Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
 
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ipip.h>
 
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
 
 
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM	1
  71#endif
  72
  73struct mr_table {
  74	struct list_head	list;
  75#ifdef CONFIG_NET_NS
  76	struct net		*net;
  77#endif
  78	u32			id;
  79	struct sock __rcu	*mroute_sk;
  80	struct timer_list	ipmr_expire_timer;
  81	struct list_head	mfc_unres_queue;
  82	struct list_head	mfc_cache_array[MFC_LINES];
  83	struct vif_device	vif_table[MAXVIFS];
  84	int			maxvif;
  85	atomic_t		cache_resolve_queue_len;
  86	int			mroute_do_assert;
  87	int			mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89	int			mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94	struct fib_rule		common;
  95};
  96
  97struct ipmr_result {
  98	struct mr_table		*mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *	Multicast router control variables
 109 */
 
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static void ipmr_free_table(struct mr_table *mrt);
 128
 129static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 130			 struct sk_buff *skb, struct mfc_cache *cache,
 131			 int local);
 132static int ipmr_cache_report(struct mr_table *mrt,
 133			     struct sk_buff *pkt, vifi_t vifi, int assert);
 134static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 135			      struct mfc_cache *c, struct rtmsg *rtm);
 136static void mroute_clean_tables(struct mr_table *mrt);
 137static void ipmr_expire_process(unsigned long arg);
 
 138
 139#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 140#define ipmr_for_each_table(mrt, net) \
 141	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 144{
 145	struct mr_table *mrt;
 146
 147	ipmr_for_each_table(mrt, net) {
 148		if (mrt->id == id)
 149			return mrt;
 150	}
 151	return NULL;
 152}
 153
 154static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 155			   struct mr_table **mrt)
 156{
 157	struct ipmr_result res;
 158	struct fib_lookup_arg arg = { .result = &res, };
 159	int err;
 
 
 
 
 
 
 
 
 160
 161	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 162			       flowi4_to_flowi(flp4), 0, &arg);
 163	if (err < 0)
 164		return err;
 165	*mrt = res.mrt;
 166	return 0;
 167}
 168
 169static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 170			    int flags, struct fib_lookup_arg *arg)
 171{
 172	struct ipmr_result *res = arg->result;
 173	struct mr_table *mrt;
 174
 175	switch (rule->action) {
 176	case FR_ACT_TO_TBL:
 177		break;
 178	case FR_ACT_UNREACHABLE:
 179		return -ENETUNREACH;
 180	case FR_ACT_PROHIBIT:
 181		return -EACCES;
 182	case FR_ACT_BLACKHOLE:
 183	default:
 184		return -EINVAL;
 185	}
 186
 187	mrt = ipmr_get_table(rule->fr_net, rule->table);
 188	if (mrt == NULL)
 
 
 189		return -EAGAIN;
 190	res->mrt = mrt;
 191	return 0;
 192}
 193
 194static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 195{
 196	return 1;
 197}
 198
 199static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 200	FRA_GENERIC_POLICY,
 201};
 202
 203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 204			       struct fib_rule_hdr *frh, struct nlattr **tb)
 
 205{
 206	return 0;
 207}
 208
 209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 210			     struct nlattr **tb)
 211{
 212	return 1;
 213}
 214
 215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 216			  struct fib_rule_hdr *frh)
 217{
 218	frh->dst_len = 0;
 219	frh->src_len = 0;
 220	frh->tos     = 0;
 221	return 0;
 222}
 223
 224static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 225	.family		= RTNL_FAMILY_IPMR,
 226	.rule_size	= sizeof(struct ipmr_rule),
 227	.addr_size	= sizeof(u32),
 228	.action		= ipmr_rule_action,
 229	.match		= ipmr_rule_match,
 230	.configure	= ipmr_rule_configure,
 231	.compare	= ipmr_rule_compare,
 232	.default_pref	= fib_default_rule_pref,
 233	.fill		= ipmr_rule_fill,
 234	.nlgroup	= RTNLGRP_IPV4_RULE,
 235	.policy		= ipmr_rule_policy,
 236	.owner		= THIS_MODULE,
 237};
 238
 239static int __net_init ipmr_rules_init(struct net *net)
 240{
 241	struct fib_rules_ops *ops;
 242	struct mr_table *mrt;
 243	int err;
 244
 245	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 246	if (IS_ERR(ops))
 247		return PTR_ERR(ops);
 248
 249	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 250
 251	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 252	if (mrt == NULL) {
 253		err = -ENOMEM;
 254		goto err1;
 255	}
 256
 257	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 258	if (err < 0)
 259		goto err2;
 260
 261	net->ipv4.mr_rules_ops = ops;
 262	return 0;
 263
 264err2:
 265	kfree(mrt);
 
 
 266err1:
 267	fib_rules_unregister(ops);
 268	return err;
 269}
 270
 271static void __net_exit ipmr_rules_exit(struct net *net)
 272{
 273	struct mr_table *mrt, *next;
 274
 
 275	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 276		list_del(&mrt->list);
 277		ipmr_free_table(mrt);
 278	}
 279	fib_rules_unregister(net->ipv4.mr_rules_ops);
 280}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281#else
 282#define ipmr_for_each_table(mrt, net) \
 283	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 284
 
 
 
 
 
 
 
 
 285static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 286{
 287	return net->ipv4.mrt;
 288}
 289
 290static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 291			   struct mr_table **mrt)
 292{
 293	*mrt = net->ipv4.mrt;
 294	return 0;
 295}
 296
 297static int __net_init ipmr_rules_init(struct net *net)
 298{
 299	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 300	return net->ipv4.mrt ? 0 : -ENOMEM;
 
 
 
 
 
 301}
 302
 303static void __net_exit ipmr_rules_exit(struct net *net)
 304{
 
 305	ipmr_free_table(net->ipv4.mrt);
 
 306}
 307#endif
 308
 309static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 
 310{
 311	struct mr_table *mrt;
 312	unsigned int i;
 313
 314	mrt = ipmr_get_table(net, id);
 315	if (mrt != NULL)
 316		return mrt;
 
 317
 318	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 319	if (mrt == NULL)
 320		return NULL;
 321	write_pnet(&mrt->net, net);
 322	mrt->id = id;
 
 323
 324	/* Forwarding cache */
 325	for (i = 0; i < MFC_LINES; i++)
 326		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 
 
 327
 328	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 
 
 329
 330	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 331		    (unsigned long)mrt);
 
 
 
 
 
 
 332
 333#ifdef CONFIG_IP_PIMSM
 334	mrt->mroute_reg_vif_num = -1;
 335#endif
 336#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 337	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 338#endif
 339	return mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342static void ipmr_free_table(struct mr_table *mrt)
 343{
 344	del_timer_sync(&mrt->ipmr_expire_timer);
 345	mroute_clean_tables(mrt);
 
 
 346	kfree(mrt);
 347}
 348
 349/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 350
 351static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 
 352{
 353	struct net *net = dev_net(dev);
 354
 355	dev_close(dev);
 356
 357	dev = __dev_get_by_name(net, "tunl0");
 358	if (dev) {
 359		const struct net_device_ops *ops = dev->netdev_ops;
 360		struct ifreq ifr;
 361		struct ip_tunnel_parm p;
 362
 363		memset(&p, 0, sizeof(p));
 364		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 365		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 366		p.iph.version = 4;
 367		p.iph.ihl = 5;
 368		p.iph.protocol = IPPROTO_IPIP;
 369		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 370		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 371
 372		if (ops->ndo_do_ioctl) {
 373			mm_segment_t oldfs = get_fs();
 374
 375			set_fs(KERNEL_DS);
 376			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 377			set_fs(oldfs);
 378		}
 379	}
 380}
 381
 382static
 383struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 384{
 385	struct net_device  *dev;
 386
 387	dev = __dev_get_by_name(net, "tunl0");
 388
 389	if (dev) {
 390		const struct net_device_ops *ops = dev->netdev_ops;
 391		int err;
 392		struct ifreq ifr;
 393		struct ip_tunnel_parm p;
 394		struct in_device  *in_dev;
 395
 396		memset(&p, 0, sizeof(p));
 397		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 398		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 399		p.iph.version = 4;
 400		p.iph.ihl = 5;
 401		p.iph.protocol = IPPROTO_IPIP;
 402		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 403		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 404
 405		if (ops->ndo_do_ioctl) {
 406			mm_segment_t oldfs = get_fs();
 407
 408			set_fs(KERNEL_DS);
 409			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 410			set_fs(oldfs);
 411		} else {
 412			err = -EOPNOTSUPP;
 413		}
 414		dev = NULL;
 415
 416		if (err == 0 &&
 417		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 418			dev->flags |= IFF_MULTICAST;
 419
 420			in_dev = __in_dev_get_rtnl(dev);
 421			if (in_dev == NULL)
 422				goto failure;
 
 
 
 423
 424			ipv4_devconf_setall(in_dev);
 425			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 
 
 
 
 426
 427			if (dev_open(dev))
 428				goto failure;
 429			dev_hold(dev);
 430		}
 431	}
 432	return dev;
 433
 434failure:
 435	/* allow the register to be completed before unregistering. */
 436	rtnl_unlock();
 437	rtnl_lock();
 
 
 
 
 
 
 
 
 
 
 
 438
 439	unregister_netdevice(dev);
 440	return NULL;
 
 
 441}
 442
 443#ifdef CONFIG_IP_PIMSM
 444
 445static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 446{
 447	struct net *net = dev_net(dev);
 448	struct mr_table *mrt;
 449	struct flowi4 fl4 = {
 450		.flowi4_oif	= dev->ifindex,
 451		.flowi4_iif	= skb->skb_iif,
 452		.flowi4_mark	= skb->mark,
 453	};
 454	int err;
 455
 456	err = ipmr_fib_lookup(net, &fl4, &mrt);
 457	if (err < 0) {
 458		kfree_skb(skb);
 459		return err;
 460	}
 461
 462	read_lock(&mrt_lock);
 463	dev->stats.tx_bytes += skb->len;
 464	dev->stats.tx_packets++;
 465	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 466	read_unlock(&mrt_lock);
 
 
 
 
 467	kfree_skb(skb);
 468	return NETDEV_TX_OK;
 469}
 470
 
 
 
 
 
 471static const struct net_device_ops reg_vif_netdev_ops = {
 472	.ndo_start_xmit	= reg_vif_xmit,
 
 473};
 474
 475static void reg_vif_setup(struct net_device *dev)
 476{
 477	dev->type		= ARPHRD_PIMREG;
 478	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 479	dev->flags		= IFF_NOARP;
 480	dev->netdev_ops		= &reg_vif_netdev_ops,
 481	dev->destructor		= free_netdev;
 482	dev->features		|= NETIF_F_NETNS_LOCAL;
 483}
 484
 485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 486{
 487	struct net_device *dev;
 488	struct in_device *in_dev;
 489	char name[IFNAMSIZ];
 490
 491	if (mrt->id == RT_TABLE_DEFAULT)
 492		sprintf(name, "pimreg");
 493	else
 494		sprintf(name, "pimreg%u", mrt->id);
 495
 496	dev = alloc_netdev(0, name, reg_vif_setup);
 497
 498	if (dev == NULL)
 499		return NULL;
 500
 501	dev_net_set(dev, net);
 502
 503	if (register_netdevice(dev)) {
 504		free_netdev(dev);
 505		return NULL;
 506	}
 507	dev->iflink = 0;
 508
 509	rcu_read_lock();
 510	in_dev = __in_dev_get_rcu(dev);
 511	if (!in_dev) {
 512		rcu_read_unlock();
 513		goto failure;
 514	}
 515
 516	ipv4_devconf_setall(in_dev);
 517	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 518	rcu_read_unlock();
 519
 520	if (dev_open(dev))
 521		goto failure;
 522
 523	dev_hold(dev);
 524
 525	return dev;
 526
 527failure:
 528	/* allow the register to be completed before unregistering. */
 529	rtnl_unlock();
 530	rtnl_lock();
 531
 532	unregister_netdevice(dev);
 533	return NULL;
 534}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535#endif
 536
 537/*
 538 *	Delete a VIF entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539 *	@notify: Set to 1, if the caller is a notifier_call
 
 540 */
 541
 542static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 543		      struct list_head *head)
 544{
 
 545	struct vif_device *v;
 546	struct net_device *dev;
 547	struct in_device *in_dev;
 548
 549	if (vifi < 0 || vifi >= mrt->maxvif)
 550		return -EADDRNOTAVAIL;
 551
 552	v = &mrt->vif_table[vifi];
 553
 554	write_lock_bh(&mrt_lock);
 555	dev = v->dev;
 556	v->dev = NULL;
 557
 558	if (!dev) {
 559		write_unlock_bh(&mrt_lock);
 560		return -EADDRNOTAVAIL;
 561	}
 562
 563#ifdef CONFIG_IP_PIMSM
 564	if (vifi == mrt->mroute_reg_vif_num)
 565		mrt->mroute_reg_vif_num = -1;
 566#endif
 567
 
 
 
 
 
 
 
 
 
 568	if (vifi + 1 == mrt->maxvif) {
 569		int tmp;
 570
 571		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 572			if (VIF_EXISTS(mrt, tmp))
 573				break;
 574		}
 575		mrt->maxvif = tmp+1;
 576	}
 577
 578	write_unlock_bh(&mrt_lock);
 579
 580	dev_set_allmulti(dev, -1);
 581
 582	in_dev = __in_dev_get_rtnl(dev);
 583	if (in_dev) {
 584		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 
 
 
 585		ip_rt_multicast_event(in_dev);
 586	}
 587
 588	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 589		unregister_netdevice_queue(dev, head);
 590
 591	dev_put(dev);
 592	return 0;
 593}
 594
 595static void ipmr_cache_free_rcu(struct rcu_head *head)
 596{
 597	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 598
 599	kmem_cache_free(mrt_cachep, c);
 600}
 601
 602static inline void ipmr_cache_free(struct mfc_cache *c)
 603{
 604	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 605}
 606
 607/* Destroy an unresolved cache entry, killing queued skbs
 608 * and reporting error to netlink readers.
 609 */
 610
 611static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 612{
 613	struct net *net = read_pnet(&mrt->net);
 614	struct sk_buff *skb;
 615	struct nlmsgerr *e;
 616
 617	atomic_dec(&mrt->cache_resolve_queue_len);
 618
 619	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 620		if (ip_hdr(skb)->version == 0) {
 621			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 622			nlh->nlmsg_type = NLMSG_ERROR;
 623			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 624			skb_trim(skb, nlh->nlmsg_len);
 625			e = NLMSG_DATA(nlh);
 626			e->error = -ETIMEDOUT;
 627			memset(&e->msg, 0, sizeof(e->msg));
 628
 629			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 630		} else {
 631			kfree_skb(skb);
 632		}
 633	}
 634
 635	ipmr_cache_free(c);
 636}
 637
 638
 639/* Timer process for the unresolved queue. */
 640
 641static void ipmr_expire_process(unsigned long arg)
 642{
 643	struct mr_table *mrt = (struct mr_table *)arg;
 644	unsigned long now;
 645	unsigned long expires;
 646	struct mfc_cache *c, *next;
 647
 648	if (!spin_trylock(&mfc_unres_lock)) {
 649		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 650		return;
 651	}
 652
 653	if (list_empty(&mrt->mfc_unres_queue))
 654		goto out;
 655
 656	now = jiffies;
 657	expires = 10*HZ;
 658
 659	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 660		if (time_after(c->mfc_un.unres.expires, now)) {
 661			unsigned long interval = c->mfc_un.unres.expires - now;
 662			if (interval < expires)
 663				expires = interval;
 664			continue;
 665		}
 666
 667		list_del(&c->list);
 668		ipmr_destroy_unres(mrt, c);
 
 669	}
 670
 671	if (!list_empty(&mrt->mfc_unres_queue))
 672		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 673
 674out:
 675	spin_unlock(&mfc_unres_lock);
 676}
 677
 678/* Fill oifs list. It is called under write locked mrt_lock. */
 679
 680static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 681				   unsigned char *ttls)
 682{
 683	int vifi;
 684
 685	cache->mfc_un.res.minvif = MAXVIFS;
 686	cache->mfc_un.res.maxvif = 0;
 687	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 688
 689	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 690		if (VIF_EXISTS(mrt, vifi) &&
 691		    ttls[vifi] && ttls[vifi] < 255) {
 692			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 693			if (cache->mfc_un.res.minvif > vifi)
 694				cache->mfc_un.res.minvif = vifi;
 695			if (cache->mfc_un.res.maxvif <= vifi)
 696				cache->mfc_un.res.maxvif = vifi + 1;
 697		}
 698	}
 
 699}
 700
 701static int vif_add(struct net *net, struct mr_table *mrt,
 702		   struct vifctl *vifc, int mrtsock)
 703{
 
 704	int vifi = vifc->vifc_vifi;
 705	struct vif_device *v = &mrt->vif_table[vifi];
 706	struct net_device *dev;
 707	struct in_device *in_dev;
 708	int err;
 709
 710	/* Is vif busy ? */
 711	if (VIF_EXISTS(mrt, vifi))
 712		return -EADDRINUSE;
 713
 714	switch (vifc->vifc_flags) {
 715#ifdef CONFIG_IP_PIMSM
 716	case VIFF_REGISTER:
 717		/*
 718		 * Special Purpose VIF in PIM
 
 719		 * All the packets will be sent to the daemon
 720		 */
 721		if (mrt->mroute_reg_vif_num >= 0)
 722			return -EADDRINUSE;
 723		dev = ipmr_reg_vif(net, mrt);
 724		if (!dev)
 725			return -ENOBUFS;
 726		err = dev_set_allmulti(dev, 1);
 727		if (err) {
 728			unregister_netdevice(dev);
 729			dev_put(dev);
 730			return err;
 731		}
 732		break;
 733#endif
 734	case VIFF_TUNNEL:
 735		dev = ipmr_new_tunnel(net, vifc);
 736		if (!dev)
 737			return -ENOBUFS;
 738		err = dev_set_allmulti(dev, 1);
 739		if (err) {
 740			ipmr_del_tunnel(dev, vifc);
 741			dev_put(dev);
 742			return err;
 743		}
 744		break;
 745
 746	case VIFF_USE_IFINDEX:
 747	case 0:
 748		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 749			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 750			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 751				dev_put(dev);
 752				return -EADDRNOTAVAIL;
 753			}
 754		} else {
 755			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 756		}
 757		if (!dev)
 758			return -EADDRNOTAVAIL;
 759		err = dev_set_allmulti(dev, 1);
 760		if (err) {
 761			dev_put(dev);
 762			return err;
 763		}
 764		break;
 765	default:
 766		return -EINVAL;
 767	}
 768
 769	in_dev = __in_dev_get_rtnl(dev);
 770	if (!in_dev) {
 771		dev_put(dev);
 772		return -EADDRNOTAVAIL;
 773	}
 774	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 
 
 775	ip_rt_multicast_event(in_dev);
 776
 777	/* Fill in the VIF structures */
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	v->rate_limit = vifc->vifc_rate_limit;
 780	v->local = vifc->vifc_lcl_addr.s_addr;
 781	v->remote = vifc->vifc_rmt_addr.s_addr;
 782	v->flags = vifc->vifc_flags;
 783	if (!mrtsock)
 784		v->flags |= VIFF_STATIC;
 785	v->threshold = vifc->vifc_threshold;
 786	v->bytes_in = 0;
 787	v->bytes_out = 0;
 788	v->pkt_in = 0;
 789	v->pkt_out = 0;
 790	v->link = dev->ifindex;
 791	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 792		v->link = dev->iflink;
 793
 794	/* And finish update writing critical data */
 795	write_lock_bh(&mrt_lock);
 796	v->dev = dev;
 797#ifdef CONFIG_IP_PIMSM
 798	if (v->flags & VIFF_REGISTER)
 799		mrt->mroute_reg_vif_num = vifi;
 800#endif
 
 801	if (vifi+1 > mrt->maxvif)
 802		mrt->maxvif = vifi+1;
 803	write_unlock_bh(&mrt_lock);
 
 
 804	return 0;
 805}
 806
 807/* called with rcu_read_lock() */
 808static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 809					 __be32 origin,
 810					 __be32 mcastgrp)
 811{
 812	int line = MFC_HASH(mcastgrp, origin);
 813	struct mfc_cache *c;
 
 
 814
 815	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 816		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 817			return c;
 818	}
 819	return NULL;
 820}
 821
 822/*
 823 *	Allocate a multicast cache entry
 824 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825static struct mfc_cache *ipmr_cache_alloc(void)
 826{
 827	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 828
 829	if (c)
 830		c->mfc_un.res.minvif = MAXVIFS;
 
 
 
 
 831	return c;
 832}
 833
 834static struct mfc_cache *ipmr_cache_alloc_unres(void)
 835{
 836	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 837
 838	if (c) {
 839		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 840		c->mfc_un.unres.expires = jiffies + 10*HZ;
 841	}
 842	return c;
 843}
 844
 845/*
 846 *	A cache entry has gone into a resolved state from queued
 847 */
 848
 849static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 850			       struct mfc_cache *uc, struct mfc_cache *c)
 851{
 852	struct sk_buff *skb;
 853	struct nlmsgerr *e;
 854
 855	/* Play the pending entries through our router */
 856
 857	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 858		if (ip_hdr(skb)->version == 0) {
 859			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 860
 861			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 
 862				nlh->nlmsg_len = skb_tail_pointer(skb) -
 863						 (u8 *)nlh;
 864			} else {
 865				nlh->nlmsg_type = NLMSG_ERROR;
 866				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 867				skb_trim(skb, nlh->nlmsg_len);
 868				e = NLMSG_DATA(nlh);
 869				e->error = -EMSGSIZE;
 870				memset(&e->msg, 0, sizeof(e->msg));
 871			}
 872
 873			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 874		} else {
 875			ip_mr_forward(net, mrt, skb, c, 0);
 
 
 876		}
 877	}
 878}
 879
 880/*
 881 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 882 *	expects the following bizarre scheme.
 883 *
 884 *	Called under mrt_lock.
 885 */
 886
 887static int ipmr_cache_report(struct mr_table *mrt,
 888			     struct sk_buff *pkt, vifi_t vifi, int assert)
 889{
 890	struct sk_buff *skb;
 891	const int ihl = ip_hdrlen(pkt);
 
 892	struct igmphdr *igmp;
 893	struct igmpmsg *msg;
 894	struct sock *mroute_sk;
 895	int ret;
 896
 897#ifdef CONFIG_IP_PIMSM
 898	if (assert == IGMPMSG_WHOLEPKT)
 
 
 
 899		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 900	else
 901#endif
 902		skb = alloc_skb(128, GFP_ATOMIC);
 903
 904	if (!skb)
 905		return -ENOBUFS;
 906
 907#ifdef CONFIG_IP_PIMSM
 908	if (assert == IGMPMSG_WHOLEPKT) {
 909		/* Ugly, but we have no choice with this interface.
 910		 * Duplicate old header, fix ihl, length etc.
 911		 * And all this only to mangle msg->im_msgtype and
 912		 * to set msg->im_mbz to "mbz" :-)
 913		 */
 914		skb_push(skb, sizeof(struct iphdr));
 915		skb_reset_network_header(skb);
 916		skb_reset_transport_header(skb);
 917		msg = (struct igmpmsg *)skb_network_header(skb);
 918		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 919		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 920		msg->im_mbz = 0;
 921		msg->im_vif = mrt->mroute_reg_vif_num;
 
 
 
 
 
 
 
 
 
 922		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 923		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 924					     sizeof(struct iphdr));
 925	} else
 926#endif
 927	{
 928
 929	/* Copy the IP header */
 930
 931	skb->network_header = skb->tail;
 932	skb_put(skb, ihl);
 933	skb_copy_to_linear_data(skb, pkt->data, ihl);
 934	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 935	msg = (struct igmpmsg *)skb_network_header(skb);
 936	msg->im_vif = vifi;
 937	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 938
 939	/* Add our header */
 940
 941	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 942	igmp->type	=
 943	msg->im_msgtype = assert;
 944	igmp->code	= 0;
 945	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
 946	skb->transport_header = skb->network_header;
 947	}
 948
 949	rcu_read_lock();
 950	mroute_sk = rcu_dereference(mrt->mroute_sk);
 951	if (mroute_sk == NULL) {
 952		rcu_read_unlock();
 953		kfree_skb(skb);
 954		return -EINVAL;
 955	}
 956
 957	/* Deliver to mrouted */
 958
 959	ret = sock_queue_rcv_skb(mroute_sk, skb);
 960	rcu_read_unlock();
 961	if (ret < 0) {
 962		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
 963		kfree_skb(skb);
 964	}
 965
 966	return ret;
 967}
 968
 969/*
 970 *	Queue a packet for resolution. It gets locked cache entry!
 971 */
 972
 973static int
 974ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 975{
 
 
 976	bool found = false;
 977	int err;
 978	struct mfc_cache *c;
 979	const struct iphdr *iph = ip_hdr(skb);
 980
 981	spin_lock_bh(&mfc_unres_lock);
 982	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 983		if (c->mfc_mcastgrp == iph->daddr &&
 984		    c->mfc_origin == iph->saddr) {
 985			found = true;
 986			break;
 987		}
 988	}
 989
 990	if (!found) {
 991		/* Create a new entry if allowable */
 992
 993		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 994		    (c = ipmr_cache_alloc_unres()) == NULL) {
 995			spin_unlock_bh(&mfc_unres_lock);
 996
 997			kfree_skb(skb);
 998			return -ENOBUFS;
 999		}
1000
1001		/* Fill in the new cache entry */
1002
1003		c->mfc_parent	= -1;
1004		c->mfc_origin	= iph->saddr;
1005		c->mfc_mcastgrp	= iph->daddr;
1006
1007		/* Reflect first query at mrouted. */
1008
1009		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
 
1010		if (err < 0) {
1011			/* If the report failed throw the cache entry
1012			   out - Brad Parker
1013			 */
1014			spin_unlock_bh(&mfc_unres_lock);
1015
1016			ipmr_cache_free(c);
1017			kfree_skb(skb);
1018			return err;
1019		}
1020
1021		atomic_inc(&mrt->cache_resolve_queue_len);
1022		list_add(&c->list, &mrt->mfc_unres_queue);
 
1023
1024		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1025			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
 
1026	}
1027
1028	/* See if we can append the packet */
1029
1030	if (c->mfc_un.unres.unresolved.qlen > 3) {
1031		kfree_skb(skb);
1032		err = -ENOBUFS;
1033	} else {
1034		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
 
 
 
 
1035		err = 0;
1036	}
1037
1038	spin_unlock_bh(&mfc_unres_lock);
1039	return err;
1040}
1041
1042/*
1043 *	MFC cache manipulation by user space mroute daemon
1044 */
1045
1046static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1047{
1048	int line;
1049	struct mfc_cache *c, *next;
1050
1051	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1052
1053	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1054		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1055		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1056			list_del_rcu(&c->list);
 
 
 
 
 
 
 
 
1057
1058			ipmr_cache_free(c);
1059			return 0;
1060		}
1061	}
1062	return -ENOENT;
1063}
1064
1065static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1066			struct mfcctl *mfc, int mrtsock)
1067{
1068	bool found = false;
1069	int line;
1070	struct mfc_cache *uc, *c;
 
 
 
1071
1072	if (mfc->mfcc_parent >= MAXVIFS)
1073		return -ENFILE;
1074
1075	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1076
1077	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1078		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1079		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1080			found = true;
1081			break;
1082		}
1083	}
1084
1085	if (found) {
1086		write_lock_bh(&mrt_lock);
1087		c->mfc_parent = mfc->mfcc_parent;
1088		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1089		if (!mrtsock)
1090			c->mfc_flags |= MFC_STATIC;
1091		write_unlock_bh(&mrt_lock);
 
 
 
1092		return 0;
1093	}
1094
1095	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
 
1096		return -EINVAL;
1097
1098	c = ipmr_cache_alloc();
1099	if (c == NULL)
1100		return -ENOMEM;
1101
1102	c->mfc_origin = mfc->mfcc_origin.s_addr;
1103	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1104	c->mfc_parent = mfc->mfcc_parent;
1105	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1106	if (!mrtsock)
1107		c->mfc_flags |= MFC_STATIC;
1108
1109	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1110
1111	/*
1112	 *	Check to see if we resolved a queued list. If so we
1113	 *	need to send on the frames and tidy up.
 
 
 
 
 
 
 
1114	 */
1115	found = false;
1116	spin_lock_bh(&mfc_unres_lock);
1117	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
 
1118		if (uc->mfc_origin == c->mfc_origin &&
1119		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1120			list_del(&uc->list);
1121			atomic_dec(&mrt->cache_resolve_queue_len);
1122			found = true;
1123			break;
1124		}
1125	}
1126	if (list_empty(&mrt->mfc_unres_queue))
1127		del_timer(&mrt->ipmr_expire_timer);
1128	spin_unlock_bh(&mfc_unres_lock);
1129
1130	if (found) {
1131		ipmr_cache_resolve(net, mrt, uc, c);
1132		ipmr_cache_free(uc);
1133	}
 
 
1134	return 0;
1135}
1136
1137/*
1138 *	Close the multicast socket, and clear the vif tables etc
1139 */
1140
1141static void mroute_clean_tables(struct mr_table *mrt)
1142{
1143	int i;
 
 
1144	LIST_HEAD(list);
1145	struct mfc_cache *c, *next;
1146
1147	/* Shut down all active vif entries */
1148
1149	for (i = 0; i < mrt->maxvif; i++) {
1150		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
 
 
 
1151			vif_delete(mrt, i, 0, &list);
 
 
1152	}
1153	unregister_netdevice_many(&list);
1154
1155	/* Wipe the cache */
1156
1157	for (i = 0; i < MFC_LINES; i++) {
1158		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1159			if (c->mfc_flags & MFC_STATIC)
1160				continue;
 
1161			list_del_rcu(&c->list);
1162			ipmr_cache_free(c);
 
 
 
 
1163		}
1164	}
1165
1166	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1167		spin_lock_bh(&mfc_unres_lock);
1168		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1169			list_del(&c->list);
1170			ipmr_destroy_unres(mrt, c);
 
 
 
 
 
1171		}
1172		spin_unlock_bh(&mfc_unres_lock);
1173	}
1174}
1175
1176/* called from ip_ra_control(), before an RCU grace period,
1177 * we dont need to call synchronize_rcu() here
1178 */
1179static void mrtsock_destruct(struct sock *sk)
1180{
1181	struct net *net = sock_net(sk);
1182	struct mr_table *mrt;
1183
1184	rtnl_lock();
1185	ipmr_for_each_table(mrt, net) {
1186		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1187			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
 
 
 
 
1188			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1189			mroute_clean_tables(mrt);
1190		}
1191	}
1192	rtnl_unlock();
1193}
1194
1195/*
1196 *	Socket options and virtual interface manipulation. The whole
1197 *	virtual interface system is a complete heap, but unfortunately
1198 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1199 *	MOSPF/PIM router set up we can clean this up.
1200 */
1201
1202int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
 
1203{
1204	int ret;
1205	struct vifctl vif;
1206	struct mfcctl mfc;
1207	struct net *net = sock_net(sk);
 
1208	struct mr_table *mrt;
 
 
 
 
1209
1210	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1211	if (mrt == NULL)
1212		return -ENOENT;
 
 
 
 
1213
 
 
 
 
 
1214	if (optname != MRT_INIT) {
1215		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1216		    !capable(CAP_NET_ADMIN))
1217			return -EACCES;
 
 
1218	}
1219
1220	switch (optname) {
1221	case MRT_INIT:
1222		if (sk->sk_type != SOCK_RAW ||
1223		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1224			return -EOPNOTSUPP;
1225		if (optlen != sizeof(int))
1226			return -ENOPROTOOPT;
1227
1228		rtnl_lock();
1229		if (rtnl_dereference(mrt->mroute_sk)) {
1230			rtnl_unlock();
1231			return -EADDRINUSE;
1232		}
1233
1234		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1235		if (ret == 0) {
1236			rcu_assign_pointer(mrt->mroute_sk, sk);
1237			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
 
 
 
 
1238		}
1239		rtnl_unlock();
1240		return ret;
1241	case MRT_DONE:
1242		if (sk != rcu_access_pointer(mrt->mroute_sk))
1243			return -EACCES;
1244		return ip_ra_control(sk, 0, NULL);
 
 
 
 
 
 
 
 
 
1245	case MRT_ADD_VIF:
1246	case MRT_DEL_VIF:
1247		if (optlen != sizeof(vif))
1248			return -EINVAL;
1249		if (copy_from_user(&vif, optval, sizeof(vif)))
1250			return -EFAULT;
1251		if (vif.vifc_vifi >= MAXVIFS)
1252			return -ENFILE;
1253		rtnl_lock();
 
 
 
 
 
1254		if (optname == MRT_ADD_VIF) {
1255			ret = vif_add(net, mrt, &vif,
1256				      sk == rtnl_dereference(mrt->mroute_sk));
1257		} else {
1258			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1259		}
1260		rtnl_unlock();
1261		return ret;
1262
1263		/*
1264		 *	Manipulate the forwarding caches. These live
1265		 *	in a sort of kernel/user symbiosis.
1266		 */
1267	case MRT_ADD_MFC:
1268	case MRT_DEL_MFC:
1269		if (optlen != sizeof(mfc))
1270			return -EINVAL;
1271		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1272			return -EFAULT;
1273		rtnl_lock();
1274		if (optname == MRT_DEL_MFC)
1275			ret = ipmr_mfc_delete(mrt, &mfc);
 
 
 
 
 
 
 
 
 
1276		else
1277			ret = ipmr_mfc_add(net, mrt, &mfc,
1278					   sk == rtnl_dereference(mrt->mroute_sk));
1279		rtnl_unlock();
1280		return ret;
1281		/*
1282		 *	Control PIM assert.
1283		 */
 
 
 
 
 
 
 
 
 
1284	case MRT_ASSERT:
1285	{
1286		int v;
1287		if (get_user(v, (int __user *)optval))
1288			return -EFAULT;
1289		mrt->mroute_do_assert = (v) ? 1 : 0;
1290		return 0;
1291	}
1292#ifdef CONFIG_IP_PIMSM
 
 
1293	case MRT_PIM:
1294	{
1295		int v;
1296
1297		if (get_user(v, (int __user *)optval))
1298			return -EFAULT;
1299		v = (v) ? 1 : 0;
 
 
 
 
 
 
1300
1301		rtnl_lock();
1302		ret = 0;
1303		if (v != mrt->mroute_do_pim) {
1304			mrt->mroute_do_pim = v;
1305			mrt->mroute_do_assert = v;
 
1306		}
1307		rtnl_unlock();
1308		return ret;
1309	}
1310#endif
1311#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1312	case MRT_TABLE:
1313	{
1314		u32 v;
1315
1316		if (optlen != sizeof(u32))
1317			return -EINVAL;
1318		if (get_user(v, (u32 __user *)optval))
1319			return -EFAULT;
 
 
 
 
 
1320
1321		rtnl_lock();
1322		ret = 0;
1323		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1324			ret = -EBUSY;
1325		} else {
1326			if (!ipmr_new_table(net, v))
1327				ret = -ENOMEM;
1328			raw_sk(sk)->ipmr_table = v;
 
 
1329		}
1330		rtnl_unlock();
1331		return ret;
1332	}
1333#endif
1334	/*
1335	 *	Spurious command, or MRT_VERSION which you cannot
1336	 *	set.
1337	 */
1338	default:
1339		return -ENOPROTOOPT;
1340	}
 
 
 
 
1341}
1342
1343/*
1344 *	Getsock opt support for the multicast routing system.
1345 */
 
 
 
 
 
 
 
 
 
 
1346
1347int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
 
 
 
 
 
 
 
 
 
 
1348{
1349	int olr;
1350	int val;
1351	struct net *net = sock_net(sk);
1352	struct mr_table *mrt;
1353
 
 
 
 
1354	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1355	if (mrt == NULL)
1356		return -ENOENT;
1357
1358	if (optname != MRT_VERSION &&
1359#ifdef CONFIG_IP_PIMSM
1360	   optname != MRT_PIM &&
1361#endif
1362	   optname != MRT_ASSERT)
 
 
 
 
 
 
 
 
1363		return -ENOPROTOOPT;
 
1364
1365	if (get_user(olr, optlen))
1366		return -EFAULT;
1367
1368	olr = min_t(unsigned int, olr, sizeof(int));
1369	if (olr < 0)
1370		return -EINVAL;
1371
1372	if (put_user(olr, optlen))
 
 
1373		return -EFAULT;
1374	if (optname == MRT_VERSION)
1375		val = 0x0305;
1376#ifdef CONFIG_IP_PIMSM
1377	else if (optname == MRT_PIM)
1378		val = mrt->mroute_do_pim;
1379#endif
1380	else
1381		val = mrt->mroute_do_assert;
1382	if (copy_to_user(optval, &val, olr))
1383		return -EFAULT;
1384	return 0;
1385}
1386
1387/*
1388 *	The IP multicast ioctl support routines.
1389 */
1390
1391int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1392{
1393	struct sioc_sg_req sr;
1394	struct sioc_vif_req vr;
1395	struct vif_device *vif;
1396	struct mfc_cache *c;
1397	struct net *net = sock_net(sk);
 
 
1398	struct mr_table *mrt;
1399
1400	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1401	if (mrt == NULL)
1402		return -ENOENT;
1403
1404	switch (cmd) {
1405	case SIOCGETVIFCNT:
1406		if (copy_from_user(&vr, arg, sizeof(vr)))
1407			return -EFAULT;
1408		if (vr.vifi >= mrt->maxvif)
1409			return -EINVAL;
1410		read_lock(&mrt_lock);
1411		vif = &mrt->vif_table[vr.vifi];
1412		if (VIF_EXISTS(mrt, vr.vifi)) {
1413			vr.icount = vif->pkt_in;
1414			vr.ocount = vif->pkt_out;
1415			vr.ibytes = vif->bytes_in;
1416			vr.obytes = vif->bytes_out;
1417			read_unlock(&mrt_lock);
 
1418
1419			if (copy_to_user(arg, &vr, sizeof(vr)))
1420				return -EFAULT;
1421			return 0;
1422		}
1423		read_unlock(&mrt_lock);
1424		return -EADDRNOTAVAIL;
1425	case SIOCGETSGCNT:
1426		if (copy_from_user(&sr, arg, sizeof(sr)))
1427			return -EFAULT;
1428
1429		rcu_read_lock();
1430		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1431		if (c) {
1432			sr.pktcnt = c->mfc_un.res.pkt;
1433			sr.bytecnt = c->mfc_un.res.bytes;
1434			sr.wrong_if = c->mfc_un.res.wrong_if;
1435			rcu_read_unlock();
1436
1437			if (copy_to_user(arg, &sr, sizeof(sr)))
1438				return -EFAULT;
1439			return 0;
1440		}
1441		rcu_read_unlock();
1442		return -EADDRNOTAVAIL;
1443	default:
1444		return -ENOIOCTLCMD;
1445	}
1446}
1447
1448#ifdef CONFIG_COMPAT
1449struct compat_sioc_sg_req {
1450	struct in_addr src;
1451	struct in_addr grp;
1452	compat_ulong_t pktcnt;
1453	compat_ulong_t bytecnt;
1454	compat_ulong_t wrong_if;
1455};
1456
1457struct compat_sioc_vif_req {
1458	vifi_t	vifi;		/* Which iface */
1459	compat_ulong_t icount;
1460	compat_ulong_t ocount;
1461	compat_ulong_t ibytes;
1462	compat_ulong_t obytes;
1463};
1464
1465int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1466{
1467	struct compat_sioc_sg_req sr;
1468	struct compat_sioc_vif_req vr;
1469	struct vif_device *vif;
1470	struct mfc_cache *c;
1471	struct net *net = sock_net(sk);
1472	struct mr_table *mrt;
1473
1474	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1475	if (mrt == NULL)
1476		return -ENOENT;
1477
1478	switch (cmd) {
1479	case SIOCGETVIFCNT:
1480		if (copy_from_user(&vr, arg, sizeof(vr)))
1481			return -EFAULT;
1482		if (vr.vifi >= mrt->maxvif)
1483			return -EINVAL;
1484		read_lock(&mrt_lock);
 
1485		vif = &mrt->vif_table[vr.vifi];
1486		if (VIF_EXISTS(mrt, vr.vifi)) {
1487			vr.icount = vif->pkt_in;
1488			vr.ocount = vif->pkt_out;
1489			vr.ibytes = vif->bytes_in;
1490			vr.obytes = vif->bytes_out;
1491			read_unlock(&mrt_lock);
1492
1493			if (copy_to_user(arg, &vr, sizeof(vr)))
1494				return -EFAULT;
1495			return 0;
1496		}
1497		read_unlock(&mrt_lock);
1498		return -EADDRNOTAVAIL;
1499	case SIOCGETSGCNT:
1500		if (copy_from_user(&sr, arg, sizeof(sr)))
1501			return -EFAULT;
1502
1503		rcu_read_lock();
1504		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1505		if (c) {
1506			sr.pktcnt = c->mfc_un.res.pkt;
1507			sr.bytecnt = c->mfc_un.res.bytes;
1508			sr.wrong_if = c->mfc_un.res.wrong_if;
1509			rcu_read_unlock();
1510
1511			if (copy_to_user(arg, &sr, sizeof(sr)))
1512				return -EFAULT;
1513			return 0;
1514		}
1515		rcu_read_unlock();
1516		return -EADDRNOTAVAIL;
1517	default:
1518		return -ENOIOCTLCMD;
1519	}
1520}
1521#endif
1522
1523
1524static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1525{
1526	struct net_device *dev = ptr;
1527	struct net *net = dev_net(dev);
1528	struct mr_table *mrt;
1529	struct vif_device *v;
1530	int ct;
1531
1532	if (event != NETDEV_UNREGISTER)
1533		return NOTIFY_DONE;
1534
1535	ipmr_for_each_table(mrt, net) {
1536		v = &mrt->vif_table[0];
1537		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1538			if (v->dev == dev)
1539				vif_delete(mrt, ct, 1, NULL);
1540		}
1541	}
1542	return NOTIFY_DONE;
1543}
1544
1545
1546static struct notifier_block ip_mr_notifier = {
1547	.notifier_call = ipmr_device_event,
1548};
1549
1550/*
1551 *	Encapsulate a packet by attaching a valid IPIP header to it.
1552 *	This avoids tunnel drivers and other mess and gives us the speed so
1553 *	important for multicast video.
1554 */
1555
1556static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1557{
1558	struct iphdr *iph;
1559	const struct iphdr *old_iph = ip_hdr(skb);
1560
1561	skb_push(skb, sizeof(struct iphdr));
1562	skb->transport_header = skb->network_header;
1563	skb_reset_network_header(skb);
1564	iph = ip_hdr(skb);
1565
1566	iph->version	=	4;
1567	iph->tos	=	old_iph->tos;
1568	iph->ttl	=	old_iph->ttl;
1569	iph->frag_off	=	0;
1570	iph->daddr	=	daddr;
1571	iph->saddr	=	saddr;
1572	iph->protocol	=	IPPROTO_IPIP;
1573	iph->ihl	=	5;
1574	iph->tot_len	=	htons(skb->len);
1575	ip_select_ident(iph, skb_dst(skb), NULL);
1576	ip_send_check(iph);
1577
1578	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1579	nf_reset(skb);
1580}
1581
1582static inline int ipmr_forward_finish(struct sk_buff *skb)
 
1583{
1584	struct ip_options *opt = &(IPCB(skb)->opt);
1585
1586	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1587	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1588
1589	if (unlikely(opt->optlen))
1590		ip_forward_options(skb);
1591
1592	return dst_output(skb);
1593}
1594
1595/*
1596 *	Processing handlers for ipmr_forward
1597 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598
1599static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1600			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1601{
1602	const struct iphdr *iph = ip_hdr(skb);
1603	struct vif_device *vif = &mrt->vif_table[vifi];
 
1604	struct net_device *dev;
1605	struct rtable *rt;
1606	struct flowi4 fl4;
1607	int    encap = 0;
1608
1609	if (vif->dev == NULL)
 
1610		goto out_free;
1611
1612#ifdef CONFIG_IP_PIMSM
1613	if (vif->flags & VIFF_REGISTER) {
1614		vif->pkt_out++;
1615		vif->bytes_out += skb->len;
1616		vif->dev->stats.tx_bytes += skb->len;
1617		vif->dev->stats.tx_packets++;
1618		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1619		goto out_free;
1620	}
1621#endif
 
 
1622
1623	if (vif->flags & VIFF_TUNNEL) {
1624		rt = ip_route_output_ports(net, &fl4, NULL,
1625					   vif->remote, vif->local,
1626					   0, 0,
1627					   IPPROTO_IPIP,
1628					   RT_TOS(iph->tos), vif->link);
1629		if (IS_ERR(rt))
1630			goto out_free;
1631		encap = sizeof(struct iphdr);
1632	} else {
1633		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1634					   0, 0,
1635					   IPPROTO_IPIP,
1636					   RT_TOS(iph->tos), vif->link);
1637		if (IS_ERR(rt))
1638			goto out_free;
1639	}
1640
1641	dev = rt->dst.dev;
1642
1643	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1644		/* Do not fragment multicasts. Alas, IPv4 does not
1645		 * allow to send ICMP, so that packets will disappear
1646		 * to blackhole.
1647		 */
1648
1649		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1650		ip_rt_put(rt);
1651		goto out_free;
1652	}
1653
1654	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1655
1656	if (skb_cow(skb, encap)) {
1657		ip_rt_put(rt);
1658		goto out_free;
1659	}
1660
1661	vif->pkt_out++;
1662	vif->bytes_out += skb->len;
1663
1664	skb_dst_drop(skb);
1665	skb_dst_set(skb, &rt->dst);
1666	ip_decrease_ttl(ip_hdr(skb));
1667
1668	/* FIXME: forward and output firewalls used to be called here.
1669	 * What do we do with netfilter? -- RR
1670	 */
1671	if (vif->flags & VIFF_TUNNEL) {
1672		ip_encap(skb, vif->local, vif->remote);
1673		/* FIXME: extra output firewall step used to be here. --RR */
1674		vif->dev->stats.tx_packets++;
1675		vif->dev->stats.tx_bytes += skb->len;
1676	}
1677
1678	IPCB(skb)->flags |= IPSKB_FORWARDED;
1679
1680	/*
1681	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1682	 * not only before forwarding, but after forwarding on all output
1683	 * interfaces. It is clear, if mrouter runs a multicasting
1684	 * program, it should receive packets not depending to what interface
1685	 * program is joined.
1686	 * If we will not make it, the program will have to join on all
1687	 * interfaces. On the other hand, multihoming host (or router, but
1688	 * not mrouter) cannot join to more than one interface - it will
1689	 * result in receiving multiple packets.
1690	 */
1691	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
 
1692		ipmr_forward_finish);
1693	return;
1694
1695out_free:
1696	kfree_skb(skb);
1697}
1698
1699static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
 
1700{
1701	int ct;
1702
1703	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1704		if (mrt->vif_table[ct].dev == dev)
1705			break;
1706	}
1707	return ct;
1708}
1709
1710/* "local" means that we should preserve one skb (for local delivery) */
1711
1712static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1713			 struct sk_buff *skb, struct mfc_cache *cache,
1714			 int local)
1715{
 
1716	int psend = -1;
1717	int vif, ct;
1718
1719	vif = cache->mfc_parent;
1720	cache->mfc_un.res.pkt++;
1721	cache->mfc_un.res.bytes += skb->len;
 
1722
1723	/*
1724	 * Wrong interface: drop packet and (maybe) send PIM assert.
1725	 */
1726	if (mrt->vif_table[vif].dev != skb->dev) {
1727		int true_vifi;
 
 
 
 
 
 
1728
 
 
1729		if (rt_is_output_route(skb_rtable(skb))) {
1730			/* It is our own packet, looped back.
1731			 * Very complicated situation...
1732			 *
1733			 * The best workaround until routing daemons will be
1734			 * fixed is not to redistribute packet, if it was
1735			 * send through wrong interface. It means, that
1736			 * multicast applications WILL NOT work for
1737			 * (S,G), which have default multicast route pointing
1738			 * to wrong oif. In any case, it is not a good
1739			 * idea to use multicasting applications on router.
1740			 */
1741			goto dont_forward;
1742		}
1743
1744		cache->mfc_un.res.wrong_if++;
1745		true_vifi = ipmr_find_vif(mrt, skb->dev);
1746
1747		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1748		    /* pimsm uses asserts, when switching from RPT to SPT,
1749		     * so that we cannot check that packet arrived on an oif.
1750		     * It is bad, but otherwise we would need to move pretty
1751		     * large chunk of pimd to kernel. Ough... --ANK
1752		     */
1753		    (mrt->mroute_do_pim ||
1754		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1755		    time_after(jiffies,
1756			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1757			cache->mfc_un.res.last_assert = jiffies;
 
1758			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
 
 
 
1759		}
1760		goto dont_forward;
1761	}
1762
1763	mrt->vif_table[vif].pkt_in++;
1764	mrt->vif_table[vif].bytes_in += skb->len;
1765
1766	/*
1767	 *	Forward the frame
1768	 */
1769	for (ct = cache->mfc_un.res.maxvif - 1;
1770	     ct >= cache->mfc_un.res.minvif; ct--) {
1771		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772			if (psend != -1) {
1773				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1774
1775				if (skb2)
1776					ipmr_queue_xmit(net, mrt, skb2, cache,
1777							psend);
1778			}
1779			psend = ct;
1780		}
1781	}
 
1782	if (psend != -1) {
1783		if (local) {
1784			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1785
1786			if (skb2)
1787				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
 
1788		} else {
1789			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1790			return 0;
1791		}
1792	}
1793
1794dont_forward:
1795	if (!local)
1796		kfree_skb(skb);
1797	return 0;
1798}
1799
1800static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1801{
1802	struct rtable *rt = skb_rtable(skb);
1803	struct iphdr *iph = ip_hdr(skb);
1804	struct flowi4 fl4 = {
1805		.daddr = iph->daddr,
1806		.saddr = iph->saddr,
1807		.flowi4_tos = RT_TOS(iph->tos),
1808		.flowi4_oif = rt->rt_oif,
1809		.flowi4_iif = rt->rt_iif,
1810		.flowi4_mark = rt->rt_mark,
 
 
 
1811	};
1812	struct mr_table *mrt;
1813	int err;
1814
1815	err = ipmr_fib_lookup(net, &fl4, &mrt);
1816	if (err)
1817		return ERR_PTR(err);
1818	return mrt;
1819}
1820
1821/*
1822 *	Multicast packets for forwarding arrive here
1823 *	Called with rcu_read_lock();
1824 */
1825
1826int ip_mr_input(struct sk_buff *skb)
1827{
1828	struct mfc_cache *cache;
1829	struct net *net = dev_net(skb->dev);
1830	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1831	struct mr_table *mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832
1833	/* Packet is looped back after forward, it should not be
1834	 * forwarded second time, but still can be delivered locally.
1835	 */
1836	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1837		goto dont_forward;
1838
1839	mrt = ipmr_rt_fib_lookup(net, skb);
1840	if (IS_ERR(mrt)) {
1841		kfree_skb(skb);
1842		return PTR_ERR(mrt);
1843	}
1844	if (!local) {
1845		if (IPCB(skb)->opt.router_alert) {
1846			if (ip_call_ra_chain(skb))
1847				return 0;
1848		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1849			/* IGMPv1 (and broken IGMPv2 implementations sort of
1850			 * Cisco IOS <= 11.2(8)) do not put router alert
1851			 * option to IGMP packets destined to routable
1852			 * groups. It is very bad, because it means
1853			 * that we can forward NO IGMP messages.
1854			 */
1855			struct sock *mroute_sk;
1856
1857			mroute_sk = rcu_dereference(mrt->mroute_sk);
1858			if (mroute_sk) {
1859				nf_reset(skb);
1860				raw_rcv(mroute_sk, skb);
1861				return 0;
1862			}
1863		    }
1864	}
1865
1866	/* already under rcu_read_lock() */
1867	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
 
 
1868
1869	/*
1870	 *	No usable cache entry
1871	 */
1872	if (cache == NULL) {
 
 
 
1873		int vif;
1874
1875		if (local) {
1876			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1877			ip_local_deliver(skb);
1878			if (skb2 == NULL)
1879				return -ENOBUFS;
1880			skb = skb2;
1881		}
1882
1883		read_lock(&mrt_lock);
1884		vif = ipmr_find_vif(mrt, skb->dev);
1885		if (vif >= 0) {
1886			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1887			read_unlock(&mrt_lock);
1888
1889			return err2;
1890		}
1891		read_unlock(&mrt_lock);
1892		kfree_skb(skb);
1893		return -ENODEV;
1894	}
1895
1896	read_lock(&mrt_lock);
1897	ip_mr_forward(net, mrt, skb, cache, local);
1898	read_unlock(&mrt_lock);
1899
1900	if (local)
1901		return ip_local_deliver(skb);
1902
1903	return 0;
1904
1905dont_forward:
1906	if (local)
1907		return ip_local_deliver(skb);
1908	kfree_skb(skb);
1909	return 0;
1910}
1911
1912#ifdef CONFIG_IP_PIMSM
1913/* called with rcu_read_lock() */
1914static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1915		     unsigned int pimlen)
1916{
1917	struct net_device *reg_dev = NULL;
1918	struct iphdr *encap;
1919
1920	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1921	/*
1922	 * Check that:
1923	 * a. packet is really sent to a multicast group
1924	 * b. packet is not a NULL-REGISTER
1925	 * c. packet is not truncated
1926	 */
1927	if (!ipv4_is_multicast(encap->daddr) ||
1928	    encap->tot_len == 0 ||
1929	    ntohs(encap->tot_len) + pimlen > skb->len)
1930		return 1;
1931
1932	read_lock(&mrt_lock);
1933	if (mrt->mroute_reg_vif_num >= 0)
1934		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1935	read_unlock(&mrt_lock);
1936
1937	if (reg_dev == NULL)
1938		return 1;
1939
1940	skb->mac_header = skb->network_header;
1941	skb_pull(skb, (u8 *)encap - skb->data);
1942	skb_reset_network_header(skb);
1943	skb->protocol = htons(ETH_P_IP);
1944	skb->ip_summed = CHECKSUM_NONE;
1945	skb->pkt_type = PACKET_HOST;
1946
1947	skb_tunnel_rx(skb, reg_dev);
1948
1949	netif_rx(skb);
1950
1951	return NET_RX_SUCCESS;
1952}
1953#endif
1954
1955#ifdef CONFIG_IP_PIMSM_V1
1956/*
1957 * Handle IGMP messages of PIMv1
1958 */
1959
1960int pim_rcv_v1(struct sk_buff *skb)
1961{
1962	struct igmphdr *pim;
1963	struct net *net = dev_net(skb->dev);
1964	struct mr_table *mrt;
1965
1966	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1967		goto drop;
1968
1969	pim = igmp_hdr(skb);
1970
1971	mrt = ipmr_rt_fib_lookup(net, skb);
1972	if (IS_ERR(mrt))
1973		goto drop;
1974	if (!mrt->mroute_do_pim ||
1975	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1976		goto drop;
1977
1978	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1979drop:
1980		kfree_skb(skb);
1981	}
1982	return 0;
1983}
1984#endif
1985
1986#ifdef CONFIG_IP_PIMSM_V2
1987static int pim_rcv(struct sk_buff *skb)
1988{
1989	struct pimreghdr *pim;
1990	struct net *net = dev_net(skb->dev);
1991	struct mr_table *mrt;
1992
1993	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1994		goto drop;
1995
1996	pim = (struct pimreghdr *)skb_transport_header(skb);
1997	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1998	    (pim->flags & PIM_NULL_REGISTER) ||
1999	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2000	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2001		goto drop;
2002
2003	mrt = ipmr_rt_fib_lookup(net, skb);
2004	if (IS_ERR(mrt))
2005		goto drop;
2006	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2007drop:
2008		kfree_skb(skb);
2009	}
2010	return 0;
2011}
2012#endif
2013
2014static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2015			      struct mfc_cache *c, struct rtmsg *rtm)
2016{
2017	int ct;
2018	struct rtnexthop *nhp;
2019	u8 *b = skb_tail_pointer(skb);
2020	struct rtattr *mp_head;
2021
2022	/* If cache is unresolved, don't try to parse IIF and OIF */
2023	if (c->mfc_parent >= MAXVIFS)
2024		return -ENOENT;
2025
2026	if (VIF_EXISTS(mrt, c->mfc_parent))
2027		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2028
2029	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2030
2031	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2032		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2033			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2034				goto rtattr_failure;
2035			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2036			nhp->rtnh_flags = 0;
2037			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2038			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2039			nhp->rtnh_len = sizeof(*nhp);
2040		}
2041	}
2042	mp_head->rta_type = RTA_MULTIPATH;
2043	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2044	rtm->rtm_type = RTN_MULTICAST;
2045	return 1;
2046
2047rtattr_failure:
2048	nlmsg_trim(skb, b);
2049	return -EMSGSIZE;
2050}
2051
2052int ipmr_get_route(struct net *net, struct sk_buff *skb,
2053		   __be32 saddr, __be32 daddr,
2054		   struct rtmsg *rtm, int nowait)
2055{
2056	struct mfc_cache *cache;
2057	struct mr_table *mrt;
2058	int err;
2059
2060	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2061	if (mrt == NULL)
2062		return -ENOENT;
2063
2064	rcu_read_lock();
2065	cache = ipmr_cache_find(mrt, saddr, daddr);
 
 
2066
2067	if (cache == NULL) {
 
 
 
2068		struct sk_buff *skb2;
2069		struct iphdr *iph;
2070		struct net_device *dev;
2071		int vif = -1;
2072
2073		if (nowait) {
2074			rcu_read_unlock();
2075			return -EAGAIN;
2076		}
2077
2078		dev = skb->dev;
2079		read_lock(&mrt_lock);
2080		if (dev)
2081			vif = ipmr_find_vif(mrt, dev);
2082		if (vif < 0) {
2083			read_unlock(&mrt_lock);
2084			rcu_read_unlock();
2085			return -ENODEV;
2086		}
2087		skb2 = skb_clone(skb, GFP_ATOMIC);
 
2088		if (!skb2) {
2089			read_unlock(&mrt_lock);
2090			rcu_read_unlock();
2091			return -ENOMEM;
2092		}
2093
 
2094		skb_push(skb2, sizeof(struct iphdr));
2095		skb_reset_network_header(skb2);
2096		iph = ip_hdr(skb2);
2097		iph->ihl = sizeof(struct iphdr) >> 2;
2098		iph->saddr = saddr;
2099		iph->daddr = daddr;
2100		iph->version = 0;
2101		err = ipmr_cache_unresolved(mrt, vif, skb2);
2102		read_unlock(&mrt_lock);
2103		rcu_read_unlock();
2104		return err;
2105	}
2106
2107	read_lock(&mrt_lock);
2108	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2109		cache->mfc_flags |= MFC_NOTIFY;
2110	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2111	read_unlock(&mrt_lock);
2112	rcu_read_unlock();
2113	return err;
2114}
2115
2116static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2117			    u32 pid, u32 seq, struct mfc_cache *c)
 
2118{
2119	struct nlmsghdr *nlh;
2120	struct rtmsg *rtm;
 
2121
2122	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2123	if (nlh == NULL)
2124		return -EMSGSIZE;
2125
2126	rtm = nlmsg_data(nlh);
2127	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2128	rtm->rtm_dst_len  = 32;
2129	rtm->rtm_src_len  = 32;
2130	rtm->rtm_tos      = 0;
2131	rtm->rtm_table    = mrt->id;
2132	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2133		goto nla_put_failure;
2134	rtm->rtm_type     = RTN_MULTICAST;
2135	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2136	rtm->rtm_protocol = RTPROT_UNSPEC;
 
 
 
2137	rtm->rtm_flags    = 0;
2138
2139	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2140	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2141		goto nla_put_failure;
2142	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
 
 
2143		goto nla_put_failure;
2144
2145	return nlmsg_end(skb, nlh);
 
2146
2147nla_put_failure:
2148	nlmsg_cancel(skb, nlh);
2149	return -EMSGSIZE;
2150}
2151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2153{
2154	struct net *net = sock_net(skb->sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155	struct mr_table *mrt;
2156	struct mfc_cache *mfc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157	unsigned int t = 0, s_t;
2158	unsigned int h = 0, s_h;
2159	unsigned int e = 0, s_e;
 
 
 
 
 
 
 
 
2160
2161	s_t = cb->args[0];
2162	s_h = cb->args[1];
2163	s_e = cb->args[2];
2164
2165	rcu_read_lock();
2166	ipmr_for_each_table(mrt, net) {
 
 
 
 
2167		if (t < s_t)
2168			goto next_table;
2169		if (t > s_t)
2170			s_h = 0;
2171		for (h = s_h; h < MFC_LINES; h++) {
2172			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2173				if (e < s_e)
2174					goto next_entry;
2175				if (ipmr_fill_mroute(mrt, skb,
2176						     NETLINK_CB(cb->skb).pid,
2177						     cb->nlh->nlmsg_seq,
2178						     mfc) < 0)
2179					goto done;
2180next_entry:
2181				e++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182			}
2183			e = s_e = 0;
 
2184		}
2185		s_h = 0;
2186next_table:
 
 
 
 
2187		t++;
2188	}
2189done:
2190	rcu_read_unlock();
2191
2192	cb->args[2] = e;
2193	cb->args[1] = h;
2194	cb->args[0] = t;
2195
2196	return skb->len;
2197}
2198
2199#ifdef CONFIG_PROC_FS
2200/*
2201 *	The /proc interfaces to multicast routing :
2202 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2203 */
2204struct ipmr_vif_iter {
2205	struct seq_net_private p;
2206	struct mr_table *mrt;
2207	int ct;
2208};
2209
2210static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2211					   struct ipmr_vif_iter *iter,
2212					   loff_t pos)
2213{
2214	struct mr_table *mrt = iter->mrt;
2215
2216	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2217		if (!VIF_EXISTS(mrt, iter->ct))
2218			continue;
2219		if (pos-- == 0)
2220			return &mrt->vif_table[iter->ct];
2221	}
2222	return NULL;
2223}
2224
2225static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2226	__acquires(mrt_lock)
2227{
2228	struct ipmr_vif_iter *iter = seq->private;
2229	struct net *net = seq_file_net(seq);
2230	struct mr_table *mrt;
2231
2232	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2233	if (mrt == NULL)
2234		return ERR_PTR(-ENOENT);
2235
2236	iter->mrt = mrt;
2237
2238	read_lock(&mrt_lock);
2239	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2240		: SEQ_START_TOKEN;
2241}
2242
2243static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244{
2245	struct ipmr_vif_iter *iter = seq->private;
2246	struct net *net = seq_file_net(seq);
2247	struct mr_table *mrt = iter->mrt;
2248
2249	++*pos;
2250	if (v == SEQ_START_TOKEN)
2251		return ipmr_vif_seq_idx(net, iter, 0);
2252
2253	while (++iter->ct < mrt->maxvif) {
2254		if (!VIF_EXISTS(mrt, iter->ct))
2255			continue;
2256		return &mrt->vif_table[iter->ct];
2257	}
2258	return NULL;
2259}
2260
2261static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2262	__releases(mrt_lock)
2263{
2264	read_unlock(&mrt_lock);
2265}
2266
2267static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2268{
2269	struct ipmr_vif_iter *iter = seq->private;
2270	struct mr_table *mrt = iter->mrt;
2271
2272	if (v == SEQ_START_TOKEN) {
2273		seq_puts(seq,
2274			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2275	} else {
2276		const struct vif_device *vif = v;
2277		const char *name =  vif->dev ? vif->dev->name : "none";
 
2278
 
 
2279		seq_printf(seq,
2280			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2281			   vif - mrt->vif_table,
2282			   name, vif->bytes_in, vif->pkt_in,
2283			   vif->bytes_out, vif->pkt_out,
2284			   vif->flags, vif->local, vif->remote);
2285	}
2286	return 0;
2287}
2288
2289static const struct seq_operations ipmr_vif_seq_ops = {
2290	.start = ipmr_vif_seq_start,
2291	.next  = ipmr_vif_seq_next,
2292	.stop  = ipmr_vif_seq_stop,
2293	.show  = ipmr_vif_seq_show,
2294};
2295
2296static int ipmr_vif_open(struct inode *inode, struct file *file)
2297{
2298	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2299			    sizeof(struct ipmr_vif_iter));
2300}
2301
2302static const struct file_operations ipmr_vif_fops = {
2303	.owner	 = THIS_MODULE,
2304	.open    = ipmr_vif_open,
2305	.read    = seq_read,
2306	.llseek  = seq_lseek,
2307	.release = seq_release_net,
2308};
2309
2310struct ipmr_mfc_iter {
2311	struct seq_net_private p;
2312	struct mr_table *mrt;
2313	struct list_head *cache;
2314	int ct;
2315};
2316
2317
2318static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2319					  struct ipmr_mfc_iter *it, loff_t pos)
2320{
2321	struct mr_table *mrt = it->mrt;
2322	struct mfc_cache *mfc;
2323
2324	rcu_read_lock();
2325	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2326		it->cache = &mrt->mfc_cache_array[it->ct];
2327		list_for_each_entry_rcu(mfc, it->cache, list)
2328			if (pos-- == 0)
2329				return mfc;
2330	}
2331	rcu_read_unlock();
2332
2333	spin_lock_bh(&mfc_unres_lock);
2334	it->cache = &mrt->mfc_unres_queue;
2335	list_for_each_entry(mfc, it->cache, list)
2336		if (pos-- == 0)
2337			return mfc;
2338	spin_unlock_bh(&mfc_unres_lock);
2339
2340	it->cache = NULL;
2341	return NULL;
2342}
2343
2344
2345static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2346{
2347	struct ipmr_mfc_iter *it = seq->private;
2348	struct net *net = seq_file_net(seq);
2349	struct mr_table *mrt;
2350
2351	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2352	if (mrt == NULL)
2353		return ERR_PTR(-ENOENT);
2354
2355	it->mrt = mrt;
2356	it->cache = NULL;
2357	it->ct = 0;
2358	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2359		: SEQ_START_TOKEN;
2360}
2361
2362static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2363{
2364	struct mfc_cache *mfc = v;
2365	struct ipmr_mfc_iter *it = seq->private;
2366	struct net *net = seq_file_net(seq);
2367	struct mr_table *mrt = it->mrt;
2368
2369	++*pos;
2370
2371	if (v == SEQ_START_TOKEN)
2372		return ipmr_mfc_seq_idx(net, seq->private, 0);
2373
2374	if (mfc->list.next != it->cache)
2375		return list_entry(mfc->list.next, struct mfc_cache, list);
2376
2377	if (it->cache == &mrt->mfc_unres_queue)
2378		goto end_of_list;
2379
2380	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2381
2382	while (++it->ct < MFC_LINES) {
2383		it->cache = &mrt->mfc_cache_array[it->ct];
2384		if (list_empty(it->cache))
2385			continue;
2386		return list_first_entry(it->cache, struct mfc_cache, list);
2387	}
2388
2389	/* exhausted cache_array, show unresolved */
2390	rcu_read_unlock();
2391	it->cache = &mrt->mfc_unres_queue;
2392	it->ct = 0;
2393
2394	spin_lock_bh(&mfc_unres_lock);
2395	if (!list_empty(it->cache))
2396		return list_first_entry(it->cache, struct mfc_cache, list);
2397
2398end_of_list:
2399	spin_unlock_bh(&mfc_unres_lock);
2400	it->cache = NULL;
2401
2402	return NULL;
2403}
2404
2405static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2406{
2407	struct ipmr_mfc_iter *it = seq->private;
2408	struct mr_table *mrt = it->mrt;
2409
2410	if (it->cache == &mrt->mfc_unres_queue)
2411		spin_unlock_bh(&mfc_unres_lock);
2412	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2413		rcu_read_unlock();
2414}
2415
2416static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2417{
2418	int n;
2419
2420	if (v == SEQ_START_TOKEN) {
2421		seq_puts(seq,
2422		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2423	} else {
2424		const struct mfc_cache *mfc = v;
2425		const struct ipmr_mfc_iter *it = seq->private;
2426		const struct mr_table *mrt = it->mrt;
2427
2428		seq_printf(seq, "%08X %08X %-3hd",
2429			   (__force u32) mfc->mfc_mcastgrp,
2430			   (__force u32) mfc->mfc_origin,
2431			   mfc->mfc_parent);
2432
2433		if (it->cache != &mrt->mfc_unres_queue) {
2434			seq_printf(seq, " %8lu %8lu %8lu",
2435				   mfc->mfc_un.res.pkt,
2436				   mfc->mfc_un.res.bytes,
2437				   mfc->mfc_un.res.wrong_if);
2438			for (n = mfc->mfc_un.res.minvif;
2439			     n < mfc->mfc_un.res.maxvif; n++) {
2440				if (VIF_EXISTS(mrt, n) &&
2441				    mfc->mfc_un.res.ttls[n] < 255)
2442					seq_printf(seq,
2443					   " %2d:%-3d",
2444					   n, mfc->mfc_un.res.ttls[n]);
2445			}
2446		} else {
2447			/* unresolved mfc_caches don't contain
2448			 * pkt, bytes and wrong_if values
2449			 */
2450			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2451		}
2452		seq_putc(seq, '\n');
2453	}
2454	return 0;
2455}
2456
2457static const struct seq_operations ipmr_mfc_seq_ops = {
2458	.start = ipmr_mfc_seq_start,
2459	.next  = ipmr_mfc_seq_next,
2460	.stop  = ipmr_mfc_seq_stop,
2461	.show  = ipmr_mfc_seq_show,
2462};
2463
2464static int ipmr_mfc_open(struct inode *inode, struct file *file)
2465{
2466	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2467			    sizeof(struct ipmr_mfc_iter));
2468}
2469
2470static const struct file_operations ipmr_mfc_fops = {
2471	.owner	 = THIS_MODULE,
2472	.open    = ipmr_mfc_open,
2473	.read    = seq_read,
2474	.llseek  = seq_lseek,
2475	.release = seq_release_net,
2476};
2477#endif
2478
2479#ifdef CONFIG_IP_PIMSM_V2
2480static const struct net_protocol pim_protocol = {
2481	.handler	=	pim_rcv,
2482	.netns_ok	=	1,
2483};
2484#endif
2485
 
 
 
2486
2487/*
2488 *	Setup for IP multicast routing
2489 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2490static int __net_init ipmr_net_init(struct net *net)
2491{
2492	int err;
2493
 
 
 
 
2494	err = ipmr_rules_init(net);
2495	if (err < 0)
2496		goto fail;
2497
2498#ifdef CONFIG_PROC_FS
2499	err = -ENOMEM;
2500	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
 
2501		goto proc_vif_fail;
2502	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
 
2503		goto proc_cache_fail;
2504#endif
2505	return 0;
2506
2507#ifdef CONFIG_PROC_FS
2508proc_cache_fail:
2509	proc_net_remove(net, "ip_mr_vif");
2510proc_vif_fail:
 
2511	ipmr_rules_exit(net);
 
2512#endif
2513fail:
 
 
2514	return err;
2515}
2516
2517static void __net_exit ipmr_net_exit(struct net *net)
2518{
2519#ifdef CONFIG_PROC_FS
2520	proc_net_remove(net, "ip_mr_cache");
2521	proc_net_remove(net, "ip_mr_vif");
2522#endif
2523	ipmr_rules_exit(net);
 
 
 
 
 
 
 
 
 
 
2524}
2525
2526static struct pernet_operations ipmr_net_ops = {
2527	.init = ipmr_net_init,
2528	.exit = ipmr_net_exit,
 
2529};
2530
2531int __init ip_mr_init(void)
2532{
2533	int err;
2534
2535	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2536				       sizeof(struct mfc_cache),
2537				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2538				       NULL);
2539	if (!mrt_cachep)
2540		return -ENOMEM;
2541
2542	err = register_pernet_subsys(&ipmr_net_ops);
2543	if (err)
2544		goto reg_pernet_fail;
2545
2546	err = register_netdevice_notifier(&ip_mr_notifier);
2547	if (err)
2548		goto reg_notif_fail;
2549#ifdef CONFIG_IP_PIMSM_V2
2550	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2551		pr_err("%s: can't add PIM protocol\n", __func__);
2552		err = -EAGAIN;
2553		goto add_proto_fail;
2554	}
2555#endif
2556	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2557		      NULL, ipmr_rtm_dumproute, NULL);
 
 
 
 
 
 
 
2558	return 0;
2559
2560#ifdef CONFIG_IP_PIMSM_V2
2561add_proto_fail:
2562	unregister_netdevice_notifier(&ip_mr_notifier);
2563#endif
2564reg_notif_fail:
2565	unregister_pernet_subsys(&ipmr_net_ops);
2566reg_pernet_fail:
2567	kmem_cache_destroy(mrt_cachep);
2568	return err;
2569}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	IP multicast routing support for mrouted 3.6/3.8
   4 *
   5 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   6 *	  Linux Consultancy and Custom Driver Development
   7 *
 
 
 
 
 
   8 *	Fixes:
   9 *	Michael Chastain	:	Incorrect size of copying.
  10 *	Alan Cox		:	Added the cache manager code
  11 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  12 *	Mike McLagan		:	Routing by source
  13 *	Malcolm Beattie		:	Buffer handling fixes.
  14 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  15 *	SVR Anand		:	Fixed several multicast bugs and problems.
  16 *	Alexey Kuznetsov	:	Status, optimisations and more.
  17 *	Brad Parker		:	Better behaviour on mrouted upcall
  18 *					overflow.
  19 *      Carlos Picoto           :       PIMv1 Support
  20 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  21 *					Relax this requirement to work with older peers.
 
  22 */
  23
  24#include <linux/uaccess.h>
  25#include <linux/types.h>
  26#include <linux/cache.h>
  27#include <linux/capability.h>
  28#include <linux/errno.h>
 
  29#include <linux/mm.h>
  30#include <linux/kernel.h>
  31#include <linux/fcntl.h>
  32#include <linux/stat.h>
  33#include <linux/socket.h>
  34#include <linux/in.h>
  35#include <linux/inet.h>
  36#include <linux/netdevice.h>
  37#include <linux/inetdevice.h>
  38#include <linux/igmp.h>
  39#include <linux/proc_fs.h>
  40#include <linux/seq_file.h>
  41#include <linux/mroute.h>
  42#include <linux/init.h>
  43#include <linux/if_ether.h>
  44#include <linux/slab.h>
  45#include <net/net_namespace.h>
  46#include <net/ip.h>
  47#include <net/protocol.h>
  48#include <linux/skbuff.h>
  49#include <net/route.h>
 
  50#include <net/icmp.h>
  51#include <net/udp.h>
  52#include <net/raw.h>
  53#include <linux/notifier.h>
  54#include <linux/if_arp.h>
  55#include <linux/netfilter_ipv4.h>
  56#include <linux/compat.h>
  57#include <linux/export.h>
  58#include <linux/rhashtable.h>
  59#include <net/ip_tunnels.h>
  60#include <net/checksum.h>
  61#include <net/netlink.h>
  62#include <net/fib_rules.h>
  63#include <linux/netconf.h>
  64#include <net/rtnh.h>
  65
  66#include <linux/nospec.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68struct ipmr_rule {
  69	struct fib_rule		common;
  70};
  71
  72struct ipmr_result {
  73	struct mr_table		*mrt;
  74};
  75
  76/* Big lock, protecting vif table, mrt cache and mroute socket state.
  77 * Note that the changes are semaphored via rtnl_lock.
  78 */
  79
  80static DEFINE_SPINLOCK(mrt_lock);
  81
  82static struct net_device *vif_dev_read(const struct vif_device *vif)
  83{
  84	return rcu_dereference(vif->dev);
  85}
  86
  87/* Multicast router control variables */
  88
  89/* Special spinlock for queue of unresolved entries */
  90static DEFINE_SPINLOCK(mfc_unres_lock);
  91
  92/* We return to original Alan's scheme. Hash table of resolved
  93 * entries is changed only in process context and protected
  94 * with weak lock mrt_lock. Queue of unresolved entries is protected
  95 * with strong spinlock mfc_unres_lock.
  96 *
  97 * In this case data path is free of exclusive locks at all.
  98 */
  99
 100static struct kmem_cache *mrt_cachep __ro_after_init;
 101
 102static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 103static void ipmr_free_table(struct mr_table *mrt);
 104
 105static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 106			  struct net_device *dev, struct sk_buff *skb,
 107			  struct mfc_cache *cache, int local);
 108static int ipmr_cache_report(const struct mr_table *mrt,
 109			     struct sk_buff *pkt, vifi_t vifi, int assert);
 110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 111				 int cmd);
 112static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
 113static void mroute_clean_tables(struct mr_table *mrt, int flags);
 114static void ipmr_expire_process(struct timer_list *t);
 115
 116#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 117#define ipmr_for_each_table(mrt, net)					\
 118	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
 119				lockdep_rtnl_is_held() ||		\
 120				list_empty(&net->ipv4.mr_tables))
 121
 122static struct mr_table *ipmr_mr_table_iter(struct net *net,
 123					   struct mr_table *mrt)
 124{
 125	struct mr_table *ret;
 126
 127	if (!mrt)
 128		ret = list_entry_rcu(net->ipv4.mr_tables.next,
 129				     struct mr_table, list);
 130	else
 131		ret = list_entry_rcu(mrt->list.next,
 132				     struct mr_table, list);
 133
 134	if (&ret->list == &net->ipv4.mr_tables)
 135		return NULL;
 136	return ret;
 137}
 138
 139static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 140{
 141	struct mr_table *mrt;
 142
 143	ipmr_for_each_table(mrt, net) {
 144		if (mrt->id == id)
 145			return mrt;
 146	}
 147	return NULL;
 148}
 149
 150static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 151			   struct mr_table **mrt)
 152{
 
 
 153	int err;
 154	struct ipmr_result res;
 155	struct fib_lookup_arg arg = {
 156		.result = &res,
 157		.flags = FIB_LOOKUP_NOREF,
 158	};
 159
 160	/* update flow if oif or iif point to device enslaved to l3mdev */
 161	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
 162
 163	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 164			       flowi4_to_flowi(flp4), 0, &arg);
 165	if (err < 0)
 166		return err;
 167	*mrt = res.mrt;
 168	return 0;
 169}
 170
 171static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 172			    int flags, struct fib_lookup_arg *arg)
 173{
 174	struct ipmr_result *res = arg->result;
 175	struct mr_table *mrt;
 176
 177	switch (rule->action) {
 178	case FR_ACT_TO_TBL:
 179		break;
 180	case FR_ACT_UNREACHABLE:
 181		return -ENETUNREACH;
 182	case FR_ACT_PROHIBIT:
 183		return -EACCES;
 184	case FR_ACT_BLACKHOLE:
 185	default:
 186		return -EINVAL;
 187	}
 188
 189	arg->table = fib_rule_get_table(rule, arg);
 190
 191	mrt = ipmr_get_table(rule->fr_net, arg->table);
 192	if (!mrt)
 193		return -EAGAIN;
 194	res->mrt = mrt;
 195	return 0;
 196}
 197
 198static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 199{
 200	return 1;
 201}
 202
 
 
 
 
 203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 204			       struct fib_rule_hdr *frh, struct nlattr **tb,
 205			       struct netlink_ext_ack *extack)
 206{
 207	return 0;
 208}
 209
 210static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 211			     struct nlattr **tb)
 212{
 213	return 1;
 214}
 215
 216static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 217			  struct fib_rule_hdr *frh)
 218{
 219	frh->dst_len = 0;
 220	frh->src_len = 0;
 221	frh->tos     = 0;
 222	return 0;
 223}
 224
 225static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 226	.family		= RTNL_FAMILY_IPMR,
 227	.rule_size	= sizeof(struct ipmr_rule),
 228	.addr_size	= sizeof(u32),
 229	.action		= ipmr_rule_action,
 230	.match		= ipmr_rule_match,
 231	.configure	= ipmr_rule_configure,
 232	.compare	= ipmr_rule_compare,
 
 233	.fill		= ipmr_rule_fill,
 234	.nlgroup	= RTNLGRP_IPV4_RULE,
 
 235	.owner		= THIS_MODULE,
 236};
 237
 238static int __net_init ipmr_rules_init(struct net *net)
 239{
 240	struct fib_rules_ops *ops;
 241	struct mr_table *mrt;
 242	int err;
 243
 244	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 245	if (IS_ERR(ops))
 246		return PTR_ERR(ops);
 247
 248	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 249
 250	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 251	if (IS_ERR(mrt)) {
 252		err = PTR_ERR(mrt);
 253		goto err1;
 254	}
 255
 256	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
 257	if (err < 0)
 258		goto err2;
 259
 260	net->ipv4.mr_rules_ops = ops;
 261	return 0;
 262
 263err2:
 264	rtnl_lock();
 265	ipmr_free_table(mrt);
 266	rtnl_unlock();
 267err1:
 268	fib_rules_unregister(ops);
 269	return err;
 270}
 271
 272static void __net_exit ipmr_rules_exit(struct net *net)
 273{
 274	struct mr_table *mrt, *next;
 275
 276	ASSERT_RTNL();
 277	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 278		list_del(&mrt->list);
 279		ipmr_free_table(mrt);
 280	}
 281	fib_rules_unregister(net->ipv4.mr_rules_ops);
 282}
 283
 284static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 285			   struct netlink_ext_ack *extack)
 286{
 287	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
 288}
 289
 290static unsigned int ipmr_rules_seq_read(struct net *net)
 291{
 292	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
 293}
 294
 295bool ipmr_rule_default(const struct fib_rule *rule)
 296{
 297	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
 298}
 299EXPORT_SYMBOL(ipmr_rule_default);
 300#else
 301#define ipmr_for_each_table(mrt, net) \
 302	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 303
 304static struct mr_table *ipmr_mr_table_iter(struct net *net,
 305					   struct mr_table *mrt)
 306{
 307	if (!mrt)
 308		return net->ipv4.mrt;
 309	return NULL;
 310}
 311
 312static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 313{
 314	return net->ipv4.mrt;
 315}
 316
 317static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 318			   struct mr_table **mrt)
 319{
 320	*mrt = net->ipv4.mrt;
 321	return 0;
 322}
 323
 324static int __net_init ipmr_rules_init(struct net *net)
 325{
 326	struct mr_table *mrt;
 327
 328	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 329	if (IS_ERR(mrt))
 330		return PTR_ERR(mrt);
 331	net->ipv4.mrt = mrt;
 332	return 0;
 333}
 334
 335static void __net_exit ipmr_rules_exit(struct net *net)
 336{
 337	ASSERT_RTNL();
 338	ipmr_free_table(net->ipv4.mrt);
 339	net->ipv4.mrt = NULL;
 340}
 
 341
 342static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 343			   struct netlink_ext_ack *extack)
 344{
 345	return 0;
 346}
 347
 348static unsigned int ipmr_rules_seq_read(struct net *net)
 349{
 350	return 0;
 351}
 352
 353bool ipmr_rule_default(const struct fib_rule *rule)
 354{
 355	return true;
 356}
 357EXPORT_SYMBOL(ipmr_rule_default);
 358#endif
 359
 360static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
 361				const void *ptr)
 362{
 363	const struct mfc_cache_cmp_arg *cmparg = arg->key;
 364	const struct mfc_cache *c = ptr;
 365
 366	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
 367	       cmparg->mfc_origin != c->mfc_origin;
 368}
 369
 370static const struct rhashtable_params ipmr_rht_params = {
 371	.head_offset = offsetof(struct mr_mfc, mnode),
 372	.key_offset = offsetof(struct mfc_cache, cmparg),
 373	.key_len = sizeof(struct mfc_cache_cmp_arg),
 374	.nelem_hint = 3,
 375	.obj_cmpfn = ipmr_hash_cmp,
 376	.automatic_shrinking = true,
 377};
 378
 379static void ipmr_new_table_set(struct mr_table *mrt,
 380			       struct net *net)
 381{
 382#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 383	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 384#endif
 385}
 386
 387static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
 388	.mfc_mcastgrp = htonl(INADDR_ANY),
 389	.mfc_origin = htonl(INADDR_ANY),
 390};
 391
 392static struct mr_table_ops ipmr_mr_table_ops = {
 393	.rht_params = &ipmr_rht_params,
 394	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
 395};
 396
 397static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 398{
 399	struct mr_table *mrt;
 400
 401	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 402	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 403		return ERR_PTR(-EINVAL);
 404
 405	mrt = ipmr_get_table(net, id);
 406	if (mrt)
 407		return mrt;
 408
 409	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
 410			      ipmr_expire_process, ipmr_new_table_set);
 411}
 412
 413static void ipmr_free_table(struct mr_table *mrt)
 414{
 415	timer_shutdown_sync(&mrt->ipmr_expire_timer);
 416	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
 417				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
 418	rhltable_destroy(&mrt->mfc_hash);
 419	kfree(mrt);
 420}
 421
 422/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 423
 424/* Initialize ipmr pimreg/tunnel in_device */
 425static bool ipmr_init_vif_indev(const struct net_device *dev)
 426{
 427	struct in_device *in_dev;
 428
 429	ASSERT_RTNL();
 430
 431	in_dev = __in_dev_get_rtnl(dev);
 432	if (!in_dev)
 433		return false;
 434	ipv4_devconf_setall(in_dev);
 435	neigh_parms_data_state_setall(in_dev->arp_parms);
 436	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 437
 438	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439}
 440
 441static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 442{
 443	struct net_device *tunnel_dev, *new_dev;
 444	struct ip_tunnel_parm p = { };
 445	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446
 447	tunnel_dev = __dev_get_by_name(net, "tunl0");
 448	if (!tunnel_dev)
 449		goto out;
 450
 451	p.iph.daddr = v->vifc_rmt_addr.s_addr;
 452	p.iph.saddr = v->vifc_lcl_addr.s_addr;
 453	p.iph.version = 4;
 454	p.iph.ihl = 5;
 455	p.iph.protocol = IPPROTO_IPIP;
 456	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 457
 458	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
 459		goto out;
 460	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 461			SIOCADDTUNNEL);
 462	if (err)
 463		goto out;
 464
 465	new_dev = __dev_get_by_name(net, p.name);
 466	if (!new_dev)
 467		goto out;
 
 
 
 468
 469	new_dev->flags |= IFF_MULTICAST;
 470	if (!ipmr_init_vif_indev(new_dev))
 471		goto out_unregister;
 472	if (dev_open(new_dev, NULL))
 473		goto out_unregister;
 474	dev_hold(new_dev);
 475	err = dev_set_allmulti(new_dev, 1);
 476	if (err) {
 477		dev_close(new_dev);
 478		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 479				SIOCDELTUNNEL);
 480		dev_put(new_dev);
 481		new_dev = ERR_PTR(err);
 482	}
 483	return new_dev;
 484
 485out_unregister:
 486	unregister_netdevice(new_dev);
 487out:
 488	return ERR_PTR(-ENOBUFS);
 489}
 490
 491#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 
 492static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 493{
 494	struct net *net = dev_net(dev);
 495	struct mr_table *mrt;
 496	struct flowi4 fl4 = {
 497		.flowi4_oif	= dev->ifindex,
 498		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 499		.flowi4_mark	= skb->mark,
 500	};
 501	int err;
 502
 503	err = ipmr_fib_lookup(net, &fl4, &mrt);
 504	if (err < 0) {
 505		kfree_skb(skb);
 506		return err;
 507	}
 508
 509	DEV_STATS_ADD(dev, tx_bytes, skb->len);
 510	DEV_STATS_INC(dev, tx_packets);
 511	rcu_read_lock();
 512
 513	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
 514	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
 515			  IGMPMSG_WHOLEPKT);
 516
 517	rcu_read_unlock();
 518	kfree_skb(skb);
 519	return NETDEV_TX_OK;
 520}
 521
 522static int reg_vif_get_iflink(const struct net_device *dev)
 523{
 524	return 0;
 525}
 526
 527static const struct net_device_ops reg_vif_netdev_ops = {
 528	.ndo_start_xmit	= reg_vif_xmit,
 529	.ndo_get_iflink = reg_vif_get_iflink,
 530};
 531
 532static void reg_vif_setup(struct net_device *dev)
 533{
 534	dev->type		= ARPHRD_PIMREG;
 535	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 536	dev->flags		= IFF_NOARP;
 537	dev->netdev_ops		= &reg_vif_netdev_ops;
 538	dev->needs_free_netdev	= true;
 539	dev->features		|= NETIF_F_NETNS_LOCAL;
 540}
 541
 542static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 543{
 544	struct net_device *dev;
 
 545	char name[IFNAMSIZ];
 546
 547	if (mrt->id == RT_TABLE_DEFAULT)
 548		sprintf(name, "pimreg");
 549	else
 550		sprintf(name, "pimreg%u", mrt->id);
 551
 552	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 553
 554	if (!dev)
 555		return NULL;
 556
 557	dev_net_set(dev, net);
 558
 559	if (register_netdevice(dev)) {
 560		free_netdev(dev);
 561		return NULL;
 562	}
 
 563
 564	if (!ipmr_init_vif_indev(dev))
 
 
 
 565		goto failure;
 566	if (dev_open(dev, NULL))
 
 
 
 
 
 
 567		goto failure;
 568
 569	dev_hold(dev);
 570
 571	return dev;
 572
 573failure:
 
 
 
 
 574	unregister_netdevice(dev);
 575	return NULL;
 576}
 577
 578/* called with rcu_read_lock() */
 579static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 580		     unsigned int pimlen)
 581{
 582	struct net_device *reg_dev = NULL;
 583	struct iphdr *encap;
 584	int vif_num;
 585
 586	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 587	/* Check that:
 588	 * a. packet is really sent to a multicast group
 589	 * b. packet is not a NULL-REGISTER
 590	 * c. packet is not truncated
 591	 */
 592	if (!ipv4_is_multicast(encap->daddr) ||
 593	    encap->tot_len == 0 ||
 594	    ntohs(encap->tot_len) + pimlen > skb->len)
 595		return 1;
 596
 597	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
 598	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
 599	if (vif_num >= 0)
 600		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
 601	if (!reg_dev)
 602		return 1;
 603
 604	skb->mac_header = skb->network_header;
 605	skb_pull(skb, (u8 *)encap - skb->data);
 606	skb_reset_network_header(skb);
 607	skb->protocol = htons(ETH_P_IP);
 608	skb->ip_summed = CHECKSUM_NONE;
 609
 610	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 611
 612	netif_rx(skb);
 613
 614	return NET_RX_SUCCESS;
 615}
 616#else
 617static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 618{
 619	return NULL;
 620}
 621#endif
 622
 623static int call_ipmr_vif_entry_notifiers(struct net *net,
 624					 enum fib_event_type event_type,
 625					 struct vif_device *vif,
 626					 struct net_device *vif_dev,
 627					 vifi_t vif_index, u32 tb_id)
 628{
 629	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 630				     vif, vif_dev, vif_index, tb_id,
 631				     &net->ipv4.ipmr_seq);
 632}
 633
 634static int call_ipmr_mfc_entry_notifiers(struct net *net,
 635					 enum fib_event_type event_type,
 636					 struct mfc_cache *mfc, u32 tb_id)
 637{
 638	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 639				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
 640}
 641
 642/**
 643 *	vif_delete - Delete a VIF entry
 644 *	@mrt: Table to delete from
 645 *	@vifi: VIF identifier to delete
 646 *	@notify: Set to 1, if the caller is a notifier_call
 647 *	@head: if unregistering the VIF, place it on this queue
 648 */
 
 649static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 650		      struct list_head *head)
 651{
 652	struct net *net = read_pnet(&mrt->net);
 653	struct vif_device *v;
 654	struct net_device *dev;
 655	struct in_device *in_dev;
 656
 657	if (vifi < 0 || vifi >= mrt->maxvif)
 658		return -EADDRNOTAVAIL;
 659
 660	v = &mrt->vif_table[vifi];
 661
 662	dev = rtnl_dereference(v->dev);
 663	if (!dev)
 
 
 
 
 664		return -EADDRNOTAVAIL;
 
 
 
 
 
 
 665
 666	spin_lock(&mrt_lock);
 667	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
 668				      vifi, mrt->id);
 669	RCU_INIT_POINTER(v->dev, NULL);
 670
 671	if (vifi == mrt->mroute_reg_vif_num) {
 672		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
 673		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
 674	}
 675	if (vifi + 1 == mrt->maxvif) {
 676		int tmp;
 677
 678		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 679			if (VIF_EXISTS(mrt, tmp))
 680				break;
 681		}
 682		WRITE_ONCE(mrt->maxvif, tmp + 1);
 683	}
 684
 685	spin_unlock(&mrt_lock);
 686
 687	dev_set_allmulti(dev, -1);
 688
 689	in_dev = __in_dev_get_rtnl(dev);
 690	if (in_dev) {
 691		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 692		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
 693					    NETCONFA_MC_FORWARDING,
 694					    dev->ifindex, &in_dev->cnf);
 695		ip_rt_multicast_event(in_dev);
 696	}
 697
 698	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 699		unregister_netdevice_queue(dev, head);
 700
 701	netdev_put(dev, &v->dev_tracker);
 702	return 0;
 703}
 704
 705static void ipmr_cache_free_rcu(struct rcu_head *head)
 706{
 707	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
 708
 709	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
 710}
 711
 712static void ipmr_cache_free(struct mfc_cache *c)
 713{
 714	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
 715}
 716
 717/* Destroy an unresolved cache entry, killing queued skbs
 718 * and reporting error to netlink readers.
 719 */
 
 720static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 721{
 722	struct net *net = read_pnet(&mrt->net);
 723	struct sk_buff *skb;
 724	struct nlmsgerr *e;
 725
 726	atomic_dec(&mrt->cache_resolve_queue_len);
 727
 728	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
 729		if (ip_hdr(skb)->version == 0) {
 730			struct nlmsghdr *nlh = skb_pull(skb,
 731							sizeof(struct iphdr));
 732			nlh->nlmsg_type = NLMSG_ERROR;
 733			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 734			skb_trim(skb, nlh->nlmsg_len);
 735			e = nlmsg_data(nlh);
 736			e->error = -ETIMEDOUT;
 737			memset(&e->msg, 0, sizeof(e->msg));
 738
 739			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 740		} else {
 741			kfree_skb(skb);
 742		}
 743	}
 744
 745	ipmr_cache_free(c);
 746}
 747
 
 748/* Timer process for the unresolved queue. */
 749static void ipmr_expire_process(struct timer_list *t)
 
 750{
 751	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
 752	struct mr_mfc *c, *next;
 753	unsigned long expires;
 754	unsigned long now;
 755
 756	if (!spin_trylock(&mfc_unres_lock)) {
 757		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 758		return;
 759	}
 760
 761	if (list_empty(&mrt->mfc_unres_queue))
 762		goto out;
 763
 764	now = jiffies;
 765	expires = 10*HZ;
 766
 767	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 768		if (time_after(c->mfc_un.unres.expires, now)) {
 769			unsigned long interval = c->mfc_un.unres.expires - now;
 770			if (interval < expires)
 771				expires = interval;
 772			continue;
 773		}
 774
 775		list_del(&c->list);
 776		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
 777		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
 778	}
 779
 780	if (!list_empty(&mrt->mfc_unres_queue))
 781		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 782
 783out:
 784	spin_unlock(&mfc_unres_lock);
 785}
 786
 787/* Fill oifs list. It is called under locked mrt_lock. */
 788static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
 
 789				   unsigned char *ttls)
 790{
 791	int vifi;
 792
 793	cache->mfc_un.res.minvif = MAXVIFS;
 794	cache->mfc_un.res.maxvif = 0;
 795	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 796
 797	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 798		if (VIF_EXISTS(mrt, vifi) &&
 799		    ttls[vifi] && ttls[vifi] < 255) {
 800			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 801			if (cache->mfc_un.res.minvif > vifi)
 802				cache->mfc_un.res.minvif = vifi;
 803			if (cache->mfc_un.res.maxvif <= vifi)
 804				cache->mfc_un.res.maxvif = vifi + 1;
 805		}
 806	}
 807	cache->mfc_un.res.lastuse = jiffies;
 808}
 809
 810static int vif_add(struct net *net, struct mr_table *mrt,
 811		   struct vifctl *vifc, int mrtsock)
 812{
 813	struct netdev_phys_item_id ppid = { };
 814	int vifi = vifc->vifc_vifi;
 815	struct vif_device *v = &mrt->vif_table[vifi];
 816	struct net_device *dev;
 817	struct in_device *in_dev;
 818	int err;
 819
 820	/* Is vif busy ? */
 821	if (VIF_EXISTS(mrt, vifi))
 822		return -EADDRINUSE;
 823
 824	switch (vifc->vifc_flags) {
 
 825	case VIFF_REGISTER:
 826		if (!ipmr_pimsm_enabled())
 827			return -EINVAL;
 828		/* Special Purpose VIF in PIM
 829		 * All the packets will be sent to the daemon
 830		 */
 831		if (mrt->mroute_reg_vif_num >= 0)
 832			return -EADDRINUSE;
 833		dev = ipmr_reg_vif(net, mrt);
 834		if (!dev)
 835			return -ENOBUFS;
 836		err = dev_set_allmulti(dev, 1);
 837		if (err) {
 838			unregister_netdevice(dev);
 839			dev_put(dev);
 840			return err;
 841		}
 842		break;
 
 843	case VIFF_TUNNEL:
 844		dev = ipmr_new_tunnel(net, vifc);
 845		if (IS_ERR(dev))
 846			return PTR_ERR(dev);
 
 
 
 
 
 
 847		break;
 
 848	case VIFF_USE_IFINDEX:
 849	case 0:
 850		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 851			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 852			if (dev && !__in_dev_get_rtnl(dev)) {
 853				dev_put(dev);
 854				return -EADDRNOTAVAIL;
 855			}
 856		} else {
 857			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 858		}
 859		if (!dev)
 860			return -EADDRNOTAVAIL;
 861		err = dev_set_allmulti(dev, 1);
 862		if (err) {
 863			dev_put(dev);
 864			return err;
 865		}
 866		break;
 867	default:
 868		return -EINVAL;
 869	}
 870
 871	in_dev = __in_dev_get_rtnl(dev);
 872	if (!in_dev) {
 873		dev_put(dev);
 874		return -EADDRNOTAVAIL;
 875	}
 876	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 877	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
 878				    dev->ifindex, &in_dev->cnf);
 879	ip_rt_multicast_event(in_dev);
 880
 881	/* Fill in the VIF structures */
 882	vif_device_init(v, dev, vifc->vifc_rate_limit,
 883			vifc->vifc_threshold,
 884			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
 885			(VIFF_TUNNEL | VIFF_REGISTER));
 886
 887	err = dev_get_port_parent_id(dev, &ppid, true);
 888	if (err == 0) {
 889		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
 890		v->dev_parent_id.id_len = ppid.id_len;
 891	} else {
 892		v->dev_parent_id.id_len = 0;
 893	}
 894
 
 895	v->local = vifc->vifc_lcl_addr.s_addr;
 896	v->remote = vifc->vifc_rmt_addr.s_addr;
 
 
 
 
 
 
 
 
 
 
 
 897
 898	/* And finish update writing critical data */
 899	spin_lock(&mrt_lock);
 900	rcu_assign_pointer(v->dev, dev);
 901	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
 902	if (v->flags & VIFF_REGISTER) {
 903		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
 904		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
 905	}
 906	if (vifi+1 > mrt->maxvif)
 907		WRITE_ONCE(mrt->maxvif, vifi + 1);
 908	spin_unlock(&mrt_lock);
 909	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
 910				      vifi, mrt->id);
 911	return 0;
 912}
 913
 914/* called with rcu_read_lock() */
 915static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 916					 __be32 origin,
 917					 __be32 mcastgrp)
 918{
 919	struct mfc_cache_cmp_arg arg = {
 920			.mfc_mcastgrp = mcastgrp,
 921			.mfc_origin = origin
 922	};
 923
 924	return mr_mfc_find(mrt, &arg);
 
 
 
 
 925}
 926
 927/* Look for a (*,G) entry */
 928static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 929					     __be32 mcastgrp, int vifi)
 930{
 931	struct mfc_cache_cmp_arg arg = {
 932			.mfc_mcastgrp = mcastgrp,
 933			.mfc_origin = htonl(INADDR_ANY)
 934	};
 935
 936	if (mcastgrp == htonl(INADDR_ANY))
 937		return mr_mfc_find_any_parent(mrt, vifi);
 938	return mr_mfc_find_any(mrt, vifi, &arg);
 939}
 940
 941/* Look for a (S,G,iif) entry if parent != -1 */
 942static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
 943						__be32 origin, __be32 mcastgrp,
 944						int parent)
 945{
 946	struct mfc_cache_cmp_arg arg = {
 947			.mfc_mcastgrp = mcastgrp,
 948			.mfc_origin = origin,
 949	};
 950
 951	return mr_mfc_find_parent(mrt, &arg, parent);
 952}
 953
 954/* Allocate a multicast cache entry */
 955static struct mfc_cache *ipmr_cache_alloc(void)
 956{
 957	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 958
 959	if (c) {
 960		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
 961		c->_c.mfc_un.res.minvif = MAXVIFS;
 962		c->_c.free = ipmr_cache_free_rcu;
 963		refcount_set(&c->_c.mfc_un.res.refcount, 1);
 964	}
 965	return c;
 966}
 967
 968static struct mfc_cache *ipmr_cache_alloc_unres(void)
 969{
 970	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 971
 972	if (c) {
 973		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
 974		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
 975	}
 976	return c;
 977}
 978
 979/* A cache entry has gone into a resolved state from queued */
 
 
 
 980static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 981			       struct mfc_cache *uc, struct mfc_cache *c)
 982{
 983	struct sk_buff *skb;
 984	struct nlmsgerr *e;
 985
 986	/* Play the pending entries through our router */
 987	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
 
 988		if (ip_hdr(skb)->version == 0) {
 989			struct nlmsghdr *nlh = skb_pull(skb,
 990							sizeof(struct iphdr));
 991
 992			if (mr_fill_mroute(mrt, skb, &c->_c,
 993					   nlmsg_data(nlh)) > 0) {
 994				nlh->nlmsg_len = skb_tail_pointer(skb) -
 995						 (u8 *)nlh;
 996			} else {
 997				nlh->nlmsg_type = NLMSG_ERROR;
 998				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 999				skb_trim(skb, nlh->nlmsg_len);
1000				e = nlmsg_data(nlh);
1001				e->error = -EMSGSIZE;
1002				memset(&e->msg, 0, sizeof(e->msg));
1003			}
1004
1005			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1006		} else {
1007			rcu_read_lock();
1008			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1009			rcu_read_unlock();
1010		}
1011	}
1012}
1013
1014/* Bounce a cache query up to mrouted and netlink.
 
 
1015 *
1016 * Called under rcu_read_lock().
1017 */
1018static int ipmr_cache_report(const struct mr_table *mrt,
 
1019			     struct sk_buff *pkt, vifi_t vifi, int assert)
1020{
 
1021	const int ihl = ip_hdrlen(pkt);
1022	struct sock *mroute_sk;
1023	struct igmphdr *igmp;
1024	struct igmpmsg *msg;
1025	struct sk_buff *skb;
1026	int ret;
1027
1028	mroute_sk = rcu_dereference(mrt->mroute_sk);
1029	if (!mroute_sk)
1030		return -EINVAL;
1031
1032	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1033		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1034	else
 
1035		skb = alloc_skb(128, GFP_ATOMIC);
1036
1037	if (!skb)
1038		return -ENOBUFS;
1039
1040	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
 
1041		/* Ugly, but we have no choice with this interface.
1042		 * Duplicate old header, fix ihl, length etc.
1043		 * And all this only to mangle msg->im_msgtype and
1044		 * to set msg->im_mbz to "mbz" :-)
1045		 */
1046		skb_push(skb, sizeof(struct iphdr));
1047		skb_reset_network_header(skb);
1048		skb_reset_transport_header(skb);
1049		msg = (struct igmpmsg *)skb_network_header(skb);
1050		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1051		msg->im_msgtype = assert;
1052		msg->im_mbz = 0;
1053		if (assert == IGMPMSG_WRVIFWHOLE) {
1054			msg->im_vif = vifi;
1055			msg->im_vif_hi = vifi >> 8;
1056		} else {
1057			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1058			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1059
1060			msg->im_vif = vif_num;
1061			msg->im_vif_hi = vif_num >> 8;
1062		}
1063		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1064		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1065					     sizeof(struct iphdr));
1066	} else {
1067		/* Copy the IP header */
1068		skb_set_network_header(skb, skb->len);
1069		skb_put(skb, ihl);
1070		skb_copy_to_linear_data(skb, pkt->data, ihl);
1071		/* Flag to the kernel this is a route add */
1072		ip_hdr(skb)->protocol = 0;
1073		msg = (struct igmpmsg *)skb_network_header(skb);
1074		msg->im_vif = vifi;
1075		msg->im_vif_hi = vifi >> 8;
1076		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1077		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1078		/* Add our header */
1079		igmp = skb_put(skb, sizeof(struct igmphdr));
1080		igmp->type = assert;
1081		msg->im_msgtype = assert;
1082		igmp->code = 0;
1083		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1084		skb->transport_header = skb->network_header;
 
 
 
1085	}
1086
1087	igmpmsg_netlink_event(mrt, skb);
 
 
 
 
 
 
1088
1089	/* Deliver to mrouted */
 
1090	ret = sock_queue_rcv_skb(mroute_sk, skb);
1091
1092	if (ret < 0) {
1093		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1094		kfree_skb(skb);
1095	}
1096
1097	return ret;
1098}
1099
1100/* Queue a packet for resolution. It gets locked cache entry! */
1101/* Called under rcu_read_lock() */
1102static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1103				 struct sk_buff *skb, struct net_device *dev)
 
 
1104{
1105	const struct iphdr *iph = ip_hdr(skb);
1106	struct mfc_cache *c;
1107	bool found = false;
1108	int err;
 
 
1109
1110	spin_lock_bh(&mfc_unres_lock);
1111	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1112		if (c->mfc_mcastgrp == iph->daddr &&
1113		    c->mfc_origin == iph->saddr) {
1114			found = true;
1115			break;
1116		}
1117	}
1118
1119	if (!found) {
1120		/* Create a new entry if allowable */
1121		c = ipmr_cache_alloc_unres();
1122		if (!c) {
 
1123			spin_unlock_bh(&mfc_unres_lock);
1124
1125			kfree_skb(skb);
1126			return -ENOBUFS;
1127		}
1128
1129		/* Fill in the new cache entry */
1130		c->_c.mfc_parent = -1;
 
1131		c->mfc_origin	= iph->saddr;
1132		c->mfc_mcastgrp	= iph->daddr;
1133
1134		/* Reflect first query at mrouted. */
 
1135		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1136
1137		if (err < 0) {
1138			/* If the report failed throw the cache entry
1139			   out - Brad Parker
1140			 */
1141			spin_unlock_bh(&mfc_unres_lock);
1142
1143			ipmr_cache_free(c);
1144			kfree_skb(skb);
1145			return err;
1146		}
1147
1148		atomic_inc(&mrt->cache_resolve_queue_len);
1149		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1150		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1151
1152		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1153			mod_timer(&mrt->ipmr_expire_timer,
1154				  c->_c.mfc_un.unres.expires);
1155	}
1156
1157	/* See if we can append the packet */
1158	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
 
1159		kfree_skb(skb);
1160		err = -ENOBUFS;
1161	} else {
1162		if (dev) {
1163			skb->dev = dev;
1164			skb->skb_iif = dev->ifindex;
1165		}
1166		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1167		err = 0;
1168	}
1169
1170	spin_unlock_bh(&mfc_unres_lock);
1171	return err;
1172}
1173
1174/* MFC cache manipulation by user space mroute daemon */
 
 
1175
1176static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1177{
1178	struct net *net = read_pnet(&mrt->net);
1179	struct mfc_cache *c;
 
 
1180
1181	/* The entries are added/deleted only under RTNL */
1182	rcu_read_lock();
1183	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1184				   mfc->mfcc_mcastgrp.s_addr, parent);
1185	rcu_read_unlock();
1186	if (!c)
1187		return -ENOENT;
1188	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1189	list_del_rcu(&c->_c.list);
1190	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1191	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1192	mr_cache_put(&c->_c);
1193
1194	return 0;
 
 
 
 
1195}
1196
1197static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1198			struct mfcctl *mfc, int mrtsock, int parent)
1199{
 
 
1200	struct mfc_cache *uc, *c;
1201	struct mr_mfc *_uc;
1202	bool found;
1203	int ret;
1204
1205	if (mfc->mfcc_parent >= MAXVIFS)
1206		return -ENFILE;
1207
1208	/* The entries are added/deleted only under RTNL */
1209	rcu_read_lock();
1210	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1211				   mfc->mfcc_mcastgrp.s_addr, parent);
1212	rcu_read_unlock();
1213	if (c) {
1214		spin_lock(&mrt_lock);
1215		c->_c.mfc_parent = mfc->mfcc_parent;
1216		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
 
 
 
 
 
1217		if (!mrtsock)
1218			c->_c.mfc_flags |= MFC_STATIC;
1219		spin_unlock(&mrt_lock);
1220		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1221					      mrt->id);
1222		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1223		return 0;
1224	}
1225
1226	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1227	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1228		return -EINVAL;
1229
1230	c = ipmr_cache_alloc();
1231	if (!c)
1232		return -ENOMEM;
1233
1234	c->mfc_origin = mfc->mfcc_origin.s_addr;
1235	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1236	c->_c.mfc_parent = mfc->mfcc_parent;
1237	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1238	if (!mrtsock)
1239		c->_c.mfc_flags |= MFC_STATIC;
 
 
1240
1241	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1242				  ipmr_rht_params);
1243	if (ret) {
1244		pr_err("ipmr: rhtable insert error %d\n", ret);
1245		ipmr_cache_free(c);
1246		return ret;
1247	}
1248	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1249	/* Check to see if we resolved a queued list. If so we
1250	 * need to send on the frames and tidy up.
1251	 */
1252	found = false;
1253	spin_lock_bh(&mfc_unres_lock);
1254	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1255		uc = (struct mfc_cache *)_uc;
1256		if (uc->mfc_origin == c->mfc_origin &&
1257		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1258			list_del(&_uc->list);
1259			atomic_dec(&mrt->cache_resolve_queue_len);
1260			found = true;
1261			break;
1262		}
1263	}
1264	if (list_empty(&mrt->mfc_unres_queue))
1265		del_timer(&mrt->ipmr_expire_timer);
1266	spin_unlock_bh(&mfc_unres_lock);
1267
1268	if (found) {
1269		ipmr_cache_resolve(net, mrt, uc, c);
1270		ipmr_cache_free(uc);
1271	}
1272	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1273	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1274	return 0;
1275}
1276
1277/* Close the multicast socket, and clear the vif tables etc */
1278static void mroute_clean_tables(struct mr_table *mrt, int flags)
 
 
 
1279{
1280	struct net *net = read_pnet(&mrt->net);
1281	struct mr_mfc *c, *tmp;
1282	struct mfc_cache *cache;
1283	LIST_HEAD(list);
1284	int i;
1285
1286	/* Shut down all active vif entries */
1287	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1288		for (i = 0; i < mrt->maxvif; i++) {
1289			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1290			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1291			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1292				continue;
1293			vif_delete(mrt, i, 0, &list);
1294		}
1295		unregister_netdevice_many(&list);
1296	}
 
1297
1298	/* Wipe the cache */
1299	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1300		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1301			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1302			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1303				continue;
1304			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1305			list_del_rcu(&c->list);
1306			cache = (struct mfc_cache *)c;
1307			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1308						      mrt->id);
1309			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1310			mr_cache_put(c);
1311		}
1312	}
1313
1314	if (flags & MRT_FLUSH_MFC) {
1315		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1316			spin_lock_bh(&mfc_unres_lock);
1317			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1318				list_del(&c->list);
1319				cache = (struct mfc_cache *)c;
1320				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1321				ipmr_destroy_unres(mrt, cache);
1322			}
1323			spin_unlock_bh(&mfc_unres_lock);
1324		}
 
1325	}
1326}
1327
1328/* called from ip_ra_control(), before an RCU grace period,
1329 * we don't need to call synchronize_rcu() here
1330 */
1331static void mrtsock_destruct(struct sock *sk)
1332{
1333	struct net *net = sock_net(sk);
1334	struct mr_table *mrt;
1335
1336	rtnl_lock();
1337	ipmr_for_each_table(mrt, net) {
1338		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1339			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1340			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1341						    NETCONFA_MC_FORWARDING,
1342						    NETCONFA_IFINDEX_ALL,
1343						    net->ipv4.devconf_all);
1344			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1345			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1346		}
1347	}
1348	rtnl_unlock();
1349}
1350
1351/* Socket options and virtual interface manipulation. The whole
1352 * virtual interface system is a complete heap, but unfortunately
1353 * that's how BSD mrouted happens to think. Maybe one day with a proper
1354 * MOSPF/PIM router set up we can clean this up.
 
1355 */
1356
1357int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1358			 unsigned int optlen)
1359{
 
 
 
1360	struct net *net = sock_net(sk);
1361	int val, ret = 0, parent = 0;
1362	struct mr_table *mrt;
1363	struct vifctl vif;
1364	struct mfcctl mfc;
1365	bool do_wrvifwhole;
1366	u32 uval;
1367
1368	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1369	rtnl_lock();
1370	if (sk->sk_type != SOCK_RAW ||
1371	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1372		ret = -EOPNOTSUPP;
1373		goto out_unlock;
1374	}
1375
1376	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1377	if (!mrt) {
1378		ret = -ENOENT;
1379		goto out_unlock;
1380	}
1381	if (optname != MRT_INIT) {
1382		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1383		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1384			ret = -EACCES;
1385			goto out_unlock;
1386		}
1387	}
1388
1389	switch (optname) {
1390	case MRT_INIT:
1391		if (optlen != sizeof(int)) {
1392			ret = -EINVAL;
1393			break;
1394		}
 
 
 
1395		if (rtnl_dereference(mrt->mroute_sk)) {
1396			ret = -EADDRINUSE;
1397			break;
1398		}
1399
1400		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1401		if (ret == 0) {
1402			rcu_assign_pointer(mrt->mroute_sk, sk);
1403			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1404			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1405						    NETCONFA_MC_FORWARDING,
1406						    NETCONFA_IFINDEX_ALL,
1407						    net->ipv4.devconf_all);
1408		}
1409		break;
 
1410	case MRT_DONE:
1411		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1412			ret = -EACCES;
1413		} else {
1414			/* We need to unlock here because mrtsock_destruct takes
1415			 * care of rtnl itself and we can't change that due to
1416			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1417			 */
1418			rtnl_unlock();
1419			ret = ip_ra_control(sk, 0, NULL);
1420			goto out;
1421		}
1422		break;
1423	case MRT_ADD_VIF:
1424	case MRT_DEL_VIF:
1425		if (optlen != sizeof(vif)) {
1426			ret = -EINVAL;
1427			break;
1428		}
1429		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1430			ret = -EFAULT;
1431			break;
1432		}
1433		if (vif.vifc_vifi >= MAXVIFS) {
1434			ret = -ENFILE;
1435			break;
1436		}
1437		if (optname == MRT_ADD_VIF) {
1438			ret = vif_add(net, mrt, &vif,
1439				      sk == rtnl_dereference(mrt->mroute_sk));
1440		} else {
1441			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1442		}
1443		break;
1444	/* Manipulate the forwarding caches. These live
1445	 * in a sort of kernel/user symbiosis.
1446	 */
 
 
 
1447	case MRT_ADD_MFC:
1448	case MRT_DEL_MFC:
1449		parent = -1;
1450		fallthrough;
1451	case MRT_ADD_MFC_PROXY:
1452	case MRT_DEL_MFC_PROXY:
1453		if (optlen != sizeof(mfc)) {
1454			ret = -EINVAL;
1455			break;
1456		}
1457		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1458			ret = -EFAULT;
1459			break;
1460		}
1461		if (parent == 0)
1462			parent = mfc.mfcc_parent;
1463		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1464			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1465		else
1466			ret = ipmr_mfc_add(net, mrt, &mfc,
1467					   sk == rtnl_dereference(mrt->mroute_sk),
1468					   parent);
1469		break;
1470	case MRT_FLUSH:
1471		if (optlen != sizeof(val)) {
1472			ret = -EINVAL;
1473			break;
1474		}
1475		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1476			ret = -EFAULT;
1477			break;
1478		}
1479		mroute_clean_tables(mrt, val);
1480		break;
1481	/* Control PIM assert. */
1482	case MRT_ASSERT:
1483		if (optlen != sizeof(val)) {
1484			ret = -EINVAL;
1485			break;
1486		}
1487		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1488			ret = -EFAULT;
1489			break;
1490		}
1491		mrt->mroute_do_assert = val;
1492		break;
1493	case MRT_PIM:
1494		if (!ipmr_pimsm_enabled()) {
1495			ret = -ENOPROTOOPT;
1496			break;
1497		}
1498		if (optlen != sizeof(val)) {
1499			ret = -EINVAL;
1500			break;
1501		}
1502		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1503			ret = -EFAULT;
1504			break;
1505		}
1506
1507		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1508		val = !!val;
1509		if (val != mrt->mroute_do_pim) {
1510			mrt->mroute_do_pim = val;
1511			mrt->mroute_do_assert = val;
1512			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1513		}
1514		break;
 
 
 
 
1515	case MRT_TABLE:
1516		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1517			ret = -ENOPROTOOPT;
1518			break;
1519		}
1520		if (optlen != sizeof(uval)) {
1521			ret = -EINVAL;
1522			break;
1523		}
1524		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1525			ret = -EFAULT;
1526			break;
1527		}
1528
 
 
1529		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1530			ret = -EBUSY;
1531		} else {
1532			mrt = ipmr_new_table(net, uval);
1533			if (IS_ERR(mrt))
1534				ret = PTR_ERR(mrt);
1535			else
1536				raw_sk(sk)->ipmr_table = uval;
1537		}
1538		break;
1539	/* Spurious command, or MRT_VERSION which you cannot set. */
 
 
 
 
 
 
1540	default:
1541		ret = -ENOPROTOOPT;
1542	}
1543out_unlock:
1544	rtnl_unlock();
1545out:
1546	return ret;
1547}
1548
1549/* Execute if this ioctl is a special mroute ioctl */
1550int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1551{
1552	switch (cmd) {
1553	/* These userspace buffers will be consumed by ipmr_ioctl() */
1554	case SIOCGETVIFCNT: {
1555		struct sioc_vif_req buffer;
1556
1557		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1558				      sizeof(buffer));
1559		}
1560	case SIOCGETSGCNT: {
1561		struct sioc_sg_req buffer;
1562
1563		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1564				      sizeof(buffer));
1565		}
1566	}
1567	/* return code > 0 means that the ioctl was not executed */
1568	return 1;
1569}
1570
1571/* Getsock opt support for the multicast routing system. */
1572int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1573			 sockptr_t optlen)
1574{
1575	int olr;
1576	int val;
1577	struct net *net = sock_net(sk);
1578	struct mr_table *mrt;
1579
1580	if (sk->sk_type != SOCK_RAW ||
1581	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1582		return -EOPNOTSUPP;
1583
1584	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1585	if (!mrt)
1586		return -ENOENT;
1587
1588	switch (optname) {
1589	case MRT_VERSION:
1590		val = 0x0305;
1591		break;
1592	case MRT_PIM:
1593		if (!ipmr_pimsm_enabled())
1594			return -ENOPROTOOPT;
1595		val = mrt->mroute_do_pim;
1596		break;
1597	case MRT_ASSERT:
1598		val = mrt->mroute_do_assert;
1599		break;
1600	default:
1601		return -ENOPROTOOPT;
1602	}
1603
1604	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1605		return -EFAULT;
 
 
1606	if (olr < 0)
1607		return -EINVAL;
1608
1609	olr = min_t(unsigned int, olr, sizeof(int));
1610
1611	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1612		return -EFAULT;
1613	if (copy_to_sockptr(optval, &val, olr))
 
 
 
 
 
 
 
 
1614		return -EFAULT;
1615	return 0;
1616}
1617
1618/* The IP multicast ioctl support routines. */
1619int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
 
 
 
1620{
 
 
1621	struct vif_device *vif;
1622	struct mfc_cache *c;
1623	struct net *net = sock_net(sk);
1624	struct sioc_vif_req *vr;
1625	struct sioc_sg_req *sr;
1626	struct mr_table *mrt;
1627
1628	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1629	if (!mrt)
1630		return -ENOENT;
1631
1632	switch (cmd) {
1633	case SIOCGETVIFCNT:
1634		vr = (struct sioc_vif_req *)arg;
1635		if (vr->vifi >= mrt->maxvif)
 
1636			return -EINVAL;
1637		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1638		rcu_read_lock();
1639		vif = &mrt->vif_table[vr->vifi];
1640		if (VIF_EXISTS(mrt, vr->vifi)) {
1641			vr->icount = READ_ONCE(vif->pkt_in);
1642			vr->ocount = READ_ONCE(vif->pkt_out);
1643			vr->ibytes = READ_ONCE(vif->bytes_in);
1644			vr->obytes = READ_ONCE(vif->bytes_out);
1645			rcu_read_unlock();
1646
 
 
1647			return 0;
1648		}
1649		rcu_read_unlock();
1650		return -EADDRNOTAVAIL;
1651	case SIOCGETSGCNT:
1652		sr = (struct sioc_sg_req *)arg;
 
1653
1654		rcu_read_lock();
1655		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1656		if (c) {
1657			sr->pktcnt = c->_c.mfc_un.res.pkt;
1658			sr->bytecnt = c->_c.mfc_un.res.bytes;
1659			sr->wrong_if = c->_c.mfc_un.res.wrong_if;
1660			rcu_read_unlock();
 
 
 
1661			return 0;
1662		}
1663		rcu_read_unlock();
1664		return -EADDRNOTAVAIL;
1665	default:
1666		return -ENOIOCTLCMD;
1667	}
1668}
1669
1670#ifdef CONFIG_COMPAT
1671struct compat_sioc_sg_req {
1672	struct in_addr src;
1673	struct in_addr grp;
1674	compat_ulong_t pktcnt;
1675	compat_ulong_t bytecnt;
1676	compat_ulong_t wrong_if;
1677};
1678
1679struct compat_sioc_vif_req {
1680	vifi_t	vifi;		/* Which iface */
1681	compat_ulong_t icount;
1682	compat_ulong_t ocount;
1683	compat_ulong_t ibytes;
1684	compat_ulong_t obytes;
1685};
1686
1687int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1688{
1689	struct compat_sioc_sg_req sr;
1690	struct compat_sioc_vif_req vr;
1691	struct vif_device *vif;
1692	struct mfc_cache *c;
1693	struct net *net = sock_net(sk);
1694	struct mr_table *mrt;
1695
1696	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1697	if (!mrt)
1698		return -ENOENT;
1699
1700	switch (cmd) {
1701	case SIOCGETVIFCNT:
1702		if (copy_from_user(&vr, arg, sizeof(vr)))
1703			return -EFAULT;
1704		if (vr.vifi >= mrt->maxvif)
1705			return -EINVAL;
1706		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1707		rcu_read_lock();
1708		vif = &mrt->vif_table[vr.vifi];
1709		if (VIF_EXISTS(mrt, vr.vifi)) {
1710			vr.icount = READ_ONCE(vif->pkt_in);
1711			vr.ocount = READ_ONCE(vif->pkt_out);
1712			vr.ibytes = READ_ONCE(vif->bytes_in);
1713			vr.obytes = READ_ONCE(vif->bytes_out);
1714			rcu_read_unlock();
1715
1716			if (copy_to_user(arg, &vr, sizeof(vr)))
1717				return -EFAULT;
1718			return 0;
1719		}
1720		rcu_read_unlock();
1721		return -EADDRNOTAVAIL;
1722	case SIOCGETSGCNT:
1723		if (copy_from_user(&sr, arg, sizeof(sr)))
1724			return -EFAULT;
1725
1726		rcu_read_lock();
1727		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1728		if (c) {
1729			sr.pktcnt = c->_c.mfc_un.res.pkt;
1730			sr.bytecnt = c->_c.mfc_un.res.bytes;
1731			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1732			rcu_read_unlock();
1733
1734			if (copy_to_user(arg, &sr, sizeof(sr)))
1735				return -EFAULT;
1736			return 0;
1737		}
1738		rcu_read_unlock();
1739		return -EADDRNOTAVAIL;
1740	default:
1741		return -ENOIOCTLCMD;
1742	}
1743}
1744#endif
1745
 
1746static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1747{
1748	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1749	struct net *net = dev_net(dev);
1750	struct mr_table *mrt;
1751	struct vif_device *v;
1752	int ct;
1753
1754	if (event != NETDEV_UNREGISTER)
1755		return NOTIFY_DONE;
1756
1757	ipmr_for_each_table(mrt, net) {
1758		v = &mrt->vif_table[0];
1759		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1760			if (rcu_access_pointer(v->dev) == dev)
1761				vif_delete(mrt, ct, 1, NULL);
1762		}
1763	}
1764	return NOTIFY_DONE;
1765}
1766
 
1767static struct notifier_block ip_mr_notifier = {
1768	.notifier_call = ipmr_device_event,
1769};
1770
1771/* Encapsulate a packet by attaching a valid IPIP header to it.
1772 * This avoids tunnel drivers and other mess and gives us the speed so
1773 * important for multicast video.
 
1774 */
1775static void ip_encap(struct net *net, struct sk_buff *skb,
1776		     __be32 saddr, __be32 daddr)
1777{
1778	struct iphdr *iph;
1779	const struct iphdr *old_iph = ip_hdr(skb);
1780
1781	skb_push(skb, sizeof(struct iphdr));
1782	skb->transport_header = skb->network_header;
1783	skb_reset_network_header(skb);
1784	iph = ip_hdr(skb);
1785
1786	iph->version	=	4;
1787	iph->tos	=	old_iph->tos;
1788	iph->ttl	=	old_iph->ttl;
1789	iph->frag_off	=	0;
1790	iph->daddr	=	daddr;
1791	iph->saddr	=	saddr;
1792	iph->protocol	=	IPPROTO_IPIP;
1793	iph->ihl	=	5;
1794	iph->tot_len	=	htons(skb->len);
1795	ip_select_ident(net, skb, NULL);
1796	ip_send_check(iph);
1797
1798	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1799	nf_reset_ct(skb);
1800}
1801
1802static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1803				      struct sk_buff *skb)
1804{
1805	struct ip_options *opt = &(IPCB(skb)->opt);
1806
1807	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
 
1808
1809	if (unlikely(opt->optlen))
1810		ip_forward_options(skb);
1811
1812	return dst_output(net, sk, skb);
1813}
1814
1815#ifdef CONFIG_NET_SWITCHDEV
1816static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1817				   int in_vifi, int out_vifi)
1818{
1819	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1820	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1821
1822	if (!skb->offload_l3_fwd_mark)
1823		return false;
1824	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1825		return false;
1826	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1827					&in_vif->dev_parent_id);
1828}
1829#else
1830static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1831				   int in_vifi, int out_vifi)
1832{
1833	return false;
1834}
1835#endif
1836
1837/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1838
1839static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1840			    int in_vifi, struct sk_buff *skb, int vifi)
1841{
1842	const struct iphdr *iph = ip_hdr(skb);
1843	struct vif_device *vif = &mrt->vif_table[vifi];
1844	struct net_device *vif_dev;
1845	struct net_device *dev;
1846	struct rtable *rt;
1847	struct flowi4 fl4;
1848	int    encap = 0;
1849
1850	vif_dev = vif_dev_read(vif);
1851	if (!vif_dev)
1852		goto out_free;
1853
 
1854	if (vif->flags & VIFF_REGISTER) {
1855		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1856		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1857		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1858		DEV_STATS_INC(vif_dev, tx_packets);
1859		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1860		goto out_free;
1861	}
1862
1863	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1864		goto out_free;
1865
1866	if (vif->flags & VIFF_TUNNEL) {
1867		rt = ip_route_output_ports(net, &fl4, NULL,
1868					   vif->remote, vif->local,
1869					   0, 0,
1870					   IPPROTO_IPIP,
1871					   RT_TOS(iph->tos), vif->link);
1872		if (IS_ERR(rt))
1873			goto out_free;
1874		encap = sizeof(struct iphdr);
1875	} else {
1876		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1877					   0, 0,
1878					   IPPROTO_IPIP,
1879					   RT_TOS(iph->tos), vif->link);
1880		if (IS_ERR(rt))
1881			goto out_free;
1882	}
1883
1884	dev = rt->dst.dev;
1885
1886	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1887		/* Do not fragment multicasts. Alas, IPv4 does not
1888		 * allow to send ICMP, so that packets will disappear
1889		 * to blackhole.
1890		 */
1891		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 
1892		ip_rt_put(rt);
1893		goto out_free;
1894	}
1895
1896	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1897
1898	if (skb_cow(skb, encap)) {
1899		ip_rt_put(rt);
1900		goto out_free;
1901	}
1902
1903	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1904	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1905
1906	skb_dst_drop(skb);
1907	skb_dst_set(skb, &rt->dst);
1908	ip_decrease_ttl(ip_hdr(skb));
1909
1910	/* FIXME: forward and output firewalls used to be called here.
1911	 * What do we do with netfilter? -- RR
1912	 */
1913	if (vif->flags & VIFF_TUNNEL) {
1914		ip_encap(net, skb, vif->local, vif->remote);
1915		/* FIXME: extra output firewall step used to be here. --RR */
1916		DEV_STATS_INC(vif_dev, tx_packets);
1917		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1918	}
1919
1920	IPCB(skb)->flags |= IPSKB_FORWARDED;
1921
1922	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
 
1923	 * not only before forwarding, but after forwarding on all output
1924	 * interfaces. It is clear, if mrouter runs a multicasting
1925	 * program, it should receive packets not depending to what interface
1926	 * program is joined.
1927	 * If we will not make it, the program will have to join on all
1928	 * interfaces. On the other hand, multihoming host (or router, but
1929	 * not mrouter) cannot join to more than one interface - it will
1930	 * result in receiving multiple packets.
1931	 */
1932	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1933		net, NULL, skb, skb->dev, dev,
1934		ipmr_forward_finish);
1935	return;
1936
1937out_free:
1938	kfree_skb(skb);
1939}
1940
1941/* Called with mrt_lock or rcu_read_lock() */
1942static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1943{
1944	int ct;
1945	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1946	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1947		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1948			break;
1949	}
1950	return ct;
1951}
1952
1953/* "local" means that we should preserve one skb (for local delivery) */
1954/* Called uner rcu_read_lock() */
1955static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1956			  struct net_device *dev, struct sk_buff *skb,
1957			  struct mfc_cache *c, int local)
1958{
1959	int true_vifi = ipmr_find_vif(mrt, dev);
1960	int psend = -1;
1961	int vif, ct;
1962
1963	vif = c->_c.mfc_parent;
1964	c->_c.mfc_un.res.pkt++;
1965	c->_c.mfc_un.res.bytes += skb->len;
1966	c->_c.mfc_un.res.lastuse = jiffies;
1967
1968	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1969		struct mfc_cache *cache_proxy;
1970
1971		/* For an (*,G) entry, we only check that the incoming
1972		 * interface is part of the static tree.
1973		 */
1974		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1975		if (cache_proxy &&
1976		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1977			goto forward;
1978	}
1979
1980	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1981	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1982		if (rt_is_output_route(skb_rtable(skb))) {
1983			/* It is our own packet, looped back.
1984			 * Very complicated situation...
1985			 *
1986			 * The best workaround until routing daemons will be
1987			 * fixed is not to redistribute packet, if it was
1988			 * send through wrong interface. It means, that
1989			 * multicast applications WILL NOT work for
1990			 * (S,G), which have default multicast route pointing
1991			 * to wrong oif. In any case, it is not a good
1992			 * idea to use multicasting applications on router.
1993			 */
1994			goto dont_forward;
1995		}
1996
1997		c->_c.mfc_un.res.wrong_if++;
 
1998
1999		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2000		    /* pimsm uses asserts, when switching from RPT to SPT,
2001		     * so that we cannot check that packet arrived on an oif.
2002		     * It is bad, but otherwise we would need to move pretty
2003		     * large chunk of pimd to kernel. Ough... --ANK
2004		     */
2005		    (mrt->mroute_do_pim ||
2006		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2007		    time_after(jiffies,
2008			       c->_c.mfc_un.res.last_assert +
2009			       MFC_ASSERT_THRESH)) {
2010			c->_c.mfc_un.res.last_assert = jiffies;
2011			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2012			if (mrt->mroute_do_wrvifwhole)
2013				ipmr_cache_report(mrt, skb, true_vifi,
2014						  IGMPMSG_WRVIFWHOLE);
2015		}
2016		goto dont_forward;
2017	}
2018
2019forward:
2020	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2021		   mrt->vif_table[vif].pkt_in + 1);
2022	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2023		   mrt->vif_table[vif].bytes_in + skb->len);
2024
2025	/* Forward the frame */
2026	if (c->mfc_origin == htonl(INADDR_ANY) &&
2027	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2028		if (true_vifi >= 0 &&
2029		    true_vifi != c->_c.mfc_parent &&
2030		    ip_hdr(skb)->ttl >
2031				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2032			/* It's an (*,*) entry and the packet is not coming from
2033			 * the upstream: forward the packet to the upstream
2034			 * only.
2035			 */
2036			psend = c->_c.mfc_parent;
2037			goto last_forward;
2038		}
2039		goto dont_forward;
2040	}
2041	for (ct = c->_c.mfc_un.res.maxvif - 1;
2042	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2043		/* For (*,G) entry, don't forward to the incoming interface */
2044		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2045		     ct != true_vifi) &&
2046		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2047			if (psend != -1) {
2048				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2049
2050				if (skb2)
2051					ipmr_queue_xmit(net, mrt, true_vifi,
2052							skb2, psend);
2053			}
2054			psend = ct;
2055		}
2056	}
2057last_forward:
2058	if (psend != -1) {
2059		if (local) {
2060			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2061
2062			if (skb2)
2063				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2064						psend);
2065		} else {
2066			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2067			return;
2068		}
2069	}
2070
2071dont_forward:
2072	if (!local)
2073		kfree_skb(skb);
 
2074}
2075
2076static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2077{
2078	struct rtable *rt = skb_rtable(skb);
2079	struct iphdr *iph = ip_hdr(skb);
2080	struct flowi4 fl4 = {
2081		.daddr = iph->daddr,
2082		.saddr = iph->saddr,
2083		.flowi4_tos = RT_TOS(iph->tos),
2084		.flowi4_oif = (rt_is_output_route(rt) ?
2085			       skb->dev->ifindex : 0),
2086		.flowi4_iif = (rt_is_output_route(rt) ?
2087			       LOOPBACK_IFINDEX :
2088			       skb->dev->ifindex),
2089		.flowi4_mark = skb->mark,
2090	};
2091	struct mr_table *mrt;
2092	int err;
2093
2094	err = ipmr_fib_lookup(net, &fl4, &mrt);
2095	if (err)
2096		return ERR_PTR(err);
2097	return mrt;
2098}
2099
2100/* Multicast packets for forwarding arrive here
2101 * Called with rcu_read_lock();
 
2102 */
 
2103int ip_mr_input(struct sk_buff *skb)
2104{
2105	struct mfc_cache *cache;
2106	struct net *net = dev_net(skb->dev);
2107	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2108	struct mr_table *mrt;
2109	struct net_device *dev;
2110
2111	/* skb->dev passed in is the loX master dev for vrfs.
2112	 * As there are no vifs associated with loopback devices,
2113	 * get the proper interface that does have a vif associated with it.
2114	 */
2115	dev = skb->dev;
2116	if (netif_is_l3_master(skb->dev)) {
2117		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2118		if (!dev) {
2119			kfree_skb(skb);
2120			return -ENODEV;
2121		}
2122	}
2123
2124	/* Packet is looped back after forward, it should not be
2125	 * forwarded second time, but still can be delivered locally.
2126	 */
2127	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2128		goto dont_forward;
2129
2130	mrt = ipmr_rt_fib_lookup(net, skb);
2131	if (IS_ERR(mrt)) {
2132		kfree_skb(skb);
2133		return PTR_ERR(mrt);
2134	}
2135	if (!local) {
2136		if (IPCB(skb)->opt.router_alert) {
2137			if (ip_call_ra_chain(skb))
2138				return 0;
2139		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2140			/* IGMPv1 (and broken IGMPv2 implementations sort of
2141			 * Cisco IOS <= 11.2(8)) do not put router alert
2142			 * option to IGMP packets destined to routable
2143			 * groups. It is very bad, because it means
2144			 * that we can forward NO IGMP messages.
2145			 */
2146			struct sock *mroute_sk;
2147
2148			mroute_sk = rcu_dereference(mrt->mroute_sk);
2149			if (mroute_sk) {
2150				nf_reset_ct(skb);
2151				raw_rcv(mroute_sk, skb);
2152				return 0;
2153			}
2154		}
2155	}
2156
2157	/* already under rcu_read_lock() */
2158	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2159	if (!cache) {
2160		int vif = ipmr_find_vif(mrt, dev);
2161
2162		if (vif >= 0)
2163			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2164						    vif);
2165	}
2166
2167	/* No usable cache entry */
2168	if (!cache) {
2169		int vif;
2170
2171		if (local) {
2172			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2173			ip_local_deliver(skb);
2174			if (!skb2)
2175				return -ENOBUFS;
2176			skb = skb2;
2177		}
2178
2179		vif = ipmr_find_vif(mrt, dev);
2180		if (vif >= 0)
2181			return ipmr_cache_unresolved(mrt, vif, skb, dev);
 
 
 
 
 
 
2182		kfree_skb(skb);
2183		return -ENODEV;
2184	}
2185
2186	ip_mr_forward(net, mrt, dev, skb, cache, local);
 
 
2187
2188	if (local)
2189		return ip_local_deliver(skb);
2190
2191	return 0;
2192
2193dont_forward:
2194	if (local)
2195		return ip_local_deliver(skb);
2196	kfree_skb(skb);
2197	return 0;
2198}
2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200#ifdef CONFIG_IP_PIMSM_V1
2201/* Handle IGMP messages of PIMv1 */
 
 
 
2202int pim_rcv_v1(struct sk_buff *skb)
2203{
2204	struct igmphdr *pim;
2205	struct net *net = dev_net(skb->dev);
2206	struct mr_table *mrt;
2207
2208	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2209		goto drop;
2210
2211	pim = igmp_hdr(skb);
2212
2213	mrt = ipmr_rt_fib_lookup(net, skb);
2214	if (IS_ERR(mrt))
2215		goto drop;
2216	if (!mrt->mroute_do_pim ||
2217	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2218		goto drop;
2219
2220	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2221drop:
2222		kfree_skb(skb);
2223	}
2224	return 0;
2225}
2226#endif
2227
2228#ifdef CONFIG_IP_PIMSM_V2
2229static int pim_rcv(struct sk_buff *skb)
2230{
2231	struct pimreghdr *pim;
2232	struct net *net = dev_net(skb->dev);
2233	struct mr_table *mrt;
2234
2235	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2236		goto drop;
2237
2238	pim = (struct pimreghdr *)skb_transport_header(skb);
2239	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2240	    (pim->flags & PIM_NULL_REGISTER) ||
2241	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2242	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2243		goto drop;
2244
2245	mrt = ipmr_rt_fib_lookup(net, skb);
2246	if (IS_ERR(mrt))
2247		goto drop;
2248	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2249drop:
2250		kfree_skb(skb);
2251	}
2252	return 0;
2253}
2254#endif
2255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256int ipmr_get_route(struct net *net, struct sk_buff *skb,
2257		   __be32 saddr, __be32 daddr,
2258		   struct rtmsg *rtm, u32 portid)
2259{
2260	struct mfc_cache *cache;
2261	struct mr_table *mrt;
2262	int err;
2263
2264	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2265	if (!mrt)
2266		return -ENOENT;
2267
2268	rcu_read_lock();
2269	cache = ipmr_cache_find(mrt, saddr, daddr);
2270	if (!cache && skb->dev) {
2271		int vif = ipmr_find_vif(mrt, skb->dev);
2272
2273		if (vif >= 0)
2274			cache = ipmr_cache_find_any(mrt, daddr, vif);
2275	}
2276	if (!cache) {
2277		struct sk_buff *skb2;
2278		struct iphdr *iph;
2279		struct net_device *dev;
2280		int vif = -1;
2281
 
 
 
 
 
2282		dev = skb->dev;
 
2283		if (dev)
2284			vif = ipmr_find_vif(mrt, dev);
2285		if (vif < 0) {
 
2286			rcu_read_unlock();
2287			return -ENODEV;
2288		}
2289
2290		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2291		if (!skb2) {
 
2292			rcu_read_unlock();
2293			return -ENOMEM;
2294		}
2295
2296		NETLINK_CB(skb2).portid = portid;
2297		skb_push(skb2, sizeof(struct iphdr));
2298		skb_reset_network_header(skb2);
2299		iph = ip_hdr(skb2);
2300		iph->ihl = sizeof(struct iphdr) >> 2;
2301		iph->saddr = saddr;
2302		iph->daddr = daddr;
2303		iph->version = 0;
2304		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
 
2305		rcu_read_unlock();
2306		return err;
2307	}
2308
2309	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
 
 
 
 
2310	rcu_read_unlock();
2311	return err;
2312}
2313
2314static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2315			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2316			    int flags)
2317{
2318	struct nlmsghdr *nlh;
2319	struct rtmsg *rtm;
2320	int err;
2321
2322	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2323	if (!nlh)
2324		return -EMSGSIZE;
2325
2326	rtm = nlmsg_data(nlh);
2327	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2328	rtm->rtm_dst_len  = 32;
2329	rtm->rtm_src_len  = 32;
2330	rtm->rtm_tos      = 0;
2331	rtm->rtm_table    = mrt->id;
2332	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2333		goto nla_put_failure;
2334	rtm->rtm_type     = RTN_MULTICAST;
2335	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2336	if (c->_c.mfc_flags & MFC_STATIC)
2337		rtm->rtm_protocol = RTPROT_STATIC;
2338	else
2339		rtm->rtm_protocol = RTPROT_MROUTED;
2340	rtm->rtm_flags    = 0;
2341
2342	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2343	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2344		goto nla_put_failure;
2345	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2346	/* do not break the dump if cache is unresolved */
2347	if (err < 0 && err != -ENOENT)
2348		goto nla_put_failure;
2349
2350	nlmsg_end(skb, nlh);
2351	return 0;
2352
2353nla_put_failure:
2354	nlmsg_cancel(skb, nlh);
2355	return -EMSGSIZE;
2356}
2357
2358static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2359			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2360			     int flags)
2361{
2362	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2363				cmd, flags);
2364}
2365
2366static size_t mroute_msgsize(bool unresolved, int maxvif)
2367{
2368	size_t len =
2369		NLMSG_ALIGN(sizeof(struct rtmsg))
2370		+ nla_total_size(4)	/* RTA_TABLE */
2371		+ nla_total_size(4)	/* RTA_SRC */
2372		+ nla_total_size(4)	/* RTA_DST */
2373		;
2374
2375	if (!unresolved)
2376		len = len
2377		      + nla_total_size(4)	/* RTA_IIF */
2378		      + nla_total_size(0)	/* RTA_MULTIPATH */
2379		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2380						/* RTA_MFC_STATS */
2381		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2382		;
2383
2384	return len;
2385}
2386
2387static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2388				 int cmd)
2389{
2390	struct net *net = read_pnet(&mrt->net);
2391	struct sk_buff *skb;
2392	int err = -ENOBUFS;
2393
2394	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2395				       mrt->maxvif),
2396			GFP_ATOMIC);
2397	if (!skb)
2398		goto errout;
2399
2400	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2401	if (err < 0)
2402		goto errout;
2403
2404	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2405	return;
2406
2407errout:
2408	kfree_skb(skb);
2409	if (err < 0)
2410		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2411}
2412
2413static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2414{
2415	size_t len =
2416		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2417		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2418		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2419		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2420		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2421		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2422					/* IPMRA_CREPORT_PKT */
2423		+ nla_total_size(payloadlen)
2424		;
2425
2426	return len;
2427}
2428
2429static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2430{
2431	struct net *net = read_pnet(&mrt->net);
2432	struct nlmsghdr *nlh;
2433	struct rtgenmsg *rtgenm;
2434	struct igmpmsg *msg;
2435	struct sk_buff *skb;
2436	struct nlattr *nla;
2437	int payloadlen;
2438
2439	payloadlen = pkt->len - sizeof(struct igmpmsg);
2440	msg = (struct igmpmsg *)skb_network_header(pkt);
2441
2442	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2443	if (!skb)
2444		goto errout;
2445
2446	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2447			sizeof(struct rtgenmsg), 0);
2448	if (!nlh)
2449		goto errout;
2450	rtgenm = nlmsg_data(nlh);
2451	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2452	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2453	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2454	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2455			    msg->im_src.s_addr) ||
2456	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2457			    msg->im_dst.s_addr) ||
2458	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2459		goto nla_put_failure;
2460
2461	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2462	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2463				  nla_data(nla), payloadlen))
2464		goto nla_put_failure;
2465
2466	nlmsg_end(skb, nlh);
2467
2468	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2469	return;
2470
2471nla_put_failure:
2472	nlmsg_cancel(skb, nlh);
2473errout:
2474	kfree_skb(skb);
2475	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2476}
2477
2478static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2479				       const struct nlmsghdr *nlh,
2480				       struct nlattr **tb,
2481				       struct netlink_ext_ack *extack)
2482{
2483	struct rtmsg *rtm;
2484	int i, err;
2485
2486	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2487		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2488		return -EINVAL;
2489	}
2490
2491	if (!netlink_strict_get_check(skb))
2492		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2493					      rtm_ipv4_policy, extack);
2494
2495	rtm = nlmsg_data(nlh);
2496	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2497	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2498	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2499	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2500		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2501		return -EINVAL;
2502	}
2503
2504	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2505					    rtm_ipv4_policy, extack);
2506	if (err)
2507		return err;
2508
2509	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2510	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2511		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2512		return -EINVAL;
2513	}
2514
2515	for (i = 0; i <= RTA_MAX; i++) {
2516		if (!tb[i])
2517			continue;
2518
2519		switch (i) {
2520		case RTA_SRC:
2521		case RTA_DST:
2522		case RTA_TABLE:
2523			break;
2524		default:
2525			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2526			return -EINVAL;
2527		}
2528	}
2529
2530	return 0;
2531}
2532
2533static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2534			     struct netlink_ext_ack *extack)
2535{
2536	struct net *net = sock_net(in_skb->sk);
2537	struct nlattr *tb[RTA_MAX + 1];
2538	struct sk_buff *skb = NULL;
2539	struct mfc_cache *cache;
2540	struct mr_table *mrt;
2541	__be32 src, grp;
2542	u32 tableid;
2543	int err;
2544
2545	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2546	if (err < 0)
2547		goto errout;
2548
2549	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2550	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2551	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2552
2553	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2554	if (!mrt) {
2555		err = -ENOENT;
2556		goto errout_free;
2557	}
2558
2559	/* entries are added/deleted only under RTNL */
2560	rcu_read_lock();
2561	cache = ipmr_cache_find(mrt, src, grp);
2562	rcu_read_unlock();
2563	if (!cache) {
2564		err = -ENOENT;
2565		goto errout_free;
2566	}
2567
2568	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2569	if (!skb) {
2570		err = -ENOBUFS;
2571		goto errout_free;
2572	}
2573
2574	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2575			       nlh->nlmsg_seq, cache,
2576			       RTM_NEWROUTE, 0);
2577	if (err < 0)
2578		goto errout_free;
2579
2580	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2581
2582errout:
2583	return err;
2584
2585errout_free:
2586	kfree_skb(skb);
2587	goto errout;
2588}
2589
2590static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2591{
2592	struct fib_dump_filter filter = {
2593		.rtnl_held = true,
2594	};
2595	int err;
2596
2597	if (cb->strict_check) {
2598		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2599					    &filter, cb);
2600		if (err < 0)
2601			return err;
2602	}
2603
2604	if (filter.table_id) {
2605		struct mr_table *mrt;
2606
2607		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2608		if (!mrt) {
2609			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2610				return skb->len;
2611
2612			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2613			return -ENOENT;
2614		}
2615		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2616				    &mfc_unres_lock, &filter);
2617		return skb->len ? : err;
2618	}
2619
2620	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2621				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2622}
2623
2624static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2625	[RTA_SRC]	= { .type = NLA_U32 },
2626	[RTA_DST]	= { .type = NLA_U32 },
2627	[RTA_IIF]	= { .type = NLA_U32 },
2628	[RTA_TABLE]	= { .type = NLA_U32 },
2629	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2630};
2631
2632static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2633{
2634	switch (rtm_protocol) {
2635	case RTPROT_STATIC:
2636	case RTPROT_MROUTED:
2637		return true;
2638	}
2639	return false;
2640}
2641
2642static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2643{
2644	struct rtnexthop *rtnh = nla_data(nla);
2645	int remaining = nla_len(nla), vifi = 0;
2646
2647	while (rtnh_ok(rtnh, remaining)) {
2648		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2649		if (++vifi == MAXVIFS)
2650			break;
2651		rtnh = rtnh_next(rtnh, &remaining);
2652	}
2653
2654	return remaining > 0 ? -EINVAL : vifi;
2655}
2656
2657/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2658static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2659			    struct mfcctl *mfcc, int *mrtsock,
2660			    struct mr_table **mrtret,
2661			    struct netlink_ext_ack *extack)
2662{
2663	struct net_device *dev = NULL;
2664	u32 tblid = RT_TABLE_DEFAULT;
2665	struct mr_table *mrt;
2666	struct nlattr *attr;
2667	struct rtmsg *rtm;
2668	int ret, rem;
2669
2670	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2671					rtm_ipmr_policy, extack);
2672	if (ret < 0)
2673		goto out;
2674	rtm = nlmsg_data(nlh);
2675
2676	ret = -EINVAL;
2677	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2678	    rtm->rtm_type != RTN_MULTICAST ||
2679	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2680	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2681		goto out;
2682
2683	memset(mfcc, 0, sizeof(*mfcc));
2684	mfcc->mfcc_parent = -1;
2685	ret = 0;
2686	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2687		switch (nla_type(attr)) {
2688		case RTA_SRC:
2689			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2690			break;
2691		case RTA_DST:
2692			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2693			break;
2694		case RTA_IIF:
2695			dev = __dev_get_by_index(net, nla_get_u32(attr));
2696			if (!dev) {
2697				ret = -ENODEV;
2698				goto out;
2699			}
2700			break;
2701		case RTA_MULTIPATH:
2702			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2703				ret = -EINVAL;
2704				goto out;
2705			}
2706			break;
2707		case RTA_PREFSRC:
2708			ret = 1;
2709			break;
2710		case RTA_TABLE:
2711			tblid = nla_get_u32(attr);
2712			break;
2713		}
2714	}
2715	mrt = ipmr_get_table(net, tblid);
2716	if (!mrt) {
2717		ret = -ENOENT;
2718		goto out;
2719	}
2720	*mrtret = mrt;
2721	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2722	if (dev)
2723		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2724
2725out:
2726	return ret;
2727}
2728
2729/* takes care of both newroute and delroute */
2730static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2731			  struct netlink_ext_ack *extack)
2732{
2733	struct net *net = sock_net(skb->sk);
2734	int ret, mrtsock, parent;
2735	struct mr_table *tbl;
2736	struct mfcctl mfcc;
2737
2738	mrtsock = 0;
2739	tbl = NULL;
2740	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2741	if (ret < 0)
2742		return ret;
2743
2744	parent = ret ? mfcc.mfcc_parent : -1;
2745	if (nlh->nlmsg_type == RTM_NEWROUTE)
2746		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2747	else
2748		return ipmr_mfc_delete(tbl, &mfcc, parent);
2749}
2750
2751static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2752{
2753	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2754
2755	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2756	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2757	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2758			mrt->mroute_reg_vif_num) ||
2759	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2760		       mrt->mroute_do_assert) ||
2761	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2762	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2763		       mrt->mroute_do_wrvifwhole))
2764		return false;
2765
2766	return true;
2767}
2768
2769static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2770{
2771	struct net_device *vif_dev;
2772	struct nlattr *vif_nest;
2773	struct vif_device *vif;
2774
2775	vif = &mrt->vif_table[vifid];
2776	vif_dev = rtnl_dereference(vif->dev);
2777	/* if the VIF doesn't exist just continue */
2778	if (!vif_dev)
2779		return true;
2780
2781	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2782	if (!vif_nest)
2783		return false;
2784
2785	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2786	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2787	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2788	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2789			      IPMRA_VIFA_PAD) ||
2790	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2791			      IPMRA_VIFA_PAD) ||
2792	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2793			      IPMRA_VIFA_PAD) ||
2794	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2795			      IPMRA_VIFA_PAD) ||
2796	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2797	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2798		nla_nest_cancel(skb, vif_nest);
2799		return false;
2800	}
2801	nla_nest_end(skb, vif_nest);
2802
2803	return true;
2804}
2805
2806static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2807			       struct netlink_ext_ack *extack)
2808{
2809	struct ifinfomsg *ifm;
2810
2811	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2812		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2813		return -EINVAL;
2814	}
2815
2816	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2817		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2818		return -EINVAL;
2819	}
2820
2821	ifm = nlmsg_data(nlh);
2822	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2823	    ifm->ifi_change || ifm->ifi_index) {
2824		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2825		return -EINVAL;
2826	}
2827
2828	return 0;
2829}
2830
2831static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2832{
2833	struct net *net = sock_net(skb->sk);
2834	struct nlmsghdr *nlh = NULL;
2835	unsigned int t = 0, s_t;
 
2836	unsigned int e = 0, s_e;
2837	struct mr_table *mrt;
2838
2839	if (cb->strict_check) {
2840		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2841
2842		if (err < 0)
2843			return err;
2844	}
2845
2846	s_t = cb->args[0];
2847	s_e = cb->args[1];
 
2848
 
2849	ipmr_for_each_table(mrt, net) {
2850		struct nlattr *vifs, *af;
2851		struct ifinfomsg *hdr;
2852		u32 i;
2853
2854		if (t < s_t)
2855			goto skip_table;
2856		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2857				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2858				sizeof(*hdr), NLM_F_MULTI);
2859		if (!nlh)
2860			break;
2861
2862		hdr = nlmsg_data(nlh);
2863		memset(hdr, 0, sizeof(*hdr));
2864		hdr->ifi_family = RTNL_FAMILY_IPMR;
2865
2866		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2867		if (!af) {
2868			nlmsg_cancel(skb, nlh);
2869			goto out;
2870		}
2871
2872		if (!ipmr_fill_table(mrt, skb)) {
2873			nlmsg_cancel(skb, nlh);
2874			goto out;
2875		}
2876
2877		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2878		if (!vifs) {
2879			nla_nest_end(skb, af);
2880			nlmsg_end(skb, nlh);
2881			goto out;
2882		}
2883		for (i = 0; i < mrt->maxvif; i++) {
2884			if (e < s_e)
2885				goto skip_entry;
2886			if (!ipmr_fill_vif(mrt, i, skb)) {
2887				nla_nest_end(skb, vifs);
2888				nla_nest_end(skb, af);
2889				nlmsg_end(skb, nlh);
2890				goto out;
2891			}
2892skip_entry:
2893			e++;
2894		}
2895		s_e = 0;
2896		e = 0;
2897		nla_nest_end(skb, vifs);
2898		nla_nest_end(skb, af);
2899		nlmsg_end(skb, nlh);
2900skip_table:
2901		t++;
2902	}
 
 
2903
2904out:
2905	cb->args[1] = e;
2906	cb->args[0] = t;
2907
2908	return skb->len;
2909}
2910
2911#ifdef CONFIG_PROC_FS
2912/* The /proc interfaces to multicast routing :
2913 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
 
2914 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915
2916static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2917	__acquires(RCU)
2918{
2919	struct mr_vif_iter *iter = seq->private;
2920	struct net *net = seq_file_net(seq);
2921	struct mr_table *mrt;
2922
2923	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2924	if (!mrt)
2925		return ERR_PTR(-ENOENT);
2926
2927	iter->mrt = mrt;
2928
2929	rcu_read_lock();
2930	return mr_vif_seq_start(seq, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931}
2932
2933static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2934	__releases(RCU)
2935{
2936	rcu_read_unlock();
2937}
2938
2939static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2940{
2941	struct mr_vif_iter *iter = seq->private;
2942	struct mr_table *mrt = iter->mrt;
2943
2944	if (v == SEQ_START_TOKEN) {
2945		seq_puts(seq,
2946			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2947	} else {
2948		const struct vif_device *vif = v;
2949		const struct net_device *vif_dev;
2950		const char *name;
2951
2952		vif_dev = vif_dev_read(vif);
2953		name = vif_dev ? vif_dev->name : "none";
2954		seq_printf(seq,
2955			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2956			   vif - mrt->vif_table,
2957			   name, vif->bytes_in, vif->pkt_in,
2958			   vif->bytes_out, vif->pkt_out,
2959			   vif->flags, vif->local, vif->remote);
2960	}
2961	return 0;
2962}
2963
2964static const struct seq_operations ipmr_vif_seq_ops = {
2965	.start = ipmr_vif_seq_start,
2966	.next  = mr_vif_seq_next,
2967	.stop  = ipmr_vif_seq_stop,
2968	.show  = ipmr_vif_seq_show,
2969};
2970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2972{
 
2973	struct net *net = seq_file_net(seq);
2974	struct mr_table *mrt;
2975
2976	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2977	if (!mrt)
2978		return ERR_PTR(-ENOENT);
2979
2980	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2981}
2982
2983static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2984{
2985	int n;
2986
2987	if (v == SEQ_START_TOKEN) {
2988		seq_puts(seq,
2989		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2990	} else {
2991		const struct mfc_cache *mfc = v;
2992		const struct mr_mfc_iter *it = seq->private;
2993		const struct mr_table *mrt = it->mrt;
2994
2995		seq_printf(seq, "%08X %08X %-3hd",
2996			   (__force u32) mfc->mfc_mcastgrp,
2997			   (__force u32) mfc->mfc_origin,
2998			   mfc->_c.mfc_parent);
2999
3000		if (it->cache != &mrt->mfc_unres_queue) {
3001			seq_printf(seq, " %8lu %8lu %8lu",
3002				   mfc->_c.mfc_un.res.pkt,
3003				   mfc->_c.mfc_un.res.bytes,
3004				   mfc->_c.mfc_un.res.wrong_if);
3005			for (n = mfc->_c.mfc_un.res.minvif;
3006			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3007				if (VIF_EXISTS(mrt, n) &&
3008				    mfc->_c.mfc_un.res.ttls[n] < 255)
3009					seq_printf(seq,
3010					   " %2d:%-3d",
3011					   n, mfc->_c.mfc_un.res.ttls[n]);
3012			}
3013		} else {
3014			/* unresolved mfc_caches don't contain
3015			 * pkt, bytes and wrong_if values
3016			 */
3017			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3018		}
3019		seq_putc(seq, '\n');
3020	}
3021	return 0;
3022}
3023
3024static const struct seq_operations ipmr_mfc_seq_ops = {
3025	.start = ipmr_mfc_seq_start,
3026	.next  = mr_mfc_seq_next,
3027	.stop  = mr_mfc_seq_stop,
3028	.show  = ipmr_mfc_seq_show,
3029};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3030#endif
3031
3032#ifdef CONFIG_IP_PIMSM_V2
3033static const struct net_protocol pim_protocol = {
3034	.handler	=	pim_rcv,
 
3035};
3036#endif
3037
3038static unsigned int ipmr_seq_read(struct net *net)
3039{
3040	ASSERT_RTNL();
3041
3042	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3043}
3044
3045static int ipmr_dump(struct net *net, struct notifier_block *nb,
3046		     struct netlink_ext_ack *extack)
3047{
3048	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3049		       ipmr_mr_table_iter, extack);
3050}
3051
3052static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3053	.family		= RTNL_FAMILY_IPMR,
3054	.fib_seq_read	= ipmr_seq_read,
3055	.fib_dump	= ipmr_dump,
3056	.owner		= THIS_MODULE,
3057};
3058
3059static int __net_init ipmr_notifier_init(struct net *net)
3060{
3061	struct fib_notifier_ops *ops;
3062
3063	net->ipv4.ipmr_seq = 0;
3064
3065	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3066	if (IS_ERR(ops))
3067		return PTR_ERR(ops);
3068	net->ipv4.ipmr_notifier_ops = ops;
3069
3070	return 0;
3071}
3072
3073static void __net_exit ipmr_notifier_exit(struct net *net)
3074{
3075	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3076	net->ipv4.ipmr_notifier_ops = NULL;
3077}
3078
3079/* Setup for IP multicast routing */
3080static int __net_init ipmr_net_init(struct net *net)
3081{
3082	int err;
3083
3084	err = ipmr_notifier_init(net);
3085	if (err)
3086		goto ipmr_notifier_fail;
3087
3088	err = ipmr_rules_init(net);
3089	if (err < 0)
3090		goto ipmr_rules_fail;
3091
3092#ifdef CONFIG_PROC_FS
3093	err = -ENOMEM;
3094	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3095			sizeof(struct mr_vif_iter)))
3096		goto proc_vif_fail;
3097	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3098			sizeof(struct mr_mfc_iter)))
3099		goto proc_cache_fail;
3100#endif
3101	return 0;
3102
3103#ifdef CONFIG_PROC_FS
3104proc_cache_fail:
3105	remove_proc_entry("ip_mr_vif", net->proc_net);
3106proc_vif_fail:
3107	rtnl_lock();
3108	ipmr_rules_exit(net);
3109	rtnl_unlock();
3110#endif
3111ipmr_rules_fail:
3112	ipmr_notifier_exit(net);
3113ipmr_notifier_fail:
3114	return err;
3115}
3116
3117static void __net_exit ipmr_net_exit(struct net *net)
3118{
3119#ifdef CONFIG_PROC_FS
3120	remove_proc_entry("ip_mr_cache", net->proc_net);
3121	remove_proc_entry("ip_mr_vif", net->proc_net);
3122#endif
3123	ipmr_notifier_exit(net);
3124}
3125
3126static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3127{
3128	struct net *net;
3129
3130	rtnl_lock();
3131	list_for_each_entry(net, net_list, exit_list)
3132		ipmr_rules_exit(net);
3133	rtnl_unlock();
3134}
3135
3136static struct pernet_operations ipmr_net_ops = {
3137	.init = ipmr_net_init,
3138	.exit = ipmr_net_exit,
3139	.exit_batch = ipmr_net_exit_batch,
3140};
3141
3142int __init ip_mr_init(void)
3143{
3144	int err;
3145
3146	mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
 
 
 
 
 
3147
3148	err = register_pernet_subsys(&ipmr_net_ops);
3149	if (err)
3150		goto reg_pernet_fail;
3151
3152	err = register_netdevice_notifier(&ip_mr_notifier);
3153	if (err)
3154		goto reg_notif_fail;
3155#ifdef CONFIG_IP_PIMSM_V2
3156	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3157		pr_err("%s: can't add PIM protocol\n", __func__);
3158		err = -EAGAIN;
3159		goto add_proto_fail;
3160	}
3161#endif
3162	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3163		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3164	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3165		      ipmr_rtm_route, NULL, 0);
3166	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3167		      ipmr_rtm_route, NULL, 0);
3168
3169	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3170		      NULL, ipmr_rtm_dumplink, 0);
3171	return 0;
3172
3173#ifdef CONFIG_IP_PIMSM_V2
3174add_proto_fail:
3175	unregister_netdevice_notifier(&ip_mr_notifier);
3176#endif
3177reg_notif_fail:
3178	unregister_pernet_subsys(&ipmr_net_ops);
3179reg_pernet_fail:
3180	kmem_cache_destroy(mrt_cachep);
3181	return err;
3182}