(timer_expires - jiffies),
2921		icsk->icsk_retransmits,
2922		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2923		icsk->icsk_probes_out,
2924		sock_i_ino(sk),
2925		refcount_read(&sk->sk_refcnt), sk,
2926		jiffies_to_clock_t(icsk->icsk_rto),
2927		jiffies_to_clock_t(icsk->icsk_ack.ato),
2928		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2929		tcp_snd_cwnd(tp),
2930		state == TCP_LISTEN ?
2931		    fastopenq->max_qlen :
2932		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2933}
2934
2935static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2936			       struct seq_file *f, int i)
2937{
2938	long delta = tw->tw_timer.expires - jiffies;
2939	__be32 dest, src;
2940	__u16 destp, srcp;
 
 
 
 
2941
2942	dest  = tw->tw_daddr;
2943	src   = tw->tw_rcv_saddr;
2944	destp = ntohs(tw->tw_dport);
2945	srcp  = ntohs(tw->tw_sport);
2946
2947	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2948		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2949		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2950		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2951		refcount_read(&tw->tw_refcnt), tw);
2952}
2953
2954#define TMPSZ 150
2955
2956static int tcp4_seq_show(struct seq_file *seq, void *v)
2957{
2958	struct tcp_iter_state *st;
2959	struct sock *sk = v;
2960
2961	seq_setwidth(seq, TMPSZ - 1);
2962	if (v == SEQ_START_TOKEN) {
2963		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
 
2964			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2965			   "inode");
2966		goto out;
2967	}
2968	st = seq->private;
2969
2970	if (sk->sk_state == TCP_TIME_WAIT)
2971		get_timewait4_sock(v, seq, st->num);
2972	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2973		get_openreq4(v, seq, st->num);
2974	else
2975		get_tcp4_sock(v, seq, st->num);
 
 
 
 
 
 
 
2976out:
2977	seq_pad(seq, '\n');
2978	return 0;
2979}
2980
2981#ifdef CONFIG_BPF_SYSCALL
2982struct bpf_tcp_iter_state {
2983	struct tcp_iter_state state;
2984	unsigned int cur_sk;
2985	unsigned int end_sk;
2986	unsigned int max_sk;
2987	struct sock **batch;
2988	bool st_bucket_done;
2989};
2990
2991struct bpf_iter__tcp {
2992	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2993	__bpf_md_ptr(struct sock_common *, sk_common);
2994	uid_t uid __aligned(8);
2995};
2996
2997static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2998			     struct sock_common *sk_common, uid_t uid)
2999{
3000	struct bpf_iter__tcp ctx;
3001
3002	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3003	ctx.meta = meta;
3004	ctx.sk_common = sk_common;
3005	ctx.uid = uid;
3006	return bpf_iter_run_prog(prog, &ctx);
3007}
3008
3009static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3010{
3011	while (iter->cur_sk < iter->end_sk)
3012		sock_gen_put(iter->batch[iter->cur_sk++]);
3013}
3014
3015static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3016				      unsigned int new_batch_sz)
3017{
3018	struct sock **new_batch;
3019
3020	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3021			     GFP_USER | __GFP_NOWARN);
3022	if (!new_batch)
3023		return -ENOMEM;
3024
3025	bpf_iter_tcp_put_batch(iter);
3026	kvfree(iter->batch);
3027	iter->batch = new_batch;
3028	iter->max_sk = new_batch_sz;
3029
3030	return 0;
3031}
3032
3033static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3034						 struct sock *start_sk)
3035{
3036	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3037	struct bpf_tcp_iter_state *iter = seq->private;
3038	struct tcp_iter_state *st = &iter->state;
3039	struct hlist_nulls_node *node;
3040	unsigned int expected = 1;
3041	struct sock *sk;
3042
3043	sock_hold(start_sk);
3044	iter->batch[iter->end_sk++] = start_sk;
3045
3046	sk = sk_nulls_next(start_sk);
3047	sk_nulls_for_each_from(sk, node) {
3048		if (seq_sk_match(seq, sk)) {
3049			if (iter->end_sk < iter->max_sk) {
3050				sock_hold(sk);
3051				iter->batch[iter->end_sk++] = sk;
3052			}
3053			expected++;
3054		}
3055	}
3056	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3057
3058	return expected;
3059}
3060
3061static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3062						   struct sock *start_sk)
3063{
3064	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3065	struct bpf_tcp_iter_state *iter = seq->private;
3066	struct tcp_iter_state *st = &iter->state;
3067	struct hlist_nulls_node *node;
3068	unsigned int expected = 1;
3069	struct sock *sk;
3070
3071	sock_hold(start_sk);
3072	iter->batch[iter->end_sk++] = start_sk;
3073
3074	sk = sk_nulls_next(start_sk);
3075	sk_nulls_for_each_from(sk, node) {
3076		if (seq_sk_match(seq, sk)) {
3077			if (iter->end_sk < iter->max_sk) {
3078				sock_hold(sk);
3079				iter->batch[iter->end_sk++] = sk;
3080			}
3081			expected++;
3082		}
3083	}
3084	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3085
3086	return expected;
3087}
3088
3089static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3090{
3091	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3092	struct bpf_tcp_iter_state *iter = seq->private;
3093	struct tcp_iter_state *st = &iter->state;
3094	unsigned int expected;
3095	bool resized = false;
3096	struct sock *sk;
3097
3098	/* The st->bucket is done.  Directly advance to the next
3099	 * bucket instead of having the tcp_seek_last_pos() to skip
3100	 * one by one in the current bucket and eventually find out
3101	 * it has to advance to the next bucket.
3102	 */
3103	if (iter->st_bucket_done) {
3104		st->offset = 0;
3105		st->bucket++;
3106		if (st->state == TCP_SEQ_STATE_LISTENING &&
3107		    st->bucket > hinfo->lhash2_mask) {
3108			st->state = TCP_SEQ_STATE_ESTABLISHED;
3109			st->bucket = 0;
3110		}
3111	}
3112
3113again:
3114	/* Get a new batch */
3115	iter->cur_sk = 0;
3116	iter->end_sk = 0;
3117	iter->st_bucket_done = false;
3118
3119	sk = tcp_seek_last_pos(seq);
3120	if (!sk)
3121		return NULL; /* Done */
3122
3123	if (st->state == TCP_SEQ_STATE_LISTENING)
3124		expected = bpf_iter_tcp_listening_batch(seq, sk);
3125	else
3126		expected = bpf_iter_tcp_established_batch(seq, sk);
3127
3128	if (iter->end_sk == expected) {
3129		iter->st_bucket_done = true;
3130		return sk;
3131	}
3132
3133	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3134		resized = true;
3135		goto again;
3136	}
3137
3138	return sk;
3139}
3140
3141static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3142{
3143	/* bpf iter does not support lseek, so it always
3144	 * continue from where it was stop()-ped.
3145	 */
3146	if (*pos)
3147		return bpf_iter_tcp_batch(seq);
3148
3149	return SEQ_START_TOKEN;
3150}
3151
3152static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3153{
3154	struct bpf_tcp_iter_state *iter = seq->private;
3155	struct tcp_iter_state *st = &iter->state;
3156	struct sock *sk;
3157
3158	/* Whenever seq_next() is called, the iter->cur_sk is
3159	 * done with seq_show(), so advance to the next sk in
3160	 * the batch.
3161	 */
3162	if (iter->cur_sk < iter->end_sk) {
3163		/* Keeping st->num consistent in tcp_iter_state.
3164		 * bpf_iter_tcp does not use st->num.
3165		 * meta.seq_num is used instead.
3166		 */
3167		st->num++;
3168		/* Move st->offset to the next sk in the bucket such that
3169		 * the future start() will resume at st->offset in
3170		 * st->bucket.  See tcp_seek_last_pos().
3171		 */
3172		st->offset++;
3173		sock_gen_put(iter->batch[iter->cur_sk++]);
3174	}
3175
3176	if (iter->cur_sk < iter->end_sk)
3177		sk = iter->batch[iter->cur_sk];
3178	else
3179		sk = bpf_iter_tcp_batch(seq);
3180
3181	++*pos;
3182	/* Keeping st->last_pos consistent in tcp_iter_state.
3183	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3184	 */
3185	st->last_pos = *pos;
3186	return sk;
3187}
3188
3189static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3190{
3191	struct bpf_iter_meta meta;
3192	struct bpf_prog *prog;
3193	struct sock *sk = v;
3194	uid_t uid;
3195	int ret;
3196
3197	if (v == SEQ_START_TOKEN)
3198		return 0;
3199
3200	if (sk_fullsock(sk))
3201		lock_sock(sk);
3202
3203	if (unlikely(sk_unhashed(sk))) {
3204		ret = SEQ_SKIP;
3205		goto unlock;
3206	}
3207
3208	if (sk->sk_state == TCP_TIME_WAIT) {
3209		uid = 0;
3210	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3211		const struct request_sock *req = v;
3212
3213		uid = from_kuid_munged(seq_user_ns(seq),
3214				       sock_i_uid(req->rsk_listener));
3215	} else {
3216		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3217	}
3218
3219	meta.seq = seq;
3220	prog = bpf_iter_get_info(&meta, false);
3221	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3222
3223unlock:
3224	if (sk_fullsock(sk))
3225		release_sock(sk);
3226	return ret;
3227
3228}
3229
3230static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3231{
3232	struct bpf_tcp_iter_state *iter = seq->private;
3233	struct bpf_iter_meta meta;
3234	struct bpf_prog *prog;
3235
3236	if (!v) {
3237		meta.seq = seq;
3238		prog = bpf_iter_get_info(&meta, true);
3239		if (prog)
3240			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3241	}
3242
3243	if (iter->cur_sk < iter->end_sk) {
3244		bpf_iter_tcp_put_batch(iter);
3245		iter->st_bucket_done = false;
3246	}
3247}
3248
3249static const struct seq_operations bpf_iter_tcp_seq_ops = {
3250	.show		= bpf_iter_tcp_seq_show,
3251	.start		= bpf_iter_tcp_seq_start,
3252	.next		= bpf_iter_tcp_seq_next,
3253	.stop		= bpf_iter_tcp_seq_stop,
3254};
3255#endif
3256static unsigned short seq_file_family(const struct seq_file *seq)
3257{
3258	const struct tcp_seq_afinfo *afinfo;
3259
3260#ifdef CONFIG_BPF_SYSCALL
3261	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3262	if (seq->op == &bpf_iter_tcp_seq_ops)
3263		return AF_UNSPEC;
3264#endif
3265
3266	/* Iterated from proc fs */
3267	afinfo = pde_data(file_inode(seq->file));
3268	return afinfo->family;
3269}
3270
3271static const struct seq_operations tcp4_seq_ops = {
3272	.show		= tcp4_seq_show,
3273	.start		= tcp_seq_start,
3274	.next		= tcp_seq_next,
3275	.stop		= tcp_seq_stop,
3276};
3277
3278static struct tcp_seq_afinfo tcp4_seq_afinfo = {
 
3279	.family		= AF_INET,
 
 
 
 
3280};
3281
3282static int __net_init tcp4_proc_init_net(struct net *net)
3283{
3284	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3285			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3286		return -ENOMEM;
3287	return 0;
3288}
3289
3290static void __net_exit tcp4_proc_exit_net(struct net *net)
3291{
3292	remove_proc_entry("tcp", net->proc_net);
3293}
3294
3295static struct pernet_operations tcp4_net_ops = {
3296	.init = tcp4_proc_init_net,
3297	.exit = tcp4_proc_exit_net,
3298};
3299
3300int __init tcp4_proc_init(void)
3301{
3302	return register_pernet_subsys(&tcp4_net_ops);
3303}
3304
3305void tcp4_proc_exit(void)
3306{
3307	unregister_pernet_subsys(&tcp4_net_ops);
3308}
3309#endif /* CONFIG_PROC_FS */
3310
3311/* @wake is one when sk_stream_write_space() calls us.
3312 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3313 * This mimics the strategy used in sock_def_write_space().
3314 */
3315bool tcp_stream_memory_free(const struct sock *sk, int wake)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3316{
3317	const struct tcp_sock *tp = tcp_sk(sk);
3318	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3319			    READ_ONCE(tp->snd_nxt);
 
 
 
3320
3321	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3322}
3323EXPORT_SYMBOL(tcp_stream_memory_free);
3324
3325struct proto tcp_prot = {
3326	.name			= "TCP",
3327	.owner			= THIS_MODULE,
3328	.close			= tcp_close,
3329	.pre_connect		= tcp_v4_pre_connect,
3330	.connect		= tcp_v4_connect,
3331	.disconnect		= tcp_disconnect,
3332	.accept			= inet_csk_accept,
3333	.ioctl			= tcp_ioctl,
3334	.init			= tcp_v4_init_sock,
3335	.destroy		= tcp_v4_destroy_sock,
3336	.shutdown		= tcp_shutdown,
3337	.setsockopt		= tcp_setsockopt,
3338	.getsockopt		= tcp_getsockopt,
3339	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3340	.keepalive		= tcp_set_keepalive,
3341	.recvmsg		= tcp_recvmsg,
3342	.sendmsg		= tcp_sendmsg,
3343	.splice_eof		= tcp_splice_eof,
3344	.backlog_rcv		= tcp_v4_do_rcv,
3345	.release_cb		= tcp_release_cb,
3346	.hash			= inet_hash,
3347	.unhash			= inet_unhash,
3348	.get_port		= inet_csk_get_port,
3349	.put_port		= inet_put_port,
3350#ifdef CONFIG_BPF_SYSCALL
3351	.psock_update_sk_prot	= tcp_bpf_update_proto,
3352#endif
3353	.enter_memory_pressure	= tcp_enter_memory_pressure,
3354	.leave_memory_pressure	= tcp_leave_memory_pressure,
3355	.stream_memory_free	= tcp_stream_memory_free,
3356	.sockets_allocated	= &tcp_sockets_allocated,
3357	.orphan_count		= &tcp_orphan_count,
3358
3359	.memory_allocated	= &tcp_memory_allocated,
3360	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3361
3362	.memory_pressure	= &tcp_memory_pressure,
3363	.sysctl_mem		= sysctl_tcp_mem,
3364	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3365	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3366	.max_header		= MAX_TCP_HEADER,
3367	.obj_size		= sizeof(struct tcp_sock),
3368	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3369	.twsk_prot		= &tcp_timewait_sock_ops,
3370	.rsk_prot		= &tcp_request_sock_ops,
3371	.h.hashinfo		= NULL,
3372	.no_autobind		= true,
3373	.diag_destroy		= tcp_abort,
 
 
 
 
 
 
 
 
3374};
3375EXPORT_SYMBOL(tcp_prot);
3376
3377static void __net_exit tcp_sk_exit(struct net *net)
3378{
3379	if (net->ipv4.tcp_congestion_control)
3380		bpf_module_put(net->ipv4.tcp_congestion_control,
3381			       net->ipv4.tcp_congestion_control->owner);
3382}
3383
3384static void __net_init tcp_set_hashinfo(struct net *net)
3385{
3386	struct inet_hashinfo *hinfo;
3387	unsigned int ehash_entries;
3388	struct net *old_net;
3389
3390	if (net_eq(net, &init_net))
3391		goto fallback;
3392
3393	old_net = current->nsproxy->net_ns;
3394	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3395	if (!ehash_entries)
3396		goto fallback;
3397
3398	ehash_entries = roundup_pow_of_two(ehash_entries);
3399	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3400	if (!hinfo) {
3401		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3402			"for a netns, fallback to the global one\n",
3403			ehash_entries);
3404fallback:
3405		hinfo = &tcp_hashinfo;
3406		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3407	}
3408
3409	net->ipv4.tcp_death_row.hashinfo = hinfo;
3410	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3411	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3412}
3413
3414static int __net_init tcp_sk_init(struct net *net)
3415{
3416	net->ipv4.sysctl_tcp_ecn = 2;
3417	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3418
3419	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3420	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3421	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3422	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3423	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3424
3425	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3426	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3427	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3428
3429	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3430	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3431	net->ipv4.sysctl_tcp_syncookies = 1;
3432	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3433	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3434	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3435	net->ipv4.sysctl_tcp_orphan_retries = 0;
3436	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3437	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3438	net->ipv4.sysctl_tcp_tw_reuse = 2;
3439	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3440
3441	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3442	tcp_set_hashinfo(net);
3443
3444	net->ipv4.sysctl_tcp_sack = 1;
3445	net->ipv4.sysctl_tcp_window_scaling = 1;
3446	net->ipv4.sysctl_tcp_timestamps = 1;
3447	net->ipv4.sysctl_tcp_early_retrans = 3;
3448	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3449	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3450	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3451	net->ipv4.sysctl_tcp_max_reordering = 300;
3452	net->ipv4.sysctl_tcp_dsack = 1;
3453	net->ipv4.sysctl_tcp_app_win = 31;
3454	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3455	net->ipv4.sysctl_tcp_frto = 2;
3456	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3457	/* This limits the percentage of the congestion window which we
3458	 * will allow a single TSO frame to consume.  Building TSO frames
3459	 * which are too large can cause TCP streams to be bursty.
3460	 */
3461	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3462	/* Default TSQ limit of 16 TSO segments */
3463	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3464
3465	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3466	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3467
3468	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3469	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3470	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3471	net->ipv4.sysctl_tcp_autocorking = 1;
3472	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3473	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3474	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3475	if (net != &init_net) {
3476		memcpy(net->ipv4.sysctl_tcp_rmem,
3477		       init_net.ipv4.sysctl_tcp_rmem,
3478		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3479		memcpy(net->ipv4.sysctl_tcp_wmem,
3480		       init_net.ipv4.sysctl_tcp_wmem,
3481		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3482	}
3483	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3484	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3485	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3486	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3487	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3488	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3489	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3490
3491	/* Set default values for PLB */
3492	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3493	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3494	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3495	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3496	/* Default congestion threshold for PLB to mark a round is 50% */
3497	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3498
3499	/* Reno is always built in */
3500	if (!net_eq(net, &init_net) &&
3501	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3502			       init_net.ipv4.tcp_congestion_control->owner))
3503		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3504	else
3505		net->ipv4.tcp_congestion_control = &tcp_reno;
3506
3507	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3508	net->ipv4.sysctl_tcp_shrink_window = 0;
3509
3510	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3511
3512	return 0;
3513}
3514
3515static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3516{
3517	struct net *net;
3518
3519	tcp_twsk_purge(net_exit_list, AF_INET);
3520
3521	list_for_each_entry(net, net_exit_list, exit_list) {
3522		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3523		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3524		tcp_fastopen_ctx_destroy(net);
3525	}
3526}
3527
3528static struct pernet_operations __net_initdata tcp_sk_ops = {
3529       .init	   = tcp_sk_init,
3530       .exit	   = tcp_sk_exit,
3531       .exit_batch = tcp_sk_exit_batch,
3532};
3533
3534#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3535DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3536		     struct sock_common *sk_common, uid_t uid)
3537
3538#define INIT_BATCH_SZ 16
3539
3540static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3541{
3542	struct bpf_tcp_iter_state *iter = priv_data;
3543	int err;
3544
3545	err = bpf_iter_init_seq_net(priv_data, aux);
3546	if (err)
3547		return err;
3548
3549	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3550	if (err) {
3551		bpf_iter_fini_seq_net(priv_data);
3552		return err;
3553	}
3554
3555	return 0;
3556}
3557
3558static void bpf_iter_fini_tcp(void *priv_data)
3559{
3560	struct bpf_tcp_iter_state *iter = priv_data;
3561
3562	bpf_iter_fini_seq_net(priv_data);
3563	kvfree(iter->batch);
3564}
3565
3566static const struct bpf_iter_seq_info tcp_seq_info = {
3567	.seq_ops		= &bpf_iter_tcp_seq_ops,
3568	.init_seq_private	= bpf_iter_init_tcp,
3569	.fini_seq_private	= bpf_iter_fini_tcp,
3570	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3571};
3572
3573static const struct bpf_func_proto *
3574bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3575			    const struct bpf_prog *prog)
3576{
3577	switch (func_id) {
3578	case BPF_FUNC_setsockopt:
3579		return &bpf_sk_setsockopt_proto;
3580	case BPF_FUNC_getsockopt:
3581		return &bpf_sk_getsockopt_proto;
3582	default:
3583		return NULL;
3584	}
3585}
3586
3587static struct bpf_iter_reg tcp_reg_info = {
3588	.target			= "tcp",
3589	.ctx_arg_info_size	= 1,
3590	.ctx_arg_info		= {
3591		{ offsetof(struct bpf_iter__tcp, sk_common),
3592		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3593	},
3594	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3595	.seq_info		= &tcp_seq_info,
3596};
3597
3598static void __init bpf_iter_register(void)
3599{
3600	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3601	if (bpf_iter_reg_target(&tcp_reg_info))
3602		pr_warn("Warning: could not register bpf iterator tcp\n");
3603}
3604
3605#endif
3606
3607void __init tcp_v4_init(void)
3608{
3609	int cpu, res;
3610
3611	for_each_possible_cpu(cpu) {
3612		struct sock *sk;
3613
3614		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3615					   IPPROTO_TCP, &init_net);
3616		if (res)
3617			panic("Failed to create the TCP control socket.\n");
3618		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3619
3620		/* Please enforce IP_DF and IPID==0 for RST and
3621		 * ACK sent in SYN-RECV and TIME-WAIT state.
3622		 */
3623		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3624
3625		per_cpu(ipv4_tcp_sk, cpu) = sk;
3626	}
3627	if (register_pernet_subsys(&tcp_sk_ops))
3628		panic("Failed to create the TCP control socket.\n");
3629
3630#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3631	bpf_iter_register();
3632#endif
3633}