Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.5.6
 
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There is one worker pool for each CPU and
  20 * one extra for works which are better served by workers which are
  21 * not bound to any specific CPU.
 
  22 *
  23 * Please read Documentation/workqueue.txt for details.
  24 */
  25
  26#include <linux/export.h>
  27#include <linux/kernel.h>
  28#include <linux/sched.h>
  29#include <linux/init.h>
 
  30#include <linux/signal.h>
  31#include <linux/completion.h>
  32#include <linux/workqueue.h>
  33#include <linux/slab.h>
  34#include <linux/cpu.h>
  35#include <linux/notifier.h>
  36#include <linux/kthread.h>
  37#include <linux/hardirq.h>
  38#include <linux/mempolicy.h>
  39#include <linux/freezer.h>
  40#include <linux/kallsyms.h>
  41#include <linux/debug_locks.h>
  42#include <linux/lockdep.h>
  43#include <linux/idr.h>
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45#include "workqueue_sched.h"
  46
  47enum {
  48	/* global_cwq flags */
  49	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
  50	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
  51	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  52	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
  53	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
 
  55	/* worker flags */
  56	WORKER_STARTED		= 1 << 0,	/* started */
  57	WORKER_DIE		= 1 << 1,	/* die die die */
  58	WORKER_IDLE		= 1 << 2,	/* is idle */
  59	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  60	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
  61	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
  62	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  63	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
 
  64
  65	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
  66				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
 
  67
  68	/* gcwq->trustee_state */
  69	TRUSTEE_START		= 0,		/* start */
  70	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
  71	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
  72	TRUSTEE_RELEASE		= 3,		/* release workers */
  73	TRUSTEE_DONE		= 4,		/* trustee is done */
  74
 
 
 
 
  75	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  76	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
  77	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
  78
  79	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  80	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  81
  82	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  83						/* call for help after 10ms
  84						   (min two ticks) */
  85	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  86	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  87	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
  88
  89	/*
  90	 * Rescue workers are used only on emergencies and shared by
  91	 * all cpus.  Give -20.
  92	 */
  93	RESCUER_NICE_LEVEL	= -20,
 
 
 
  94};
  95
  96/*
 
 
 
 
 
 
 
 
  97 * Structure fields follow one of the following exclusion rules.
  98 *
  99 * I: Modifiable by initialization/destruction paths and read-only for
 100 *    everyone else.
 101 *
 102 * P: Preemption protected.  Disabling preemption is enough and should
 103 *    only be modified and accessed from the local cpu.
 104 *
 105 * L: gcwq->lock protected.  Access with gcwq->lock held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106 *
 107 * X: During normal operation, modification requires gcwq->lock and
 108 *    should be done only from local cpu.  Either disabling preemption
 109 *    on local cpu or grabbing gcwq->lock is enough for read access.
 110 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
 111 *
 112 * F: wq->flush_mutex protected.
 113 *
 114 * W: workqueue_lock protected.
 
 
 
 
 
 
 
 115 */
 116
 117struct global_cwq;
 118
 119/*
 120 * The poor guys doing the actual heavy lifting.  All on-duty workers
 121 * are either serving the manager role, on idle list or on busy hash.
 122 */
 123struct worker {
 124	/* on idle list while idle, on busy hash table while busy */
 125	union {
 126		struct list_head	entry;	/* L: while idle */
 127		struct hlist_node	hentry;	/* L: while busy */
 128	};
 129
 130	struct work_struct	*current_work;	/* L: work being processed */
 131	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
 132	struct list_head	scheduled;	/* L: scheduled works */
 133	struct task_struct	*task;		/* I: worker task */
 134	struct global_cwq	*gcwq;		/* I: the associated gcwq */
 135	/* 64 bytes boundary on 64bit, 32 on 32bit */
 136	unsigned long		last_active;	/* L: last active timestamp */
 137	unsigned int		flags;		/* X: flags */
 138	int			id;		/* I: worker id */
 139	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
 140};
 141
 142/*
 143 * Global per-cpu workqueue.  There's one and only one for each cpu
 144 * and all works are queued and processed here regardless of their
 145 * target workqueues.
 146 */
 147struct global_cwq {
 148	spinlock_t		lock;		/* the gcwq lock */
 149	struct list_head	worklist;	/* L: list of pending works */
 150	unsigned int		cpu;		/* I: the associated cpu */
 151	unsigned int		flags;		/* L: GCWQ_* flags */
 152
 153	int			nr_workers;	/* L: total number of workers */
 154	int			nr_idle;	/* L: currently idle ones */
 
 
 
 
 
 
 155
 156	/* workers are chained either in the idle_list or busy_hash */
 157	struct list_head	idle_list;	/* X: list of idle workers */
 158	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
 159						/* L: hash of busy workers */
 160
 161	struct timer_list	idle_timer;	/* L: worker idle timeout */
 162	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
 
 
 
 
 163
 164	struct ida		worker_ida;	/* L: for worker IDs */
 
 
 165
 166	struct task_struct	*trustee;	/* L: for gcwq shutdown */
 167	unsigned int		trustee_state;	/* L: trustee state */
 168	wait_queue_head_t	trustee_wait;	/* trustee wait */
 169	struct worker		*first_idle;	/* L: first idle worker */
 170} ____cacheline_aligned_in_smp;
 
 171
 172/*
 173 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
 174 * work_struct->data are used for flags and thus cwqs need to be
 175 * aligned at two's power of the number of flag bits.
 176 */
 177struct cpu_workqueue_struct {
 178	struct global_cwq	*gcwq;		/* I: the associated gcwq */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179	struct workqueue_struct *wq;		/* I: the owning workqueue */
 180	int			work_color;	/* L: current color */
 181	int			flush_color;	/* L: flushing color */
 
 182	int			nr_in_flight[WORK_NR_COLORS];
 183						/* L: nr of in_flight works */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184	int			nr_active;	/* L: nr of active works */
 185	int			max_active;	/* L: max active works */
 186	struct list_head	delayed_works;	/* L: delayed works */
 187};
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189/*
 190 * Structure used to wait for workqueue flush.
 191 */
 192struct wq_flusher {
 193	struct list_head	list;		/* F: list of flushers */
 194	int			flush_color;	/* F: flush color waiting for */
 195	struct completion	done;		/* flush completion */
 196};
 197
 
 
 198/*
 199 * All cpumasks are assumed to be always set on UP and thus can't be
 200 * used to determine whether there's something to be done.
 201 */
 202#ifdef CONFIG_SMP
 203typedef cpumask_var_t mayday_mask_t;
 204#define mayday_test_and_set_cpu(cpu, mask)	\
 205	cpumask_test_and_set_cpu((cpu), (mask))
 206#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
 207#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
 208#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
 209#define free_mayday_mask(mask)			free_cpumask_var((mask))
 210#else
 211typedef unsigned long mayday_mask_t;
 212#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
 213#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
 214#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
 215#define alloc_mayday_mask(maskp, gfp)		true
 216#define free_mayday_mask(mask)			do { } while (0)
 217#endif
 218
 219/*
 220 * The externally visible workqueue abstraction is an array of
 221 * per-CPU workqueues:
 222 */
 223struct workqueue_struct {
 224	unsigned int		flags;		/* W: WQ_* flags */
 225	union {
 226		struct cpu_workqueue_struct __percpu	*pcpu;
 227		struct cpu_workqueue_struct		*single;
 228		unsigned long				v;
 229	} cpu_wq;				/* I: cwq's */
 230	struct list_head	list;		/* W: list of all workqueues */
 231
 232	struct mutex		flush_mutex;	/* protects wq flushing */
 233	int			work_color;	/* F: current work color */
 234	int			flush_color;	/* F: current flush color */
 235	atomic_t		nr_cwqs_to_flush; /* flush in progress */
 236	struct wq_flusher	*first_flusher;	/* F: first flusher */
 237	struct list_head	flusher_queue;	/* F: flush waiters */
 238	struct list_head	flusher_overflow; /* F: flush overflow list */
 
 
 
 
 
 
 239
 240	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
 241	struct worker		*rescuer;	/* I: rescue worker */
 242
 243	int			nr_drainers;	/* W: drain in progress */
 244	int			saved_max_active; /* W: saved cwq max_active */
 
 245#ifdef CONFIG_LOCKDEP
 
 
 246	struct lockdep_map	lockdep_map;
 247#endif
 248	char			name[];		/* I: workqueue name */
 
 
 
 
 
 
 
 
 
 
 
 
 249};
 250
 251struct workqueue_struct *system_wq __read_mostly;
 252struct workqueue_struct *system_long_wq __read_mostly;
 253struct workqueue_struct *system_nrt_wq __read_mostly;
 254struct workqueue_struct *system_unbound_wq __read_mostly;
 255struct workqueue_struct *system_freezable_wq __read_mostly;
 256struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
 257EXPORT_SYMBOL_GPL(system_wq);
 258EXPORT_SYMBOL_GPL(system_long_wq);
 259EXPORT_SYMBOL_GPL(system_nrt_wq);
 260EXPORT_SYMBOL_GPL(system_unbound_wq);
 261EXPORT_SYMBOL_GPL(system_freezable_wq);
 262EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
 263
 264#define CREATE_TRACE_POINTS
 265#include <trace/events/workqueue.h>
 
 
 
 
 
 
 266
 267#define for_each_busy_worker(worker, i, pos, gcwq)			\
 268	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
 269		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
 
 
 
 
 
 
 
 
 
 
 270
 271static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
 272				  unsigned int sw)
 273{
 274	if (cpu < nr_cpu_ids) {
 275		if (sw & 1) {
 276			cpu = cpumask_next(cpu, mask);
 277			if (cpu < nr_cpu_ids)
 278				return cpu;
 279		}
 280		if (sw & 2)
 281			return WORK_CPU_UNBOUND;
 282	}
 283	return WORK_CPU_NONE;
 284}
 285
 286static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
 287				struct workqueue_struct *wq)
 288{
 289	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
 290}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292/*
 293 * CPU iterators
 294 *
 295 * An extra gcwq is defined for an invalid cpu number
 296 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 297 * specific CPU.  The following iterators are similar to
 298 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 299 *
 300 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 301 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 302 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 303 *				  WORK_CPU_UNBOUND for unbound workqueues
 304 */
 305#define for_each_gcwq_cpu(cpu)						\
 306	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
 307	     (cpu) < WORK_CPU_NONE;					\
 308	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
 
 
 
 
 
 
 
 
 
 
 309
 310#define for_each_online_gcwq_cpu(cpu)					\
 311	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
 312	     (cpu) < WORK_CPU_NONE;					\
 313	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
 314
 315#define for_each_cwq_cpu(cpu, wq)					\
 316	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
 317	     (cpu) < WORK_CPU_NONE;					\
 318	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319
 320#ifdef CONFIG_DEBUG_OBJECTS_WORK
 321
 322static struct debug_obj_descr work_debug_descr;
 323
 324static void *work_debug_hint(void *addr)
 325{
 326	return ((struct work_struct *) addr)->func;
 327}
 328
 329/*
 330 * fixup_init is called when:
 331 * - an active object is initialized
 332 */
 333static int work_fixup_init(void *addr, enum debug_obj_state state)
 334{
 335	struct work_struct *work = addr;
 336
 337	switch (state) {
 338	case ODEBUG_STATE_ACTIVE:
 339		cancel_work_sync(work);
 340		debug_object_init(work, &work_debug_descr);
 341		return 1;
 342	default:
 343		return 0;
 344	}
 345}
 346
 347/*
 348 * fixup_activate is called when:
 349 * - an active object is activated
 350 * - an unknown object is activated (might be a statically initialized object)
 351 */
 352static int work_fixup_activate(void *addr, enum debug_obj_state state)
 353{
 354	struct work_struct *work = addr;
 355
 356	switch (state) {
 357
 358	case ODEBUG_STATE_NOTAVAILABLE:
 359		/*
 360		 * This is not really a fixup. The work struct was
 361		 * statically initialized. We just make sure that it
 362		 * is tracked in the object tracker.
 363		 */
 364		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 365			debug_object_init(work, &work_debug_descr);
 366			debug_object_activate(work, &work_debug_descr);
 367			return 0;
 368		}
 369		WARN_ON_ONCE(1);
 370		return 0;
 371
 372	case ODEBUG_STATE_ACTIVE:
 373		WARN_ON(1);
 374
 
 375	default:
 376		return 0;
 377	}
 378}
 379
 380/*
 381 * fixup_free is called when:
 382 * - an active object is freed
 383 */
 384static int work_fixup_free(void *addr, enum debug_obj_state state)
 385{
 386	struct work_struct *work = addr;
 387
 388	switch (state) {
 389	case ODEBUG_STATE_ACTIVE:
 390		cancel_work_sync(work);
 391		debug_object_free(work, &work_debug_descr);
 392		return 1;
 393	default:
 394		return 0;
 395	}
 396}
 397
 398static struct debug_obj_descr work_debug_descr = {
 399	.name		= "work_struct",
 400	.debug_hint	= work_debug_hint,
 
 401	.fixup_init	= work_fixup_init,
 402	.fixup_activate	= work_fixup_activate,
 403	.fixup_free	= work_fixup_free,
 404};
 405
 406static inline void debug_work_activate(struct work_struct *work)
 407{
 408	debug_object_activate(work, &work_debug_descr);
 409}
 410
 411static inline void debug_work_deactivate(struct work_struct *work)
 412{
 413	debug_object_deactivate(work, &work_debug_descr);
 414}
 415
 416void __init_work(struct work_struct *work, int onstack)
 417{
 418	if (onstack)
 419		debug_object_init_on_stack(work, &work_debug_descr);
 420	else
 421		debug_object_init(work, &work_debug_descr);
 422}
 423EXPORT_SYMBOL_GPL(__init_work);
 424
 425void destroy_work_on_stack(struct work_struct *work)
 426{
 427	debug_object_free(work, &work_debug_descr);
 428}
 429EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 430
 
 
 
 
 
 
 
 431#else
 432static inline void debug_work_activate(struct work_struct *work) { }
 433static inline void debug_work_deactivate(struct work_struct *work) { }
 434#endif
 435
 436/* Serializes the accesses to the list of workqueues. */
 437static DEFINE_SPINLOCK(workqueue_lock);
 438static LIST_HEAD(workqueues);
 439static bool workqueue_freezing;		/* W: have wqs started freezing? */
 440
 441/*
 442 * The almighty global cpu workqueues.  nr_running is the only field
 443 * which is expected to be used frequently by other cpus via
 444 * try_to_wake_up().  Put it in a separate cacheline.
 445 */
 446static DEFINE_PER_CPU(struct global_cwq, global_cwq);
 447static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
 
 448
 449/*
 450 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 451 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 452 * workers have WORKER_UNBOUND set.
 453 */
 454static struct global_cwq unbound_global_cwq;
 455static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
 456
 457static int worker_thread(void *__worker);
 
 
 
 
 
 
 
 458
 459static struct global_cwq *get_gcwq(unsigned int cpu)
 
 460{
 461	if (cpu != WORK_CPU_UNBOUND)
 462		return &per_cpu(global_cwq, cpu);
 463	else
 464		return &unbound_global_cwq;
 465}
 466
 467static atomic_t *get_gcwq_nr_running(unsigned int cpu)
 
 468{
 469	if (cpu != WORK_CPU_UNBOUND)
 470		return &per_cpu(gcwq_nr_running, cpu);
 471	else
 472		return &unbound_gcwq_nr_running;
 473}
 474
 475static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
 476					    struct workqueue_struct *wq)
 
 
 
 
 
 
 
 477{
 478	if (!(wq->flags & WQ_UNBOUND)) {
 479		if (likely(cpu < nr_cpu_ids))
 480			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
 481	} else if (likely(cpu == WORK_CPU_UNBOUND))
 482		return wq->cpu_wq.single;
 483	return NULL;
 484}
 485
 486static unsigned int work_color_to_flags(int color)
 487{
 488	return color << WORK_STRUCT_COLOR_SHIFT;
 489}
 490
 491static int get_work_color(struct work_struct *work)
 492{
 493	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 494		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 495}
 496
 497static int work_next_color(int color)
 498{
 499	return (color + 1) % WORK_NR_COLORS;
 500}
 501
 502/*
 503 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
 504 * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
 505 * cleared and the work data contains the cpu number it was last on.
 
 
 
 
 506 *
 507 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
 508 * cwq, cpu or clear work->data.  These functions should only be
 509 * called while the work is owned - ie. while the PENDING bit is set.
 
 510 *
 511 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
 512 * corresponding to a work.  gcwq is available once the work has been
 513 * queued anywhere after initialization.  cwq is available only from
 514 * queueing until execution starts.
 515 */
 516static inline void set_work_data(struct work_struct *work, unsigned long data,
 517				 unsigned long flags)
 518{
 519	BUG_ON(!work_pending(work));
 520	atomic_long_set(&work->data, data | flags | work_static(work));
 521}
 522
 523static void set_work_cwq(struct work_struct *work,
 524			 struct cpu_workqueue_struct *cwq,
 525			 unsigned long extra_flags)
 526{
 527	set_work_data(work, (unsigned long)cwq,
 528		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
 529}
 530
 531static void set_work_cpu(struct work_struct *work, unsigned int cpu)
 
 532{
 533	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
 
 534}
 535
 536static void clear_work_data(struct work_struct *work)
 
 537{
 538	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539}
 540
 541static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
 
 
 
 
 
 542{
 543	unsigned long data = atomic_long_read(&work->data);
 544
 545	if (data & WORK_STRUCT_CWQ)
 546		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 547	else
 548		return NULL;
 549}
 550
 551static struct global_cwq *get_work_gcwq(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552{
 553	unsigned long data = atomic_long_read(&work->data);
 554	unsigned int cpu;
 
 
 555
 556	if (data & WORK_STRUCT_CWQ)
 557		return ((struct cpu_workqueue_struct *)
 558			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
 559
 560	cpu = data >> WORK_STRUCT_FLAG_BITS;
 561	if (cpu == WORK_CPU_NONE)
 562		return NULL;
 563
 564	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
 565	return get_gcwq(cpu);
 566}
 567
 568/*
 569 * Policy functions.  These define the policies on how the global
 570 * worker pool is managed.  Unless noted otherwise, these functions
 571 * assume that they're being called with gcwq->lock held.
 
 
 572 */
 
 
 
 
 
 
 
 
 
 573
 574static bool __need_more_worker(struct global_cwq *gcwq)
 575{
 576	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
 577		gcwq->flags & GCWQ_HIGHPRI_PENDING;
 
 
 578}
 579
 
 
 
 
 
 
 
 
 
 
 
 
 
 580/*
 581 * Need to wake up a worker?  Called from anything but currently
 582 * running workers.
 
 
 
 
 583 */
 584static bool need_more_worker(struct global_cwq *gcwq)
 585{
 586	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
 587}
 588
 589/* Can I start working?  Called from busy but !running workers. */
 590static bool may_start_working(struct global_cwq *gcwq)
 591{
 592	return gcwq->nr_idle;
 593}
 594
 595/* Do I need to keep working?  Called from currently running workers. */
 596static bool keep_working(struct global_cwq *gcwq)
 597{
 598	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
 599
 600	return !list_empty(&gcwq->worklist) &&
 601		(atomic_read(nr_running) <= 1 ||
 602		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
 603}
 604
 605/* Do we need a new worker?  Called from manager. */
 606static bool need_to_create_worker(struct global_cwq *gcwq)
 607{
 608	return need_more_worker(gcwq) && !may_start_working(gcwq);
 609}
 610
 611/* Do I need to be the manager? */
 612static bool need_to_manage_workers(struct global_cwq *gcwq)
 613{
 614	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
 
 
 
 
 615}
 616
 617/* Do we have too many workers and should some go away? */
 618static bool too_many_workers(struct global_cwq *gcwq)
 
 
 
 
 
 
 619{
 620	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
 621	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
 622	int nr_busy = gcwq->nr_workers - nr_idle;
 623
 624	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 
 
 
 
 
 
 
 
 625}
 626
 627/*
 628 * Wake up functions.
 
 
 
 
 629 */
 
 
 
 
 
 
 630
 631/* Return the first worker.  Safe with preemption disabled */
 632static struct worker *first_worker(struct global_cwq *gcwq)
 
 
 
 
 
 
 
 
 
 
 
 
 633{
 634	if (unlikely(list_empty(&gcwq->idle_list)))
 635		return NULL;
 636
 637	return list_first_entry(&gcwq->idle_list, struct worker, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638}
 639
 640/**
 641 * wake_up_worker - wake up an idle worker
 642 * @gcwq: gcwq to wake worker for
 
 643 *
 644 * Wake up the first idle worker of @gcwq.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645 *
 646 * CONTEXT:
 647 * spin_lock_irq(gcwq->lock).
 
 
 
 
 648 */
 649static void wake_up_worker(struct global_cwq *gcwq)
 
 650{
 651	struct worker *worker = first_worker(gcwq);
 652
 653	if (likely(worker))
 654		wake_up_process(worker->task);
 
 
 
 
 
 655}
 656
 657/**
 658 * wq_worker_waking_up - a worker is waking up
 659 * @task: task waking up
 660 * @cpu: CPU @task is waking up to
 
 661 *
 662 * This function is called during try_to_wake_up() when a worker is
 663 * being awoken.
 
 
 664 *
 665 * CONTEXT:
 666 * spin_lock_irq(rq->lock)
 667 */
 668void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669{
 670	struct worker *worker = kthread_data(task);
 671
 
 
 
 
 
 
 
 
 
 
 672	if (!(worker->flags & WORKER_NOT_RUNNING))
 673		atomic_inc(get_gcwq_nr_running(cpu));
 
 
 
 
 
 
 
 
 
 674}
 675
 676/**
 677 * wq_worker_sleeping - a worker is going to sleep
 678 * @task: task going to sleep
 679 * @cpu: CPU in question, must be the current CPU number
 680 *
 681 * This function is called during schedule() when a busy worker is
 682 * going to sleep.  Worker on the same cpu can be woken up by
 683 * returning pointer to its task.
 684 *
 685 * CONTEXT:
 686 * spin_lock_irq(rq->lock)
 687 *
 688 * RETURNS:
 689 * Worker task on @cpu to wake up, %NULL if none.
 690 */
 691struct task_struct *wq_worker_sleeping(struct task_struct *task,
 692				       unsigned int cpu)
 693{
 694	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 695	struct global_cwq *gcwq = get_gcwq(cpu);
 696	atomic_t *nr_running = get_gcwq_nr_running(cpu);
 697
 
 
 
 
 
 698	if (worker->flags & WORKER_NOT_RUNNING)
 699		return NULL;
 
 
 
 
 
 
 700
 701	/* this can only happen on the local cpu */
 702	BUG_ON(cpu != raw_smp_processor_id());
 703
 704	/*
 705	 * The counterpart of the following dec_and_test, implied mb,
 706	 * worklist not empty test sequence is in insert_work().
 707	 * Please read comment there.
 708	 *
 709	 * NOT_RUNNING is clear.  This means that trustee is not in
 710	 * charge and we're running on the local cpu w/ rq lock held
 711	 * and preemption disabled, which in turn means that none else
 712	 * could be manipulating idle_list, so dereferencing idle_list
 713	 * without gcwq lock is safe.
 714	 */
 715	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
 716		to_wakeup = first_worker(gcwq);
 717	return to_wakeup ? to_wakeup->task : NULL;
 
 718}
 719
 720/**
 721 * worker_set_flags - set worker flags and adjust nr_running accordingly
 722 * @worker: self
 723 * @flags: flags to set
 724 * @wakeup: wakeup an idle worker if necessary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725 *
 726 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 727 * nr_running becomes zero and @wakeup is %true, an idle worker is
 728 * woken up.
 729 *
 730 * CONTEXT:
 731 * spin_lock_irq(gcwq->lock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732 */
 733static inline void worker_set_flags(struct worker *worker, unsigned int flags,
 734				    bool wakeup)
 735{
 736	struct global_cwq *gcwq = worker->gcwq;
 
 
 
 
 
 
 
 
 
 
 
 737
 738	WARN_ON_ONCE(worker->task != current);
 
 
 
 
 
 
 
 739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	/*
 741	 * If transitioning into NOT_RUNNING, adjust nr_running and
 742	 * wake up an idle worker as necessary if requested by
 743	 * @wakeup.
 744	 */
 745	if ((flags & WORKER_NOT_RUNNING) &&
 746	    !(worker->flags & WORKER_NOT_RUNNING)) {
 747		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
 748
 749		if (wakeup) {
 750			if (atomic_dec_and_test(nr_running) &&
 751			    !list_empty(&gcwq->worklist))
 752				wake_up_worker(gcwq);
 753		} else
 754			atomic_dec(nr_running);
 
 
 
 
 
 
 
 
 
 
 755	}
 
 756
 757	worker->flags |= flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758}
 759
 760/**
 761 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 762 * @worker: self
 763 * @flags: flags to clear
 764 *
 765 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766 *
 767 * CONTEXT:
 768 * spin_lock_irq(gcwq->lock)
 769 */
 770static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 771{
 772	struct global_cwq *gcwq = worker->gcwq;
 773	unsigned int oflags = worker->flags;
 
 
 774
 775	WARN_ON_ONCE(worker->task != current);
 776
 777	worker->flags &= ~flags;
 
 
 
 
 
 
 
 778
 779	/*
 780	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 781	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 782	 * of multiple flags, not a single flag.
 
 
 
 
 783	 */
 784	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 785		if (!(worker->flags & WORKER_NOT_RUNNING))
 786			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789/**
 790 * busy_worker_head - return the busy hash head for a work
 791 * @gcwq: gcwq of interest
 792 * @work: work to be hashed
 793 *
 794 * Return hash head of @gcwq for @work.
 
 795 *
 796 * CONTEXT:
 797 * spin_lock_irq(gcwq->lock).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798 *
 799 * RETURNS:
 800 * Pointer to the hash head.
 
 
 
 
 
 
 
 
 
 
 
 801 */
 802static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
 803					   struct work_struct *work)
 804{
 805	const int base_shift = ilog2(sizeof(struct work_struct));
 806	unsigned long v = (unsigned long)work;
 807
 808	/* simple shift and fold hash, do we need something better? */
 809	v >>= base_shift;
 810	v += v >> BUSY_WORKER_HASH_ORDER;
 811	v &= BUSY_WORKER_HASH_MASK;
 812
 813	return &gcwq->busy_hash[v];
 
 
 
 
 
 
 
 
 
 814}
 815
 816/**
 817 * __find_worker_executing_work - find worker which is executing a work
 818 * @gcwq: gcwq of interest
 819 * @bwh: hash head as returned by busy_worker_head()
 820 * @work: work to find worker for
 821 *
 822 * Find a worker which is executing @work on @gcwq.  @bwh should be
 823 * the hash head obtained by calling busy_worker_head() with the same
 824 * work.
 825 *
 826 * CONTEXT:
 827 * spin_lock_irq(gcwq->lock).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828 *
 829 * RETURNS:
 830 * Pointer to worker which is executing @work if found, NULL
 831 * otherwise.
 832 */
 833static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
 834						   struct hlist_head *bwh,
 835						   struct work_struct *work)
 836{
 837	struct worker *worker;
 838	struct hlist_node *tmp;
 839
 840	hlist_for_each_entry(worker, tmp, bwh, hentry)
 841		if (worker->current_work == work)
 842			return worker;
 843	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844}
 845
 846/**
 847 * find_worker_executing_work - find worker which is executing a work
 848 * @gcwq: gcwq of interest
 849 * @work: work to find worker for
 850 *
 851 * Find a worker which is executing @work on @gcwq.  This function is
 852 * identical to __find_worker_executing_work() except that this
 853 * function calculates @bwh itself.
 854 *
 855 * CONTEXT:
 856 * spin_lock_irq(gcwq->lock).
 
 
 857 *
 858 * RETURNS:
 859 * Pointer to worker which is executing @work if found, NULL
 860 * otherwise.
 861 */
 862static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
 863						 struct work_struct *work)
 864{
 865	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
 866					    work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867}
 868
 869/**
 870 * gcwq_determine_ins_pos - find insertion position
 871 * @gcwq: gcwq of interest
 872 * @cwq: cwq a work is being queued for
 
 873 *
 874 * A work for @cwq is about to be queued on @gcwq, determine insertion
 875 * position for the work.  If @cwq is for HIGHPRI wq, the work is
 876 * queued at the head of the queue but in FIFO order with respect to
 877 * other HIGHPRI works; otherwise, at the end of the queue.  This
 878 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
 879 * there are HIGHPRI works pending.
 880 *
 881 * CONTEXT:
 882 * spin_lock_irq(gcwq->lock).
 
 
 
 
 
 
 
 
 
 
 
 
 
 883 *
 884 * RETURNS:
 885 * Pointer to inserstion position.
 
 
 886 */
 887static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
 888					       struct cpu_workqueue_struct *cwq)
 889{
 890	struct work_struct *twork;
 
 891
 892	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
 893		return &gcwq->worklist;
 894
 895	list_for_each_entry(twork, &gcwq->worklist, entry) {
 896		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
 
 897
 898		if (!(tcwq->wq->flags & WQ_HIGHPRI))
 899			break;
 
 
 
 
 
 900	}
 901
 902	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
 903	return &twork->entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904}
 905
 906/**
 907 * insert_work - insert a work into gcwq
 908 * @cwq: cwq @work belongs to
 909 * @work: work to insert
 910 * @head: insertion point
 911 * @extra_flags: extra WORK_STRUCT_* flags to set
 912 *
 913 * Insert @work which belongs to @cwq into @gcwq after @head.
 914 * @extra_flags is or'd to work_struct flags.
 915 *
 916 * CONTEXT:
 917 * spin_lock_irq(gcwq->lock).
 918 */
 919static void insert_work(struct cpu_workqueue_struct *cwq,
 920			struct work_struct *work, struct list_head *head,
 921			unsigned int extra_flags)
 922{
 923	struct global_cwq *gcwq = cwq->gcwq;
 924
 925	/* we own @work, set data and link */
 926	set_work_cwq(work, cwq, extra_flags);
 927
 928	/*
 929	 * Ensure that we get the right work->data if we see the
 930	 * result of list_add() below, see try_to_grab_pending().
 931	 */
 932	smp_wmb();
 933
 
 
 934	list_add_tail(&work->entry, head);
 
 
 
 
 
 
 
 
 
 
 935
 
 936	/*
 937	 * Ensure either worker_sched_deactivated() sees the above
 938	 * list_add_tail() or we see zero nr_running to avoid workers
 939	 * lying around lazily while there are works to be processed.
 940	 */
 941	smp_mb();
 942
 943	if (__need_more_worker(gcwq))
 944		wake_up_worker(gcwq);
 945}
 946
 947/*
 948 * Test whether @work is being queued from another work executing on the
 949 * same workqueue.  This is rather expensive and should only be used from
 950 * cold paths.
 951 */
 952static bool is_chained_work(struct workqueue_struct *wq)
 953{
 954	unsigned long flags;
 955	unsigned int cpu;
 956
 957	for_each_gcwq_cpu(cpu) {
 958		struct global_cwq *gcwq = get_gcwq(cpu);
 959		struct worker *worker;
 960		struct hlist_node *pos;
 961		int i;
 
 962
 963		spin_lock_irqsave(&gcwq->lock, flags);
 964		for_each_busy_worker(worker, i, pos, gcwq) {
 965			if (worker->task != current)
 966				continue;
 967			spin_unlock_irqrestore(&gcwq->lock, flags);
 968			/*
 969			 * I'm @worker, no locking necessary.  See if @work
 970			 * is headed to the same workqueue.
 971			 */
 972			return worker->current_cwq->wq == wq;
 973		}
 974		spin_unlock_irqrestore(&gcwq->lock, flags);
 975	}
 976	return false;
 
 
 977}
 978
 979static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
 980			 struct work_struct *work)
 981{
 982	struct global_cwq *gcwq;
 983	struct cpu_workqueue_struct *cwq;
 984	struct list_head *worklist;
 985	unsigned int work_flags;
 986	unsigned long flags;
 987
 988	debug_work_activate(work);
 
 
 
 
 
 
 989
 990	/* if dying, only works from the same workqueue are allowed */
 991	if (unlikely(wq->flags & WQ_DRAINING) &&
 992	    WARN_ON_ONCE(!is_chained_work(wq)))
 
 
 
 
 993		return;
 
 
 
 
 
 
 
 
 
 994
 995	/* determine gcwq to use */
 996	if (!(wq->flags & WQ_UNBOUND)) {
 997		struct global_cwq *last_gcwq;
 998
 999		if (unlikely(cpu == WORK_CPU_UNBOUND))
1000			cpu = raw_smp_processor_id();
 
 
 
 
 
 
1001
1002		/*
1003		 * It's multi cpu.  If @wq is non-reentrant and @work
1004		 * was previously on a different cpu, it might still
1005		 * be running there, in which case the work needs to
1006		 * be queued on that cpu to guarantee non-reentrance.
1007		 */
1008		gcwq = get_gcwq(cpu);
1009		if (wq->flags & WQ_NON_REENTRANT &&
1010		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1011			struct worker *worker;
1012
1013			spin_lock_irqsave(&last_gcwq->lock, flags);
1014
1015			worker = find_worker_executing_work(last_gcwq, work);
1016
1017			if (worker && worker->current_cwq->wq == wq)
1018				gcwq = last_gcwq;
1019			else {
1020				/* meh... not running there, queue here */
1021				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1022				spin_lock_irqsave(&gcwq->lock, flags);
1023			}
1024		} else
1025			spin_lock_irqsave(&gcwq->lock, flags);
1026	} else {
1027		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1028		spin_lock_irqsave(&gcwq->lock, flags);
1029	}
1030
1031	/* gcwq determined, get cwq and queue */
1032	cwq = get_cwq(gcwq->cpu, wq);
1033	trace_workqueue_queue_work(cpu, cwq, work);
1034
1035	if (WARN_ON(!list_empty(&work->entry))) {
1036		spin_unlock_irqrestore(&gcwq->lock, flags);
1037		return;
 
 
 
 
 
 
 
 
 
1038	}
1039
1040	cwq->nr_in_flight[cwq->work_color]++;
1041	work_flags = work_color_to_flags(cwq->work_color);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
1043	if (likely(cwq->nr_active < cwq->max_active)) {
1044		trace_workqueue_activate_work(work);
1045		cwq->nr_active++;
1046		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1047	} else {
1048		work_flags |= WORK_STRUCT_DELAYED;
1049		worklist = &cwq->delayed_works;
1050	}
1051
1052	insert_work(cwq, work, worklist, work_flags);
1053
1054	spin_unlock_irqrestore(&gcwq->lock, flags);
1055}
1056
1057/**
1058 * queue_work - queue work on a workqueue
 
1059 * @wq: workqueue to use
1060 * @work: work to queue
1061 *
1062 * Returns 0 if @work was already on a queue, non-zero otherwise.
 
 
 
 
1063 *
1064 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1065 * it can be processed by another CPU.
1066 */
1067int queue_work(struct workqueue_struct *wq, struct work_struct *work)
 
1068{
1069	int ret;
 
 
 
1070
1071	ret = queue_work_on(get_cpu(), wq, work);
1072	put_cpu();
 
 
1073
 
1074	return ret;
1075}
1076EXPORT_SYMBOL_GPL(queue_work);
1077
1078/**
1079 * queue_work_on - queue work on specific cpu
1080 * @cpu: CPU number to execute work on
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081 * @wq: workqueue to use
1082 * @work: work to queue
1083 *
1084 * Returns 0 if @work was already on a queue, non-zero otherwise.
 
 
1085 *
1086 * We queue the work to a specific CPU, the caller must ensure it
1087 * can't go away.
 
 
 
 
 
 
 
1088 */
1089int
1090queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1091{
1092	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093
1094	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
 
 
1095		__queue_work(cpu, wq, work);
1096		ret = 1;
1097	}
 
 
1098	return ret;
1099}
1100EXPORT_SYMBOL_GPL(queue_work_on);
1101
1102static void delayed_work_timer_fn(unsigned long __data)
1103{
1104	struct delayed_work *dwork = (struct delayed_work *)__data;
1105	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1106
1107	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
 
1108}
 
1109
1110/**
1111 * queue_delayed_work - queue work on a workqueue after delay
1112 * @wq: workqueue to use
1113 * @dwork: delayable work to queue
1114 * @delay: number of jiffies to wait before queueing
1115 *
1116 * Returns 0 if @work was already on a queue, non-zero otherwise.
1117 */
1118int queue_delayed_work(struct workqueue_struct *wq,
1119			struct delayed_work *dwork, unsigned long delay)
1120{
1121	if (delay == 0)
1122		return queue_work(wq, &dwork->work);
 
 
 
 
 
1123
1124	return queue_delayed_work_on(-1, wq, dwork, delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125}
1126EXPORT_SYMBOL_GPL(queue_delayed_work);
1127
1128/**
1129 * queue_delayed_work_on - queue work on specific CPU after delay
1130 * @cpu: CPU number to execute work on
1131 * @wq: workqueue to use
1132 * @dwork: work to queue
1133 * @delay: number of jiffies to wait before queueing
1134 *
1135 * Returns 0 if @work was already on a queue, non-zero otherwise.
 
 
1136 */
1137int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1138			struct delayed_work *dwork, unsigned long delay)
1139{
1140	int ret = 0;
1141	struct timer_list *timer = &dwork->timer;
1142	struct work_struct *work = &dwork->work;
 
 
1143
1144	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1145		unsigned int lcpu;
1146
1147		BUG_ON(timer_pending(timer));
1148		BUG_ON(!list_empty(&work->entry));
1149
1150		timer_stats_timer_set_start_info(&dwork->timer);
1151
1152		/*
1153		 * This stores cwq for the moment, for the timer_fn.
1154		 * Note that the work's gcwq is preserved to allow
1155		 * reentrance detection for delayed works.
1156		 */
1157		if (!(wq->flags & WQ_UNBOUND)) {
1158			struct global_cwq *gcwq = get_work_gcwq(work);
1159
1160			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1161				lcpu = gcwq->cpu;
1162			else
1163				lcpu = raw_smp_processor_id();
1164		} else
1165			lcpu = WORK_CPU_UNBOUND;
1166
1167		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1168
1169		timer->expires = jiffies + delay;
1170		timer->data = (unsigned long)dwork;
1171		timer->function = delayed_work_timer_fn;
1172
1173		if (unlikely(cpu >= 0))
1174			add_timer_on(timer, cpu);
1175		else
1176			add_timer(timer);
1177		ret = 1;
1178	}
 
 
1179	return ret;
1180}
1181EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1182
1183/**
1184 * worker_enter_idle - enter idle state
1185 * @worker: worker which is entering idle state
 
 
 
1186 *
1187 * @worker is entering idle state.  Update stats and idle timer if
1188 * necessary.
 
 
1189 *
1190 * LOCKING:
1191 * spin_lock_irq(gcwq->lock).
 
 
 
1192 */
1193static void worker_enter_idle(struct worker *worker)
 
1194{
1195	struct global_cwq *gcwq = worker->gcwq;
1196
1197	BUG_ON(worker->flags & WORKER_IDLE);
1198	BUG_ON(!list_empty(&worker->entry) &&
1199	       (worker->hentry.next || worker->hentry.pprev));
1200
1201	/* can't use worker_set_flags(), also called from start_worker() */
1202	worker->flags |= WORKER_IDLE;
1203	gcwq->nr_idle++;
1204	worker->last_active = jiffies;
1205
1206	/* idle_list is LIFO */
1207	list_add(&worker->entry, &gcwq->idle_list);
 
 
1208
1209	if (likely(!(worker->flags & WORKER_ROGUE))) {
1210		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1211			mod_timer(&gcwq->idle_timer,
1212				  jiffies + IDLE_WORKER_TIMEOUT);
1213	} else
1214		wake_up_all(&gcwq->trustee_wait);
1215
1216	/*
1217	 * Sanity check nr_running.  Because trustee releases gcwq->lock
1218	 * between setting %WORKER_ROGUE and zapping nr_running, the
1219	 * warning may trigger spuriously.  Check iff trustee is idle.
1220	 */
1221	WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1222		     gcwq->nr_workers == gcwq->nr_idle &&
1223		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1224}
 
1225
1226/**
1227 * worker_leave_idle - leave idle state
1228 * @worker: worker which is leaving idle state
1229 *
1230 * @worker is leaving idle state.  Update stats.
1231 *
1232 * LOCKING:
1233 * spin_lock_irq(gcwq->lock).
1234 */
1235static void worker_leave_idle(struct worker *worker)
1236{
1237	struct global_cwq *gcwq = worker->gcwq;
1238
1239	BUG_ON(!(worker->flags & WORKER_IDLE));
1240	worker_clr_flags(worker, WORKER_IDLE);
1241	gcwq->nr_idle--;
1242	list_del_init(&worker->entry);
1243}
1244
1245/**
1246 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1247 * @worker: self
1248 *
1249 * Works which are scheduled while the cpu is online must at least be
1250 * scheduled to a worker which is bound to the cpu so that if they are
1251 * flushed from cpu callbacks while cpu is going down, they are
1252 * guaranteed to execute on the cpu.
1253 *
1254 * This function is to be used by rogue workers and rescuers to bind
1255 * themselves to the target cpu and may race with cpu going down or
1256 * coming online.  kthread_bind() can't be used because it may put the
1257 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1258 * verbatim as it's best effort and blocking and gcwq may be
1259 * [dis]associated in the meantime.
1260 *
1261 * This function tries set_cpus_allowed() and locks gcwq and verifies
1262 * the binding against GCWQ_DISASSOCIATED which is set during
1263 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1264 * idle state or fetches works without dropping lock, it can guarantee
1265 * the scheduling requirement described in the first paragraph.
1266 *
1267 * CONTEXT:
1268 * Might sleep.  Called without any lock but returns with gcwq->lock
1269 * held.
1270 *
1271 * RETURNS:
1272 * %true if the associated gcwq is online (@worker is successfully
1273 * bound), %false if offline.
 
1274 */
1275static bool worker_maybe_bind_and_lock(struct worker *worker)
1276__acquires(&gcwq->lock)
1277{
1278	struct global_cwq *gcwq = worker->gcwq;
1279	struct task_struct *task = worker->task;
1280
1281	while (true) {
1282		/*
1283		 * The following call may fail, succeed or succeed
1284		 * without actually migrating the task to the cpu if
1285		 * it races with cpu hotunplug operation.  Verify
1286		 * against GCWQ_DISASSOCIATED.
1287		 */
1288		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1289			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1290
1291		spin_lock_irq(&gcwq->lock);
1292		if (gcwq->flags & GCWQ_DISASSOCIATED)
1293			return false;
1294		if (task_cpu(task) == gcwq->cpu &&
1295		    cpumask_equal(&current->cpus_allowed,
1296				  get_cpu_mask(gcwq->cpu)))
1297			return true;
1298		spin_unlock_irq(&gcwq->lock);
1299
1300		/*
1301		 * We've raced with CPU hot[un]plug.  Give it a breather
1302		 * and retry migration.  cond_resched() is required here;
1303		 * otherwise, we might deadlock against cpu_stop trying to
1304		 * bring down the CPU on non-preemptive kernel.
1305		 */
1306		cpu_relax();
1307		cond_resched();
1308	}
1309}
1310
1311/*
1312 * Function for worker->rebind_work used to rebind rogue busy workers
1313 * to the associated cpu which is coming back online.  This is
1314 * scheduled by cpu up but can race with other cpu hotplug operations
1315 * and may be executed twice without intervening cpu down.
1316 */
1317static void worker_rebind_fn(struct work_struct *work)
1318{
1319	struct worker *worker = container_of(work, struct worker, rebind_work);
1320	struct global_cwq *gcwq = worker->gcwq;
1321
1322	if (worker_maybe_bind_and_lock(worker))
1323		worker_clr_flags(worker, WORKER_REBIND);
1324
1325	spin_unlock_irq(&gcwq->lock);
1326}
 
1327
1328static struct worker *alloc_worker(void)
1329{
1330	struct worker *worker;
1331
1332	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1333	if (worker) {
1334		INIT_LIST_HEAD(&worker->entry);
1335		INIT_LIST_HEAD(&worker->scheduled);
1336		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1337		/* on creation a worker is in !idle && prep state */
1338		worker->flags = WORKER_PREP;
1339	}
1340	return worker;
1341}
1342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343/**
1344 * create_worker - create a new workqueue worker
1345 * @gcwq: gcwq the new worker will belong to
1346 * @bind: whether to set affinity to @cpu or not
1347 *
1348 * Create a new worker which is bound to @gcwq.  The returned worker
1349 * can be started by calling start_worker() or destroyed using
1350 * destroy_worker().
1351 *
1352 * CONTEXT:
1353 * Might sleep.  Does GFP_KERNEL allocations.
1354 *
1355 * RETURNS:
1356 * Pointer to the newly created worker.
1357 */
1358static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1359{
1360	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1361	struct worker *worker = NULL;
1362	int id = -1;
1363
1364	spin_lock_irq(&gcwq->lock);
1365	while (ida_get_new(&gcwq->worker_ida, &id)) {
1366		spin_unlock_irq(&gcwq->lock);
1367		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1368			goto fail;
1369		spin_lock_irq(&gcwq->lock);
1370	}
1371	spin_unlock_irq(&gcwq->lock);
1372
1373	worker = alloc_worker();
1374	if (!worker)
 
1375		goto fail;
 
1376
1377	worker->gcwq = gcwq;
1378	worker->id = id;
1379
1380	if (!on_unbound_cpu)
1381		worker->task = kthread_create_on_node(worker_thread,
1382						      worker,
1383						      cpu_to_node(gcwq->cpu),
1384						      "kworker/%u:%d", gcwq->cpu, id);
1385	else
1386		worker->task = kthread_create(worker_thread, worker,
1387					      "kworker/u:%d", id);
1388	if (IS_ERR(worker->task))
1389		goto fail;
1390
1391	/*
1392	 * A rogue worker will become a regular one if CPU comes
1393	 * online later on.  Make sure every worker has
1394	 * PF_THREAD_BOUND set.
1395	 */
1396	if (bind && !on_unbound_cpu)
1397		kthread_bind(worker->task, gcwq->cpu);
1398	else {
1399		worker->task->flags |= PF_THREAD_BOUND;
1400		if (on_unbound_cpu)
1401			worker->flags |= WORKER_UNBOUND;
 
 
 
 
1402	}
1403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404	return worker;
 
1405fail:
1406	if (id >= 0) {
1407		spin_lock_irq(&gcwq->lock);
1408		ida_remove(&gcwq->worker_ida, id);
1409		spin_unlock_irq(&gcwq->lock);
1410	}
1411	kfree(worker);
1412	return NULL;
1413}
1414
1415/**
1416 * start_worker - start a newly created worker
1417 * @worker: worker to start
1418 *
1419 * Make the gcwq aware of @worker and start it.
1420 *
1421 * CONTEXT:
1422 * spin_lock_irq(gcwq->lock).
1423 */
1424static void start_worker(struct worker *worker)
1425{
1426	worker->flags |= WORKER_STARTED;
1427	worker->gcwq->nr_workers++;
1428	worker_enter_idle(worker);
1429	wake_up_process(worker->task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430}
1431
1432/**
1433 * destroy_worker - destroy a workqueue worker
1434 * @worker: worker to be destroyed
 
1435 *
1436 * Destroy @worker and adjust @gcwq stats accordingly.
 
1437 *
1438 * CONTEXT:
1439 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1440 */
1441static void destroy_worker(struct worker *worker)
1442{
1443	struct global_cwq *gcwq = worker->gcwq;
1444	int id = worker->id;
 
 
1445
1446	/* sanity check frenzy */
1447	BUG_ON(worker->current_work);
1448	BUG_ON(!list_empty(&worker->scheduled));
 
 
1449
1450	if (worker->flags & WORKER_STARTED)
1451		gcwq->nr_workers--;
1452	if (worker->flags & WORKER_IDLE)
1453		gcwq->nr_idle--;
1454
1455	list_del_init(&worker->entry);
1456	worker->flags |= WORKER_DIE;
1457
1458	spin_unlock_irq(&gcwq->lock);
 
 
1459
1460	kthread_stop(worker->task);
1461	kfree(worker);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463	spin_lock_irq(&gcwq->lock);
1464	ida_remove(&gcwq->worker_ida, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465}
1466
1467static void idle_worker_timeout(unsigned long __gcwq)
 
 
 
 
 
 
 
 
 
 
 
1468{
1469	struct global_cwq *gcwq = (void *)__gcwq;
 
1470
1471	spin_lock_irq(&gcwq->lock);
 
 
 
 
 
 
 
1472
1473	if (too_many_workers(gcwq)) {
1474		struct worker *worker;
1475		unsigned long expires;
1476
1477		/* idle_list is kept in LIFO order, check the last one */
1478		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1479		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1480
1481		if (time_before(jiffies, expires))
1482			mod_timer(&gcwq->idle_timer, expires);
1483		else {
1484			/* it's been idle for too long, wake up manager */
1485			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1486			wake_up_worker(gcwq);
1487		}
 
 
1488	}
1489
1490	spin_unlock_irq(&gcwq->lock);
 
 
1491}
1492
1493static bool send_mayday(struct work_struct *work)
1494{
1495	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1496	struct workqueue_struct *wq = cwq->wq;
1497	unsigned int cpu;
1498
1499	if (!(wq->flags & WQ_RESCUER))
1500		return false;
 
 
1501
1502	/* mayday mayday mayday */
1503	cpu = cwq->gcwq->cpu;
1504	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1505	if (cpu == WORK_CPU_UNBOUND)
1506		cpu = 0;
1507	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
 
 
 
1508		wake_up_process(wq->rescuer->task);
1509	return true;
 
1510}
1511
1512static void gcwq_mayday_timeout(unsigned long __gcwq)
1513{
1514	struct global_cwq *gcwq = (void *)__gcwq;
1515	struct work_struct *work;
1516
1517	spin_lock_irq(&gcwq->lock);
 
1518
1519	if (need_to_create_worker(gcwq)) {
1520		/*
1521		 * We've been trying to create a new worker but
1522		 * haven't been successful.  We might be hitting an
1523		 * allocation deadlock.  Send distress signals to
1524		 * rescuers.
1525		 */
1526		list_for_each_entry(work, &gcwq->worklist, entry)
1527			send_mayday(work);
1528	}
1529
1530	spin_unlock_irq(&gcwq->lock);
 
1531
1532	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1533}
1534
1535/**
1536 * maybe_create_worker - create a new worker if necessary
1537 * @gcwq: gcwq to create a new worker for
1538 *
1539 * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1540 * have at least one idle worker on return from this function.  If
1541 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1542 * sent to all rescuers with works scheduled on @gcwq to resolve
1543 * possible allocation deadlock.
1544 *
1545 * On return, need_to_create_worker() is guaranteed to be false and
1546 * may_start_working() true.
1547 *
1548 * LOCKING:
1549 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1550 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1551 * manager.
1552 *
1553 * RETURNS:
1554 * false if no action was taken and gcwq->lock stayed locked, true
1555 * otherwise.
1556 */
1557static bool maybe_create_worker(struct global_cwq *gcwq)
1558__releases(&gcwq->lock)
1559__acquires(&gcwq->lock)
1560{
1561	if (!need_to_create_worker(gcwq))
1562		return false;
1563restart:
1564	spin_unlock_irq(&gcwq->lock);
1565
1566	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1567	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1568
1569	while (true) {
1570		struct worker *worker;
1571
1572		worker = create_worker(gcwq, true);
1573		if (worker) {
1574			del_timer_sync(&gcwq->mayday_timer);
1575			spin_lock_irq(&gcwq->lock);
1576			start_worker(worker);
1577			BUG_ON(need_to_create_worker(gcwq));
1578			return true;
1579		}
1580
1581		if (!need_to_create_worker(gcwq))
1582			break;
1583
1584		__set_current_state(TASK_INTERRUPTIBLE);
1585		schedule_timeout(CREATE_COOLDOWN);
1586
1587		if (!need_to_create_worker(gcwq))
1588			break;
1589	}
1590
1591	del_timer_sync(&gcwq->mayday_timer);
1592	spin_lock_irq(&gcwq->lock);
1593	if (need_to_create_worker(gcwq))
 
 
 
 
 
1594		goto restart;
1595	return true;
1596}
1597
1598/**
1599 * maybe_destroy_worker - destroy workers which have been idle for a while
1600 * @gcwq: gcwq to destroy workers for
1601 *
1602 * Destroy @gcwq workers which have been idle for longer than
1603 * IDLE_WORKER_TIMEOUT.
1604 *
1605 * LOCKING:
1606 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1607 * multiple times.  Called only from manager.
1608 *
1609 * RETURNS:
1610 * false if no action was taken and gcwq->lock stayed locked, true
1611 * otherwise.
1612 */
1613static bool maybe_destroy_workers(struct global_cwq *gcwq)
1614{
1615	bool ret = false;
1616
1617	while (too_many_workers(gcwq)) {
1618		struct worker *worker;
1619		unsigned long expires;
1620
1621		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1622		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1623
1624		if (time_before(jiffies, expires)) {
1625			mod_timer(&gcwq->idle_timer, expires);
1626			break;
1627		}
1628
1629		destroy_worker(worker);
1630		ret = true;
1631	}
1632
1633	return ret;
1634}
1635
1636/**
1637 * manage_workers - manage worker pool
1638 * @worker: self
1639 *
1640 * Assume the manager role and manage gcwq worker pool @worker belongs
1641 * to.  At any given time, there can be only zero or one manager per
1642 * gcwq.  The exclusion is handled automatically by this function.
1643 *
1644 * The caller can safely start processing works on false return.  On
1645 * true return, it's guaranteed that need_to_create_worker() is false
1646 * and may_start_working() is true.
1647 *
1648 * CONTEXT:
1649 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1650 * multiple times.  Does GFP_KERNEL allocations.
1651 *
1652 * RETURNS:
1653 * false if no action was taken and gcwq->lock stayed locked, true if
1654 * some action was taken.
 
 
1655 */
1656static bool manage_workers(struct worker *worker)
1657{
1658	struct global_cwq *gcwq = worker->gcwq;
1659	bool ret = false;
1660
1661	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1662		return ret;
1663
1664	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1665	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1666
1667	/*
1668	 * Destroy and then create so that may_start_working() is true
1669	 * on return.
1670	 */
1671	ret |= maybe_destroy_workers(gcwq);
1672	ret |= maybe_create_worker(gcwq);
1673
1674	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1675
1676	/*
1677	 * The trustee might be waiting to take over the manager
1678	 * position, tell it we're done.
1679	 */
1680	if (unlikely(gcwq->trustee))
1681		wake_up_all(&gcwq->trustee_wait);
1682
1683	return ret;
1684}
1685
1686/**
1687 * move_linked_works - move linked works to a list
1688 * @work: start of series of works to be scheduled
1689 * @head: target list to append @work to
1690 * @nextp: out paramter for nested worklist walking
1691 *
1692 * Schedule linked works starting from @work to @head.  Work series to
1693 * be scheduled starts at @work and includes any consecutive work with
1694 * WORK_STRUCT_LINKED set in its predecessor.
1695 *
1696 * If @nextp is not NULL, it's updated to point to the next work of
1697 * the last scheduled work.  This allows move_linked_works() to be
1698 * nested inside outer list_for_each_entry_safe().
1699 *
1700 * CONTEXT:
1701 * spin_lock_irq(gcwq->lock).
1702 */
1703static void move_linked_works(struct work_struct *work, struct list_head *head,
1704			      struct work_struct **nextp)
1705{
1706	struct work_struct *n;
1707
1708	/*
1709	 * Linked worklist will always end before the end of the list,
1710	 * use NULL for list head.
1711	 */
1712	list_for_each_entry_safe_from(work, n, NULL, entry) {
1713		list_move_tail(&work->entry, head);
1714		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1715			break;
1716	}
1717
1718	/*
1719	 * If we're already inside safe list traversal and have moved
1720	 * multiple works to the scheduled queue, the next position
1721	 * needs to be updated.
1722	 */
1723	if (nextp)
1724		*nextp = n;
1725}
1726
1727static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1728{
1729	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1730						    struct work_struct, entry);
1731	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1732
1733	trace_workqueue_activate_work(work);
1734	move_linked_works(work, pos, NULL);
1735	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1736	cwq->nr_active++;
1737}
1738
1739/**
1740 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1741 * @cwq: cwq of interest
1742 * @color: color of work which left the queue
1743 * @delayed: for a delayed work
1744 *
1745 * A work either has completed or is removed from pending queue,
1746 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1747 *
1748 * CONTEXT:
1749 * spin_lock_irq(gcwq->lock).
1750 */
1751static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1752				 bool delayed)
1753{
1754	/* ignore uncolored works */
1755	if (color == WORK_NO_COLOR)
1756		return;
1757
1758	cwq->nr_in_flight[color]--;
1759
1760	if (!delayed) {
1761		cwq->nr_active--;
1762		if (!list_empty(&cwq->delayed_works)) {
1763			/* one down, submit a delayed one */
1764			if (cwq->nr_active < cwq->max_active)
1765				cwq_activate_first_delayed(cwq);
1766		}
1767	}
1768
1769	/* is flush in progress and are we at the flushing tip? */
1770	if (likely(cwq->flush_color != color))
1771		return;
1772
1773	/* are there still in-flight works? */
1774	if (cwq->nr_in_flight[color])
1775		return;
1776
1777	/* this cwq is done, clear flush_color */
1778	cwq->flush_color = -1;
1779
1780	/*
1781	 * If this was the last cwq, wake up the first flusher.  It
1782	 * will handle the rest.
1783	 */
1784	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1785		complete(&cwq->wq->first_flusher->done);
1786}
1787
1788/**
1789 * process_one_work - process single work
1790 * @worker: self
1791 * @work: work to process
1792 *
1793 * Process @work.  This function contains all the logics necessary to
1794 * process a single work including synchronization against and
1795 * interaction with other workers on the same cpu, queueing and
1796 * flushing.  As long as context requirement is met, any worker can
1797 * call this function to process a work.
1798 *
1799 * CONTEXT:
1800 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1801 */
1802static void process_one_work(struct worker *worker, struct work_struct *work)
1803__releases(&gcwq->lock)
1804__acquires(&gcwq->lock)
1805{
1806	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1807	struct global_cwq *gcwq = cwq->gcwq;
1808	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1809	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1810	work_func_t f = work->func;
1811	int work_color;
1812	struct worker *collision;
1813#ifdef CONFIG_LOCKDEP
1814	/*
1815	 * It is permissible to free the struct work_struct from
1816	 * inside the function that is called from it, this we need to
1817	 * take into account for lockdep too.  To avoid bogus "held
1818	 * lock freed" warnings as well as problems when looking into
1819	 * work->lockdep_map, make a copy and use that here.
1820	 */
1821	struct lockdep_map lockdep_map;
1822
1823	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1824#endif
1825	/*
1826	 * A single work shouldn't be executed concurrently by
1827	 * multiple workers on a single cpu.  Check whether anyone is
1828	 * already processing the work.  If so, defer the work to the
1829	 * currently executing one.
1830	 */
1831	collision = __find_worker_executing_work(gcwq, bwh, work);
1832	if (unlikely(collision)) {
1833		move_linked_works(work, &collision->scheduled, NULL);
1834		return;
1835	}
1836
1837	/* claim and process */
1838	debug_work_deactivate(work);
1839	hlist_add_head(&worker->hentry, bwh);
1840	worker->current_work = work;
1841	worker->current_cwq = cwq;
1842	work_color = get_work_color(work);
 
 
 
 
 
 
 
 
 
 
1843
1844	/* record the current cpu number in the work data and dequeue */
1845	set_work_cpu(work, gcwq->cpu);
1846	list_del_init(&work->entry);
1847
1848	/*
1849	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1850	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
 
 
1851	 */
1852	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1853		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1854						struct work_struct, entry);
1855
1856		if (!list_empty(&gcwq->worklist) &&
1857		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1858			wake_up_worker(gcwq);
1859		else
1860			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1861	}
 
1862
1863	/*
1864	 * CPU intensive works don't participate in concurrency
1865	 * management.  They're the scheduler's responsibility.
 
 
1866	 */
1867	if (unlikely(cpu_intensive))
1868		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1869
1870	spin_unlock_irq(&gcwq->lock);
 
1871
1872	work_clear_pending(work);
1873	lock_map_acquire_read(&cwq->wq->lockdep_map);
 
 
 
1874	lock_map_acquire(&lockdep_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875	trace_workqueue_execute_start(work);
1876	f(work);
1877	/*
1878	 * While we must be careful to not use "work" after this, the trace
1879	 * point will only record its address.
1880	 */
1881	trace_workqueue_execute_end(work);
 
1882	lock_map_release(&lockdep_map);
1883	lock_map_release(&cwq->wq->lockdep_map);
 
1884
1885	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1886		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1887		       "%s/0x%08x/%d\n",
1888		       current->comm, preempt_count(), task_pid_nr(current));
1889		printk(KERN_ERR "    last function: ");
1890		print_symbol("%s\n", (unsigned long)f);
 
 
 
1891		debug_show_held_locks(current);
1892		dump_stack();
1893	}
1894
1895	spin_lock_irq(&gcwq->lock);
 
 
 
 
 
 
 
 
 
 
 
1896
1897	/* clear cpu intensive status */
1898	if (unlikely(cpu_intensive))
1899		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
 
 
 
 
 
 
1900
1901	/* we're done with it, release */
1902	hlist_del_init(&worker->hentry);
1903	worker->current_work = NULL;
1904	worker->current_cwq = NULL;
1905	cwq_dec_nr_in_flight(cwq, work_color, false);
 
 
 
 
1906}
1907
1908/**
1909 * process_scheduled_works - process scheduled works
1910 * @worker: self
1911 *
1912 * Process all scheduled works.  Please note that the scheduled list
1913 * may change while processing a work, so this function repeatedly
1914 * fetches a work from the top and executes it.
1915 *
1916 * CONTEXT:
1917 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1918 * multiple times.
1919 */
1920static void process_scheduled_works(struct worker *worker)
1921{
1922	while (!list_empty(&worker->scheduled)) {
1923		struct work_struct *work = list_first_entry(&worker->scheduled,
1924						struct work_struct, entry);
 
 
 
 
 
 
1925		process_one_work(worker, work);
1926	}
1927}
1928
 
 
 
 
 
 
 
 
 
 
1929/**
1930 * worker_thread - the worker thread function
1931 * @__worker: self
1932 *
1933 * The gcwq worker thread function.  There's a single dynamic pool of
1934 * these per each cpu.  These workers process all works regardless of
1935 * their specific target workqueue.  The only exception is works which
1936 * belong to workqueues with a rescuer which will be explained in
1937 * rescuer_thread().
 
 
1938 */
1939static int worker_thread(void *__worker)
1940{
1941	struct worker *worker = __worker;
1942	struct global_cwq *gcwq = worker->gcwq;
1943
1944	/* tell the scheduler that this is a workqueue worker */
1945	worker->task->flags |= PF_WQ_WORKER;
1946woke_up:
1947	spin_lock_irq(&gcwq->lock);
1948
1949	/* DIE can be set only while we're idle, checking here is enough */
1950	if (worker->flags & WORKER_DIE) {
1951		spin_unlock_irq(&gcwq->lock);
1952		worker->task->flags &= ~PF_WQ_WORKER;
 
 
 
 
 
 
1953		return 0;
1954	}
1955
1956	worker_leave_idle(worker);
1957recheck:
1958	/* no more worker necessary? */
1959	if (!need_more_worker(gcwq))
1960		goto sleep;
1961
1962	/* do we need to manage? */
1963	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1964		goto recheck;
1965
1966	/*
1967	 * ->scheduled list can only be filled while a worker is
1968	 * preparing to process a work or actually processing it.
1969	 * Make sure nobody diddled with it while I was sleeping.
1970	 */
1971	BUG_ON(!list_empty(&worker->scheduled));
1972
1973	/*
1974	 * When control reaches this point, we're guaranteed to have
1975	 * at least one idle worker or that someone else has already
1976	 * assumed the manager role.
 
 
1977	 */
1978	worker_clr_flags(worker, WORKER_PREP);
1979
1980	do {
1981		struct work_struct *work =
1982			list_first_entry(&gcwq->worklist,
1983					 struct work_struct, entry);
1984
1985		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1986			/* optimization path, not strictly necessary */
1987			process_one_work(worker, work);
1988			if (unlikely(!list_empty(&worker->scheduled)))
1989				process_scheduled_works(worker);
1990		} else {
1991			move_linked_works(work, &worker->scheduled, NULL);
1992			process_scheduled_works(worker);
1993		}
1994	} while (keep_working(gcwq));
1995
1996	worker_set_flags(worker, WORKER_PREP, false);
1997sleep:
1998	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1999		goto recheck;
2000
2001	/*
2002	 * gcwq->lock is held and there's no work to process and no
2003	 * need to manage, sleep.  Workers are woken up only while
2004	 * holding gcwq->lock or from local cpu, so setting the
2005	 * current state before releasing gcwq->lock is enough to
2006	 * prevent losing any event.
2007	 */
2008	worker_enter_idle(worker);
2009	__set_current_state(TASK_INTERRUPTIBLE);
2010	spin_unlock_irq(&gcwq->lock);
2011	schedule();
2012	goto woke_up;
2013}
2014
2015/**
2016 * rescuer_thread - the rescuer thread function
2017 * @__wq: the associated workqueue
2018 *
2019 * Workqueue rescuer thread function.  There's one rescuer for each
2020 * workqueue which has WQ_RESCUER set.
2021 *
2022 * Regular work processing on a gcwq may block trying to create a new
2023 * worker which uses GFP_KERNEL allocation which has slight chance of
2024 * developing into deadlock if some works currently on the same queue
2025 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2026 * the problem rescuer solves.
2027 *
2028 * When such condition is possible, the gcwq summons rescuers of all
2029 * workqueues which have works queued on the gcwq and let them process
2030 * those works so that forward progress can be guaranteed.
2031 *
2032 * This should happen rarely.
 
 
2033 */
2034static int rescuer_thread(void *__wq)
2035{
2036	struct workqueue_struct *wq = __wq;
2037	struct worker *rescuer = wq->rescuer;
2038	struct list_head *scheduled = &rescuer->scheduled;
2039	bool is_unbound = wq->flags & WQ_UNBOUND;
2040	unsigned int cpu;
2041
2042	set_user_nice(current, RESCUER_NICE_LEVEL);
2043repeat:
2044	set_current_state(TASK_INTERRUPTIBLE);
2045
2046	if (kthread_should_stop())
2047		return 0;
 
 
 
 
 
2048
2049	/*
2050	 * See whether any cpu is asking for help.  Unbounded
2051	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
 
 
 
 
2052	 */
2053	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2054		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2055		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2056		struct global_cwq *gcwq = cwq->gcwq;
 
 
 
 
 
2057		struct work_struct *work, *n;
2058
2059		__set_current_state(TASK_RUNNING);
2060		mayday_clear_cpu(cpu, wq->mayday_mask);
 
 
 
 
2061
2062		/* migrate to the target cpu if possible */
2063		rescuer->gcwq = gcwq;
2064		worker_maybe_bind_and_lock(rescuer);
2065
2066		/*
2067		 * Slurp in all works issued via this workqueue and
2068		 * process'em.
2069		 */
2070		BUG_ON(!list_empty(&rescuer->scheduled));
2071		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2072			if (get_work_cwq(work) == cwq)
2073				move_linked_works(work, scheduled, &n);
 
 
2074
2075		process_scheduled_works(rescuer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076
2077		/*
2078		 * Leave this gcwq.  If keep_working() is %true, notify a
2079		 * regular worker; otherwise, we end up with 0 concurrency
2080		 * and stalling the execution.
2081		 */
2082		if (keep_working(gcwq))
2083			wake_up_worker(gcwq);
 
 
 
 
 
 
 
2084
2085		spin_unlock_irq(&gcwq->lock);
 
 
 
 
 
 
 
 
 
 
2086	}
2087
 
 
2088	schedule();
2089	goto repeat;
2090}
2091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092struct wq_barrier {
2093	struct work_struct	work;
2094	struct completion	done;
 
2095};
2096
2097static void wq_barrier_func(struct work_struct *work)
2098{
2099	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2100	complete(&barr->done);
2101}
2102
2103/**
2104 * insert_wq_barrier - insert a barrier work
2105 * @cwq: cwq to insert barrier into
2106 * @barr: wq_barrier to insert
2107 * @target: target work to attach @barr to
2108 * @worker: worker currently executing @target, NULL if @target is not executing
2109 *
2110 * @barr is linked to @target such that @barr is completed only after
2111 * @target finishes execution.  Please note that the ordering
2112 * guarantee is observed only with respect to @target and on the local
2113 * cpu.
2114 *
2115 * Currently, a queued barrier can't be canceled.  This is because
2116 * try_to_grab_pending() can't determine whether the work to be
2117 * grabbed is at the head of the queue and thus can't clear LINKED
2118 * flag of the previous work while there must be a valid next work
2119 * after a work with LINKED flag set.
2120 *
2121 * Note that when @worker is non-NULL, @target may be modified
2122 * underneath us, so we can't reliably determine cwq from @target.
2123 *
2124 * CONTEXT:
2125 * spin_lock_irq(gcwq->lock).
2126 */
2127static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2128			      struct wq_barrier *barr,
2129			      struct work_struct *target, struct worker *worker)
2130{
 
 
 
2131	struct list_head *head;
2132	unsigned int linked = 0;
2133
2134	/*
2135	 * debugobject calls are safe here even with gcwq->lock locked
2136	 * as we know for sure that this will not trigger any of the
2137	 * checks and call back into the fixup functions where we
2138	 * might deadlock.
 
 
 
 
2139	 */
2140	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
 
2141	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2142	init_completion(&barr->done);
 
 
 
 
 
 
2143
2144	/*
2145	 * If @target is currently being executed, schedule the
2146	 * barrier to the worker; otherwise, put it after @target.
2147	 */
2148	if (worker)
2149		head = worker->scheduled.next;
2150	else {
 
2151		unsigned long *bits = work_data_bits(target);
2152
2153		head = target->entry.next;
2154		/* there can already be other linked works, inherit and set */
2155		linked = *bits & WORK_STRUCT_LINKED;
 
2156		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2157	}
2158
2159	debug_work_activate(&barr->work);
2160	insert_work(cwq, &barr->work, head,
2161		    work_color_to_flags(WORK_NO_COLOR) | linked);
 
2162}
2163
2164/**
2165 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2166 * @wq: workqueue being flushed
2167 * @flush_color: new flush color, < 0 for no-op
2168 * @work_color: new work color, < 0 for no-op
2169 *
2170 * Prepare cwqs for workqueue flushing.
2171 *
2172 * If @flush_color is non-negative, flush_color on all cwqs should be
2173 * -1.  If no cwq has in-flight commands at the specified color, all
2174 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2175 * has in flight commands, its cwq->flush_color is set to
2176 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2177 * wakeup logic is armed and %true is returned.
2178 *
2179 * The caller should have initialized @wq->first_flusher prior to
2180 * calling this function with non-negative @flush_color.  If
2181 * @flush_color is negative, no flush color update is done and %false
2182 * is returned.
2183 *
2184 * If @work_color is non-negative, all cwqs should have the same
2185 * work_color which is previous to @work_color and all will be
2186 * advanced to @work_color.
2187 *
2188 * CONTEXT:
2189 * mutex_lock(wq->flush_mutex).
2190 *
2191 * RETURNS:
2192 * %true if @flush_color >= 0 and there's something to flush.  %false
2193 * otherwise.
2194 */
2195static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2196				      int flush_color, int work_color)
2197{
2198	bool wait = false;
2199	unsigned int cpu;
2200
2201	if (flush_color >= 0) {
2202		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2203		atomic_set(&wq->nr_cwqs_to_flush, 1);
2204	}
2205
2206	for_each_cwq_cpu(cpu, wq) {
2207		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2208		struct global_cwq *gcwq = cwq->gcwq;
2209
2210		spin_lock_irq(&gcwq->lock);
2211
2212		if (flush_color >= 0) {
2213			BUG_ON(cwq->flush_color != -1);
2214
2215			if (cwq->nr_in_flight[flush_color]) {
2216				cwq->flush_color = flush_color;
2217				atomic_inc(&wq->nr_cwqs_to_flush);
2218				wait = true;
2219			}
2220		}
2221
2222		if (work_color >= 0) {
2223			BUG_ON(work_color != work_next_color(cwq->work_color));
2224			cwq->work_color = work_color;
2225		}
2226
2227		spin_unlock_irq(&gcwq->lock);
2228	}
2229
2230	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2231		complete(&wq->first_flusher->done);
2232
2233	return wait;
2234}
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236/**
2237 * flush_workqueue - ensure that any scheduled work has run to completion.
2238 * @wq: workqueue to flush
2239 *
2240 * Forces execution of the workqueue and blocks until its completion.
2241 * This is typically used in driver shutdown handlers.
2242 *
2243 * We sleep until all works which were queued on entry have been handled,
2244 * but we are not livelocked by new incoming ones.
2245 */
2246void flush_workqueue(struct workqueue_struct *wq)
2247{
2248	struct wq_flusher this_flusher = {
2249		.list = LIST_HEAD_INIT(this_flusher.list),
2250		.flush_color = -1,
2251		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2252	};
2253	int next_color;
2254
2255	lock_map_acquire(&wq->lockdep_map);
2256	lock_map_release(&wq->lockdep_map);
 
 
2257
2258	mutex_lock(&wq->flush_mutex);
2259
2260	/*
2261	 * Start-to-wait phase
2262	 */
2263	next_color = work_next_color(wq->work_color);
2264
2265	if (next_color != wq->flush_color) {
2266		/*
2267		 * Color space is not full.  The current work_color
2268		 * becomes our flush_color and work_color is advanced
2269		 * by one.
2270		 */
2271		BUG_ON(!list_empty(&wq->flusher_overflow));
2272		this_flusher.flush_color = wq->work_color;
2273		wq->work_color = next_color;
2274
2275		if (!wq->first_flusher) {
2276			/* no flush in progress, become the first flusher */
2277			BUG_ON(wq->flush_color != this_flusher.flush_color);
2278
2279			wq->first_flusher = &this_flusher;
2280
2281			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2282						       wq->work_color)) {
2283				/* nothing to flush, done */
2284				wq->flush_color = next_color;
2285				wq->first_flusher = NULL;
2286				goto out_unlock;
2287			}
2288		} else {
2289			/* wait in queue */
2290			BUG_ON(wq->flush_color == this_flusher.flush_color);
2291			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2292			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2293		}
2294	} else {
2295		/*
2296		 * Oops, color space is full, wait on overflow queue.
2297		 * The next flush completion will assign us
2298		 * flush_color and transfer to flusher_queue.
2299		 */
2300		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2301	}
2302
2303	mutex_unlock(&wq->flush_mutex);
 
 
2304
2305	wait_for_completion(&this_flusher.done);
2306
2307	/*
2308	 * Wake-up-and-cascade phase
2309	 *
2310	 * First flushers are responsible for cascading flushes and
2311	 * handling overflow.  Non-first flushers can simply return.
2312	 */
2313	if (wq->first_flusher != &this_flusher)
2314		return;
2315
2316	mutex_lock(&wq->flush_mutex);
2317
2318	/* we might have raced, check again with mutex held */
2319	if (wq->first_flusher != &this_flusher)
2320		goto out_unlock;
2321
2322	wq->first_flusher = NULL;
2323
2324	BUG_ON(!list_empty(&this_flusher.list));
2325	BUG_ON(wq->flush_color != this_flusher.flush_color);
2326
2327	while (true) {
2328		struct wq_flusher *next, *tmp;
2329
2330		/* complete all the flushers sharing the current flush color */
2331		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2332			if (next->flush_color != wq->flush_color)
2333				break;
2334			list_del_init(&next->list);
2335			complete(&next->done);
2336		}
2337
2338		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2339		       wq->flush_color != work_next_color(wq->work_color));
2340
2341		/* this flush_color is finished, advance by one */
2342		wq->flush_color = work_next_color(wq->flush_color);
2343
2344		/* one color has been freed, handle overflow queue */
2345		if (!list_empty(&wq->flusher_overflow)) {
2346			/*
2347			 * Assign the same color to all overflowed
2348			 * flushers, advance work_color and append to
2349			 * flusher_queue.  This is the start-to-wait
2350			 * phase for these overflowed flushers.
2351			 */
2352			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2353				tmp->flush_color = wq->work_color;
2354
2355			wq->work_color = work_next_color(wq->work_color);
2356
2357			list_splice_tail_init(&wq->flusher_overflow,
2358					      &wq->flusher_queue);
2359			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2360		}
2361
2362		if (list_empty(&wq->flusher_queue)) {
2363			BUG_ON(wq->flush_color != wq->work_color);
2364			break;
2365		}
2366
2367		/*
2368		 * Need to flush more colors.  Make the next flusher
2369		 * the new first flusher and arm cwqs.
2370		 */
2371		BUG_ON(wq->flush_color == wq->work_color);
2372		BUG_ON(wq->flush_color != next->flush_color);
2373
2374		list_del_init(&next->list);
2375		wq->first_flusher = next;
2376
2377		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2378			break;
2379
2380		/*
2381		 * Meh... this color is already done, clear first
2382		 * flusher and repeat cascading.
2383		 */
2384		wq->first_flusher = NULL;
2385	}
2386
2387out_unlock:
2388	mutex_unlock(&wq->flush_mutex);
2389}
2390EXPORT_SYMBOL_GPL(flush_workqueue);
2391
2392/**
2393 * drain_workqueue - drain a workqueue
2394 * @wq: workqueue to drain
2395 *
2396 * Wait until the workqueue becomes empty.  While draining is in progress,
2397 * only chain queueing is allowed.  IOW, only currently pending or running
2398 * work items on @wq can queue further work items on it.  @wq is flushed
2399 * repeatedly until it becomes empty.  The number of flushing is detemined
2400 * by the depth of chaining and should be relatively short.  Whine if it
2401 * takes too long.
2402 */
2403void drain_workqueue(struct workqueue_struct *wq)
2404{
2405	unsigned int flush_cnt = 0;
2406	unsigned int cpu;
2407
2408	/*
2409	 * __queue_work() needs to test whether there are drainers, is much
2410	 * hotter than drain_workqueue() and already looks at @wq->flags.
2411	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2412	 */
2413	spin_lock(&workqueue_lock);
2414	if (!wq->nr_drainers++)
2415		wq->flags |= WQ_DRAINING;
2416	spin_unlock(&workqueue_lock);
2417reflush:
2418	flush_workqueue(wq);
2419
2420	for_each_cwq_cpu(cpu, wq) {
2421		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
 
2422		bool drained;
2423
2424		spin_lock_irq(&cwq->gcwq->lock);
2425		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2426		spin_unlock_irq(&cwq->gcwq->lock);
2427
2428		if (drained)
2429			continue;
2430
2431		if (++flush_cnt == 10 ||
2432		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2433			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2434				   wq->name, flush_cnt);
 
 
2435		goto reflush;
2436	}
2437
2438	spin_lock(&workqueue_lock);
2439	if (!--wq->nr_drainers)
2440		wq->flags &= ~WQ_DRAINING;
2441	spin_unlock(&workqueue_lock);
2442}
2443EXPORT_SYMBOL_GPL(drain_workqueue);
2444
2445static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2446			     bool wait_executing)
2447{
2448	struct worker *worker = NULL;
2449	struct global_cwq *gcwq;
2450	struct cpu_workqueue_struct *cwq;
 
2451
2452	might_sleep();
2453	gcwq = get_work_gcwq(work);
2454	if (!gcwq)
 
 
 
2455		return false;
 
2456
2457	spin_lock_irq(&gcwq->lock);
2458	if (!list_empty(&work->entry)) {
2459		/*
2460		 * See the comment near try_to_grab_pending()->smp_rmb().
2461		 * If it was re-queued to a different gcwq under us, we
2462		 * are not going to wait.
2463		 */
2464		smp_rmb();
2465		cwq = get_work_cwq(work);
2466		if (unlikely(!cwq || gcwq != cwq->gcwq))
2467			goto already_gone;
2468	} else if (wait_executing) {
2469		worker = find_worker_executing_work(gcwq, work);
2470		if (!worker)
2471			goto already_gone;
2472		cwq = worker->current_cwq;
2473	} else
2474		goto already_gone;
 
 
 
 
 
2475
2476	insert_wq_barrier(cwq, barr, work, worker);
2477	spin_unlock_irq(&gcwq->lock);
2478
2479	/*
2480	 * If @max_active is 1 or rescuer is in use, flushing another work
2481	 * item on the same workqueue may lead to deadlock.  Make sure the
2482	 * flusher is not running on the same workqueue by verifying write
2483	 * access.
 
 
 
2484	 */
2485	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2486		lock_map_acquire(&cwq->wq->lockdep_map);
2487	else
2488		lock_map_acquire_read(&cwq->wq->lockdep_map);
2489	lock_map_release(&cwq->wq->lockdep_map);
2490
 
2491	return true;
2492already_gone:
2493	spin_unlock_irq(&gcwq->lock);
 
2494	return false;
2495}
2496
2497/**
2498 * flush_work - wait for a work to finish executing the last queueing instance
2499 * @work: the work to flush
2500 *
2501 * Wait until @work has finished execution.  This function considers
2502 * only the last queueing instance of @work.  If @work has been
2503 * enqueued across different CPUs on a non-reentrant workqueue or on
2504 * multiple workqueues, @work might still be executing on return on
2505 * some of the CPUs from earlier queueing.
2506 *
2507 * If @work was queued only on a non-reentrant, ordered or unbound
2508 * workqueue, @work is guaranteed to be idle on return if it hasn't
2509 * been requeued since flush started.
2510 *
2511 * RETURNS:
2512 * %true if flush_work() waited for the work to finish execution,
2513 * %false if it was already idle.
2514 */
2515bool flush_work(struct work_struct *work)
2516{
2517	struct wq_barrier barr;
2518
2519	lock_map_acquire(&work->lockdep_map);
2520	lock_map_release(&work->lockdep_map);
2521
2522	if (start_flush_work(work, &barr, true)) {
2523		wait_for_completion(&barr.done);
2524		destroy_work_on_stack(&barr.work);
2525		return true;
2526	} else
2527		return false;
2528}
2529EXPORT_SYMBOL_GPL(flush_work);
2530
2531static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2532{
2533	struct wq_barrier barr;
2534	struct worker *worker;
2535
2536	spin_lock_irq(&gcwq->lock);
2537
2538	worker = find_worker_executing_work(gcwq, work);
2539	if (unlikely(worker))
2540		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2541
2542	spin_unlock_irq(&gcwq->lock);
2543
2544	if (unlikely(worker)) {
2545		wait_for_completion(&barr.done);
2546		destroy_work_on_stack(&barr.work);
2547		return true;
2548	} else
2549		return false;
 
2550}
2551
2552static bool wait_on_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
2553{
2554	bool ret = false;
2555	int cpu;
2556
2557	might_sleep();
2558
2559	lock_map_acquire(&work->lockdep_map);
2560	lock_map_release(&work->lockdep_map);
2561
2562	for_each_gcwq_cpu(cpu)
2563		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2564	return ret;
2565}
 
2566
2567/**
2568 * flush_work_sync - wait until a work has finished execution
2569 * @work: the work to flush
2570 *
2571 * Wait until @work has finished execution.  On return, it's
2572 * guaranteed that all queueing instances of @work which happened
2573 * before this function is called are finished.  In other words, if
2574 * @work hasn't been requeued since this function was called, @work is
2575 * guaranteed to be idle on return.
2576 *
2577 * RETURNS:
2578 * %true if flush_work_sync() waited for the work to finish execution,
2579 * %false if it was already idle.
2580 */
2581bool flush_work_sync(struct work_struct *work)
2582{
2583	struct wq_barrier barr;
2584	bool pending, waited;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585
2586	/* we'll wait for executions separately, queue barr only if pending */
2587	pending = start_flush_work(work, &barr, false);
 
 
2588
2589	/* wait for executions to finish */
2590	waited = wait_on_work(work);
 
2591
2592	/* wait for the pending one */
2593	if (pending) {
2594		wait_for_completion(&barr.done);
2595		destroy_work_on_stack(&barr.work);
2596	}
2597
2598	return pending || waited;
 
 
2599}
2600EXPORT_SYMBOL_GPL(flush_work_sync);
2601
2602/*
2603 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2604 * so this work can't be re-armed in any way.
2605 */
2606static int try_to_grab_pending(struct work_struct *work)
2607{
2608	struct global_cwq *gcwq;
2609	int ret = -1;
2610
2611	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2612		return 0;
 
 
2613
2614	/*
2615	 * The queueing is in progress, or it is already queued. Try to
2616	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2617	 */
2618	gcwq = get_work_gcwq(work);
2619	if (!gcwq)
2620		return ret;
2621
2622	spin_lock_irq(&gcwq->lock);
2623	if (!list_empty(&work->entry)) {
2624		/*
2625		 * This work is queued, but perhaps we locked the wrong gcwq.
2626		 * In that case we must see the new value after rmb(), see
2627		 * insert_work()->wmb().
2628		 */
2629		smp_rmb();
2630		if (gcwq == get_work_gcwq(work)) {
2631			debug_work_deactivate(work);
2632			list_del_init(&work->entry);
2633			cwq_dec_nr_in_flight(get_work_cwq(work),
2634				get_work_color(work),
2635				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2636			ret = 1;
2637		}
2638	}
2639	spin_unlock_irq(&gcwq->lock);
2640
2641	return ret;
2642}
2643
2644static bool __cancel_work_timer(struct work_struct *work,
2645				struct timer_list* timer)
 
 
2646{
2647	int ret;
2648
2649	do {
2650		ret = (timer && likely(del_timer(timer)));
2651		if (!ret)
2652			ret = try_to_grab_pending(work);
2653		wait_on_work(work);
2654	} while (unlikely(ret < 0));
2655
2656	clear_work_data(work);
2657	return ret;
2658}
 
2659
2660/**
2661 * cancel_work_sync - cancel a work and wait for it to finish
2662 * @work: the work to cancel
2663 *
2664 * Cancel @work and wait for its execution to finish.  This function
2665 * can be used even if the work re-queues itself or migrates to
2666 * another workqueue.  On return from this function, @work is
2667 * guaranteed to be not pending or executing on any CPU.
2668 *
2669 * cancel_work_sync(&delayed_work->work) must not be used for
2670 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2671 *
2672 * The caller must ensure that the workqueue on which @work was last
2673 * queued can't be destroyed before this function returns.
2674 *
2675 * RETURNS:
2676 * %true if @work was pending, %false otherwise.
2677 */
2678bool cancel_work_sync(struct work_struct *work)
2679{
2680	return __cancel_work_timer(work, NULL);
2681}
2682EXPORT_SYMBOL_GPL(cancel_work_sync);
2683
2684/**
2685 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2686 * @dwork: the delayed work to flush
2687 *
2688 * Delayed timer is cancelled and the pending work is queued for
2689 * immediate execution.  Like flush_work(), this function only
2690 * considers the last queueing instance of @dwork.
2691 *
2692 * RETURNS:
2693 * %true if flush_work() waited for the work to finish execution,
2694 * %false if it was already idle.
2695 */
2696bool flush_delayed_work(struct delayed_work *dwork)
2697{
2698	if (del_timer_sync(&dwork->timer))
2699		__queue_work(raw_smp_processor_id(),
2700			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2701	return flush_work(&dwork->work);
2702}
2703EXPORT_SYMBOL(flush_delayed_work);
2704
2705/**
2706 * flush_delayed_work_sync - wait for a dwork to finish
2707 * @dwork: the delayed work to flush
2708 *
2709 * Delayed timer is cancelled and the pending work is queued for
2710 * execution immediately.  Other than timer handling, its behavior
2711 * is identical to flush_work_sync().
 
2712 *
2713 * RETURNS:
2714 * %true if flush_work_sync() waited for the work to finish execution,
2715 * %false if it was already idle.
2716 */
2717bool flush_delayed_work_sync(struct delayed_work *dwork)
2718{
2719	if (del_timer_sync(&dwork->timer))
2720		__queue_work(raw_smp_processor_id(),
2721			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2722	return flush_work_sync(&dwork->work);
2723}
2724EXPORT_SYMBOL(flush_delayed_work_sync);
2725
2726/**
2727 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2728 * @dwork: the delayed work cancel
2729 *
2730 * This is cancel_work_sync() for delayed works.
2731 *
2732 * RETURNS:
2733 * %true if @dwork was pending, %false otherwise.
2734 */
2735bool cancel_delayed_work_sync(struct delayed_work *dwork)
2736{
2737	return __cancel_work_timer(&dwork->work, &dwork->timer);
2738}
2739EXPORT_SYMBOL(cancel_delayed_work_sync);
2740
2741/**
2742 * schedule_work - put work task in global workqueue
2743 * @work: job to be done
2744 *
2745 * Returns zero if @work was already on the kernel-global workqueue and
2746 * non-zero otherwise.
2747 *
2748 * This puts a job in the kernel-global workqueue if it was not already
2749 * queued and leaves it in the same position on the kernel-global
2750 * workqueue otherwise.
2751 */
2752int schedule_work(struct work_struct *work)
2753{
2754	return queue_work(system_wq, work);
2755}
2756EXPORT_SYMBOL(schedule_work);
2757
2758/*
2759 * schedule_work_on - put work task on a specific cpu
2760 * @cpu: cpu to put the work task on
2761 * @work: job to be done
2762 *
2763 * This puts a job on a specific cpu
2764 */
2765int schedule_work_on(int cpu, struct work_struct *work)
2766{
2767	return queue_work_on(cpu, system_wq, work);
2768}
2769EXPORT_SYMBOL(schedule_work_on);
2770
2771/**
2772 * schedule_delayed_work - put work task in global workqueue after delay
2773 * @dwork: job to be done
2774 * @delay: number of jiffies to wait or 0 for immediate execution
2775 *
2776 * After waiting for a given time this puts a job in the kernel-global
2777 * workqueue.
2778 */
2779int schedule_delayed_work(struct delayed_work *dwork,
2780					unsigned long delay)
2781{
2782	return queue_delayed_work(system_wq, dwork, delay);
2783}
2784EXPORT_SYMBOL(schedule_delayed_work);
2785
2786/**
2787 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2788 * @cpu: cpu to use
2789 * @dwork: job to be done
2790 * @delay: number of jiffies to wait
2791 *
2792 * After waiting for a given time this puts a job in the kernel-global
2793 * workqueue on the specified CPU.
2794 */
2795int schedule_delayed_work_on(int cpu,
2796			struct delayed_work *dwork, unsigned long delay)
2797{
2798	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2799}
2800EXPORT_SYMBOL(schedule_delayed_work_on);
2801
2802/**
2803 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2804 * @func: the function to call
2805 *
2806 * schedule_on_each_cpu() executes @func on each online CPU using the
2807 * system workqueue and blocks until all CPUs have completed.
2808 * schedule_on_each_cpu() is very slow.
2809 *
2810 * RETURNS:
2811 * 0 on success, -errno on failure.
2812 */
2813int schedule_on_each_cpu(work_func_t func)
2814{
2815	int cpu;
2816	struct work_struct __percpu *works;
2817
2818	works = alloc_percpu(struct work_struct);
2819	if (!works)
2820		return -ENOMEM;
2821
2822	get_online_cpus();
2823
2824	for_each_online_cpu(cpu) {
2825		struct work_struct *work = per_cpu_ptr(works, cpu);
2826
2827		INIT_WORK(work, func);
2828		schedule_work_on(cpu, work);
2829	}
2830
2831	for_each_online_cpu(cpu)
2832		flush_work(per_cpu_ptr(works, cpu));
2833
2834	put_online_cpus();
2835	free_percpu(works);
2836	return 0;
2837}
2838
2839/**
2840 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2841 *
2842 * Forces execution of the kernel-global workqueue and blocks until its
2843 * completion.
2844 *
2845 * Think twice before calling this function!  It's very easy to get into
2846 * trouble if you don't take great care.  Either of the following situations
2847 * will lead to deadlock:
2848 *
2849 *	One of the work items currently on the workqueue needs to acquire
2850 *	a lock held by your code or its caller.
2851 *
2852 *	Your code is running in the context of a work routine.
2853 *
2854 * They will be detected by lockdep when they occur, but the first might not
2855 * occur very often.  It depends on what work items are on the workqueue and
2856 * what locks they need, which you have no control over.
2857 *
2858 * In most situations flushing the entire workqueue is overkill; you merely
2859 * need to know that a particular work item isn't queued and isn't running.
2860 * In such cases you should use cancel_delayed_work_sync() or
2861 * cancel_work_sync() instead.
2862 */
2863void flush_scheduled_work(void)
2864{
2865	flush_workqueue(system_wq);
2866}
2867EXPORT_SYMBOL(flush_scheduled_work);
2868
2869/**
2870 * execute_in_process_context - reliably execute the routine with user context
2871 * @fn:		the function to execute
2872 * @ew:		guaranteed storage for the execute work structure (must
2873 *		be available when the work executes)
2874 *
2875 * Executes the function immediately if process context is available,
2876 * otherwise schedules the function for delayed execution.
2877 *
2878 * Returns:	0 - function was executed
2879 *		1 - function was scheduled for execution
2880 */
2881int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2882{
2883	if (!in_interrupt()) {
2884		fn(&ew->work);
2885		return 0;
2886	}
2887
2888	INIT_WORK(&ew->work, fn);
2889	schedule_work(&ew->work);
2890
2891	return 1;
2892}
2893EXPORT_SYMBOL_GPL(execute_in_process_context);
2894
2895int keventd_up(void)
 
 
 
 
 
 
2896{
2897	return system_wq != NULL;
 
 
 
 
2898}
2899
2900static int alloc_cwqs(struct workqueue_struct *wq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2901{
 
 
 
 
 
2902	/*
2903	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2904	 * Make sure that the alignment isn't lower than that of
2905	 * unsigned long long.
2906	 */
2907	const size_t size = sizeof(struct cpu_workqueue_struct);
2908	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2909				   __alignof__(unsigned long long));
2910
2911	if (!(wq->flags & WQ_UNBOUND))
2912		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2913	else {
2914		void *ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915
2916		/*
2917		 * Allocate enough room to align cwq and put an extra
2918		 * pointer at the end pointing back to the originally
2919		 * allocated pointer which will be used for free.
2920		 */
2921		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2922		if (ptr) {
2923			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2924			*(void **)(wq->cpu_wq.single + 1) = ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925		}
2926	}
2927
2928	/* just in case, make sure it's actually aligned */
2929	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2930	return wq->cpu_wq.v ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931}
2932
2933static void free_cwqs(struct workqueue_struct *wq)
 
2934{
2935	if (!(wq->flags & WQ_UNBOUND))
2936		free_percpu(wq->cpu_wq.pcpu);
2937	else if (wq->cpu_wq.single) {
2938		/* the pointer to free is stored right after the cwq */
2939		kfree(*(void **)(wq->cpu_wq.single + 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940	}
 
2941}
2942
2943static int wq_clamp_max_active(int max_active, unsigned int flags,
2944			       const char *name)
2945{
2946	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
 
 
2947
2948	if (max_active < 1 || max_active > lim)
2949		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2950		       "is out of range, clamping between %d and %d\n",
2951		       max_active, name, 1, lim);
 
 
 
 
 
 
 
 
 
 
2952
2953	return clamp_val(max_active, 1, lim);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954}
2955
2956struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2957					       unsigned int flags,
2958					       int max_active,
2959					       struct lock_class_key *key,
2960					       const char *lock_name, ...)
 
 
 
 
2961{
2962	va_list args, args1;
2963	struct workqueue_struct *wq;
2964	unsigned int cpu;
2965	size_t namelen;
2966
2967	/* determine namelen, allocate wq and format name */
2968	va_start(args, lock_name);
2969	va_copy(args1, args);
2970	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2971
2972	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2973	if (!wq)
2974		goto err;
 
 
 
 
2975
2976	vsnprintf(wq->name, namelen, fmt, args1);
2977	va_end(args);
2978	va_end(args1);
2979
2980	/*
2981	 * Workqueues which may be used during memory reclaim should
2982	 * have a rescuer to guarantee forward progress.
 
 
2983	 */
2984	if (flags & WQ_MEM_RECLAIM)
2985		flags |= WQ_RESCUER;
 
 
 
 
 
 
2986
2987	/*
2988	 * Unbound workqueues aren't concurrency managed and should be
2989	 * dispatched to workers immediately.
2990	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2991	if (flags & WQ_UNBOUND)
2992		flags |= WQ_HIGHPRI;
 
 
 
 
 
 
 
 
 
 
 
 
2993
2994	max_active = max_active ?: WQ_DFL_ACTIVE;
2995	max_active = wq_clamp_max_active(max_active, flags, wq->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996
2997	/* init wq */
2998	wq->flags = flags;
2999	wq->saved_max_active = max_active;
3000	mutex_init(&wq->flush_mutex);
3001	atomic_set(&wq->nr_cwqs_to_flush, 0);
 
 
 
 
3002	INIT_LIST_HEAD(&wq->flusher_queue);
3003	INIT_LIST_HEAD(&wq->flusher_overflow);
 
3004
3005	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3006	INIT_LIST_HEAD(&wq->list);
3007
3008	if (alloc_cwqs(wq) < 0)
3009		goto err;
3010
3011	for_each_cwq_cpu(cpu, wq) {
3012		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3013		struct global_cwq *gcwq = get_gcwq(cpu);
3014
3015		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3016		cwq->gcwq = gcwq;
3017		cwq->wq = wq;
3018		cwq->flush_color = -1;
3019		cwq->max_active = max_active;
3020		INIT_LIST_HEAD(&cwq->delayed_works);
3021	}
3022
3023	if (flags & WQ_RESCUER) {
3024		struct worker *rescuer;
3025
3026		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3027			goto err;
3028
3029		wq->rescuer = rescuer = alloc_worker();
3030		if (!rescuer)
3031			goto err;
3032
3033		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3034					       wq->name);
3035		if (IS_ERR(rescuer->task))
3036			goto err;
3037
3038		rescuer->task->flags |= PF_THREAD_BOUND;
3039		wake_up_process(rescuer->task);
3040	}
3041
3042	/*
3043	 * workqueue_lock protects global freeze state and workqueues
3044	 * list.  Grab it, set max_active accordingly and add the new
3045	 * workqueue to workqueues list.
3046	 */
3047	spin_lock(&workqueue_lock);
3048
3049	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3050		for_each_cwq_cpu(cpu, wq)
3051			get_cwq(cpu, wq)->max_active = 0;
3052
3053	list_add(&wq->list, &workqueues);
3054
3055	spin_unlock(&workqueue_lock);
3056
3057	return wq;
3058err:
3059	if (wq) {
3060		free_cwqs(wq);
3061		free_mayday_mask(wq->mayday_mask);
3062		kfree(wq->rescuer);
3063		kfree(wq);
3064	}
 
 
 
 
 
 
3065	return NULL;
3066}
3067EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068
3069/**
3070 * destroy_workqueue - safely terminate a workqueue
3071 * @wq: target workqueue
3072 *
3073 * Safely destroy a workqueue. All work currently pending will be done first.
3074 */
3075void destroy_workqueue(struct workqueue_struct *wq)
3076{
3077	unsigned int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
3078
3079	/* drain it before proceeding with destruction */
3080	drain_workqueue(wq);
3081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082	/*
3083	 * wq list is used to freeze wq, remove from list after
3084	 * flushing is complete in case freeze races us.
3085	 */
3086	spin_lock(&workqueue_lock);
3087	list_del(&wq->list);
3088	spin_unlock(&workqueue_lock);
3089
3090	/* sanity check */
3091	for_each_cwq_cpu(cpu, wq) {
3092		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3093		int i;
 
 
3094
3095		for (i = 0; i < WORK_NR_COLORS; i++)
3096			BUG_ON(cwq->nr_in_flight[i]);
3097		BUG_ON(cwq->nr_active);
3098		BUG_ON(!list_empty(&cwq->delayed_works));
3099	}
3100
3101	if (wq->flags & WQ_RESCUER) {
3102		kthread_stop(wq->rescuer->task);
3103		free_mayday_mask(wq->mayday_mask);
3104		kfree(wq->rescuer);
3105	}
3106
3107	free_cwqs(wq);
3108	kfree(wq);
3109}
3110EXPORT_SYMBOL_GPL(destroy_workqueue);
3111
3112/**
3113 * workqueue_set_max_active - adjust max_active of a workqueue
3114 * @wq: target workqueue
3115 * @max_active: new max_active value.
3116 *
3117 * Set max_active of @wq to @max_active.
 
3118 *
3119 * CONTEXT:
3120 * Don't call from IRQ context.
3121 */
3122void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3123{
3124	unsigned int cpu;
 
 
 
 
 
3125
3126	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3127
3128	spin_lock(&workqueue_lock);
3129
3130	wq->saved_max_active = max_active;
 
 
3131
3132	for_each_cwq_cpu(cpu, wq) {
3133		struct global_cwq *gcwq = get_gcwq(cpu);
3134
3135		spin_lock_irq(&gcwq->lock);
 
 
3136
3137		if (!(wq->flags & WQ_FREEZABLE) ||
3138		    !(gcwq->flags & GCWQ_FREEZING))
3139			get_cwq(gcwq->cpu, wq)->max_active = max_active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3140
3141		spin_unlock_irq(&gcwq->lock);
3142	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143
3144	spin_unlock(&workqueue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3145}
3146EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3147
3148/**
3149 * workqueue_congested - test whether a workqueue is congested
3150 * @cpu: CPU in question
3151 * @wq: target workqueue
3152 *
3153 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3154 * no synchronization around this function and the test result is
3155 * unreliable and only useful as advisory hints or for debugging.
3156 *
3157 * RETURNS:
 
 
 
 
 
 
 
3158 * %true if congested, %false otherwise.
3159 */
3160bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3161{
3162	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
 
3163
3164	return !list_empty(&cwq->delayed_works);
3165}
3166EXPORT_SYMBOL_GPL(workqueue_congested);
3167
3168/**
3169 * work_cpu - return the last known associated cpu for @work
3170 * @work: the work of interest
3171 *
3172 * RETURNS:
3173 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3174 */
3175unsigned int work_cpu(struct work_struct *work)
3176{
3177	struct global_cwq *gcwq = get_work_gcwq(work);
3178
3179	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
 
 
 
 
 
 
3180}
3181EXPORT_SYMBOL_GPL(work_cpu);
3182
3183/**
3184 * work_busy - test whether a work is currently pending or running
3185 * @work: the work to be tested
3186 *
3187 * Test whether @work is currently pending or running.  There is no
3188 * synchronization around this function and the test result is
3189 * unreliable and only useful as advisory hints or for debugging.
3190 * Especially for reentrant wqs, the pending state might hide the
3191 * running state.
3192 *
3193 * RETURNS:
3194 * OR'd bitmask of WORK_BUSY_* bits.
3195 */
3196unsigned int work_busy(struct work_struct *work)
3197{
3198	struct global_cwq *gcwq = get_work_gcwq(work);
3199	unsigned long flags;
3200	unsigned int ret = 0;
3201
3202	if (!gcwq)
3203		return false;
3204
3205	spin_lock_irqsave(&gcwq->lock, flags);
3206
3207	if (work_pending(work))
3208		ret |= WORK_BUSY_PENDING;
3209	if (find_worker_executing_work(gcwq, work))
3210		ret |= WORK_BUSY_RUNNING;
3211
3212	spin_unlock_irqrestore(&gcwq->lock, flags);
 
 
 
 
 
 
 
 
3213
3214	return ret;
3215}
3216EXPORT_SYMBOL_GPL(work_busy);
3217
3218/*
3219 * CPU hotplug.
3220 *
3221 * There are two challenges in supporting CPU hotplug.  Firstly, there
3222 * are a lot of assumptions on strong associations among work, cwq and
3223 * gcwq which make migrating pending and scheduled works very
3224 * difficult to implement without impacting hot paths.  Secondly,
3225 * gcwqs serve mix of short, long and very long running works making
3226 * blocked draining impractical.
3227 *
3228 * This is solved by allowing a gcwq to be detached from CPU, running
3229 * it with unbound (rogue) workers and allowing it to be reattached
3230 * later if the cpu comes back online.  A separate thread is created
3231 * to govern a gcwq in such state and is called the trustee of the
3232 * gcwq.
3233 *
3234 * Trustee states and their descriptions.
3235 *
3236 * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3237 *		new trustee is started with this state.
3238 *
3239 * IN_CHARGE	Once started, trustee will enter this state after
3240 *		assuming the manager role and making all existing
3241 *		workers rogue.  DOWN_PREPARE waits for trustee to
3242 *		enter this state.  After reaching IN_CHARGE, trustee
3243 *		tries to execute the pending worklist until it's empty
3244 *		and the state is set to BUTCHER, or the state is set
3245 *		to RELEASE.
3246 *
3247 * BUTCHER	Command state which is set by the cpu callback after
3248 *		the cpu has went down.  Once this state is set trustee
3249 *		knows that there will be no new works on the worklist
3250 *		and once the worklist is empty it can proceed to
3251 *		killing idle workers.
3252 *
3253 * RELEASE	Command state which is set by the cpu callback if the
3254 *		cpu down has been canceled or it has come online
3255 *		again.  After recognizing this state, trustee stops
3256 *		trying to drain or butcher and clears ROGUE, rebinds
3257 *		all remaining workers back to the cpu and releases
3258 *		manager role.
3259 *
3260 * DONE		Trustee will enter this state after BUTCHER or RELEASE
3261 *		is complete.
3262 *
3263 *          trustee                 CPU                draining
3264 *         took over                down               complete
3265 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3266 *                        |                     |                  ^
3267 *                        | CPU is back online  v   return workers |
3268 *                         ----------------> RELEASE --------------
3269 */
 
 
 
 
3270
3271/**
3272 * trustee_wait_event_timeout - timed event wait for trustee
3273 * @cond: condition to wait for
3274 * @timeout: timeout in jiffies
3275 *
3276 * wait_event_timeout() for trustee to use.  Handles locking and
3277 * checks for RELEASE request.
3278 *
3279 * CONTEXT:
3280 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3281 * multiple times.  To be used by trustee.
3282 *
3283 * RETURNS:
3284 * Positive indicating left time if @cond is satisfied, 0 if timed
3285 * out, -1 if canceled.
3286 */
3287#define trustee_wait_event_timeout(cond, timeout) ({			\
3288	long __ret = (timeout);						\
3289	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3290	       __ret) {							\
3291		spin_unlock_irq(&gcwq->lock);				\
3292		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3293			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3294			__ret);						\
3295		spin_lock_irq(&gcwq->lock);				\
3296	}								\
3297	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3298})
3299
3300/**
3301 * trustee_wait_event - event wait for trustee
3302 * @cond: condition to wait for
 
3303 *
3304 * wait_event() for trustee to use.  Automatically handles locking and
3305 * checks for CANCEL request.
 
3306 *
3307 * CONTEXT:
3308 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3309 * multiple times.  To be used by trustee.
3310 *
3311 * RETURNS:
3312 * 0 if @cond is satisfied, -1 if canceled.
3313 */
3314#define trustee_wait_event(cond) ({					\
3315	long __ret1;							\
3316	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3317	__ret1 < 0 ? -1 : 0;						\
3318})
3319
3320static int __cpuinit trustee_thread(void *__gcwq)
3321{
3322	struct global_cwq *gcwq = __gcwq;
 
 
 
 
3323	struct worker *worker;
3324	struct work_struct *work;
3325	struct hlist_node *pos;
3326	long rc;
3327	int i;
3328
3329	BUG_ON(gcwq->cpu != smp_processor_id());
 
3330
3331	spin_lock_irq(&gcwq->lock);
3332	/*
3333	 * Claim the manager position and make all workers rogue.
3334	 * Trustee must be bound to the target cpu and can't be
3335	 * cancelled.
3336	 */
3337	BUG_ON(gcwq->cpu != smp_processor_id());
3338	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3339	BUG_ON(rc < 0);
3340
3341	gcwq->flags |= GCWQ_MANAGING_WORKERS;
 
 
 
 
 
 
 
 
3342
3343	list_for_each_entry(worker, &gcwq->idle_list, entry)
3344		worker->flags |= WORKER_ROGUE;
 
 
 
 
 
3345
3346	for_each_busy_worker(worker, i, pos, gcwq)
3347		worker->flags |= WORKER_ROGUE;
 
 
 
 
 
 
 
 
 
 
3348
3349	/*
3350	 * Call schedule() so that we cross rq->lock and thus can
3351	 * guarantee sched callbacks see the rogue flag.  This is
3352	 * necessary as scheduler callbacks may be invoked from other
3353	 * cpus.
3354	 */
3355	spin_unlock_irq(&gcwq->lock);
3356	schedule();
3357	spin_lock_irq(&gcwq->lock);
3358
3359	/*
3360	 * Sched callbacks are disabled now.  Zap nr_running.  After
3361	 * this, nr_running stays zero and need_more_worker() and
3362	 * keep_working() are always true as long as the worklist is
3363	 * not empty.
3364	 */
3365	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3366
3367	spin_unlock_irq(&gcwq->lock);
3368	del_timer_sync(&gcwq->idle_timer);
3369	spin_lock_irq(&gcwq->lock);
 
 
3370
3371	/*
3372	 * We're now in charge.  Notify and proceed to drain.  We need
3373	 * to keep the gcwq running during the whole CPU down
3374	 * procedure as other cpu hotunplug callbacks may need to
3375	 * flush currently running tasks.
3376	 */
3377	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3378	wake_up_all(&gcwq->trustee_wait);
 
 
 
 
 
 
 
 
 
 
 
 
3379
3380	/*
3381	 * The original cpu is in the process of dying and may go away
3382	 * anytime now.  When that happens, we and all workers would
3383	 * be migrated to other cpus.  Try draining any left work.  We
3384	 * want to get it over with ASAP - spam rescuers, wake up as
3385	 * many idlers as necessary and create new ones till the
3386	 * worklist is empty.  Note that if the gcwq is frozen, there
3387	 * may be frozen works in freezable cwqs.  Don't declare
3388	 * completion while frozen.
3389	 */
3390	while (gcwq->nr_workers != gcwq->nr_idle ||
3391	       gcwq->flags & GCWQ_FREEZING ||
3392	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3393		int nr_works = 0;
3394
3395		list_for_each_entry(work, &gcwq->worklist, entry) {
3396			send_mayday(work);
3397			nr_works++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3398		}
 
 
 
3399
3400		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3401			if (!nr_works--)
3402				break;
3403			wake_up_process(worker->task);
 
 
 
 
 
 
 
 
3404		}
 
 
3405
3406		if (need_to_create_worker(gcwq)) {
3407			spin_unlock_irq(&gcwq->lock);
3408			worker = create_worker(gcwq, false);
3409			spin_lock_irq(&gcwq->lock);
3410			if (worker) {
3411				worker->flags |= WORKER_ROGUE;
3412				start_worker(worker);
3413			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3414		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3415
3416		/* give a breather */
3417		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
 
3418			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3419	}
3420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3421	/*
3422	 * Either all works have been scheduled and cpu is down, or
3423	 * cpu down has already been canceled.  Wait for and butcher
3424	 * all workers till we're canceled.
3425	 */
3426	do {
3427		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3428		while (!list_empty(&gcwq->idle_list))
3429			destroy_worker(list_first_entry(&gcwq->idle_list,
3430							struct worker, entry));
3431	} while (gcwq->nr_workers && rc >= 0);
3432
3433	/*
3434	 * At this point, either draining has completed and no worker
3435	 * is left, or cpu down has been canceled or the cpu is being
3436	 * brought back up.  There shouldn't be any idle one left.
3437	 * Tell the remaining busy ones to rebind once it finishes the
3438	 * currently scheduled works by scheduling the rebind_work.
3439	 */
3440	WARN_ON(!list_empty(&gcwq->idle_list));
3441
3442	for_each_busy_worker(worker, i, pos, gcwq) {
3443		struct work_struct *rebind_work = &worker->rebind_work;
3444		unsigned long worker_flags = worker->flags;
3445
3446		/*
3447		 * Rebind_work may race with future cpu hotplug
3448		 * operations.  Use a separate flag to mark that
3449		 * rebinding is scheduled.  The morphing should
3450		 * be atomic.
3451		 */
3452		worker_flags |= WORKER_REBIND;
3453		worker_flags &= ~WORKER_ROGUE;
3454		ACCESS_ONCE(worker->flags) = worker_flags;
3455
3456		/* queue rebind_work, wq doesn't matter, use the default one */
3457		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3458				     work_data_bits(rebind_work)))
3459			continue;
3460
3461		debug_work_activate(rebind_work);
3462		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3463			    worker->scheduled.next,
3464			    work_color_to_flags(WORK_NO_COLOR));
3465	}
 
 
 
 
 
 
 
 
 
 
3466
3467	/* relinquish manager role */
3468	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3469
3470	/* notify completion */
3471	gcwq->trustee = NULL;
3472	gcwq->trustee_state = TRUSTEE_DONE;
3473	wake_up_all(&gcwq->trustee_wait);
3474	spin_unlock_irq(&gcwq->lock);
3475	return 0;
3476}
3477
3478/**
3479 * wait_trustee_state - wait for trustee to enter the specified state
3480 * @gcwq: gcwq the trustee of interest belongs to
3481 * @state: target state to wait for
3482 *
3483 * Wait for the trustee to reach @state.  DONE is already matched.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3484 *
3485 * CONTEXT:
3486 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3487 * multiple times.  To be used by cpu_callback.
3488 */
3489static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3490__releases(&gcwq->lock)
3491__acquires(&gcwq->lock)
3492{
3493	if (!(gcwq->trustee_state == state ||
3494	      gcwq->trustee_state == TRUSTEE_DONE)) {
3495		spin_unlock_irq(&gcwq->lock);
3496		__wait_event(gcwq->trustee_wait,
3497			     gcwq->trustee_state == state ||
3498			     gcwq->trustee_state == TRUSTEE_DONE);
3499		spin_lock_irq(&gcwq->lock);
 
 
 
3500	}
 
 
3501}
3502
3503static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3504						unsigned long action,
3505						void *hcpu)
3506{
3507	unsigned int cpu = (unsigned long)hcpu;
3508	struct global_cwq *gcwq = get_gcwq(cpu);
3509	struct task_struct *new_trustee = NULL;
3510	struct worker *uninitialized_var(new_worker);
3511	unsigned long flags;
 
 
 
 
3512
3513	action &= ~CPU_TASKS_FROZEN;
 
 
3514
3515	switch (action) {
3516	case CPU_DOWN_PREPARE:
3517		new_trustee = kthread_create(trustee_thread, gcwq,
3518					     "workqueue_trustee/%d\n", cpu);
3519		if (IS_ERR(new_trustee))
3520			return notifier_from_errno(PTR_ERR(new_trustee));
3521		kthread_bind(new_trustee, cpu);
3522		/* fall through */
3523	case CPU_UP_PREPARE:
3524		BUG_ON(gcwq->first_idle);
3525		new_worker = create_worker(gcwq, false);
3526		if (!new_worker) {
3527			if (new_trustee)
3528				kthread_stop(new_trustee);
3529			return NOTIFY_BAD;
 
3530		}
3531	}
3532
3533	/* some are called w/ irq disabled, don't disturb irq status */
3534	spin_lock_irqsave(&gcwq->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3535
3536	switch (action) {
3537	case CPU_DOWN_PREPARE:
3538		/* initialize trustee and tell it to acquire the gcwq */
3539		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3540		gcwq->trustee = new_trustee;
3541		gcwq->trustee_state = TRUSTEE_START;
3542		wake_up_process(gcwq->trustee);
3543		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3544		/* fall through */
3545	case CPU_UP_PREPARE:
3546		BUG_ON(gcwq->first_idle);
3547		gcwq->first_idle = new_worker;
3548		break;
3549
3550	case CPU_DYING:
3551		/*
3552		 * Before this, the trustee and all workers except for
3553		 * the ones which are still executing works from
3554		 * before the last CPU down must be on the cpu.  After
3555		 * this, they'll all be diasporas.
 
 
3556		 */
3557		gcwq->flags |= GCWQ_DISASSOCIATED;
3558		break;
3559
3560	case CPU_POST_DEAD:
3561		gcwq->trustee_state = TRUSTEE_BUTCHER;
3562		/* fall through */
3563	case CPU_UP_CANCELED:
3564		destroy_worker(gcwq->first_idle);
3565		gcwq->first_idle = NULL;
3566		break;
3567
3568	case CPU_DOWN_FAILED:
3569	case CPU_ONLINE:
3570		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3571		if (gcwq->trustee_state != TRUSTEE_DONE) {
3572			gcwq->trustee_state = TRUSTEE_RELEASE;
3573			wake_up_process(gcwq->trustee);
3574			wait_trustee_state(gcwq, TRUSTEE_DONE);
3575		}
 
3576
3577		/*
3578		 * Trustee is done and there might be no worker left.
3579		 * Put the first_idle in and request a real manager to
3580		 * take a look.
3581		 */
3582		spin_unlock_irq(&gcwq->lock);
3583		kthread_bind(gcwq->first_idle->task, cpu);
3584		spin_lock_irq(&gcwq->lock);
3585		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3586		start_worker(gcwq->first_idle);
3587		gcwq->first_idle = NULL;
3588		break;
3589	}
3590
3591	spin_unlock_irqrestore(&gcwq->lock, flags);
3592
3593	return notifier_from_errno(0);
 
 
 
 
3594}
3595
3596/*
3597 * Workqueues should be brought up before normal priority CPU notifiers.
3598 * This will be registered high priority CPU notifier.
 
 
3599 */
3600static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3601					       unsigned long action,
3602					       void *hcpu)
3603{
3604	switch (action & ~CPU_TASKS_FROZEN) {
3605	case CPU_UP_PREPARE:
3606	case CPU_UP_CANCELED:
3607	case CPU_DOWN_FAILED:
3608	case CPU_ONLINE:
3609		return workqueue_cpu_callback(nfb, action, hcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3610	}
3611	return NOTIFY_OK;
 
3612}
3613
3614/*
3615 * Workqueues should be brought down after normal priority CPU notifiers.
3616 * This will be registered as low priority CPU notifier.
 
 
 
 
 
 
3617 */
3618static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3619						 unsigned long action,
3620						 void *hcpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621{
3622	switch (action & ~CPU_TASKS_FROZEN) {
3623	case CPU_DOWN_PREPARE:
3624	case CPU_DYING:
3625	case CPU_POST_DEAD:
3626		return workqueue_cpu_callback(nfb, action, hcpu);
 
 
3627	}
3628	return NOTIFY_OK;
3629}
3630
3631#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3632
3633struct work_for_cpu {
3634	struct work_struct work;
3635	long (*fn)(void *);
3636	void *arg;
3637	long ret;
3638};
3639
3640static void work_for_cpu_fn(struct work_struct *work)
3641{
3642	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3643
3644	wfc->ret = wfc->fn(wfc->arg);
3645}
3646
3647/**
3648 * work_on_cpu - run a function in user context on a particular cpu
3649 * @cpu: the cpu to run on
3650 * @fn: the function to run
3651 * @arg: the function arg
 
3652 *
3653 * This will return the value @fn returns.
3654 * It is up to the caller to ensure that the cpu doesn't go offline.
3655 * The caller must not hold any locks which would prevent @fn from completing.
 
 
3656 */
3657long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
 
3658{
3659	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3660
3661	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3662	schedule_work_on(cpu, &wfc.work);
3663	flush_work(&wfc.work);
 
3664	return wfc.ret;
3665}
3666EXPORT_SYMBOL_GPL(work_on_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3667#endif /* CONFIG_SMP */
3668
3669#ifdef CONFIG_FREEZER
3670
3671/**
3672 * freeze_workqueues_begin - begin freezing workqueues
3673 *
3674 * Start freezing workqueues.  After this function returns, all freezable
3675 * workqueues will queue new works to their frozen_works list instead of
3676 * gcwq->worklist.
3677 *
3678 * CONTEXT:
3679 * Grabs and releases workqueue_lock and gcwq->lock's.
3680 */
3681void freeze_workqueues_begin(void)
3682{
3683	unsigned int cpu;
3684
3685	spin_lock(&workqueue_lock);
3686
3687	BUG_ON(workqueue_freezing);
3688	workqueue_freezing = true;
3689
3690	for_each_gcwq_cpu(cpu) {
3691		struct global_cwq *gcwq = get_gcwq(cpu);
3692		struct workqueue_struct *wq;
3693
3694		spin_lock_irq(&gcwq->lock);
3695
3696		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3697		gcwq->flags |= GCWQ_FREEZING;
3698
3699		list_for_each_entry(wq, &workqueues, list) {
3700			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3701
3702			if (cwq && wq->flags & WQ_FREEZABLE)
3703				cwq->max_active = 0;
3704		}
3705
3706		spin_unlock_irq(&gcwq->lock);
3707	}
3708
3709	spin_unlock(&workqueue_lock);
3710}
3711
3712/**
3713 * freeze_workqueues_busy - are freezable workqueues still busy?
3714 *
3715 * Check whether freezing is complete.  This function must be called
3716 * between freeze_workqueues_begin() and thaw_workqueues().
3717 *
3718 * CONTEXT:
3719 * Grabs and releases workqueue_lock.
3720 *
3721 * RETURNS:
3722 * %true if some freezable workqueues are still busy.  %false if freezing
3723 * is complete.
3724 */
3725bool freeze_workqueues_busy(void)
3726{
3727	unsigned int cpu;
3728	bool busy = false;
 
 
3729
3730	spin_lock(&workqueue_lock);
3731
3732	BUG_ON(!workqueue_freezing);
3733
3734	for_each_gcwq_cpu(cpu) {
3735		struct workqueue_struct *wq;
 
3736		/*
3737		 * nr_active is monotonically decreasing.  It's safe
3738		 * to peek without lock.
3739		 */
3740		list_for_each_entry(wq, &workqueues, list) {
3741			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3742
3743			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3744				continue;
3745
3746			BUG_ON(cwq->nr_active < 0);
3747			if (cwq->nr_active) {
3748				busy = true;
 
3749				goto out_unlock;
3750			}
3751		}
 
3752	}
3753out_unlock:
3754	spin_unlock(&workqueue_lock);
3755	return busy;
3756}
3757
3758/**
3759 * thaw_workqueues - thaw workqueues
3760 *
3761 * Thaw workqueues.  Normal queueing is restored and all collected
3762 * frozen works are transferred to their respective gcwq worklists.
3763 *
3764 * CONTEXT:
3765 * Grabs and releases workqueue_lock and gcwq->lock's.
3766 */
3767void thaw_workqueues(void)
3768{
3769	unsigned int cpu;
3770
3771	spin_lock(&workqueue_lock);
3772
3773	if (!workqueue_freezing)
3774		goto out_unlock;
3775
3776	for_each_gcwq_cpu(cpu) {
3777		struct global_cwq *gcwq = get_gcwq(cpu);
3778		struct workqueue_struct *wq;
3779
3780		spin_lock_irq(&gcwq->lock);
 
 
 
 
 
3781
3782		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3783		gcwq->flags &= ~GCWQ_FREEZING;
 
 
3784
3785		list_for_each_entry(wq, &workqueues, list) {
3786			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
 
 
 
 
3787
3788			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3789				continue;
3790
3791			/* restore max_active and repopulate worklist */
3792			cwq->max_active = wq->saved_max_active;
 
3793
3794			while (!list_empty(&cwq->delayed_works) &&
3795			       cwq->nr_active < cwq->max_active)
3796				cwq_activate_first_delayed(cwq);
 
3797		}
3798
3799		wake_up_worker(gcwq);
 
3800
3801		spin_unlock_irq(&gcwq->lock);
 
 
 
3802	}
3803
3804	workqueue_freezing = false;
3805out_unlock:
3806	spin_unlock(&workqueue_lock);
 
 
 
3807}
3808#endif /* CONFIG_FREEZER */
3809
3810static int __init init_workqueues(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3811{
3812	unsigned int cpu;
3813	int i;
3814
3815	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3816	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
 
 
 
 
3817
3818	/* initialize gcwqs */
3819	for_each_gcwq_cpu(cpu) {
3820		struct global_cwq *gcwq = get_gcwq(cpu);
 
3821
3822		spin_lock_init(&gcwq->lock);
3823		INIT_LIST_HEAD(&gcwq->worklist);
3824		gcwq->cpu = cpu;
3825		gcwq->flags |= GCWQ_DISASSOCIATED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3826
3827		INIT_LIST_HEAD(&gcwq->idle_list);
3828		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3829			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3830
3831		init_timer_deferrable(&gcwq->idle_timer);
3832		gcwq->idle_timer.function = idle_worker_timeout;
3833		gcwq->idle_timer.data = (unsigned long)gcwq;
3834
3835		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3836			    (unsigned long)gcwq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3837
3838		ida_init(&gcwq->worker_ida);
 
 
3839
3840		gcwq->trustee_state = TRUSTEE_DONE;
3841		init_waitqueue_head(&gcwq->trustee_wait);
 
 
 
3842	}
 
 
 
 
3843
3844	/* create the initial worker */
3845	for_each_online_gcwq_cpu(cpu) {
3846		struct global_cwq *gcwq = get_gcwq(cpu);
3847		struct worker *worker;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3848
3849		if (cpu != WORK_CPU_UNBOUND)
3850			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3851		worker = create_worker(gcwq, true);
3852		BUG_ON(!worker);
3853		spin_lock_irq(&gcwq->lock);
3854		start_worker(worker);
3855		spin_unlock_irq(&gcwq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3856	}
3857
3858	system_wq = alloc_workqueue("events", 0, 0);
 
3859	system_long_wq = alloc_workqueue("events_long", 0, 0);
3860	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3861	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3862					    WQ_UNBOUND_MAX_ACTIVE);
3863	system_freezable_wq = alloc_workqueue("events_freezable",
3864					      WQ_FREEZABLE, 0);
3865	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3866			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3867	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
 
 
 
 
 
 
3868	       !system_unbound_wq || !system_freezable_wq ||
3869		!system_nrt_freezable_wq);
3870	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3871}
3872early_initcall(init_workqueues);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/interrupt.h>
  33#include <linux/signal.h>
  34#include <linux/completion.h>
  35#include <linux/workqueue.h>
  36#include <linux/slab.h>
  37#include <linux/cpu.h>
  38#include <linux/notifier.h>
  39#include <linux/kthread.h>
  40#include <linux/hardirq.h>
  41#include <linux/mempolicy.h>
  42#include <linux/freezer.h>
 
  43#include <linux/debug_locks.h>
  44#include <linux/lockdep.h>
  45#include <linux/idr.h>
  46#include <linux/jhash.h>
  47#include <linux/hashtable.h>
  48#include <linux/rculist.h>
  49#include <linux/nodemask.h>
  50#include <linux/moduleparam.h>
  51#include <linux/uaccess.h>
  52#include <linux/sched/isolation.h>
  53#include <linux/sched/debug.h>
  54#include <linux/nmi.h>
  55#include <linux/kvm_para.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58
  59#include "workqueue_internal.h"
  60
  61enum worker_pool_flags {
  62	/*
  63	 * worker_pool flags
  64	 *
  65	 * A bound pool is either associated or disassociated with its CPU.
  66	 * While associated (!DISASSOCIATED), all workers are bound to the
  67	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  68	 * is in effect.
  69	 *
  70	 * While DISASSOCIATED, the cpu may be offline and all workers have
  71	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  72	 * be executing on any CPU.  The pool behaves as an unbound one.
  73	 *
  74	 * Note that DISASSOCIATED should be flipped only while holding
  75	 * wq_pool_attach_mutex to avoid changing binding state while
  76	 * worker_attach_to_pool() is in progress.
  77	 *
  78	 * As there can only be one concurrent BH execution context per CPU, a
  79	 * BH pool is per-CPU and always DISASSOCIATED.
  80	 */
  81	POOL_BH			= 1 << 0,	/* is a BH pool */
  82	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
  83	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  84	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
  85};
  86
  87enum worker_flags {
  88	/* worker flags */
 
  89	WORKER_DIE		= 1 << 1,	/* die die die */
  90	WORKER_IDLE		= 1 << 2,	/* is idle */
  91	WORKER_PREP		= 1 << 3,	/* preparing to run works */
 
 
  92	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  93	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  94	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  95
  96	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  97				  WORKER_UNBOUND | WORKER_REBOUND,
  98};
  99
 100enum work_cancel_flags {
 101	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
 102};
 
 
 
 103
 104enum wq_internal_consts {
 105	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
 106
 107	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
 108	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
 
 
 109
 110	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
 111	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
 112
 113	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
 114						/* call for help after 10ms
 115						   (min two ticks) */
 116	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 117	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 
 118
 119	/*
 120	 * Rescue workers are used only on emergencies and shared by
 121	 * all cpus.  Give MIN_NICE.
 122	 */
 123	RESCUER_NICE_LEVEL	= MIN_NICE,
 124	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 125
 126	WQ_NAME_LEN		= 32,
 127};
 128
 129/*
 130 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
 131 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
 132 * msecs_to_jiffies() can't be an initializer.
 133 */
 134#define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
 135#define BH_WORKER_RESTARTS	10
 136
 137/*
 138 * Structure fields follow one of the following exclusion rules.
 139 *
 140 * I: Modifiable by initialization/destruction paths and read-only for
 141 *    everyone else.
 142 *
 143 * P: Preemption protected.  Disabling preemption is enough and should
 144 *    only be modified and accessed from the local cpu.
 145 *
 146 * L: pool->lock protected.  Access with pool->lock held.
 147 *
 148 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
 149 *     reads.
 150 *
 151 * K: Only modified by worker while holding pool->lock. Can be safely read by
 152 *    self, while holding pool->lock or from IRQ context if %current is the
 153 *    kworker.
 154 *
 155 * S: Only modified by worker self.
 156 *
 157 * A: wq_pool_attach_mutex protected.
 158 *
 159 * PL: wq_pool_mutex protected.
 160 *
 161 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 162 *
 163 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 164 *
 165 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 166 *      RCU for reads.
 
 
 167 *
 168 * WQ: wq->mutex protected.
 169 *
 170 * WR: wq->mutex protected for writes.  RCU protected for reads.
 171 *
 172 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
 173 *     with READ_ONCE() without locking.
 174 *
 175 * MD: wq_mayday_lock protected.
 176 *
 177 * WD: Used internally by the watchdog.
 178 */
 179
 180/* struct worker is defined in workqueue_internal.h */
 181
 182struct worker_pool {
 183	raw_spinlock_t		lock;		/* the pool lock */
 184	int			cpu;		/* I: the associated cpu */
 185	int			node;		/* I: the associated node ID */
 186	int			id;		/* I: pool ID */
 187	unsigned int		flags;		/* L: flags */
 
 
 
 
 188
 189	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 190	bool			cpu_stall;	/* WD: stalled cpu bound pool */
 191
 192	/*
 193	 * The counter is incremented in a process context on the associated CPU
 194	 * w/ preemption disabled, and decremented or reset in the same context
 195	 * but w/ pool->lock held. The readers grab pool->lock and are
 196	 * guaranteed to see if the counter reached zero.
 197	 */
 198	int			nr_running;
 
 199
 
 
 
 
 
 
 
 200	struct list_head	worklist;	/* L: list of pending works */
 
 
 201
 202	int			nr_workers;	/* L: total number of workers */
 203	int			nr_idle;	/* L: currently idle workers */
 204
 205	struct list_head	idle_list;	/* L: list of idle workers */
 206	struct timer_list	idle_timer;	/* L: worker idle timeout */
 207	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
 208
 209	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
 210
 211	/* a workers is either on busy_hash or idle_list, or the manager */
 212	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 
 213						/* L: hash of busy workers */
 214
 215	struct worker		*manager;	/* L: purely informational */
 216	struct list_head	workers;	/* A: attached workers */
 217	struct list_head        dying_workers;  /* A: workers about to die */
 218	struct completion	*detach_completion; /* all workers detached */
 219
 220	struct ida		worker_ida;	/* worker IDs for task name */
 221
 222	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 223	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 224	int			refcnt;		/* PL: refcnt for unbound pools */
 225
 226	/*
 227	 * Destruction of pool is RCU protected to allow dereferences
 228	 * from get_work_pool().
 229	 */
 230	struct rcu_head		rcu;
 231};
 232
 233/*
 234 * Per-pool_workqueue statistics. These can be monitored using
 235 * tools/workqueue/wq_monitor.py.
 
 236 */
 237enum pool_workqueue_stats {
 238	PWQ_STAT_STARTED,	/* work items started execution */
 239	PWQ_STAT_COMPLETED,	/* work items completed execution */
 240	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
 241	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
 242	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
 243	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
 244	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
 245	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
 246
 247	PWQ_NR_STATS,
 248};
 249
 250/*
 251 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
 252 * of work_struct->data are used for flags and the remaining high bits
 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 254 * number of flag bits.
 255 */
 256struct pool_workqueue {
 257	struct worker_pool	*pool;		/* I: the associated pool */
 258	struct workqueue_struct *wq;		/* I: the owning workqueue */
 259	int			work_color;	/* L: current color */
 260	int			flush_color;	/* L: flushing color */
 261	int			refcnt;		/* L: reference count */
 262	int			nr_in_flight[WORK_NR_COLORS];
 263						/* L: nr of in_flight works */
 264	bool			plugged;	/* L: execution suspended */
 265
 266	/*
 267	 * nr_active management and WORK_STRUCT_INACTIVE:
 268	 *
 269	 * When pwq->nr_active >= max_active, new work item is queued to
 270	 * pwq->inactive_works instead of pool->worklist and marked with
 271	 * WORK_STRUCT_INACTIVE.
 272	 *
 273	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
 274	 * nr_active and all work items in pwq->inactive_works are marked with
 275	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
 276	 * in pwq->inactive_works. Some of them are ready to run in
 277	 * pool->worklist or worker->scheduled. Those work itmes are only struct
 278	 * wq_barrier which is used for flush_work() and should not participate
 279	 * in nr_active. For non-barrier work item, it is marked with
 280	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 281	 */
 282	int			nr_active;	/* L: nr of active works */
 283	struct list_head	inactive_works;	/* L: inactive works */
 284	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
 285	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 286	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 287
 288	u64			stats[PWQ_NR_STATS];
 289
 290	/*
 291	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
 292	 * and pwq_release_workfn() for details. pool_workqueue itself is also
 293	 * RCU protected so that the first pwq can be determined without
 294	 * grabbing wq->mutex.
 295	 */
 296	struct kthread_work	release_work;
 297	struct rcu_head		rcu;
 298} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
 299
 300/*
 301 * Structure used to wait for workqueue flush.
 302 */
 303struct wq_flusher {
 304	struct list_head	list;		/* WQ: list of flushers */
 305	int			flush_color;	/* WQ: flush color waiting for */
 306	struct completion	done;		/* flush completion */
 307};
 308
 309struct wq_device;
 310
 311/*
 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
 314 * As sharing a single nr_active across multiple sockets can be very expensive,
 315 * the counting and enforcement is per NUMA node.
 316 *
 317 * The following struct is used to enforce per-node max_active. When a pwq wants
 318 * to start executing a work item, it should increment ->nr using
 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
 322 * round-robin order.
 323 */
 324struct wq_node_nr_active {
 325	int			max;		/* per-node max_active */
 326	atomic_t		nr;		/* per-node nr_active */
 327	raw_spinlock_t		lock;		/* nests inside pool locks */
 328	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
 329};
 
 330
 331/*
 332 * The externally visible workqueue.  It relays the issued work items to
 333 * the appropriate worker_pool through its pool_workqueues.
 334 */
 335struct workqueue_struct {
 336	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 337	struct list_head	list;		/* PR: list of all workqueues */
 338
 339	struct mutex		mutex;		/* protects this wq */
 340	int			work_color;	/* WQ: current work color */
 341	int			flush_color;	/* WQ: current flush color */
 342	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 343	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 344	struct list_head	flusher_queue;	/* WQ: flush waiters */
 345	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 346
 347	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 348	struct worker		*rescuer;	/* MD: rescue worker */
 349
 350	int			nr_drainers;	/* WQ: drain in progress */
 351
 352	/* See alloc_workqueue() function comment for info on min/max_active */
 353	int			max_active;	/* WO: max active works */
 354	int			min_active;	/* WO: min active works */
 355	int			saved_max_active; /* WQ: saved max_active */
 356	int			saved_min_active; /* WQ: saved min_active */
 357
 358	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 359	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
 360
 361#ifdef CONFIG_SYSFS
 362	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 363#endif
 364#ifdef CONFIG_LOCKDEP
 365	char			*lock_name;
 366	struct lock_class_key	key;
 367	struct lockdep_map	lockdep_map;
 368#endif
 369	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 370
 371	/*
 372	 * Destruction of workqueue_struct is RCU protected to allow walking
 373	 * the workqueues list without grabbing wq_pool_mutex.
 374	 * This is used to dump all workqueues from sysrq.
 375	 */
 376	struct rcu_head		rcu;
 377
 378	/* hot fields used during command issue, aligned to cacheline */
 379	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 380	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
 381	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
 382};
 383
 384/*
 385 * Each pod type describes how CPUs should be grouped for unbound workqueues.
 386 * See the comment above workqueue_attrs->affn_scope.
 387 */
 388struct wq_pod_type {
 389	int			nr_pods;	/* number of pods */
 390	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
 391	int			*pod_node;	/* pod -> node */
 392	int			*cpu_pod;	/* cpu -> pod */
 393};
 
 
 394
 395static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
 396	[WQ_AFFN_DFL]		= "default",
 397	[WQ_AFFN_CPU]		= "cpu",
 398	[WQ_AFFN_SMT]		= "smt",
 399	[WQ_AFFN_CACHE]		= "cache",
 400	[WQ_AFFN_NUMA]		= "numa",
 401	[WQ_AFFN_SYSTEM]	= "system",
 402};
 403
 404/*
 405 * Per-cpu work items which run for longer than the following threshold are
 406 * automatically considered CPU intensive and excluded from concurrency
 407 * management to prevent them from noticeably delaying other per-cpu work items.
 408 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
 409 * The actual value is initialized in wq_cpu_intensive_thresh_init().
 410 */
 411static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
 412module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
 413#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
 414static unsigned int wq_cpu_intensive_warning_thresh = 4;
 415module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
 416#endif
 417
 418/* see the comment above the definition of WQ_POWER_EFFICIENT */
 419static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 420module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 
 
 
 
 
 
 
 
 
 
 
 421
 422static bool wq_online;			/* can kworkers be created yet? */
 423static bool wq_topo_initialized __read_mostly = false;
 424
 425static struct kmem_cache *pwq_cache;
 426
 427static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
 428static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
 429
 430/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
 431static struct workqueue_attrs *wq_update_pod_attrs_buf;
 432
 433static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 434static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 435static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 436/* wait for manager to go away */
 437static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 438
 439static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 440static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 441
 442/* PL&A: allowable cpus for unbound wqs and work items */
 443static cpumask_var_t wq_unbound_cpumask;
 444
 445/* PL: user requested unbound cpumask via sysfs */
 446static cpumask_var_t wq_requested_unbound_cpumask;
 447
 448/* PL: isolated cpumask to be excluded from unbound cpumask */
 449static cpumask_var_t wq_isolated_cpumask;
 450
 451/* for further constrain wq_unbound_cpumask by cmdline parameter*/
 452static struct cpumask wq_cmdline_cpumask __initdata;
 453
 454/* CPU where unbound work was last round robin scheduled from this CPU */
 455static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 456
 457/*
 458 * Local execution of unbound work items is no longer guaranteed.  The
 459 * following always forces round-robin CPU selection on unbound work items
 460 * to uncover usages which depend on it.
 
 
 
 
 
 
 
 
 461 */
 462#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 463static bool wq_debug_force_rr_cpu = true;
 464#else
 465static bool wq_debug_force_rr_cpu = false;
 466#endif
 467module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 468
 469/* to raise softirq for the BH worker pools on other CPUs */
 470static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
 471				     bh_pool_irq_works);
 472
 473/* the BH worker pools */
 474static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 475				     bh_worker_pools);
 476
 477/* the per-cpu worker pools */
 478static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 479				     cpu_worker_pools);
 
 480
 481static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 482
 483/* PL: hash of all unbound pools keyed by pool->attrs */
 484static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 485
 486/* I: attributes used when instantiating standard unbound pools on demand */
 487static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 488
 489/* I: attributes used when instantiating ordered pools on demand */
 490static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 491
 492/*
 493 * Used to synchronize multiple cancel_sync attempts on the same work item. See
 494 * work_grab_pending() and __cancel_work_sync().
 495 */
 496static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);
 497
 498/*
 499 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
 500 * process context while holding a pool lock. Bounce to a dedicated kthread
 501 * worker to avoid A-A deadlocks.
 502 */
 503static struct kthread_worker *pwq_release_worker __ro_after_init;
 504
 505struct workqueue_struct *system_wq __ro_after_init;
 506EXPORT_SYMBOL(system_wq);
 507struct workqueue_struct *system_highpri_wq __ro_after_init;
 508EXPORT_SYMBOL_GPL(system_highpri_wq);
 509struct workqueue_struct *system_long_wq __ro_after_init;
 510EXPORT_SYMBOL_GPL(system_long_wq);
 511struct workqueue_struct *system_unbound_wq __ro_after_init;
 512EXPORT_SYMBOL_GPL(system_unbound_wq);
 513struct workqueue_struct *system_freezable_wq __ro_after_init;
 514EXPORT_SYMBOL_GPL(system_freezable_wq);
 515struct workqueue_struct *system_power_efficient_wq __ro_after_init;
 516EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 517struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
 518EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 519struct workqueue_struct *system_bh_wq;
 520EXPORT_SYMBOL_GPL(system_bh_wq);
 521struct workqueue_struct *system_bh_highpri_wq;
 522EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
 523
 524static int worker_thread(void *__worker);
 525static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 526static void show_pwq(struct pool_workqueue *pwq);
 527static void show_one_worker_pool(struct worker_pool *pool);
 528
 529#define CREATE_TRACE_POINTS
 530#include <trace/events/workqueue.h>
 531
 532#define assert_rcu_or_pool_mutex()					\
 533	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 534			 !lockdep_is_held(&wq_pool_mutex),		\
 535			 "RCU or wq_pool_mutex should be held")
 536
 537#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 538	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 539			 !lockdep_is_held(&wq->mutex) &&		\
 540			 !lockdep_is_held(&wq_pool_mutex),		\
 541			 "RCU, wq->mutex or wq_pool_mutex should be held")
 542
 543#define for_each_bh_worker_pool(pool, cpu)				\
 544	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
 545	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 546	     (pool)++)
 547
 548#define for_each_cpu_worker_pool(pool, cpu)				\
 549	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 550	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 551	     (pool)++)
 552
 553/**
 554 * for_each_pool - iterate through all worker_pools in the system
 555 * @pool: iteration cursor
 556 * @pi: integer used for iteration
 557 *
 558 * This must be called either with wq_pool_mutex held or RCU read
 559 * locked.  If the pool needs to be used beyond the locking in effect, the
 560 * caller is responsible for guaranteeing that the pool stays online.
 561 *
 562 * The if/else clause exists only for the lockdep assertion and can be
 563 * ignored.
 564 */
 565#define for_each_pool(pool, pi)						\
 566	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 567		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 568		else
 569
 570/**
 571 * for_each_pool_worker - iterate through all workers of a worker_pool
 572 * @worker: iteration cursor
 573 * @pool: worker_pool to iterate workers of
 574 *
 575 * This must be called with wq_pool_attach_mutex.
 576 *
 577 * The if/else clause exists only for the lockdep assertion and can be
 578 * ignored.
 579 */
 580#define for_each_pool_worker(worker, pool)				\
 581	list_for_each_entry((worker), &(pool)->workers, node)		\
 582		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 583		else
 584
 585/**
 586 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 587 * @pwq: iteration cursor
 588 * @wq: the target workqueue
 589 *
 590 * This must be called either with wq->mutex held or RCU read locked.
 591 * If the pwq needs to be used beyond the locking in effect, the caller is
 592 * responsible for guaranteeing that the pwq stays online.
 593 *
 594 * The if/else clause exists only for the lockdep assertion and can be
 595 * ignored.
 596 */
 597#define for_each_pwq(pwq, wq)						\
 598	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 599				 lockdep_is_held(&(wq->mutex)))
 600
 601#ifdef CONFIG_DEBUG_OBJECTS_WORK
 602
 603static const struct debug_obj_descr work_debug_descr;
 604
 605static void *work_debug_hint(void *addr)
 606{
 607	return ((struct work_struct *) addr)->func;
 608}
 609
 610static bool work_is_static_object(void *addr)
 
 
 
 
 611{
 612	struct work_struct *work = addr;
 613
 614	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 
 
 
 
 
 
 
 615}
 616
 617/*
 618 * fixup_init is called when:
 619 * - an active object is initialized
 
 620 */
 621static bool work_fixup_init(void *addr, enum debug_obj_state state)
 622{
 623	struct work_struct *work = addr;
 624
 625	switch (state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626	case ODEBUG_STATE_ACTIVE:
 627		cancel_work_sync(work);
 628		debug_object_init(work, &work_debug_descr);
 629		return true;
 630	default:
 631		return false;
 632	}
 633}
 634
 635/*
 636 * fixup_free is called when:
 637 * - an active object is freed
 638 */
 639static bool work_fixup_free(void *addr, enum debug_obj_state state)
 640{
 641	struct work_struct *work = addr;
 642
 643	switch (state) {
 644	case ODEBUG_STATE_ACTIVE:
 645		cancel_work_sync(work);
 646		debug_object_free(work, &work_debug_descr);
 647		return true;
 648	default:
 649		return false;
 650	}
 651}
 652
 653static const struct debug_obj_descr work_debug_descr = {
 654	.name		= "work_struct",
 655	.debug_hint	= work_debug_hint,
 656	.is_static_object = work_is_static_object,
 657	.fixup_init	= work_fixup_init,
 
 658	.fixup_free	= work_fixup_free,
 659};
 660
 661static inline void debug_work_activate(struct work_struct *work)
 662{
 663	debug_object_activate(work, &work_debug_descr);
 664}
 665
 666static inline void debug_work_deactivate(struct work_struct *work)
 667{
 668	debug_object_deactivate(work, &work_debug_descr);
 669}
 670
 671void __init_work(struct work_struct *work, int onstack)
 672{
 673	if (onstack)
 674		debug_object_init_on_stack(work, &work_debug_descr);
 675	else
 676		debug_object_init(work, &work_debug_descr);
 677}
 678EXPORT_SYMBOL_GPL(__init_work);
 679
 680void destroy_work_on_stack(struct work_struct *work)
 681{
 682	debug_object_free(work, &work_debug_descr);
 683}
 684EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 685
 686void destroy_delayed_work_on_stack(struct delayed_work *work)
 687{
 688	destroy_timer_on_stack(&work->timer);
 689	debug_object_free(&work->work, &work_debug_descr);
 690}
 691EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 692
 693#else
 694static inline void debug_work_activate(struct work_struct *work) { }
 695static inline void debug_work_deactivate(struct work_struct *work) { }
 696#endif
 697
 698/**
 699 * worker_pool_assign_id - allocate ID and assign it to @pool
 700 * @pool: the pool pointer of interest
 701 *
 702 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 703 * successfully, -errno on failure.
 
 
 
 704 */
 705static int worker_pool_assign_id(struct worker_pool *pool)
 706{
 707	int ret;
 708
 709	lockdep_assert_held(&wq_pool_mutex);
 
 
 
 
 
 
 710
 711	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 712			GFP_KERNEL);
 713	if (ret >= 0) {
 714		pool->id = ret;
 715		return 0;
 716	}
 717	return ret;
 718}
 719
 720static struct pool_workqueue __rcu **
 721unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
 722{
 723       if (cpu >= 0)
 724               return per_cpu_ptr(wq->cpu_pwq, cpu);
 725       else
 726               return &wq->dfl_pwq;
 727}
 728
 729/* @cpu < 0 for dfl_pwq */
 730static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
 731{
 732	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
 733				     lockdep_is_held(&wq_pool_mutex) ||
 734				     lockdep_is_held(&wq->mutex));
 
 735}
 736
 737/**
 738 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
 739 * @wq: workqueue of interest
 740 *
 741 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
 742 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
 743 * default pwq is always mapped to the pool with the current effective cpumask.
 744 */
 745static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
 746{
 747	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
 
 
 
 
 
 748}
 749
 750static unsigned int work_color_to_flags(int color)
 751{
 752	return color << WORK_STRUCT_COLOR_SHIFT;
 753}
 754
 755static int get_work_color(unsigned long work_data)
 756{
 757	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 758		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 759}
 760
 761static int work_next_color(int color)
 762{
 763	return (color + 1) % WORK_NR_COLORS;
 764}
 765
 766/*
 767 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 768 * contain the pointer to the queued pwq.  Once execution starts, the flag
 769 * is cleared and the high bits contain OFFQ flags and pool ID.
 770 *
 771 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
 772 * can be used to set the pwq, pool or clear work->data. These functions should
 773 * only be called while the work is owned - ie. while the PENDING bit is set.
 774 *
 775 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 776 * corresponding to a work.  Pool is available once the work has been
 777 * queued anywhere after initialization until it is sync canceled.  pwq is
 778 * available only while the work item is queued.
 779 *
 780 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 781 * canceled.  While being canceled, a work item may have its PENDING set
 782 * but stay off timer and worklist for arbitrarily long and nobody should
 783 * try to steal the PENDING bit.
 784 */
 785static inline void set_work_data(struct work_struct *work, unsigned long data)
 
 786{
 787	WARN_ON_ONCE(!work_pending(work));
 788	atomic_long_set(&work->data, data | work_static(work));
 789}
 790
 791static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 792			 unsigned long flags)
 
 793{
 794	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
 795		      WORK_STRUCT_PWQ | flags);
 796}
 797
 798static void set_work_pool_and_keep_pending(struct work_struct *work,
 799					   int pool_id, unsigned long flags)
 800{
 801	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 802		      WORK_STRUCT_PENDING | flags);
 803}
 804
 805static void set_work_pool_and_clear_pending(struct work_struct *work,
 806					    int pool_id, unsigned long flags)
 807{
 808	/*
 809	 * The following wmb is paired with the implied mb in
 810	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 811	 * here are visible to and precede any updates by the next PENDING
 812	 * owner.
 813	 */
 814	smp_wmb();
 815	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 816		      flags);
 817	/*
 818	 * The following mb guarantees that previous clear of a PENDING bit
 819	 * will not be reordered with any speculative LOADS or STORES from
 820	 * work->current_func, which is executed afterwards.  This possible
 821	 * reordering can lead to a missed execution on attempt to queue
 822	 * the same @work.  E.g. consider this case:
 823	 *
 824	 *   CPU#0                         CPU#1
 825	 *   ----------------------------  --------------------------------
 826	 *
 827	 * 1  STORE event_indicated
 828	 * 2  queue_work_on() {
 829	 * 3    test_and_set_bit(PENDING)
 830	 * 4 }                             set_..._and_clear_pending() {
 831	 * 5                                 set_work_data() # clear bit
 832	 * 6                                 smp_mb()
 833	 * 7                               work->current_func() {
 834	 * 8				      LOAD event_indicated
 835	 *				   }
 836	 *
 837	 * Without an explicit full barrier speculative LOAD on line 8 can
 838	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 839	 * CPU#0 observes the PENDING bit is still set and new execution of
 840	 * a @work is not queued in a hope, that CPU#1 will eventually
 841	 * finish the queued @work.  Meanwhile CPU#1 does not see
 842	 * event_indicated is set, because speculative LOAD was executed
 843	 * before actual STORE.
 844	 */
 845	smp_mb();
 846}
 847
 848static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
 849{
 850	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
 851}
 852
 853static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 854{
 855	unsigned long data = atomic_long_read(&work->data);
 856
 857	if (data & WORK_STRUCT_PWQ)
 858		return work_struct_pwq(data);
 859	else
 860		return NULL;
 861}
 862
 863/**
 864 * get_work_pool - return the worker_pool a given work was associated with
 865 * @work: the work item of interest
 866 *
 867 * Pools are created and destroyed under wq_pool_mutex, and allows read
 868 * access under RCU read lock.  As such, this function should be
 869 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 870 *
 871 * All fields of the returned pool are accessible as long as the above
 872 * mentioned locking is in effect.  If the returned pool needs to be used
 873 * beyond the critical section, the caller is responsible for ensuring the
 874 * returned pool is and stays online.
 875 *
 876 * Return: The worker_pool @work was last associated with.  %NULL if none.
 877 */
 878static struct worker_pool *get_work_pool(struct work_struct *work)
 879{
 880	unsigned long data = atomic_long_read(&work->data);
 881	int pool_id;
 882
 883	assert_rcu_or_pool_mutex();
 884
 885	if (data & WORK_STRUCT_PWQ)
 886		return work_struct_pwq(data)->pool;
 
 887
 888	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 889	if (pool_id == WORK_OFFQ_POOL_NONE)
 890		return NULL;
 891
 892	return idr_find(&worker_pool_idr, pool_id);
 
 893}
 894
 895/**
 896 * get_work_pool_id - return the worker pool ID a given work is associated with
 897 * @work: the work item of interest
 898 *
 899 * Return: The worker_pool ID @work was last associated with.
 900 * %WORK_OFFQ_POOL_NONE if none.
 901 */
 902static int get_work_pool_id(struct work_struct *work)
 903{
 904	unsigned long data = atomic_long_read(&work->data);
 905
 906	if (data & WORK_STRUCT_PWQ)
 907		return work_struct_pwq(data)->pool->id;
 908
 909	return data >> WORK_OFFQ_POOL_SHIFT;
 910}
 911
 912static void mark_work_canceling(struct work_struct *work)
 913{
 914	unsigned long pool_id = get_work_pool_id(work);
 915
 916	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 917	set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
 918}
 919
 920static bool work_is_canceling(struct work_struct *work)
 921{
 922	unsigned long data = atomic_long_read(&work->data);
 923
 924	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 925}
 926
 927/*
 928 * Policy functions.  These define the policies on how the global worker
 929 * pools are managed.  Unless noted otherwise, these functions assume that
 930 * they're being called with pool->lock held.
 931 */
 932
 933/*
 934 * Need to wake up a worker?  Called from anything but currently
 935 * running workers.
 936 *
 937 * Note that, because unbound workers never contribute to nr_running, this
 938 * function will always return %true for unbound pools as long as the
 939 * worklist isn't empty.
 940 */
 941static bool need_more_worker(struct worker_pool *pool)
 942{
 943	return !list_empty(&pool->worklist) && !pool->nr_running;
 944}
 945
 946/* Can I start working?  Called from busy but !running workers. */
 947static bool may_start_working(struct worker_pool *pool)
 948{
 949	return pool->nr_idle;
 950}
 951
 952/* Do I need to keep working?  Called from currently running workers. */
 953static bool keep_working(struct worker_pool *pool)
 954{
 955	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 
 
 
 
 956}
 957
 958/* Do we need a new worker?  Called from manager. */
 959static bool need_to_create_worker(struct worker_pool *pool)
 960{
 961	return need_more_worker(pool) && !may_start_working(pool);
 962}
 963
 964/* Do we have too many workers and should some go away? */
 965static bool too_many_workers(struct worker_pool *pool)
 966{
 967	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 968	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 969	int nr_busy = pool->nr_workers - nr_idle;
 970
 971	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 972}
 973
 974/**
 975 * worker_set_flags - set worker flags and adjust nr_running accordingly
 976 * @worker: self
 977 * @flags: flags to set
 978 *
 979 * Set @flags in @worker->flags and adjust nr_running accordingly.
 980 */
 981static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 982{
 983	struct worker_pool *pool = worker->pool;
 
 
 984
 985	lockdep_assert_held(&pool->lock);
 986
 987	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 988	if ((flags & WORKER_NOT_RUNNING) &&
 989	    !(worker->flags & WORKER_NOT_RUNNING)) {
 990		pool->nr_running--;
 991	}
 992
 993	worker->flags |= flags;
 994}
 995
 996/**
 997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 998 * @worker: self
 999 * @flags: flags to clear
1000 *
1001 * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002 */
1003static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004{
1005	struct worker_pool *pool = worker->pool;
1006	unsigned int oflags = worker->flags;
1007
1008	lockdep_assert_held(&pool->lock);
1009
1010	worker->flags &= ~flags;
1011
1012	/*
1013	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1014	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1015	 * of multiple flags, not a single flag.
1016	 */
1017	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018		if (!(worker->flags & WORKER_NOT_RUNNING))
1019			pool->nr_running++;
1020}
1021
1022/* Return the first idle worker.  Called with pool->lock held. */
1023static struct worker *first_idle_worker(struct worker_pool *pool)
1024{
1025	if (unlikely(list_empty(&pool->idle_list)))
1026		return NULL;
1027
1028	return list_first_entry(&pool->idle_list, struct worker, entry);
1029}
1030
1031/**
1032 * worker_enter_idle - enter idle state
1033 * @worker: worker which is entering idle state
1034 *
1035 * @worker is entering idle state.  Update stats and idle timer if
1036 * necessary.
1037 *
1038 * LOCKING:
1039 * raw_spin_lock_irq(pool->lock).
1040 */
1041static void worker_enter_idle(struct worker *worker)
1042{
1043	struct worker_pool *pool = worker->pool;
1044
1045	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1046	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1047			 (worker->hentry.next || worker->hentry.pprev)))
1048		return;
1049
1050	/* can't use worker_set_flags(), also called from create_worker() */
1051	worker->flags |= WORKER_IDLE;
1052	pool->nr_idle++;
1053	worker->last_active = jiffies;
1054
1055	/* idle_list is LIFO */
1056	list_add(&worker->entry, &pool->idle_list);
1057
1058	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1059		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1060
1061	/* Sanity check nr_running. */
1062	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1063}
1064
1065/**
1066 * worker_leave_idle - leave idle state
1067 * @worker: worker which is leaving idle state
1068 *
1069 * @worker is leaving idle state.  Update stats.
1070 *
1071 * LOCKING:
1072 * raw_spin_lock_irq(pool->lock).
1073 */
1074static void worker_leave_idle(struct worker *worker)
1075{
1076	struct worker_pool *pool = worker->pool;
1077
1078	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1079		return;
1080	worker_clr_flags(worker, WORKER_IDLE);
1081	pool->nr_idle--;
1082	list_del_init(&worker->entry);
1083}
1084
1085/**
1086 * find_worker_executing_work - find worker which is executing a work
1087 * @pool: pool of interest
1088 * @work: work to find worker for
1089 *
1090 * Find a worker which is executing @work on @pool by searching
1091 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1092 * to match, its current execution should match the address of @work and
1093 * its work function.  This is to avoid unwanted dependency between
1094 * unrelated work executions through a work item being recycled while still
1095 * being executed.
1096 *
1097 * This is a bit tricky.  A work item may be freed once its execution
1098 * starts and nothing prevents the freed area from being recycled for
1099 * another work item.  If the same work item address ends up being reused
1100 * before the original execution finishes, workqueue will identify the
1101 * recycled work item as currently executing and make it wait until the
1102 * current execution finishes, introducing an unwanted dependency.
1103 *
1104 * This function checks the work item address and work function to avoid
1105 * false positives.  Note that this isn't complete as one may construct a
1106 * work function which can introduce dependency onto itself through a
1107 * recycled work item.  Well, if somebody wants to shoot oneself in the
1108 * foot that badly, there's only so much we can do, and if such deadlock
1109 * actually occurs, it should be easy to locate the culprit work function.
1110 *
1111 * CONTEXT:
1112 * raw_spin_lock_irq(pool->lock).
1113 *
1114 * Return:
1115 * Pointer to worker which is executing @work if found, %NULL
1116 * otherwise.
1117 */
1118static struct worker *find_worker_executing_work(struct worker_pool *pool,
1119						 struct work_struct *work)
1120{
1121	struct worker *worker;
1122
1123	hash_for_each_possible(pool->busy_hash, worker, hentry,
1124			       (unsigned long)work)
1125		if (worker->current_work == work &&
1126		    worker->current_func == work->func)
1127			return worker;
1128
1129	return NULL;
1130}
1131
1132/**
1133 * move_linked_works - move linked works to a list
1134 * @work: start of series of works to be scheduled
1135 * @head: target list to append @work to
1136 * @nextp: out parameter for nested worklist walking
1137 *
1138 * Schedule linked works starting from @work to @head. Work series to be
1139 * scheduled starts at @work and includes any consecutive work with
1140 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1141 * @nextp.
1142 *
1143 * CONTEXT:
1144 * raw_spin_lock_irq(pool->lock).
1145 */
1146static void move_linked_works(struct work_struct *work, struct list_head *head,
1147			      struct work_struct **nextp)
1148{
1149	struct work_struct *n;
1150
1151	/*
1152	 * Linked worklist will always end before the end of the list,
1153	 * use NULL for list head.
1154	 */
1155	list_for_each_entry_safe_from(work, n, NULL, entry) {
1156		list_move_tail(&work->entry, head);
1157		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1158			break;
1159	}
1160
1161	/*
1162	 * If we're already inside safe list traversal and have moved
1163	 * multiple works to the scheduled queue, the next position
1164	 * needs to be updated.
1165	 */
1166	if (nextp)
1167		*nextp = n;
1168}
1169
1170/**
1171 * assign_work - assign a work item and its linked work items to a worker
1172 * @work: work to assign
1173 * @worker: worker to assign to
1174 * @nextp: out parameter for nested worklist walking
1175 *
1176 * Assign @work and its linked work items to @worker. If @work is already being
1177 * executed by another worker in the same pool, it'll be punted there.
1178 *
1179 * If @nextp is not NULL, it's updated to point to the next work of the last
1180 * scheduled work. This allows assign_work() to be nested inside
1181 * list_for_each_entry_safe().
1182 *
1183 * Returns %true if @work was successfully assigned to @worker. %false if @work
1184 * was punted to another worker already executing it.
1185 */
1186static bool assign_work(struct work_struct *work, struct worker *worker,
1187			struct work_struct **nextp)
1188{
1189	struct worker_pool *pool = worker->pool;
1190	struct worker *collision;
1191
1192	lockdep_assert_held(&pool->lock);
1193
1194	/*
1195	 * A single work shouldn't be executed concurrently by multiple workers.
1196	 * __queue_work() ensures that @work doesn't jump to a different pool
1197	 * while still running in the previous pool. Here, we should ensure that
1198	 * @work is not executed concurrently by multiple workers from the same
1199	 * pool. Check whether anyone is already processing the work. If so,
1200	 * defer the work to the currently executing one.
1201	 */
1202	collision = find_worker_executing_work(pool, work);
1203	if (unlikely(collision)) {
1204		move_linked_works(work, &collision->scheduled, nextp);
1205		return false;
1206	}
1207
1208	move_linked_works(work, &worker->scheduled, nextp);
1209	return true;
1210}
1211
1212static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1213{
1214	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1215
1216	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1217}
1218
1219static void kick_bh_pool(struct worker_pool *pool)
1220{
1221#ifdef CONFIG_SMP
1222	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1223	if (unlikely(pool->cpu != smp_processor_id() &&
1224		     !(pool->flags & POOL_BH_DRAINING))) {
1225		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1226		return;
1227	}
1228#endif
1229	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1230		raise_softirq_irqoff(HI_SOFTIRQ);
1231	else
1232		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1233}
1234
1235/**
1236 * kick_pool - wake up an idle worker if necessary
1237 * @pool: pool to kick
1238 *
1239 * @pool may have pending work items. Wake up worker if necessary. Returns
1240 * whether a worker was woken up.
1241 */
1242static bool kick_pool(struct worker_pool *pool)
1243{
1244	struct worker *worker = first_idle_worker(pool);
1245	struct task_struct *p;
1246
1247	lockdep_assert_held(&pool->lock);
1248
1249	if (!need_more_worker(pool) || !worker)
1250		return false;
1251
1252	if (pool->flags & POOL_BH) {
1253		kick_bh_pool(pool);
1254		return true;
1255	}
1256
1257	p = worker->task;
1258
1259#ifdef CONFIG_SMP
1260	/*
1261	 * Idle @worker is about to execute @work and waking up provides an
1262	 * opportunity to migrate @worker at a lower cost by setting the task's
1263	 * wake_cpu field. Let's see if we want to move @worker to improve
1264	 * execution locality.
1265	 *
1266	 * We're waking the worker that went idle the latest and there's some
1267	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1268	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1269	 * optimization and the race window is narrow, let's leave as-is for
1270	 * now. If this becomes pronounced, we can skip over workers which are
1271	 * still on cpu when picking an idle worker.
1272	 *
1273	 * If @pool has non-strict affinity, @worker might have ended up outside
1274	 * its affinity scope. Repatriate.
1275	 */
1276	if (!pool->attrs->affn_strict &&
1277	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1278		struct work_struct *work = list_first_entry(&pool->worklist,
1279						struct work_struct, entry);
1280		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1281							  cpu_online_mask);
1282		if (wake_cpu < nr_cpu_ids) {
1283			p->wake_cpu = wake_cpu;
1284			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1285		}
1286	}
1287#endif
1288	wake_up_process(p);
1289	return true;
1290}
1291
1292#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1293
1294/*
1295 * Concurrency-managed per-cpu work items that hog CPU for longer than
1296 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1297 * which prevents them from stalling other concurrency-managed work items. If a
1298 * work function keeps triggering this mechanism, it's likely that the work item
1299 * should be using an unbound workqueue instead.
1300 *
1301 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1302 * and report them so that they can be examined and converted to use unbound
1303 * workqueues as appropriate. To avoid flooding the console, each violating work
1304 * function is tracked and reported with exponential backoff.
1305 */
1306#define WCI_MAX_ENTS 128
1307
1308struct wci_ent {
1309	work_func_t		func;
1310	atomic64_t		cnt;
1311	struct hlist_node	hash_node;
1312};
1313
1314static struct wci_ent wci_ents[WCI_MAX_ENTS];
1315static int wci_nr_ents;
1316static DEFINE_RAW_SPINLOCK(wci_lock);
1317static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1318
1319static struct wci_ent *wci_find_ent(work_func_t func)
1320{
1321	struct wci_ent *ent;
1322
1323	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1324				   (unsigned long)func) {
1325		if (ent->func == func)
1326			return ent;
1327	}
1328	return NULL;
1329}
1330
1331static void wq_cpu_intensive_report(work_func_t func)
1332{
1333	struct wci_ent *ent;
1334
1335restart:
1336	ent = wci_find_ent(func);
1337	if (ent) {
1338		u64 cnt;
1339
1340		/*
1341		 * Start reporting from the warning_thresh and back off
1342		 * exponentially.
1343		 */
1344		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1345		if (wq_cpu_intensive_warning_thresh &&
1346		    cnt >= wq_cpu_intensive_warning_thresh &&
1347		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1348			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1349					ent->func, wq_cpu_intensive_thresh_us,
1350					atomic64_read(&ent->cnt));
1351		return;
1352	}
1353
1354	/*
1355	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1356	 * is exhausted, something went really wrong and we probably made enough
1357	 * noise already.
1358	 */
1359	if (wci_nr_ents >= WCI_MAX_ENTS)
1360		return;
1361
1362	raw_spin_lock(&wci_lock);
1363
1364	if (wci_nr_ents >= WCI_MAX_ENTS) {
1365		raw_spin_unlock(&wci_lock);
1366		return;
1367	}
1368
1369	if (wci_find_ent(func)) {
1370		raw_spin_unlock(&wci_lock);
1371		goto restart;
1372	}
1373
1374	ent = &wci_ents[wci_nr_ents++];
1375	ent->func = func;
1376	atomic64_set(&ent->cnt, 0);
1377	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1378
1379	raw_spin_unlock(&wci_lock);
1380
1381	goto restart;
1382}
1383
1384#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1385static void wq_cpu_intensive_report(work_func_t func) {}
1386#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1387
1388/**
1389 * wq_worker_running - a worker is running again
1390 * @task: task waking up
1391 *
1392 * This function is called when a worker returns from schedule()
1393 */
1394void wq_worker_running(struct task_struct *task)
1395{
1396	struct worker *worker = kthread_data(task);
1397
1398	if (!READ_ONCE(worker->sleeping))
1399		return;
1400
1401	/*
1402	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1403	 * and the nr_running increment below, we may ruin the nr_running reset
1404	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1405	 * pool. Protect against such race.
1406	 */
1407	preempt_disable();
1408	if (!(worker->flags & WORKER_NOT_RUNNING))
1409		worker->pool->nr_running++;
1410	preempt_enable();
1411
1412	/*
1413	 * CPU intensive auto-detection cares about how long a work item hogged
1414	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1415	 */
1416	worker->current_at = worker->task->se.sum_exec_runtime;
1417
1418	WRITE_ONCE(worker->sleeping, 0);
1419}
1420
1421/**
1422 * wq_worker_sleeping - a worker is going to sleep
1423 * @task: task going to sleep
 
1424 *
1425 * This function is called from schedule() when a busy worker is
1426 * going to sleep.
 
 
 
 
 
 
 
1427 */
1428void wq_worker_sleeping(struct task_struct *task)
 
1429{
1430	struct worker *worker = kthread_data(task);
1431	struct worker_pool *pool;
 
1432
1433	/*
1434	 * Rescuers, which may not have all the fields set up like normal
1435	 * workers, also reach here, let's not access anything before
1436	 * checking NOT_RUNNING.
1437	 */
1438	if (worker->flags & WORKER_NOT_RUNNING)
1439		return;
1440
1441	pool = worker->pool;
1442
1443	/* Return if preempted before wq_worker_running() was reached */
1444	if (READ_ONCE(worker->sleeping))
1445		return;
1446
1447	WRITE_ONCE(worker->sleeping, 1);
1448	raw_spin_lock_irq(&pool->lock);
1449
1450	/*
1451	 * Recheck in case unbind_workers() preempted us. We don't
1452	 * want to decrement nr_running after the worker is unbound
1453	 * and nr_running has been reset.
1454	 */
1455	if (worker->flags & WORKER_NOT_RUNNING) {
1456		raw_spin_unlock_irq(&pool->lock);
1457		return;
1458	}
1459
1460	pool->nr_running--;
1461	if (kick_pool(pool))
1462		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1463
1464	raw_spin_unlock_irq(&pool->lock);
1465}
1466
1467/**
1468 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1469 * @task: task currently running
1470 *
1471 * Called from scheduler_tick(). We're in the IRQ context and the current
1472 * worker's fields which follow the 'K' locking rule can be accessed safely.
1473 */
1474void wq_worker_tick(struct task_struct *task)
1475{
1476	struct worker *worker = kthread_data(task);
1477	struct pool_workqueue *pwq = worker->current_pwq;
1478	struct worker_pool *pool = worker->pool;
1479
1480	if (!pwq)
1481		return;
1482
1483	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1484
1485	if (!wq_cpu_intensive_thresh_us)
1486		return;
1487
1488	/*
1489	 * If the current worker is concurrency managed and hogged the CPU for
1490	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1491	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1492	 *
1493	 * Set @worker->sleeping means that @worker is in the process of
1494	 * switching out voluntarily and won't be contributing to
1495	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1496	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1497	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1498	 * We probably want to make this prettier in the future.
1499	 */
1500	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1501	    worker->task->se.sum_exec_runtime - worker->current_at <
1502	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1503		return;
1504
1505	raw_spin_lock(&pool->lock);
1506
1507	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1508	wq_cpu_intensive_report(worker->current_func);
1509	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1510
1511	if (kick_pool(pool))
1512		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1513
1514	raw_spin_unlock(&pool->lock);
1515}
1516
1517/**
1518 * wq_worker_last_func - retrieve worker's last work function
1519 * @task: Task to retrieve last work function of.
1520 *
1521 * Determine the last function a worker executed. This is called from
1522 * the scheduler to get a worker's last known identity.
 
1523 *
1524 * CONTEXT:
1525 * raw_spin_lock_irq(rq->lock)
1526 *
1527 * This function is called during schedule() when a kworker is going
1528 * to sleep. It's used by psi to identify aggregation workers during
1529 * dequeuing, to allow periodic aggregation to shut-off when that
1530 * worker is the last task in the system or cgroup to go to sleep.
1531 *
1532 * As this function doesn't involve any workqueue-related locking, it
1533 * only returns stable values when called from inside the scheduler's
1534 * queuing and dequeuing paths, when @task, which must be a kworker,
1535 * is guaranteed to not be processing any works.
1536 *
1537 * Return:
1538 * The last work function %current executed as a worker, NULL if it
1539 * hasn't executed any work yet.
1540 */
1541work_func_t wq_worker_last_func(struct task_struct *task)
1542{
1543	struct worker *worker = kthread_data(task);
1544
1545	return worker->last_func;
1546}
1547
1548/**
1549 * wq_node_nr_active - Determine wq_node_nr_active to use
1550 * @wq: workqueue of interest
1551 * @node: NUMA node, can be %NUMA_NO_NODE
1552 *
1553 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1554 *
1555 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1556 *
1557 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1558 *
1559 * - Otherwise, node_nr_active[@node].
1560 */
1561static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1562						   int node)
1563{
1564	if (!(wq->flags & WQ_UNBOUND))
1565		return NULL;
1566
1567	if (node == NUMA_NO_NODE)
1568		node = nr_node_ids;
1569
1570	return wq->node_nr_active[node];
1571}
1572
1573/**
1574 * wq_update_node_max_active - Update per-node max_actives to use
1575 * @wq: workqueue to update
1576 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1577 *
1578 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1579 * distributed among nodes according to the proportions of numbers of online
1580 * cpus. The result is always between @wq->min_active and max_active.
1581 */
1582static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
 
1583{
1584	struct cpumask *effective = unbound_effective_cpumask(wq);
1585	int min_active = READ_ONCE(wq->min_active);
1586	int max_active = READ_ONCE(wq->max_active);
1587	int total_cpus, node;
1588
1589	lockdep_assert_held(&wq->mutex);
1590
1591	if (!wq_topo_initialized)
1592		return;
1593
1594	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1595		off_cpu = -1;
1596
1597	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1598	if (off_cpu >= 0)
1599		total_cpus--;
1600
1601	/* If all CPUs of the wq get offline, use the default values */
1602	if (unlikely(!total_cpus)) {
1603		for_each_node(node)
1604			wq_node_nr_active(wq, node)->max = min_active;
1605
1606		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1607		return;
1608	}
1609
1610	for_each_node(node) {
1611		int node_cpus;
1612
1613		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1614		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1615			node_cpus--;
1616
1617		wq_node_nr_active(wq, node)->max =
1618			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1619			      min_active, max_active);
1620	}
1621
1622	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1623}
1624
1625/**
1626 * get_pwq - get an extra reference on the specified pool_workqueue
1627 * @pwq: pool_workqueue to get
1628 *
1629 * Obtain an extra reference on @pwq.  The caller should guarantee that
1630 * @pwq has positive refcnt and be holding the matching pool->lock.
1631 */
1632static void get_pwq(struct pool_workqueue *pwq)
1633{
1634	lockdep_assert_held(&pwq->pool->lock);
1635	WARN_ON_ONCE(pwq->refcnt <= 0);
1636	pwq->refcnt++;
1637}
1638
1639/**
1640 * put_pwq - put a pool_workqueue reference
1641 * @pwq: pool_workqueue to put
1642 *
1643 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1644 * destruction.  The caller should be holding the matching pool->lock.
1645 */
1646static void put_pwq(struct pool_workqueue *pwq)
1647{
1648	lockdep_assert_held(&pwq->pool->lock);
1649	if (likely(--pwq->refcnt))
1650		return;
1651	/*
1652	 * @pwq can't be released under pool->lock, bounce to a dedicated
1653	 * kthread_worker to avoid A-A deadlocks.
 
1654	 */
1655	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1656}
 
1657
1658/**
1659 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1660 * @pwq: pool_workqueue to put (can be %NULL)
1661 *
1662 * put_pwq() with locking.  This function also allows %NULL @pwq.
1663 */
1664static void put_pwq_unlocked(struct pool_workqueue *pwq)
1665{
1666	if (pwq) {
1667		/*
1668		 * As both pwqs and pools are RCU protected, the
1669		 * following lock operations are safe.
1670		 */
1671		raw_spin_lock_irq(&pwq->pool->lock);
1672		put_pwq(pwq);
1673		raw_spin_unlock_irq(&pwq->pool->lock);
1674	}
1675}
1676
1677static bool pwq_is_empty(struct pool_workqueue *pwq)
1678{
1679	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1680}
1681
1682static void __pwq_activate_work(struct pool_workqueue *pwq,
1683				struct work_struct *work)
1684{
1685	unsigned long *wdb = work_data_bits(work);
1686
1687	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1688	trace_workqueue_activate_work(work);
1689	if (list_empty(&pwq->pool->worklist))
1690		pwq->pool->watchdog_ts = jiffies;
1691	move_linked_works(work, &pwq->pool->worklist, NULL);
1692	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1693}
1694
1695/**
1696 * pwq_activate_work - Activate a work item if inactive
1697 * @pwq: pool_workqueue @work belongs to
1698 * @work: work item to activate
1699 *
1700 * Returns %true if activated. %false if already active.
1701 */
1702static bool pwq_activate_work(struct pool_workqueue *pwq,
1703			      struct work_struct *work)
1704{
1705	struct worker_pool *pool = pwq->pool;
1706	struct wq_node_nr_active *nna;
1707
1708	lockdep_assert_held(&pool->lock);
1709
1710	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1711		return false;
1712
1713	nna = wq_node_nr_active(pwq->wq, pool->node);
1714	if (nna)
1715		atomic_inc(&nna->nr);
1716
1717	pwq->nr_active++;
1718	__pwq_activate_work(pwq, work);
1719	return true;
1720}
1721
1722static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1723{
1724	int max = READ_ONCE(nna->max);
1725
1726	while (true) {
1727		int old, tmp;
1728
1729		old = atomic_read(&nna->nr);
1730		if (old >= max)
1731			return false;
1732		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1733		if (tmp == old)
1734			return true;
1735	}
1736}
1737
1738/**
1739 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1740 * @pwq: pool_workqueue of interest
1741 * @fill: max_active may have increased, try to increase concurrency level
1742 *
1743 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1744 * successfully obtained. %false otherwise.
1745 */
1746static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1747{
1748	struct workqueue_struct *wq = pwq->wq;
1749	struct worker_pool *pool = pwq->pool;
1750	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1751	bool obtained = false;
1752
1753	lockdep_assert_held(&pool->lock);
1754
1755	if (!nna) {
1756		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1757		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1758		goto out;
1759	}
1760
1761	if (unlikely(pwq->plugged))
1762		return false;
1763
1764	/*
1765	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1766	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1767	 * concurrency level. Don't jump the line.
1768	 *
1769	 * We need to ignore the pending test after max_active has increased as
1770	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1771	 * increase it. This is indicated by @fill.
1772	 */
1773	if (!list_empty(&pwq->pending_node) && likely(!fill))
1774		goto out;
1775
1776	obtained = tryinc_node_nr_active(nna);
1777	if (obtained)
1778		goto out;
1779
1780	/*
1781	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1782	 * and try again. The smp_mb() is paired with the implied memory barrier
1783	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1784	 * we see the decremented $nna->nr or they see non-empty
1785	 * $nna->pending_pwqs.
1786	 */
1787	raw_spin_lock(&nna->lock);
1788
1789	if (list_empty(&pwq->pending_node))
1790		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1791	else if (likely(!fill))
1792		goto out_unlock;
1793
1794	smp_mb();
1795
1796	obtained = tryinc_node_nr_active(nna);
1797
1798	/*
1799	 * If @fill, @pwq might have already been pending. Being spuriously
1800	 * pending in cold paths doesn't affect anything. Let's leave it be.
1801	 */
1802	if (obtained && likely(!fill))
1803		list_del_init(&pwq->pending_node);
1804
1805out_unlock:
1806	raw_spin_unlock(&nna->lock);
1807out:
1808	if (obtained)
1809		pwq->nr_active++;
1810	return obtained;
1811}
1812
1813/**
1814 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1815 * @pwq: pool_workqueue of interest
1816 * @fill: max_active may have increased, try to increase concurrency level
1817 *
1818 * Activate the first inactive work item of @pwq if available and allowed by
1819 * max_active limit.
1820 *
1821 * Returns %true if an inactive work item has been activated. %false if no
1822 * inactive work item is found or max_active limit is reached.
1823 */
1824static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1825{
1826	struct work_struct *work =
1827		list_first_entry_or_null(&pwq->inactive_works,
1828					 struct work_struct, entry);
1829
1830	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1831		__pwq_activate_work(pwq, work);
1832		return true;
1833	} else {
1834		return false;
1835	}
1836}
1837
1838/**
1839 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1840 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1841 *
1842 * This function should only be called for ordered workqueues where only the
1843 * oldest pwq is unplugged, the others are plugged to suspend execution to
1844 * ensure proper work item ordering::
1845 *
1846 *    dfl_pwq --------------+     [P] - plugged
1847 *                          |
1848 *                          v
1849 *    pwqs -> A -> B [P] -> C [P] (newest)
1850 *            |    |        |
1851 *            1    3        5
1852 *            |    |        |
1853 *            2    4        6
1854 *
1855 * When the oldest pwq is drained and removed, this function should be called
1856 * to unplug the next oldest one to start its work item execution. Note that
1857 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1858 * the list is the oldest.
1859 */
1860static void unplug_oldest_pwq(struct workqueue_struct *wq)
 
1861{
1862	struct pool_workqueue *pwq;
 
1863
1864	lockdep_assert_held(&wq->mutex);
 
 
 
1865
1866	/* Caller should make sure that pwqs isn't empty before calling */
1867	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1868				       pwqs_node);
1869	raw_spin_lock_irq(&pwq->pool->lock);
1870	if (pwq->plugged) {
1871		pwq->plugged = false;
1872		if (pwq_activate_first_inactive(pwq, true))
1873			kick_pool(pwq->pool);
1874	}
1875	raw_spin_unlock_irq(&pwq->pool->lock);
1876}
1877
1878/**
1879 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1880 * @nna: wq_node_nr_active to activate a pending pwq for
1881 * @caller_pool: worker_pool the caller is locking
 
1882 *
1883 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1884 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1885 */
1886static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1887				      struct worker_pool *caller_pool)
1888{
1889	struct worker_pool *locked_pool = caller_pool;
1890	struct pool_workqueue *pwq;
1891	struct work_struct *work;
1892
1893	lockdep_assert_held(&caller_pool->lock);
1894
1895	raw_spin_lock(&nna->lock);
1896retry:
1897	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1898				       struct pool_workqueue, pending_node);
1899	if (!pwq)
1900		goto out_unlock;
1901
1902	/*
1903	 * If @pwq is for a different pool than @locked_pool, we need to lock
1904	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1905	 * / lock dance. For that, we also need to release @nna->lock as it's
1906	 * nested inside pool locks.
1907	 */
1908	if (pwq->pool != locked_pool) {
1909		raw_spin_unlock(&locked_pool->lock);
1910		locked_pool = pwq->pool;
1911		if (!raw_spin_trylock(&locked_pool->lock)) {
1912			raw_spin_unlock(&nna->lock);
1913			raw_spin_lock(&locked_pool->lock);
1914			raw_spin_lock(&nna->lock);
1915			goto retry;
1916		}
1917	}
1918
1919	/*
1920	 * $pwq may not have any inactive work items due to e.g. cancellations.
1921	 * Drop it from pending_pwqs and see if there's another one.
1922	 */
1923	work = list_first_entry_or_null(&pwq->inactive_works,
1924					struct work_struct, entry);
1925	if (!work) {
1926		list_del_init(&pwq->pending_node);
1927		goto retry;
1928	}
1929
1930	/*
1931	 * Acquire an nr_active count and activate the inactive work item. If
1932	 * $pwq still has inactive work items, rotate it to the end of the
1933	 * pending_pwqs so that we round-robin through them. This means that
1934	 * inactive work items are not activated in queueing order which is fine
1935	 * given that there has never been any ordering across different pwqs.
1936	 */
1937	if (likely(tryinc_node_nr_active(nna))) {
1938		pwq->nr_active++;
1939		__pwq_activate_work(pwq, work);
1940
1941		if (list_empty(&pwq->inactive_works))
1942			list_del_init(&pwq->pending_node);
1943		else
1944			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1945
1946		/* if activating a foreign pool, make sure it's running */
1947		if (pwq->pool != caller_pool)
1948			kick_pool(pwq->pool);
1949	}
1950
1951out_unlock:
1952	raw_spin_unlock(&nna->lock);
1953	if (locked_pool != caller_pool) {
1954		raw_spin_unlock(&locked_pool->lock);
1955		raw_spin_lock(&caller_pool->lock);
1956	}
1957}
1958
1959/**
1960 * pwq_dec_nr_active - Retire an active count
1961 * @pwq: pool_workqueue of interest
1962 *
1963 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1964 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
 
1965 */
1966static void pwq_dec_nr_active(struct pool_workqueue *pwq)
 
 
1967{
1968	struct worker_pool *pool = pwq->pool;
1969	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1970
1971	lockdep_assert_held(&pool->lock);
1972
1973	/*
1974	 * @pwq->nr_active should be decremented for both percpu and unbound
1975	 * workqueues.
1976	 */
1977	pwq->nr_active--;
1978
1979	/*
1980	 * For a percpu workqueue, it's simple. Just need to kick the first
1981	 * inactive work item on @pwq itself.
1982	 */
1983	if (!nna) {
1984		pwq_activate_first_inactive(pwq, false);
1985		return;
1986	}
1987
1988	/*
1989	 * If @pwq is for an unbound workqueue, it's more complicated because
1990	 * multiple pwqs and pools may be sharing the nr_active count. When a
1991	 * pwq needs to wait for an nr_active count, it puts itself on
1992	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1993	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1994	 * guarantee that either we see non-empty pending_pwqs or they see
1995	 * decremented $nna->nr.
1996	 *
1997	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1998	 * max_active gets updated. However, it is guaranteed to be equal to or
1999	 * larger than @pwq->wq->min_active which is above zero unless freezing.
2000	 * This maintains the forward progress guarantee.
2001	 */
2002	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
2003		return;
2004
2005	if (!list_empty(&nna->pending_pwqs))
2006		node_activate_pending_pwq(nna, pool);
2007}
2008
2009/**
2010 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
2011 * @pwq: pwq of interest
2012 * @work_data: work_data of work which left the queue
2013 *
2014 * A work either has completed or is removed from pending queue,
2015 * decrement nr_in_flight of its pwq and handle workqueue flushing.
 
2016 *
2017 * NOTE:
2018 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2019 * and thus should be called after all other state updates for the in-flight
2020 * work item is complete.
2021 *
2022 * CONTEXT:
2023 * raw_spin_lock_irq(pool->lock).
 
2024 */
2025static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
 
2026{
2027	int color = get_work_color(work_data);
2028
2029	if (!(work_data & WORK_STRUCT_INACTIVE))
2030		pwq_dec_nr_active(pwq);
2031
2032	pwq->nr_in_flight[color]--;
2033
2034	/* is flush in progress and are we at the flushing tip? */
2035	if (likely(pwq->flush_color != color))
2036		goto out_put;
2037
2038	/* are there still in-flight works? */
2039	if (pwq->nr_in_flight[color])
2040		goto out_put;
2041
2042	/* this pwq is done, clear flush_color */
2043	pwq->flush_color = -1;
2044
2045	/*
2046	 * If this was the last pwq, wake up the first flusher.  It
2047	 * will handle the rest.
2048	 */
2049	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2050		complete(&pwq->wq->first_flusher->done);
2051out_put:
2052	put_pwq(pwq);
2053}
2054
2055/**
2056 * try_to_grab_pending - steal work item from worklist and disable irq
2057 * @work: work item to steal
2058 * @cflags: %WORK_CANCEL_ flags
2059 * @irq_flags: place to store irq state
2060 *
2061 * Try to grab PENDING bit of @work.  This function can handle @work in any
2062 * stable state - idle, on timer or on worklist.
 
 
 
 
2063 *
2064 * Return:
2065 *
2066 *  ========	================================================================
2067 *  1		if @work was pending and we successfully stole PENDING
2068 *  0		if @work was idle and we claimed PENDING
2069 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2070 *  -ENOENT	if someone else is canceling @work, this state may persist
2071 *		for arbitrarily long
2072 *  ========	================================================================
2073 *
2074 * Note:
2075 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2076 * interrupted while holding PENDING and @work off queue, irq must be
2077 * disabled on entry.  This, combined with delayed_work->timer being
2078 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2079 *
2080 * On successful return, >= 0, irq is disabled and the caller is
2081 * responsible for releasing it using local_irq_restore(*@irq_flags).
2082 *
2083 * This function is safe to call from any context including IRQ handler.
2084 */
2085static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2086			       unsigned long *irq_flags)
2087{
2088	struct worker_pool *pool;
2089	struct pool_workqueue *pwq;
2090
2091	local_irq_save(*irq_flags);
 
2092
2093	/* try to steal the timer if it exists */
2094	if (cflags & WORK_CANCEL_DELAYED) {
2095		struct delayed_work *dwork = to_delayed_work(work);
2096
2097		/*
2098		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2099		 * guaranteed that the timer is not queued anywhere and not
2100		 * running on the local CPU.
2101		 */
2102		if (likely(del_timer(&dwork->timer)))
2103			return 1;
2104	}
2105
2106	/* try to claim PENDING the normal way */
2107	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2108		return 0;
2109
2110	rcu_read_lock();
2111	/*
2112	 * The queueing is in progress, or it is already queued. Try to
2113	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2114	 */
2115	pool = get_work_pool(work);
2116	if (!pool)
2117		goto fail;
2118
2119	raw_spin_lock(&pool->lock);
2120	/*
2121	 * work->data is guaranteed to point to pwq only while the work
2122	 * item is queued on pwq->wq, and both updating work->data to point
2123	 * to pwq on queueing and to pool on dequeueing are done under
2124	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2125	 * points to pwq which is associated with a locked pool, the work
2126	 * item is currently queued on that pool.
2127	 */
2128	pwq = get_work_pwq(work);
2129	if (pwq && pwq->pool == pool) {
2130		unsigned long work_data;
2131
2132		debug_work_deactivate(work);
2133
2134		/*
2135		 * A cancelable inactive work item must be in the
2136		 * pwq->inactive_works since a queued barrier can't be
2137		 * canceled (see the comments in insert_wq_barrier()).
2138		 *
2139		 * An inactive work item cannot be grabbed directly because
2140		 * it might have linked barrier work items which, if left
2141		 * on the inactive_works list, will confuse pwq->nr_active
2142		 * management later on and cause stall.  Make sure the work
2143		 * item is activated before grabbing.
2144		 */
2145		pwq_activate_work(pwq, work);
2146
2147		list_del_init(&work->entry);
2148
2149		/*
2150		 * work->data points to pwq iff queued. Let's point to pool. As
2151		 * this destroys work->data needed by the next step, stash it.
2152		 */
2153		work_data = *work_data_bits(work);
2154		set_work_pool_and_keep_pending(work, pool->id, 0);
2155
2156		/* must be the last step, see the function comment */
2157		pwq_dec_nr_in_flight(pwq, work_data);
2158
2159		raw_spin_unlock(&pool->lock);
2160		rcu_read_unlock();
2161		return 1;
2162	}
2163	raw_spin_unlock(&pool->lock);
2164fail:
2165	rcu_read_unlock();
2166	local_irq_restore(*irq_flags);
2167	if (work_is_canceling(work))
2168		return -ENOENT;
2169	cpu_relax();
2170	return -EAGAIN;
2171}
2172
2173struct cwt_wait {
2174	wait_queue_entry_t	wait;
2175	struct work_struct	*work;
2176};
2177
2178static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2179{
2180	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2181
2182	if (cwait->work != key)
2183		return 0;
2184	return autoremove_wake_function(wait, mode, sync, key);
2185}
2186
2187/**
2188 * work_grab_pending - steal work item from worklist and disable irq
2189 * @work: work item to steal
2190 * @cflags: %WORK_CANCEL_ flags
2191 * @irq_flags: place to store IRQ state
2192 *
2193 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2194 * or on worklist.
2195 *
2196 * Must be called in process context. IRQ is disabled on return with IRQ state
2197 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2198 * local_irq_restore().
2199 *
2200 * Returns %true if @work was pending. %false if idle.
2201 */
2202static bool work_grab_pending(struct work_struct *work, u32 cflags,
2203			      unsigned long *irq_flags)
2204{
2205	struct cwt_wait cwait;
2206	int ret;
2207
2208	might_sleep();
2209repeat:
2210	ret = try_to_grab_pending(work, cflags, irq_flags);
2211	if (likely(ret >= 0))
2212		return ret;
2213	if (ret != -ENOENT)
2214		goto repeat;
2215
2216	/*
2217	 * Someone is already canceling. Wait for it to finish. flush_work()
2218	 * doesn't work for PREEMPT_NONE because we may get woken up between
2219	 * @work's completion and the other canceling task resuming and clearing
2220	 * CANCELING - flush_work() will return false immediately as @work is no
2221	 * longer busy, try_to_grab_pending() will return -ENOENT as @work is
2222	 * still being canceled and the other canceling task won't be able to
2223	 * clear CANCELING as we're hogging the CPU.
2224	 *
2225	 * Let's wait for completion using a waitqueue. As this may lead to the
2226	 * thundering herd problem, use a custom wake function which matches
2227	 * @work along with exclusive wait and wakeup.
2228	 */
2229	init_wait(&cwait.wait);
2230	cwait.wait.func = cwt_wakefn;
2231	cwait.work = work;
2232
2233	prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
2234				  TASK_UNINTERRUPTIBLE);
2235	if (work_is_canceling(work))
2236		schedule();
2237	finish_wait(&wq_cancel_waitq, &cwait.wait);
2238
2239	goto repeat;
2240}
2241
2242/**
2243 * insert_work - insert a work into a pool
2244 * @pwq: pwq @work belongs to
2245 * @work: work to insert
2246 * @head: insertion point
2247 * @extra_flags: extra WORK_STRUCT_* flags to set
2248 *
2249 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2250 * work_struct flags.
2251 *
2252 * CONTEXT:
2253 * raw_spin_lock_irq(pool->lock).
2254 */
2255static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2256			struct list_head *head, unsigned int extra_flags)
 
2257{
2258	debug_work_activate(work);
 
 
 
2259
2260	/* record the work call stack in order to print it in KASAN reports */
2261	kasan_record_aux_stack_noalloc(work);
 
 
 
2262
2263	/* we own @work, set data and link */
2264	set_work_pwq(work, pwq, extra_flags);
2265	list_add_tail(&work->entry, head);
2266	get_pwq(pwq);
2267}
2268
2269/*
2270 * Test whether @work is being queued from another work executing on the
2271 * same workqueue.
2272 */
2273static bool is_chained_work(struct workqueue_struct *wq)
2274{
2275	struct worker *worker;
2276
2277	worker = current_wq_worker();
2278	/*
2279	 * Return %true iff I'm a worker executing a work item on @wq.  If
2280	 * I'm @worker, it's safe to dereference it without locking.
 
2281	 */
2282	return worker && worker->current_pwq->wq == wq;
 
 
 
2283}
2284
2285/*
2286 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2287 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2288 * avoid perturbing sensitive tasks.
2289 */
2290static int wq_select_unbound_cpu(int cpu)
2291{
2292	int new_cpu;
 
2293
2294	if (likely(!wq_debug_force_rr_cpu)) {
2295		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2296			return cpu;
2297	} else {
2298		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2299	}
2300
2301	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2302	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2303	if (unlikely(new_cpu >= nr_cpu_ids)) {
2304		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2305		if (unlikely(new_cpu >= nr_cpu_ids))
2306			return cpu;
 
 
 
 
 
 
2307	}
2308	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2309
2310	return new_cpu;
2311}
2312
2313static void __queue_work(int cpu, struct workqueue_struct *wq,
2314			 struct work_struct *work)
2315{
2316	struct pool_workqueue *pwq;
2317	struct worker_pool *last_pool, *pool;
 
2318	unsigned int work_flags;
2319	unsigned int req_cpu = cpu;
2320
2321	/*
2322	 * While a work item is PENDING && off queue, a task trying to
2323	 * steal the PENDING will busy-loop waiting for it to either get
2324	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2325	 * happen with IRQ disabled.
2326	 */
2327	lockdep_assert_irqs_disabled();
2328
2329	/*
2330	 * For a draining wq, only works from the same workqueue are
2331	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2332	 * queues a new work item to a wq after destroy_workqueue(wq).
2333	 */
2334	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2335		     WARN_ON_ONCE(!is_chained_work(wq))))
2336		return;
2337	rcu_read_lock();
2338retry:
2339	/* pwq which will be used unless @work is executing elsewhere */
2340	if (req_cpu == WORK_CPU_UNBOUND) {
2341		if (wq->flags & WQ_UNBOUND)
2342			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2343		else
2344			cpu = raw_smp_processor_id();
2345	}
2346
2347	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2348	pool = pwq->pool;
 
2349
2350	/*
2351	 * If @work was previously on a different pool, it might still be
2352	 * running there, in which case the work needs to be queued on that
2353	 * pool to guarantee non-reentrancy.
2354	 */
2355	last_pool = get_work_pool(work);
2356	if (last_pool && last_pool != pool) {
2357		struct worker *worker;
2358
2359		raw_spin_lock(&last_pool->lock);
2360
2361		worker = find_worker_executing_work(last_pool, work);
2362
2363		if (worker && worker->current_pwq->wq == wq) {
2364			pwq = worker->current_pwq;
2365			pool = pwq->pool;
2366			WARN_ON_ONCE(pool != last_pool);
2367		} else {
2368			/* meh... not running there, queue here */
2369			raw_spin_unlock(&last_pool->lock);
2370			raw_spin_lock(&pool->lock);
2371		}
 
 
 
 
 
 
 
 
 
 
 
2372	} else {
2373		raw_spin_lock(&pool->lock);
 
2374	}
2375
2376	/*
2377	 * pwq is determined and locked. For unbound pools, we could have raced
2378	 * with pwq release and it could already be dead. If its refcnt is zero,
2379	 * repeat pwq selection. Note that unbound pwqs never die without
2380	 * another pwq replacing it in cpu_pwq or while work items are executing
2381	 * on it, so the retrying is guaranteed to make forward-progress.
2382	 */
2383	if (unlikely(!pwq->refcnt)) {
2384		if (wq->flags & WQ_UNBOUND) {
2385			raw_spin_unlock(&pool->lock);
2386			cpu_relax();
2387			goto retry;
2388		}
2389		/* oops */
2390		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2391			  wq->name, cpu);
2392	}
2393
2394	/* pwq determined, queue */
2395	trace_workqueue_queue_work(req_cpu, pwq, work);
2396
2397	if (WARN_ON(!list_empty(&work->entry)))
2398		goto out;
2399
2400	pwq->nr_in_flight[pwq->work_color]++;
2401	work_flags = work_color_to_flags(pwq->work_color);
2402
2403	/*
2404	 * Limit the number of concurrently active work items to max_active.
2405	 * @work must also queue behind existing inactive work items to maintain
2406	 * ordering when max_active changes. See wq_adjust_max_active().
2407	 */
2408	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2409		if (list_empty(&pool->worklist))
2410			pool->watchdog_ts = jiffies;
2411
 
2412		trace_workqueue_activate_work(work);
2413		insert_work(pwq, work, &pool->worklist, work_flags);
2414		kick_pool(pool);
2415	} else {
2416		work_flags |= WORK_STRUCT_INACTIVE;
2417		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2418	}
2419
2420out:
2421	raw_spin_unlock(&pool->lock);
2422	rcu_read_unlock();
2423}
2424
2425/**
2426 * queue_work_on - queue work on specific cpu
2427 * @cpu: CPU number to execute work on
2428 * @wq: workqueue to use
2429 * @work: work to queue
2430 *
2431 * We queue the work to a specific CPU, the caller must ensure it
2432 * can't go away.  Callers that fail to ensure that the specified
2433 * CPU cannot go away will execute on a randomly chosen CPU.
2434 * But note well that callers specifying a CPU that never has been
2435 * online will get a splat.
2436 *
2437 * Return: %false if @work was already on a queue, %true otherwise.
 
2438 */
2439bool queue_work_on(int cpu, struct workqueue_struct *wq,
2440		   struct work_struct *work)
2441{
2442	bool ret = false;
2443	unsigned long irq_flags;
2444
2445	local_irq_save(irq_flags);
2446
2447	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2448		__queue_work(cpu, wq, work);
2449		ret = true;
2450	}
2451
2452	local_irq_restore(irq_flags);
2453	return ret;
2454}
2455EXPORT_SYMBOL(queue_work_on);
2456
2457/**
2458 * select_numa_node_cpu - Select a CPU based on NUMA node
2459 * @node: NUMA node ID that we want to select a CPU from
2460 *
2461 * This function will attempt to find a "random" cpu available on a given
2462 * node. If there are no CPUs available on the given node it will return
2463 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2464 * available CPU if we need to schedule this work.
2465 */
2466static int select_numa_node_cpu(int node)
2467{
2468	int cpu;
2469
2470	/* Delay binding to CPU if node is not valid or online */
2471	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2472		return WORK_CPU_UNBOUND;
2473
2474	/* Use local node/cpu if we are already there */
2475	cpu = raw_smp_processor_id();
2476	if (node == cpu_to_node(cpu))
2477		return cpu;
2478
2479	/* Use "random" otherwise know as "first" online CPU of node */
2480	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2481
2482	/* If CPU is valid return that, otherwise just defer */
2483	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2484}
2485
2486/**
2487 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2488 * @node: NUMA node that we are targeting the work for
2489 * @wq: workqueue to use
2490 * @work: work to queue
2491 *
2492 * We queue the work to a "random" CPU within a given NUMA node. The basic
2493 * idea here is to provide a way to somehow associate work with a given
2494 * NUMA node.
2495 *
2496 * This function will only make a best effort attempt at getting this onto
2497 * the right NUMA node. If no node is requested or the requested node is
2498 * offline then we just fall back to standard queue_work behavior.
2499 *
2500 * Currently the "random" CPU ends up being the first available CPU in the
2501 * intersection of cpu_online_mask and the cpumask of the node, unless we
2502 * are running on the node. In that case we just use the current CPU.
2503 *
2504 * Return: %false if @work was already on a queue, %true otherwise.
2505 */
2506bool queue_work_node(int node, struct workqueue_struct *wq,
2507		     struct work_struct *work)
2508{
2509	unsigned long irq_flags;
2510	bool ret = false;
2511
2512	/*
2513	 * This current implementation is specific to unbound workqueues.
2514	 * Specifically we only return the first available CPU for a given
2515	 * node instead of cycling through individual CPUs within the node.
2516	 *
2517	 * If this is used with a per-cpu workqueue then the logic in
2518	 * workqueue_select_cpu_near would need to be updated to allow for
2519	 * some round robin type logic.
2520	 */
2521	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2522
2523	local_irq_save(irq_flags);
2524
2525	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2526		int cpu = select_numa_node_cpu(node);
2527
2528		__queue_work(cpu, wq, work);
2529		ret = true;
2530	}
2531
2532	local_irq_restore(irq_flags);
2533	return ret;
2534}
2535EXPORT_SYMBOL_GPL(queue_work_node);
2536
2537void delayed_work_timer_fn(struct timer_list *t)
2538{
2539	struct delayed_work *dwork = from_timer(dwork, t, timer);
 
2540
2541	/* should have been called from irqsafe timer with irq already off */
2542	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2543}
2544EXPORT_SYMBOL(delayed_work_timer_fn);
2545
2546static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2547				struct delayed_work *dwork, unsigned long delay)
 
 
 
 
 
 
 
 
2548{
2549	struct timer_list *timer = &dwork->timer;
2550	struct work_struct *work = &dwork->work;
2551
2552	WARN_ON_ONCE(!wq);
2553	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2554	WARN_ON_ONCE(timer_pending(timer));
2555	WARN_ON_ONCE(!list_empty(&work->entry));
2556
2557	/*
2558	 * If @delay is 0, queue @dwork->work immediately.  This is for
2559	 * both optimization and correctness.  The earliest @timer can
2560	 * expire is on the closest next tick and delayed_work users depend
2561	 * on that there's no such delay when @delay is 0.
2562	 */
2563	if (!delay) {
2564		__queue_work(cpu, wq, &dwork->work);
2565		return;
2566	}
2567
2568	dwork->wq = wq;
2569	dwork->cpu = cpu;
2570	timer->expires = jiffies + delay;
2571
2572	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2573		/* If the current cpu is a housekeeping cpu, use it. */
2574		cpu = smp_processor_id();
2575		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2576			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2577		add_timer_on(timer, cpu);
2578	} else {
2579		if (likely(cpu == WORK_CPU_UNBOUND))
2580			add_timer_global(timer);
2581		else
2582			add_timer_on(timer, cpu);
2583	}
2584}
 
2585
2586/**
2587 * queue_delayed_work_on - queue work on specific CPU after delay
2588 * @cpu: CPU number to execute work on
2589 * @wq: workqueue to use
2590 * @dwork: work to queue
2591 * @delay: number of jiffies to wait before queueing
2592 *
2593 * Return: %false if @work was already on a queue, %true otherwise.  If
2594 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2595 * execution.
2596 */
2597bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2598			   struct delayed_work *dwork, unsigned long delay)
2599{
 
 
2600	struct work_struct *work = &dwork->work;
2601	bool ret = false;
2602	unsigned long irq_flags;
2603
2604	/* read the comment in __queue_work() */
2605	local_irq_save(irq_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2606
2607	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2608		__queue_delayed_work(cpu, wq, dwork, delay);
2609		ret = true;
 
 
2610	}
2611
2612	local_irq_restore(irq_flags);
2613	return ret;
2614}
2615EXPORT_SYMBOL(queue_delayed_work_on);
2616
2617/**
2618 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2619 * @cpu: CPU number to execute work on
2620 * @wq: workqueue to use
2621 * @dwork: work to queue
2622 * @delay: number of jiffies to wait before queueing
2623 *
2624 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2625 * modify @dwork's timer so that it expires after @delay.  If @delay is
2626 * zero, @work is guaranteed to be scheduled immediately regardless of its
2627 * current state.
2628 *
2629 * Return: %false if @dwork was idle and queued, %true if @dwork was
2630 * pending and its timer was modified.
2631 *
2632 * This function is safe to call from any context including IRQ handler.
2633 * See try_to_grab_pending() for details.
2634 */
2635bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2636			 struct delayed_work *dwork, unsigned long delay)
2637{
2638	unsigned long irq_flags;
2639	int ret;
 
 
 
2640
2641	do {
2642		ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
2643					  &irq_flags);
2644	} while (unlikely(ret == -EAGAIN));
2645
2646	if (likely(ret >= 0)) {
2647		__queue_delayed_work(cpu, wq, dwork, delay);
2648		local_irq_restore(irq_flags);
2649	}
2650
2651	/* -ENOENT from try_to_grab_pending() becomes %true */
2652	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
2653}
2654EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2655
2656static void rcu_work_rcufn(struct rcu_head *rcu)
 
 
 
 
 
 
 
 
 
2657{
2658	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2659
2660	/* read the comment in __queue_work() */
2661	local_irq_disable();
2662	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2663	local_irq_enable();
2664}
2665
2666/**
2667 * queue_rcu_work - queue work after a RCU grace period
2668 * @wq: workqueue to use
2669 * @rwork: work to queue
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2670 *
2671 * Return: %false if @rwork was already pending, %true otherwise.  Note
2672 * that a full RCU grace period is guaranteed only after a %true return.
2673 * While @rwork is guaranteed to be executed after a %false return, the
2674 * execution may happen before a full RCU grace period has passed.
2675 */
2676bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
 
2677{
2678	struct work_struct *work = &rwork->work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679
2680	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2681		rwork->wq = wq;
2682		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2683		return true;
 
 
 
 
2684	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685
2686	return false;
2687}
2688EXPORT_SYMBOL(queue_rcu_work);
2689
2690static struct worker *alloc_worker(int node)
2691{
2692	struct worker *worker;
2693
2694	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2695	if (worker) {
2696		INIT_LIST_HEAD(&worker->entry);
2697		INIT_LIST_HEAD(&worker->scheduled);
2698		INIT_LIST_HEAD(&worker->node);
2699		/* on creation a worker is in !idle && prep state */
2700		worker->flags = WORKER_PREP;
2701	}
2702	return worker;
2703}
2704
2705static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2706{
2707	if (pool->cpu < 0 && pool->attrs->affn_strict)
2708		return pool->attrs->__pod_cpumask;
2709	else
2710		return pool->attrs->cpumask;
2711}
2712
2713/**
2714 * worker_attach_to_pool() - attach a worker to a pool
2715 * @worker: worker to be attached
2716 * @pool: the target pool
2717 *
2718 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2719 * cpu-binding of @worker are kept coordinated with the pool across
2720 * cpu-[un]hotplugs.
2721 */
2722static void worker_attach_to_pool(struct worker *worker,
2723				  struct worker_pool *pool)
2724{
2725	mutex_lock(&wq_pool_attach_mutex);
2726
2727	/*
2728	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2729	 * across this function. See the comments above the flag definition for
2730	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2731	 */
2732	if (pool->flags & POOL_DISASSOCIATED) {
2733		worker->flags |= WORKER_UNBOUND;
2734	} else {
2735		WARN_ON_ONCE(pool->flags & POOL_BH);
2736		kthread_set_per_cpu(worker->task, pool->cpu);
2737	}
2738
2739	if (worker->rescue_wq)
2740		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2741
2742	list_add_tail(&worker->node, &pool->workers);
2743	worker->pool = pool;
2744
2745	mutex_unlock(&wq_pool_attach_mutex);
2746}
2747
2748/**
2749 * worker_detach_from_pool() - detach a worker from its pool
2750 * @worker: worker which is attached to its pool
2751 *
2752 * Undo the attaching which had been done in worker_attach_to_pool().  The
2753 * caller worker shouldn't access to the pool after detached except it has
2754 * other reference to the pool.
2755 */
2756static void worker_detach_from_pool(struct worker *worker)
2757{
2758	struct worker_pool *pool = worker->pool;
2759	struct completion *detach_completion = NULL;
2760
2761	/* there is one permanent BH worker per CPU which should never detach */
2762	WARN_ON_ONCE(pool->flags & POOL_BH);
2763
2764	mutex_lock(&wq_pool_attach_mutex);
2765
2766	kthread_set_per_cpu(worker->task, -1);
2767	list_del(&worker->node);
2768	worker->pool = NULL;
2769
2770	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2771		detach_completion = pool->detach_completion;
2772	mutex_unlock(&wq_pool_attach_mutex);
2773
2774	/* clear leftover flags without pool->lock after it is detached */
2775	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2776
2777	if (detach_completion)
2778		complete(detach_completion);
2779}
2780
2781/**
2782 * create_worker - create a new workqueue worker
2783 * @pool: pool the new worker will belong to
 
2784 *
2785 * Create and start a new worker which is attached to @pool.
 
 
2786 *
2787 * CONTEXT:
2788 * Might sleep.  Does GFP_KERNEL allocations.
2789 *
2790 * Return:
2791 * Pointer to the newly created worker.
2792 */
2793static struct worker *create_worker(struct worker_pool *pool)
2794{
2795	struct worker *worker;
2796	int id;
2797	char id_buf[23];
2798
2799	/* ID is needed to determine kthread name */
2800	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2801	if (id < 0) {
2802		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2803			    ERR_PTR(id));
2804		return NULL;
2805	}
 
2806
2807	worker = alloc_worker(pool->node);
2808	if (!worker) {
2809		pr_err_once("workqueue: Failed to allocate a worker\n");
2810		goto fail;
2811	}
2812
 
2813	worker->id = id;
2814
2815	if (!(pool->flags & POOL_BH)) {
2816		if (pool->cpu >= 0)
2817			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2818				 pool->attrs->nice < 0  ? "H" : "");
2819		else
2820			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
 
 
 
 
2821
2822		worker->task = kthread_create_on_node(worker_thread, worker,
2823					pool->node, "kworker/%s", id_buf);
2824		if (IS_ERR(worker->task)) {
2825			if (PTR_ERR(worker->task) == -EINTR) {
2826				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2827				       id_buf);
2828			} else {
2829				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2830					    worker->task);
2831			}
2832			goto fail;
2833		}
2834
2835		set_user_nice(worker->task, pool->attrs->nice);
2836		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2837	}
2838
2839	/* successful, attach the worker to the pool */
2840	worker_attach_to_pool(worker, pool);
2841
2842	/* start the newly created worker */
2843	raw_spin_lock_irq(&pool->lock);
2844
2845	worker->pool->nr_workers++;
2846	worker_enter_idle(worker);
2847
2848	/*
2849	 * @worker is waiting on a completion in kthread() and will trigger hung
2850	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2851	 * wake it up explicitly.
2852	 */
2853	if (worker->task)
2854		wake_up_process(worker->task);
2855
2856	raw_spin_unlock_irq(&pool->lock);
2857
2858	return worker;
2859
2860fail:
2861	ida_free(&pool->worker_ida, id);
 
 
 
 
2862	kfree(worker);
2863	return NULL;
2864}
2865
2866static void unbind_worker(struct worker *worker)
 
 
 
 
 
 
 
 
 
2867{
2868	lockdep_assert_held(&wq_pool_attach_mutex);
2869
2870	kthread_set_per_cpu(worker->task, -1);
2871	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2872		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2873	else
2874		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2875}
2876
2877static void wake_dying_workers(struct list_head *cull_list)
2878{
2879	struct worker *worker, *tmp;
2880
2881	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2882		list_del_init(&worker->entry);
2883		unbind_worker(worker);
2884		/*
2885		 * If the worker was somehow already running, then it had to be
2886		 * in pool->idle_list when set_worker_dying() happened or we
2887		 * wouldn't have gotten here.
2888		 *
2889		 * Thus, the worker must either have observed the WORKER_DIE
2890		 * flag, or have set its state to TASK_IDLE. Either way, the
2891		 * below will be observed by the worker and is safe to do
2892		 * outside of pool->lock.
2893		 */
2894		wake_up_process(worker->task);
2895	}
2896}
2897
2898/**
2899 * set_worker_dying - Tag a worker for destruction
2900 * @worker: worker to be destroyed
2901 * @list: transfer worker away from its pool->idle_list and into list
2902 *
2903 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2904 * should be idle.
2905 *
2906 * CONTEXT:
2907 * raw_spin_lock_irq(pool->lock).
2908 */
2909static void set_worker_dying(struct worker *worker, struct list_head *list)
2910{
2911	struct worker_pool *pool = worker->pool;
2912
2913	lockdep_assert_held(&pool->lock);
2914	lockdep_assert_held(&wq_pool_attach_mutex);
2915
2916	/* sanity check frenzy */
2917	if (WARN_ON(worker->current_work) ||
2918	    WARN_ON(!list_empty(&worker->scheduled)) ||
2919	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2920		return;
2921
2922	pool->nr_workers--;
2923	pool->nr_idle--;
 
 
2924
 
2925	worker->flags |= WORKER_DIE;
2926
2927	list_move(&worker->entry, list);
2928	list_move(&worker->node, &pool->dying_workers);
2929}
2930
2931/**
2932 * idle_worker_timeout - check if some idle workers can now be deleted.
2933 * @t: The pool's idle_timer that just expired
2934 *
2935 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2936 * worker_leave_idle(), as a worker flicking between idle and active while its
2937 * pool is at the too_many_workers() tipping point would cause too much timer
2938 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2939 * it expire and re-evaluate things from there.
2940 */
2941static void idle_worker_timeout(struct timer_list *t)
2942{
2943	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2944	bool do_cull = false;
2945
2946	if (work_pending(&pool->idle_cull_work))
2947		return;
2948
2949	raw_spin_lock_irq(&pool->lock);
2950
2951	if (too_many_workers(pool)) {
2952		struct worker *worker;
2953		unsigned long expires;
2954
2955		/* idle_list is kept in LIFO order, check the last one */
2956		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2957		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2958		do_cull = !time_before(jiffies, expires);
2959
2960		if (!do_cull)
2961			mod_timer(&pool->idle_timer, expires);
2962	}
2963	raw_spin_unlock_irq(&pool->lock);
2964
2965	if (do_cull)
2966		queue_work(system_unbound_wq, &pool->idle_cull_work);
2967}
2968
2969/**
2970 * idle_cull_fn - cull workers that have been idle for too long.
2971 * @work: the pool's work for handling these idle workers
2972 *
2973 * This goes through a pool's idle workers and gets rid of those that have been
2974 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2975 *
2976 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2977 * culled, so this also resets worker affinity. This requires a sleepable
2978 * context, hence the split between timer callback and work item.
2979 */
2980static void idle_cull_fn(struct work_struct *work)
2981{
2982	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2983	LIST_HEAD(cull_list);
2984
2985	/*
2986	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2987	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2988	 * path. This is required as a previously-preempted worker could run after
2989	 * set_worker_dying() has happened but before wake_dying_workers() did.
2990	 */
2991	mutex_lock(&wq_pool_attach_mutex);
2992	raw_spin_lock_irq(&pool->lock);
2993
2994	while (too_many_workers(pool)) {
2995		struct worker *worker;
2996		unsigned long expires;
2997
2998		worker = list_entry(pool->idle_list.prev, struct worker, entry);
 
2999		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
3000
3001		if (time_before(jiffies, expires)) {
3002			mod_timer(&pool->idle_timer, expires);
3003			break;
 
 
 
3004		}
3005
3006		set_worker_dying(worker, &cull_list);
3007	}
3008
3009	raw_spin_unlock_irq(&pool->lock);
3010	wake_dying_workers(&cull_list);
3011	mutex_unlock(&wq_pool_attach_mutex);
3012}
3013
3014static void send_mayday(struct work_struct *work)
3015{
3016	struct pool_workqueue *pwq = get_work_pwq(work);
3017	struct workqueue_struct *wq = pwq->wq;
 
3018
3019	lockdep_assert_held(&wq_mayday_lock);
3020
3021	if (!wq->rescuer)
3022		return;
3023
3024	/* mayday mayday mayday */
3025	if (list_empty(&pwq->mayday_node)) {
3026		/*
3027		 * If @pwq is for an unbound wq, its base ref may be put at
3028		 * any time due to an attribute change.  Pin @pwq until the
3029		 * rescuer is done with it.
3030		 */
3031		get_pwq(pwq);
3032		list_add_tail(&pwq->mayday_node, &wq->maydays);
3033		wake_up_process(wq->rescuer->task);
3034		pwq->stats[PWQ_STAT_MAYDAY]++;
3035	}
3036}
3037
3038static void pool_mayday_timeout(struct timer_list *t)
3039{
3040	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3041	struct work_struct *work;
3042
3043	raw_spin_lock_irq(&pool->lock);
3044	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3045
3046	if (need_to_create_worker(pool)) {
3047		/*
3048		 * We've been trying to create a new worker but
3049		 * haven't been successful.  We might be hitting an
3050		 * allocation deadlock.  Send distress signals to
3051		 * rescuers.
3052		 */
3053		list_for_each_entry(work, &pool->worklist, entry)
3054			send_mayday(work);
3055	}
3056
3057	raw_spin_unlock(&wq_mayday_lock);
3058	raw_spin_unlock_irq(&pool->lock);
3059
3060	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3061}
3062
3063/**
3064 * maybe_create_worker - create a new worker if necessary
3065 * @pool: pool to create a new worker for
3066 *
3067 * Create a new worker for @pool if necessary.  @pool is guaranteed to
3068 * have at least one idle worker on return from this function.  If
3069 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3070 * sent to all rescuers with works scheduled on @pool to resolve
3071 * possible allocation deadlock.
3072 *
3073 * On return, need_to_create_worker() is guaranteed to be %false and
3074 * may_start_working() %true.
3075 *
3076 * LOCKING:
3077 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3078 * multiple times.  Does GFP_KERNEL allocations.  Called only from
3079 * manager.
 
 
 
 
3080 */
3081static void maybe_create_worker(struct worker_pool *pool)
3082__releases(&pool->lock)
3083__acquires(&pool->lock)
3084{
 
 
3085restart:
3086	raw_spin_unlock_irq(&pool->lock);
3087
3088	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3089	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3090
3091	while (true) {
3092		if (create_worker(pool) || !need_to_create_worker(pool))
 
 
 
 
 
 
 
 
 
 
 
3093			break;
3094
3095		schedule_timeout_interruptible(CREATE_COOLDOWN);
 
3096
3097		if (!need_to_create_worker(pool))
3098			break;
3099	}
3100
3101	del_timer_sync(&pool->mayday_timer);
3102	raw_spin_lock_irq(&pool->lock);
3103	/*
3104	 * This is necessary even after a new worker was just successfully
3105	 * created as @pool->lock was dropped and the new worker might have
3106	 * already become busy.
3107	 */
3108	if (need_to_create_worker(pool))
3109		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110}
3111
3112/**
3113 * manage_workers - manage worker pool
3114 * @worker: self
3115 *
3116 * Assume the manager role and manage the worker pool @worker belongs
3117 * to.  At any given time, there can be only zero or one manager per
3118 * pool.  The exclusion is handled automatically by this function.
3119 *
3120 * The caller can safely start processing works on false return.  On
3121 * true return, it's guaranteed that need_to_create_worker() is false
3122 * and may_start_working() is true.
3123 *
3124 * CONTEXT:
3125 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3126 * multiple times.  Does GFP_KERNEL allocations.
3127 *
3128 * Return:
3129 * %false if the pool doesn't need management and the caller can safely
3130 * start processing works, %true if management function was performed and
3131 * the conditions that the caller verified before calling the function may
3132 * no longer be true.
3133 */
3134static bool manage_workers(struct worker *worker)
3135{
3136	struct worker_pool *pool = worker->pool;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3137
3138	if (pool->flags & POOL_MANAGER_ACTIVE)
3139		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3140
3141	pool->flags |= POOL_MANAGER_ACTIVE;
3142	pool->manager = worker;
 
3143
3144	maybe_create_worker(pool);
 
3145
3146	pool->manager = NULL;
3147	pool->flags &= ~POOL_MANAGER_ACTIVE;
3148	rcuwait_wake_up(&manager_wait);
3149	return true;
 
 
3150}
3151
3152/**
3153 * process_one_work - process single work
3154 * @worker: self
3155 * @work: work to process
3156 *
3157 * Process @work.  This function contains all the logics necessary to
3158 * process a single work including synchronization against and
3159 * interaction with other workers on the same cpu, queueing and
3160 * flushing.  As long as context requirement is met, any worker can
3161 * call this function to process a work.
3162 *
3163 * CONTEXT:
3164 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3165 */
3166static void process_one_work(struct worker *worker, struct work_struct *work)
3167__releases(&pool->lock)
3168__acquires(&pool->lock)
3169{
3170	struct pool_workqueue *pwq = get_work_pwq(work);
3171	struct worker_pool *pool = worker->pool;
3172	unsigned long work_data;
3173	int lockdep_start_depth, rcu_start_depth;
3174	bool bh_draining = pool->flags & POOL_BH_DRAINING;
 
 
3175#ifdef CONFIG_LOCKDEP
3176	/*
3177	 * It is permissible to free the struct work_struct from
3178	 * inside the function that is called from it, this we need to
3179	 * take into account for lockdep too.  To avoid bogus "held
3180	 * lock freed" warnings as well as problems when looking into
3181	 * work->lockdep_map, make a copy and use that here.
3182	 */
3183	struct lockdep_map lockdep_map;
3184
3185	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3186#endif
3187	/* ensure we're on the correct CPU */
3188	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3189		     raw_smp_processor_id() != pool->cpu);
 
 
 
 
 
 
 
 
3190
3191	/* claim and dequeue */
3192	debug_work_deactivate(work);
3193	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3194	worker->current_work = work;
3195	worker->current_func = work->func;
3196	worker->current_pwq = pwq;
3197	if (worker->task)
3198		worker->current_at = worker->task->se.sum_exec_runtime;
3199	work_data = *work_data_bits(work);
3200	worker->current_color = get_work_color(work_data);
3201
3202	/*
3203	 * Record wq name for cmdline and debug reporting, may get
3204	 * overridden through set_worker_desc().
3205	 */
3206	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3207
 
 
3208	list_del_init(&work->entry);
3209
3210	/*
3211	 * CPU intensive works don't participate in concurrency management.
3212	 * They're the scheduler's responsibility.  This takes @worker out
3213	 * of concurrency management and the next code block will chain
3214	 * execution of the pending work items.
3215	 */
3216	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3217		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
 
3218
3219	/*
3220	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3221	 * since nr_running would always be >= 1 at this point. This is used to
3222	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3223	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3224	 */
3225	kick_pool(pool);
3226
3227	/*
3228	 * Record the last pool and clear PENDING which should be the last
3229	 * update to @work.  Also, do this inside @pool->lock so that
3230	 * PENDING and queued state changes happen together while IRQ is
3231	 * disabled.
3232	 */
3233	set_work_pool_and_clear_pending(work, pool->id, 0);
 
3234
3235	pwq->stats[PWQ_STAT_STARTED]++;
3236	raw_spin_unlock_irq(&pool->lock);
3237
3238	rcu_start_depth = rcu_preempt_depth();
3239	lockdep_start_depth = lockdep_depth(current);
3240	/* see drain_dead_softirq_workfn() */
3241	if (!bh_draining)
3242		lock_map_acquire(&pwq->wq->lockdep_map);
3243	lock_map_acquire(&lockdep_map);
3244	/*
3245	 * Strictly speaking we should mark the invariant state without holding
3246	 * any locks, that is, before these two lock_map_acquire()'s.
3247	 *
3248	 * However, that would result in:
3249	 *
3250	 *   A(W1)
3251	 *   WFC(C)
3252	 *		A(W1)
3253	 *		C(C)
3254	 *
3255	 * Which would create W1->C->W1 dependencies, even though there is no
3256	 * actual deadlock possible. There are two solutions, using a
3257	 * read-recursive acquire on the work(queue) 'locks', but this will then
3258	 * hit the lockdep limitation on recursive locks, or simply discard
3259	 * these locks.
3260	 *
3261	 * AFAICT there is no possible deadlock scenario between the
3262	 * flush_work() and complete() primitives (except for single-threaded
3263	 * workqueues), so hiding them isn't a problem.
3264	 */
3265	lockdep_invariant_state(true);
3266	trace_workqueue_execute_start(work);
3267	worker->current_func(work);
3268	/*
3269	 * While we must be careful to not use "work" after this, the trace
3270	 * point will only record its address.
3271	 */
3272	trace_workqueue_execute_end(work, worker->current_func);
3273	pwq->stats[PWQ_STAT_COMPLETED]++;
3274	lock_map_release(&lockdep_map);
3275	if (!bh_draining)
3276		lock_map_release(&pwq->wq->lockdep_map);
3277
3278	if (unlikely((worker->task && in_atomic()) ||
3279		     lockdep_depth(current) != lockdep_start_depth ||
3280		     rcu_preempt_depth() != rcu_start_depth)) {
3281		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3282		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3283		       current->comm, task_pid_nr(current), preempt_count(),
3284		       lockdep_start_depth, lockdep_depth(current),
3285		       rcu_start_depth, rcu_preempt_depth(),
3286		       worker->current_func);
3287		debug_show_held_locks(current);
3288		dump_stack();
3289	}
3290
3291	/*
3292	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3293	 * kernels, where a requeueing work item waiting for something to
3294	 * happen could deadlock with stop_machine as such work item could
3295	 * indefinitely requeue itself while all other CPUs are trapped in
3296	 * stop_machine. At the same time, report a quiescent RCU state so
3297	 * the same condition doesn't freeze RCU.
3298	 */
3299	if (worker->task)
3300		cond_resched();
3301
3302	raw_spin_lock_irq(&pool->lock);
3303
3304	/*
3305	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3306	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3307	 * wq_cpu_intensive_thresh_us. Clear it.
3308	 */
3309	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3310
3311	/* tag the worker for identification in schedule() */
3312	worker->last_func = worker->current_func;
3313
3314	/* we're done with it, release */
3315	hash_del(&worker->hentry);
3316	worker->current_work = NULL;
3317	worker->current_func = NULL;
3318	worker->current_pwq = NULL;
3319	worker->current_color = INT_MAX;
3320
3321	/* must be the last step, see the function comment */
3322	pwq_dec_nr_in_flight(pwq, work_data);
3323}
3324
3325/**
3326 * process_scheduled_works - process scheduled works
3327 * @worker: self
3328 *
3329 * Process all scheduled works.  Please note that the scheduled list
3330 * may change while processing a work, so this function repeatedly
3331 * fetches a work from the top and executes it.
3332 *
3333 * CONTEXT:
3334 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3335 * multiple times.
3336 */
3337static void process_scheduled_works(struct worker *worker)
3338{
3339	struct work_struct *work;
3340	bool first = true;
3341
3342	while ((work = list_first_entry_or_null(&worker->scheduled,
3343						struct work_struct, entry))) {
3344		if (first) {
3345			worker->pool->watchdog_ts = jiffies;
3346			first = false;
3347		}
3348		process_one_work(worker, work);
3349	}
3350}
3351
3352static void set_pf_worker(bool val)
3353{
3354	mutex_lock(&wq_pool_attach_mutex);
3355	if (val)
3356		current->flags |= PF_WQ_WORKER;
3357	else
3358		current->flags &= ~PF_WQ_WORKER;
3359	mutex_unlock(&wq_pool_attach_mutex);
3360}
3361
3362/**
3363 * worker_thread - the worker thread function
3364 * @__worker: self
3365 *
3366 * The worker thread function.  All workers belong to a worker_pool -
3367 * either a per-cpu one or dynamic unbound one.  These workers process all
3368 * work items regardless of their specific target workqueue.  The only
3369 * exception is work items which belong to workqueues with a rescuer which
3370 * will be explained in rescuer_thread().
3371 *
3372 * Return: 0
3373 */
3374static int worker_thread(void *__worker)
3375{
3376	struct worker *worker = __worker;
3377	struct worker_pool *pool = worker->pool;
3378
3379	/* tell the scheduler that this is a workqueue worker */
3380	set_pf_worker(true);
3381woke_up:
3382	raw_spin_lock_irq(&pool->lock);
3383
3384	/* am I supposed to die? */
3385	if (unlikely(worker->flags & WORKER_DIE)) {
3386		raw_spin_unlock_irq(&pool->lock);
3387		set_pf_worker(false);
3388
3389		set_task_comm(worker->task, "kworker/dying");
3390		ida_free(&pool->worker_ida, worker->id);
3391		worker_detach_from_pool(worker);
3392		WARN_ON_ONCE(!list_empty(&worker->entry));
3393		kfree(worker);
3394		return 0;
3395	}
3396
3397	worker_leave_idle(worker);
3398recheck:
3399	/* no more worker necessary? */
3400	if (!need_more_worker(pool))
3401		goto sleep;
3402
3403	/* do we need to manage? */
3404	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3405		goto recheck;
3406
3407	/*
3408	 * ->scheduled list can only be filled while a worker is
3409	 * preparing to process a work or actually processing it.
3410	 * Make sure nobody diddled with it while I was sleeping.
3411	 */
3412	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3413
3414	/*
3415	 * Finish PREP stage.  We're guaranteed to have at least one idle
3416	 * worker or that someone else has already assumed the manager
3417	 * role.  This is where @worker starts participating in concurrency
3418	 * management if applicable and concurrency management is restored
3419	 * after being rebound.  See rebind_workers() for details.
3420	 */
3421	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3422
3423	do {
3424		struct work_struct *work =
3425			list_first_entry(&pool->worklist,
3426					 struct work_struct, entry);
3427
3428		if (assign_work(work, worker, NULL))
 
 
 
 
 
 
3429			process_scheduled_works(worker);
3430	} while (keep_working(pool));
 
3431
3432	worker_set_flags(worker, WORKER_PREP);
3433sleep:
 
 
 
3434	/*
3435	 * pool->lock is held and there's no work to process and no need to
3436	 * manage, sleep.  Workers are woken up only while holding
3437	 * pool->lock or from local cpu, so setting the current state
3438	 * before releasing pool->lock is enough to prevent losing any
3439	 * event.
3440	 */
3441	worker_enter_idle(worker);
3442	__set_current_state(TASK_IDLE);
3443	raw_spin_unlock_irq(&pool->lock);
3444	schedule();
3445	goto woke_up;
3446}
3447
3448/**
3449 * rescuer_thread - the rescuer thread function
3450 * @__rescuer: self
3451 *
3452 * Workqueue rescuer thread function.  There's one rescuer for each
3453 * workqueue which has WQ_MEM_RECLAIM set.
3454 *
3455 * Regular work processing on a pool may block trying to create a new
3456 * worker which uses GFP_KERNEL allocation which has slight chance of
3457 * developing into deadlock if some works currently on the same queue
3458 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3459 * the problem rescuer solves.
3460 *
3461 * When such condition is possible, the pool summons rescuers of all
3462 * workqueues which have works queued on the pool and let them process
3463 * those works so that forward progress can be guaranteed.
3464 *
3465 * This should happen rarely.
3466 *
3467 * Return: 0
3468 */
3469static int rescuer_thread(void *__rescuer)
3470{
3471	struct worker *rescuer = __rescuer;
3472	struct workqueue_struct *wq = rescuer->rescue_wq;
3473	bool should_stop;
 
 
3474
3475	set_user_nice(current, RESCUER_NICE_LEVEL);
 
 
3476
3477	/*
3478	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3479	 * doesn't participate in concurrency management.
3480	 */
3481	set_pf_worker(true);
3482repeat:
3483	set_current_state(TASK_IDLE);
3484
3485	/*
3486	 * By the time the rescuer is requested to stop, the workqueue
3487	 * shouldn't have any work pending, but @wq->maydays may still have
3488	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3489	 * all the work items before the rescuer got to them.  Go through
3490	 * @wq->maydays processing before acting on should_stop so that the
3491	 * list is always empty on exit.
3492	 */
3493	should_stop = kthread_should_stop();
3494
3495	/* see whether any pwq is asking for help */
3496	raw_spin_lock_irq(&wq_mayday_lock);
3497
3498	while (!list_empty(&wq->maydays)) {
3499		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3500					struct pool_workqueue, mayday_node);
3501		struct worker_pool *pool = pwq->pool;
3502		struct work_struct *work, *n;
3503
3504		__set_current_state(TASK_RUNNING);
3505		list_del_init(&pwq->mayday_node);
3506
3507		raw_spin_unlock_irq(&wq_mayday_lock);
3508
3509		worker_attach_to_pool(rescuer, pool);
3510
3511		raw_spin_lock_irq(&pool->lock);
 
 
3512
3513		/*
3514		 * Slurp in all works issued via this workqueue and
3515		 * process'em.
3516		 */
3517		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3518		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3519			if (get_work_pwq(work) == pwq &&
3520			    assign_work(work, rescuer, &n))
3521				pwq->stats[PWQ_STAT_RESCUED]++;
3522		}
3523
3524		if (!list_empty(&rescuer->scheduled)) {
3525			process_scheduled_works(rescuer);
3526
3527			/*
3528			 * The above execution of rescued work items could
3529			 * have created more to rescue through
3530			 * pwq_activate_first_inactive() or chained
3531			 * queueing.  Let's put @pwq back on mayday list so
3532			 * that such back-to-back work items, which may be
3533			 * being used to relieve memory pressure, don't
3534			 * incur MAYDAY_INTERVAL delay inbetween.
3535			 */
3536			if (pwq->nr_active && need_to_create_worker(pool)) {
3537				raw_spin_lock(&wq_mayday_lock);
3538				/*
3539				 * Queue iff we aren't racing destruction
3540				 * and somebody else hasn't queued it already.
3541				 */
3542				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3543					get_pwq(pwq);
3544					list_add_tail(&pwq->mayday_node, &wq->maydays);
3545				}
3546				raw_spin_unlock(&wq_mayday_lock);
3547			}
3548		}
3549
3550		/*
3551		 * Put the reference grabbed by send_mayday().  @pool won't
3552		 * go away while we're still attached to it.
 
3553		 */
3554		put_pwq(pwq);
3555
3556		/*
3557		 * Leave this pool. Notify regular workers; otherwise, we end up
3558		 * with 0 concurrency and stalling the execution.
3559		 */
3560		kick_pool(pool);
3561
3562		raw_spin_unlock_irq(&pool->lock);
3563
3564		worker_detach_from_pool(rescuer);
3565
3566		raw_spin_lock_irq(&wq_mayday_lock);
3567	}
3568
3569	raw_spin_unlock_irq(&wq_mayday_lock);
3570
3571	if (should_stop) {
3572		__set_current_state(TASK_RUNNING);
3573		set_pf_worker(false);
3574		return 0;
3575	}
3576
3577	/* rescuers should never participate in concurrency management */
3578	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3579	schedule();
3580	goto repeat;
3581}
3582
3583static void bh_worker(struct worker *worker)
3584{
3585	struct worker_pool *pool = worker->pool;
3586	int nr_restarts = BH_WORKER_RESTARTS;
3587	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3588
3589	raw_spin_lock_irq(&pool->lock);
3590	worker_leave_idle(worker);
3591
3592	/*
3593	 * This function follows the structure of worker_thread(). See there for
3594	 * explanations on each step.
3595	 */
3596	if (!need_more_worker(pool))
3597		goto done;
3598
3599	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3600	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3601
3602	do {
3603		struct work_struct *work =
3604			list_first_entry(&pool->worklist,
3605					 struct work_struct, entry);
3606
3607		if (assign_work(work, worker, NULL))
3608			process_scheduled_works(worker);
3609	} while (keep_working(pool) &&
3610		 --nr_restarts && time_before(jiffies, end));
3611
3612	worker_set_flags(worker, WORKER_PREP);
3613done:
3614	worker_enter_idle(worker);
3615	kick_pool(pool);
3616	raw_spin_unlock_irq(&pool->lock);
3617}
3618
3619/*
3620 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3621 *
3622 * This is currently called from tasklet[_hi]action() and thus is also called
3623 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3624 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3625 * can be dropped.
3626 *
3627 * After full conversion, we'll add worker->softirq_action, directly use the
3628 * softirq action and obtain the worker pointer from the softirq_action pointer.
3629 */
3630void workqueue_softirq_action(bool highpri)
3631{
3632	struct worker_pool *pool =
3633		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3634	if (need_more_worker(pool))
3635		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3636}
3637
3638struct wq_drain_dead_softirq_work {
3639	struct work_struct	work;
3640	struct worker_pool	*pool;
3641	struct completion	done;
3642};
3643
3644static void drain_dead_softirq_workfn(struct work_struct *work)
3645{
3646	struct wq_drain_dead_softirq_work *dead_work =
3647		container_of(work, struct wq_drain_dead_softirq_work, work);
3648	struct worker_pool *pool = dead_work->pool;
3649	bool repeat;
3650
3651	/*
3652	 * @pool's CPU is dead and we want to execute its still pending work
3653	 * items from this BH work item which is running on a different CPU. As
3654	 * its CPU is dead, @pool can't be kicked and, as work execution path
3655	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3656	 * @pool with %POOL_BH_DRAINING for the special treatments.
3657	 */
3658	raw_spin_lock_irq(&pool->lock);
3659	pool->flags |= POOL_BH_DRAINING;
3660	raw_spin_unlock_irq(&pool->lock);
3661
3662	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3663
3664	raw_spin_lock_irq(&pool->lock);
3665	pool->flags &= ~POOL_BH_DRAINING;
3666	repeat = need_more_worker(pool);
3667	raw_spin_unlock_irq(&pool->lock);
3668
3669	/*
3670	 * bh_worker() might hit consecutive execution limit and bail. If there
3671	 * still are pending work items, reschedule self and return so that we
3672	 * don't hog this CPU's BH.
3673	 */
3674	if (repeat) {
3675		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3676			queue_work(system_bh_highpri_wq, work);
3677		else
3678			queue_work(system_bh_wq, work);
3679	} else {
3680		complete(&dead_work->done);
3681	}
3682}
3683
3684/*
3685 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3686 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3687 * have to worry about draining overlapping with CPU coming back online or
3688 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3689 * on). Let's keep it simple and drain them synchronously. These are BH work
3690 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3691 */
3692void workqueue_softirq_dead(unsigned int cpu)
3693{
3694	int i;
3695
3696	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3697		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3698		struct wq_drain_dead_softirq_work dead_work;
3699
3700		if (!need_more_worker(pool))
3701			continue;
3702
3703		INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
3704		dead_work.pool = pool;
3705		init_completion(&dead_work.done);
3706
3707		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3708			queue_work(system_bh_highpri_wq, &dead_work.work);
3709		else
3710			queue_work(system_bh_wq, &dead_work.work);
3711
3712		wait_for_completion(&dead_work.done);
3713	}
3714}
3715
3716/**
3717 * check_flush_dependency - check for flush dependency sanity
3718 * @target_wq: workqueue being flushed
3719 * @target_work: work item being flushed (NULL for workqueue flushes)
3720 *
3721 * %current is trying to flush the whole @target_wq or @target_work on it.
3722 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3723 * reclaiming memory or running on a workqueue which doesn't have
3724 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3725 * a deadlock.
3726 */
3727static void check_flush_dependency(struct workqueue_struct *target_wq,
3728				   struct work_struct *target_work)
3729{
3730	work_func_t target_func = target_work ? target_work->func : NULL;
3731	struct worker *worker;
3732
3733	if (target_wq->flags & WQ_MEM_RECLAIM)
3734		return;
3735
3736	worker = current_wq_worker();
3737
3738	WARN_ONCE(current->flags & PF_MEMALLOC,
3739		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3740		  current->pid, current->comm, target_wq->name, target_func);
3741	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3742			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3743		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3744		  worker->current_pwq->wq->name, worker->current_func,
3745		  target_wq->name, target_func);
3746}
3747
3748struct wq_barrier {
3749	struct work_struct	work;
3750	struct completion	done;
3751	struct task_struct	*task;	/* purely informational */
3752};
3753
3754static void wq_barrier_func(struct work_struct *work)
3755{
3756	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3757	complete(&barr->done);
3758}
3759
3760/**
3761 * insert_wq_barrier - insert a barrier work
3762 * @pwq: pwq to insert barrier into
3763 * @barr: wq_barrier to insert
3764 * @target: target work to attach @barr to
3765 * @worker: worker currently executing @target, NULL if @target is not executing
3766 *
3767 * @barr is linked to @target such that @barr is completed only after
3768 * @target finishes execution.  Please note that the ordering
3769 * guarantee is observed only with respect to @target and on the local
3770 * cpu.
3771 *
3772 * Currently, a queued barrier can't be canceled.  This is because
3773 * try_to_grab_pending() can't determine whether the work to be
3774 * grabbed is at the head of the queue and thus can't clear LINKED
3775 * flag of the previous work while there must be a valid next work
3776 * after a work with LINKED flag set.
3777 *
3778 * Note that when @worker is non-NULL, @target may be modified
3779 * underneath us, so we can't reliably determine pwq from @target.
3780 *
3781 * CONTEXT:
3782 * raw_spin_lock_irq(pool->lock).
3783 */
3784static void insert_wq_barrier(struct pool_workqueue *pwq,
3785			      struct wq_barrier *barr,
3786			      struct work_struct *target, struct worker *worker)
3787{
3788	static __maybe_unused struct lock_class_key bh_key, thr_key;
3789	unsigned int work_flags = 0;
3790	unsigned int work_color;
3791	struct list_head *head;
 
3792
3793	/*
3794	 * debugobject calls are safe here even with pool->lock locked
3795	 * as we know for sure that this will not trigger any of the
3796	 * checks and call back into the fixup functions where we
3797	 * might deadlock.
3798	 *
3799	 * BH and threaded workqueues need separate lockdep keys to avoid
3800	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3801	 * usage".
3802	 */
3803	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3804			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3805	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3806
3807	init_completion_map(&barr->done, &target->lockdep_map);
3808
3809	barr->task = current;
3810
3811	/* The barrier work item does not participate in nr_active. */
3812	work_flags |= WORK_STRUCT_INACTIVE;
3813
3814	/*
3815	 * If @target is currently being executed, schedule the
3816	 * barrier to the worker; otherwise, put it after @target.
3817	 */
3818	if (worker) {
3819		head = worker->scheduled.next;
3820		work_color = worker->current_color;
3821	} else {
3822		unsigned long *bits = work_data_bits(target);
3823
3824		head = target->entry.next;
3825		/* there can already be other linked works, inherit and set */
3826		work_flags |= *bits & WORK_STRUCT_LINKED;
3827		work_color = get_work_color(*bits);
3828		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3829	}
3830
3831	pwq->nr_in_flight[work_color]++;
3832	work_flags |= work_color_to_flags(work_color);
3833
3834	insert_work(pwq, &barr->work, head, work_flags);
3835}
3836
3837/**
3838 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3839 * @wq: workqueue being flushed
3840 * @flush_color: new flush color, < 0 for no-op
3841 * @work_color: new work color, < 0 for no-op
3842 *
3843 * Prepare pwqs for workqueue flushing.
3844 *
3845 * If @flush_color is non-negative, flush_color on all pwqs should be
3846 * -1.  If no pwq has in-flight commands at the specified color, all
3847 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3848 * has in flight commands, its pwq->flush_color is set to
3849 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3850 * wakeup logic is armed and %true is returned.
3851 *
3852 * The caller should have initialized @wq->first_flusher prior to
3853 * calling this function with non-negative @flush_color.  If
3854 * @flush_color is negative, no flush color update is done and %false
3855 * is returned.
3856 *
3857 * If @work_color is non-negative, all pwqs should have the same
3858 * work_color which is previous to @work_color and all will be
3859 * advanced to @work_color.
3860 *
3861 * CONTEXT:
3862 * mutex_lock(wq->mutex).
3863 *
3864 * Return:
3865 * %true if @flush_color >= 0 and there's something to flush.  %false
3866 * otherwise.
3867 */
3868static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3869				      int flush_color, int work_color)
3870{
3871	bool wait = false;
3872	struct pool_workqueue *pwq;
3873
3874	if (flush_color >= 0) {
3875		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3876		atomic_set(&wq->nr_pwqs_to_flush, 1);
3877	}
3878
3879	for_each_pwq(pwq, wq) {
3880		struct worker_pool *pool = pwq->pool;
 
3881
3882		raw_spin_lock_irq(&pool->lock);
3883
3884		if (flush_color >= 0) {
3885			WARN_ON_ONCE(pwq->flush_color != -1);
3886
3887			if (pwq->nr_in_flight[flush_color]) {
3888				pwq->flush_color = flush_color;
3889				atomic_inc(&wq->nr_pwqs_to_flush);
3890				wait = true;
3891			}
3892		}
3893
3894		if (work_color >= 0) {
3895			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3896			pwq->work_color = work_color;
3897		}
3898
3899		raw_spin_unlock_irq(&pool->lock);
3900	}
3901
3902	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3903		complete(&wq->first_flusher->done);
3904
3905	return wait;
3906}
3907
3908static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3909{
3910#ifdef CONFIG_LOCKDEP
3911	if (wq->flags & WQ_BH)
3912		local_bh_disable();
3913
3914	lock_map_acquire(&wq->lockdep_map);
3915	lock_map_release(&wq->lockdep_map);
3916
3917	if (wq->flags & WQ_BH)
3918		local_bh_enable();
3919#endif
3920}
3921
3922static void touch_work_lockdep_map(struct work_struct *work,
3923				   struct workqueue_struct *wq)
3924{
3925#ifdef CONFIG_LOCKDEP
3926	if (wq->flags & WQ_BH)
3927		local_bh_disable();
3928
3929	lock_map_acquire(&work->lockdep_map);
3930	lock_map_release(&work->lockdep_map);
3931
3932	if (wq->flags & WQ_BH)
3933		local_bh_enable();
3934#endif
3935}
3936
3937/**
3938 * __flush_workqueue - ensure that any scheduled work has run to completion.
3939 * @wq: workqueue to flush
3940 *
3941 * This function sleeps until all work items which were queued on entry
3942 * have finished execution, but it is not livelocked by new incoming ones.
 
 
 
3943 */
3944void __flush_workqueue(struct workqueue_struct *wq)
3945{
3946	struct wq_flusher this_flusher = {
3947		.list = LIST_HEAD_INIT(this_flusher.list),
3948		.flush_color = -1,
3949		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3950	};
3951	int next_color;
3952
3953	if (WARN_ON(!wq_online))
3954		return;
3955
3956	touch_wq_lockdep_map(wq);
3957
3958	mutex_lock(&wq->mutex);
3959
3960	/*
3961	 * Start-to-wait phase
3962	 */
3963	next_color = work_next_color(wq->work_color);
3964
3965	if (next_color != wq->flush_color) {
3966		/*
3967		 * Color space is not full.  The current work_color
3968		 * becomes our flush_color and work_color is advanced
3969		 * by one.
3970		 */
3971		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3972		this_flusher.flush_color = wq->work_color;
3973		wq->work_color = next_color;
3974
3975		if (!wq->first_flusher) {
3976			/* no flush in progress, become the first flusher */
3977			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3978
3979			wq->first_flusher = &this_flusher;
3980
3981			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3982						       wq->work_color)) {
3983				/* nothing to flush, done */
3984				wq->flush_color = next_color;
3985				wq->first_flusher = NULL;
3986				goto out_unlock;
3987			}
3988		} else {
3989			/* wait in queue */
3990			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3991			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3992			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3993		}
3994	} else {
3995		/*
3996		 * Oops, color space is full, wait on overflow queue.
3997		 * The next flush completion will assign us
3998		 * flush_color and transfer to flusher_queue.
3999		 */
4000		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4001	}
4002
4003	check_flush_dependency(wq, NULL);
4004
4005	mutex_unlock(&wq->mutex);
4006
4007	wait_for_completion(&this_flusher.done);
4008
4009	/*
4010	 * Wake-up-and-cascade phase
4011	 *
4012	 * First flushers are responsible for cascading flushes and
4013	 * handling overflow.  Non-first flushers can simply return.
4014	 */
4015	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4016		return;
4017
4018	mutex_lock(&wq->mutex);
4019
4020	/* we might have raced, check again with mutex held */
4021	if (wq->first_flusher != &this_flusher)
4022		goto out_unlock;
4023
4024	WRITE_ONCE(wq->first_flusher, NULL);
4025
4026	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4027	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4028
4029	while (true) {
4030		struct wq_flusher *next, *tmp;
4031
4032		/* complete all the flushers sharing the current flush color */
4033		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4034			if (next->flush_color != wq->flush_color)
4035				break;
4036			list_del_init(&next->list);
4037			complete(&next->done);
4038		}
4039
4040		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4041			     wq->flush_color != work_next_color(wq->work_color));
4042
4043		/* this flush_color is finished, advance by one */
4044		wq->flush_color = work_next_color(wq->flush_color);
4045
4046		/* one color has been freed, handle overflow queue */
4047		if (!list_empty(&wq->flusher_overflow)) {
4048			/*
4049			 * Assign the same color to all overflowed
4050			 * flushers, advance work_color and append to
4051			 * flusher_queue.  This is the start-to-wait
4052			 * phase for these overflowed flushers.
4053			 */
4054			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4055				tmp->flush_color = wq->work_color;
4056
4057			wq->work_color = work_next_color(wq->work_color);
4058
4059			list_splice_tail_init(&wq->flusher_overflow,
4060					      &wq->flusher_queue);
4061			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4062		}
4063
4064		if (list_empty(&wq->flusher_queue)) {
4065			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4066			break;
4067		}
4068
4069		/*
4070		 * Need to flush more colors.  Make the next flusher
4071		 * the new first flusher and arm pwqs.
4072		 */
4073		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4074		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4075
4076		list_del_init(&next->list);
4077		wq->first_flusher = next;
4078
4079		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4080			break;
4081
4082		/*
4083		 * Meh... this color is already done, clear first
4084		 * flusher and repeat cascading.
4085		 */
4086		wq->first_flusher = NULL;
4087	}
4088
4089out_unlock:
4090	mutex_unlock(&wq->mutex);
4091}
4092EXPORT_SYMBOL(__flush_workqueue);
4093
4094/**
4095 * drain_workqueue - drain a workqueue
4096 * @wq: workqueue to drain
4097 *
4098 * Wait until the workqueue becomes empty.  While draining is in progress,
4099 * only chain queueing is allowed.  IOW, only currently pending or running
4100 * work items on @wq can queue further work items on it.  @wq is flushed
4101 * repeatedly until it becomes empty.  The number of flushing is determined
4102 * by the depth of chaining and should be relatively short.  Whine if it
4103 * takes too long.
4104 */
4105void drain_workqueue(struct workqueue_struct *wq)
4106{
4107	unsigned int flush_cnt = 0;
4108	struct pool_workqueue *pwq;
4109
4110	/*
4111	 * __queue_work() needs to test whether there are drainers, is much
4112	 * hotter than drain_workqueue() and already looks at @wq->flags.
4113	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4114	 */
4115	mutex_lock(&wq->mutex);
4116	if (!wq->nr_drainers++)
4117		wq->flags |= __WQ_DRAINING;
4118	mutex_unlock(&wq->mutex);
4119reflush:
4120	__flush_workqueue(wq);
4121
4122	mutex_lock(&wq->mutex);
4123
4124	for_each_pwq(pwq, wq) {
4125		bool drained;
4126
4127		raw_spin_lock_irq(&pwq->pool->lock);
4128		drained = pwq_is_empty(pwq);
4129		raw_spin_unlock_irq(&pwq->pool->lock);
4130
4131		if (drained)
4132			continue;
4133
4134		if (++flush_cnt == 10 ||
4135		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4136			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4137				wq->name, __func__, flush_cnt);
4138
4139		mutex_unlock(&wq->mutex);
4140		goto reflush;
4141	}
4142
 
4143	if (!--wq->nr_drainers)
4144		wq->flags &= ~__WQ_DRAINING;
4145	mutex_unlock(&wq->mutex);
4146}
4147EXPORT_SYMBOL_GPL(drain_workqueue);
4148
4149static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4150			     bool from_cancel)
4151{
4152	struct worker *worker = NULL;
4153	struct worker_pool *pool;
4154	struct pool_workqueue *pwq;
4155	struct workqueue_struct *wq;
4156
4157	might_sleep();
4158
4159	rcu_read_lock();
4160	pool = get_work_pool(work);
4161	if (!pool) {
4162		rcu_read_unlock();
4163		return false;
4164	}
4165
4166	raw_spin_lock_irq(&pool->lock);
4167	/* see the comment in try_to_grab_pending() with the same code */
4168	pwq = get_work_pwq(work);
4169	if (pwq) {
4170		if (unlikely(pwq->pool != pool))
 
 
 
 
 
4171			goto already_gone;
4172	} else {
4173		worker = find_worker_executing_work(pool, work);
4174		if (!worker)
4175			goto already_gone;
4176		pwq = worker->current_pwq;
4177	}
4178
4179	wq = pwq->wq;
4180	check_flush_dependency(wq, work);
4181
4182	insert_wq_barrier(pwq, barr, work, worker);
4183	raw_spin_unlock_irq(&pool->lock);
4184
4185	touch_work_lockdep_map(work, wq);
 
4186
4187	/*
4188	 * Force a lock recursion deadlock when using flush_work() inside a
4189	 * single-threaded or rescuer equipped workqueue.
4190	 *
4191	 * For single threaded workqueues the deadlock happens when the work
4192	 * is after the work issuing the flush_work(). For rescuer equipped
4193	 * workqueues the deadlock happens when the rescuer stalls, blocking
4194	 * forward progress.
4195	 */
4196	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4197		touch_wq_lockdep_map(wq);
 
 
 
4198
4199	rcu_read_unlock();
4200	return true;
4201already_gone:
4202	raw_spin_unlock_irq(&pool->lock);
4203	rcu_read_unlock();
4204	return false;
4205}
4206
4207static bool __flush_work(struct work_struct *work, bool from_cancel)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4208{
4209	struct wq_barrier barr;
4210
4211	if (WARN_ON(!wq_online))
 
 
 
 
 
 
 
4212		return false;
 
 
4213
4214	if (WARN_ON(!work->func))
4215		return false;
 
 
 
 
 
 
 
 
 
 
4216
4217	if (start_flush_work(work, &barr, from_cancel)) {
4218		wait_for_completion(&barr.done);
4219		destroy_work_on_stack(&barr.work);
4220		return true;
4221	} else {
4222		return false;
4223	}
4224}
4225
4226/**
4227 * flush_work - wait for a work to finish executing the last queueing instance
4228 * @work: the work to flush
4229 *
4230 * Wait until @work has finished execution.  @work is guaranteed to be idle
4231 * on return if it hasn't been requeued since flush started.
4232 *
4233 * Return:
4234 * %true if flush_work() waited for the work to finish execution,
4235 * %false if it was already idle.
4236 */
4237bool flush_work(struct work_struct *work)
4238{
4239	return __flush_work(work, false);
 
 
 
 
 
 
 
 
 
 
4240}
4241EXPORT_SYMBOL_GPL(flush_work);
4242
4243/**
4244 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4245 * @dwork: the delayed work to flush
4246 *
4247 * Delayed timer is cancelled and the pending work is queued for
4248 * immediate execution.  Like flush_work(), this function only
4249 * considers the last queueing instance of @dwork.
 
 
4250 *
4251 * Return:
4252 * %true if flush_work() waited for the work to finish execution,
4253 * %false if it was already idle.
4254 */
4255bool flush_delayed_work(struct delayed_work *dwork)
4256{
4257	local_irq_disable();
4258	if (del_timer_sync(&dwork->timer))
4259		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4260	local_irq_enable();
4261	return flush_work(&dwork->work);
4262}
4263EXPORT_SYMBOL(flush_delayed_work);
4264
4265/**
4266 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4267 * @rwork: the rcu work to flush
4268 *
4269 * Return:
4270 * %true if flush_rcu_work() waited for the work to finish execution,
4271 * %false if it was already idle.
4272 */
4273bool flush_rcu_work(struct rcu_work *rwork)
4274{
4275	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4276		rcu_barrier();
4277		flush_work(&rwork->work);
4278		return true;
4279	} else {
4280		return flush_work(&rwork->work);
4281	}
4282}
4283EXPORT_SYMBOL(flush_rcu_work);
4284
4285static bool __cancel_work(struct work_struct *work, u32 cflags)
4286{
4287	unsigned long irq_flags;
4288	int ret;
4289
4290	do {
4291		ret = try_to_grab_pending(work, cflags, &irq_flags);
4292	} while (unlikely(ret == -EAGAIN));
4293
4294	if (unlikely(ret < 0))
4295		return false;
 
 
 
4296
4297	set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
4298	local_irq_restore(irq_flags);
4299	return ret;
4300}
 
4301
4302static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
 
 
 
 
4303{
4304	unsigned long irq_flags;
4305	bool ret;
4306
4307	/* claim @work and tell other tasks trying to grab @work to back off */
4308	ret = work_grab_pending(work, cflags, &irq_flags);
4309	mark_work_canceling(work);
4310	local_irq_restore(irq_flags);
4311
4312	/*
4313	 * Skip __flush_work() during early boot when we know that @work isn't
4314	 * executing. This allows canceling during early boot.
4315	 */
4316	if (wq_online)
4317		__flush_work(work, true);
 
4318
4319	/*
4320	 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
4321	 * with prepare_to_wait() above so that either waitqueue_active() is
4322	 * visible here or !work_is_canceling() is visible there.
4323	 */
4324	set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);
4325
4326	if (waitqueue_active(&wq_cancel_waitq))
4327		__wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);
 
 
 
 
 
 
 
 
 
4328
4329	return ret;
4330}
4331
4332/*
4333 * See cancel_delayed_work()
4334 */
4335bool cancel_work(struct work_struct *work)
4336{
4337	return __cancel_work(work, 0);
 
 
 
 
 
 
 
 
 
 
4338}
4339EXPORT_SYMBOL(cancel_work);
4340
4341/**
4342 * cancel_work_sync - cancel a work and wait for it to finish
4343 * @work: the work to cancel
4344 *
4345 * Cancel @work and wait for its execution to finish.  This function
4346 * can be used even if the work re-queues itself or migrates to
4347 * another workqueue.  On return from this function, @work is
4348 * guaranteed to be not pending or executing on any CPU.
4349 *
4350 * cancel_work_sync(&delayed_work->work) must not be used for
4351 * delayed_work's.  Use cancel_delayed_work_sync() instead.
4352 *
4353 * The caller must ensure that the workqueue on which @work was last
4354 * queued can't be destroyed before this function returns.
4355 *
4356 * Return:
4357 * %true if @work was pending, %false otherwise.
4358 */
4359bool cancel_work_sync(struct work_struct *work)
4360{
4361	return __cancel_work_sync(work, 0);
4362}
4363EXPORT_SYMBOL_GPL(cancel_work_sync);
4364
4365/**
4366 * cancel_delayed_work - cancel a delayed work
4367 * @dwork: delayed_work to cancel
4368 *
4369 * Kill off a pending delayed_work.
 
 
4370 *
4371 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4372 * pending.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4373 *
4374 * Note:
4375 * The work callback function may still be running on return, unless
4376 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4377 * use cancel_delayed_work_sync() to wait on it.
4378 *
4379 * This function is safe to call from any context including IRQ handler.
 
 
4380 */
4381bool cancel_delayed_work(struct delayed_work *dwork)
4382{
4383	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
 
 
 
4384}
4385EXPORT_SYMBOL(cancel_delayed_work);
4386
4387/**
4388 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4389 * @dwork: the delayed work cancel
4390 *
4391 * This is cancel_work_sync() for delayed works.
4392 *
4393 * Return:
4394 * %true if @dwork was pending, %false otherwise.
4395 */
4396bool cancel_delayed_work_sync(struct delayed_work *dwork)
4397{
4398	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4399}
4400EXPORT_SYMBOL(cancel_delayed_work_sync);
4401
4402/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4403 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4404 * @func: the function to call
4405 *
4406 * schedule_on_each_cpu() executes @func on each online CPU using the
4407 * system workqueue and blocks until all CPUs have completed.
4408 * schedule_on_each_cpu() is very slow.
4409 *
4410 * Return:
4411 * 0 on success, -errno on failure.
4412 */
4413int schedule_on_each_cpu(work_func_t func)
4414{
4415	int cpu;
4416	struct work_struct __percpu *works;
4417
4418	works = alloc_percpu(struct work_struct);
4419	if (!works)
4420		return -ENOMEM;
4421
4422	cpus_read_lock();
4423
4424	for_each_online_cpu(cpu) {
4425		struct work_struct *work = per_cpu_ptr(works, cpu);
4426
4427		INIT_WORK(work, func);
4428		schedule_work_on(cpu, work);
4429	}
4430
4431	for_each_online_cpu(cpu)
4432		flush_work(per_cpu_ptr(works, cpu));
4433
4434	cpus_read_unlock();
4435	free_percpu(works);
4436	return 0;
4437}
4438
4439/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4440 * execute_in_process_context - reliably execute the routine with user context
4441 * @fn:		the function to execute
4442 * @ew:		guaranteed storage for the execute work structure (must
4443 *		be available when the work executes)
4444 *
4445 * Executes the function immediately if process context is available,
4446 * otherwise schedules the function for delayed execution.
4447 *
4448 * Return:	0 - function was executed
4449 *		1 - function was scheduled for execution
4450 */
4451int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4452{
4453	if (!in_interrupt()) {
4454		fn(&ew->work);
4455		return 0;
4456	}
4457
4458	INIT_WORK(&ew->work, fn);
4459	schedule_work(&ew->work);
4460
4461	return 1;
4462}
4463EXPORT_SYMBOL_GPL(execute_in_process_context);
4464
4465/**
4466 * free_workqueue_attrs - free a workqueue_attrs
4467 * @attrs: workqueue_attrs to free
4468 *
4469 * Undo alloc_workqueue_attrs().
4470 */
4471void free_workqueue_attrs(struct workqueue_attrs *attrs)
4472{
4473	if (attrs) {
4474		free_cpumask_var(attrs->cpumask);
4475		free_cpumask_var(attrs->__pod_cpumask);
4476		kfree(attrs);
4477	}
4478}
4479
4480/**
4481 * alloc_workqueue_attrs - allocate a workqueue_attrs
4482 *
4483 * Allocate a new workqueue_attrs, initialize with default settings and
4484 * return it.
4485 *
4486 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4487 */
4488struct workqueue_attrs *alloc_workqueue_attrs(void)
4489{
4490	struct workqueue_attrs *attrs;
4491
4492	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4493	if (!attrs)
4494		goto fail;
4495	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4496		goto fail;
4497	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4498		goto fail;
4499
4500	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4501	attrs->affn_scope = WQ_AFFN_DFL;
4502	return attrs;
4503fail:
4504	free_workqueue_attrs(attrs);
4505	return NULL;
4506}
4507
4508static void copy_workqueue_attrs(struct workqueue_attrs *to,
4509				 const struct workqueue_attrs *from)
4510{
4511	to->nice = from->nice;
4512	cpumask_copy(to->cpumask, from->cpumask);
4513	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4514	to->affn_strict = from->affn_strict;
4515
4516	/*
4517	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4518	 * fields as copying is used for both pool and wq attrs. Instead,
4519	 * get_unbound_pool() explicitly clears the fields.
4520	 */
4521	to->affn_scope = from->affn_scope;
4522	to->ordered = from->ordered;
4523}
4524
4525/*
4526 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4527 * comments in 'struct workqueue_attrs' definition.
4528 */
4529static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4530{
4531	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4532	attrs->ordered = false;
4533}
4534
4535/* hash value of the content of @attr */
4536static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4537{
4538	u32 hash = 0;
4539
4540	hash = jhash_1word(attrs->nice, hash);
4541	hash = jhash(cpumask_bits(attrs->cpumask),
4542		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4543	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4544		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4545	hash = jhash_1word(attrs->affn_strict, hash);
4546	return hash;
4547}
4548
4549/* content equality test */
4550static bool wqattrs_equal(const struct workqueue_attrs *a,
4551			  const struct workqueue_attrs *b)
4552{
4553	if (a->nice != b->nice)
4554		return false;
4555	if (!cpumask_equal(a->cpumask, b->cpumask))
4556		return false;
4557	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4558		return false;
4559	if (a->affn_strict != b->affn_strict)
4560		return false;
4561	return true;
4562}
4563
4564/* Update @attrs with actually available CPUs */
4565static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4566				      const cpumask_t *unbound_cpumask)
4567{
4568	/*
4569	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4570	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4571	 * @unbound_cpumask.
4572	 */
4573	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4574	if (unlikely(cpumask_empty(attrs->cpumask)))
4575		cpumask_copy(attrs->cpumask, unbound_cpumask);
4576}
4577
4578/* find wq_pod_type to use for @attrs */
4579static const struct wq_pod_type *
4580wqattrs_pod_type(const struct workqueue_attrs *attrs)
4581{
4582	enum wq_affn_scope scope;
4583	struct wq_pod_type *pt;
4584
4585	/* to synchronize access to wq_affn_dfl */
4586	lockdep_assert_held(&wq_pool_mutex);
4587
4588	if (attrs->affn_scope == WQ_AFFN_DFL)
4589		scope = wq_affn_dfl;
4590	else
4591		scope = attrs->affn_scope;
4592
4593	pt = &wq_pod_types[scope];
4594
4595	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4596	    likely(pt->nr_pods))
4597		return pt;
4598
4599	/*
4600	 * Before workqueue_init_topology(), only SYSTEM is available which is
4601	 * initialized in workqueue_init_early().
4602	 */
4603	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4604	BUG_ON(!pt->nr_pods);
4605	return pt;
4606}
4607
4608/**
4609 * init_worker_pool - initialize a newly zalloc'd worker_pool
4610 * @pool: worker_pool to initialize
4611 *
4612 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4613 *
4614 * Return: 0 on success, -errno on failure.  Even on failure, all fields
4615 * inside @pool proper are initialized and put_unbound_pool() can be called
4616 * on @pool safely to release it.
4617 */
4618static int init_worker_pool(struct worker_pool *pool)
4619{
4620	raw_spin_lock_init(&pool->lock);
4621	pool->id = -1;
4622	pool->cpu = -1;
4623	pool->node = NUMA_NO_NODE;
4624	pool->flags |= POOL_DISASSOCIATED;
4625	pool->watchdog_ts = jiffies;
4626	INIT_LIST_HEAD(&pool->worklist);
4627	INIT_LIST_HEAD(&pool->idle_list);
4628	hash_init(pool->busy_hash);
4629
4630	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4631	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4632
4633	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4634
4635	INIT_LIST_HEAD(&pool->workers);
4636	INIT_LIST_HEAD(&pool->dying_workers);
4637
4638	ida_init(&pool->worker_ida);
4639	INIT_HLIST_NODE(&pool->hash_node);
4640	pool->refcnt = 1;
4641
4642	/* shouldn't fail above this point */
4643	pool->attrs = alloc_workqueue_attrs();
4644	if (!pool->attrs)
4645		return -ENOMEM;
4646
4647	wqattrs_clear_for_pool(pool->attrs);
4648
4649	return 0;
4650}
4651
4652#ifdef CONFIG_LOCKDEP
4653static void wq_init_lockdep(struct workqueue_struct *wq)
4654{
4655	char *lock_name;
4656
4657	lockdep_register_key(&wq->key);
4658	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4659	if (!lock_name)
4660		lock_name = wq->name;
4661
4662	wq->lock_name = lock_name;
4663	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4664}
4665
4666static void wq_unregister_lockdep(struct workqueue_struct *wq)
4667{
4668	lockdep_unregister_key(&wq->key);
4669}
4670
4671static void wq_free_lockdep(struct workqueue_struct *wq)
4672{
4673	if (wq->lock_name != wq->name)
4674		kfree(wq->lock_name);
4675}
4676#else
4677static void wq_init_lockdep(struct workqueue_struct *wq)
4678{
4679}
4680
4681static void wq_unregister_lockdep(struct workqueue_struct *wq)
4682{
4683}
4684
4685static void wq_free_lockdep(struct workqueue_struct *wq)
4686{
4687}
4688#endif
4689
4690static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4691{
4692	int node;
4693
4694	for_each_node(node) {
4695		kfree(nna_ar[node]);
4696		nna_ar[node] = NULL;
4697	}
4698
4699	kfree(nna_ar[nr_node_ids]);
4700	nna_ar[nr_node_ids] = NULL;
4701}
4702
4703static void init_node_nr_active(struct wq_node_nr_active *nna)
4704{
4705	nna->max = WQ_DFL_MIN_ACTIVE;
4706	atomic_set(&nna->nr, 0);
4707	raw_spin_lock_init(&nna->lock);
4708	INIT_LIST_HEAD(&nna->pending_pwqs);
4709}
4710
4711/*
4712 * Each node's nr_active counter will be accessed mostly from its own node and
4713 * should be allocated in the node.
4714 */
4715static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4716{
4717	struct wq_node_nr_active *nna;
4718	int node;
4719
4720	for_each_node(node) {
4721		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4722		if (!nna)
4723			goto err_free;
4724		init_node_nr_active(nna);
4725		nna_ar[node] = nna;
4726	}
4727
4728	/* [nr_node_ids] is used as the fallback */
4729	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4730	if (!nna)
4731		goto err_free;
4732	init_node_nr_active(nna);
4733	nna_ar[nr_node_ids] = nna;
4734
4735	return 0;
4736
4737err_free:
4738	free_node_nr_active(nna_ar);
4739	return -ENOMEM;
4740}
4741
4742static void rcu_free_wq(struct rcu_head *rcu)
4743{
4744	struct workqueue_struct *wq =
4745		container_of(rcu, struct workqueue_struct, rcu);
4746
4747	if (wq->flags & WQ_UNBOUND)
4748		free_node_nr_active(wq->node_nr_active);
4749
4750	wq_free_lockdep(wq);
4751	free_percpu(wq->cpu_pwq);
4752	free_workqueue_attrs(wq->unbound_attrs);
4753	kfree(wq);
4754}
4755
4756static void rcu_free_pool(struct rcu_head *rcu)
4757{
4758	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4759
4760	ida_destroy(&pool->worker_ida);
4761	free_workqueue_attrs(pool->attrs);
4762	kfree(pool);
4763}
4764
4765/**
4766 * put_unbound_pool - put a worker_pool
4767 * @pool: worker_pool to put
4768 *
4769 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4770 * safe manner.  get_unbound_pool() calls this function on its failure path
4771 * and this function should be able to release pools which went through,
4772 * successfully or not, init_worker_pool().
4773 *
4774 * Should be called with wq_pool_mutex held.
4775 */
4776static void put_unbound_pool(struct worker_pool *pool)
4777{
4778	DECLARE_COMPLETION_ONSTACK(detach_completion);
4779	struct worker *worker;
4780	LIST_HEAD(cull_list);
4781
4782	lockdep_assert_held(&wq_pool_mutex);
4783
4784	if (--pool->refcnt)
4785		return;
4786
4787	/* sanity checks */
4788	if (WARN_ON(!(pool->cpu < 0)) ||
4789	    WARN_ON(!list_empty(&pool->worklist)))
4790		return;
4791
4792	/* release id and unhash */
4793	if (pool->id >= 0)
4794		idr_remove(&worker_pool_idr, pool->id);
4795	hash_del(&pool->hash_node);
4796
4797	/*
4798	 * Become the manager and destroy all workers.  This prevents
4799	 * @pool's workers from blocking on attach_mutex.  We're the last
4800	 * manager and @pool gets freed with the flag set.
4801	 *
4802	 * Having a concurrent manager is quite unlikely to happen as we can
4803	 * only get here with
4804	 *   pwq->refcnt == pool->refcnt == 0
4805	 * which implies no work queued to the pool, which implies no worker can
4806	 * become the manager. However a worker could have taken the role of
4807	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4808	 * drops pool->lock
4809	 */
4810	while (true) {
4811		rcuwait_wait_event(&manager_wait,
4812				   !(pool->flags & POOL_MANAGER_ACTIVE),
4813				   TASK_UNINTERRUPTIBLE);
4814
4815		mutex_lock(&wq_pool_attach_mutex);
4816		raw_spin_lock_irq(&pool->lock);
4817		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4818			pool->flags |= POOL_MANAGER_ACTIVE;
4819			break;
4820		}
4821		raw_spin_unlock_irq(&pool->lock);
4822		mutex_unlock(&wq_pool_attach_mutex);
4823	}
4824
4825	while ((worker = first_idle_worker(pool)))
4826		set_worker_dying(worker, &cull_list);
4827	WARN_ON(pool->nr_workers || pool->nr_idle);
4828	raw_spin_unlock_irq(&pool->lock);
4829
4830	wake_dying_workers(&cull_list);
4831
4832	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4833		pool->detach_completion = &detach_completion;
4834	mutex_unlock(&wq_pool_attach_mutex);
4835
4836	if (pool->detach_completion)
4837		wait_for_completion(pool->detach_completion);
4838
4839	/* shut down the timers */
4840	del_timer_sync(&pool->idle_timer);
4841	cancel_work_sync(&pool->idle_cull_work);
4842	del_timer_sync(&pool->mayday_timer);
4843
4844	/* RCU protected to allow dereferences from get_work_pool() */
4845	call_rcu(&pool->rcu, rcu_free_pool);
4846}
4847
4848/**
4849 * get_unbound_pool - get a worker_pool with the specified attributes
4850 * @attrs: the attributes of the worker_pool to get
4851 *
4852 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4853 * reference count and return it.  If there already is a matching
4854 * worker_pool, it will be used; otherwise, this function attempts to
4855 * create a new one.
4856 *
4857 * Should be called with wq_pool_mutex held.
4858 *
4859 * Return: On success, a worker_pool with the same attributes as @attrs.
4860 * On failure, %NULL.
4861 */
4862static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4863{
4864	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4865	u32 hash = wqattrs_hash(attrs);
4866	struct worker_pool *pool;
4867	int pod, node = NUMA_NO_NODE;
4868
4869	lockdep_assert_held(&wq_pool_mutex);
4870
4871	/* do we already have a matching pool? */
4872	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4873		if (wqattrs_equal(pool->attrs, attrs)) {
4874			pool->refcnt++;
4875			return pool;
4876		}
4877	}
4878
4879	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4880	for (pod = 0; pod < pt->nr_pods; pod++) {
4881		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4882			node = pt->pod_node[pod];
4883			break;
4884		}
4885	}
4886
4887	/* nope, create a new one */
4888	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4889	if (!pool || init_worker_pool(pool) < 0)
4890		goto fail;
4891
4892	pool->node = node;
4893	copy_workqueue_attrs(pool->attrs, attrs);
4894	wqattrs_clear_for_pool(pool->attrs);
4895
4896	if (worker_pool_assign_id(pool) < 0)
4897		goto fail;
4898
4899	/* create and start the initial worker */
4900	if (wq_online && !create_worker(pool))
4901		goto fail;
4902
4903	/* install */
4904	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4905
4906	return pool;
4907fail:
4908	if (pool)
4909		put_unbound_pool(pool);
4910	return NULL;
4911}
4912
4913static void rcu_free_pwq(struct rcu_head *rcu)
4914{
4915	kmem_cache_free(pwq_cache,
4916			container_of(rcu, struct pool_workqueue, rcu));
4917}
4918
4919/*
4920 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4921 * refcnt and needs to be destroyed.
4922 */
4923static void pwq_release_workfn(struct kthread_work *work)
4924{
4925	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4926						  release_work);
4927	struct workqueue_struct *wq = pwq->wq;
4928	struct worker_pool *pool = pwq->pool;
4929	bool is_last = false;
4930
4931	/*
4932	 * When @pwq is not linked, it doesn't hold any reference to the
4933	 * @wq, and @wq is invalid to access.
4934	 */
4935	if (!list_empty(&pwq->pwqs_node)) {
4936		mutex_lock(&wq->mutex);
4937		list_del_rcu(&pwq->pwqs_node);
4938		is_last = list_empty(&wq->pwqs);
4939
4940		/*
4941		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
 
 
4942		 */
4943		if (!is_last && (wq->flags & __WQ_ORDERED))
4944			unplug_oldest_pwq(wq);
4945
4946		mutex_unlock(&wq->mutex);
4947	}
4948
4949	if (wq->flags & WQ_UNBOUND) {
4950		mutex_lock(&wq_pool_mutex);
4951		put_unbound_pool(pool);
4952		mutex_unlock(&wq_pool_mutex);
4953	}
4954
4955	if (!list_empty(&pwq->pending_node)) {
4956		struct wq_node_nr_active *nna =
4957			wq_node_nr_active(pwq->wq, pwq->pool->node);
4958
4959		raw_spin_lock_irq(&nna->lock);
4960		list_del_init(&pwq->pending_node);
4961		raw_spin_unlock_irq(&nna->lock);
4962	}
4963
4964	call_rcu(&pwq->rcu, rcu_free_pwq);
4965
4966	/*
4967	 * If we're the last pwq going away, @wq is already dead and no one
4968	 * is gonna access it anymore.  Schedule RCU free.
4969	 */
4970	if (is_last) {
4971		wq_unregister_lockdep(wq);
4972		call_rcu(&wq->rcu, rcu_free_wq);
4973	}
4974}
4975
4976/* initialize newly allocated @pwq which is associated with @wq and @pool */
4977static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4978		     struct worker_pool *pool)
4979{
4980	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
4981
4982	memset(pwq, 0, sizeof(*pwq));
4983
4984	pwq->pool = pool;
4985	pwq->wq = wq;
4986	pwq->flush_color = -1;
4987	pwq->refcnt = 1;
4988	INIT_LIST_HEAD(&pwq->inactive_works);
4989	INIT_LIST_HEAD(&pwq->pending_node);
4990	INIT_LIST_HEAD(&pwq->pwqs_node);
4991	INIT_LIST_HEAD(&pwq->mayday_node);
4992	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4993}
4994
4995/* sync @pwq with the current state of its associated wq and link it */
4996static void link_pwq(struct pool_workqueue *pwq)
4997{
4998	struct workqueue_struct *wq = pwq->wq;
4999
5000	lockdep_assert_held(&wq->mutex);
5001
5002	/* may be called multiple times, ignore if already linked */
5003	if (!list_empty(&pwq->pwqs_node))
5004		return;
5005
5006	/* set the matching work_color */
5007	pwq->work_color = wq->work_color;
5008
5009	/* link in @pwq */
5010	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5011}
5012
5013/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5014static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5015					const struct workqueue_attrs *attrs)
5016{
5017	struct worker_pool *pool;
5018	struct pool_workqueue *pwq;
5019
5020	lockdep_assert_held(&wq_pool_mutex);
5021
5022	pool = get_unbound_pool(attrs);
5023	if (!pool)
5024		return NULL;
5025
5026	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5027	if (!pwq) {
5028		put_unbound_pool(pool);
5029		return NULL;
5030	}
5031
5032	init_pwq(pwq, wq, pool);
5033	return pwq;
5034}
5035
5036/**
5037 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5038 * @attrs: the wq_attrs of the default pwq of the target workqueue
5039 * @cpu: the target CPU
5040 * @cpu_going_down: if >= 0, the CPU to consider as offline
5041 *
5042 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5043 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5044 * The result is stored in @attrs->__pod_cpumask.
5045 *
5046 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5047 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5048 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5049 *
5050 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5051 */
5052static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5053				int cpu_going_down)
5054{
5055	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5056	int pod = pt->cpu_pod[cpu];
5057
5058	/* does @pod have any online CPUs @attrs wants? */
5059	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5060	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5061	if (cpu_going_down >= 0)
5062		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5063
5064	if (cpumask_empty(attrs->__pod_cpumask)) {
5065		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5066		return;
5067	}
5068
5069	/* yeap, return possible CPUs in @pod that @attrs wants */
5070	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5071
5072	if (cpumask_empty(attrs->__pod_cpumask))
5073		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5074				"possible intersect\n");
5075}
5076
5077/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5078static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5079					int cpu, struct pool_workqueue *pwq)
5080{
5081	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5082	struct pool_workqueue *old_pwq;
5083
5084	lockdep_assert_held(&wq_pool_mutex);
5085	lockdep_assert_held(&wq->mutex);
5086
5087	/* link_pwq() can handle duplicate calls */
5088	link_pwq(pwq);
5089
5090	old_pwq = rcu_access_pointer(*slot);
5091	rcu_assign_pointer(*slot, pwq);
5092	return old_pwq;
5093}
5094
5095/* context to store the prepared attrs & pwqs before applying */
5096struct apply_wqattrs_ctx {
5097	struct workqueue_struct	*wq;		/* target workqueue */
5098	struct workqueue_attrs	*attrs;		/* attrs to apply */
5099	struct list_head	list;		/* queued for batching commit */
5100	struct pool_workqueue	*dfl_pwq;
5101	struct pool_workqueue	*pwq_tbl[];
5102};
5103
5104/* free the resources after success or abort */
5105static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5106{
5107	if (ctx) {
5108		int cpu;
5109
5110		for_each_possible_cpu(cpu)
5111			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5112		put_pwq_unlocked(ctx->dfl_pwq);
5113
5114		free_workqueue_attrs(ctx->attrs);
5115
5116		kfree(ctx);
5117	}
5118}
5119
5120/* allocate the attrs and pwqs for later installation */
5121static struct apply_wqattrs_ctx *
5122apply_wqattrs_prepare(struct workqueue_struct *wq,
5123		      const struct workqueue_attrs *attrs,
5124		      const cpumask_var_t unbound_cpumask)
5125{
5126	struct apply_wqattrs_ctx *ctx;
5127	struct workqueue_attrs *new_attrs;
5128	int cpu;
5129
5130	lockdep_assert_held(&wq_pool_mutex);
5131
5132	if (WARN_ON(attrs->affn_scope < 0 ||
5133		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5134		return ERR_PTR(-EINVAL);
5135
5136	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5137
5138	new_attrs = alloc_workqueue_attrs();
5139	if (!ctx || !new_attrs)
5140		goto out_free;
5141
5142	/*
5143	 * If something goes wrong during CPU up/down, we'll fall back to
5144	 * the default pwq covering whole @attrs->cpumask.  Always create
5145	 * it even if we don't use it immediately.
5146	 */
5147	copy_workqueue_attrs(new_attrs, attrs);
5148	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5149	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5150	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5151	if (!ctx->dfl_pwq)
5152		goto out_free;
5153
5154	for_each_possible_cpu(cpu) {
5155		if (new_attrs->ordered) {
5156			ctx->dfl_pwq->refcnt++;
5157			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5158		} else {
5159			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5160			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5161			if (!ctx->pwq_tbl[cpu])
5162				goto out_free;
5163		}
5164	}
5165
5166	/* save the user configured attrs and sanitize it. */
5167	copy_workqueue_attrs(new_attrs, attrs);
5168	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5169	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5170	ctx->attrs = new_attrs;
5171
5172	/*
5173	 * For initialized ordered workqueues, there should only be one pwq
5174	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5175	 * of newly queued work items until execution of older work items in
5176	 * the old pwq's have completed.
5177	 */
5178	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5179		ctx->dfl_pwq->plugged = true;
5180
5181	ctx->wq = wq;
5182	return ctx;
5183
5184out_free:
5185	free_workqueue_attrs(new_attrs);
5186	apply_wqattrs_cleanup(ctx);
5187	return ERR_PTR(-ENOMEM);
5188}
5189
5190/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5191static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5192{
5193	int cpu;
5194
5195	/* all pwqs have been created successfully, let's install'em */
5196	mutex_lock(&ctx->wq->mutex);
5197
5198	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5199
5200	/* save the previous pwqs and install the new ones */
5201	for_each_possible_cpu(cpu)
5202		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5203							ctx->pwq_tbl[cpu]);
5204	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5205
5206	/* update node_nr_active->max */
5207	wq_update_node_max_active(ctx->wq, -1);
5208
5209	/* rescuer needs to respect wq cpumask changes */
5210	if (ctx->wq->rescuer)
5211		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5212				     unbound_effective_cpumask(ctx->wq));
5213
5214	mutex_unlock(&ctx->wq->mutex);
5215}
5216
5217static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5218					const struct workqueue_attrs *attrs)
5219{
5220	struct apply_wqattrs_ctx *ctx;
5221
5222	/* only unbound workqueues can change attributes */
5223	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5224		return -EINVAL;
5225
5226	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5227	if (IS_ERR(ctx))
5228		return PTR_ERR(ctx);
5229
5230	/* the ctx has been prepared successfully, let's commit it */
5231	apply_wqattrs_commit(ctx);
5232	apply_wqattrs_cleanup(ctx);
5233
5234	return 0;
5235}
5236
5237/**
5238 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5239 * @wq: the target workqueue
5240 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5241 *
5242 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5243 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5244 * work items are affine to the pod it was issued on. Older pwqs are released as
5245 * in-flight work items finish. Note that a work item which repeatedly requeues
5246 * itself back-to-back will stay on its current pwq.
5247 *
5248 * Performs GFP_KERNEL allocations.
5249 *
5250 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5251 *
5252 * Return: 0 on success and -errno on failure.
5253 */
5254int apply_workqueue_attrs(struct workqueue_struct *wq,
5255			  const struct workqueue_attrs *attrs)
5256{
5257	int ret;
5258
5259	lockdep_assert_cpus_held();
5260
5261	mutex_lock(&wq_pool_mutex);
5262	ret = apply_workqueue_attrs_locked(wq, attrs);
5263	mutex_unlock(&wq_pool_mutex);
5264
5265	return ret;
5266}
5267
5268/**
5269 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5270 * @wq: the target workqueue
5271 * @cpu: the CPU to update pool association for
5272 * @hotplug_cpu: the CPU coming up or going down
5273 * @online: whether @cpu is coming up or going down
5274 *
5275 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5276 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5277 * @wq accordingly.
5278 *
5279 *
5280 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5281 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5282 *
5283 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5284 * with a cpumask spanning multiple pods, the workers which were already
5285 * executing the work items for the workqueue will lose their CPU affinity and
5286 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5287 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5288 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5289 */
5290static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5291			  int hotplug_cpu, bool online)
5292{
5293	int off_cpu = online ? -1 : hotplug_cpu;
5294	struct pool_workqueue *old_pwq = NULL, *pwq;
5295	struct workqueue_attrs *target_attrs;
5296
5297	lockdep_assert_held(&wq_pool_mutex);
5298
5299	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5300		return;
5301
5302	/*
5303	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5304	 * Let's use a preallocated one.  The following buf is protected by
5305	 * CPU hotplug exclusion.
5306	 */
5307	target_attrs = wq_update_pod_attrs_buf;
5308
5309	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5310	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5311
5312	/* nothing to do if the target cpumask matches the current pwq */
5313	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5314	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5315		return;
5316
5317	/* create a new pwq */
5318	pwq = alloc_unbound_pwq(wq, target_attrs);
5319	if (!pwq) {
5320		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5321			wq->name);
5322		goto use_dfl_pwq;
5323	}
5324
5325	/* Install the new pwq. */
5326	mutex_lock(&wq->mutex);
5327	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5328	goto out_unlock;
5329
5330use_dfl_pwq:
5331	mutex_lock(&wq->mutex);
5332	pwq = unbound_pwq(wq, -1);
5333	raw_spin_lock_irq(&pwq->pool->lock);
5334	get_pwq(pwq);
5335	raw_spin_unlock_irq(&pwq->pool->lock);
5336	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5337out_unlock:
5338	mutex_unlock(&wq->mutex);
5339	put_pwq_unlocked(old_pwq);
5340}
5341
5342static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5343{
5344	bool highpri = wq->flags & WQ_HIGHPRI;
5345	int cpu, ret;
5346
5347	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5348	if (!wq->cpu_pwq)
5349		goto enomem;
5350
5351	if (!(wq->flags & WQ_UNBOUND)) {
5352		for_each_possible_cpu(cpu) {
5353			struct pool_workqueue **pwq_p;
5354			struct worker_pool __percpu *pools;
5355			struct worker_pool *pool;
5356
5357			if (wq->flags & WQ_BH)
5358				pools = bh_worker_pools;
5359			else
5360				pools = cpu_worker_pools;
5361
5362			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5363			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5364
5365			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5366						       pool->node);
5367			if (!*pwq_p)
5368				goto enomem;
5369
5370			init_pwq(*pwq_p, wq, pool);
5371
5372			mutex_lock(&wq->mutex);
5373			link_pwq(*pwq_p);
5374			mutex_unlock(&wq->mutex);
5375		}
5376		return 0;
5377	}
5378
5379	cpus_read_lock();
5380	if (wq->flags & __WQ_ORDERED) {
5381		struct pool_workqueue *dfl_pwq;
5382
5383		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5384		/* there should only be single pwq for ordering guarantee */
5385		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5386		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5387			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5388		     "ordering guarantee broken for workqueue %s\n", wq->name);
5389	} else {
5390		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5391	}
5392	cpus_read_unlock();
5393
5394	/* for unbound pwq, flush the pwq_release_worker ensures that the
5395	 * pwq_release_workfn() completes before calling kfree(wq).
5396	 */
5397	if (ret)
5398		kthread_flush_worker(pwq_release_worker);
5399
5400	return ret;
5401
5402enomem:
5403	if (wq->cpu_pwq) {
5404		for_each_possible_cpu(cpu) {
5405			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5406
5407			if (pwq)
5408				kmem_cache_free(pwq_cache, pwq);
5409		}
5410		free_percpu(wq->cpu_pwq);
5411		wq->cpu_pwq = NULL;
5412	}
5413	return -ENOMEM;
5414}
5415
5416static int wq_clamp_max_active(int max_active, unsigned int flags,
5417			       const char *name)
5418{
5419	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5420		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5421			max_active, name, 1, WQ_MAX_ACTIVE);
5422
5423	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5424}
5425
5426/*
5427 * Workqueues which may be used during memory reclaim should have a rescuer
5428 * to guarantee forward progress.
5429 */
5430static int init_rescuer(struct workqueue_struct *wq)
5431{
5432	struct worker *rescuer;
5433	int ret;
5434
5435	if (!(wq->flags & WQ_MEM_RECLAIM))
5436		return 0;
5437
5438	rescuer = alloc_worker(NUMA_NO_NODE);
5439	if (!rescuer) {
5440		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5441		       wq->name);
5442		return -ENOMEM;
5443	}
5444
5445	rescuer->rescue_wq = wq;
5446	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5447	if (IS_ERR(rescuer->task)) {
5448		ret = PTR_ERR(rescuer->task);
5449		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5450		       wq->name, ERR_PTR(ret));
5451		kfree(rescuer);
5452		return ret;
5453	}
5454
5455	wq->rescuer = rescuer;
5456	if (wq->flags & WQ_UNBOUND)
5457		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5458	else
5459		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5460	wake_up_process(rescuer->task);
5461
5462	return 0;
5463}
5464
5465/**
5466 * wq_adjust_max_active - update a wq's max_active to the current setting
5467 * @wq: target workqueue
5468 *
5469 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5470 * activate inactive work items accordingly. If @wq is freezing, clear
5471 * @wq->max_active to zero.
5472 */
5473static void wq_adjust_max_active(struct workqueue_struct *wq)
5474{
5475	bool activated;
5476	int new_max, new_min;
 
 
5477
5478	lockdep_assert_held(&wq->mutex);
 
 
 
5479
5480	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5481		new_max = 0;
5482		new_min = 0;
5483	} else {
5484		new_max = wq->saved_max_active;
5485		new_min = wq->saved_min_active;
5486	}
5487
5488	if (wq->max_active == new_max && wq->min_active == new_min)
5489		return;
 
5490
5491	/*
5492	 * Update @wq->max/min_active and then kick inactive work items if more
5493	 * active work items are allowed. This doesn't break work item ordering
5494	 * because new work items are always queued behind existing inactive
5495	 * work items if there are any.
5496	 */
5497	WRITE_ONCE(wq->max_active, new_max);
5498	WRITE_ONCE(wq->min_active, new_min);
5499
5500	if (wq->flags & WQ_UNBOUND)
5501		wq_update_node_max_active(wq, -1);
5502
5503	if (new_max == 0)
5504		return;
5505
5506	/*
5507	 * Round-robin through pwq's activating the first inactive work item
5508	 * until max_active is filled.
5509	 */
5510	do {
5511		struct pool_workqueue *pwq;
5512
5513		activated = false;
5514		for_each_pwq(pwq, wq) {
5515			unsigned long irq_flags;
5516
5517			/* can be called during early boot w/ irq disabled */
5518			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5519			if (pwq_activate_first_inactive(pwq, true)) {
5520				activated = true;
5521				kick_pool(pwq->pool);
5522			}
5523			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5524		}
5525	} while (activated);
5526}
5527
5528__printf(1, 4)
5529struct workqueue_struct *alloc_workqueue(const char *fmt,
5530					 unsigned int flags,
5531					 int max_active, ...)
5532{
5533	va_list args;
5534	struct workqueue_struct *wq;
5535	size_t wq_size;
5536	int name_len;
5537
5538	if (flags & WQ_BH) {
5539		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5540			return NULL;
5541		if (WARN_ON_ONCE(max_active))
5542			return NULL;
5543	}
5544
5545	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5546	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5547		flags |= WQ_UNBOUND;
5548
5549	/* allocate wq and format name */
5550	if (flags & WQ_UNBOUND)
5551		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5552	else
5553		wq_size = sizeof(*wq);
5554
5555	wq = kzalloc(wq_size, GFP_KERNEL);
5556	if (!wq)
5557		return NULL;
5558
5559	if (flags & WQ_UNBOUND) {
5560		wq->unbound_attrs = alloc_workqueue_attrs();
5561		if (!wq->unbound_attrs)
5562			goto err_free_wq;
5563	}
5564
5565	va_start(args, max_active);
5566	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5567	va_end(args);
5568
5569	if (name_len >= WQ_NAME_LEN)
5570		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5571			     wq->name);
5572
5573	if (flags & WQ_BH) {
5574		/*
5575		 * BH workqueues always share a single execution context per CPU
5576		 * and don't impose any max_active limit.
5577		 */
5578		max_active = INT_MAX;
5579	} else {
5580		max_active = max_active ?: WQ_DFL_ACTIVE;
5581		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5582	}
5583
5584	/* init wq */
5585	wq->flags = flags;
5586	wq->max_active = max_active;
5587	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5588	wq->saved_max_active = wq->max_active;
5589	wq->saved_min_active = wq->min_active;
5590	mutex_init(&wq->mutex);
5591	atomic_set(&wq->nr_pwqs_to_flush, 0);
5592	INIT_LIST_HEAD(&wq->pwqs);
5593	INIT_LIST_HEAD(&wq->flusher_queue);
5594	INIT_LIST_HEAD(&wq->flusher_overflow);
5595	INIT_LIST_HEAD(&wq->maydays);
5596
5597	wq_init_lockdep(wq);
5598	INIT_LIST_HEAD(&wq->list);
5599
5600	if (flags & WQ_UNBOUND) {
5601		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5602			goto err_unreg_lockdep;
 
 
 
 
 
 
 
 
 
 
5603	}
5604
5605	if (alloc_and_link_pwqs(wq) < 0)
5606		goto err_free_node_nr_active;
5607
5608	if (wq_online && init_rescuer(wq) < 0)
5609		goto err_destroy;
5610
5611	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5612		goto err_destroy;
 
 
 
 
 
 
 
 
 
 
5613
5614	/*
5615	 * wq_pool_mutex protects global freeze state and workqueues list.
5616	 * Grab it, adjust max_active and add the new @wq to workqueues
5617	 * list.
5618	 */
5619	mutex_lock(&wq_pool_mutex);
5620
5621	mutex_lock(&wq->mutex);
5622	wq_adjust_max_active(wq);
5623	mutex_unlock(&wq->mutex);
5624
5625	list_add_tail_rcu(&wq->list, &workqueues);
5626
5627	mutex_unlock(&wq_pool_mutex);
5628
5629	return wq;
5630
5631err_free_node_nr_active:
5632	if (wq->flags & WQ_UNBOUND)
5633		free_node_nr_active(wq->node_nr_active);
5634err_unreg_lockdep:
5635	wq_unregister_lockdep(wq);
5636	wq_free_lockdep(wq);
5637err_free_wq:
5638	free_workqueue_attrs(wq->unbound_attrs);
5639	kfree(wq);
5640	return NULL;
5641err_destroy:
5642	destroy_workqueue(wq);
5643	return NULL;
5644}
5645EXPORT_SYMBOL_GPL(alloc_workqueue);
5646
5647static bool pwq_busy(struct pool_workqueue *pwq)
5648{
5649	int i;
5650
5651	for (i = 0; i < WORK_NR_COLORS; i++)
5652		if (pwq->nr_in_flight[i])
5653			return true;
5654
5655	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5656		return true;
5657	if (!pwq_is_empty(pwq))
5658		return true;
5659
5660	return false;
5661}
5662
5663/**
5664 * destroy_workqueue - safely terminate a workqueue
5665 * @wq: target workqueue
5666 *
5667 * Safely destroy a workqueue. All work currently pending will be done first.
5668 */
5669void destroy_workqueue(struct workqueue_struct *wq)
5670{
5671	struct pool_workqueue *pwq;
5672	int cpu;
5673
5674	/*
5675	 * Remove it from sysfs first so that sanity check failure doesn't
5676	 * lead to sysfs name conflicts.
5677	 */
5678	workqueue_sysfs_unregister(wq);
5679
5680	/* mark the workqueue destruction is in progress */
5681	mutex_lock(&wq->mutex);
5682	wq->flags |= __WQ_DESTROYING;
5683	mutex_unlock(&wq->mutex);
5684
5685	/* drain it before proceeding with destruction */
5686	drain_workqueue(wq);
5687
5688	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5689	if (wq->rescuer) {
5690		struct worker *rescuer = wq->rescuer;
5691
5692		/* this prevents new queueing */
5693		raw_spin_lock_irq(&wq_mayday_lock);
5694		wq->rescuer = NULL;
5695		raw_spin_unlock_irq(&wq_mayday_lock);
5696
5697		/* rescuer will empty maydays list before exiting */
5698		kthread_stop(rescuer->task);
5699		kfree(rescuer);
5700	}
5701
5702	/*
5703	 * Sanity checks - grab all the locks so that we wait for all
5704	 * in-flight operations which may do put_pwq().
5705	 */
5706	mutex_lock(&wq_pool_mutex);
5707	mutex_lock(&wq->mutex);
5708	for_each_pwq(pwq, wq) {
5709		raw_spin_lock_irq(&pwq->pool->lock);
5710		if (WARN_ON(pwq_busy(pwq))) {
5711			pr_warn("%s: %s has the following busy pwq\n",
5712				__func__, wq->name);
5713			show_pwq(pwq);
5714			raw_spin_unlock_irq(&pwq->pool->lock);
5715			mutex_unlock(&wq->mutex);
5716			mutex_unlock(&wq_pool_mutex);
5717			show_one_workqueue(wq);
5718			return;
5719		}
5720		raw_spin_unlock_irq(&pwq->pool->lock);
5721	}
5722	mutex_unlock(&wq->mutex);
5723
5724	/*
5725	 * wq list is used to freeze wq, remove from list after
5726	 * flushing is complete in case freeze races us.
5727	 */
5728	list_del_rcu(&wq->list);
5729	mutex_unlock(&wq_pool_mutex);
 
5730
5731	/*
5732	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5733	 * to put the base refs. @wq will be auto-destroyed from the last
5734	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5735	 */
5736	rcu_read_lock();
5737
5738	for_each_possible_cpu(cpu) {
5739		put_pwq_unlocked(unbound_pwq(wq, cpu));
5740		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
 
5741	}
5742
5743	put_pwq_unlocked(unbound_pwq(wq, -1));
5744	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
 
 
 
5745
5746	rcu_read_unlock();
 
5747}
5748EXPORT_SYMBOL_GPL(destroy_workqueue);
5749
5750/**
5751 * workqueue_set_max_active - adjust max_active of a workqueue
5752 * @wq: target workqueue
5753 * @max_active: new max_active value.
5754 *
5755 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5756 * comment.
5757 *
5758 * CONTEXT:
5759 * Don't call from IRQ context.
5760 */
5761void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5762{
5763	/* max_active doesn't mean anything for BH workqueues */
5764	if (WARN_ON(wq->flags & WQ_BH))
5765		return;
5766	/* disallow meddling with max_active for ordered workqueues */
5767	if (WARN_ON(wq->flags & __WQ_ORDERED))
5768		return;
5769
5770	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5771
5772	mutex_lock(&wq->mutex);
5773
5774	wq->saved_max_active = max_active;
5775	if (wq->flags & WQ_UNBOUND)
5776		wq->saved_min_active = min(wq->saved_min_active, max_active);
5777
5778	wq_adjust_max_active(wq);
 
5779
5780	mutex_unlock(&wq->mutex);
5781}
5782EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5783
5784/**
5785 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5786 * @wq: target unbound workqueue
5787 * @min_active: new min_active value
5788 *
5789 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5790 * unbound workqueue is not guaranteed to be able to process max_active
5791 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5792 * able to process min_active number of interdependent work items which is
5793 * %WQ_DFL_MIN_ACTIVE by default.
5794 *
5795 * Use this function to adjust the min_active value between 0 and the current
5796 * max_active.
5797 */
5798void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5799{
5800	/* min_active is only meaningful for non-ordered unbound workqueues */
5801	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5802		    WQ_UNBOUND))
5803		return;
5804
5805	mutex_lock(&wq->mutex);
5806	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5807	wq_adjust_max_active(wq);
5808	mutex_unlock(&wq->mutex);
5809}
5810
5811/**
5812 * current_work - retrieve %current task's work struct
5813 *
5814 * Determine if %current task is a workqueue worker and what it's working on.
5815 * Useful to find out the context that the %current task is running in.
5816 *
5817 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5818 */
5819struct work_struct *current_work(void)
5820{
5821	struct worker *worker = current_wq_worker();
5822
5823	return worker ? worker->current_work : NULL;
5824}
5825EXPORT_SYMBOL(current_work);
5826
5827/**
5828 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5829 *
5830 * Determine whether %current is a workqueue rescuer.  Can be used from
5831 * work functions to determine whether it's being run off the rescuer task.
5832 *
5833 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5834 */
5835bool current_is_workqueue_rescuer(void)
5836{
5837	struct worker *worker = current_wq_worker();
5838
5839	return worker && worker->rescue_wq;
5840}
 
5841
5842/**
5843 * workqueue_congested - test whether a workqueue is congested
5844 * @cpu: CPU in question
5845 * @wq: target workqueue
5846 *
5847 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5848 * no synchronization around this function and the test result is
5849 * unreliable and only useful as advisory hints or for debugging.
5850 *
5851 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5852 *
5853 * With the exception of ordered workqueues, all workqueues have per-cpu
5854 * pool_workqueues, each with its own congested state. A workqueue being
5855 * congested on one CPU doesn't mean that the workqueue is contested on any
5856 * other CPUs.
5857 *
5858 * Return:
5859 * %true if congested, %false otherwise.
5860 */
5861bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5862{
5863	struct pool_workqueue *pwq;
5864	bool ret;
5865
5866	rcu_read_lock();
5867	preempt_disable();
 
5868
5869	if (cpu == WORK_CPU_UNBOUND)
5870		cpu = smp_processor_id();
 
 
 
 
 
 
 
 
5871
5872	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5873	ret = !list_empty(&pwq->inactive_works);
5874
5875	preempt_enable();
5876	rcu_read_unlock();
5877
5878	return ret;
5879}
5880EXPORT_SYMBOL_GPL(workqueue_congested);
5881
5882/**
5883 * work_busy - test whether a work is currently pending or running
5884 * @work: the work to be tested
5885 *
5886 * Test whether @work is currently pending or running.  There is no
5887 * synchronization around this function and the test result is
5888 * unreliable and only useful as advisory hints or for debugging.
 
 
5889 *
5890 * Return:
5891 * OR'd bitmask of WORK_BUSY_* bits.
5892 */
5893unsigned int work_busy(struct work_struct *work)
5894{
5895	struct worker_pool *pool;
5896	unsigned long irq_flags;
5897	unsigned int ret = 0;
5898
 
 
 
 
 
5899	if (work_pending(work))
5900		ret |= WORK_BUSY_PENDING;
 
 
5901
5902	rcu_read_lock();
5903	pool = get_work_pool(work);
5904	if (pool) {
5905		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5906		if (find_worker_executing_work(pool, work))
5907			ret |= WORK_BUSY_RUNNING;
5908		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5909	}
5910	rcu_read_unlock();
5911
5912	return ret;
5913}
5914EXPORT_SYMBOL_GPL(work_busy);
5915
5916/**
5917 * set_worker_desc - set description for the current work item
5918 * @fmt: printf-style format string
5919 * @...: arguments for the format string
5920 *
5921 * This function can be called by a running work function to describe what
5922 * the work item is about.  If the worker task gets dumped, this
5923 * information will be printed out together to help debugging.  The
5924 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5925 */
5926void set_worker_desc(const char *fmt, ...)
5927{
5928	struct worker *worker = current_wq_worker();
5929	va_list args;
5930
5931	if (worker) {
5932		va_start(args, fmt);
5933		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5934		va_end(args);
5935	}
5936}
5937EXPORT_SYMBOL_GPL(set_worker_desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5938
5939/**
5940 * print_worker_info - print out worker information and description
5941 * @log_lvl: the log level to use when printing
5942 * @task: target task
5943 *
5944 * If @task is a worker and currently executing a work item, print out the
5945 * name of the workqueue being serviced and worker description set with
5946 * set_worker_desc() by the currently executing work item.
5947 *
5948 * This function can be safely called on any task as long as the
5949 * task_struct itself is accessible.  While safe, this function isn't
5950 * synchronized and may print out mixups or garbages of limited length.
 
 
 
5951 */
5952void print_worker_info(const char *log_lvl, struct task_struct *task)
 
 
 
 
 
 
5953{
5954	work_func_t *fn = NULL;
5955	char name[WQ_NAME_LEN] = { };
5956	char desc[WORKER_DESC_LEN] = { };
5957	struct pool_workqueue *pwq = NULL;
5958	struct workqueue_struct *wq = NULL;
5959	struct worker *worker;
 
 
 
 
5960
5961	if (!(task->flags & PF_WQ_WORKER))
5962		return;
5963
 
5964	/*
5965	 * This function is called without any synchronization and @task
5966	 * could be in any state.  Be careful with dereferences.
 
5967	 */
5968	worker = kthread_probe_data(task);
 
 
5969
5970	/*
5971	 * Carefully copy the associated workqueue's workfn, name and desc.
5972	 * Keep the original last '\0' in case the original is garbage.
5973	 */
5974	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5975	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5976	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5977	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5978	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5979
5980	if (fn || name[0] || desc[0]) {
5981		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5982		if (strcmp(name, desc))
5983			pr_cont(" (%s)", desc);
5984		pr_cont("\n");
5985	}
5986}
5987
5988static void pr_cont_pool_info(struct worker_pool *pool)
5989{
5990	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5991	if (pool->node != NUMA_NO_NODE)
5992		pr_cont(" node=%d", pool->node);
5993	pr_cont(" flags=0x%x", pool->flags);
5994	if (pool->flags & POOL_BH)
5995		pr_cont(" bh%s",
5996			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5997	else
5998		pr_cont(" nice=%d", pool->attrs->nice);
5999}
6000
6001static void pr_cont_worker_id(struct worker *worker)
6002{
6003	struct worker_pool *pool = worker->pool;
 
 
 
 
 
 
6004
6005	if (pool->flags & WQ_BH)
6006		pr_cont("bh%s",
6007			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6008	else
6009		pr_cont("%d%s", task_pid_nr(worker->task),
6010			worker->rescue_wq ? "(RESCUER)" : "");
6011}
6012
6013struct pr_cont_work_struct {
6014	bool comma;
6015	work_func_t func;
6016	long ctr;
6017};
6018
6019static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6020{
6021	if (!pcwsp->ctr)
6022		goto out_record;
6023	if (func == pcwsp->func) {
6024		pcwsp->ctr++;
6025		return;
6026	}
6027	if (pcwsp->ctr == 1)
6028		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6029	else
6030		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6031	pcwsp->ctr = 0;
6032out_record:
6033	if ((long)func == -1L)
6034		return;
6035	pcwsp->comma = comma;
6036	pcwsp->func = func;
6037	pcwsp->ctr = 1;
6038}
6039
6040static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6041{
6042	if (work->func == wq_barrier_func) {
6043		struct wq_barrier *barr;
 
 
 
 
 
 
 
 
 
 
6044
6045		barr = container_of(work, struct wq_barrier, work);
6046
6047		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6048		pr_cont("%s BAR(%d)", comma ? "," : "",
6049			task_pid_nr(barr->task));
6050	} else {
6051		if (!comma)
6052			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6053		pr_cont_work_flush(comma, work->func, pcwsp);
6054	}
6055}
6056
6057static void show_pwq(struct pool_workqueue *pwq)
6058{
6059	struct pr_cont_work_struct pcws = { .ctr = 0, };
6060	struct worker_pool *pool = pwq->pool;
6061	struct work_struct *work;
6062	struct worker *worker;
6063	bool has_in_flight = false, has_pending = false;
6064	int bkt;
6065
6066	pr_info("  pwq %d:", pool->id);
6067	pr_cont_pool_info(pool);
6068
6069	pr_cont(" active=%d refcnt=%d%s\n",
6070		pwq->nr_active, pwq->refcnt,
6071		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6072
6073	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6074		if (worker->current_pwq == pwq) {
6075			has_in_flight = true;
6076			break;
6077		}
6078	}
6079	if (has_in_flight) {
6080		bool comma = false;
6081
6082		pr_info("    in-flight:");
6083		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6084			if (worker->current_pwq != pwq)
6085				continue;
6086
6087			pr_cont(" %s", comma ? "," : "");
6088			pr_cont_worker_id(worker);
6089			pr_cont(":%ps", worker->current_func);
6090			list_for_each_entry(work, &worker->scheduled, entry)
6091				pr_cont_work(false, work, &pcws);
6092			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6093			comma = true;
6094		}
6095		pr_cont("\n");
6096	}
6097
6098	list_for_each_entry(work, &pool->worklist, entry) {
6099		if (get_work_pwq(work) == pwq) {
6100			has_pending = true;
6101			break;
6102		}
6103	}
6104	if (has_pending) {
6105		bool comma = false;
6106
6107		pr_info("    pending:");
6108		list_for_each_entry(work, &pool->worklist, entry) {
6109			if (get_work_pwq(work) != pwq)
6110				continue;
6111
6112			pr_cont_work(comma, work, &pcws);
6113			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6114		}
6115		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6116		pr_cont("\n");
6117	}
6118
6119	if (!list_empty(&pwq->inactive_works)) {
6120		bool comma = false;
6121
6122		pr_info("    inactive:");
6123		list_for_each_entry(work, &pwq->inactive_works, entry) {
6124			pr_cont_work(comma, work, &pcws);
6125			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6126		}
6127		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6128		pr_cont("\n");
6129	}
6130}
6131
6132/**
6133 * show_one_workqueue - dump state of specified workqueue
6134 * @wq: workqueue whose state will be printed
6135 */
6136void show_one_workqueue(struct workqueue_struct *wq)
6137{
6138	struct pool_workqueue *pwq;
6139	bool idle = true;
6140	unsigned long irq_flags;
6141
6142	for_each_pwq(pwq, wq) {
6143		if (!pwq_is_empty(pwq)) {
6144			idle = false;
6145			break;
6146		}
6147	}
6148	if (idle) /* Nothing to print for idle workqueue */
6149		return;
6150
6151	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6152
6153	for_each_pwq(pwq, wq) {
6154		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6155		if (!pwq_is_empty(pwq)) {
6156			/*
6157			 * Defer printing to avoid deadlocks in console
6158			 * drivers that queue work while holding locks
6159			 * also taken in their write paths.
6160			 */
6161			printk_deferred_enter();
6162			show_pwq(pwq);
6163			printk_deferred_exit();
6164		}
6165		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6166		/*
6167		 * We could be printing a lot from atomic context, e.g.
6168		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6169		 * hard lockup.
6170		 */
6171		touch_nmi_watchdog();
6172	}
6173
6174}
6175
6176/**
6177 * show_one_worker_pool - dump state of specified worker pool
6178 * @pool: worker pool whose state will be printed
6179 */
6180static void show_one_worker_pool(struct worker_pool *pool)
6181{
6182	struct worker *worker;
6183	bool first = true;
6184	unsigned long irq_flags;
6185	unsigned long hung = 0;
6186
6187	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6188	if (pool->nr_workers == pool->nr_idle)
6189		goto next_pool;
6190
6191	/* How long the first pending work is waiting for a worker. */
6192	if (!list_empty(&pool->worklist))
6193		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6194
6195	/*
6196	 * Defer printing to avoid deadlocks in console drivers that
6197	 * queue work while holding locks also taken in their write
6198	 * paths.
6199	 */
6200	printk_deferred_enter();
6201	pr_info("pool %d:", pool->id);
6202	pr_cont_pool_info(pool);
6203	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6204	if (pool->manager)
6205		pr_cont(" manager: %d",
6206			task_pid_nr(pool->manager->task));
6207	list_for_each_entry(worker, &pool->idle_list, entry) {
6208		pr_cont(" %s", first ? "idle: " : "");
6209		pr_cont_worker_id(worker);
6210		first = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6211	}
6212	pr_cont("\n");
6213	printk_deferred_exit();
6214next_pool:
6215	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6216	/*
6217	 * We could be printing a lot from atomic context, e.g.
6218	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6219	 * hard lockup.
6220	 */
6221	touch_nmi_watchdog();
6222
 
 
 
 
 
 
 
 
 
6223}
6224
6225/**
6226 * show_all_workqueues - dump workqueue state
 
 
6227 *
6228 * Called from a sysrq handler and prints out all busy workqueues and pools.
6229 */
6230void show_all_workqueues(void)
6231{
6232	struct workqueue_struct *wq;
6233	struct worker_pool *pool;
6234	int pi;
6235
6236	rcu_read_lock();
6237
6238	pr_info("Showing busy workqueues and worker pools:\n");
6239
6240	list_for_each_entry_rcu(wq, &workqueues, list)
6241		show_one_workqueue(wq);
6242
6243	for_each_pool(pool, pi)
6244		show_one_worker_pool(pool);
6245
6246	rcu_read_unlock();
6247}
6248
6249/**
6250 * show_freezable_workqueues - dump freezable workqueue state
6251 *
6252 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6253 * still busy.
 
6254 */
6255void show_freezable_workqueues(void)
 
 
6256{
6257	struct workqueue_struct *wq;
6258
6259	rcu_read_lock();
6260
6261	pr_info("Showing freezable workqueues that are still busy:\n");
6262
6263	list_for_each_entry_rcu(wq, &workqueues, list) {
6264		if (!(wq->flags & WQ_FREEZABLE))
6265			continue;
6266		show_one_workqueue(wq);
6267	}
6268
6269	rcu_read_unlock();
6270}
6271
6272/* used to show worker information through /proc/PID/{comm,stat,status} */
6273void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
 
6274{
6275	int off;
6276
6277	/* always show the actual comm */
6278	off = strscpy(buf, task->comm, size);
6279	if (off < 0)
6280		return;
6281
6282	/* stabilize PF_WQ_WORKER and worker pool association */
6283	mutex_lock(&wq_pool_attach_mutex);
6284
6285	if (task->flags & PF_WQ_WORKER) {
6286		struct worker *worker = kthread_data(task);
6287		struct worker_pool *pool = worker->pool;
6288
6289		if (pool) {
6290			raw_spin_lock_irq(&pool->lock);
6291			/*
6292			 * ->desc tracks information (wq name or
6293			 * set_worker_desc()) for the latest execution.  If
6294			 * current, prepend '+', otherwise '-'.
6295			 */
6296			if (worker->desc[0] != '\0') {
6297				if (worker->current_work)
6298					scnprintf(buf + off, size - off, "+%s",
6299						  worker->desc);
6300				else
6301					scnprintf(buf + off, size - off, "-%s",
6302						  worker->desc);
6303			}
6304			raw_spin_unlock_irq(&pool->lock);
6305		}
6306	}
6307
6308	mutex_unlock(&wq_pool_attach_mutex);
6309}
6310
6311#ifdef CONFIG_SMP
6312
6313/*
6314 * CPU hotplug.
6315 *
6316 * There are two challenges in supporting CPU hotplug.  Firstly, there
6317 * are a lot of assumptions on strong associations among work, pwq and
6318 * pool which make migrating pending and scheduled works very
6319 * difficult to implement without impacting hot paths.  Secondly,
6320 * worker pools serve mix of short, long and very long running works making
6321 * blocked draining impractical.
6322 *
6323 * This is solved by allowing the pools to be disassociated from the CPU
6324 * running as an unbound one and allowing it to be reattached later if the
6325 * cpu comes back online.
6326 */
6327
6328static void unbind_workers(int cpu)
6329{
6330	struct worker_pool *pool;
6331	struct worker *worker;
6332
6333	for_each_cpu_worker_pool(pool, cpu) {
6334		mutex_lock(&wq_pool_attach_mutex);
6335		raw_spin_lock_irq(&pool->lock);
 
 
 
 
 
 
 
 
 
 
6336
 
6337		/*
6338		 * We've blocked all attach/detach operations. Make all workers
6339		 * unbound and set DISASSOCIATED.  Before this, all workers
6340		 * must be on the cpu.  After this, they may become diasporas.
6341		 * And the preemption disabled section in their sched callbacks
6342		 * are guaranteed to see WORKER_UNBOUND since the code here
6343		 * is on the same cpu.
6344		 */
6345		for_each_pool_worker(worker, pool)
6346			worker->flags |= WORKER_UNBOUND;
6347
6348		pool->flags |= POOL_DISASSOCIATED;
 
 
 
 
 
 
6349
6350		/*
6351		 * The handling of nr_running in sched callbacks are disabled
6352		 * now.  Zap nr_running.  After this, nr_running stays zero and
6353		 * need_more_worker() and keep_working() are always true as
6354		 * long as the worklist is not empty.  This pool now behaves as
6355		 * an unbound (in terms of concurrency management) pool which
6356		 * are served by workers tied to the pool.
6357		 */
6358		pool->nr_running = 0;
6359
6360		/*
6361		 * With concurrency management just turned off, a busy
6362		 * worker blocking could lead to lengthy stalls.  Kick off
6363		 * unbound chain execution of currently pending work items.
6364		 */
6365		kick_pool(pool);
 
 
 
 
 
 
 
6366
6367		raw_spin_unlock_irq(&pool->lock);
6368
6369		for_each_pool_worker(worker, pool)
6370			unbind_worker(worker);
6371
6372		mutex_unlock(&wq_pool_attach_mutex);
6373	}
6374}
6375
6376/**
6377 * rebind_workers - rebind all workers of a pool to the associated CPU
6378 * @pool: pool of interest
6379 *
6380 * @pool->cpu is coming online.  Rebind all workers to the CPU.
6381 */
6382static void rebind_workers(struct worker_pool *pool)
 
 
6383{
6384	struct worker *worker;
6385
6386	lockdep_assert_held(&wq_pool_attach_mutex);
6387
6388	/*
6389	 * Restore CPU affinity of all workers.  As all idle workers should
6390	 * be on the run-queue of the associated CPU before any local
6391	 * wake-ups for concurrency management happen, restore CPU affinity
6392	 * of all workers first and then clear UNBOUND.  As we're called
6393	 * from CPU_ONLINE, the following shouldn't fail.
6394	 */
6395	for_each_pool_worker(worker, pool) {
6396		kthread_set_per_cpu(worker->task, pool->cpu);
6397		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6398						  pool_allowed_cpus(pool)) < 0);
6399	}
6400
6401	raw_spin_lock_irq(&pool->lock);
6402
6403	pool->flags &= ~POOL_DISASSOCIATED;
6404
6405	for_each_pool_worker(worker, pool) {
6406		unsigned int worker_flags = worker->flags;
6407
6408		/*
6409		 * We want to clear UNBOUND but can't directly call
6410		 * worker_clr_flags() or adjust nr_running.  Atomically
6411		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6412		 * @worker will clear REBOUND using worker_clr_flags() when
6413		 * it initiates the next execution cycle thus restoring
6414		 * concurrency management.  Note that when or whether
6415		 * @worker clears REBOUND doesn't affect correctness.
6416		 *
6417		 * WRITE_ONCE() is necessary because @worker->flags may be
6418		 * tested without holding any lock in
6419		 * wq_worker_running().  Without it, NOT_RUNNING test may
6420		 * fail incorrectly leading to premature concurrency
6421		 * management operations.
6422		 */
6423		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6424		worker_flags |= WORKER_REBOUND;
6425		worker_flags &= ~WORKER_UNBOUND;
6426		WRITE_ONCE(worker->flags, worker_flags);
6427	}
6428
6429	raw_spin_unlock_irq(&pool->lock);
6430}
6431
6432/**
6433 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6434 * @pool: unbound pool of interest
6435 * @cpu: the CPU which is coming up
6436 *
6437 * An unbound pool may end up with a cpumask which doesn't have any online
6438 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6439 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6440 * online CPU before, cpus_allowed of all its workers should be restored.
6441 */
6442static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6443{
6444	static cpumask_t cpumask;
6445	struct worker *worker;
6446
6447	lockdep_assert_held(&wq_pool_attach_mutex);
6448
6449	/* is @cpu allowed for @pool? */
6450	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6451		return;
6452
6453	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6454
6455	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6456	for_each_pool_worker(worker, pool)
6457		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6458}
6459
6460int workqueue_prepare_cpu(unsigned int cpu)
6461{
6462	struct worker_pool *pool;
6463
6464	for_each_cpu_worker_pool(pool, cpu) {
6465		if (pool->nr_workers)
6466			continue;
6467		if (!create_worker(pool))
6468			return -ENOMEM;
6469	}
6470	return 0;
6471}
6472
6473int workqueue_online_cpu(unsigned int cpu)
6474{
6475	struct worker_pool *pool;
6476	struct workqueue_struct *wq;
6477	int pi;
6478
6479	mutex_lock(&wq_pool_mutex);
6480
6481	for_each_pool(pool, pi) {
6482		/* BH pools aren't affected by hotplug */
6483		if (pool->flags & POOL_BH)
6484			continue;
6485
6486		mutex_lock(&wq_pool_attach_mutex);
6487		if (pool->cpu == cpu)
6488			rebind_workers(pool);
6489		else if (pool->cpu < 0)
6490			restore_unbound_workers_cpumask(pool, cpu);
6491		mutex_unlock(&wq_pool_attach_mutex);
6492	}
6493
6494	/* update pod affinity of unbound workqueues */
6495	list_for_each_entry(wq, &workqueues, list) {
6496		struct workqueue_attrs *attrs = wq->unbound_attrs;
6497
6498		if (attrs) {
6499			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6500			int tcpu;
6501
6502			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6503				wq_update_pod(wq, tcpu, cpu, true);
6504
6505			mutex_lock(&wq->mutex);
6506			wq_update_node_max_active(wq, -1);
6507			mutex_unlock(&wq->mutex);
6508		}
6509	}
6510
6511	mutex_unlock(&wq_pool_mutex);
6512	return 0;
6513}
6514
6515int workqueue_offline_cpu(unsigned int cpu)
6516{
6517	struct workqueue_struct *wq;
6518
6519	/* unbinding per-cpu workers should happen on the local CPU */
6520	if (WARN_ON(cpu != smp_processor_id()))
6521		return -1;
6522
6523	unbind_workers(cpu);
6524
6525	/* update pod affinity of unbound workqueues */
6526	mutex_lock(&wq_pool_mutex);
6527	list_for_each_entry(wq, &workqueues, list) {
6528		struct workqueue_attrs *attrs = wq->unbound_attrs;
6529
6530		if (attrs) {
6531			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6532			int tcpu;
6533
6534			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6535				wq_update_pod(wq, tcpu, cpu, false);
6536
6537			mutex_lock(&wq->mutex);
6538			wq_update_node_max_active(wq, cpu);
6539			mutex_unlock(&wq->mutex);
6540		}
6541	}
6542	mutex_unlock(&wq_pool_mutex);
6543
6544	return 0;
6545}
6546
6547struct work_for_cpu {
6548	struct work_struct work;
6549	long (*fn)(void *);
6550	void *arg;
6551	long ret;
6552};
6553
6554static void work_for_cpu_fn(struct work_struct *work)
6555{
6556	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6557
6558	wfc->ret = wfc->fn(wfc->arg);
6559}
6560
6561/**
6562 * work_on_cpu_key - run a function in thread context on a particular cpu
6563 * @cpu: the cpu to run on
6564 * @fn: the function to run
6565 * @arg: the function arg
6566 * @key: The lock class key for lock debugging purposes
6567 *
 
6568 * It is up to the caller to ensure that the cpu doesn't go offline.
6569 * The caller must not hold any locks which would prevent @fn from completing.
6570 *
6571 * Return: The value @fn returns.
6572 */
6573long work_on_cpu_key(int cpu, long (*fn)(void *),
6574		     void *arg, struct lock_class_key *key)
6575{
6576	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6577
6578	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6579	schedule_work_on(cpu, &wfc.work);
6580	flush_work(&wfc.work);
6581	destroy_work_on_stack(&wfc.work);
6582	return wfc.ret;
6583}
6584EXPORT_SYMBOL_GPL(work_on_cpu_key);
6585
6586/**
6587 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6588 * @cpu: the cpu to run on
6589 * @fn:  the function to run
6590 * @arg: the function argument
6591 * @key: The lock class key for lock debugging purposes
6592 *
6593 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6594 * any locks which would prevent @fn from completing.
6595 *
6596 * Return: The value @fn returns.
6597 */
6598long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6599			  void *arg, struct lock_class_key *key)
6600{
6601	long ret = -ENODEV;
6602
6603	cpus_read_lock();
6604	if (cpu_online(cpu))
6605		ret = work_on_cpu_key(cpu, fn, arg, key);
6606	cpus_read_unlock();
6607	return ret;
6608}
6609EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6610#endif /* CONFIG_SMP */
6611
6612#ifdef CONFIG_FREEZER
6613
6614/**
6615 * freeze_workqueues_begin - begin freezing workqueues
6616 *
6617 * Start freezing workqueues.  After this function returns, all freezable
6618 * workqueues will queue new works to their inactive_works list instead of
6619 * pool->worklist.
6620 *
6621 * CONTEXT:
6622 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6623 */
6624void freeze_workqueues_begin(void)
6625{
6626	struct workqueue_struct *wq;
6627
6628	mutex_lock(&wq_pool_mutex);
6629
6630	WARN_ON_ONCE(workqueue_freezing);
6631	workqueue_freezing = true;
6632
6633	list_for_each_entry(wq, &workqueues, list) {
6634		mutex_lock(&wq->mutex);
6635		wq_adjust_max_active(wq);
6636		mutex_unlock(&wq->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
6637	}
6638
6639	mutex_unlock(&wq_pool_mutex);
6640}
6641
6642/**
6643 * freeze_workqueues_busy - are freezable workqueues still busy?
6644 *
6645 * Check whether freezing is complete.  This function must be called
6646 * between freeze_workqueues_begin() and thaw_workqueues().
6647 *
6648 * CONTEXT:
6649 * Grabs and releases wq_pool_mutex.
6650 *
6651 * Return:
6652 * %true if some freezable workqueues are still busy.  %false if freezing
6653 * is complete.
6654 */
6655bool freeze_workqueues_busy(void)
6656{
 
6657	bool busy = false;
6658	struct workqueue_struct *wq;
6659	struct pool_workqueue *pwq;
6660
6661	mutex_lock(&wq_pool_mutex);
6662
6663	WARN_ON_ONCE(!workqueue_freezing);
6664
6665	list_for_each_entry(wq, &workqueues, list) {
6666		if (!(wq->flags & WQ_FREEZABLE))
6667			continue;
6668		/*
6669		 * nr_active is monotonically decreasing.  It's safe
6670		 * to peek without lock.
6671		 */
6672		rcu_read_lock();
6673		for_each_pwq(pwq, wq) {
6674			WARN_ON_ONCE(pwq->nr_active < 0);
6675			if (pwq->nr_active) {
 
 
 
 
6676				busy = true;
6677				rcu_read_unlock();
6678				goto out_unlock;
6679			}
6680		}
6681		rcu_read_unlock();
6682	}
6683out_unlock:
6684	mutex_unlock(&wq_pool_mutex);
6685	return busy;
6686}
6687
6688/**
6689 * thaw_workqueues - thaw workqueues
6690 *
6691 * Thaw workqueues.  Normal queueing is restored and all collected
6692 * frozen works are transferred to their respective pool worklists.
6693 *
6694 * CONTEXT:
6695 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6696 */
6697void thaw_workqueues(void)
6698{
6699	struct workqueue_struct *wq;
6700
6701	mutex_lock(&wq_pool_mutex);
6702
6703	if (!workqueue_freezing)
6704		goto out_unlock;
6705
6706	workqueue_freezing = false;
 
 
6707
6708	/* restore max_active and repopulate worklist */
6709	list_for_each_entry(wq, &workqueues, list) {
6710		mutex_lock(&wq->mutex);
6711		wq_adjust_max_active(wq);
6712		mutex_unlock(&wq->mutex);
6713	}
6714
6715out_unlock:
6716	mutex_unlock(&wq_pool_mutex);
6717}
6718#endif /* CONFIG_FREEZER */
6719
6720static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6721{
6722	LIST_HEAD(ctxs);
6723	int ret = 0;
6724	struct workqueue_struct *wq;
6725	struct apply_wqattrs_ctx *ctx, *n;
6726
6727	lockdep_assert_held(&wq_pool_mutex);
 
6728
6729	list_for_each_entry(wq, &workqueues, list) {
6730		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6731			continue;
6732
6733		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6734		if (IS_ERR(ctx)) {
6735			ret = PTR_ERR(ctx);
6736			break;
6737		}
6738
6739		list_add_tail(&ctx->list, &ctxs);
6740	}
6741
6742	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6743		if (!ret)
6744			apply_wqattrs_commit(ctx);
6745		apply_wqattrs_cleanup(ctx);
6746	}
6747
6748	if (!ret) {
6749		mutex_lock(&wq_pool_attach_mutex);
6750		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6751		mutex_unlock(&wq_pool_attach_mutex);
6752	}
6753	return ret;
6754}
 
6755
6756/**
6757 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6758 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6759 *
6760 * This function can be called from cpuset code to provide a set of isolated
6761 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6762 * either cpus_read_lock or cpus_write_lock.
6763 */
6764int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6765{
6766	cpumask_var_t cpumask;
6767	int ret = 0;
6768
6769	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6770		return -ENOMEM;
6771
6772	lockdep_assert_cpus_held();
6773	mutex_lock(&wq_pool_mutex);
6774
6775	/* Save the current isolated cpumask & export it via sysfs */
6776	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6777
6778	/*
6779	 * If the operation fails, it will fall back to
6780	 * wq_requested_unbound_cpumask which is initially set to
6781	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6782	 * by any subsequent write to workqueue/cpumask sysfs file.
6783	 */
6784	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6785		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6786	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6787		ret = workqueue_apply_unbound_cpumask(cpumask);
6788
6789	mutex_unlock(&wq_pool_mutex);
6790	free_cpumask_var(cpumask);
6791	return ret;
6792}
6793
6794static int parse_affn_scope(const char *val)
6795{
 
6796	int i;
6797
6798	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6799		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6800			return i;
6801	}
6802	return -EINVAL;
6803}
6804
6805static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6806{
6807	struct workqueue_struct *wq;
6808	int affn, cpu;
6809
6810	affn = parse_affn_scope(val);
6811	if (affn < 0)
6812		return affn;
6813	if (affn == WQ_AFFN_DFL)
6814		return -EINVAL;
6815
6816	cpus_read_lock();
6817	mutex_lock(&wq_pool_mutex);
6818
6819	wq_affn_dfl = affn;
6820
6821	list_for_each_entry(wq, &workqueues, list) {
6822		for_each_online_cpu(cpu) {
6823			wq_update_pod(wq, cpu, cpu, true);
6824		}
6825	}
6826
6827	mutex_unlock(&wq_pool_mutex);
6828	cpus_read_unlock();
6829
6830	return 0;
6831}
6832
6833static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6834{
6835	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6836}
6837
6838static const struct kernel_param_ops wq_affn_dfl_ops = {
6839	.set	= wq_affn_dfl_set,
6840	.get	= wq_affn_dfl_get,
6841};
6842
6843module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6844
6845#ifdef CONFIG_SYSFS
6846/*
6847 * Workqueues with WQ_SYSFS flag set is visible to userland via
6848 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6849 * following attributes.
6850 *
6851 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6852 *  max_active		RW int	: maximum number of in-flight work items
6853 *
6854 * Unbound workqueues have the following extra attributes.
6855 *
6856 *  nice		RW int	: nice value of the workers
6857 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6858 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6859 *  affinity_strict	RW bool : worker CPU affinity is strict
6860 */
6861struct wq_device {
6862	struct workqueue_struct		*wq;
6863	struct device			dev;
6864};
6865
6866static struct workqueue_struct *dev_to_wq(struct device *dev)
6867{
6868	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6869
6870	return wq_dev->wq;
6871}
6872
6873static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6874			    char *buf)
6875{
6876	struct workqueue_struct *wq = dev_to_wq(dev);
6877
6878	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6879}
6880static DEVICE_ATTR_RO(per_cpu);
6881
6882static ssize_t max_active_show(struct device *dev,
6883			       struct device_attribute *attr, char *buf)
6884{
6885	struct workqueue_struct *wq = dev_to_wq(dev);
6886
6887	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6888}
6889
6890static ssize_t max_active_store(struct device *dev,
6891				struct device_attribute *attr, const char *buf,
6892				size_t count)
6893{
6894	struct workqueue_struct *wq = dev_to_wq(dev);
6895	int val;
6896
6897	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6898		return -EINVAL;
6899
6900	workqueue_set_max_active(wq, val);
6901	return count;
6902}
6903static DEVICE_ATTR_RW(max_active);
6904
6905static struct attribute *wq_sysfs_attrs[] = {
6906	&dev_attr_per_cpu.attr,
6907	&dev_attr_max_active.attr,
6908	NULL,
6909};
6910ATTRIBUTE_GROUPS(wq_sysfs);
6911
6912static void apply_wqattrs_lock(void)
6913{
6914	/* CPUs should stay stable across pwq creations and installations */
6915	cpus_read_lock();
6916	mutex_lock(&wq_pool_mutex);
6917}
6918
6919static void apply_wqattrs_unlock(void)
6920{
6921	mutex_unlock(&wq_pool_mutex);
6922	cpus_read_unlock();
6923}
6924
6925static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6926			    char *buf)
6927{
6928	struct workqueue_struct *wq = dev_to_wq(dev);
6929	int written;
6930
6931	mutex_lock(&wq->mutex);
6932	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6933	mutex_unlock(&wq->mutex);
6934
6935	return written;
6936}
6937
6938/* prepare workqueue_attrs for sysfs store operations */
6939static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6940{
6941	struct workqueue_attrs *attrs;
6942
6943	lockdep_assert_held(&wq_pool_mutex);
6944
6945	attrs = alloc_workqueue_attrs();
6946	if (!attrs)
6947		return NULL;
6948
6949	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6950	return attrs;
6951}
6952
6953static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6954			     const char *buf, size_t count)
6955{
6956	struct workqueue_struct *wq = dev_to_wq(dev);
6957	struct workqueue_attrs *attrs;
6958	int ret = -ENOMEM;
6959
6960	apply_wqattrs_lock();
6961
6962	attrs = wq_sysfs_prep_attrs(wq);
6963	if (!attrs)
6964		goto out_unlock;
6965
6966	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6967	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6968		ret = apply_workqueue_attrs_locked(wq, attrs);
6969	else
6970		ret = -EINVAL;
6971
6972out_unlock:
6973	apply_wqattrs_unlock();
6974	free_workqueue_attrs(attrs);
6975	return ret ?: count;
6976}
6977
6978static ssize_t wq_cpumask_show(struct device *dev,
6979			       struct device_attribute *attr, char *buf)
6980{
6981	struct workqueue_struct *wq = dev_to_wq(dev);
6982	int written;
6983
6984	mutex_lock(&wq->mutex);
6985	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6986			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6987	mutex_unlock(&wq->mutex);
6988	return written;
6989}
6990
6991static ssize_t wq_cpumask_store(struct device *dev,
6992				struct device_attribute *attr,
6993				const char *buf, size_t count)
6994{
6995	struct workqueue_struct *wq = dev_to_wq(dev);
6996	struct workqueue_attrs *attrs;
6997	int ret = -ENOMEM;
6998
6999	apply_wqattrs_lock();
7000
7001	attrs = wq_sysfs_prep_attrs(wq);
7002	if (!attrs)
7003		goto out_unlock;
7004
7005	ret = cpumask_parse(buf, attrs->cpumask);
7006	if (!ret)
7007		ret = apply_workqueue_attrs_locked(wq, attrs);
7008
7009out_unlock:
7010	apply_wqattrs_unlock();
7011	free_workqueue_attrs(attrs);
7012	return ret ?: count;
7013}
7014
7015static ssize_t wq_affn_scope_show(struct device *dev,
7016				  struct device_attribute *attr, char *buf)
7017{
7018	struct workqueue_struct *wq = dev_to_wq(dev);
7019	int written;
7020
7021	mutex_lock(&wq->mutex);
7022	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7023		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7024				    wq_affn_names[WQ_AFFN_DFL],
7025				    wq_affn_names[wq_affn_dfl]);
7026	else
7027		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7028				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7029	mutex_unlock(&wq->mutex);
7030
7031	return written;
7032}
7033
7034static ssize_t wq_affn_scope_store(struct device *dev,
7035				   struct device_attribute *attr,
7036				   const char *buf, size_t count)
7037{
7038	struct workqueue_struct *wq = dev_to_wq(dev);
7039	struct workqueue_attrs *attrs;
7040	int affn, ret = -ENOMEM;
7041
7042	affn = parse_affn_scope(buf);
7043	if (affn < 0)
7044		return affn;
7045
7046	apply_wqattrs_lock();
7047	attrs = wq_sysfs_prep_attrs(wq);
7048	if (attrs) {
7049		attrs->affn_scope = affn;
7050		ret = apply_workqueue_attrs_locked(wq, attrs);
7051	}
7052	apply_wqattrs_unlock();
7053	free_workqueue_attrs(attrs);
7054	return ret ?: count;
7055}
7056
7057static ssize_t wq_affinity_strict_show(struct device *dev,
7058				       struct device_attribute *attr, char *buf)
7059{
7060	struct workqueue_struct *wq = dev_to_wq(dev);
7061
7062	return scnprintf(buf, PAGE_SIZE, "%d\n",
7063			 wq->unbound_attrs->affn_strict);
7064}
7065
7066static ssize_t wq_affinity_strict_store(struct device *dev,
7067					struct device_attribute *attr,
7068					const char *buf, size_t count)
7069{
7070	struct workqueue_struct *wq = dev_to_wq(dev);
7071	struct workqueue_attrs *attrs;
7072	int v, ret = -ENOMEM;
7073
7074	if (sscanf(buf, "%d", &v) != 1)
7075		return -EINVAL;
7076
7077	apply_wqattrs_lock();
7078	attrs = wq_sysfs_prep_attrs(wq);
7079	if (attrs) {
7080		attrs->affn_strict = (bool)v;
7081		ret = apply_workqueue_attrs_locked(wq, attrs);
7082	}
7083	apply_wqattrs_unlock();
7084	free_workqueue_attrs(attrs);
7085	return ret ?: count;
7086}
7087
7088static struct device_attribute wq_sysfs_unbound_attrs[] = {
7089	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7090	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7091	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7092	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7093	__ATTR_NULL,
7094};
7095
7096static const struct bus_type wq_subsys = {
7097	.name				= "workqueue",
7098	.dev_groups			= wq_sysfs_groups,
7099};
7100
7101/**
7102 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7103 *  @cpumask: the cpumask to set
7104 *
7105 *  The low-level workqueues cpumask is a global cpumask that limits
7106 *  the affinity of all unbound workqueues.  This function check the @cpumask
7107 *  and apply it to all unbound workqueues and updates all pwqs of them.
7108 *
7109 *  Return:	0	- Success
7110 *		-EINVAL	- Invalid @cpumask
7111 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7112 */
7113static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7114{
7115	int ret = -EINVAL;
7116
7117	/*
7118	 * Not excluding isolated cpus on purpose.
7119	 * If the user wishes to include them, we allow that.
7120	 */
7121	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7122	if (!cpumask_empty(cpumask)) {
7123		apply_wqattrs_lock();
7124		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7125		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7126			ret = 0;
7127			goto out_unlock;
7128		}
7129
7130		ret = workqueue_apply_unbound_cpumask(cpumask);
7131
7132out_unlock:
7133		apply_wqattrs_unlock();
7134	}
7135
7136	return ret;
7137}
7138
7139static ssize_t __wq_cpumask_show(struct device *dev,
7140		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7141{
7142	int written;
7143
7144	mutex_lock(&wq_pool_mutex);
7145	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7146	mutex_unlock(&wq_pool_mutex);
7147
7148	return written;
7149}
7150
7151static ssize_t wq_unbound_cpumask_show(struct device *dev,
7152		struct device_attribute *attr, char *buf)
7153{
7154	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7155}
7156
7157static ssize_t wq_requested_cpumask_show(struct device *dev,
7158		struct device_attribute *attr, char *buf)
7159{
7160	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7161}
7162
7163static ssize_t wq_isolated_cpumask_show(struct device *dev,
7164		struct device_attribute *attr, char *buf)
7165{
7166	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7167}
7168
7169static ssize_t wq_unbound_cpumask_store(struct device *dev,
7170		struct device_attribute *attr, const char *buf, size_t count)
7171{
7172	cpumask_var_t cpumask;
7173	int ret;
7174
7175	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7176		return -ENOMEM;
7177
7178	ret = cpumask_parse(buf, cpumask);
7179	if (!ret)
7180		ret = workqueue_set_unbound_cpumask(cpumask);
7181
7182	free_cpumask_var(cpumask);
7183	return ret ? ret : count;
7184}
7185
7186static struct device_attribute wq_sysfs_cpumask_attrs[] = {
7187	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
7188	       wq_unbound_cpumask_store),
7189	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7190	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7191	__ATTR_NULL,
7192};
7193
7194static int __init wq_sysfs_init(void)
7195{
7196	struct device *dev_root;
7197	int err;
7198
7199	err = subsys_virtual_register(&wq_subsys, NULL);
7200	if (err)
7201		return err;
7202
7203	dev_root = bus_get_dev_root(&wq_subsys);
7204	if (dev_root) {
7205		struct device_attribute *attr;
7206
7207		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7208			err = device_create_file(dev_root, attr);
7209			if (err)
7210				break;
7211		}
7212		put_device(dev_root);
7213	}
7214	return err;
7215}
7216core_initcall(wq_sysfs_init);
7217
7218static void wq_device_release(struct device *dev)
7219{
7220	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7221
7222	kfree(wq_dev);
7223}
7224
7225/**
7226 * workqueue_sysfs_register - make a workqueue visible in sysfs
7227 * @wq: the workqueue to register
7228 *
7229 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7230 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7231 * which is the preferred method.
7232 *
7233 * Workqueue user should use this function directly iff it wants to apply
7234 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7235 * apply_workqueue_attrs() may race against userland updating the
7236 * attributes.
7237 *
7238 * Return: 0 on success, -errno on failure.
7239 */
7240int workqueue_sysfs_register(struct workqueue_struct *wq)
7241{
7242	struct wq_device *wq_dev;
7243	int ret;
7244
7245	/*
7246	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7247	 * ordered workqueues.
7248	 */
7249	if (WARN_ON(wq->flags & __WQ_ORDERED))
7250		return -EINVAL;
7251
7252	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7253	if (!wq_dev)
7254		return -ENOMEM;
7255
7256	wq_dev->wq = wq;
7257	wq_dev->dev.bus = &wq_subsys;
7258	wq_dev->dev.release = wq_device_release;
7259	dev_set_name(&wq_dev->dev, "%s", wq->name);
7260
7261	/*
7262	 * unbound_attrs are created separately.  Suppress uevent until
7263	 * everything is ready.
7264	 */
7265	dev_set_uevent_suppress(&wq_dev->dev, true);
7266
7267	ret = device_register(&wq_dev->dev);
7268	if (ret) {
7269		put_device(&wq_dev->dev);
7270		wq->wq_dev = NULL;
7271		return ret;
7272	}
7273
7274	if (wq->flags & WQ_UNBOUND) {
7275		struct device_attribute *attr;
7276
7277		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7278			ret = device_create_file(&wq_dev->dev, attr);
7279			if (ret) {
7280				device_unregister(&wq_dev->dev);
7281				wq->wq_dev = NULL;
7282				return ret;
7283			}
7284		}
7285	}
7286
7287	dev_set_uevent_suppress(&wq_dev->dev, false);
7288	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7289	return 0;
7290}
7291
7292/**
7293 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7294 * @wq: the workqueue to unregister
7295 *
7296 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7297 */
7298static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7299{
7300	struct wq_device *wq_dev = wq->wq_dev;
7301
7302	if (!wq->wq_dev)
7303		return;
7304
7305	wq->wq_dev = NULL;
7306	device_unregister(&wq_dev->dev);
7307}
7308#else	/* CONFIG_SYSFS */
7309static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7310#endif	/* CONFIG_SYSFS */
7311
7312/*
7313 * Workqueue watchdog.
7314 *
7315 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7316 * flush dependency, a concurrency managed work item which stays RUNNING
7317 * indefinitely.  Workqueue stalls can be very difficult to debug as the
7318 * usual warning mechanisms don't trigger and internal workqueue state is
7319 * largely opaque.
7320 *
7321 * Workqueue watchdog monitors all worker pools periodically and dumps
7322 * state if some pools failed to make forward progress for a while where
7323 * forward progress is defined as the first item on ->worklist changing.
7324 *
7325 * This mechanism is controlled through the kernel parameter
7326 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7327 * corresponding sysfs parameter file.
7328 */
7329#ifdef CONFIG_WQ_WATCHDOG
7330
7331static unsigned long wq_watchdog_thresh = 30;
7332static struct timer_list wq_watchdog_timer;
7333
7334static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7335static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7336
7337/*
7338 * Show workers that might prevent the processing of pending work items.
7339 * The only candidates are CPU-bound workers in the running state.
7340 * Pending work items should be handled by another idle worker
7341 * in all other situations.
7342 */
7343static void show_cpu_pool_hog(struct worker_pool *pool)
7344{
7345	struct worker *worker;
7346	unsigned long irq_flags;
7347	int bkt;
7348
7349	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7350
7351	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7352		if (task_is_running(worker->task)) {
7353			/*
7354			 * Defer printing to avoid deadlocks in console
7355			 * drivers that queue work while holding locks
7356			 * also taken in their write paths.
7357			 */
7358			printk_deferred_enter();
7359
7360			pr_info("pool %d:\n", pool->id);
7361			sched_show_task(worker->task);
7362
7363			printk_deferred_exit();
7364		}
7365	}
7366
7367	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7368}
7369
7370static void show_cpu_pools_hogs(void)
7371{
7372	struct worker_pool *pool;
7373	int pi;
7374
7375	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7376
7377	rcu_read_lock();
7378
7379	for_each_pool(pool, pi) {
7380		if (pool->cpu_stall)
7381			show_cpu_pool_hog(pool);
7382
7383	}
7384
7385	rcu_read_unlock();
7386}
7387
7388static void wq_watchdog_reset_touched(void)
7389{
7390	int cpu;
7391
7392	wq_watchdog_touched = jiffies;
7393	for_each_possible_cpu(cpu)
7394		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7395}
7396
7397static void wq_watchdog_timer_fn(struct timer_list *unused)
7398{
7399	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7400	bool lockup_detected = false;
7401	bool cpu_pool_stall = false;
7402	unsigned long now = jiffies;
7403	struct worker_pool *pool;
7404	int pi;
7405
7406	if (!thresh)
7407		return;
7408
7409	rcu_read_lock();
7410
7411	for_each_pool(pool, pi) {
7412		unsigned long pool_ts, touched, ts;
7413
7414		pool->cpu_stall = false;
7415		if (list_empty(&pool->worklist))
7416			continue;
7417
7418		/*
7419		 * If a virtual machine is stopped by the host it can look to
7420		 * the watchdog like a stall.
7421		 */
7422		kvm_check_and_clear_guest_paused();
7423
7424		/* get the latest of pool and touched timestamps */
7425		if (pool->cpu >= 0)
7426			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7427		else
7428			touched = READ_ONCE(wq_watchdog_touched);
7429		pool_ts = READ_ONCE(pool->watchdog_ts);
7430
7431		if (time_after(pool_ts, touched))
7432			ts = pool_ts;
7433		else
7434			ts = touched;
7435
7436		/* did we stall? */
7437		if (time_after(now, ts + thresh)) {
7438			lockup_detected = true;
7439			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7440				pool->cpu_stall = true;
7441				cpu_pool_stall = true;
7442			}
7443			pr_emerg("BUG: workqueue lockup - pool");
7444			pr_cont_pool_info(pool);
7445			pr_cont(" stuck for %us!\n",
7446				jiffies_to_msecs(now - pool_ts) / 1000);
7447		}
7448
7449
7450	}
7451
7452	rcu_read_unlock();
7453
7454	if (lockup_detected)
7455		show_all_workqueues();
7456
7457	if (cpu_pool_stall)
7458		show_cpu_pools_hogs();
7459
7460	wq_watchdog_reset_touched();
7461	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7462}
7463
7464notrace void wq_watchdog_touch(int cpu)
7465{
7466	if (cpu >= 0)
7467		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7468
7469	wq_watchdog_touched = jiffies;
7470}
7471
7472static void wq_watchdog_set_thresh(unsigned long thresh)
7473{
7474	wq_watchdog_thresh = 0;
7475	del_timer_sync(&wq_watchdog_timer);
7476
7477	if (thresh) {
7478		wq_watchdog_thresh = thresh;
7479		wq_watchdog_reset_touched();
7480		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7481	}
7482}
7483
7484static int wq_watchdog_param_set_thresh(const char *val,
7485					const struct kernel_param *kp)
7486{
7487	unsigned long thresh;
7488	int ret;
7489
7490	ret = kstrtoul(val, 0, &thresh);
7491	if (ret)
7492		return ret;
7493
7494	if (system_wq)
7495		wq_watchdog_set_thresh(thresh);
7496	else
7497		wq_watchdog_thresh = thresh;
7498
7499	return 0;
7500}
7501
7502static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7503	.set	= wq_watchdog_param_set_thresh,
7504	.get	= param_get_ulong,
7505};
7506
7507module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7508		0644);
7509
7510static void wq_watchdog_init(void)
7511{
7512	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7513	wq_watchdog_set_thresh(wq_watchdog_thresh);
7514}
7515
7516#else	/* CONFIG_WQ_WATCHDOG */
7517
7518static inline void wq_watchdog_init(void) { }
7519
7520#endif	/* CONFIG_WQ_WATCHDOG */
7521
7522static void bh_pool_kick_normal(struct irq_work *irq_work)
7523{
7524	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7525}
7526
7527static void bh_pool_kick_highpri(struct irq_work *irq_work)
7528{
7529	raise_softirq_irqoff(HI_SOFTIRQ);
7530}
7531
7532static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7533{
7534	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7535		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7536			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7537		return;
7538	}
7539
7540	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7541}
7542
7543static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7544{
7545	BUG_ON(init_worker_pool(pool));
7546	pool->cpu = cpu;
7547	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7548	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7549	pool->attrs->nice = nice;
7550	pool->attrs->affn_strict = true;
7551	pool->node = cpu_to_node(cpu);
7552
7553	/* alloc pool ID */
7554	mutex_lock(&wq_pool_mutex);
7555	BUG_ON(worker_pool_assign_id(pool));
7556	mutex_unlock(&wq_pool_mutex);
7557}
7558
7559/**
7560 * workqueue_init_early - early init for workqueue subsystem
7561 *
7562 * This is the first step of three-staged workqueue subsystem initialization and
7563 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7564 * up. It sets up all the data structures and system workqueues and allows early
7565 * boot code to create workqueues and queue/cancel work items. Actual work item
7566 * execution starts only after kthreads can be created and scheduled right
7567 * before early initcalls.
7568 */
7569void __init workqueue_init_early(void)
7570{
7571	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7572	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7573	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7574						       bh_pool_kick_highpri };
7575	int i, cpu;
7576
7577	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7578
7579	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7580	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7581	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7582
7583	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7584	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7585	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7586	if (!cpumask_empty(&wq_cmdline_cpumask))
7587		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7588
7589	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7590
7591	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7592
7593	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7594	BUG_ON(!wq_update_pod_attrs_buf);
7595
7596	/*
7597	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7598	 * This allows workqueue items to be moved to HK CPUs.
7599	 */
7600	if (housekeeping_enabled(HK_TYPE_TICK))
7601		wq_power_efficient = true;
7602
7603	/* initialize WQ_AFFN_SYSTEM pods */
7604	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7605	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7606	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7607	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7608
7609	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7610
7611	pt->nr_pods = 1;
7612	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7613	pt->pod_node[0] = NUMA_NO_NODE;
7614	pt->cpu_pod[0] = 0;
7615
7616	/* initialize BH and CPU pools */
7617	for_each_possible_cpu(cpu) {
7618		struct worker_pool *pool;
7619
7620		i = 0;
7621		for_each_bh_worker_pool(pool, cpu) {
7622			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7623			pool->flags |= POOL_BH;
7624			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7625			i++;
7626		}
7627
7628		i = 0;
7629		for_each_cpu_worker_pool(pool, cpu)
7630			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7631	}
7632
7633	/* create default unbound and ordered wq attrs */
7634	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7635		struct workqueue_attrs *attrs;
7636
7637		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7638		attrs->nice = std_nice[i];
7639		unbound_std_wq_attrs[i] = attrs;
7640
7641		/*
7642		 * An ordered wq should have only one pwq as ordering is
7643		 * guaranteed by max_active which is enforced by pwqs.
7644		 */
7645		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7646		attrs->nice = std_nice[i];
7647		attrs->ordered = true;
7648		ordered_wq_attrs[i] = attrs;
7649	}
7650
7651	system_wq = alloc_workqueue("events", 0, 0);
7652	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7653	system_long_wq = alloc_workqueue("events_long", 0, 0);
 
7654	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7655					    WQ_MAX_ACTIVE);
7656	system_freezable_wq = alloc_workqueue("events_freezable",
7657					      WQ_FREEZABLE, 0);
7658	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7659					      WQ_POWER_EFFICIENT, 0);
7660	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7661					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7662					      0);
7663	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7664	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7665					       WQ_BH | WQ_HIGHPRI, 0);
7666	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7667	       !system_unbound_wq || !system_freezable_wq ||
7668	       !system_power_efficient_wq ||
7669	       !system_freezable_power_efficient_wq ||
7670	       !system_bh_wq || !system_bh_highpri_wq);
7671}
7672
7673static void __init wq_cpu_intensive_thresh_init(void)
7674{
7675	unsigned long thresh;
7676	unsigned long bogo;
7677
7678	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7679	BUG_ON(IS_ERR(pwq_release_worker));
7680
7681	/* if the user set it to a specific value, keep it */
7682	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7683		return;
7684
7685	/*
7686	 * The default of 10ms is derived from the fact that most modern (as of
7687	 * 2023) processors can do a lot in 10ms and that it's just below what
7688	 * most consider human-perceivable. However, the kernel also runs on a
7689	 * lot slower CPUs including microcontrollers where the threshold is way
7690	 * too low.
7691	 *
7692	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7693	 * This is by no means accurate but it doesn't have to be. The mechanism
7694	 * is still useful even when the threshold is fully scaled up. Also, as
7695	 * the reports would usually be applicable to everyone, some machines
7696	 * operating on longer thresholds won't significantly diminish their
7697	 * usefulness.
7698	 */
7699	thresh = 10 * USEC_PER_MSEC;
7700
7701	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7702	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7703	if (bogo < 4000)
7704		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7705
7706	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7707		 loops_per_jiffy, bogo, thresh);
7708
7709	wq_cpu_intensive_thresh_us = thresh;
7710}
7711
7712/**
7713 * workqueue_init - bring workqueue subsystem fully online
7714 *
7715 * This is the second step of three-staged workqueue subsystem initialization
7716 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7717 * been created and work items queued on them, but there are no kworkers
7718 * executing the work items yet. Populate the worker pools with the initial
7719 * workers and enable future kworker creations.
7720 */
7721void __init workqueue_init(void)
7722{
7723	struct workqueue_struct *wq;
7724	struct worker_pool *pool;
7725	int cpu, bkt;
7726
7727	wq_cpu_intensive_thresh_init();
7728
7729	mutex_lock(&wq_pool_mutex);
7730
7731	/*
7732	 * Per-cpu pools created earlier could be missing node hint. Fix them
7733	 * up. Also, create a rescuer for workqueues that requested it.
7734	 */
7735	for_each_possible_cpu(cpu) {
7736		for_each_bh_worker_pool(pool, cpu)
7737			pool->node = cpu_to_node(cpu);
7738		for_each_cpu_worker_pool(pool, cpu)
7739			pool->node = cpu_to_node(cpu);
7740	}
7741
7742	list_for_each_entry(wq, &workqueues, list) {
7743		WARN(init_rescuer(wq),
7744		     "workqueue: failed to create early rescuer for %s",
7745		     wq->name);
7746	}
7747
7748	mutex_unlock(&wq_pool_mutex);
7749
7750	/*
7751	 * Create the initial workers. A BH pool has one pseudo worker that
7752	 * represents the shared BH execution context and thus doesn't get
7753	 * affected by hotplug events. Create the BH pseudo workers for all
7754	 * possible CPUs here.
7755	 */
7756	for_each_possible_cpu(cpu)
7757		for_each_bh_worker_pool(pool, cpu)
7758			BUG_ON(!create_worker(pool));
7759
7760	for_each_online_cpu(cpu) {
7761		for_each_cpu_worker_pool(pool, cpu) {
7762			pool->flags &= ~POOL_DISASSOCIATED;
7763			BUG_ON(!create_worker(pool));
7764		}
7765	}
7766
7767	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7768		BUG_ON(!create_worker(pool));
7769
7770	wq_online = true;
7771	wq_watchdog_init();
7772}
7773
7774/*
7775 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7776 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7777 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7778 */
7779static void __init init_pod_type(struct wq_pod_type *pt,
7780				 bool (*cpus_share_pod)(int, int))
7781{
7782	int cur, pre, cpu, pod;
7783
7784	pt->nr_pods = 0;
7785
7786	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7787	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7788	BUG_ON(!pt->cpu_pod);
7789
7790	for_each_possible_cpu(cur) {
7791		for_each_possible_cpu(pre) {
7792			if (pre >= cur) {
7793				pt->cpu_pod[cur] = pt->nr_pods++;
7794				break;
7795			}
7796			if (cpus_share_pod(cur, pre)) {
7797				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7798				break;
7799			}
7800		}
7801	}
7802
7803	/* init the rest to match @pt->cpu_pod[] */
7804	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7805	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7806	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7807
7808	for (pod = 0; pod < pt->nr_pods; pod++)
7809		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7810
7811	for_each_possible_cpu(cpu) {
7812		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7813		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7814	}
7815}
7816
7817static bool __init cpus_dont_share(int cpu0, int cpu1)
7818{
7819	return false;
7820}
7821
7822static bool __init cpus_share_smt(int cpu0, int cpu1)
7823{
7824#ifdef CONFIG_SCHED_SMT
7825	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7826#else
7827	return false;
7828#endif
7829}
7830
7831static bool __init cpus_share_numa(int cpu0, int cpu1)
7832{
7833	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7834}
7835
7836/**
7837 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7838 *
7839 * This is the third step of three-staged workqueue subsystem initialization and
7840 * invoked after SMP and topology information are fully initialized. It
7841 * initializes the unbound CPU pods accordingly.
7842 */
7843void __init workqueue_init_topology(void)
7844{
7845	struct workqueue_struct *wq;
7846	int cpu;
7847
7848	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7849	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7850	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7851	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7852
7853	wq_topo_initialized = true;
7854
7855	mutex_lock(&wq_pool_mutex);
7856
7857	/*
7858	 * Workqueues allocated earlier would have all CPUs sharing the default
7859	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7860	 * combinations to apply per-pod sharing.
7861	 */
7862	list_for_each_entry(wq, &workqueues, list) {
7863		for_each_online_cpu(cpu)
7864			wq_update_pod(wq, cpu, cpu, true);
7865		if (wq->flags & WQ_UNBOUND) {
7866			mutex_lock(&wq->mutex);
7867			wq_update_node_max_active(wq, -1);
7868			mutex_unlock(&wq->mutex);
7869		}
7870	}
7871
7872	mutex_unlock(&wq_pool_mutex);
7873}
7874
7875void __warn_flushing_systemwide_wq(void)
7876{
7877	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7878	dump_stack();
7879}
7880EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7881
7882static int __init workqueue_unbound_cpus_setup(char *str)
7883{
7884	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7885		cpumask_clear(&wq_cmdline_cpumask);
7886		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7887	}
7888
7889	return 1;
7890}
7891__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);