Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * linux/kernel/power/swap.c
   3 *
   4 * This file provides functions for reading the suspend image from
   5 * and writing it to a swap partition.
   6 *
   7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  10 *
  11 * This file is released under the GPLv2.
  12 *
  13 */
  14
 
 
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/genhd.h>
  20#include <linux/device.h>
  21#include <linux/bio.h>
  22#include <linux/blkdev.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/pm.h>
  26#include <linux/slab.h>
  27#include <linux/lzo.h>
  28#include <linux/vmalloc.h>
  29#include <linux/cpumask.h>
  30#include <linux/atomic.h>
  31#include <linux/kthread.h>
  32#include <linux/crc32.h>
 
  33
  34#include "power.h"
  35
  36#define HIBERNATE_SIG	"S1SUSPEND"
  37
 
 
 
 
 
 
 
 
 
 
  38/*
  39 *	The swap map is a data structure used for keeping track of each page
  40 *	written to a swap partition.  It consists of many swap_map_page
  41 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  42 *	These structures are stored on the swap and linked together with the
  43 *	help of the .next_swap member.
  44 *
  45 *	The swap map is created during suspend.  The swap map pages are
  46 *	allocated and populated one at a time, so we only need one memory
  47 *	page to set up the entire structure.
  48 *
  49 *	During resume we pick up all swap_map_page structures into a list.
  50 */
  51
  52#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  53
  54/*
  55 * Number of free pages that are not high.
  56 */
  57static inline unsigned long low_free_pages(void)
  58{
  59	return nr_free_pages() - nr_free_highpages();
  60}
  61
  62/*
  63 * Number of pages required to be kept free while writing the image. Always
  64 * half of all available low pages before the writing starts.
  65 */
  66static inline unsigned long reqd_free_pages(void)
  67{
  68	return low_free_pages() / 2;
  69}
  70
  71struct swap_map_page {
  72	sector_t entries[MAP_PAGE_ENTRIES];
  73	sector_t next_swap;
  74};
  75
  76struct swap_map_page_list {
  77	struct swap_map_page *map;
  78	struct swap_map_page_list *next;
  79};
  80
  81/**
  82 *	The swap_map_handle structure is used for handling swap in
  83 *	a file-alike way
  84 */
  85
  86struct swap_map_handle {
  87	struct swap_map_page *cur;
  88	struct swap_map_page_list *maps;
  89	sector_t cur_swap;
  90	sector_t first_sector;
  91	unsigned int k;
  92	unsigned long reqd_free_pages;
  93	u32 crc32;
  94};
  95
  96struct swsusp_header {
  97	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
  98	              sizeof(u32)];
 
  99	u32	crc32;
 100	sector_t image;
 101	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 102	char	orig_sig[10];
 103	char	sig[10];
 104} __attribute__((packed));
 105
 106static struct swsusp_header *swsusp_header;
 107
 108/**
 109 *	The following functions are used for tracing the allocated
 110 *	swap pages, so that they can be freed in case of an error.
 111 */
 112
 113struct swsusp_extent {
 114	struct rb_node node;
 115	unsigned long start;
 116	unsigned long end;
 117};
 118
 119static struct rb_root swsusp_extents = RB_ROOT;
 120
 121static int swsusp_extents_insert(unsigned long swap_offset)
 122{
 123	struct rb_node **new = &(swsusp_extents.rb_node);
 124	struct rb_node *parent = NULL;
 125	struct swsusp_extent *ext;
 126
 127	/* Figure out where to put the new node */
 128	while (*new) {
 129		ext = container_of(*new, struct swsusp_extent, node);
 130		parent = *new;
 131		if (swap_offset < ext->start) {
 132			/* Try to merge */
 133			if (swap_offset == ext->start - 1) {
 134				ext->start--;
 135				return 0;
 136			}
 137			new = &((*new)->rb_left);
 138		} else if (swap_offset > ext->end) {
 139			/* Try to merge */
 140			if (swap_offset == ext->end + 1) {
 141				ext->end++;
 142				return 0;
 143			}
 144			new = &((*new)->rb_right);
 145		} else {
 146			/* It already is in the tree */
 147			return -EINVAL;
 148		}
 149	}
 150	/* Add the new node and rebalance the tree. */
 151	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 152	if (!ext)
 153		return -ENOMEM;
 154
 155	ext->start = swap_offset;
 156	ext->end = swap_offset;
 157	rb_link_node(&ext->node, parent, new);
 158	rb_insert_color(&ext->node, &swsusp_extents);
 159	return 0;
 160}
 161
 162/**
 163 *	alloc_swapdev_block - allocate a swap page and register that it has
 164 *	been allocated, so that it can be freed in case of an error.
 165 */
 166
 167sector_t alloc_swapdev_block(int swap)
 168{
 169	unsigned long offset;
 170
 171	offset = swp_offset(get_swap_page_of_type(swap));
 172	if (offset) {
 173		if (swsusp_extents_insert(offset))
 174			swap_free(swp_entry(swap, offset));
 175		else
 176			return swapdev_block(swap, offset);
 177	}
 178	return 0;
 179}
 180
 181/**
 182 *	free_all_swap_pages - free swap pages allocated for saving image data.
 183 *	It also frees the extents used to register which swap entries had been
 184 *	allocated.
 185 */
 186
 187void free_all_swap_pages(int swap)
 188{
 189	struct rb_node *node;
 190
 191	while ((node = swsusp_extents.rb_node)) {
 192		struct swsusp_extent *ext;
 193		unsigned long offset;
 194
 195		ext = container_of(node, struct swsusp_extent, node);
 196		rb_erase(node, &swsusp_extents);
 197		for (offset = ext->start; offset <= ext->end; offset++)
 198			swap_free(swp_entry(swap, offset));
 199
 200		kfree(ext);
 201	}
 202}
 203
 204int swsusp_swap_in_use(void)
 205{
 206	return (swsusp_extents.rb_node != NULL);
 207}
 208
 209/*
 210 * General things
 211 */
 212
 213static unsigned short root_swap = 0xffff;
 214struct block_device *hib_resume_bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215
 216/*
 217 * Saving part
 218 */
 219
 220static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 221{
 222	int error;
 223
 224	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
 225	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 226	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 227		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 228		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 229		swsusp_header->image = handle->first_sector;
 
 
 
 
 230		swsusp_header->flags = flags;
 231		if (flags & SF_CRC32_MODE)
 232			swsusp_header->crc32 = handle->crc32;
 233		error = hib_bio_write_page(swsusp_resume_block,
 234					swsusp_header, NULL);
 235	} else {
 236		printk(KERN_ERR "PM: Swap header not found!\n");
 237		error = -ENODEV;
 238	}
 239	return error;
 240}
 241
 
 
 
 
 
 
 
 242/**
 243 *	swsusp_swap_check - check if the resume device is a swap device
 244 *	and get its index (if so)
 245 *
 246 *	This is called before saving image
 247 */
 248static int swsusp_swap_check(void)
 249{
 250	int res;
 251
 252	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 253			&hib_resume_bdev);
 
 
 254	if (res < 0)
 255		return res;
 256
 257	root_swap = res;
 258	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 259	if (res)
 260		return res;
 261
 262	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 
 
 
 
 
 263	if (res < 0)
 264		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 265
 266	return res;
 267}
 268
 269/**
 270 *	write_page - Write one page to given swap location.
 271 *	@buf:		Address we're writing.
 272 *	@offset:	Offset of the swap page we're writing to.
 273 *	@bio_chain:	Link the next write BIO here
 274 */
 275
 276static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
 277{
 278	void *src;
 279	int ret;
 280
 281	if (!offset)
 282		return -ENOSPC;
 283
 284	if (bio_chain) {
 285		src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
 286		                              __GFP_NORETRY);
 287		if (src) {
 288			copy_page(src, buf);
 289		} else {
 290			ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
 291			if (ret)
 292				return ret;
 293			src = (void *)__get_free_page(__GFP_WAIT |
 294			                              __GFP_NOWARN |
 295			                              __GFP_NORETRY);
 296			if (src) {
 297				copy_page(src, buf);
 298			} else {
 299				WARN_ON_ONCE(1);
 300				bio_chain = NULL;	/* Go synchronous */
 301				src = buf;
 302			}
 303		}
 304	} else {
 305		src = buf;
 306	}
 307	return hib_bio_write_page(offset, src, bio_chain);
 308}
 309
 310static void release_swap_writer(struct swap_map_handle *handle)
 311{
 312	if (handle->cur)
 313		free_page((unsigned long)handle->cur);
 314	handle->cur = NULL;
 315}
 316
 317static int get_swap_writer(struct swap_map_handle *handle)
 318{
 319	int ret;
 320
 321	ret = swsusp_swap_check();
 322	if (ret) {
 323		if (ret != -ENOSPC)
 324			printk(KERN_ERR "PM: Cannot find swap device, try "
 325					"swapon -a.\n");
 326		return ret;
 327	}
 328	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 329	if (!handle->cur) {
 330		ret = -ENOMEM;
 331		goto err_close;
 332	}
 333	handle->cur_swap = alloc_swapdev_block(root_swap);
 334	if (!handle->cur_swap) {
 335		ret = -ENOSPC;
 336		goto err_rel;
 337	}
 338	handle->k = 0;
 339	handle->reqd_free_pages = reqd_free_pages();
 340	handle->first_sector = handle->cur_swap;
 341	return 0;
 342err_rel:
 343	release_swap_writer(handle);
 344err_close:
 345	swsusp_close(FMODE_WRITE);
 346	return ret;
 347}
 348
 349static int swap_write_page(struct swap_map_handle *handle, void *buf,
 350				struct bio **bio_chain)
 351{
 352	int error = 0;
 353	sector_t offset;
 354
 355	if (!handle->cur)
 356		return -EINVAL;
 357	offset = alloc_swapdev_block(root_swap);
 358	error = write_page(buf, offset, bio_chain);
 359	if (error)
 360		return error;
 361	handle->cur->entries[handle->k++] = offset;
 362	if (handle->k >= MAP_PAGE_ENTRIES) {
 363		offset = alloc_swapdev_block(root_swap);
 364		if (!offset)
 365			return -ENOSPC;
 366		handle->cur->next_swap = offset;
 367		error = write_page(handle->cur, handle->cur_swap, bio_chain);
 368		if (error)
 369			goto out;
 370		clear_page(handle->cur);
 371		handle->cur_swap = offset;
 372		handle->k = 0;
 373
 374		if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
 375			error = hib_wait_on_bio_chain(bio_chain);
 376			if (error)
 377				goto out;
 378			/*
 379			 * Recalculate the number of required free pages, to
 380			 * make sure we never take more than half.
 381			 */
 382			handle->reqd_free_pages = reqd_free_pages();
 383		}
 384	}
 385 out:
 386	return error;
 387}
 388
 389static int flush_swap_writer(struct swap_map_handle *handle)
 390{
 391	if (handle->cur && handle->cur_swap)
 392		return write_page(handle->cur, handle->cur_swap, NULL);
 393	else
 394		return -EINVAL;
 395}
 396
 397static int swap_writer_finish(struct swap_map_handle *handle,
 398		unsigned int flags, int error)
 399{
 400	if (!error) {
 401		flush_swap_writer(handle);
 402		printk(KERN_INFO "PM: S");
 403		error = mark_swapfiles(handle, flags);
 404		printk("|\n");
 
 405	}
 406
 407	if (error)
 408		free_all_swap_pages(root_swap);
 409	release_swap_writer(handle);
 410	swsusp_close(FMODE_WRITE);
 411
 412	return error;
 413}
 414
 
 
 
 
 
 
 415/* We need to remember how much compressed data we need to read. */
 416#define LZO_HEADER	sizeof(size_t)
 417
 418/* Number of pages/bytes we'll compress at one time. */
 419#define LZO_UNC_PAGES	32
 420#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 421
 422/* Number of pages/bytes we need for compressed data (worst case). */
 423#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 424			             LZO_HEADER, PAGE_SIZE)
 425#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 426
 427/* Maximum number of threads for compression/decompression. */
 428#define LZO_THREADS	3
 429
 430/* Minimum/maximum number of pages for read buffering. */
 431#define LZO_MIN_RD_PAGES	1024
 432#define LZO_MAX_RD_PAGES	8192
 433
 434
 435/**
 436 *	save_image - save the suspend image data
 437 */
 438
 439static int save_image(struct swap_map_handle *handle,
 440                      struct snapshot_handle *snapshot,
 441                      unsigned int nr_to_write)
 442{
 443	unsigned int m;
 444	int ret;
 445	int nr_pages;
 446	int err2;
 447	struct bio *bio;
 448	struct timeval start;
 449	struct timeval stop;
 450
 451	printk(KERN_INFO "PM: Saving image data pages (%u pages) ...     ",
 
 
 452		nr_to_write);
 453	m = nr_to_write / 100;
 454	if (!m)
 455		m = 1;
 456	nr_pages = 0;
 457	bio = NULL;
 458	do_gettimeofday(&start);
 459	while (1) {
 460		ret = snapshot_read_next(snapshot);
 461		if (ret <= 0)
 462			break;
 463		ret = swap_write_page(handle, data_of(*snapshot), &bio);
 464		if (ret)
 465			break;
 466		if (!(nr_pages % m))
 467			printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
 
 468		nr_pages++;
 469	}
 470	err2 = hib_wait_on_bio_chain(&bio);
 471	do_gettimeofday(&stop);
 
 472	if (!ret)
 473		ret = err2;
 474	if (!ret)
 475		printk(KERN_CONT "\b\b\b\bdone\n");
 476	else
 477		printk(KERN_CONT "\n");
 478	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
 479	return ret;
 480}
 481
 482/**
 483 * Structure used for CRC32.
 484 */
 485struct crc_data {
 486	struct task_struct *thr;                  /* thread */
 487	atomic_t ready;                           /* ready to start flag */
 488	atomic_t stop;                            /* ready to stop flag */
 489	unsigned run_threads;                     /* nr current threads */
 490	wait_queue_head_t go;                     /* start crc update */
 491	wait_queue_head_t done;                   /* crc update done */
 492	u32 *crc32;                               /* points to handle's crc32 */
 493	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 494	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 495};
 496
 497/**
 498 * CRC32 update function that runs in its own thread.
 499 */
 500static int crc32_threadfn(void *data)
 501{
 502	struct crc_data *d = data;
 503	unsigned i;
 504
 505	while (1) {
 506		wait_event(d->go, atomic_read(&d->ready) ||
 507		                  kthread_should_stop());
 508		if (kthread_should_stop()) {
 509			d->thr = NULL;
 510			atomic_set(&d->stop, 1);
 511			wake_up(&d->done);
 512			break;
 513		}
 514		atomic_set(&d->ready, 0);
 515
 516		for (i = 0; i < d->run_threads; i++)
 517			*d->crc32 = crc32_le(*d->crc32,
 518			                     d->unc[i], *d->unc_len[i]);
 519		atomic_set(&d->stop, 1);
 520		wake_up(&d->done);
 521	}
 522	return 0;
 523}
 524/**
 525 * Structure used for LZO data compression.
 526 */
 527struct cmp_data {
 528	struct task_struct *thr;                  /* thread */
 
 529	atomic_t ready;                           /* ready to start flag */
 530	atomic_t stop;                            /* ready to stop flag */
 531	int ret;                                  /* return code */
 532	wait_queue_head_t go;                     /* start compression */
 533	wait_queue_head_t done;                   /* compression done */
 534	size_t unc_len;                           /* uncompressed length */
 535	size_t cmp_len;                           /* compressed length */
 536	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 537	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 538	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 539};
 540
 541/**
 
 
 
 542 * Compression function that runs in its own thread.
 543 */
 544static int lzo_compress_threadfn(void *data)
 545{
 546	struct cmp_data *d = data;
 
 547
 548	while (1) {
 549		wait_event(d->go, atomic_read(&d->ready) ||
 550		                  kthread_should_stop());
 551		if (kthread_should_stop()) {
 552			d->thr = NULL;
 553			d->ret = -1;
 554			atomic_set(&d->stop, 1);
 555			wake_up(&d->done);
 556			break;
 557		}
 558		atomic_set(&d->ready, 0);
 559
 560		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 561		                          d->cmp + LZO_HEADER, &d->cmp_len,
 562		                          d->wrk);
 563		atomic_set(&d->stop, 1);
 
 
 
 
 564		wake_up(&d->done);
 565	}
 566	return 0;
 567}
 568
 569/**
 570 * save_image_lzo - Save the suspend image data compressed with LZO.
 571 * @handle: Swap mam handle to use for saving the image.
 572 * @snapshot: Image to read data from.
 573 * @nr_to_write: Number of pages to save.
 574 */
 575static int save_image_lzo(struct swap_map_handle *handle,
 576                          struct snapshot_handle *snapshot,
 577                          unsigned int nr_to_write)
 578{
 579	unsigned int m;
 580	int ret = 0;
 581	int nr_pages;
 582	int err2;
 583	struct bio *bio;
 584	struct timeval start;
 585	struct timeval stop;
 586	size_t off;
 587	unsigned thr, run_threads, nr_threads;
 588	unsigned char *page = NULL;
 589	struct cmp_data *data = NULL;
 590	struct crc_data *crc = NULL;
 591
 
 
 
 
 592	/*
 593	 * We'll limit the number of threads for compression to limit memory
 594	 * footprint.
 595	 */
 596	nr_threads = num_online_cpus() - 1;
 597	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 598
 599	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
 600	if (!page) {
 601		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
 602		ret = -ENOMEM;
 603		goto out_clean;
 604	}
 605
 606	data = vmalloc(sizeof(*data) * nr_threads);
 607	if (!data) {
 608		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
 609		ret = -ENOMEM;
 610		goto out_clean;
 611	}
 612	for (thr = 0; thr < nr_threads; thr++)
 613		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 614
 615	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 616	if (!crc) {
 617		printk(KERN_ERR "PM: Failed to allocate crc\n");
 618		ret = -ENOMEM;
 619		goto out_clean;
 620	}
 621	memset(crc, 0, offsetof(struct crc_data, go));
 622
 623	/*
 624	 * Start the compression threads.
 625	 */
 626	for (thr = 0; thr < nr_threads; thr++) {
 627		init_waitqueue_head(&data[thr].go);
 628		init_waitqueue_head(&data[thr].done);
 629
 630		data[thr].thr = kthread_run(lzo_compress_threadfn,
 
 
 
 
 
 
 
 631		                            &data[thr],
 632		                            "image_compress/%u", thr);
 633		if (IS_ERR(data[thr].thr)) {
 634			data[thr].thr = NULL;
 635			printk(KERN_ERR
 636			       "PM: Cannot start compression threads\n");
 637			ret = -ENOMEM;
 638			goto out_clean;
 639		}
 640	}
 641
 642	/*
 643	 * Start the CRC32 thread.
 644	 */
 645	init_waitqueue_head(&crc->go);
 646	init_waitqueue_head(&crc->done);
 647
 648	handle->crc32 = 0;
 649	crc->crc32 = &handle->crc32;
 650	for (thr = 0; thr < nr_threads; thr++) {
 651		crc->unc[thr] = data[thr].unc;
 652		crc->unc_len[thr] = &data[thr].unc_len;
 653	}
 654
 655	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 656	if (IS_ERR(crc->thr)) {
 657		crc->thr = NULL;
 658		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
 659		ret = -ENOMEM;
 660		goto out_clean;
 661	}
 662
 663	/*
 664	 * Adjust the number of required free pages after all allocations have
 665	 * been done. We don't want to run out of pages when writing.
 666	 */
 667	handle->reqd_free_pages = reqd_free_pages();
 668
 669	printk(KERN_INFO
 670		"PM: Using %u thread(s) for compression.\n"
 671		"PM: Compressing and saving image data (%u pages) ...     ",
 672		nr_threads, nr_to_write);
 673	m = nr_to_write / 100;
 674	if (!m)
 675		m = 1;
 676	nr_pages = 0;
 677	bio = NULL;
 678	do_gettimeofday(&start);
 679	for (;;) {
 680		for (thr = 0; thr < nr_threads; thr++) {
 681			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 682				ret = snapshot_read_next(snapshot);
 683				if (ret < 0)
 684					goto out_finish;
 685
 686				if (!ret)
 687					break;
 688
 689				memcpy(data[thr].unc + off,
 690				       data_of(*snapshot), PAGE_SIZE);
 691
 692				if (!(nr_pages % m))
 693					printk(KERN_CONT "\b\b\b\b%3d%%",
 694				               nr_pages / m);
 695				nr_pages++;
 696			}
 697			if (!off)
 698				break;
 699
 700			data[thr].unc_len = off;
 701
 702			atomic_set(&data[thr].ready, 1);
 703			wake_up(&data[thr].go);
 704		}
 705
 706		if (!thr)
 707			break;
 708
 709		crc->run_threads = thr;
 710		atomic_set(&crc->ready, 1);
 711		wake_up(&crc->go);
 712
 713		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 714			wait_event(data[thr].done,
 715			           atomic_read(&data[thr].stop));
 716			atomic_set(&data[thr].stop, 0);
 717
 718			ret = data[thr].ret;
 719
 720			if (ret < 0) {
 721				printk(KERN_ERR "PM: LZO compression failed\n");
 722				goto out_finish;
 723			}
 724
 725			if (unlikely(!data[thr].cmp_len ||
 726			             data[thr].cmp_len >
 727			             lzo1x_worst_compress(data[thr].unc_len))) {
 728				printk(KERN_ERR
 729				       "PM: Invalid LZO compressed length\n");
 730				ret = -1;
 731				goto out_finish;
 732			}
 733
 734			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 735
 736			/*
 737			 * Given we are writing one page at a time to disk, we
 738			 * copy that much from the buffer, although the last
 739			 * bit will likely be smaller than full page. This is
 740			 * OK - we saved the length of the compressed data, so
 741			 * any garbage at the end will be discarded when we
 742			 * read it.
 743			 */
 744			for (off = 0;
 745			     off < LZO_HEADER + data[thr].cmp_len;
 746			     off += PAGE_SIZE) {
 747				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 748
 749				ret = swap_write_page(handle, page, &bio);
 750				if (ret)
 751					goto out_finish;
 752			}
 753		}
 754
 755		wait_event(crc->done, atomic_read(&crc->stop));
 756		atomic_set(&crc->stop, 0);
 757	}
 758
 759out_finish:
 760	err2 = hib_wait_on_bio_chain(&bio);
 761	do_gettimeofday(&stop);
 762	if (!ret)
 763		ret = err2;
 764	if (!ret) {
 765		printk(KERN_CONT "\b\b\b\bdone\n");
 766	} else {
 767		printk(KERN_CONT "\n");
 768	}
 769	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
 770out_clean:
 
 771	if (crc) {
 772		if (crc->thr)
 773			kthread_stop(crc->thr);
 774		kfree(crc);
 775	}
 776	if (data) {
 777		for (thr = 0; thr < nr_threads; thr++)
 778			if (data[thr].thr)
 779				kthread_stop(data[thr].thr);
 
 
 
 780		vfree(data);
 781	}
 782	if (page) free_page((unsigned long)page);
 783
 784	return ret;
 785}
 786
 787/**
 788 *	enough_swap - Make sure we have enough swap to save the image.
 789 *
 790 *	Returns TRUE or FALSE after checking the total amount of swap
 791 *	space avaiable from the resume partition.
 792 */
 793
 794static int enough_swap(unsigned int nr_pages, unsigned int flags)
 795{
 796	unsigned int free_swap = count_swap_pages(root_swap, 1);
 797	unsigned int required;
 798
 799	pr_debug("PM: Free swap pages: %u\n", free_swap);
 800
 801	required = PAGES_FOR_IO + nr_pages;
 802	return free_swap > required;
 803}
 804
 805/**
 806 *	swsusp_write - Write entire image and metadata.
 807 *	@flags: flags to pass to the "boot" kernel in the image header
 808 *
 809 *	It is important _NOT_ to umount filesystems at this point. We want
 810 *	them synced (in case something goes wrong) but we DO not want to mark
 811 *	filesystem clean: it is not. (And it does not matter, if we resume
 812 *	correctly, we'll mark system clean, anyway.)
 813 */
 814
 815int swsusp_write(unsigned int flags)
 816{
 817	struct swap_map_handle handle;
 818	struct snapshot_handle snapshot;
 819	struct swsusp_info *header;
 820	unsigned long pages;
 821	int error;
 822
 823	pages = snapshot_get_image_size();
 824	error = get_swap_writer(&handle);
 825	if (error) {
 826		printk(KERN_ERR "PM: Cannot get swap writer\n");
 827		return error;
 828	}
 829	if (flags & SF_NOCOMPRESS_MODE) {
 830		if (!enough_swap(pages, flags)) {
 831			printk(KERN_ERR "PM: Not enough free swap\n");
 832			error = -ENOSPC;
 833			goto out_finish;
 834		}
 835	}
 836	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 837	error = snapshot_read_next(&snapshot);
 838	if (error < PAGE_SIZE) {
 839		if (error >= 0)
 840			error = -EFAULT;
 841
 842		goto out_finish;
 843	}
 844	header = (struct swsusp_info *)data_of(snapshot);
 845	error = swap_write_page(&handle, header, NULL);
 846	if (!error) {
 847		error = (flags & SF_NOCOMPRESS_MODE) ?
 848			save_image(&handle, &snapshot, pages - 1) :
 849			save_image_lzo(&handle, &snapshot, pages - 1);
 850	}
 851out_finish:
 852	error = swap_writer_finish(&handle, flags, error);
 853	return error;
 854}
 855
 856/**
 857 *	The following functions allow us to read data using a swap map
 858 *	in a file-alike way
 859 */
 860
 861static void release_swap_reader(struct swap_map_handle *handle)
 862{
 863	struct swap_map_page_list *tmp;
 864
 865	while (handle->maps) {
 866		if (handle->maps->map)
 867			free_page((unsigned long)handle->maps->map);
 868		tmp = handle->maps;
 869		handle->maps = handle->maps->next;
 870		kfree(tmp);
 871	}
 872	handle->cur = NULL;
 873}
 874
 875static int get_swap_reader(struct swap_map_handle *handle,
 876		unsigned int *flags_p)
 877{
 878	int error;
 879	struct swap_map_page_list *tmp, *last;
 880	sector_t offset;
 881
 882	*flags_p = swsusp_header->flags;
 883
 884	if (!swsusp_header->image) /* how can this happen? */
 885		return -EINVAL;
 886
 887	handle->cur = NULL;
 888	last = handle->maps = NULL;
 889	offset = swsusp_header->image;
 890	while (offset) {
 891		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
 892		if (!tmp) {
 893			release_swap_reader(handle);
 894			return -ENOMEM;
 895		}
 896		memset(tmp, 0, sizeof(*tmp));
 897		if (!handle->maps)
 898			handle->maps = tmp;
 899		if (last)
 900			last->next = tmp;
 901		last = tmp;
 902
 903		tmp->map = (struct swap_map_page *)
 904		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
 905		if (!tmp->map) {
 906			release_swap_reader(handle);
 907			return -ENOMEM;
 908		}
 909
 910		error = hib_bio_read_page(offset, tmp->map, NULL);
 911		if (error) {
 912			release_swap_reader(handle);
 913			return error;
 914		}
 915		offset = tmp->map->next_swap;
 916	}
 917	handle->k = 0;
 918	handle->cur = handle->maps->map;
 919	return 0;
 920}
 921
 922static int swap_read_page(struct swap_map_handle *handle, void *buf,
 923				struct bio **bio_chain)
 924{
 925	sector_t offset;
 926	int error;
 927	struct swap_map_page_list *tmp;
 928
 929	if (!handle->cur)
 930		return -EINVAL;
 931	offset = handle->cur->entries[handle->k];
 932	if (!offset)
 933		return -EFAULT;
 934	error = hib_bio_read_page(offset, buf, bio_chain);
 935	if (error)
 936		return error;
 937	if (++handle->k >= MAP_PAGE_ENTRIES) {
 938		handle->k = 0;
 939		free_page((unsigned long)handle->maps->map);
 940		tmp = handle->maps;
 941		handle->maps = handle->maps->next;
 942		kfree(tmp);
 943		if (!handle->maps)
 944			release_swap_reader(handle);
 945		else
 946			handle->cur = handle->maps->map;
 947	}
 948	return error;
 949}
 950
 951static int swap_reader_finish(struct swap_map_handle *handle)
 952{
 953	release_swap_reader(handle);
 954
 955	return 0;
 956}
 957
 958/**
 959 *	load_image - load the image using the swap map handle
 960 *	@handle and the snapshot handle @snapshot
 961 *	(assume there are @nr_pages pages to load)
 962 */
 963
 964static int load_image(struct swap_map_handle *handle,
 965                      struct snapshot_handle *snapshot,
 966                      unsigned int nr_to_read)
 967{
 968	unsigned int m;
 969	int ret = 0;
 970	struct timeval start;
 971	struct timeval stop;
 972	struct bio *bio;
 973	int err2;
 974	unsigned nr_pages;
 975
 976	printk(KERN_INFO "PM: Loading image data pages (%u pages) ...     ",
 977		nr_to_read);
 978	m = nr_to_read / 100;
 
 
 979	if (!m)
 980		m = 1;
 981	nr_pages = 0;
 982	bio = NULL;
 983	do_gettimeofday(&start);
 984	for ( ; ; ) {
 985		ret = snapshot_write_next(snapshot);
 986		if (ret <= 0)
 987			break;
 988		ret = swap_read_page(handle, data_of(*snapshot), &bio);
 989		if (ret)
 990			break;
 991		if (snapshot->sync_read)
 992			ret = hib_wait_on_bio_chain(&bio);
 993		if (ret)
 994			break;
 995		if (!(nr_pages % m))
 996			printk("\b\b\b\b%3d%%", nr_pages / m);
 
 997		nr_pages++;
 998	}
 999	err2 = hib_wait_on_bio_chain(&bio);
1000	do_gettimeofday(&stop);
 
1001	if (!ret)
1002		ret = err2;
1003	if (!ret) {
1004		printk("\b\b\b\bdone\n");
1005		snapshot_write_finalize(snapshot);
1006		if (!snapshot_image_loaded(snapshot))
1007			ret = -ENODATA;
1008	} else
1009		printk("\n");
1010	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1011	return ret;
1012}
1013
1014/**
1015 * Structure used for LZO data decompression.
1016 */
1017struct dec_data {
1018	struct task_struct *thr;                  /* thread */
 
1019	atomic_t ready;                           /* ready to start flag */
1020	atomic_t stop;                            /* ready to stop flag */
1021	int ret;                                  /* return code */
1022	wait_queue_head_t go;                     /* start decompression */
1023	wait_queue_head_t done;                   /* decompression done */
1024	size_t unc_len;                           /* uncompressed length */
1025	size_t cmp_len;                           /* compressed length */
1026	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1027	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1028};
1029
1030/**
1031 * Deompression function that runs in its own thread.
1032 */
1033static int lzo_decompress_threadfn(void *data)
1034{
1035	struct dec_data *d = data;
 
1036
1037	while (1) {
1038		wait_event(d->go, atomic_read(&d->ready) ||
1039		                  kthread_should_stop());
1040		if (kthread_should_stop()) {
1041			d->thr = NULL;
1042			d->ret = -1;
1043			atomic_set(&d->stop, 1);
1044			wake_up(&d->done);
1045			break;
1046		}
1047		atomic_set(&d->ready, 0);
1048
1049		d->unc_len = LZO_UNC_SIZE;
1050		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1051		                               d->unc, &d->unc_len);
1052		atomic_set(&d->stop, 1);
 
 
 
 
 
 
1053		wake_up(&d->done);
1054	}
1055	return 0;
1056}
1057
1058/**
1059 * load_image_lzo - Load compressed image data and decompress them with LZO.
1060 * @handle: Swap map handle to use for loading data.
1061 * @snapshot: Image to copy uncompressed data into.
1062 * @nr_to_read: Number of pages to load.
1063 */
1064static int load_image_lzo(struct swap_map_handle *handle,
1065                          struct snapshot_handle *snapshot,
1066                          unsigned int nr_to_read)
1067{
1068	unsigned int m;
1069	int ret = 0;
1070	int eof = 0;
1071	struct bio *bio;
1072	struct timeval start;
1073	struct timeval stop;
1074	unsigned nr_pages;
1075	size_t off;
1076	unsigned i, thr, run_threads, nr_threads;
1077	unsigned ring = 0, pg = 0, ring_size = 0,
1078	         have = 0, want, need, asked = 0;
1079	unsigned long read_pages = 0;
1080	unsigned char **page = NULL;
1081	struct dec_data *data = NULL;
1082	struct crc_data *crc = NULL;
1083
 
 
1084	/*
1085	 * We'll limit the number of threads for decompression to limit memory
1086	 * footprint.
1087	 */
1088	nr_threads = num_online_cpus() - 1;
1089	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1090
1091	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1092	if (!page) {
1093		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1094		ret = -ENOMEM;
1095		goto out_clean;
1096	}
1097
1098	data = vmalloc(sizeof(*data) * nr_threads);
1099	if (!data) {
1100		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1101		ret = -ENOMEM;
1102		goto out_clean;
1103	}
1104	for (thr = 0; thr < nr_threads; thr++)
1105		memset(&data[thr], 0, offsetof(struct dec_data, go));
1106
1107	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1108	if (!crc) {
1109		printk(KERN_ERR "PM: Failed to allocate crc\n");
1110		ret = -ENOMEM;
1111		goto out_clean;
1112	}
1113	memset(crc, 0, offsetof(struct crc_data, go));
 
1114
1115	/*
1116	 * Start the decompression threads.
1117	 */
1118	for (thr = 0; thr < nr_threads; thr++) {
1119		init_waitqueue_head(&data[thr].go);
1120		init_waitqueue_head(&data[thr].done);
1121
1122		data[thr].thr = kthread_run(lzo_decompress_threadfn,
 
 
 
 
 
 
 
1123		                            &data[thr],
1124		                            "image_decompress/%u", thr);
1125		if (IS_ERR(data[thr].thr)) {
1126			data[thr].thr = NULL;
1127			printk(KERN_ERR
1128			       "PM: Cannot start decompression threads\n");
1129			ret = -ENOMEM;
1130			goto out_clean;
1131		}
1132	}
1133
1134	/*
1135	 * Start the CRC32 thread.
1136	 */
1137	init_waitqueue_head(&crc->go);
1138	init_waitqueue_head(&crc->done);
1139
1140	handle->crc32 = 0;
1141	crc->crc32 = &handle->crc32;
1142	for (thr = 0; thr < nr_threads; thr++) {
1143		crc->unc[thr] = data[thr].unc;
1144		crc->unc_len[thr] = &data[thr].unc_len;
1145	}
1146
1147	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1148	if (IS_ERR(crc->thr)) {
1149		crc->thr = NULL;
1150		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1151		ret = -ENOMEM;
1152		goto out_clean;
1153	}
1154
1155	/*
1156	 * Set the number of pages for read buffering.
1157	 * This is complete guesswork, because we'll only know the real
1158	 * picture once prepare_image() is called, which is much later on
1159	 * during the image load phase. We'll assume the worst case and
1160	 * say that none of the image pages are from high memory.
1161	 */
1162	if (low_free_pages() > snapshot_get_image_size())
1163		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1164	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1165
1166	for (i = 0; i < read_pages; i++) {
1167		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1168		                                  __GFP_WAIT | __GFP_HIGH :
1169		                                  __GFP_WAIT | __GFP_NOWARN |
1170		                                  __GFP_NORETRY);
1171
1172		if (!page[i]) {
1173			if (i < LZO_CMP_PAGES) {
1174				ring_size = i;
1175				printk(KERN_ERR
1176				       "PM: Failed to allocate LZO pages\n");
1177				ret = -ENOMEM;
1178				goto out_clean;
1179			} else {
1180				break;
1181			}
1182		}
1183	}
1184	want = ring_size = i;
1185
1186	printk(KERN_INFO
1187		"PM: Using %u thread(s) for decompression.\n"
1188		"PM: Loading and decompressing image data (%u pages) ...     ",
1189		nr_threads, nr_to_read);
1190	m = nr_to_read / 100;
1191	if (!m)
1192		m = 1;
1193	nr_pages = 0;
1194	bio = NULL;
1195	do_gettimeofday(&start);
1196
1197	ret = snapshot_write_next(snapshot);
1198	if (ret <= 0)
1199		goto out_finish;
1200
1201	for(;;) {
1202		for (i = 0; !eof && i < want; i++) {
1203			ret = swap_read_page(handle, page[ring], &bio);
1204			if (ret) {
1205				/*
1206				 * On real read error, finish. On end of data,
1207				 * set EOF flag and just exit the read loop.
1208				 */
1209				if (handle->cur &&
1210				    handle->cur->entries[handle->k]) {
1211					goto out_finish;
1212				} else {
1213					eof = 1;
1214					break;
1215				}
1216			}
1217			if (++ring >= ring_size)
1218				ring = 0;
1219		}
1220		asked += i;
1221		want -= i;
1222
1223		/*
1224		 * We are out of data, wait for some more.
1225		 */
1226		if (!have) {
1227			if (!asked)
1228				break;
1229
1230			ret = hib_wait_on_bio_chain(&bio);
1231			if (ret)
1232				goto out_finish;
1233			have += asked;
1234			asked = 0;
1235			if (eof)
1236				eof = 2;
1237		}
1238
1239		if (crc->run_threads) {
1240			wait_event(crc->done, atomic_read(&crc->stop));
1241			atomic_set(&crc->stop, 0);
1242			crc->run_threads = 0;
1243		}
1244
1245		for (thr = 0; have && thr < nr_threads; thr++) {
1246			data[thr].cmp_len = *(size_t *)page[pg];
1247			if (unlikely(!data[thr].cmp_len ||
1248			             data[thr].cmp_len >
1249			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1250				printk(KERN_ERR
1251				       "PM: Invalid LZO compressed length\n");
1252				ret = -1;
1253				goto out_finish;
1254			}
1255
1256			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1257			                    PAGE_SIZE);
1258			if (need > have) {
1259				if (eof > 1) {
1260					ret = -1;
1261					goto out_finish;
1262				}
1263				break;
1264			}
1265
1266			for (off = 0;
1267			     off < LZO_HEADER + data[thr].cmp_len;
1268			     off += PAGE_SIZE) {
1269				memcpy(data[thr].cmp + off,
1270				       page[pg], PAGE_SIZE);
1271				have--;
1272				want++;
1273				if (++pg >= ring_size)
1274					pg = 0;
1275			}
1276
1277			atomic_set(&data[thr].ready, 1);
1278			wake_up(&data[thr].go);
1279		}
1280
1281		/*
1282		 * Wait for more data while we are decompressing.
1283		 */
1284		if (have < LZO_CMP_PAGES && asked) {
1285			ret = hib_wait_on_bio_chain(&bio);
1286			if (ret)
1287				goto out_finish;
1288			have += asked;
1289			asked = 0;
1290			if (eof)
1291				eof = 2;
1292		}
1293
1294		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1295			wait_event(data[thr].done,
1296			           atomic_read(&data[thr].stop));
1297			atomic_set(&data[thr].stop, 0);
1298
1299			ret = data[thr].ret;
1300
1301			if (ret < 0) {
1302				printk(KERN_ERR
1303				       "PM: LZO decompression failed\n");
1304				goto out_finish;
1305			}
1306
1307			if (unlikely(!data[thr].unc_len ||
1308			             data[thr].unc_len > LZO_UNC_SIZE ||
1309			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1310				printk(KERN_ERR
1311				       "PM: Invalid LZO uncompressed length\n");
1312				ret = -1;
1313				goto out_finish;
1314			}
1315
1316			for (off = 0;
1317			     off < data[thr].unc_len; off += PAGE_SIZE) {
1318				memcpy(data_of(*snapshot),
1319				       data[thr].unc + off, PAGE_SIZE);
1320
1321				if (!(nr_pages % m))
1322					printk("\b\b\b\b%3d%%", nr_pages / m);
 
1323				nr_pages++;
1324
1325				ret = snapshot_write_next(snapshot);
1326				if (ret <= 0) {
1327					crc->run_threads = thr + 1;
1328					atomic_set(&crc->ready, 1);
1329					wake_up(&crc->go);
1330					goto out_finish;
1331				}
1332			}
1333		}
1334
1335		crc->run_threads = thr;
1336		atomic_set(&crc->ready, 1);
1337		wake_up(&crc->go);
1338	}
1339
1340out_finish:
1341	if (crc->run_threads) {
1342		wait_event(crc->done, atomic_read(&crc->stop));
1343		atomic_set(&crc->stop, 0);
1344	}
1345	do_gettimeofday(&stop);
1346	if (!ret) {
1347		printk("\b\b\b\bdone\n");
1348		snapshot_write_finalize(snapshot);
1349		if (!snapshot_image_loaded(snapshot))
1350			ret = -ENODATA;
1351		if (!ret) {
1352			if (swsusp_header->flags & SF_CRC32_MODE) {
1353				if(handle->crc32 != swsusp_header->crc32) {
1354					printk(KERN_ERR
1355					       "PM: Invalid image CRC32!\n");
1356					ret = -ENODATA;
1357				}
1358			}
1359		}
1360	} else
1361		printk("\n");
1362	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363out_clean:
 
1364	for (i = 0; i < ring_size; i++)
1365		free_page((unsigned long)page[i]);
1366	if (crc) {
1367		if (crc->thr)
1368			kthread_stop(crc->thr);
1369		kfree(crc);
1370	}
1371	if (data) {
1372		for (thr = 0; thr < nr_threads; thr++)
1373			if (data[thr].thr)
1374				kthread_stop(data[thr].thr);
 
 
 
1375		vfree(data);
1376	}
1377	if (page) vfree(page);
1378
1379	return ret;
1380}
1381
1382/**
1383 *	swsusp_read - read the hibernation image.
1384 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1385 *		  be written into this memory location
1386 */
1387
1388int swsusp_read(unsigned int *flags_p)
1389{
1390	int error;
1391	struct swap_map_handle handle;
1392	struct snapshot_handle snapshot;
1393	struct swsusp_info *header;
1394
1395	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396	error = snapshot_write_next(&snapshot);
1397	if (error < PAGE_SIZE)
1398		return error < 0 ? error : -EFAULT;
1399	header = (struct swsusp_info *)data_of(snapshot);
1400	error = get_swap_reader(&handle, flags_p);
1401	if (error)
1402		goto end;
1403	if (!error)
1404		error = swap_read_page(&handle, header, NULL);
1405	if (!error) {
1406		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407			load_image(&handle, &snapshot, header->pages - 1) :
1408			load_image_lzo(&handle, &snapshot, header->pages - 1);
1409	}
1410	swap_reader_finish(&handle);
1411end:
1412	if (!error)
1413		pr_debug("PM: Image successfully loaded\n");
1414	else
1415		pr_debug("PM: Error %d resuming\n", error);
1416	return error;
1417}
1418
 
 
1419/**
1420 *      swsusp_check - Check for swsusp signature in the resume device
 
1421 */
1422
1423int swsusp_check(void)
1424{
 
1425	int error;
1426
1427	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428					    FMODE_READ, NULL);
1429	if (!IS_ERR(hib_resume_bdev)) {
1430		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431		clear_page(swsusp_header);
1432		error = hib_bio_read_page(swsusp_resume_block,
1433					swsusp_header, NULL);
1434		if (error)
1435			goto put;
1436
1437		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
 
1439			/* Reset swap signature now */
1440			error = hib_bio_write_page(swsusp_resume_block,
 
1441						swsusp_header, NULL);
1442		} else {
1443			error = -EINVAL;
1444		}
 
 
 
 
 
 
1445
1446put:
1447		if (error)
1448			blkdev_put(hib_resume_bdev, FMODE_READ);
1449		else
1450			pr_debug("PM: Image signature found, resuming\n");
1451	} else {
1452		error = PTR_ERR(hib_resume_bdev);
1453	}
1454
1455	if (error)
1456		pr_debug("PM: Image not found (code %d)\n", error);
1457
1458	return error;
1459}
1460
1461/**
1462 *	swsusp_close - close swap device.
1463 */
1464
1465void swsusp_close(fmode_t mode)
1466{
1467	if (IS_ERR(hib_resume_bdev)) {
1468		pr_debug("PM: Image device not initialised\n");
1469		return;
1470	}
1471
1472	blkdev_put(hib_resume_bdev, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473}
 
1474
1475static int swsusp_header_init(void)
1476{
1477	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1478	if (!swsusp_header)
1479		panic("Could not allocate memory for swsusp_header\n");
1480	return 0;
1481}
1482
1483core_initcall(swsusp_header_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
 
 
 
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
 
  19#include <linux/device.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/pm.h>
  25#include <linux/slab.h>
 
  26#include <linux/vmalloc.h>
  27#include <linux/cpumask.h>
  28#include <linux/atomic.h>
  29#include <linux/kthread.h>
  30#include <linux/crc32.h>
  31#include <linux/ktime.h>
  32
  33#include "power.h"
  34
  35#define HIBERNATE_SIG	"S1SUSPEND"
  36
  37u32 swsusp_hardware_signature;
  38
  39/*
  40 * When reading an {un,}compressed image, we may restore pages in place,
  41 * in which case some architectures need these pages cleaning before they
  42 * can be executed. We don't know which pages these may be, so clean the lot.
  43 */
  44static bool clean_pages_on_read;
  45static bool clean_pages_on_decompress;
  46
  47/*
  48 *	The swap map is a data structure used for keeping track of each page
  49 *	written to a swap partition.  It consists of many swap_map_page
  50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  51 *	These structures are stored on the swap and linked together with the
  52 *	help of the .next_swap member.
  53 *
  54 *	The swap map is created during suspend.  The swap map pages are
  55 *	allocated and populated one at a time, so we only need one memory
  56 *	page to set up the entire structure.
  57 *
  58 *	During resume we pick up all swap_map_page structures into a list.
  59 */
  60
  61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  62
  63/*
  64 * Number of free pages that are not high.
  65 */
  66static inline unsigned long low_free_pages(void)
  67{
  68	return nr_free_pages() - nr_free_highpages();
  69}
  70
  71/*
  72 * Number of pages required to be kept free while writing the image. Always
  73 * half of all available low pages before the writing starts.
  74 */
  75static inline unsigned long reqd_free_pages(void)
  76{
  77	return low_free_pages() / 2;
  78}
  79
  80struct swap_map_page {
  81	sector_t entries[MAP_PAGE_ENTRIES];
  82	sector_t next_swap;
  83};
  84
  85struct swap_map_page_list {
  86	struct swap_map_page *map;
  87	struct swap_map_page_list *next;
  88};
  89
  90/*
  91 *	The swap_map_handle structure is used for handling swap in
  92 *	a file-alike way
  93 */
  94
  95struct swap_map_handle {
  96	struct swap_map_page *cur;
  97	struct swap_map_page_list *maps;
  98	sector_t cur_swap;
  99	sector_t first_sector;
 100	unsigned int k;
 101	unsigned long reqd_free_pages;
 102	u32 crc32;
 103};
 104
 105struct swsusp_header {
 106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 107	              sizeof(u32) - sizeof(u32)];
 108	u32	hw_sig;
 109	u32	crc32;
 110	sector_t image;
 111	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 112	char	orig_sig[10];
 113	char	sig[10];
 114} __packed;
 115
 116static struct swsusp_header *swsusp_header;
 117
 118/*
 119 *	The following functions are used for tracing the allocated
 120 *	swap pages, so that they can be freed in case of an error.
 121 */
 122
 123struct swsusp_extent {
 124	struct rb_node node;
 125	unsigned long start;
 126	unsigned long end;
 127};
 128
 129static struct rb_root swsusp_extents = RB_ROOT;
 130
 131static int swsusp_extents_insert(unsigned long swap_offset)
 132{
 133	struct rb_node **new = &(swsusp_extents.rb_node);
 134	struct rb_node *parent = NULL;
 135	struct swsusp_extent *ext;
 136
 137	/* Figure out where to put the new node */
 138	while (*new) {
 139		ext = rb_entry(*new, struct swsusp_extent, node);
 140		parent = *new;
 141		if (swap_offset < ext->start) {
 142			/* Try to merge */
 143			if (swap_offset == ext->start - 1) {
 144				ext->start--;
 145				return 0;
 146			}
 147			new = &((*new)->rb_left);
 148		} else if (swap_offset > ext->end) {
 149			/* Try to merge */
 150			if (swap_offset == ext->end + 1) {
 151				ext->end++;
 152				return 0;
 153			}
 154			new = &((*new)->rb_right);
 155		} else {
 156			/* It already is in the tree */
 157			return -EINVAL;
 158		}
 159	}
 160	/* Add the new node and rebalance the tree. */
 161	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 162	if (!ext)
 163		return -ENOMEM;
 164
 165	ext->start = swap_offset;
 166	ext->end = swap_offset;
 167	rb_link_node(&ext->node, parent, new);
 168	rb_insert_color(&ext->node, &swsusp_extents);
 169	return 0;
 170}
 171
 172/*
 173 *	alloc_swapdev_block - allocate a swap page and register that it has
 174 *	been allocated, so that it can be freed in case of an error.
 175 */
 176
 177sector_t alloc_swapdev_block(int swap)
 178{
 179	unsigned long offset;
 180
 181	offset = swp_offset(get_swap_page_of_type(swap));
 182	if (offset) {
 183		if (swsusp_extents_insert(offset))
 184			swap_free(swp_entry(swap, offset));
 185		else
 186			return swapdev_block(swap, offset);
 187	}
 188	return 0;
 189}
 190
 191/*
 192 *	free_all_swap_pages - free swap pages allocated for saving image data.
 193 *	It also frees the extents used to register which swap entries had been
 194 *	allocated.
 195 */
 196
 197void free_all_swap_pages(int swap)
 198{
 199	struct rb_node *node;
 200
 201	while ((node = swsusp_extents.rb_node)) {
 202		struct swsusp_extent *ext;
 203		unsigned long offset;
 204
 205		ext = rb_entry(node, struct swsusp_extent, node);
 206		rb_erase(node, &swsusp_extents);
 207		for (offset = ext->start; offset <= ext->end; offset++)
 208			swap_free(swp_entry(swap, offset));
 209
 210		kfree(ext);
 211	}
 212}
 213
 214int swsusp_swap_in_use(void)
 215{
 216	return (swsusp_extents.rb_node != NULL);
 217}
 218
 219/*
 220 * General things
 221 */
 222
 223static unsigned short root_swap = 0xffff;
 224static struct file *hib_resume_bdev_file;
 225
 226struct hib_bio_batch {
 227	atomic_t		count;
 228	wait_queue_head_t	wait;
 229	blk_status_t		error;
 230	struct blk_plug		plug;
 231};
 232
 233static void hib_init_batch(struct hib_bio_batch *hb)
 234{
 235	atomic_set(&hb->count, 0);
 236	init_waitqueue_head(&hb->wait);
 237	hb->error = BLK_STS_OK;
 238	blk_start_plug(&hb->plug);
 239}
 240
 241static void hib_finish_batch(struct hib_bio_batch *hb)
 242{
 243	blk_finish_plug(&hb->plug);
 244}
 245
 246static void hib_end_io(struct bio *bio)
 247{
 248	struct hib_bio_batch *hb = bio->bi_private;
 249	struct page *page = bio_first_page_all(bio);
 250
 251	if (bio->bi_status) {
 252		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 253			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 254			 (unsigned long long)bio->bi_iter.bi_sector);
 255	}
 256
 257	if (bio_data_dir(bio) == WRITE)
 258		put_page(page);
 259	else if (clean_pages_on_read)
 260		flush_icache_range((unsigned long)page_address(page),
 261				   (unsigned long)page_address(page) + PAGE_SIZE);
 262
 263	if (bio->bi_status && !hb->error)
 264		hb->error = bio->bi_status;
 265	if (atomic_dec_and_test(&hb->count))
 266		wake_up(&hb->wait);
 267
 268	bio_put(bio);
 269}
 270
 271static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
 272			 struct hib_bio_batch *hb)
 273{
 274	struct page *page = virt_to_page(addr);
 275	struct bio *bio;
 276	int error = 0;
 277
 278	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
 279			GFP_NOIO | __GFP_HIGH);
 280	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 281
 282	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 283		pr_err("Adding page to bio failed at %llu\n",
 284		       (unsigned long long)bio->bi_iter.bi_sector);
 285		bio_put(bio);
 286		return -EFAULT;
 287	}
 288
 289	if (hb) {
 290		bio->bi_end_io = hib_end_io;
 291		bio->bi_private = hb;
 292		atomic_inc(&hb->count);
 293		submit_bio(bio);
 294	} else {
 295		error = submit_bio_wait(bio);
 296		bio_put(bio);
 297	}
 298
 299	return error;
 300}
 301
 302static int hib_wait_io(struct hib_bio_batch *hb)
 303{
 304	/*
 305	 * We are relying on the behavior of blk_plug that a thread with
 306	 * a plug will flush the plug list before sleeping.
 307	 */
 308	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 309	return blk_status_to_errno(hb->error);
 310}
 311
 312/*
 313 * Saving part
 314 */
 
 315static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 316{
 317	int error;
 318
 319	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
 320	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 321	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 322		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 323		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 324		swsusp_header->image = handle->first_sector;
 325		if (swsusp_hardware_signature) {
 326			swsusp_header->hw_sig = swsusp_hardware_signature;
 327			flags |= SF_HW_SIG;
 328		}
 329		swsusp_header->flags = flags;
 330		if (flags & SF_CRC32_MODE)
 331			swsusp_header->crc32 = handle->crc32;
 332		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
 333				      swsusp_resume_block, swsusp_header, NULL);
 334	} else {
 335		pr_err("Swap header not found!\n");
 336		error = -ENODEV;
 337	}
 338	return error;
 339}
 340
 341/*
 342 * Hold the swsusp_header flag. This is used in software_resume() in
 343 * 'kernel/power/hibernate' to check if the image is compressed and query
 344 * for the compression algorithm support(if so).
 345 */
 346unsigned int swsusp_header_flags;
 347
 348/**
 349 *	swsusp_swap_check - check if the resume device is a swap device
 350 *	and get its index (if so)
 351 *
 352 *	This is called before saving image
 353 */
 354static int swsusp_swap_check(void)
 355{
 356	int res;
 357
 358	if (swsusp_resume_device)
 359		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
 360	else
 361		res = find_first_swap(&swsusp_resume_device);
 362	if (res < 0)
 363		return res;
 
 364	root_swap = res;
 
 
 
 365
 366	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
 367			BLK_OPEN_WRITE, NULL, NULL);
 368	if (IS_ERR(hib_resume_bdev_file))
 369		return PTR_ERR(hib_resume_bdev_file);
 370
 371	res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
 372	if (res < 0)
 373		fput(hib_resume_bdev_file);
 374
 375	return res;
 376}
 377
 378/**
 379 *	write_page - Write one page to given swap location.
 380 *	@buf:		Address we're writing.
 381 *	@offset:	Offset of the swap page we're writing to.
 382 *	@hb:		bio completion batch
 383 */
 384
 385static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 386{
 387	void *src;
 388	int ret;
 389
 390	if (!offset)
 391		return -ENOSPC;
 392
 393	if (hb) {
 394		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 395		                              __GFP_NORETRY);
 396		if (src) {
 397			copy_page(src, buf);
 398		} else {
 399			ret = hib_wait_io(hb); /* Free pages */
 400			if (ret)
 401				return ret;
 402			src = (void *)__get_free_page(GFP_NOIO |
 403			                              __GFP_NOWARN |
 404			                              __GFP_NORETRY);
 405			if (src) {
 406				copy_page(src, buf);
 407			} else {
 408				WARN_ON_ONCE(1);
 409				hb = NULL;	/* Go synchronous */
 410				src = buf;
 411			}
 412		}
 413	} else {
 414		src = buf;
 415	}
 416	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
 417}
 418
 419static void release_swap_writer(struct swap_map_handle *handle)
 420{
 421	if (handle->cur)
 422		free_page((unsigned long)handle->cur);
 423	handle->cur = NULL;
 424}
 425
 426static int get_swap_writer(struct swap_map_handle *handle)
 427{
 428	int ret;
 429
 430	ret = swsusp_swap_check();
 431	if (ret) {
 432		if (ret != -ENOSPC)
 433			pr_err("Cannot find swap device, try swapon -a\n");
 
 434		return ret;
 435	}
 436	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 437	if (!handle->cur) {
 438		ret = -ENOMEM;
 439		goto err_close;
 440	}
 441	handle->cur_swap = alloc_swapdev_block(root_swap);
 442	if (!handle->cur_swap) {
 443		ret = -ENOSPC;
 444		goto err_rel;
 445	}
 446	handle->k = 0;
 447	handle->reqd_free_pages = reqd_free_pages();
 448	handle->first_sector = handle->cur_swap;
 449	return 0;
 450err_rel:
 451	release_swap_writer(handle);
 452err_close:
 453	swsusp_close();
 454	return ret;
 455}
 456
 457static int swap_write_page(struct swap_map_handle *handle, void *buf,
 458		struct hib_bio_batch *hb)
 459{
 460	int error;
 461	sector_t offset;
 462
 463	if (!handle->cur)
 464		return -EINVAL;
 465	offset = alloc_swapdev_block(root_swap);
 466	error = write_page(buf, offset, hb);
 467	if (error)
 468		return error;
 469	handle->cur->entries[handle->k++] = offset;
 470	if (handle->k >= MAP_PAGE_ENTRIES) {
 471		offset = alloc_swapdev_block(root_swap);
 472		if (!offset)
 473			return -ENOSPC;
 474		handle->cur->next_swap = offset;
 475		error = write_page(handle->cur, handle->cur_swap, hb);
 476		if (error)
 477			goto out;
 478		clear_page(handle->cur);
 479		handle->cur_swap = offset;
 480		handle->k = 0;
 481
 482		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 483			error = hib_wait_io(hb);
 484			if (error)
 485				goto out;
 486			/*
 487			 * Recalculate the number of required free pages, to
 488			 * make sure we never take more than half.
 489			 */
 490			handle->reqd_free_pages = reqd_free_pages();
 491		}
 492	}
 493 out:
 494	return error;
 495}
 496
 497static int flush_swap_writer(struct swap_map_handle *handle)
 498{
 499	if (handle->cur && handle->cur_swap)
 500		return write_page(handle->cur, handle->cur_swap, NULL);
 501	else
 502		return -EINVAL;
 503}
 504
 505static int swap_writer_finish(struct swap_map_handle *handle,
 506		unsigned int flags, int error)
 507{
 508	if (!error) {
 509		pr_info("S");
 
 510		error = mark_swapfiles(handle, flags);
 511		pr_cont("|\n");
 512		flush_swap_writer(handle);
 513	}
 514
 515	if (error)
 516		free_all_swap_pages(root_swap);
 517	release_swap_writer(handle);
 518	swsusp_close();
 519
 520	return error;
 521}
 522
 523/*
 524 * Bytes we need for compressed data in worst case. We assume(limitation)
 525 * this is the worst of all the compression algorithms.
 526 */
 527#define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
 528
 529/* We need to remember how much compressed data we need to read. */
 530#define CMP_HEADER	sizeof(size_t)
 531
 532/* Number of pages/bytes we'll compress at one time. */
 533#define UNC_PAGES	32
 534#define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
 535
 536/* Number of pages we need for compressed data (worst case). */
 537#define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
 538				CMP_HEADER, PAGE_SIZE)
 539#define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
 540
 541/* Maximum number of threads for compression/decompression. */
 542#define CMP_THREADS	3
 543
 544/* Minimum/maximum number of pages for read buffering. */
 545#define CMP_MIN_RD_PAGES	1024
 546#define CMP_MAX_RD_PAGES	8192
 
 547
 548/**
 549 *	save_image - save the suspend image data
 550 */
 551
 552static int save_image(struct swap_map_handle *handle,
 553                      struct snapshot_handle *snapshot,
 554                      unsigned int nr_to_write)
 555{
 556	unsigned int m;
 557	int ret;
 558	int nr_pages;
 559	int err2;
 560	struct hib_bio_batch hb;
 561	ktime_t start;
 562	ktime_t stop;
 563
 564	hib_init_batch(&hb);
 565
 566	pr_info("Saving image data pages (%u pages)...\n",
 567		nr_to_write);
 568	m = nr_to_write / 10;
 569	if (!m)
 570		m = 1;
 571	nr_pages = 0;
 572	start = ktime_get();
 
 573	while (1) {
 574		ret = snapshot_read_next(snapshot);
 575		if (ret <= 0)
 576			break;
 577		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 578		if (ret)
 579			break;
 580		if (!(nr_pages % m))
 581			pr_info("Image saving progress: %3d%%\n",
 582				nr_pages / m * 10);
 583		nr_pages++;
 584	}
 585	err2 = hib_wait_io(&hb);
 586	hib_finish_batch(&hb);
 587	stop = ktime_get();
 588	if (!ret)
 589		ret = err2;
 590	if (!ret)
 591		pr_info("Image saving done\n");
 592	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 
 
 593	return ret;
 594}
 595
 596/*
 597 * Structure used for CRC32.
 598 */
 599struct crc_data {
 600	struct task_struct *thr;                  /* thread */
 601	atomic_t ready;                           /* ready to start flag */
 602	atomic_t stop;                            /* ready to stop flag */
 603	unsigned run_threads;                     /* nr current threads */
 604	wait_queue_head_t go;                     /* start crc update */
 605	wait_queue_head_t done;                   /* crc update done */
 606	u32 *crc32;                               /* points to handle's crc32 */
 607	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
 608	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
 609};
 610
 611/*
 612 * CRC32 update function that runs in its own thread.
 613 */
 614static int crc32_threadfn(void *data)
 615{
 616	struct crc_data *d = data;
 617	unsigned i;
 618
 619	while (1) {
 620		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 621		                  kthread_should_stop());
 622		if (kthread_should_stop()) {
 623			d->thr = NULL;
 624			atomic_set_release(&d->stop, 1);
 625			wake_up(&d->done);
 626			break;
 627		}
 628		atomic_set(&d->ready, 0);
 629
 630		for (i = 0; i < d->run_threads; i++)
 631			*d->crc32 = crc32_le(*d->crc32,
 632			                     d->unc[i], *d->unc_len[i]);
 633		atomic_set_release(&d->stop, 1);
 634		wake_up(&d->done);
 635	}
 636	return 0;
 637}
 638/*
 639 * Structure used for data compression.
 640 */
 641struct cmp_data {
 642	struct task_struct *thr;                  /* thread */
 643	struct crypto_comp *cc;                   /* crypto compressor stream */
 644	atomic_t ready;                           /* ready to start flag */
 645	atomic_t stop;                            /* ready to stop flag */
 646	int ret;                                  /* return code */
 647	wait_queue_head_t go;                     /* start compression */
 648	wait_queue_head_t done;                   /* compression done */
 649	size_t unc_len;                           /* uncompressed length */
 650	size_t cmp_len;                           /* compressed length */
 651	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
 652	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
 
 653};
 654
 655/* Indicates the image size after compression */
 656static atomic_t compressed_size = ATOMIC_INIT(0);
 657
 658/*
 659 * Compression function that runs in its own thread.
 660 */
 661static int compress_threadfn(void *data)
 662{
 663	struct cmp_data *d = data;
 664	unsigned int cmp_len = 0;
 665
 666	while (1) {
 667		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 668		                  kthread_should_stop());
 669		if (kthread_should_stop()) {
 670			d->thr = NULL;
 671			d->ret = -1;
 672			atomic_set_release(&d->stop, 1);
 673			wake_up(&d->done);
 674			break;
 675		}
 676		atomic_set(&d->ready, 0);
 677
 678		cmp_len = CMP_SIZE - CMP_HEADER;
 679		d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
 680					      d->cmp + CMP_HEADER,
 681					      &cmp_len);
 682		d->cmp_len = cmp_len;
 683
 684		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
 685		atomic_set_release(&d->stop, 1);
 686		wake_up(&d->done);
 687	}
 688	return 0;
 689}
 690
 691/**
 692 * save_compressed_image - Save the suspend image data after compression.
 693 * @handle: Swap map handle to use for saving the image.
 694 * @snapshot: Image to read data from.
 695 * @nr_to_write: Number of pages to save.
 696 */
 697static int save_compressed_image(struct swap_map_handle *handle,
 698				 struct snapshot_handle *snapshot,
 699				 unsigned int nr_to_write)
 700{
 701	unsigned int m;
 702	int ret = 0;
 703	int nr_pages;
 704	int err2;
 705	struct hib_bio_batch hb;
 706	ktime_t start;
 707	ktime_t stop;
 708	size_t off;
 709	unsigned thr, run_threads, nr_threads;
 710	unsigned char *page = NULL;
 711	struct cmp_data *data = NULL;
 712	struct crc_data *crc = NULL;
 713
 714	hib_init_batch(&hb);
 715
 716	atomic_set(&compressed_size, 0);
 717
 718	/*
 719	 * We'll limit the number of threads for compression to limit memory
 720	 * footprint.
 721	 */
 722	nr_threads = num_online_cpus() - 1;
 723	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
 724
 725	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 726	if (!page) {
 727		pr_err("Failed to allocate %s page\n", hib_comp_algo);
 728		ret = -ENOMEM;
 729		goto out_clean;
 730	}
 731
 732	data = vzalloc(array_size(nr_threads, sizeof(*data)));
 733	if (!data) {
 734		pr_err("Failed to allocate %s data\n", hib_comp_algo);
 735		ret = -ENOMEM;
 736		goto out_clean;
 737	}
 
 
 738
 739	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
 740	if (!crc) {
 741		pr_err("Failed to allocate crc\n");
 742		ret = -ENOMEM;
 743		goto out_clean;
 744	}
 
 745
 746	/*
 747	 * Start the compression threads.
 748	 */
 749	for (thr = 0; thr < nr_threads; thr++) {
 750		init_waitqueue_head(&data[thr].go);
 751		init_waitqueue_head(&data[thr].done);
 752
 753		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
 754		if (IS_ERR_OR_NULL(data[thr].cc)) {
 755			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
 756			ret = -EFAULT;
 757			goto out_clean;
 758		}
 759
 760		data[thr].thr = kthread_run(compress_threadfn,
 761		                            &data[thr],
 762		                            "image_compress/%u", thr);
 763		if (IS_ERR(data[thr].thr)) {
 764			data[thr].thr = NULL;
 765			pr_err("Cannot start compression threads\n");
 
 766			ret = -ENOMEM;
 767			goto out_clean;
 768		}
 769	}
 770
 771	/*
 772	 * Start the CRC32 thread.
 773	 */
 774	init_waitqueue_head(&crc->go);
 775	init_waitqueue_head(&crc->done);
 776
 777	handle->crc32 = 0;
 778	crc->crc32 = &handle->crc32;
 779	for (thr = 0; thr < nr_threads; thr++) {
 780		crc->unc[thr] = data[thr].unc;
 781		crc->unc_len[thr] = &data[thr].unc_len;
 782	}
 783
 784	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 785	if (IS_ERR(crc->thr)) {
 786		crc->thr = NULL;
 787		pr_err("Cannot start CRC32 thread\n");
 788		ret = -ENOMEM;
 789		goto out_clean;
 790	}
 791
 792	/*
 793	 * Adjust the number of required free pages after all allocations have
 794	 * been done. We don't want to run out of pages when writing.
 795	 */
 796	handle->reqd_free_pages = reqd_free_pages();
 797
 798	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
 799	pr_info("Compressing and saving image data (%u pages)...\n",
 800		nr_to_write);
 801	m = nr_to_write / 10;
 
 802	if (!m)
 803		m = 1;
 804	nr_pages = 0;
 805	start = ktime_get();
 
 806	for (;;) {
 807		for (thr = 0; thr < nr_threads; thr++) {
 808			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
 809				ret = snapshot_read_next(snapshot);
 810				if (ret < 0)
 811					goto out_finish;
 812
 813				if (!ret)
 814					break;
 815
 816				memcpy(data[thr].unc + off,
 817				       data_of(*snapshot), PAGE_SIZE);
 818
 819				if (!(nr_pages % m))
 820					pr_info("Image saving progress: %3d%%\n",
 821						nr_pages / m * 10);
 822				nr_pages++;
 823			}
 824			if (!off)
 825				break;
 826
 827			data[thr].unc_len = off;
 828
 829			atomic_set_release(&data[thr].ready, 1);
 830			wake_up(&data[thr].go);
 831		}
 832
 833		if (!thr)
 834			break;
 835
 836		crc->run_threads = thr;
 837		atomic_set_release(&crc->ready, 1);
 838		wake_up(&crc->go);
 839
 840		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 841			wait_event(data[thr].done,
 842				atomic_read_acquire(&data[thr].stop));
 843			atomic_set(&data[thr].stop, 0);
 844
 845			ret = data[thr].ret;
 846
 847			if (ret < 0) {
 848				pr_err("%s compression failed\n", hib_comp_algo);
 849				goto out_finish;
 850			}
 851
 852			if (unlikely(!data[thr].cmp_len ||
 853			             data[thr].cmp_len >
 854				     bytes_worst_compress(data[thr].unc_len))) {
 855				pr_err("Invalid %s compressed length\n", hib_comp_algo);
 
 856				ret = -1;
 857				goto out_finish;
 858			}
 859
 860			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 861
 862			/*
 863			 * Given we are writing one page at a time to disk, we
 864			 * copy that much from the buffer, although the last
 865			 * bit will likely be smaller than full page. This is
 866			 * OK - we saved the length of the compressed data, so
 867			 * any garbage at the end will be discarded when we
 868			 * read it.
 869			 */
 870			for (off = 0;
 871			     off < CMP_HEADER + data[thr].cmp_len;
 872			     off += PAGE_SIZE) {
 873				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 874
 875				ret = swap_write_page(handle, page, &hb);
 876				if (ret)
 877					goto out_finish;
 878			}
 879		}
 880
 881		wait_event(crc->done, atomic_read_acquire(&crc->stop));
 882		atomic_set(&crc->stop, 0);
 883	}
 884
 885out_finish:
 886	err2 = hib_wait_io(&hb);
 887	stop = ktime_get();
 888	if (!ret)
 889		ret = err2;
 890	if (!ret)
 891		pr_info("Image saving done\n");
 892	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 893	pr_info("Image size after compression: %d kbytes\n",
 894		(atomic_read(&compressed_size) / 1024));
 895
 896out_clean:
 897	hib_finish_batch(&hb);
 898	if (crc) {
 899		if (crc->thr)
 900			kthread_stop(crc->thr);
 901		kfree(crc);
 902	}
 903	if (data) {
 904		for (thr = 0; thr < nr_threads; thr++) {
 905			if (data[thr].thr)
 906				kthread_stop(data[thr].thr);
 907			if (data[thr].cc)
 908				crypto_free_comp(data[thr].cc);
 909		}
 910		vfree(data);
 911	}
 912	if (page) free_page((unsigned long)page);
 913
 914	return ret;
 915}
 916
 917/**
 918 *	enough_swap - Make sure we have enough swap to save the image.
 919 *
 920 *	Returns TRUE or FALSE after checking the total amount of swap
 921 *	space available from the resume partition.
 922 */
 923
 924static int enough_swap(unsigned int nr_pages)
 925{
 926	unsigned int free_swap = count_swap_pages(root_swap, 1);
 927	unsigned int required;
 928
 929	pr_debug("Free swap pages: %u\n", free_swap);
 930
 931	required = PAGES_FOR_IO + nr_pages;
 932	return free_swap > required;
 933}
 934
 935/**
 936 *	swsusp_write - Write entire image and metadata.
 937 *	@flags: flags to pass to the "boot" kernel in the image header
 938 *
 939 *	It is important _NOT_ to umount filesystems at this point. We want
 940 *	them synced (in case something goes wrong) but we DO not want to mark
 941 *	filesystem clean: it is not. (And it does not matter, if we resume
 942 *	correctly, we'll mark system clean, anyway.)
 943 */
 944
 945int swsusp_write(unsigned int flags)
 946{
 947	struct swap_map_handle handle;
 948	struct snapshot_handle snapshot;
 949	struct swsusp_info *header;
 950	unsigned long pages;
 951	int error;
 952
 953	pages = snapshot_get_image_size();
 954	error = get_swap_writer(&handle);
 955	if (error) {
 956		pr_err("Cannot get swap writer\n");
 957		return error;
 958	}
 959	if (flags & SF_NOCOMPRESS_MODE) {
 960		if (!enough_swap(pages)) {
 961			pr_err("Not enough free swap\n");
 962			error = -ENOSPC;
 963			goto out_finish;
 964		}
 965	}
 966	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 967	error = snapshot_read_next(&snapshot);
 968	if (error < (int)PAGE_SIZE) {
 969		if (error >= 0)
 970			error = -EFAULT;
 971
 972		goto out_finish;
 973	}
 974	header = (struct swsusp_info *)data_of(snapshot);
 975	error = swap_write_page(&handle, header, NULL);
 976	if (!error) {
 977		error = (flags & SF_NOCOMPRESS_MODE) ?
 978			save_image(&handle, &snapshot, pages - 1) :
 979			save_compressed_image(&handle, &snapshot, pages - 1);
 980	}
 981out_finish:
 982	error = swap_writer_finish(&handle, flags, error);
 983	return error;
 984}
 985
 986/*
 987 *	The following functions allow us to read data using a swap map
 988 *	in a file-like way.
 989 */
 990
 991static void release_swap_reader(struct swap_map_handle *handle)
 992{
 993	struct swap_map_page_list *tmp;
 994
 995	while (handle->maps) {
 996		if (handle->maps->map)
 997			free_page((unsigned long)handle->maps->map);
 998		tmp = handle->maps;
 999		handle->maps = handle->maps->next;
1000		kfree(tmp);
1001	}
1002	handle->cur = NULL;
1003}
1004
1005static int get_swap_reader(struct swap_map_handle *handle,
1006		unsigned int *flags_p)
1007{
1008	int error;
1009	struct swap_map_page_list *tmp, *last;
1010	sector_t offset;
1011
1012	*flags_p = swsusp_header->flags;
1013
1014	if (!swsusp_header->image) /* how can this happen? */
1015		return -EINVAL;
1016
1017	handle->cur = NULL;
1018	last = handle->maps = NULL;
1019	offset = swsusp_header->image;
1020	while (offset) {
1021		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1022		if (!tmp) {
1023			release_swap_reader(handle);
1024			return -ENOMEM;
1025		}
 
1026		if (!handle->maps)
1027			handle->maps = tmp;
1028		if (last)
1029			last->next = tmp;
1030		last = tmp;
1031
1032		tmp->map = (struct swap_map_page *)
1033			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1034		if (!tmp->map) {
1035			release_swap_reader(handle);
1036			return -ENOMEM;
1037		}
1038
1039		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1040		if (error) {
1041			release_swap_reader(handle);
1042			return error;
1043		}
1044		offset = tmp->map->next_swap;
1045	}
1046	handle->k = 0;
1047	handle->cur = handle->maps->map;
1048	return 0;
1049}
1050
1051static int swap_read_page(struct swap_map_handle *handle, void *buf,
1052		struct hib_bio_batch *hb)
1053{
1054	sector_t offset;
1055	int error;
1056	struct swap_map_page_list *tmp;
1057
1058	if (!handle->cur)
1059		return -EINVAL;
1060	offset = handle->cur->entries[handle->k];
1061	if (!offset)
1062		return -EFAULT;
1063	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1064	if (error)
1065		return error;
1066	if (++handle->k >= MAP_PAGE_ENTRIES) {
1067		handle->k = 0;
1068		free_page((unsigned long)handle->maps->map);
1069		tmp = handle->maps;
1070		handle->maps = handle->maps->next;
1071		kfree(tmp);
1072		if (!handle->maps)
1073			release_swap_reader(handle);
1074		else
1075			handle->cur = handle->maps->map;
1076	}
1077	return error;
1078}
1079
1080static int swap_reader_finish(struct swap_map_handle *handle)
1081{
1082	release_swap_reader(handle);
1083
1084	return 0;
1085}
1086
1087/**
1088 *	load_image - load the image using the swap map handle
1089 *	@handle and the snapshot handle @snapshot
1090 *	(assume there are @nr_pages pages to load)
1091 */
1092
1093static int load_image(struct swap_map_handle *handle,
1094                      struct snapshot_handle *snapshot,
1095                      unsigned int nr_to_read)
1096{
1097	unsigned int m;
1098	int ret = 0;
1099	ktime_t start;
1100	ktime_t stop;
1101	struct hib_bio_batch hb;
1102	int err2;
1103	unsigned nr_pages;
1104
1105	hib_init_batch(&hb);
1106
1107	clean_pages_on_read = true;
1108	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1109	m = nr_to_read / 10;
1110	if (!m)
1111		m = 1;
1112	nr_pages = 0;
1113	start = ktime_get();
 
1114	for ( ; ; ) {
1115		ret = snapshot_write_next(snapshot);
1116		if (ret <= 0)
1117			break;
1118		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1119		if (ret)
1120			break;
1121		if (snapshot->sync_read)
1122			ret = hib_wait_io(&hb);
1123		if (ret)
1124			break;
1125		if (!(nr_pages % m))
1126			pr_info("Image loading progress: %3d%%\n",
1127				nr_pages / m * 10);
1128		nr_pages++;
1129	}
1130	err2 = hib_wait_io(&hb);
1131	hib_finish_batch(&hb);
1132	stop = ktime_get();
1133	if (!ret)
1134		ret = err2;
1135	if (!ret) {
1136		pr_info("Image loading done\n");
1137		ret = snapshot_write_finalize(snapshot);
1138		if (!ret && !snapshot_image_loaded(snapshot))
1139			ret = -ENODATA;
1140	}
1141	swsusp_show_speed(start, stop, nr_to_read, "Read");
 
1142	return ret;
1143}
1144
1145/*
1146 * Structure used for data decompression.
1147 */
1148struct dec_data {
1149	struct task_struct *thr;                  /* thread */
1150	struct crypto_comp *cc;                   /* crypto compressor stream */
1151	atomic_t ready;                           /* ready to start flag */
1152	atomic_t stop;                            /* ready to stop flag */
1153	int ret;                                  /* return code */
1154	wait_queue_head_t go;                     /* start decompression */
1155	wait_queue_head_t done;                   /* decompression done */
1156	size_t unc_len;                           /* uncompressed length */
1157	size_t cmp_len;                           /* compressed length */
1158	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1159	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1160};
1161
1162/*
1163 * Decompression function that runs in its own thread.
1164 */
1165static int decompress_threadfn(void *data)
1166{
1167	struct dec_data *d = data;
1168	unsigned int unc_len = 0;
1169
1170	while (1) {
1171		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1172		                  kthread_should_stop());
1173		if (kthread_should_stop()) {
1174			d->thr = NULL;
1175			d->ret = -1;
1176			atomic_set_release(&d->stop, 1);
1177			wake_up(&d->done);
1178			break;
1179		}
1180		atomic_set(&d->ready, 0);
1181
1182		unc_len = UNC_SIZE;
1183		d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1184						d->unc, &unc_len);
1185		d->unc_len = unc_len;
1186
1187		if (clean_pages_on_decompress)
1188			flush_icache_range((unsigned long)d->unc,
1189					   (unsigned long)d->unc + d->unc_len);
1190
1191		atomic_set_release(&d->stop, 1);
1192		wake_up(&d->done);
1193	}
1194	return 0;
1195}
1196
1197/**
1198 * load_compressed_image - Load compressed image data and decompress it.
1199 * @handle: Swap map handle to use for loading data.
1200 * @snapshot: Image to copy uncompressed data into.
1201 * @nr_to_read: Number of pages to load.
1202 */
1203static int load_compressed_image(struct swap_map_handle *handle,
1204				 struct snapshot_handle *snapshot,
1205				 unsigned int nr_to_read)
1206{
1207	unsigned int m;
1208	int ret = 0;
1209	int eof = 0;
1210	struct hib_bio_batch hb;
1211	ktime_t start;
1212	ktime_t stop;
1213	unsigned nr_pages;
1214	size_t off;
1215	unsigned i, thr, run_threads, nr_threads;
1216	unsigned ring = 0, pg = 0, ring_size = 0,
1217	         have = 0, want, need, asked = 0;
1218	unsigned long read_pages = 0;
1219	unsigned char **page = NULL;
1220	struct dec_data *data = NULL;
1221	struct crc_data *crc = NULL;
1222
1223	hib_init_batch(&hb);
1224
1225	/*
1226	 * We'll limit the number of threads for decompression to limit memory
1227	 * footprint.
1228	 */
1229	nr_threads = num_online_cpus() - 1;
1230	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1231
1232	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1233	if (!page) {
1234		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1235		ret = -ENOMEM;
1236		goto out_clean;
1237	}
1238
1239	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1240	if (!data) {
1241		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1242		ret = -ENOMEM;
1243		goto out_clean;
1244	}
 
 
1245
1246	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1247	if (!crc) {
1248		pr_err("Failed to allocate crc\n");
1249		ret = -ENOMEM;
1250		goto out_clean;
1251	}
1252
1253	clean_pages_on_decompress = true;
1254
1255	/*
1256	 * Start the decompression threads.
1257	 */
1258	for (thr = 0; thr < nr_threads; thr++) {
1259		init_waitqueue_head(&data[thr].go);
1260		init_waitqueue_head(&data[thr].done);
1261
1262		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1263		if (IS_ERR_OR_NULL(data[thr].cc)) {
1264			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1265			ret = -EFAULT;
1266			goto out_clean;
1267		}
1268
1269		data[thr].thr = kthread_run(decompress_threadfn,
1270		                            &data[thr],
1271		                            "image_decompress/%u", thr);
1272		if (IS_ERR(data[thr].thr)) {
1273			data[thr].thr = NULL;
1274			pr_err("Cannot start decompression threads\n");
 
1275			ret = -ENOMEM;
1276			goto out_clean;
1277		}
1278	}
1279
1280	/*
1281	 * Start the CRC32 thread.
1282	 */
1283	init_waitqueue_head(&crc->go);
1284	init_waitqueue_head(&crc->done);
1285
1286	handle->crc32 = 0;
1287	crc->crc32 = &handle->crc32;
1288	for (thr = 0; thr < nr_threads; thr++) {
1289		crc->unc[thr] = data[thr].unc;
1290		crc->unc_len[thr] = &data[thr].unc_len;
1291	}
1292
1293	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1294	if (IS_ERR(crc->thr)) {
1295		crc->thr = NULL;
1296		pr_err("Cannot start CRC32 thread\n");
1297		ret = -ENOMEM;
1298		goto out_clean;
1299	}
1300
1301	/*
1302	 * Set the number of pages for read buffering.
1303	 * This is complete guesswork, because we'll only know the real
1304	 * picture once prepare_image() is called, which is much later on
1305	 * during the image load phase. We'll assume the worst case and
1306	 * say that none of the image pages are from high memory.
1307	 */
1308	if (low_free_pages() > snapshot_get_image_size())
1309		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1310	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1311
1312	for (i = 0; i < read_pages; i++) {
1313		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1314						  GFP_NOIO | __GFP_HIGH :
1315						  GFP_NOIO | __GFP_NOWARN |
1316						  __GFP_NORETRY);
1317
1318		if (!page[i]) {
1319			if (i < CMP_PAGES) {
1320				ring_size = i;
1321				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
 
1322				ret = -ENOMEM;
1323				goto out_clean;
1324			} else {
1325				break;
1326			}
1327		}
1328	}
1329	want = ring_size = i;
1330
1331	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1332	pr_info("Loading and decompressing image data (%u pages)...\n",
1333		nr_to_read);
1334	m = nr_to_read / 10;
 
1335	if (!m)
1336		m = 1;
1337	nr_pages = 0;
1338	start = ktime_get();
 
1339
1340	ret = snapshot_write_next(snapshot);
1341	if (ret <= 0)
1342		goto out_finish;
1343
1344	for(;;) {
1345		for (i = 0; !eof && i < want; i++) {
1346			ret = swap_read_page(handle, page[ring], &hb);
1347			if (ret) {
1348				/*
1349				 * On real read error, finish. On end of data,
1350				 * set EOF flag and just exit the read loop.
1351				 */
1352				if (handle->cur &&
1353				    handle->cur->entries[handle->k]) {
1354					goto out_finish;
1355				} else {
1356					eof = 1;
1357					break;
1358				}
1359			}
1360			if (++ring >= ring_size)
1361				ring = 0;
1362		}
1363		asked += i;
1364		want -= i;
1365
1366		/*
1367		 * We are out of data, wait for some more.
1368		 */
1369		if (!have) {
1370			if (!asked)
1371				break;
1372
1373			ret = hib_wait_io(&hb);
1374			if (ret)
1375				goto out_finish;
1376			have += asked;
1377			asked = 0;
1378			if (eof)
1379				eof = 2;
1380		}
1381
1382		if (crc->run_threads) {
1383			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1384			atomic_set(&crc->stop, 0);
1385			crc->run_threads = 0;
1386		}
1387
1388		for (thr = 0; have && thr < nr_threads; thr++) {
1389			data[thr].cmp_len = *(size_t *)page[pg];
1390			if (unlikely(!data[thr].cmp_len ||
1391			             data[thr].cmp_len >
1392					bytes_worst_compress(UNC_SIZE))) {
1393				pr_err("Invalid %s compressed length\n", hib_comp_algo);
 
1394				ret = -1;
1395				goto out_finish;
1396			}
1397
1398			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1399			                    PAGE_SIZE);
1400			if (need > have) {
1401				if (eof > 1) {
1402					ret = -1;
1403					goto out_finish;
1404				}
1405				break;
1406			}
1407
1408			for (off = 0;
1409			     off < CMP_HEADER + data[thr].cmp_len;
1410			     off += PAGE_SIZE) {
1411				memcpy(data[thr].cmp + off,
1412				       page[pg], PAGE_SIZE);
1413				have--;
1414				want++;
1415				if (++pg >= ring_size)
1416					pg = 0;
1417			}
1418
1419			atomic_set_release(&data[thr].ready, 1);
1420			wake_up(&data[thr].go);
1421		}
1422
1423		/*
1424		 * Wait for more data while we are decompressing.
1425		 */
1426		if (have < CMP_PAGES && asked) {
1427			ret = hib_wait_io(&hb);
1428			if (ret)
1429				goto out_finish;
1430			have += asked;
1431			asked = 0;
1432			if (eof)
1433				eof = 2;
1434		}
1435
1436		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1437			wait_event(data[thr].done,
1438				atomic_read_acquire(&data[thr].stop));
1439			atomic_set(&data[thr].stop, 0);
1440
1441			ret = data[thr].ret;
1442
1443			if (ret < 0) {
1444				pr_err("%s decompression failed\n", hib_comp_algo);
 
1445				goto out_finish;
1446			}
1447
1448			if (unlikely(!data[thr].unc_len ||
1449				data[thr].unc_len > UNC_SIZE ||
1450				data[thr].unc_len & (PAGE_SIZE - 1))) {
1451				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
 
1452				ret = -1;
1453				goto out_finish;
1454			}
1455
1456			for (off = 0;
1457			     off < data[thr].unc_len; off += PAGE_SIZE) {
1458				memcpy(data_of(*snapshot),
1459				       data[thr].unc + off, PAGE_SIZE);
1460
1461				if (!(nr_pages % m))
1462					pr_info("Image loading progress: %3d%%\n",
1463						nr_pages / m * 10);
1464				nr_pages++;
1465
1466				ret = snapshot_write_next(snapshot);
1467				if (ret <= 0) {
1468					crc->run_threads = thr + 1;
1469					atomic_set_release(&crc->ready, 1);
1470					wake_up(&crc->go);
1471					goto out_finish;
1472				}
1473			}
1474		}
1475
1476		crc->run_threads = thr;
1477		atomic_set_release(&crc->ready, 1);
1478		wake_up(&crc->go);
1479	}
1480
1481out_finish:
1482	if (crc->run_threads) {
1483		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1484		atomic_set(&crc->stop, 0);
1485	}
1486	stop = ktime_get();
1487	if (!ret) {
1488		pr_info("Image loading done\n");
1489		ret = snapshot_write_finalize(snapshot);
1490		if (!ret && !snapshot_image_loaded(snapshot))
1491			ret = -ENODATA;
1492		if (!ret) {
1493			if (swsusp_header->flags & SF_CRC32_MODE) {
1494				if(handle->crc32 != swsusp_header->crc32) {
1495					pr_err("Invalid image CRC32!\n");
 
1496					ret = -ENODATA;
1497				}
1498			}
1499		}
1500	}
1501	swsusp_show_speed(start, stop, nr_to_read, "Read");
 
1502out_clean:
1503	hib_finish_batch(&hb);
1504	for (i = 0; i < ring_size; i++)
1505		free_page((unsigned long)page[i]);
1506	if (crc) {
1507		if (crc->thr)
1508			kthread_stop(crc->thr);
1509		kfree(crc);
1510	}
1511	if (data) {
1512		for (thr = 0; thr < nr_threads; thr++) {
1513			if (data[thr].thr)
1514				kthread_stop(data[thr].thr);
1515			if (data[thr].cc)
1516				crypto_free_comp(data[thr].cc);
1517		}
1518		vfree(data);
1519	}
1520	vfree(page);
1521
1522	return ret;
1523}
1524
1525/**
1526 *	swsusp_read - read the hibernation image.
1527 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1528 *		  be written into this memory location
1529 */
1530
1531int swsusp_read(unsigned int *flags_p)
1532{
1533	int error;
1534	struct swap_map_handle handle;
1535	struct snapshot_handle snapshot;
1536	struct swsusp_info *header;
1537
1538	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1539	error = snapshot_write_next(&snapshot);
1540	if (error < (int)PAGE_SIZE)
1541		return error < 0 ? error : -EFAULT;
1542	header = (struct swsusp_info *)data_of(snapshot);
1543	error = get_swap_reader(&handle, flags_p);
1544	if (error)
1545		goto end;
1546	if (!error)
1547		error = swap_read_page(&handle, header, NULL);
1548	if (!error) {
1549		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1550			load_image(&handle, &snapshot, header->pages - 1) :
1551			load_compressed_image(&handle, &snapshot, header->pages - 1);
1552	}
1553	swap_reader_finish(&handle);
1554end:
1555	if (!error)
1556		pr_debug("Image successfully loaded\n");
1557	else
1558		pr_debug("Error %d resuming\n", error);
1559	return error;
1560}
1561
1562static void *swsusp_holder;
1563
1564/**
1565 * swsusp_check - Open the resume device and check for the swsusp signature.
1566 * @exclusive: Open the resume device exclusively.
1567 */
1568
1569int swsusp_check(bool exclusive)
1570{
1571	void *holder = exclusive ? &swsusp_holder : NULL;
1572	int error;
1573
1574	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1575				BLK_OPEN_READ, holder, NULL);
1576	if (!IS_ERR(hib_resume_bdev_file)) {
1577		set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
1578		clear_page(swsusp_header);
1579		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1580					swsusp_header, NULL);
1581		if (error)
1582			goto put;
1583
1584		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1585			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1586			swsusp_header_flags = swsusp_header->flags;
1587			/* Reset swap signature now */
1588			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1589						swsusp_resume_block,
1590						swsusp_header, NULL);
1591		} else {
1592			error = -EINVAL;
1593		}
1594		if (!error && swsusp_header->flags & SF_HW_SIG &&
1595		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1596			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1597				swsusp_header->hw_sig, swsusp_hardware_signature);
1598			error = -EINVAL;
1599		}
1600
1601put:
1602		if (error)
1603			fput(hib_resume_bdev_file);
1604		else
1605			pr_debug("Image signature found, resuming\n");
1606	} else {
1607		error = PTR_ERR(hib_resume_bdev_file);
1608	}
1609
1610	if (error)
1611		pr_debug("Image not found (code %d)\n", error);
1612
1613	return error;
1614}
1615
1616/**
1617 * swsusp_close - close resume device.
1618 */
1619
1620void swsusp_close(void)
1621{
1622	if (IS_ERR(hib_resume_bdev_file)) {
1623		pr_debug("Image device not initialised\n");
1624		return;
1625	}
1626
1627	fput(hib_resume_bdev_file);
1628}
1629
1630/**
1631 *      swsusp_unmark - Unmark swsusp signature in the resume device
1632 */
1633
1634#ifdef CONFIG_SUSPEND
1635int swsusp_unmark(void)
1636{
1637	int error;
1638
1639	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1640			swsusp_header, NULL);
1641	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1642		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1643		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1644					swsusp_resume_block,
1645					swsusp_header, NULL);
1646	} else {
1647		pr_err("Cannot find swsusp signature!\n");
1648		error = -ENODEV;
1649	}
1650
1651	/*
1652	 * We just returned from suspend, we don't need the image any more.
1653	 */
1654	free_all_swap_pages(root_swap);
1655
1656	return error;
1657}
1658#endif
1659
1660static int __init swsusp_header_init(void)
1661{
1662	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1663	if (!swsusp_header)
1664		panic("Could not allocate memory for swsusp_header\n");
1665	return 0;
1666}
1667
1668core_initcall(swsusp_header_init);