Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_types.h"
  23#include "xfs_log.h"
  24#include "xfs_inum.h"
  25#include "xfs_trans.h"
  26#include "xfs_trans_priv.h"
  27#include "xfs_sb.h"
  28#include "xfs_ag.h"
  29#include "xfs_mount.h"
  30#include "xfs_bmap_btree.h"
  31#include "xfs_alloc_btree.h"
  32#include "xfs_ialloc_btree.h"
  33#include "xfs_attr_sf.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
 
 
 
 
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_btree.h"
  39#include "xfs_alloc.h"
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
 
 
  42#include "xfs_error.h"
  43#include "xfs_utils.h"
  44#include "xfs_quota.h"
  45#include "xfs_filestream.h"
  46#include "xfs_vnodeops.h"
  47#include "xfs_trace.h"
 
 
 
 
 
 
 
 
 
  48
  49kmem_zone_t *xfs_ifork_zone;
  50kmem_zone_t *xfs_inode_zone;
  51
  52/*
  53 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  54 * freed from a file in a single transaction.
  55 */
  56#define	XFS_ITRUNC_MAX_EXTENTS	2
  57
  58STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  59STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  60STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  61STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  62
  63/*
  64 * helper function to extract extent size hint from inode
  65 */
  66xfs_extlen_t
  67xfs_get_extsz_hint(
  68	struct xfs_inode	*ip)
  69{
  70	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  71		return ip->i_d.di_extsize;
 
 
 
 
 
 
  72	if (XFS_IS_REALTIME_INODE(ip))
  73		return ip->i_mount->m_sb.sb_rextsize;
  74	return 0;
  75}
  76
  77#ifdef DEBUG
  78/*
  79 * Make sure that the extents in the given memory buffer
  80 * are valid.
 
 
  81 */
  82STATIC void
  83xfs_validate_extents(
  84	xfs_ifork_t		*ifp,
  85	int			nrecs,
  86	xfs_exntfmt_t		fmt)
  87{
  88	xfs_bmbt_irec_t		irec;
  89	xfs_bmbt_rec_host_t	rec;
  90	int			i;
  91
  92	for (i = 0; i < nrecs; i++) {
  93		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  94		rec.l0 = get_unaligned(&ep->l0);
  95		rec.l1 = get_unaligned(&ep->l1);
  96		xfs_bmbt_get_all(&rec, &irec);
  97		if (fmt == XFS_EXTFMT_NOSTATE)
  98			ASSERT(irec.br_state == XFS_EXT_NORM);
  99	}
 
 100}
 101#else /* DEBUG */
 102#define xfs_validate_extents(ifp, nrecs, fmt)
 103#endif /* DEBUG */
 104
 105/*
 106 * Check that none of the inode's in the buffer have a next
 107 * unlinked field of 0.
 
 
 
 
 
 
 
 
 
 
 
 108 */
 109#if defined(DEBUG)
 110void
 111xfs_inobp_check(
 112	xfs_mount_t	*mp,
 113	xfs_buf_t	*bp)
 114{
 115	int		i;
 116	int		j;
 117	xfs_dinode_t	*dip;
 118
 119	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 120
 121	for (i = 0; i < j; i++) {
 122		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 123					i * mp->m_sb.sb_inodesize);
 124		if (!dip->di_next_unlinked)  {
 125			xfs_alert(mp,
 126	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
 127				bp);
 128			ASSERT(dip->di_next_unlinked);
 129		}
 130	}
 131}
 132#endif
 133
 134/*
 135 * Find the buffer associated with the given inode map
 136 * We do basic validation checks on the buffer once it has been
 137 * retrieved from disk.
 
 138 */
 139STATIC int
 140xfs_imap_to_bp(
 141	xfs_mount_t	*mp,
 142	xfs_trans_t	*tp,
 143	struct xfs_imap	*imap,
 144	xfs_buf_t	**bpp,
 145	uint		buf_flags,
 146	uint		iget_flags)
 147{
 148	int		error;
 149	int		i;
 150	int		ni;
 151	xfs_buf_t	*bp;
 152
 153	buf_flags |= XBF_UNMAPPED;
 154	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
 155				   (int)imap->im_len, buf_flags, &bp);
 156	if (error) {
 157		if (error != EAGAIN) {
 158			xfs_warn(mp,
 159				"%s: xfs_trans_read_buf() returned error %d.",
 160				__func__, error);
 161		} else {
 162			ASSERT(buf_flags & XBF_TRYLOCK);
 163		}
 164		return error;
 165	}
 166
 167	/*
 168	 * Validate the magic number and version of every inode in the buffer
 169	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
 170	 */
 171#ifdef DEBUG
 172	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
 173#else	/* usual case */
 174	ni = 1;
 175#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176
 177	for (i = 0; i < ni; i++) {
 178		int		di_ok;
 179		xfs_dinode_t	*dip;
 180
 181		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 182					(i << mp->m_sb.sb_inodelog));
 183		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
 184			    XFS_DINODE_GOOD_VERSION(dip->di_version);
 185		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
 186						XFS_ERRTAG_ITOBP_INOTOBP,
 187						XFS_RANDOM_ITOBP_INOTOBP))) {
 188			if (iget_flags & XFS_IGET_UNTRUSTED) {
 189				xfs_trans_brelse(tp, bp);
 190				return XFS_ERROR(EINVAL);
 191			}
 192			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
 193						XFS_ERRLEVEL_HIGH, mp, dip);
 194#ifdef DEBUG
 195			xfs_emerg(mp,
 196				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
 197				(unsigned long long)imap->im_blkno, i,
 198				be16_to_cpu(dip->di_magic));
 199			ASSERT(0);
 200#endif
 201			xfs_trans_brelse(tp, bp);
 202			return XFS_ERROR(EFSCORRUPTED);
 203		}
 204	}
 205
 206	xfs_inobp_check(mp, bp);
 207	*bpp = bp;
 208	return 0;
 
 
 
 
 
 
 
 
 
 209}
 210
 211/*
 212 * This routine is called to map an inode number within a file
 213 * system to the buffer containing the on-disk version of the
 214 * inode.  It returns a pointer to the buffer containing the
 215 * on-disk inode in the bpp parameter, and in the dip parameter
 216 * it returns a pointer to the on-disk inode within that buffer.
 217 *
 218 * If a non-zero error is returned, then the contents of bpp and
 219 * dipp are undefined.
 220 *
 221 * Use xfs_imap() to determine the size and location of the
 222 * buffer to read from disk.
 
 
 223 */
 224int
 225xfs_inotobp(
 226	xfs_mount_t	*mp,
 227	xfs_trans_t	*tp,
 228	xfs_ino_t	ino,
 229	xfs_dinode_t	**dipp,
 230	xfs_buf_t	**bpp,
 231	int		*offset,
 232	uint		imap_flags)
 233{
 234	struct xfs_imap	imap;
 235	xfs_buf_t	*bp;
 236	int		error;
 237
 238	imap.im_blkno = 0;
 239	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
 240	if (error)
 241		return error;
 242
 243	error = xfs_imap_to_bp(mp, tp, &imap, &bp, 0, imap_flags);
 244	if (error)
 245		return error;
 
 
 
 
 246
 247	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
 248	*bpp = bp;
 249	*offset = imap.im_boffset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250	return 0;
 251}
 252
 253
 254/*
 255 * This routine is called to map an inode to the buffer containing
 256 * the on-disk version of the inode.  It returns a pointer to the
 257 * buffer containing the on-disk inode in the bpp parameter, and in
 258 * the dip parameter it returns a pointer to the on-disk inode within
 259 * that buffer.
 260 *
 261 * If a non-zero error is returned, then the contents of bpp and
 262 * dipp are undefined.
 263 *
 264 * The inode is expected to already been mapped to its buffer and read
 265 * in once, thus we can use the mapping information stored in the inode
 266 * rather than calling xfs_imap().  This allows us to avoid the overhead
 267 * of looking at the inode btree for small block file systems
 268 * (see xfs_imap()).
 269 */
 270int
 271xfs_itobp(
 272	xfs_mount_t	*mp,
 273	xfs_trans_t	*tp,
 274	xfs_inode_t	*ip,
 275	xfs_dinode_t	**dipp,
 276	xfs_buf_t	**bpp,
 277	uint		buf_flags)
 278{
 279	xfs_buf_t	*bp;
 280	int		error;
 281
 282	ASSERT(ip->i_imap.im_blkno != 0);
 
 
 
 283
 284	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
 285	if (error)
 286		return error;
 
 287
 288	if (!bp) {
 289		ASSERT(buf_flags & XBF_TRYLOCK);
 290		ASSERT(tp == NULL);
 291		*bpp = NULL;
 292		return EAGAIN;
 293	}
 294
 295	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 296	*bpp = bp;
 297	return 0;
 298}
 299
 300/*
 301 * Move inode type and inode format specific information from the
 302 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 303 * this means set if_rdev to the proper value.  For files, directories,
 304 * and symlinks this means to bring in the in-line data or extent
 305 * pointers.  For a file in B-tree format, only the root is immediately
 306 * brought in-core.  The rest will be in-lined in if_extents when it
 307 * is first referenced (see xfs_iread_extents()).
 308 */
 309STATIC int
 310xfs_iformat(
 311	xfs_inode_t		*ip,
 312	xfs_dinode_t		*dip)
 313{
 314	xfs_attr_shortform_t	*atp;
 315	int			size;
 316	int			error = 0;
 317	xfs_fsize_t             di_size;
 318
 319	if (unlikely(be32_to_cpu(dip->di_nextents) +
 320		     be16_to_cpu(dip->di_anextents) >
 321		     be64_to_cpu(dip->di_nblocks))) {
 322		xfs_warn(ip->i_mount,
 323			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
 324			(unsigned long long)ip->i_ino,
 325			(int)(be32_to_cpu(dip->di_nextents) +
 326			      be16_to_cpu(dip->di_anextents)),
 327			(unsigned long long)
 328				be64_to_cpu(dip->di_nblocks));
 329		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
 330				     ip->i_mount, dip);
 331		return XFS_ERROR(EFSCORRUPTED);
 332	}
 333
 334	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
 335		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
 336			(unsigned long long)ip->i_ino,
 337			dip->di_forkoff);
 338		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
 339				     ip->i_mount, dip);
 340		return XFS_ERROR(EFSCORRUPTED);
 341	}
 342
 343	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
 344		     !ip->i_mount->m_rtdev_targp)) {
 345		xfs_warn(ip->i_mount,
 346			"corrupt dinode %Lu, has realtime flag set.",
 347			ip->i_ino);
 348		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
 349				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
 350		return XFS_ERROR(EFSCORRUPTED);
 351	}
 352
 353	switch (ip->i_d.di_mode & S_IFMT) {
 354	case S_IFIFO:
 355	case S_IFCHR:
 356	case S_IFBLK:
 357	case S_IFSOCK:
 358		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
 359			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
 360					      ip->i_mount, dip);
 361			return XFS_ERROR(EFSCORRUPTED);
 362		}
 363		ip->i_d.di_size = 0;
 364		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
 365		break;
 366
 367	case S_IFREG:
 368	case S_IFLNK:
 369	case S_IFDIR:
 370		switch (dip->di_format) {
 371		case XFS_DINODE_FMT_LOCAL:
 372			/*
 373			 * no local regular files yet
 374			 */
 375			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
 376				xfs_warn(ip->i_mount,
 377			"corrupt inode %Lu (local format for regular file).",
 378					(unsigned long long) ip->i_ino);
 379				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
 380						     XFS_ERRLEVEL_LOW,
 381						     ip->i_mount, dip);
 382				return XFS_ERROR(EFSCORRUPTED);
 383			}
 384
 385			di_size = be64_to_cpu(dip->di_size);
 386			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
 387				xfs_warn(ip->i_mount,
 388			"corrupt inode %Lu (bad size %Ld for local inode).",
 389					(unsigned long long) ip->i_ino,
 390					(long long) di_size);
 391				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
 392						     XFS_ERRLEVEL_LOW,
 393						     ip->i_mount, dip);
 394				return XFS_ERROR(EFSCORRUPTED);
 395			}
 396
 397			size = (int)di_size;
 398			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
 399			break;
 400		case XFS_DINODE_FMT_EXTENTS:
 401			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
 402			break;
 403		case XFS_DINODE_FMT_BTREE:
 404			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
 405			break;
 406		default:
 407			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
 408					 ip->i_mount);
 409			return XFS_ERROR(EFSCORRUPTED);
 410		}
 411		break;
 412
 413	default:
 414		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
 415		return XFS_ERROR(EFSCORRUPTED);
 416	}
 417	if (error) {
 418		return error;
 419	}
 420	if (!XFS_DFORK_Q(dip))
 421		return 0;
 
 
 
 
 
 
 
 422
 423	ASSERT(ip->i_afp == NULL);
 424	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
 
 
 
 
 
 
 
 
 
 
 425
 426	switch (dip->di_aformat) {
 427	case XFS_DINODE_FMT_LOCAL:
 428		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
 429		size = be16_to_cpu(atp->hdr.totsize);
 430
 431		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
 432			xfs_warn(ip->i_mount,
 433				"corrupt inode %Lu (bad attr fork size %Ld).",
 434				(unsigned long long) ip->i_ino,
 435				(long long) size);
 436			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
 437					     XFS_ERRLEVEL_LOW,
 438					     ip->i_mount, dip);
 439			return XFS_ERROR(EFSCORRUPTED);
 440		}
 441
 442		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
 443		break;
 444	case XFS_DINODE_FMT_EXTENTS:
 445		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
 446		break;
 447	case XFS_DINODE_FMT_BTREE:
 448		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
 449		break;
 450	default:
 451		error = XFS_ERROR(EFSCORRUPTED);
 452		break;
 453	}
 454	if (error) {
 455		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 456		ip->i_afp = NULL;
 457		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 458	}
 459	return error;
 460}
 461
 462/*
 463 * The file is in-lined in the on-disk inode.
 464 * If it fits into if_inline_data, then copy
 465 * it there, otherwise allocate a buffer for it
 466 * and copy the data there.  Either way, set
 467 * if_data to point at the data.
 468 * If we allocate a buffer for the data, make
 469 * sure that its size is a multiple of 4 and
 470 * record the real size in i_real_bytes.
 471 */
 472STATIC int
 473xfs_iformat_local(
 474	xfs_inode_t	*ip,
 475	xfs_dinode_t	*dip,
 476	int		whichfork,
 477	int		size)
 478{
 479	xfs_ifork_t	*ifp;
 480	int		real_size;
 481
 482	/*
 483	 * If the size is unreasonable, then something
 484	 * is wrong and we just bail out rather than crash in
 485	 * kmem_alloc() or memcpy() below.
 486	 */
 487	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 488		xfs_warn(ip->i_mount,
 489	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
 490			(unsigned long long) ip->i_ino, size,
 491			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 492		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
 493				     ip->i_mount, dip);
 494		return XFS_ERROR(EFSCORRUPTED);
 495	}
 496	ifp = XFS_IFORK_PTR(ip, whichfork);
 497	real_size = 0;
 498	if (size == 0)
 499		ifp->if_u1.if_data = NULL;
 500	else if (size <= sizeof(ifp->if_u2.if_inline_data))
 501		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 502	else {
 503		real_size = roundup(size, 4);
 504		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
 505	}
 506	ifp->if_bytes = size;
 507	ifp->if_real_bytes = real_size;
 508	if (size)
 509		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
 510	ifp->if_flags &= ~XFS_IFEXTENTS;
 511	ifp->if_flags |= XFS_IFINLINE;
 512	return 0;
 513}
 514
 515/*
 516 * The file consists of a set of extents all
 517 * of which fit into the on-disk inode.
 518 * If there are few enough extents to fit into
 519 * the if_inline_ext, then copy them there.
 520 * Otherwise allocate a buffer for them and copy
 521 * them into it.  Either way, set if_extents
 522 * to point at the extents.
 
 
 
 
 
 
 523 */
 524STATIC int
 525xfs_iformat_extents(
 526	xfs_inode_t	*ip,
 527	xfs_dinode_t	*dip,
 528	int		whichfork)
 529{
 530	xfs_bmbt_rec_t	*dp;
 531	xfs_ifork_t	*ifp;
 532	int		nex;
 533	int		size;
 534	int		i;
 535
 536	ifp = XFS_IFORK_PTR(ip, whichfork);
 537	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
 538	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
 539
 540	/*
 541	 * If the number of extents is unreasonable, then something
 542	 * is wrong and we just bail out rather than crash in
 543	 * kmem_alloc() or memcpy() below.
 544	 */
 545	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 546		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
 547			(unsigned long long) ip->i_ino, nex);
 548		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
 549				     ip->i_mount, dip);
 550		return XFS_ERROR(EFSCORRUPTED);
 551	}
 552
 553	ifp->if_real_bytes = 0;
 554	if (nex == 0)
 555		ifp->if_u1.if_extents = NULL;
 556	else if (nex <= XFS_INLINE_EXTS)
 557		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 558	else
 559		xfs_iext_add(ifp, 0, nex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560
 561	ifp->if_bytes = size;
 562	if (size) {
 563		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
 564		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
 565		for (i = 0; i < nex; i++, dp++) {
 566			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 567			ep->l0 = get_unaligned_be64(&dp->l0);
 568			ep->l1 = get_unaligned_be64(&dp->l1);
 569		}
 570		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
 571		if (whichfork != XFS_DATA_FORK ||
 572			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
 573				if (unlikely(xfs_check_nostate_extents(
 574				    ifp, 0, nex))) {
 575					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
 576							 XFS_ERRLEVEL_LOW,
 577							 ip->i_mount);
 578					return XFS_ERROR(EFSCORRUPTED);
 579				}
 580	}
 581	ifp->if_flags |= XFS_IFEXTENTS;
 582	return 0;
 583}
 584
 585/*
 586 * The file has too many extents to fit into
 587 * the inode, so they are in B-tree format.
 588 * Allocate a buffer for the root of the B-tree
 589 * and copy the root into it.  The i_extents
 590 * field will remain NULL until all of the
 591 * extents are read in (when they are needed).
 592 */
 593STATIC int
 594xfs_iformat_btree(
 595	xfs_inode_t		*ip,
 596	xfs_dinode_t		*dip,
 597	int			whichfork)
 
 598{
 599	xfs_bmdr_block_t	*dfp;
 600	xfs_ifork_t		*ifp;
 601	/* REFERENCED */
 602	int			nrecs;
 603	int			size;
 604
 605	ifp = XFS_IFORK_PTR(ip, whichfork);
 606	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
 607	size = XFS_BMAP_BROOT_SPACE(dfp);
 608	nrecs = be16_to_cpu(dfp->bb_numrecs);
 609
 610	/*
 611	 * blow out if -- fork has less extents than can fit in
 612	 * fork (fork shouldn't be a btree format), root btree
 613	 * block has more records than can fit into the fork,
 614	 * or the number of extents is greater than the number of
 615	 * blocks.
 616	 */
 617	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
 618			XFS_IFORK_MAXEXT(ip, whichfork) ||
 619		     XFS_BMDR_SPACE_CALC(nrecs) >
 620			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
 621		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
 622		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
 623			(unsigned long long) ip->i_ino);
 624		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
 625				 ip->i_mount, dip);
 626		return XFS_ERROR(EFSCORRUPTED);
 627	}
 628
 629	ifp->if_broot_bytes = size;
 630	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
 631	ASSERT(ifp->if_broot != NULL);
 632	/*
 633	 * Copy and convert from the on-disk structure
 634	 * to the in-memory structure.
 635	 */
 636	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
 637			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
 638			 ifp->if_broot, size);
 639	ifp->if_flags &= ~XFS_IFEXTENTS;
 640	ifp->if_flags |= XFS_IFBROOT;
 641
 642	return 0;
 643}
 
 
 
 
 
 644
 645STATIC void
 646xfs_dinode_from_disk(
 647	xfs_icdinode_t		*to,
 648	xfs_dinode_t		*from)
 649{
 650	to->di_magic = be16_to_cpu(from->di_magic);
 651	to->di_mode = be16_to_cpu(from->di_mode);
 652	to->di_version = from ->di_version;
 653	to->di_format = from->di_format;
 654	to->di_onlink = be16_to_cpu(from->di_onlink);
 655	to->di_uid = be32_to_cpu(from->di_uid);
 656	to->di_gid = be32_to_cpu(from->di_gid);
 657	to->di_nlink = be32_to_cpu(from->di_nlink);
 658	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
 659	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
 660	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 661	to->di_flushiter = be16_to_cpu(from->di_flushiter);
 662	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
 663	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
 664	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
 665	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
 666	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
 667	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
 668	to->di_size = be64_to_cpu(from->di_size);
 669	to->di_nblocks = be64_to_cpu(from->di_nblocks);
 670	to->di_extsize = be32_to_cpu(from->di_extsize);
 671	to->di_nextents = be32_to_cpu(from->di_nextents);
 672	to->di_anextents = be16_to_cpu(from->di_anextents);
 673	to->di_forkoff = from->di_forkoff;
 674	to->di_aformat	= from->di_aformat;
 675	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
 676	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
 677	to->di_flags	= be16_to_cpu(from->di_flags);
 678	to->di_gen	= be32_to_cpu(from->di_gen);
 679}
 680
 681void
 682xfs_dinode_to_disk(
 683	xfs_dinode_t		*to,
 684	xfs_icdinode_t		*from)
 685{
 686	to->di_magic = cpu_to_be16(from->di_magic);
 687	to->di_mode = cpu_to_be16(from->di_mode);
 688	to->di_version = from ->di_version;
 689	to->di_format = from->di_format;
 690	to->di_onlink = cpu_to_be16(from->di_onlink);
 691	to->di_uid = cpu_to_be32(from->di_uid);
 692	to->di_gid = cpu_to_be32(from->di_gid);
 693	to->di_nlink = cpu_to_be32(from->di_nlink);
 694	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
 695	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
 696	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 697	to->di_flushiter = cpu_to_be16(from->di_flushiter);
 698	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
 699	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
 700	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
 701	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
 702	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
 703	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
 704	to->di_size = cpu_to_be64(from->di_size);
 705	to->di_nblocks = cpu_to_be64(from->di_nblocks);
 706	to->di_extsize = cpu_to_be32(from->di_extsize);
 707	to->di_nextents = cpu_to_be32(from->di_nextents);
 708	to->di_anextents = cpu_to_be16(from->di_anextents);
 709	to->di_forkoff = from->di_forkoff;
 710	to->di_aformat = from->di_aformat;
 711	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
 712	to->di_dmstate = cpu_to_be16(from->di_dmstate);
 713	to->di_flags = cpu_to_be16(from->di_flags);
 714	to->di_gen = cpu_to_be32(from->di_gen);
 715}
 716
 717STATIC uint
 718_xfs_dic2xflags(
 719	__uint16_t		di_flags)
 720{
 721	uint			flags = 0;
 722
 723	if (di_flags & XFS_DIFLAG_ANY) {
 724		if (di_flags & XFS_DIFLAG_REALTIME)
 725			flags |= XFS_XFLAG_REALTIME;
 726		if (di_flags & XFS_DIFLAG_PREALLOC)
 727			flags |= XFS_XFLAG_PREALLOC;
 728		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 729			flags |= XFS_XFLAG_IMMUTABLE;
 730		if (di_flags & XFS_DIFLAG_APPEND)
 731			flags |= XFS_XFLAG_APPEND;
 732		if (di_flags & XFS_DIFLAG_SYNC)
 733			flags |= XFS_XFLAG_SYNC;
 734		if (di_flags & XFS_DIFLAG_NOATIME)
 735			flags |= XFS_XFLAG_NOATIME;
 736		if (di_flags & XFS_DIFLAG_NODUMP)
 737			flags |= XFS_XFLAG_NODUMP;
 738		if (di_flags & XFS_DIFLAG_RTINHERIT)
 739			flags |= XFS_XFLAG_RTINHERIT;
 740		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 741			flags |= XFS_XFLAG_PROJINHERIT;
 742		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 743			flags |= XFS_XFLAG_NOSYMLINKS;
 744		if (di_flags & XFS_DIFLAG_EXTSIZE)
 745			flags |= XFS_XFLAG_EXTSIZE;
 746		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 747			flags |= XFS_XFLAG_EXTSZINHERIT;
 748		if (di_flags & XFS_DIFLAG_NODEFRAG)
 749			flags |= XFS_XFLAG_NODEFRAG;
 750		if (di_flags & XFS_DIFLAG_FILESTREAM)
 751			flags |= XFS_XFLAG_FILESTREAM;
 
 
 
 
 
 
 
 752	}
 753
 
 
 754	return flags;
 755}
 756
 757uint
 758xfs_ip2xflags(
 759	xfs_inode_t		*ip)
 
 
 
 
 
 
 
 
 
 760{
 761	xfs_icdinode_t		*dic = &ip->i_d;
 
 762
 763	return _xfs_dic2xflags(dic->di_flags) |
 764				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765}
 766
 767uint
 768xfs_dic2xflags(
 769	xfs_dinode_t		*dip)
 
 
 770{
 771	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 772				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773}
 774
 775/*
 776 * Read the disk inode attributes into the in-core inode structure.
 
 777 */
 778int
 779xfs_iread(
 780	xfs_mount_t	*mp,
 781	xfs_trans_t	*tp,
 782	xfs_inode_t	*ip,
 783	uint		iget_flags)
 784{
 785	xfs_buf_t	*bp;
 786	xfs_dinode_t	*dip;
 787	int		error;
 
 
 
 
 
 
 
 
 
 
 788
 789	/*
 790	 * Fill in the location information in the in-core inode.
 
 
 
 
 791	 */
 792	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
 793	if (error)
 794		return error;
 
 
 
 795
 796	/*
 797	 * Get pointers to the on-disk inode and the buffer containing it.
 
 798	 */
 799	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 0, iget_flags);
 800	if (error)
 801		return error;
 802	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 803
 804	/*
 805	 * If we got something that isn't an inode it means someone
 806	 * (nfs or dmi) has a stale handle.
 807	 */
 808	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
 809#ifdef DEBUG
 810		xfs_alert(mp,
 811			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
 812			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
 813#endif /* DEBUG */
 814		error = XFS_ERROR(EINVAL);
 815		goto out_brelse;
 816	}
 817
 818	/*
 819	 * If the on-disk inode is already linked to a directory
 820	 * entry, copy all of the inode into the in-core inode.
 821	 * xfs_iformat() handles copying in the inode format
 822	 * specific information.
 823	 * Otherwise, just get the truly permanent information.
 824	 */
 825	if (dip->di_mode) {
 826		xfs_dinode_from_disk(&ip->i_d, dip);
 827		error = xfs_iformat(ip, dip);
 828		if (error)  {
 829#ifdef DEBUG
 830			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
 831				__func__, error);
 832#endif /* DEBUG */
 833			goto out_brelse;
 834		}
 835	} else {
 836		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
 837		ip->i_d.di_version = dip->di_version;
 838		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
 839		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
 840		/*
 841		 * Make sure to pull in the mode here as well in
 842		 * case the inode is released without being used.
 843		 * This ensures that xfs_inactive() will see that
 844		 * the inode is already free and not try to mess
 845		 * with the uninitialized part of it.
 846		 */
 847		ip->i_d.di_mode = 0;
 848	}
 849
 850	/*
 851	 * The inode format changed when we moved the link count and
 852	 * made it 32 bits long.  If this is an old format inode,
 853	 * convert it in memory to look like a new one.  If it gets
 854	 * flushed to disk we will convert back before flushing or
 855	 * logging it.  We zero out the new projid field and the old link
 856	 * count field.  We'll handle clearing the pad field (the remains
 857	 * of the old uuid field) when we actually convert the inode to
 858	 * the new format. We don't change the version number so that we
 859	 * can distinguish this from a real new format inode.
 860	 */
 861	if (ip->i_d.di_version == 1) {
 862		ip->i_d.di_nlink = ip->i_d.di_onlink;
 863		ip->i_d.di_onlink = 0;
 864		xfs_set_projid(ip, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	}
 866
 867	ip->i_delayed_blks = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868
 869	/*
 870	 * Mark the buffer containing the inode as something to keep
 871	 * around for a while.  This helps to keep recently accessed
 872	 * meta-data in-core longer.
 873	 */
 874	xfs_buf_set_ref(bp, XFS_INO_REF);
 
 
 
 
 
 
 
 875
 876	/*
 877	 * Use xfs_trans_brelse() to release the buffer containing the
 878	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
 879	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
 880	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
 881	 * will only release the buffer if it is not dirty within the
 882	 * transaction.  It will be OK to release the buffer in this case,
 883	 * because inodes on disk are never destroyed and we will be
 884	 * locking the new in-core inode before putting it in the hash
 885	 * table where other processes can find it.  Thus we don't have
 886	 * to worry about the inode being changed just because we released
 887	 * the buffer.
 888	 */
 889 out_brelse:
 890	xfs_trans_brelse(tp, bp);
 891	return error;
 
 
 
 
 
 892}
 893
 894/*
 895 * Read in extents from a btree-format inode.
 896 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 
 897 */
 898int
 899xfs_iread_extents(
 900	xfs_trans_t	*tp,
 901	xfs_inode_t	*ip,
 902	int		whichfork)
 903{
 904	int		error;
 905	xfs_ifork_t	*ifp;
 906	xfs_extnum_t	nextents;
 907
 908	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
 909		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
 910				 ip->i_mount);
 911		return XFS_ERROR(EFSCORRUPTED);
 912	}
 913	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
 914	ifp = XFS_IFORK_PTR(ip, whichfork);
 915
 916	/*
 917	 * We know that the size is valid (it's checked in iformat_btree)
 918	 */
 919	ifp->if_bytes = ifp->if_real_bytes = 0;
 920	ifp->if_flags |= XFS_IFEXTENTS;
 921	xfs_iext_add(ifp, 0, nextents);
 922	error = xfs_bmap_read_extents(tp, ip, whichfork);
 923	if (error) {
 924		xfs_iext_destroy(ifp);
 925		ifp->if_flags &= ~XFS_IFEXTENTS;
 926		return error;
 927	}
 928	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
 929	return 0;
 
 
 
 
 
 
 
 
 930}
 931
 932/*
 933 * Allocate an inode on disk and return a copy of its in-core version.
 934 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 935 * appropriately within the inode.  The uid and gid for the inode are
 936 * set according to the contents of the given cred structure.
 937 *
 938 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 939 * has a free inode available, call xfs_iget()
 940 * to obtain the in-core version of the allocated inode.  Finally,
 941 * fill in the inode and log its initial contents.  In this case,
 942 * ialloc_context would be set to NULL and call_again set to false.
 943 *
 944 * If xfs_dialloc() does not have an available inode,
 945 * it will replenish its supply by doing an allocation. Since we can
 946 * only do one allocation within a transaction without deadlocks, we
 947 * must commit the current transaction before returning the inode itself.
 948 * In this case, therefore, we will set call_again to true and return.
 949 * The caller should then commit the current transaction, start a new
 950 * transaction, and call xfs_ialloc() again to actually get the inode.
 951 *
 952 * To ensure that some other process does not grab the inode that
 953 * was allocated during the first call to xfs_ialloc(), this routine
 954 * also returns the [locked] bp pointing to the head of the freelist
 955 * as ialloc_context.  The caller should hold this buffer across
 956 * the commit and pass it back into this routine on the second call.
 957 *
 958 * If we are allocating quota inodes, we do not have a parent inode
 959 * to attach to or associate with (i.e. pip == NULL) because they
 960 * are not linked into the directory structure - they are attached
 961 * directly to the superblock - and so have no parent.
 962 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963int
 964xfs_ialloc(
 965	xfs_trans_t	*tp,
 966	xfs_inode_t	*pip,
 967	umode_t		mode,
 968	xfs_nlink_t	nlink,
 969	xfs_dev_t	rdev,
 970	prid_t		prid,
 971	int		okalloc,
 972	xfs_buf_t	**ialloc_context,
 973	boolean_t	*call_again,
 974	xfs_inode_t	**ipp)
 975{
 976	xfs_ino_t	ino;
 977	xfs_inode_t	*ip;
 978	uint		flags;
 979	int		error;
 980	timespec_t	tv;
 981	int		filestreams = 0;
 982
 983	/*
 984	 * Call the space management code to pick
 985	 * the on-disk inode to be allocated.
 986	 */
 987	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 988			    ialloc_context, call_again, &ino);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	if (error)
 990		return error;
 991	if (*call_again || ino == NULLFSINO) {
 992		*ipp = NULL;
 993		return 0;
 
 
 
 
 994	}
 995	ASSERT(*ialloc_context == NULL);
 996
 997	/*
 998	 * Get the in-core inode with the lock held exclusively.
 999	 * This is because we're setting fields here we need
1000	 * to prevent others from looking at until we're done.
1001	 */
1002	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1003			 XFS_ILOCK_EXCL, &ip);
 
 
 
 
 
 
 
1004	if (error)
1005		return error;
1006	ASSERT(ip != NULL);
1007
1008	ip->i_d.di_mode = mode;
1009	ip->i_d.di_onlink = 0;
1010	ip->i_d.di_nlink = nlink;
1011	ASSERT(ip->i_d.di_nlink == nlink);
1012	ip->i_d.di_uid = current_fsuid();
1013	ip->i_d.di_gid = current_fsgid();
1014	xfs_set_projid(ip, prid);
1015	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1016
1017	/*
1018	 * If the superblock version is up to where we support new format
1019	 * inodes and this is currently an old format inode, then change
1020	 * the inode version number now.  This way we only do the conversion
1021	 * here rather than here and in the flush/logging code.
1022	 */
1023	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1024	    ip->i_d.di_version == 1) {
1025		ip->i_d.di_version = 2;
1026		/*
1027		 * We've already zeroed the old link count, the projid field,
1028		 * and the pad field.
1029		 */
1030	}
1031
1032	/*
1033	 * Project ids won't be stored on disk if we are using a version 1 inode.
 
 
 
 
1034	 */
1035	if ((prid != 0) && (ip->i_d.di_version == 1))
1036		xfs_bump_ino_vers2(tp, ip);
1037
1038	if (pip && XFS_INHERIT_GID(pip)) {
1039		ip->i_d.di_gid = pip->i_d.di_gid;
1040		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1041			ip->i_d.di_mode |= S_ISGID;
1042		}
 
 
 
 
 
 
 
 
 
 
1043	}
1044
1045	/*
1046	 * If the group ID of the new file does not match the effective group
1047	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1048	 * (and only if the irix_sgid_inherit compatibility variable is set).
1049	 */
1050	if ((irix_sgid_inherit) &&
1051	    (ip->i_d.di_mode & S_ISGID) &&
1052	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1053		ip->i_d.di_mode &= ~S_ISGID;
1054	}
 
 
 
 
1055
1056	ip->i_d.di_size = 0;
1057	ip->i_d.di_nextents = 0;
1058	ASSERT(ip->i_d.di_nblocks == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060	nanotime(&tv);
1061	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1062	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1063	ip->i_d.di_atime = ip->i_d.di_mtime;
1064	ip->i_d.di_ctime = ip->i_d.di_mtime;
1065
1066	/*
1067	 * di_gen will have been taken care of in xfs_iread.
 
 
1068	 */
1069	ip->i_d.di_extsize = 0;
1070	ip->i_d.di_dmevmask = 0;
1071	ip->i_d.di_dmstate = 0;
1072	ip->i_d.di_flags = 0;
1073	flags = XFS_ILOG_CORE;
1074	switch (mode & S_IFMT) {
1075	case S_IFIFO:
1076	case S_IFCHR:
1077	case S_IFBLK:
1078	case S_IFSOCK:
1079		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1080		ip->i_df.if_u2.if_rdev = rdev;
1081		ip->i_df.if_flags = 0;
1082		flags |= XFS_ILOG_DEV;
1083		break;
1084	case S_IFREG:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085		/*
1086		 * we can't set up filestreams until after the VFS inode
1087		 * is set up properly.
 
 
 
 
1088		 */
1089		if (pip && xfs_inode_is_filestream(pip))
1090			filestreams = 1;
1091		/* fall through */
1092	case S_IFDIR:
1093		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1094			uint	di_flags = 0;
1095
1096			if (S_ISDIR(mode)) {
1097				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1098					di_flags |= XFS_DIFLAG_RTINHERIT;
1099				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1100					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1101					ip->i_d.di_extsize = pip->i_d.di_extsize;
1102				}
1103			} else if (S_ISREG(mode)) {
1104				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1105					di_flags |= XFS_DIFLAG_REALTIME;
1106				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1107					di_flags |= XFS_DIFLAG_EXTSIZE;
1108					ip->i_d.di_extsize = pip->i_d.di_extsize;
1109				}
1110			}
1111			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1112			    xfs_inherit_noatime)
1113				di_flags |= XFS_DIFLAG_NOATIME;
1114			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1115			    xfs_inherit_nodump)
1116				di_flags |= XFS_DIFLAG_NODUMP;
1117			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1118			    xfs_inherit_sync)
1119				di_flags |= XFS_DIFLAG_SYNC;
1120			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1121			    xfs_inherit_nosymlinks)
1122				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1123			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1124				di_flags |= XFS_DIFLAG_PROJINHERIT;
1125			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1126			    xfs_inherit_nodefrag)
1127				di_flags |= XFS_DIFLAG_NODEFRAG;
1128			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1129				di_flags |= XFS_DIFLAG_FILESTREAM;
1130			ip->i_d.di_flags |= di_flags;
1131		}
1132		/* FALLTHROUGH */
1133	case S_IFLNK:
1134		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1135		ip->i_df.if_flags = XFS_IFEXTENTS;
1136		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1137		ip->i_df.if_u1.if_extents = NULL;
1138		break;
1139	default:
1140		ASSERT(0);
1141	}
 
 
 
 
 
 
 
1142	/*
1143	 * Attribute fork settings for new inode.
1144	 */
1145	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1146	ip->i_d.di_anextents = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148	/*
1149	 * Log the new values stuffed into the inode.
 
 
1150	 */
1151	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1152	xfs_trans_log_inode(tp, ip, flags);
1153
1154	/* now that we have an i_mode we can setup inode ops and unlock */
1155	xfs_setup_inode(ip);
1156
1157	/* now we have set up the vfs inode we can associate the filestream */
1158	if (filestreams) {
1159		error = xfs_filestream_associate(pip, ip);
1160		if (error < 0)
1161			return -error;
1162		if (!error)
1163			xfs_iflags_set(ip, XFS_IFILESTREAM);
1164	}
1165
1166	*ipp = ip;
1167	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168}
1169
1170/*
1171 * Free up the underlying blocks past new_size.  The new size must be smaller
1172 * than the current size.  This routine can be used both for the attribute and
1173 * data fork, and does not modify the inode size, which is left to the caller.
1174 *
1175 * The transaction passed to this routine must have made a permanent log
1176 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1177 * given transaction and start new ones, so make sure everything involved in
1178 * the transaction is tidy before calling here.  Some transaction will be
1179 * returned to the caller to be committed.  The incoming transaction must
1180 * already include the inode, and both inode locks must be held exclusively.
1181 * The inode must also be "held" within the transaction.  On return the inode
1182 * will be "held" within the returned transaction.  This routine does NOT
1183 * require any disk space to be reserved for it within the transaction.
1184 *
1185 * If we get an error, we must return with the inode locked and linked into the
1186 * current transaction. This keeps things simple for the higher level code,
1187 * because it always knows that the inode is locked and held in the transaction
1188 * that returns to it whether errors occur or not.  We don't mark the inode
1189 * dirty on error so that transactions can be easily aborted if possible.
1190 */
1191int
1192xfs_itruncate_extents(
1193	struct xfs_trans	**tpp,
1194	struct xfs_inode	*ip,
1195	int			whichfork,
1196	xfs_fsize_t		new_size)
 
1197{
1198	struct xfs_mount	*mp = ip->i_mount;
1199	struct xfs_trans	*tp = *tpp;
1200	struct xfs_trans	*ntp;
1201	xfs_bmap_free_t		free_list;
1202	xfs_fsblock_t		first_block;
1203	xfs_fileoff_t		first_unmap_block;
1204	xfs_fileoff_t		last_block;
1205	xfs_filblks_t		unmap_len;
1206	int			committed;
1207	int			error = 0;
1208	int			done = 0;
1209
1210	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 
 
1211	ASSERT(new_size <= XFS_ISIZE(ip));
1212	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1213	ASSERT(ip->i_itemp != NULL);
1214	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1215	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1216
1217	trace_xfs_itruncate_extents_start(ip, new_size);
1218
 
 
1219	/*
1220	 * Since it is possible for space to become allocated beyond
1221	 * the end of the file (in a crash where the space is allocated
1222	 * but the inode size is not yet updated), simply remove any
1223	 * blocks which show up between the new EOF and the maximum
1224	 * possible file size.  If the first block to be removed is
1225	 * beyond the maximum file size (ie it is the same as last_block),
1226	 * then there is nothing to do.
 
1227	 */
1228	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1229	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1230	if (first_unmap_block == last_block)
1231		return 0;
 
1232
1233	ASSERT(first_unmap_block < last_block);
1234	unmap_len = last_block - first_unmap_block + 1;
1235	while (!done) {
1236		xfs_bmap_init(&free_list, &first_block);
1237		error = xfs_bunmapi(tp, ip,
1238				    first_unmap_block, unmap_len,
1239				    xfs_bmapi_aflag(whichfork),
1240				    XFS_ITRUNC_MAX_EXTENTS,
1241				    &first_block, &free_list,
1242				    &done);
1243		if (error)
1244			goto out_bmap_cancel;
1245
1246		/*
1247		 * Duplicate the transaction that has the permanent
1248		 * reservation and commit the old transaction.
1249		 */
1250		error = xfs_bmap_finish(&tp, &free_list, &committed);
1251		if (committed)
1252			xfs_trans_ijoin(tp, ip, 0);
1253		if (error)
1254			goto out_bmap_cancel;
1255
1256		if (committed) {
1257			/*
1258			 * Mark the inode dirty so it will be logged and
1259			 * moved forward in the log as part of every commit.
1260			 */
1261			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1262		}
1263
1264		ntp = xfs_trans_dup(tp);
1265		error = xfs_trans_commit(tp, 0);
1266		tp = ntp;
1267
1268		xfs_trans_ijoin(tp, ip, 0);
1269
 
 
 
 
1270		if (error)
1271			goto out;
1272
1273		/*
1274		 * Transaction commit worked ok so we can drop the extra ticket
1275		 * reference that we gained in xfs_trans_dup()
1276		 */
1277		xfs_log_ticket_put(tp->t_ticket);
1278		error = xfs_trans_reserve(tp, 0,
1279					XFS_ITRUNCATE_LOG_RES(mp), 0,
1280					XFS_TRANS_PERM_LOG_RES,
1281					XFS_ITRUNCATE_LOG_COUNT);
1282		if (error)
1283			goto out;
1284	}
1285
1286	/*
1287	 * Always re-log the inode so that our permanent transaction can keep
1288	 * on rolling it forward in the log.
1289	 */
1290	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1291
1292	trace_xfs_itruncate_extents_end(ip, new_size);
1293
1294out:
1295	*tpp = tp;
1296	return error;
1297out_bmap_cancel:
1298	/*
1299	 * If the bunmapi call encounters an error, return to the caller where
1300	 * the transaction can be properly aborted.  We just need to make sure
1301	 * we're not holding any resources that we were not when we came in.
1302	 */
1303	xfs_bmap_cancel(&free_list);
1304	goto out;
1305}
1306
1307/*
1308 * This is called when the inode's link count goes to 0.
1309 * We place the on-disk inode on a list in the AGI.  It
1310 * will be pulled from this list when the inode is freed.
1311 */
1312int
1313xfs_iunlink(
1314	xfs_trans_t	*tp,
1315	xfs_inode_t	*ip)
1316{
1317	xfs_mount_t	*mp;
1318	xfs_agi_t	*agi;
1319	xfs_dinode_t	*dip;
1320	xfs_buf_t	*agibp;
1321	xfs_buf_t	*ibp;
1322	xfs_agino_t	agino;
1323	short		bucket_index;
1324	int		offset;
1325	int		error;
1326
1327	ASSERT(ip->i_d.di_nlink == 0);
1328	ASSERT(ip->i_d.di_mode != 0);
1329
1330	mp = tp->t_mountp;
 
1331
1332	/*
1333	 * Get the agi buffer first.  It ensures lock ordering
1334	 * on the list.
1335	 */
1336	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1337	if (error)
1338		return error;
1339	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340
1341	/*
1342	 * Get the index into the agi hash table for the
1343	 * list this inode will go on.
 
 
1344	 */
1345	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1346	ASSERT(agino != 0);
1347	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1348	ASSERT(agi->agi_unlinked[bucket_index]);
1349	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1350
1351	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1352		/*
1353		 * There is already another inode in the bucket we need
1354		 * to add ourselves to.  Add us at the front of the list.
1355		 * Here we put the head pointer into our next pointer,
1356		 * and then we fall through to point the head at us.
 
 
 
 
 
 
 
 
1357		 */
1358		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
 
 
 
1359		if (error)
1360			return error;
1361
1362		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1363		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1364		offset = ip->i_imap.im_boffset +
1365			offsetof(xfs_dinode_t, di_next_unlinked);
1366		xfs_trans_inode_buf(tp, ibp);
1367		xfs_trans_log_buf(tp, ibp, offset,
1368				  (offset + sizeof(xfs_agino_t) - 1));
1369		xfs_inobp_check(mp, ibp);
1370	}
1371
1372	/*
1373	 * Point the bucket head pointer at the inode being inserted.
1374	 */
1375	ASSERT(agino != 0);
1376	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1377	offset = offsetof(xfs_agi_t, agi_unlinked) +
1378		(sizeof(xfs_agino_t) * bucket_index);
1379	xfs_trans_log_buf(tp, agibp, offset,
1380			  (offset + sizeof(xfs_agino_t) - 1));
1381	return 0;
1382}
1383
1384/*
1385 * Pull the on-disk inode from the AGI unlinked list.
 
 
1386 */
1387STATIC int
1388xfs_iunlink_remove(
1389	xfs_trans_t	*tp,
1390	xfs_inode_t	*ip)
1391{
1392	xfs_ino_t	next_ino;
1393	xfs_mount_t	*mp;
1394	xfs_agi_t	*agi;
1395	xfs_dinode_t	*dip;
1396	xfs_buf_t	*agibp;
1397	xfs_buf_t	*ibp;
1398	xfs_agnumber_t	agno;
1399	xfs_agino_t	agino;
1400	xfs_agino_t	next_agino;
1401	xfs_buf_t	*last_ibp;
1402	xfs_dinode_t	*last_dip = NULL;
1403	short		bucket_index;
1404	int		offset, last_offset = 0;
1405	int		error;
1406
1407	mp = tp->t_mountp;
1408	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 
 
 
 
 
1409
1410	/*
1411	 * Get the agi buffer first.  It ensures lock ordering
1412	 * on the list.
 
1413	 */
1414	error = xfs_read_agi(mp, tp, agno, &agibp);
 
 
 
1415	if (error)
1416		return error;
 
 
 
 
 
 
1417
1418	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419
1420	/*
1421	 * Get the index into the agi hash table for the
1422	 * list this inode will go on.
1423	 */
1424	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1425	ASSERT(agino != 0);
1426	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1427	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1428	ASSERT(agi->agi_unlinked[bucket_index]);
1429
1430	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1431		/*
1432		 * We're at the head of the list.  Get the inode's
1433		 * on-disk buffer to see if there is anyone after us
1434		 * on the list.  Only modify our next pointer if it
1435		 * is not already NULLAGINO.  This saves us the overhead
1436		 * of dealing with the buffer when there is no need to
1437		 * change it.
1438		 */
1439		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1440		if (error) {
1441			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1442				__func__, error);
1443			return error;
1444		}
1445		next_agino = be32_to_cpu(dip->di_next_unlinked);
1446		ASSERT(next_agino != 0);
1447		if (next_agino != NULLAGINO) {
1448			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1449			offset = ip->i_imap.im_boffset +
1450				offsetof(xfs_dinode_t, di_next_unlinked);
1451			xfs_trans_inode_buf(tp, ibp);
1452			xfs_trans_log_buf(tp, ibp, offset,
1453					  (offset + sizeof(xfs_agino_t) - 1));
1454			xfs_inobp_check(mp, ibp);
1455		} else {
1456			xfs_trans_brelse(tp, ibp);
1457		}
1458		/*
1459		 * Point the bucket head pointer at the next inode.
1460		 */
1461		ASSERT(next_agino != 0);
1462		ASSERT(next_agino != agino);
1463		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1464		offset = offsetof(xfs_agi_t, agi_unlinked) +
1465			(sizeof(xfs_agino_t) * bucket_index);
1466		xfs_trans_log_buf(tp, agibp, offset,
1467				  (offset + sizeof(xfs_agino_t) - 1));
1468	} else {
1469		/*
1470		 * We need to search the list for the inode being freed.
1471		 */
1472		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1473		last_ibp = NULL;
1474		while (next_agino != agino) {
1475			/*
1476			 * If the last inode wasn't the one pointing to
1477			 * us, then release its buffer since we're not
1478			 * going to do anything with it.
1479			 */
1480			if (last_ibp != NULL) {
1481				xfs_trans_brelse(tp, last_ibp);
1482			}
1483			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1484			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1485					    &last_ibp, &last_offset, 0);
1486			if (error) {
1487				xfs_warn(mp,
1488					"%s: xfs_inotobp() returned error %d.",
1489					__func__, error);
1490				return error;
1491			}
1492			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1493			ASSERT(next_agino != NULLAGINO);
1494			ASSERT(next_agino != 0);
1495		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496		/*
1497		 * Now last_ibp points to the buffer previous to us on
1498		 * the unlinked list.  Pull us from the list.
 
1499		 */
1500		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1501		if (error) {
1502			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1503				__func__, error);
1504			return error;
1505		}
1506		next_agino = be32_to_cpu(dip->di_next_unlinked);
1507		ASSERT(next_agino != 0);
1508		ASSERT(next_agino != agino);
1509		if (next_agino != NULLAGINO) {
1510			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1511			offset = ip->i_imap.im_boffset +
1512				offsetof(xfs_dinode_t, di_next_unlinked);
1513			xfs_trans_inode_buf(tp, ibp);
1514			xfs_trans_log_buf(tp, ibp, offset,
1515					  (offset + sizeof(xfs_agino_t) - 1));
1516			xfs_inobp_check(mp, ibp);
1517		} else {
1518			xfs_trans_brelse(tp, ibp);
1519		}
1520		/*
1521		 * Point the previous inode on the list to the next inode.
1522		 */
1523		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1524		ASSERT(next_agino != 0);
1525		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1526		xfs_trans_inode_buf(tp, last_ibp);
1527		xfs_trans_log_buf(tp, last_ibp, offset,
1528				  (offset + sizeof(xfs_agino_t) - 1));
1529		xfs_inobp_check(mp, last_ibp);
1530	}
1531	return 0;
 
 
 
 
 
 
1532}
1533
1534/*
1535 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1536 * inodes that are in memory - they all must be marked stale and attached to
1537 * the cluster buffer.
 
1538 */
1539STATIC int
1540xfs_ifree_cluster(
1541	xfs_inode_t	*free_ip,
1542	xfs_trans_t	*tp,
1543	xfs_ino_t	inum)
1544{
1545	xfs_mount_t		*mp = free_ip->i_mount;
1546	int			blks_per_cluster;
1547	int			nbufs;
1548	int			ninodes;
1549	int			i, j;
1550	xfs_daddr_t		blkno;
1551	xfs_buf_t		*bp;
1552	xfs_inode_t		*ip;
1553	xfs_inode_log_item_t	*iip;
1554	xfs_log_item_t		*lip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555	struct xfs_perag	*pag;
 
 
1556
1557	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1558	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1559		blks_per_cluster = 1;
1560		ninodes = mp->m_sb.sb_inopblock;
1561		nbufs = XFS_IALLOC_BLOCKS(mp);
1562	} else {
1563		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1564					mp->m_sb.sb_blocksize;
1565		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1566		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
 
 
 
 
1567	}
1568
1569	for (j = 0; j < nbufs; j++, inum += ninodes) {
1570		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1571					 XFS_INO_TO_AGBNO(mp, inum));
1572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573		/*
1574		 * We obtain and lock the backing buffer first in the process
1575		 * here, as we have to ensure that any dirty inode that we
1576		 * can't get the flush lock on is attached to the buffer.
1577		 * If we scan the in-memory inodes first, then buffer IO can
1578		 * complete before we get a lock on it, and hence we may fail
1579		 * to mark all the active inodes on the buffer stale.
 
1580		 */
1581		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1582					mp->m_bsize * blks_per_cluster, 0);
1583
1584		if (!bp)
1585			return ENOMEM;
1586		/*
1587		 * Walk the inodes already attached to the buffer and mark them
1588		 * stale. These will all have the flush locks held, so an
1589		 * in-memory inode walk can't lock them. By marking them all
1590		 * stale first, we will not attempt to lock them in the loop
1591		 * below as the XFS_ISTALE flag will be set.
1592		 */
1593		lip = bp->b_fspriv;
1594		while (lip) {
1595			if (lip->li_type == XFS_LI_INODE) {
1596				iip = (xfs_inode_log_item_t *)lip;
1597				ASSERT(iip->ili_logged == 1);
1598				lip->li_cb = xfs_istale_done;
1599				xfs_trans_ail_copy_lsn(mp->m_ail,
1600							&iip->ili_flush_lsn,
1601							&iip->ili_item.li_lsn);
1602				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1603			}
1604			lip = lip->li_bio_list;
1605		}
1606
 
 
 
 
1607
 
1608		/*
1609		 * For each inode in memory attempt to add it to the inode
1610		 * buffer and set it up for being staled on buffer IO
1611		 * completion.  This is safe as we've locked out tail pushing
1612		 * and flushing by locking the buffer.
1613		 *
1614		 * We have already marked every inode that was part of a
1615		 * transaction stale above, which means there is no point in
1616		 * even trying to lock them.
1617		 */
1618		for (i = 0; i < ninodes; i++) {
1619retry:
1620			rcu_read_lock();
1621			ip = radix_tree_lookup(&pag->pag_ici_root,
1622					XFS_INO_TO_AGINO(mp, (inum + i)));
1623
1624			/* Inode not in memory, nothing to do */
1625			if (!ip) {
1626				rcu_read_unlock();
1627				continue;
1628			}
1629
1630			/*
1631			 * because this is an RCU protected lookup, we could
1632			 * find a recently freed or even reallocated inode
1633			 * during the lookup. We need to check under the
1634			 * i_flags_lock for a valid inode here. Skip it if it
1635			 * is not valid, the wrong inode or stale.
1636			 */
1637			spin_lock(&ip->i_flags_lock);
1638			if (ip->i_ino != inum + i ||
1639			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1640				spin_unlock(&ip->i_flags_lock);
1641				rcu_read_unlock();
1642				continue;
1643			}
1644			spin_unlock(&ip->i_flags_lock);
1645
1646			/*
1647			 * Don't try to lock/unlock the current inode, but we
1648			 * _cannot_ skip the other inodes that we did not find
1649			 * in the list attached to the buffer and are not
1650			 * already marked stale. If we can't lock it, back off
1651			 * and retry.
1652			 */
1653			if (ip != free_ip &&
1654			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1655				rcu_read_unlock();
1656				delay(1);
1657				goto retry;
1658			}
1659			rcu_read_unlock();
1660
1661			xfs_iflock(ip);
1662			xfs_iflags_set(ip, XFS_ISTALE);
1663
1664			/*
1665			 * we don't need to attach clean inodes or those only
1666			 * with unlogged changes (which we throw away, anyway).
1667			 */
1668			iip = ip->i_itemp;
1669			if (!iip || xfs_inode_clean(ip)) {
1670				ASSERT(ip != free_ip);
1671				xfs_ifunlock(ip);
1672				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1673				continue;
1674			}
 
 
1675
1676			iip->ili_last_fields = iip->ili_fields;
1677			iip->ili_fields = 0;
1678			iip->ili_logged = 1;
1679			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1680						&iip->ili_item.li_lsn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681
1682			xfs_buf_attach_iodone(bp, xfs_istale_done,
1683						  &iip->ili_item);
 
 
 
 
 
 
 
 
 
 
1684
1685			if (ip != free_ip)
1686				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1687		}
 
 
 
 
1688
1689		xfs_trans_stale_inode_buf(tp, bp);
1690		xfs_trans_binval(tp, bp);
 
 
 
 
 
1691	}
 
 
 
 
1692
1693	xfs_perag_put(pag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1694	return 0;
1695}
1696
1697/*
1698 * This is called to return an inode to the inode free list.
1699 * The inode should already be truncated to 0 length and have
1700 * no pages associated with it.  This routine also assumes that
1701 * the inode is already a part of the transaction.
1702 *
1703 * The on-disk copy of the inode will have been added to the list
1704 * of unlinked inodes in the AGI. We need to remove the inode from
1705 * that list atomically with respect to freeing it here.
1706 */
1707int
1708xfs_ifree(
1709	xfs_trans_t	*tp,
1710	xfs_inode_t	*ip,
1711	xfs_bmap_free_t	*flist)
 
 
1712{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713	int			error;
1714	int			delete;
1715	xfs_ino_t		first_ino;
1716	xfs_dinode_t    	*dip;
1717	xfs_buf_t       	*ibp;
1718
1719	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1720	ASSERT(ip->i_d.di_nlink == 0);
1721	ASSERT(ip->i_d.di_nextents == 0);
1722	ASSERT(ip->i_d.di_anextents == 0);
1723	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1724	ASSERT(ip->i_d.di_nblocks == 0);
 
 
1725
1726	/*
1727	 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
1728	 */
1729	error = xfs_iunlink_remove(tp, ip);
1730	if (error != 0) {
 
 
1731		return error;
1732	}
1733
1734	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1735	if (error != 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736		return error;
 
 
 
 
 
 
 
 
 
 
1737	}
1738	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1739	ip->i_d.di_flags = 0;
1740	ip->i_d.di_dmevmask = 0;
1741	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1742	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1743	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744	/*
1745	 * Bump the generation count so no one will be confused
1746	 * by reincarnations of this inode.
1747	 */
1748	ip->i_d.di_gen++;
 
 
 
 
 
 
1749
1750	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 
 
 
 
 
 
 
1751
1752	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0);
 
 
 
 
 
 
 
 
1753	if (error)
1754		return error;
1755
1756        /*
1757	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1758	* from picking up this inode when it is reclaimed (its incore state
1759	* initialzed but not flushed to disk yet). The in-core di_mode is
1760	* already cleared  and a corresponding transaction logged.
1761	* The hack here just synchronizes the in-core to on-disk
1762	* di_mode value in advance before the actual inode sync to disk.
1763	* This is OK because the inode is already unlinked and would never
1764	* change its di_mode again for this inode generation.
1765	* This is a temporary hack that would require a proper fix
1766	* in the future.
1767	*/
1768	dip->di_mode = 0;
1769
1770	if (delete) {
1771		error = xfs_ifree_cluster(ip, tp, first_ino);
 
 
 
 
 
 
 
 
 
 
 
1772	}
1773
 
 
1774	return error;
1775}
1776
1777/*
1778 * Reallocate the space for if_broot based on the number of records
1779 * being added or deleted as indicated in rec_diff.  Move the records
1780 * and pointers in if_broot to fit the new size.  When shrinking this
1781 * will eliminate holes between the records and pointers created by
1782 * the caller.  When growing this will create holes to be filled in
1783 * by the caller.
1784 *
1785 * The caller must not request to add more records than would fit in
1786 * the on-disk inode root.  If the if_broot is currently NULL, then
1787 * if we adding records one will be allocated.  The caller must also
1788 * not request that the number of records go below zero, although
1789 * it can go to zero.
1790 *
1791 * ip -- the inode whose if_broot area is changing
1792 * ext_diff -- the change in the number of records, positive or negative,
1793 *	 requested for the if_broot array.
1794 */
1795void
1796xfs_iroot_realloc(
1797	xfs_inode_t		*ip,
1798	int			rec_diff,
1799	int			whichfork)
1800{
1801	struct xfs_mount	*mp = ip->i_mount;
1802	int			cur_max;
1803	xfs_ifork_t		*ifp;
1804	struct xfs_btree_block	*new_broot;
1805	int			new_max;
1806	size_t			new_size;
1807	char			*np;
1808	char			*op;
1809
1810	/*
1811	 * Handle the degenerate case quietly.
1812	 */
1813	if (rec_diff == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814		return;
1815	}
1816
1817	ifp = XFS_IFORK_PTR(ip, whichfork);
1818	if (rec_diff > 0) {
1819		/*
1820		 * If there wasn't any memory allocated before, just
1821		 * allocate it now and get out.
1822		 */
1823		if (ifp->if_broot_bytes == 0) {
1824			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1825			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1826			ifp->if_broot_bytes = (int)new_size;
1827			return;
 
 
 
 
 
 
 
 
 
 
 
1828		}
1829
1830		/*
1831		 * If there is already an existing if_broot, then we need
1832		 * to realloc() it and shift the pointers to their new
1833		 * location.  The records don't change location because
1834		 * they are kept butted up against the btree block header.
1835		 */
1836		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1837		new_max = cur_max + rec_diff;
1838		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1839		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1840				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1841				KM_SLEEP | KM_NOFS);
1842		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1843						     ifp->if_broot_bytes);
1844		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1845						     (int)new_size);
1846		ifp->if_broot_bytes = (int)new_size;
1847		ASSERT(ifp->if_broot_bytes <=
1848			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1849		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1850		return;
1851	}
 
1852
1853	/*
1854	 * rec_diff is less than 0.  In this case, we are shrinking the
1855	 * if_broot buffer.  It must already exist.  If we go to zero
1856	 * records, just get rid of the root and clear the status bit.
1857	 */
1858	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1859	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1860	new_max = cur_max + rec_diff;
1861	ASSERT(new_max >= 0);
1862	if (new_max > 0)
1863		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1864	else
1865		new_size = 0;
1866	if (new_size > 0) {
1867		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1868		/*
1869		 * First copy over the btree block header.
1870		 */
1871		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1872	} else {
1873		new_broot = NULL;
1874		ifp->if_flags &= ~XFS_IFBROOT;
1875	}
1876
1877	/*
1878	 * Only copy the records and pointers if there are any.
 
 
 
1879	 */
1880	if (new_max > 0) {
1881		/*
1882		 * First copy the records.
1883		 */
1884		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1885		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1886		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1887
1888		/*
1889		 * Then copy the pointers.
1890		 */
1891		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1892						     ifp->if_broot_bytes);
1893		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1894						     (int)new_size);
1895		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1896	}
1897	kmem_free(ifp->if_broot);
1898	ifp->if_broot = new_broot;
1899	ifp->if_broot_bytes = (int)new_size;
1900	ASSERT(ifp->if_broot_bytes <=
1901		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1902	return;
1903}
1904
 
 
 
 
 
 
 
1905
1906/*
1907 * This is called when the amount of space needed for if_data
1908 * is increased or decreased.  The change in size is indicated by
1909 * the number of bytes that need to be added or deleted in the
1910 * byte_diff parameter.
1911 *
1912 * If the amount of space needed has decreased below the size of the
1913 * inline buffer, then switch to using the inline buffer.  Otherwise,
1914 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1915 * to what is needed.
1916 *
1917 * ip -- the inode whose if_data area is changing
1918 * byte_diff -- the change in the number of bytes, positive or negative,
1919 *	 requested for the if_data array.
1920 */
1921void
1922xfs_idata_realloc(
1923	xfs_inode_t	*ip,
1924	int		byte_diff,
1925	int		whichfork)
1926{
1927	xfs_ifork_t	*ifp;
1928	int		new_size;
1929	int		real_size;
 
 
 
 
 
 
 
1930
1931	if (byte_diff == 0) {
1932		return;
1933	}
1934
1935	ifp = XFS_IFORK_PTR(ip, whichfork);
1936	new_size = (int)ifp->if_bytes + byte_diff;
1937	ASSERT(new_size >= 0);
1938
1939	if (new_size == 0) {
1940		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1941			kmem_free(ifp->if_u1.if_data);
1942		}
1943		ifp->if_u1.if_data = NULL;
1944		real_size = 0;
1945	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1946		/*
1947		 * If the valid extents/data can fit in if_inline_ext/data,
1948		 * copy them from the malloc'd vector and free it.
1949		 */
1950		if (ifp->if_u1.if_data == NULL) {
1951			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1952		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1953			ASSERT(ifp->if_real_bytes != 0);
1954			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1955			      new_size);
1956			kmem_free(ifp->if_u1.if_data);
1957			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1958		}
1959		real_size = 0;
1960	} else {
1961		/*
1962		 * Stuck with malloc/realloc.
1963		 * For inline data, the underlying buffer must be
1964		 * a multiple of 4 bytes in size so that it can be
1965		 * logged and stay on word boundaries.  We enforce
1966		 * that here.
1967		 */
1968		real_size = roundup(new_size, 4);
1969		if (ifp->if_u1.if_data == NULL) {
1970			ASSERT(ifp->if_real_bytes == 0);
1971			ifp->if_u1.if_data = kmem_alloc(real_size,
1972							KM_SLEEP | KM_NOFS);
1973		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1974			/*
1975			 * Only do the realloc if the underlying size
1976			 * is really changing.
1977			 */
1978			if (ifp->if_real_bytes != real_size) {
1979				ifp->if_u1.if_data =
1980					kmem_realloc(ifp->if_u1.if_data,
1981							real_size,
1982							ifp->if_real_bytes,
1983							KM_SLEEP | KM_NOFS);
1984			}
1985		} else {
1986			ASSERT(ifp->if_real_bytes == 0);
1987			ifp->if_u1.if_data = kmem_alloc(real_size,
1988							KM_SLEEP | KM_NOFS);
1989			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1990				ifp->if_bytes);
1991		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992	}
1993	ifp->if_real_bytes = real_size;
1994	ifp->if_bytes = new_size;
1995	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1996}
1997
1998void
1999xfs_idestroy_fork(
2000	xfs_inode_t	*ip,
2001	int		whichfork)
2002{
2003	xfs_ifork_t	*ifp;
2004
2005	ifp = XFS_IFORK_PTR(ip, whichfork);
2006	if (ifp->if_broot != NULL) {
2007		kmem_free(ifp->if_broot);
2008		ifp->if_broot = NULL;
2009	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010
2011	/*
2012	 * If the format is local, then we can't have an extents
2013	 * array so just look for an inline data array.  If we're
2014	 * not local then we may or may not have an extents list,
2015	 * so check and free it up if we do.
2016	 */
2017	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2018		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2019		    (ifp->if_u1.if_data != NULL)) {
2020			ASSERT(ifp->if_real_bytes != 0);
2021			kmem_free(ifp->if_u1.if_data);
2022			ifp->if_u1.if_data = NULL;
2023			ifp->if_real_bytes = 0;
2024		}
2025	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2026		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2027		    ((ifp->if_u1.if_extents != NULL) &&
2028		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2029		ASSERT(ifp->if_real_bytes != 0);
2030		xfs_iext_destroy(ifp);
2031	}
2032	ASSERT(ifp->if_u1.if_extents == NULL ||
2033	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2034	ASSERT(ifp->if_real_bytes == 0);
2035	if (whichfork == XFS_ATTR_FORK) {
2036		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2037		ip->i_afp = NULL;
2038	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039}
2040
2041/*
2042 * This is called to unpin an inode.  The caller must have the inode locked
2043 * in at least shared mode so that the buffer cannot be subsequently pinned
2044 * once someone is waiting for it to be unpinned.
2045 */
2046static void
2047xfs_iunpin(
2048	struct xfs_inode	*ip)
2049{
2050	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2051
2052	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2053
2054	/* Give the log a push to start the unpinning I/O */
2055	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2056
2057}
2058
2059static void
2060__xfs_iunpin_wait(
2061	struct xfs_inode	*ip)
2062{
2063	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2064	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2065
2066	xfs_iunpin(ip);
2067
2068	do {
2069		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2070		if (xfs_ipincount(ip))
2071			io_schedule();
2072	} while (xfs_ipincount(ip));
2073	finish_wait(wq, &wait.wait);
2074}
2075
2076void
2077xfs_iunpin_wait(
2078	struct xfs_inode	*ip)
2079{
2080	if (xfs_ipincount(ip))
2081		__xfs_iunpin_wait(ip);
2082}
2083
2084/*
2085 * xfs_iextents_copy()
2086 *
2087 * This is called to copy the REAL extents (as opposed to the delayed
2088 * allocation extents) from the inode into the given buffer.  It
2089 * returns the number of bytes copied into the buffer.
2090 *
2091 * If there are no delayed allocation extents, then we can just
2092 * memcpy() the extents into the buffer.  Otherwise, we need to
2093 * examine each extent in turn and skip those which are delayed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094 */
2095int
2096xfs_iextents_copy(
2097	xfs_inode_t		*ip,
2098	xfs_bmbt_rec_t		*dp,
2099	int			whichfork)
2100{
2101	int			copied;
2102	int			i;
2103	xfs_ifork_t		*ifp;
2104	int			nrecs;
2105	xfs_fsblock_t		start_block;
2106
2107	ifp = XFS_IFORK_PTR(ip, whichfork);
2108	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2109	ASSERT(ifp->if_bytes > 0);
2110
2111	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2112	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2113	ASSERT(nrecs > 0);
2114
2115	/*
2116	 * There are some delayed allocation extents in the
2117	 * inode, so copy the extents one at a time and skip
2118	 * the delayed ones.  There must be at least one
2119	 * non-delayed extent.
2120	 */
2121	copied = 0;
2122	for (i = 0; i < nrecs; i++) {
2123		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2124		start_block = xfs_bmbt_get_startblock(ep);
2125		if (isnullstartblock(start_block)) {
2126			/*
2127			 * It's a delayed allocation extent, so skip it.
2128			 */
2129			continue;
2130		}
2131
2132		/* Translate to on disk format */
2133		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2134		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2135		dp++;
2136		copied++;
2137	}
2138	ASSERT(copied != 0);
2139	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2140
2141	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2142}
 
2143
2144/*
2145 * Each of the following cases stores data into the same region
2146 * of the on-disk inode, so only one of them can be valid at
2147 * any given time. While it is possible to have conflicting formats
2148 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2149 * in EXTENTS format, this can only happen when the fork has
2150 * changed formats after being modified but before being flushed.
2151 * In these cases, the format always takes precedence, because the
2152 * format indicates the current state of the fork.
2153 */
2154/*ARGSUSED*/
2155STATIC void
2156xfs_iflush_fork(
2157	xfs_inode_t		*ip,
2158	xfs_dinode_t		*dip,
2159	xfs_inode_log_item_t	*iip,
2160	int			whichfork,
2161	xfs_buf_t		*bp)
2162{
2163	char			*cp;
2164	xfs_ifork_t		*ifp;
2165	xfs_mount_t		*mp;
2166#ifdef XFS_TRANS_DEBUG
2167	int			first;
2168#endif
2169	static const short	brootflag[2] =
2170		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2171	static const short	dataflag[2] =
2172		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2173	static const short	extflag[2] =
2174		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2175
2176	if (!iip)
2177		return;
2178	ifp = XFS_IFORK_PTR(ip, whichfork);
2179	/*
2180	 * This can happen if we gave up in iformat in an error path,
2181	 * for the attribute fork.
2182	 */
2183	if (!ifp) {
2184		ASSERT(whichfork == XFS_ATTR_FORK);
2185		return;
2186	}
2187	cp = XFS_DFORK_PTR(dip, whichfork);
2188	mp = ip->i_mount;
2189	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2190	case XFS_DINODE_FMT_LOCAL:
2191		if ((iip->ili_fields & dataflag[whichfork]) &&
2192		    (ifp->if_bytes > 0)) {
2193			ASSERT(ifp->if_u1.if_data != NULL);
2194			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2195			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2196		}
2197		break;
2198
2199	case XFS_DINODE_FMT_EXTENTS:
2200		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2201		       !(iip->ili_fields & extflag[whichfork]));
2202		if ((iip->ili_fields & extflag[whichfork]) &&
2203		    (ifp->if_bytes > 0)) {
2204			ASSERT(xfs_iext_get_ext(ifp, 0));
2205			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2206			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2207				whichfork);
2208		}
2209		break;
2210
2211	case XFS_DINODE_FMT_BTREE:
2212		if ((iip->ili_fields & brootflag[whichfork]) &&
2213		    (ifp->if_broot_bytes > 0)) {
2214			ASSERT(ifp->if_broot != NULL);
2215			ASSERT(ifp->if_broot_bytes <=
2216			       (XFS_IFORK_SIZE(ip, whichfork) +
2217				XFS_BROOT_SIZE_ADJ));
2218			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2219				(xfs_bmdr_block_t *)cp,
2220				XFS_DFORK_SIZE(dip, mp, whichfork));
2221		}
2222		break;
2223
2224	case XFS_DINODE_FMT_DEV:
2225		if (iip->ili_fields & XFS_ILOG_DEV) {
2226			ASSERT(whichfork == XFS_DATA_FORK);
2227			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2228		}
2229		break;
2230
2231	case XFS_DINODE_FMT_UUID:
2232		if (iip->ili_fields & XFS_ILOG_UUID) {
2233			ASSERT(whichfork == XFS_DATA_FORK);
2234			memcpy(XFS_DFORK_DPTR(dip),
2235			       &ip->i_df.if_u2.if_uuid,
2236			       sizeof(uuid_t));
 
 
 
 
 
2237		}
2238		break;
 
 
 
 
 
 
 
 
2239
2240	default:
2241		ASSERT(0);
2242		break;
 
 
 
 
 
 
2243	}
2244}
2245
2246STATIC int
2247xfs_iflush_cluster(
2248	xfs_inode_t	*ip,
2249	xfs_buf_t	*bp)
2250{
2251	xfs_mount_t		*mp = ip->i_mount;
2252	struct xfs_perag	*pag;
2253	unsigned long		first_index, mask;
2254	unsigned long		inodes_per_cluster;
2255	int			ilist_size;
2256	xfs_inode_t		**ilist;
2257	xfs_inode_t		*iq;
2258	int			nr_found;
2259	int			clcount = 0;
2260	int			bufwasdelwri;
2261	int			i;
2262
2263	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
 
 
 
 
 
2264
2265	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2266	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2267	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2268	if (!ilist)
2269		goto out_put;
2270
2271	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2272	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2273	rcu_read_lock();
2274	/* really need a gang lookup range call here */
2275	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2276					first_index, inodes_per_cluster);
2277	if (nr_found == 0)
2278		goto out_free;
2279
2280	for (i = 0; i < nr_found; i++) {
2281		iq = ilist[i];
2282		if (iq == ip)
2283			continue;
2284
2285		/*
2286		 * because this is an RCU protected lookup, we could find a
2287		 * recently freed or even reallocated inode during the lookup.
2288		 * We need to check under the i_flags_lock for a valid inode
2289		 * here. Skip it if it is not valid or the wrong inode.
2290		 */
2291		spin_lock(&ip->i_flags_lock);
2292		if (!ip->i_ino ||
2293		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2294			spin_unlock(&ip->i_flags_lock);
2295			continue;
2296		}
2297		spin_unlock(&ip->i_flags_lock);
2298
2299		/*
2300		 * Do an un-protected check to see if the inode is dirty and
2301		 * is a candidate for flushing.  These checks will be repeated
2302		 * later after the appropriate locks are acquired.
2303		 */
2304		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2305			continue;
2306
2307		/*
2308		 * Try to get locks.  If any are unavailable or it is pinned,
2309		 * then this inode cannot be flushed and is skipped.
2310		 */
 
 
 
 
 
 
 
 
 
 
 
2311
2312		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2313			continue;
2314		if (!xfs_iflock_nowait(iq)) {
2315			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2316			continue;
2317		}
2318		if (xfs_ipincount(iq)) {
2319			xfs_ifunlock(iq);
2320			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2321			continue;
2322		}
2323
2324		/*
2325		 * arriving here means that this inode can be flushed.  First
2326		 * re-check that it's dirty before flushing.
2327		 */
2328		if (!xfs_inode_clean(iq)) {
2329			int	error;
2330			error = xfs_iflush_int(iq, bp);
2331			if (error) {
2332				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2333				goto cluster_corrupt_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334			}
2335			clcount++;
2336		} else {
2337			xfs_ifunlock(iq);
2338		}
2339		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2340	}
 
2341
2342	if (clcount) {
2343		XFS_STATS_INC(xs_icluster_flushcnt);
2344		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2345	}
 
 
 
 
 
 
2346
2347out_free:
2348	rcu_read_unlock();
2349	kmem_free(ilist);
2350out_put:
2351	xfs_perag_put(pag);
2352	return 0;
2353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354
2355cluster_corrupt_out:
2356	/*
2357	 * Corruption detected in the clustering loop.  Invalidate the
2358	 * inode buffer and shut down the filesystem.
2359	 */
2360	rcu_read_unlock();
2361	/*
2362	 * Clean up the buffer.  If it was delwri, just release it --
2363	 * brelse can handle it with no problems.  If not, shut down the
2364	 * filesystem before releasing the buffer.
2365	 */
2366	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2367	if (bufwasdelwri)
2368		xfs_buf_relse(bp);
2369
2370	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2371
2372	if (!bufwasdelwri) {
2373		/*
2374		 * Just like incore_relse: if we have b_iodone functions,
2375		 * mark the buffer as an error and call them.  Otherwise
2376		 * mark it as stale and brelse.
2377		 */
2378		if (bp->b_iodone) {
2379			XFS_BUF_UNDONE(bp);
2380			xfs_buf_stale(bp);
2381			xfs_buf_ioerror(bp, EIO);
2382			xfs_buf_ioend(bp, 0);
2383		} else {
2384			xfs_buf_stale(bp);
2385			xfs_buf_relse(bp);
 
 
 
 
 
2386		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387	}
 
 
2388
2389	/*
2390	 * Unlocks the flush lock
 
 
 
 
 
2391	 */
2392	xfs_iflush_abort(iq, false);
2393	kmem_free(ilist);
2394	xfs_perag_put(pag);
2395	return XFS_ERROR(EFSCORRUPTED);
 
 
 
 
 
 
2396}
2397
2398/*
2399 * Flush dirty inode metadata into the backing buffer.
2400 *
2401 * The caller must have the inode lock and the inode flush lock held.  The
2402 * inode lock will still be held upon return to the caller, and the inode
2403 * flush lock will be released after the inode has reached the disk.
2404 *
2405 * The caller must write out the buffer returned in *bpp and release it.
2406 */
2407int
2408xfs_iflush(
2409	struct xfs_inode	*ip,
2410	struct xfs_buf		**bpp)
 
 
 
 
 
2411{
2412	struct xfs_mount	*mp = ip->i_mount;
2413	struct xfs_buf		*bp;
2414	struct xfs_dinode	*dip;
2415	int			error;
2416
2417	XFS_STATS_INC(xs_iflush_count);
 
 
 
2418
2419	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2420	ASSERT(xfs_isiflocked(ip));
2421	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2422	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 
 
 
 
2423
2424	*bpp = NULL;
 
 
 
 
 
 
 
2425
2426	xfs_iunpin_wait(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2427
2428	/*
2429	 * For stale inodes we cannot rely on the backing buffer remaining
2430	 * stale in cache for the remaining life of the stale inode and so
2431	 * xfs_itobp() below may give us a buffer that no longer contains
2432	 * inodes below. We have to check this after ensuring the inode is
2433	 * unpinned so that it is safe to reclaim the stale inode after the
2434	 * flush call.
2435	 */
2436	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2437		xfs_ifunlock(ip);
2438		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439	}
2440
 
 
 
 
 
 
2441	/*
2442	 * This may have been unpinned because the filesystem is shutting
2443	 * down forcibly. If that's the case we must not write this inode
2444	 * to disk, because the log record didn't make it to disk.
2445	 *
2446	 * We also have to remove the log item from the AIL in this case,
2447	 * as we wait for an empty AIL as part of the unmount process.
2448	 */
2449	if (XFS_FORCED_SHUTDOWN(mp)) {
2450		error = XFS_ERROR(EIO);
2451		goto abort_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452	}
2453
2454	/*
2455	 * Get the buffer containing the on-disk inode.
 
2456	 */
2457	error = xfs_itobp(mp, NULL, ip, &dip, &bp, XBF_TRYLOCK);
2458	if (error || !bp) {
2459		xfs_ifunlock(ip);
2460		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461	}
2462
2463	/*
2464	 * First flush out the inode that xfs_iflush was called with.
 
 
 
 
 
 
 
2465	 */
2466	error = xfs_iflush_int(ip, bp);
2467	if (error)
2468		goto corrupt_out;
 
 
 
 
 
 
 
 
 
 
 
 
2469
2470	/*
2471	 * If the buffer is pinned then push on the log now so we won't
2472	 * get stuck waiting in the write for too long.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473	 */
2474	if (xfs_buf_ispinned(bp))
2475		xfs_log_force(mp, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476
2477	/*
2478	 * inode clustering:
2479	 * see if other inodes can be gathered into this write
2480	 */
2481	error = xfs_iflush_cluster(ip, bp);
2482	if (error)
2483		goto cluster_corrupt_out;
 
 
 
 
 
 
 
 
2484
2485	*bpp = bp;
2486	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488corrupt_out:
2489	xfs_buf_relse(bp);
2490	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2491cluster_corrupt_out:
2492	error = XFS_ERROR(EFSCORRUPTED);
2493abort_out:
2494	/*
2495	 * Unlocks the flush lock
 
 
2496	 */
2497	xfs_iflush_abort(ip, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498	return error;
2499}
2500
 
 
 
 
 
 
 
 
 
2501
2502STATIC int
2503xfs_iflush_int(
2504	xfs_inode_t		*ip,
2505	xfs_buf_t		*bp)
2506{
2507	xfs_inode_log_item_t	*iip;
2508	xfs_dinode_t		*dip;
2509	xfs_mount_t		*mp;
2510#ifdef XFS_TRANS_DEBUG
2511	int			first;
2512#endif
2513
2514	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2515	ASSERT(xfs_isiflocked(ip));
2516	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2517	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 
2518
2519	iip = ip->i_itemp;
2520	mp = ip->i_mount;
2521
2522	/* set *dip = inode's place in the buffer */
2523	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2524
 
 
 
 
 
 
 
2525	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2526			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2527		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2528			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2529			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2530		goto corrupt_out;
2531	}
2532	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2533				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2534		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2535			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2536			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2537		goto corrupt_out;
2538	}
2539	if (S_ISREG(ip->i_d.di_mode)) {
2540		if (XFS_TEST_ERROR(
2541		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2542		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2543		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2544			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2545				"%s: Bad regular inode %Lu, ptr 0x%p",
2546				__func__, ip->i_ino, ip);
2547			goto corrupt_out;
2548		}
2549	} else if (S_ISDIR(ip->i_d.di_mode)) {
2550		if (XFS_TEST_ERROR(
2551		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2552		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2553		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2554		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2555			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2556				"%s: Bad directory inode %Lu, ptr 0x%p",
2557				__func__, ip->i_ino, ip);
2558			goto corrupt_out;
2559		}
2560	}
2561	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2562				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2563				XFS_RANDOM_IFLUSH_5)) {
2564		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2565			"%s: detected corrupt incore inode %Lu, "
2566			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2567			__func__, ip->i_ino,
2568			ip->i_d.di_nextents + ip->i_d.di_anextents,
2569			ip->i_d.di_nblocks, ip);
2570		goto corrupt_out;
2571	}
2572	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2573				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2574		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2575			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2576			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2577		goto corrupt_out;
2578	}
 
2579	/*
2580	 * bump the flush iteration count, used to detect flushes which
2581	 * postdate a log record during recovery.
 
 
 
 
2582	 */
 
 
2583
2584	ip->i_d.di_flushiter++;
 
 
 
 
 
 
 
 
 
 
2585
2586	/*
2587	 * Copy the dirty parts of the inode into the on-disk
2588	 * inode.  We always copy out the core of the inode,
2589	 * because if the inode is dirty at all the core must
2590	 * be.
2591	 */
2592	xfs_dinode_to_disk(dip, &ip->i_d);
2593
2594	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2595	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2596		ip->i_d.di_flushiter = 0;
2597
2598	/*
2599	 * If this is really an old format inode and the superblock version
2600	 * has not been updated to support only new format inodes, then
2601	 * convert back to the old inode format.  If the superblock version
2602	 * has been updated, then make the conversion permanent.
2603	 */
2604	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2605	if (ip->i_d.di_version == 1) {
2606		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2607			/*
2608			 * Convert it back.
2609			 */
2610			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2611			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2612		} else {
2613			/*
2614			 * The superblock version has already been bumped,
2615			 * so just make the conversion to the new inode
2616			 * format permanent.
2617			 */
2618			ip->i_d.di_version = 2;
2619			dip->di_version = 2;
2620			ip->i_d.di_onlink = 0;
2621			dip->di_onlink = 0;
2622			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2623			memset(&(dip->di_pad[0]), 0,
2624			      sizeof(dip->di_pad));
2625			ASSERT(xfs_get_projid(ip) == 0);
2626		}
2627	}
2628
2629	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2630	if (XFS_IFORK_Q(ip))
2631		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2632	xfs_inobp_check(mp, bp);
2633
2634	/*
2635	 * We've recorded everything logged in the inode, so we'd like to clear
2636	 * the ili_fields bits so we don't log and flush things unnecessarily.
2637	 * However, we can't stop logging all this information until the data
2638	 * we've copied into the disk buffer is written to disk.  If we did we
2639	 * might overwrite the copy of the inode in the log with all the data
2640	 * after re-logging only part of it, and in the face of a crash we
2641	 * wouldn't have all the data we need to recover.
2642	 *
2643	 * What we do is move the bits to the ili_last_fields field.  When
2644	 * logging the inode, these bits are moved back to the ili_fields field.
2645	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2646	 * know that the information those bits represent is permanently on
2647	 * disk.  As long as the flush completes before the inode is logged
2648	 * again, then both ili_fields and ili_last_fields will be cleared.
2649	 *
2650	 * We can play with the ili_fields bits here, because the inode lock
2651	 * must be held exclusively in order to set bits there and the flush
2652	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2653	 * done routine can tell whether or not to look in the AIL.  Also, store
2654	 * the current LSN of the inode so that we can tell whether the item has
2655	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2656	 * need the AIL lock, because it is a 64 bit value that cannot be read
2657	 * atomically.
2658	 */
2659	if (iip != NULL && iip->ili_fields != 0) {
2660		iip->ili_last_fields = iip->ili_fields;
2661		iip->ili_fields = 0;
2662		iip->ili_logged = 1;
2663
2664		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2665					&iip->ili_item.li_lsn);
2666
2667		/*
2668		 * Attach the function xfs_iflush_done to the inode's
2669		 * buffer.  This will remove the inode from the AIL
2670		 * and unlock the inode's flush lock when the inode is
2671		 * completely written to disk.
2672		 */
2673		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2674
2675		ASSERT(bp->b_fspriv != NULL);
2676		ASSERT(bp->b_iodone != NULL);
2677	} else {
2678		/*
2679		 * We're flushing an inode which is not in the AIL and has
2680		 * not been logged.  For this case we can immediately drop
2681		 * the inode flush lock because we can avoid the whole
2682		 * AIL state thing.  It's OK to drop the flush lock now,
2683		 * because we've already locked the buffer and to do anything
2684		 * you really need both.
2685		 */
2686		if (iip != NULL) {
2687			ASSERT(iip->ili_logged == 0);
2688			ASSERT(iip->ili_last_fields == 0);
2689			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2690		}
2691		xfs_ifunlock(ip);
2692	}
2693
2694	return 0;
 
 
 
 
 
2695
2696corrupt_out:
2697	return XFS_ERROR(EFSCORRUPTED);
 
 
 
2698}
2699
2700/*
2701 * Return a pointer to the extent record at file index idx.
 
 
 
 
 
 
 
 
 
 
2702 */
2703xfs_bmbt_rec_host_t *
2704xfs_iext_get_ext(
2705	xfs_ifork_t	*ifp,		/* inode fork pointer */
2706	xfs_extnum_t	idx)		/* index of target extent */
2707{
2708	ASSERT(idx >= 0);
2709	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
 
 
 
 
 
 
 
 
 
 
 
 
2710
2711	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2712		return ifp->if_u1.if_ext_irec->er_extbuf;
2713	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2714		xfs_ext_irec_t	*erp;		/* irec pointer */
2715		int		erp_idx = 0;	/* irec index */
2716		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
 
2717
2718		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2719		return &erp->er_extbuf[page_idx];
2720	} else if (ifp->if_bytes) {
2721		return &ifp->if_u1.if_extents[idx];
2722	} else {
2723		return NULL;
2724	}
2725}
 
 
 
 
 
2726
2727/*
2728 * Insert new item(s) into the extent records for incore inode
2729 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2730 */
2731void
2732xfs_iext_insert(
2733	xfs_inode_t	*ip,		/* incore inode pointer */
2734	xfs_extnum_t	idx,		/* starting index of new items */
2735	xfs_extnum_t	count,		/* number of inserted items */
2736	xfs_bmbt_irec_t	*new,		/* items to insert */
2737	int		state)		/* type of extent conversion */
2738{
2739	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2740	xfs_extnum_t	i;		/* extent record index */
2741
2742	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2743
2744	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2745	xfs_iext_add(ifp, idx, count);
2746	for (i = idx; i < idx + count; i++, new++)
2747		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2748}
2749
2750/*
2751 * This is called when the amount of space required for incore file
2752 * extents needs to be increased. The ext_diff parameter stores the
2753 * number of new extents being added and the idx parameter contains
2754 * the extent index where the new extents will be added. If the new
2755 * extents are being appended, then we just need to (re)allocate and
2756 * initialize the space. Otherwise, if the new extents are being
2757 * inserted into the middle of the existing entries, a bit more work
2758 * is required to make room for the new extents to be inserted. The
2759 * caller is responsible for filling in the new extent entries upon
2760 * return.
2761 */
2762void
2763xfs_iext_add(
2764	xfs_ifork_t	*ifp,		/* inode fork pointer */
2765	xfs_extnum_t	idx,		/* index to begin adding exts */
2766	int		ext_diff)	/* number of extents to add */
2767{
2768	int		byte_diff;	/* new bytes being added */
2769	int		new_size;	/* size of extents after adding */
2770	xfs_extnum_t	nextents;	/* number of extents in file */
2771
2772	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2773	ASSERT((idx >= 0) && (idx <= nextents));
2774	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2775	new_size = ifp->if_bytes + byte_diff;
2776	/*
2777	 * If the new number of extents (nextents + ext_diff)
2778	 * fits inside the inode, then continue to use the inline
2779	 * extent buffer.
2780	 */
2781	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2782		if (idx < nextents) {
2783			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2784				&ifp->if_u2.if_inline_ext[idx],
2785				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2786			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2787		}
2788		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2789		ifp->if_real_bytes = 0;
2790	}
2791	/*
2792	 * Otherwise use a linear (direct) extent list.
2793	 * If the extents are currently inside the inode,
2794	 * xfs_iext_realloc_direct will switch us from
2795	 * inline to direct extent allocation mode.
2796	 */
2797	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2798		xfs_iext_realloc_direct(ifp, new_size);
2799		if (idx < nextents) {
2800			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2801				&ifp->if_u1.if_extents[idx],
2802				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2803			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2804		}
2805	}
2806	/* Indirection array */
2807	else {
2808		xfs_ext_irec_t	*erp;
2809		int		erp_idx = 0;
2810		int		page_idx = idx;
2811
2812		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2813		if (ifp->if_flags & XFS_IFEXTIREC) {
2814			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2815		} else {
2816			xfs_iext_irec_init(ifp);
2817			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2818			erp = ifp->if_u1.if_ext_irec;
2819		}
2820		/* Extents fit in target extent page */
2821		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2822			if (page_idx < erp->er_extcount) {
2823				memmove(&erp->er_extbuf[page_idx + ext_diff],
2824					&erp->er_extbuf[page_idx],
2825					(erp->er_extcount - page_idx) *
2826					sizeof(xfs_bmbt_rec_t));
2827				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2828			}
2829			erp->er_extcount += ext_diff;
2830			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2831		}
2832		/* Insert a new extent page */
2833		else if (erp) {
2834			xfs_iext_add_indirect_multi(ifp,
2835				erp_idx, page_idx, ext_diff);
2836		}
2837		/*
2838		 * If extent(s) are being appended to the last page in
2839		 * the indirection array and the new extent(s) don't fit
2840		 * in the page, then erp is NULL and erp_idx is set to
2841		 * the next index needed in the indirection array.
2842		 */
2843		else {
2844			int	count = ext_diff;
2845
2846			while (count) {
2847				erp = xfs_iext_irec_new(ifp, erp_idx);
2848				erp->er_extcount = count;
2849				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2850				if (count) {
2851					erp_idx++;
2852				}
2853			}
2854		}
 
 
 
 
 
 
 
 
 
2855	}
2856	ifp->if_bytes = new_size;
2857}
2858
2859/*
2860 * This is called when incore extents are being added to the indirection
2861 * array and the new extents do not fit in the target extent list. The
2862 * erp_idx parameter contains the irec index for the target extent list
2863 * in the indirection array, and the idx parameter contains the extent
2864 * index within the list. The number of extents being added is stored
2865 * in the count parameter.
2866 *
2867 *    |-------|   |-------|
2868 *    |       |   |       |    idx - number of extents before idx
2869 *    |  idx  |   | count |
2870 *    |       |   |       |    count - number of extents being inserted at idx
2871 *    |-------|   |-------|
2872 *    | count |   | nex2  |    nex2 - number of extents after idx + count
2873 *    |-------|   |-------|
2874 */
2875void
2876xfs_iext_add_indirect_multi(
2877	xfs_ifork_t	*ifp,			/* inode fork pointer */
2878	int		erp_idx,		/* target extent irec index */
2879	xfs_extnum_t	idx,			/* index within target list */
2880	int		count)			/* new extents being added */
2881{
2882	int		byte_diff;		/* new bytes being added */
2883	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
2884	xfs_extnum_t	ext_diff;		/* number of extents to add */
2885	xfs_extnum_t	ext_cnt;		/* new extents still needed */
2886	xfs_extnum_t	nex2;			/* extents after idx + count */
2887	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
2888	int		nlists;			/* number of irec's (lists) */
2889
2890	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2891	erp = &ifp->if_u1.if_ext_irec[erp_idx];
2892	nex2 = erp->er_extcount - idx;
2893	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2894
2895	/*
2896	 * Save second part of target extent list
2897	 * (all extents past */
2898	if (nex2) {
2899		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2900		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2901		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2902		erp->er_extcount -= nex2;
2903		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2904		memset(&erp->er_extbuf[idx], 0, byte_diff);
2905	}
2906
2907	/*
2908	 * Add the new extents to the end of the target
2909	 * list, then allocate new irec record(s) and
2910	 * extent buffer(s) as needed to store the rest
2911	 * of the new extents.
2912	 */
2913	ext_cnt = count;
2914	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2915	if (ext_diff) {
2916		erp->er_extcount += ext_diff;
2917		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2918		ext_cnt -= ext_diff;
2919	}
2920	while (ext_cnt) {
2921		erp_idx++;
2922		erp = xfs_iext_irec_new(ifp, erp_idx);
2923		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2924		erp->er_extcount = ext_diff;
2925		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2926		ext_cnt -= ext_diff;
2927	}
2928
2929	/* Add nex2 extents back to indirection array */
2930	if (nex2) {
2931		xfs_extnum_t	ext_avail;
2932		int		i;
2933
2934		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2935		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2936		i = 0;
2937		/*
2938		 * If nex2 extents fit in the current page, append
2939		 * nex2_ep after the new extents.
2940		 */
2941		if (nex2 <= ext_avail) {
2942			i = erp->er_extcount;
2943		}
2944		/*
2945		 * Otherwise, check if space is available in the
2946		 * next page.
2947		 */
2948		else if ((erp_idx < nlists - 1) &&
2949			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2950			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2951			erp_idx++;
2952			erp++;
2953			/* Create a hole for nex2 extents */
2954			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2955				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2956		}
2957		/*
2958		 * Final choice, create a new extent page for
2959		 * nex2 extents.
2960		 */
2961		else {
2962			erp_idx++;
2963			erp = xfs_iext_irec_new(ifp, erp_idx);
2964		}
2965		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
2966		kmem_free(nex2_ep);
2967		erp->er_extcount += nex2;
2968		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2969	}
2970}
2971
2972/*
2973 * This is called when the amount of space required for incore file
2974 * extents needs to be decreased. The ext_diff parameter stores the
2975 * number of extents to be removed and the idx parameter contains
2976 * the extent index where the extents will be removed from.
2977 *
2978 * If the amount of space needed has decreased below the linear
2979 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2980 * extent array.  Otherwise, use kmem_realloc() to adjust the
2981 * size to what is needed.
2982 */
2983void
2984xfs_iext_remove(
2985	xfs_inode_t	*ip,		/* incore inode pointer */
2986	xfs_extnum_t	idx,		/* index to begin removing exts */
2987	int		ext_diff,	/* number of extents to remove */
2988	int		state)		/* type of extent conversion */
2989{
2990	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2991	xfs_extnum_t	nextents;	/* number of extents in file */
2992	int		new_size;	/* size of extents after removal */
2993
2994	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2995
2996	ASSERT(ext_diff > 0);
2997	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2998	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2999
3000	if (new_size == 0) {
3001		xfs_iext_destroy(ifp);
3002	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3003		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3004	} else if (ifp->if_real_bytes) {
3005		xfs_iext_remove_direct(ifp, idx, ext_diff);
3006	} else {
3007		xfs_iext_remove_inline(ifp, idx, ext_diff);
3008	}
3009	ifp->if_bytes = new_size;
 
 
 
 
 
 
 
3010}
3011
3012/*
3013 * This removes ext_diff extents from the inline buffer, beginning
3014 * at extent index idx.
3015 */
3016void
3017xfs_iext_remove_inline(
3018	xfs_ifork_t	*ifp,		/* inode fork pointer */
3019	xfs_extnum_t	idx,		/* index to begin removing exts */
3020	int		ext_diff)	/* number of extents to remove */
3021{
3022	int		nextents;	/* number of extents in file */
3023
3024	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3025	ASSERT(idx < XFS_INLINE_EXTS);
3026	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3027	ASSERT(((nextents - ext_diff) > 0) &&
3028		(nextents - ext_diff) < XFS_INLINE_EXTS);
3029
3030	if (idx + ext_diff < nextents) {
3031		memmove(&ifp->if_u2.if_inline_ext[idx],
3032			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3033			(nextents - (idx + ext_diff)) *
3034			 sizeof(xfs_bmbt_rec_t));
3035		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3036			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3037	} else {
3038		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3039			ext_diff * sizeof(xfs_bmbt_rec_t));
3040	}
3041}
3042
3043/*
3044 * This removes ext_diff extents from a linear (direct) extent list,
3045 * beginning at extent index idx. If the extents are being removed
3046 * from the end of the list (ie. truncate) then we just need to re-
3047 * allocate the list to remove the extra space. Otherwise, if the
3048 * extents are being removed from the middle of the existing extent
3049 * entries, then we first need to move the extent records beginning
3050 * at idx + ext_diff up in the list to overwrite the records being
3051 * removed, then remove the extra space via kmem_realloc.
3052 */
3053void
3054xfs_iext_remove_direct(
3055	xfs_ifork_t	*ifp,		/* inode fork pointer */
3056	xfs_extnum_t	idx,		/* index to begin removing exts */
3057	int		ext_diff)	/* number of extents to remove */
3058{
3059	xfs_extnum_t	nextents;	/* number of extents in file */
3060	int		new_size;	/* size of extents after removal */
3061
3062	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3063	new_size = ifp->if_bytes -
3064		(ext_diff * sizeof(xfs_bmbt_rec_t));
3065	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3066
3067	if (new_size == 0) {
3068		xfs_iext_destroy(ifp);
3069		return;
3070	}
3071	/* Move extents up in the list (if needed) */
3072	if (idx + ext_diff < nextents) {
3073		memmove(&ifp->if_u1.if_extents[idx],
3074			&ifp->if_u1.if_extents[idx + ext_diff],
3075			(nextents - (idx + ext_diff)) *
3076			 sizeof(xfs_bmbt_rec_t));
3077	}
3078	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3079		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3080	/*
3081	 * Reallocate the direct extent list. If the extents
3082	 * will fit inside the inode then xfs_iext_realloc_direct
3083	 * will switch from direct to inline extent allocation
3084	 * mode for us.
3085	 */
3086	xfs_iext_realloc_direct(ifp, new_size);
3087	ifp->if_bytes = new_size;
3088}
3089
3090/*
3091 * This is called when incore extents are being removed from the
3092 * indirection array and the extents being removed span multiple extent
3093 * buffers. The idx parameter contains the file extent index where we
3094 * want to begin removing extents, and the count parameter contains
3095 * how many extents need to be removed.
3096 *
3097 *    |-------|   |-------|
3098 *    | nex1  |   |       |    nex1 - number of extents before idx
3099 *    |-------|   | count |
3100 *    |       |   |       |    count - number of extents being removed at idx
3101 *    | count |   |-------|
3102 *    |       |   | nex2  |    nex2 - number of extents after idx + count
3103 *    |-------|   |-------|
3104 */
3105void
3106xfs_iext_remove_indirect(
3107	xfs_ifork_t	*ifp,		/* inode fork pointer */
3108	xfs_extnum_t	idx,		/* index to begin removing extents */
3109	int		count)		/* number of extents to remove */
3110{
3111	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3112	int		erp_idx = 0;	/* indirection array index */
3113	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3114	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3115	xfs_extnum_t	nex1;		/* number of extents before idx */
3116	xfs_extnum_t	nex2;		/* extents after idx + count */
3117	int		page_idx = idx;	/* index in target extent list */
3118
3119	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3120	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3121	ASSERT(erp != NULL);
3122	nex1 = page_idx;
3123	ext_cnt = count;
3124	while (ext_cnt) {
3125		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3126		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3127		/*
3128		 * Check for deletion of entire list;
3129		 * xfs_iext_irec_remove() updates extent offsets.
3130		 */
3131		if (ext_diff == erp->er_extcount) {
3132			xfs_iext_irec_remove(ifp, erp_idx);
3133			ext_cnt -= ext_diff;
3134			nex1 = 0;
3135			if (ext_cnt) {
3136				ASSERT(erp_idx < ifp->if_real_bytes /
3137					XFS_IEXT_BUFSZ);
3138				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3139				nex1 = 0;
3140				continue;
3141			} else {
3142				break;
3143			}
3144		}
3145		/* Move extents up (if needed) */
3146		if (nex2) {
3147			memmove(&erp->er_extbuf[nex1],
3148				&erp->er_extbuf[nex1 + ext_diff],
3149				nex2 * sizeof(xfs_bmbt_rec_t));
3150		}
3151		/* Zero out rest of page */
3152		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3153			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3154		/* Update remaining counters */
3155		erp->er_extcount -= ext_diff;
3156		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3157		ext_cnt -= ext_diff;
3158		nex1 = 0;
3159		erp_idx++;
3160		erp++;
3161	}
3162	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3163	xfs_iext_irec_compact(ifp);
3164}
3165
3166/*
3167 * Create, destroy, or resize a linear (direct) block of extents.
 
 
 
 
3168 */
3169void
3170xfs_iext_realloc_direct(
3171	xfs_ifork_t	*ifp,		/* inode fork pointer */
3172	int		new_size)	/* new size of extents */
3173{
3174	int		rnew_size;	/* real new size of extents */
3175
3176	rnew_size = new_size;
3177
3178	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3179		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3180		 (new_size != ifp->if_real_bytes)));
3181
3182	/* Free extent records */
3183	if (new_size == 0) {
3184		xfs_iext_destroy(ifp);
3185	}
3186	/* Resize direct extent list and zero any new bytes */
3187	else if (ifp->if_real_bytes) {
3188		/* Check if extents will fit inside the inode */
3189		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3190			xfs_iext_direct_to_inline(ifp, new_size /
3191				(uint)sizeof(xfs_bmbt_rec_t));
3192			ifp->if_bytes = new_size;
3193			return;
3194		}
3195		if (!is_power_of_2(new_size)){
3196			rnew_size = roundup_pow_of_two(new_size);
3197		}
3198		if (rnew_size != ifp->if_real_bytes) {
3199			ifp->if_u1.if_extents =
3200				kmem_realloc(ifp->if_u1.if_extents,
3201						rnew_size,
3202						ifp->if_real_bytes, KM_NOFS);
3203		}
3204		if (rnew_size > ifp->if_real_bytes) {
3205			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3206				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3207				rnew_size - ifp->if_real_bytes);
3208		}
3209	}
3210	/*
3211	 * Switch from the inline extent buffer to a direct
3212	 * extent list. Be sure to include the inline extent
3213	 * bytes in new_size.
3214	 */
3215	else {
3216		new_size += ifp->if_bytes;
3217		if (!is_power_of_2(new_size)) {
3218			rnew_size = roundup_pow_of_two(new_size);
3219		}
3220		xfs_iext_inline_to_direct(ifp, rnew_size);
3221	}
3222	ifp->if_real_bytes = rnew_size;
3223	ifp->if_bytes = new_size;
3224}
3225
3226/*
3227 * Switch from linear (direct) extent records to inline buffer.
3228 */
3229void
3230xfs_iext_direct_to_inline(
3231	xfs_ifork_t	*ifp,		/* inode fork pointer */
3232	xfs_extnum_t	nextents)	/* number of extents in file */
3233{
3234	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3235	ASSERT(nextents <= XFS_INLINE_EXTS);
3236	/*
3237	 * The inline buffer was zeroed when we switched
3238	 * from inline to direct extent allocation mode,
3239	 * so we don't need to clear it here.
3240	 */
3241	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3242		nextents * sizeof(xfs_bmbt_rec_t));
3243	kmem_free(ifp->if_u1.if_extents);
3244	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3245	ifp->if_real_bytes = 0;
3246}
3247
3248/*
3249 * Switch from inline buffer to linear (direct) extent records.
3250 * new_size should already be rounded up to the next power of 2
3251 * by the caller (when appropriate), so use new_size as it is.
3252 * However, since new_size may be rounded up, we can't update
3253 * if_bytes here. It is the caller's responsibility to update
3254 * if_bytes upon return.
3255 */
3256void
3257xfs_iext_inline_to_direct(
3258	xfs_ifork_t	*ifp,		/* inode fork pointer */
3259	int		new_size)	/* number of extents in file */
3260{
3261	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3262	memset(ifp->if_u1.if_extents, 0, new_size);
3263	if (ifp->if_bytes) {
3264		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3265			ifp->if_bytes);
3266		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3267			sizeof(xfs_bmbt_rec_t));
3268	}
3269	ifp->if_real_bytes = new_size;
3270}
3271
3272/*
3273 * Resize an extent indirection array to new_size bytes.
3274 */
3275STATIC void
3276xfs_iext_realloc_indirect(
3277	xfs_ifork_t	*ifp,		/* inode fork pointer */
3278	int		new_size)	/* new indirection array size */
3279{
3280	int		nlists;		/* number of irec's (ex lists) */
3281	int		size;		/* current indirection array size */
3282
3283	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3284	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3285	size = nlists * sizeof(xfs_ext_irec_t);
3286	ASSERT(ifp->if_real_bytes);
3287	ASSERT((new_size >= 0) && (new_size != size));
3288	if (new_size == 0) {
3289		xfs_iext_destroy(ifp);
3290	} else {
3291		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3292			kmem_realloc(ifp->if_u1.if_ext_irec,
3293				new_size, size, KM_NOFS);
3294	}
3295}
3296
3297/*
3298 * Switch from indirection array to linear (direct) extent allocations.
3299 */
3300STATIC void
3301xfs_iext_indirect_to_direct(
3302	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3303{
3304	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3305	xfs_extnum_t	nextents;	/* number of extents in file */
3306	int		size;		/* size of file extents */
3307
3308	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3309	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3310	ASSERT(nextents <= XFS_LINEAR_EXTS);
3311	size = nextents * sizeof(xfs_bmbt_rec_t);
3312
3313	xfs_iext_irec_compact_pages(ifp);
3314	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
 
 
 
 
 
 
 
 
 
3315
3316	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3317	kmem_free(ifp->if_u1.if_ext_irec);
3318	ifp->if_flags &= ~XFS_IFEXTIREC;
3319	ifp->if_u1.if_extents = ep;
3320	ifp->if_bytes = size;
3321	if (nextents < XFS_LINEAR_EXTS) {
3322		xfs_iext_realloc_direct(ifp, size);
 
 
 
 
 
 
 
 
3323	}
 
 
3324}
3325
3326/*
3327 * Free incore file extents.
 
3328 */
3329void
3330xfs_iext_destroy(
3331	xfs_ifork_t	*ifp)		/* inode fork pointer */
3332{
3333	if (ifp->if_flags & XFS_IFEXTIREC) {
3334		int	erp_idx;
3335		int	nlists;
3336
3337		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3338		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3339			xfs_iext_irec_remove(ifp, erp_idx);
3340		}
3341		ifp->if_flags &= ~XFS_IFEXTIREC;
3342	} else if (ifp->if_real_bytes) {
3343		kmem_free(ifp->if_u1.if_extents);
3344	} else if (ifp->if_bytes) {
3345		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3346			sizeof(xfs_bmbt_rec_t));
3347	}
3348	ifp->if_u1.if_extents = NULL;
3349	ifp->if_real_bytes = 0;
3350	ifp->if_bytes = 0;
3351}
3352
3353/*
3354 * Return a pointer to the extent record for file system block bno.
3355 */
3356xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3357xfs_iext_bno_to_ext(
3358	xfs_ifork_t	*ifp,		/* inode fork pointer */
3359	xfs_fileoff_t	bno,		/* block number to search for */
3360	xfs_extnum_t	*idxp)		/* index of target extent */
3361{
3362	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3363	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3364	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3365	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3366	int		high;		/* upper boundary in search */
3367	xfs_extnum_t	idx = 0;	/* index of target extent */
3368	int		low;		/* lower boundary in search */
3369	xfs_extnum_t	nextents;	/* number of file extents */
3370	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3371
3372	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3373	if (nextents == 0) {
3374		*idxp = 0;
3375		return NULL;
3376	}
3377	low = 0;
3378	if (ifp->if_flags & XFS_IFEXTIREC) {
3379		/* Find target extent list */
3380		int	erp_idx = 0;
3381		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3382		base = erp->er_extbuf;
3383		high = erp->er_extcount - 1;
3384	} else {
3385		base = ifp->if_u1.if_extents;
3386		high = nextents - 1;
3387	}
3388	/* Binary search extent records */
3389	while (low <= high) {
3390		idx = (low + high) >> 1;
3391		ep = base + idx;
3392		startoff = xfs_bmbt_get_startoff(ep);
3393		blockcount = xfs_bmbt_get_blockcount(ep);
3394		if (bno < startoff) {
3395			high = idx - 1;
3396		} else if (bno >= startoff + blockcount) {
3397			low = idx + 1;
3398		} else {
3399			/* Convert back to file-based extent index */
3400			if (ifp->if_flags & XFS_IFEXTIREC) {
3401				idx += erp->er_extoff;
3402			}
3403			*idxp = idx;
3404			return ep;
3405		}
3406	}
3407	/* Convert back to file-based extent index */
3408	if (ifp->if_flags & XFS_IFEXTIREC) {
3409		idx += erp->er_extoff;
3410	}
3411	if (bno >= startoff + blockcount) {
3412		if (++idx == nextents) {
3413			ep = NULL;
3414		} else {
3415			ep = xfs_iext_get_ext(ifp, idx);
3416		}
3417	}
3418	*idxp = idx;
3419	return ep;
3420}
3421
3422/*
3423 * Return a pointer to the indirection array entry containing the
3424 * extent record for filesystem block bno. Store the index of the
3425 * target irec in *erp_idxp.
3426 */
3427xfs_ext_irec_t *			/* pointer to found extent record */
3428xfs_iext_bno_to_irec(
3429	xfs_ifork_t	*ifp,		/* inode fork pointer */
3430	xfs_fileoff_t	bno,		/* block number to search for */
3431	int		*erp_idxp)	/* irec index of target ext list */
3432{
3433	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3434	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3435	int		erp_idx;	/* indirection array index */
3436	int		nlists;		/* number of extent irec's (lists) */
3437	int		high;		/* binary search upper limit */
3438	int		low;		/* binary search lower limit */
3439
3440	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3441	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3442	erp_idx = 0;
3443	low = 0;
3444	high = nlists - 1;
3445	while (low <= high) {
3446		erp_idx = (low + high) >> 1;
3447		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3448		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3449		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3450			high = erp_idx - 1;
3451		} else if (erp_next && bno >=
3452			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3453			low = erp_idx + 1;
3454		} else {
3455			break;
3456		}
3457	}
3458	*erp_idxp = erp_idx;
3459	return erp;
3460}
3461
3462/*
3463 * Return a pointer to the indirection array entry containing the
3464 * extent record at file extent index *idxp. Store the index of the
3465 * target irec in *erp_idxp and store the page index of the target
3466 * extent record in *idxp.
3467 */
3468xfs_ext_irec_t *
3469xfs_iext_idx_to_irec(
3470	xfs_ifork_t	*ifp,		/* inode fork pointer */
3471	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3472	int		*erp_idxp,	/* pointer to target irec */
3473	int		realloc)	/* new bytes were just added */
3474{
3475	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3476	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3477	int		erp_idx;	/* indirection array index */
3478	int		nlists;		/* number of irec's (ex lists) */
3479	int		high;		/* binary search upper limit */
3480	int		low;		/* binary search lower limit */
3481	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3482
3483	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3484	ASSERT(page_idx >= 0);
3485	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3486	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3487
3488	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3489	erp_idx = 0;
3490	low = 0;
3491	high = nlists - 1;
3492
3493	/* Binary search extent irec's */
3494	while (low <= high) {
3495		erp_idx = (low + high) >> 1;
3496		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3497		prev = erp_idx > 0 ? erp - 1 : NULL;
3498		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3499		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3500			high = erp_idx - 1;
3501		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3502			   (page_idx == erp->er_extoff + erp->er_extcount &&
3503			    !realloc)) {
3504			low = erp_idx + 1;
3505		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3506			   erp->er_extcount == XFS_LINEAR_EXTS) {
3507			ASSERT(realloc);
3508			page_idx = 0;
3509			erp_idx++;
3510			erp = erp_idx < nlists ? erp + 1 : NULL;
3511			break;
3512		} else {
3513			page_idx -= erp->er_extoff;
3514			break;
3515		}
3516	}
3517	*idxp = page_idx;
3518	*erp_idxp = erp_idx;
3519	return(erp);
3520}
3521
3522/*
3523 * Allocate and initialize an indirection array once the space needed
3524 * for incore extents increases above XFS_IEXT_BUFSZ.
3525 */
3526void
3527xfs_iext_irec_init(
3528	xfs_ifork_t	*ifp)		/* inode fork pointer */
 
3529{
3530	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3531	xfs_extnum_t	nextents;	/* number of extents in file */
3532
3533	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3534	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3535	ASSERT(nextents <= XFS_LINEAR_EXTS);
3536
3537	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3538
3539	if (nextents == 0) {
3540		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3541	} else if (!ifp->if_real_bytes) {
3542		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3543	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3544		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3545	}
3546	erp->er_extbuf = ifp->if_u1.if_extents;
3547	erp->er_extcount = nextents;
3548	erp->er_extoff = 0;
3549
3550	ifp->if_flags |= XFS_IFEXTIREC;
3551	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3552	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3553	ifp->if_u1.if_ext_irec = erp;
3554
3555	return;
 
 
3556}
3557
3558/*
3559 * Allocate and initialize a new entry in the indirection array.
 
 
3560 */
3561xfs_ext_irec_t *
3562xfs_iext_irec_new(
3563	xfs_ifork_t	*ifp,		/* inode fork pointer */
3564	int		erp_idx)	/* index for new irec */
3565{
3566	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3567	int		i;		/* loop counter */
3568	int		nlists;		/* number of irec's (ex lists) */
 
 
 
 
 
 
 
3569
3570	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3571	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 
 
 
 
3572
3573	/* Resize indirection array */
3574	xfs_iext_realloc_indirect(ifp, ++nlists *
3575				  sizeof(xfs_ext_irec_t));
3576	/*
3577	 * Move records down in the array so the
3578	 * new page can use erp_idx.
 
3579	 */
3580	erp = ifp->if_u1.if_ext_irec;
3581	for (i = nlists - 1; i > erp_idx; i--) {
3582		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3583	}
3584	ASSERT(i == erp_idx);
3585
3586	/* Initialize new extent record */
3587	erp = ifp->if_u1.if_ext_irec;
3588	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3589	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3590	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3591	erp[erp_idx].er_extcount = 0;
3592	erp[erp_idx].er_extoff = erp_idx > 0 ?
3593		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3594	return (&erp[erp_idx]);
3595}
3596
3597/*
3598 * Remove a record from the indirection array.
3599 */
3600void
3601xfs_iext_irec_remove(
3602	xfs_ifork_t	*ifp,		/* inode fork pointer */
3603	int		erp_idx)	/* irec index to remove */
3604{
3605	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3606	int		i;		/* loop counter */
3607	int		nlists;		/* number of irec's (ex lists) */
3608
3609	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3610	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3611	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3612	if (erp->er_extbuf) {
3613		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3614			-erp->er_extcount);
3615		kmem_free(erp->er_extbuf);
3616	}
3617	/* Compact extent records */
3618	erp = ifp->if_u1.if_ext_irec;
3619	for (i = erp_idx; i < nlists - 1; i++) {
3620		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3621	}
3622	/*
3623	 * Manually free the last extent record from the indirection
3624	 * array.  A call to xfs_iext_realloc_indirect() with a size
3625	 * of zero would result in a call to xfs_iext_destroy() which
3626	 * would in turn call this function again, creating a nasty
3627	 * infinite loop.
3628	 */
3629	if (--nlists) {
3630		xfs_iext_realloc_indirect(ifp,
3631			nlists * sizeof(xfs_ext_irec_t));
3632	} else {
3633		kmem_free(ifp->if_u1.if_ext_irec);
 
 
 
 
 
3634	}
3635	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
 
 
 
 
 
 
3636}
3637
3638/*
3639 * This is called to clean up large amounts of unused memory allocated
3640 * by the indirection array.  Before compacting anything though, verify
3641 * that the indirection array is still needed and switch back to the
3642 * linear extent list (or even the inline buffer) if possible.  The
3643 * compaction policy is as follows:
3644 *
3645 *    Full Compaction: Extents fit into a single page (or inline buffer)
3646 * Partial Compaction: Extents occupy less than 50% of allocated space
3647 *      No Compaction: Extents occupy at least 50% of allocated space
3648 */
3649void
3650xfs_iext_irec_compact(
3651	xfs_ifork_t	*ifp)		/* inode fork pointer */
3652{
3653	xfs_extnum_t	nextents;	/* number of extents in file */
3654	int		nlists;		/* number of irec's (ex lists) */
3655
3656	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3657	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3658	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3659
3660	if (nextents == 0) {
3661		xfs_iext_destroy(ifp);
3662	} else if (nextents <= XFS_INLINE_EXTS) {
3663		xfs_iext_indirect_to_direct(ifp);
3664		xfs_iext_direct_to_inline(ifp, nextents);
3665	} else if (nextents <= XFS_LINEAR_EXTS) {
3666		xfs_iext_indirect_to_direct(ifp);
3667	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3668		xfs_iext_irec_compact_pages(ifp);
3669	}
3670}
3671
3672/*
3673 * Combine extents from neighboring extent pages.
3674 */
3675void
3676xfs_iext_irec_compact_pages(
3677	xfs_ifork_t	*ifp)		/* inode fork pointer */
3678{
3679	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3680	int		erp_idx = 0;	/* indirection array index */
3681	int		nlists;		/* number of irec's (ex lists) */
3682
3683	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3684	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3685	while (erp_idx < nlists - 1) {
3686		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3687		erp_next = erp + 1;
3688		if (erp_next->er_extcount <=
3689		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3690			memcpy(&erp->er_extbuf[erp->er_extcount],
3691				erp_next->er_extbuf, erp_next->er_extcount *
3692				sizeof(xfs_bmbt_rec_t));
3693			erp->er_extcount += erp_next->er_extcount;
3694			/*
3695			 * Free page before removing extent record
3696			 * so er_extoffs don't get modified in
3697			 * xfs_iext_irec_remove.
3698			 */
3699			kmem_free(erp_next->er_extbuf);
3700			erp_next->er_extbuf = NULL;
3701			xfs_iext_irec_remove(ifp, erp_idx + 1);
3702			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3703		} else {
3704			erp_idx++;
3705		}
 
 
 
 
 
3706	}
3707}
3708
3709/*
3710 * This is called to update the er_extoff field in the indirection
3711 * array when extents have been added or removed from one of the
3712 * extent lists. erp_idx contains the irec index to begin updating
3713 * at and ext_diff contains the number of extents that were added
3714 * or removed.
3715 */
3716void
3717xfs_iext_irec_update_extoffs(
3718	xfs_ifork_t	*ifp,		/* inode fork pointer */
3719	int		erp_idx,	/* irec index to update */
3720	int		ext_diff)	/* number of new extents */
3721{
3722	int		i;		/* loop counter */
3723	int		nlists;		/* number of irec's (ex lists */
3724
3725	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3726	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3727	for (i = erp_idx; i < nlists; i++) {
3728		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3729	}
3730}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
 
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
 
 
 
 
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_iunlink_item.h"
 
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
 
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
 
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38#include "xfs_ag.h"
  39#include "xfs_log_priv.h"
  40#include "xfs_health.h"
  41
  42struct kmem_cache *xfs_inode_cache;
 
 
 
 
 
 
 
  43
  44STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  45STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  46	struct xfs_inode *);
 
  47
  48/*
  49 * helper function to extract extent size hint from inode
  50 */
  51xfs_extlen_t
  52xfs_get_extsz_hint(
  53	struct xfs_inode	*ip)
  54{
  55	/*
  56	 * No point in aligning allocations if we need to COW to actually
  57	 * write to them.
  58	 */
  59	if (xfs_is_always_cow_inode(ip))
  60		return 0;
  61	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  62		return ip->i_extsize;
  63	if (XFS_IS_REALTIME_INODE(ip))
  64		return ip->i_mount->m_sb.sb_rextsize;
  65	return 0;
  66}
  67
 
  68/*
  69 * Helper function to extract CoW extent size hint from inode.
  70 * Between the extent size hint and the CoW extent size hint, we
  71 * return the greater of the two.  If the value is zero (automatic),
  72 * use the default size.
  73 */
  74xfs_extlen_t
  75xfs_get_cowextsz_hint(
  76	struct xfs_inode	*ip)
 
 
  77{
  78	xfs_extlen_t		a, b;
 
 
  79
  80	a = 0;
  81	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  82		a = ip->i_cowextsize;
  83	b = xfs_get_extsz_hint(ip);
  84
  85	a = max(a, b);
  86	if (a == 0)
  87		return XFS_DEFAULT_COWEXTSZ_HINT;
  88	return a;
  89}
 
 
 
  90
  91/*
  92 * These two are wrapper routines around the xfs_ilock() routine used to
  93 * centralize some grungy code.  They are used in places that wish to lock the
  94 * inode solely for reading the extents.  The reason these places can't just
  95 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  96 * bringing in of the extents from disk for a file in b-tree format.  If the
  97 * inode is in b-tree format, then we need to lock the inode exclusively until
  98 * the extents are read in.  Locking it exclusively all the time would limit
  99 * our parallelism unnecessarily, though.  What we do instead is check to see
 100 * if the extents have been read in yet, and only lock the inode exclusively
 101 * if they have not.
 102 *
 103 * The functions return a value which should be given to the corresponding
 104 * xfs_iunlock() call.
 105 */
 106uint
 107xfs_ilock_data_map_shared(
 108	struct xfs_inode	*ip)
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 111
 112	if (xfs_need_iread_extents(&ip->i_df))
 113		lock_mode = XFS_ILOCK_EXCL;
 114	xfs_ilock(ip, lock_mode);
 115	return lock_mode;
 116}
 117
 118uint
 119xfs_ilock_attr_map_shared(
 120	struct xfs_inode	*ip)
 121{
 122	uint			lock_mode = XFS_ILOCK_SHARED;
 123
 124	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
 125		lock_mode = XFS_ILOCK_EXCL;
 126	xfs_ilock(ip, lock_mode);
 127	return lock_mode;
 128}
 
 129
 130/*
 131 * You can't set both SHARED and EXCL for the same lock,
 132 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
 133 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
 134 * to set in lock_flags.
 135 */
 136static inline void
 137xfs_lock_flags_assert(
 138	uint		lock_flags)
 139{
 140	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 141		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 142	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 143		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 144	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 145		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 146	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 147	ASSERT(lock_flags != 0);
 148}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149
 150/*
 151 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 152 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 153 * various combinations of the locks to be obtained.
 154 *
 155 * The 3 locks should always be ordered so that the IO lock is obtained first,
 156 * the mmap lock second and the ilock last in order to prevent deadlock.
 157 *
 158 * Basic locking order:
 159 *
 160 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 161 *
 162 * mmap_lock locking order:
 163 *
 164 * i_rwsem -> page lock -> mmap_lock
 165 * mmap_lock -> invalidate_lock -> page_lock
 166 *
 167 * The difference in mmap_lock locking order mean that we cannot hold the
 168 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 169 * can fault in pages during copy in/out (for buffered IO) or require the
 170 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 171 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 172 * fault because page faults already hold the mmap_lock.
 173 *
 174 * Hence to serialise fully against both syscall and mmap based IO, we need to
 175 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 176 * both taken in places where we need to invalidate the page cache in a race
 177 * free manner (e.g. truncate, hole punch and other extent manipulation
 178 * functions).
 179 */
 180void
 181xfs_ilock(
 182	xfs_inode_t		*ip,
 183	uint			lock_flags)
 184{
 185	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 186
 187	xfs_lock_flags_assert(lock_flags);
 188
 189	if (lock_flags & XFS_IOLOCK_EXCL) {
 190		down_write_nested(&VFS_I(ip)->i_rwsem,
 191				  XFS_IOLOCK_DEP(lock_flags));
 192	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 193		down_read_nested(&VFS_I(ip)->i_rwsem,
 194				 XFS_IOLOCK_DEP(lock_flags));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195	}
 196
 197	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 198		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 199				  XFS_MMAPLOCK_DEP(lock_flags));
 200	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 201		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 202				 XFS_MMAPLOCK_DEP(lock_flags));
 203	}
 204
 205	if (lock_flags & XFS_ILOCK_EXCL)
 206		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 207	else if (lock_flags & XFS_ILOCK_SHARED)
 208		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 209}
 210
 211/*
 212 * This is just like xfs_ilock(), except that the caller
 213 * is guaranteed not to sleep.  It returns 1 if it gets
 214 * the requested locks and 0 otherwise.  If the IO lock is
 215 * obtained but the inode lock cannot be, then the IO lock
 216 * is dropped before returning.
 
 
 
 217 *
 218 * ip -- the inode being locked
 219 * lock_flags -- this parameter indicates the inode's locks to be
 220 *       to be locked.  See the comment for xfs_ilock() for a list
 221 *	 of valid values.
 222 */
 223int
 224xfs_ilock_nowait(
 225	xfs_inode_t		*ip,
 226	uint			lock_flags)
 227{
 228	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 
 
 
 
 
 
 
 229
 230	xfs_lock_flags_assert(lock_flags);
 
 
 
 231
 232	if (lock_flags & XFS_IOLOCK_EXCL) {
 233		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 234			goto out;
 235	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 236		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 237			goto out;
 238	}
 239
 240	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 241		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 242			goto out_undo_iolock;
 243	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 244		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 245			goto out_undo_iolock;
 246	}
 247
 248	if (lock_flags & XFS_ILOCK_EXCL) {
 249		if (!down_write_trylock(&ip->i_lock))
 250			goto out_undo_mmaplock;
 251	} else if (lock_flags & XFS_ILOCK_SHARED) {
 252		if (!down_read_trylock(&ip->i_lock))
 253			goto out_undo_mmaplock;
 254	}
 255	return 1;
 256
 257out_undo_mmaplock:
 258	if (lock_flags & XFS_MMAPLOCK_EXCL)
 259		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 260	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 261		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 262out_undo_iolock:
 263	if (lock_flags & XFS_IOLOCK_EXCL)
 264		up_write(&VFS_I(ip)->i_rwsem);
 265	else if (lock_flags & XFS_IOLOCK_SHARED)
 266		up_read(&VFS_I(ip)->i_rwsem);
 267out:
 268	return 0;
 269}
 270
 
 271/*
 272 * xfs_iunlock() is used to drop the inode locks acquired with
 273 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 274 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 275 * that we know which locks to drop.
 276 *
 277 * ip -- the inode being unlocked
 278 * lock_flags -- this parameter indicates the inode's locks to be
 279 *       to be unlocked.  See the comment for xfs_ilock() for a list
 280 *	 of valid values for this parameter.
 281 *
 
 
 
 
 282 */
 283void
 284xfs_iunlock(
 285	xfs_inode_t		*ip,
 286	uint			lock_flags)
 
 
 
 
 287{
 288	xfs_lock_flags_assert(lock_flags);
 
 289
 290	if (lock_flags & XFS_IOLOCK_EXCL)
 291		up_write(&VFS_I(ip)->i_rwsem);
 292	else if (lock_flags & XFS_IOLOCK_SHARED)
 293		up_read(&VFS_I(ip)->i_rwsem);
 294
 295	if (lock_flags & XFS_MMAPLOCK_EXCL)
 296		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 297	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 298		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 299
 300	if (lock_flags & XFS_ILOCK_EXCL)
 301		up_write(&ip->i_lock);
 302	else if (lock_flags & XFS_ILOCK_SHARED)
 303		up_read(&ip->i_lock);
 
 
 304
 305	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 
 
 306}
 307
 308/*
 309 * give up write locks.  the i/o lock cannot be held nested
 310 * if it is being demoted.
 
 
 
 
 
 311 */
 312void
 313xfs_ilock_demote(
 314	xfs_inode_t		*ip,
 315	uint			lock_flags)
 316{
 317	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 318	ASSERT((lock_flags &
 319		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 
 320
 321	if (lock_flags & XFS_ILOCK_EXCL)
 322		downgrade_write(&ip->i_lock);
 323	if (lock_flags & XFS_MMAPLOCK_EXCL)
 324		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 325	if (lock_flags & XFS_IOLOCK_EXCL)
 326		downgrade_write(&VFS_I(ip)->i_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 328	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 329}
 
 
 
 
 
 
 
 
 
 
 
 330
 331void
 332xfs_assert_ilocked(
 333	struct xfs_inode	*ip,
 334	uint			lock_flags)
 335{
 336	/*
 337	 * Sometimes we assert the ILOCK is held exclusively, but we're in
 338	 * a workqueue, so lockdep doesn't know we're the owner.
 339	 */
 340	if (lock_flags & XFS_ILOCK_SHARED)
 341		rwsem_assert_held(&ip->i_lock);
 342	else if (lock_flags & XFS_ILOCK_EXCL)
 343		rwsem_assert_held_write_nolockdep(&ip->i_lock);
 
 
 
 
 344
 345	if (lock_flags & XFS_MMAPLOCK_SHARED)
 346		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
 347	else if (lock_flags & XFS_MMAPLOCK_EXCL)
 348		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 
 
 
 
 
 
 
 349
 350	if (lock_flags & XFS_IOLOCK_SHARED)
 351		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
 352	else if (lock_flags & XFS_IOLOCK_EXCL)
 353		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
 354}
 
 
 
 
 
 
 
 
 
 
 355
 356/*
 357 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 358 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 359 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 360 * errors and warnings.
 361 */
 362#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 363static bool
 364xfs_lockdep_subclass_ok(
 365	int subclass)
 366{
 367	return subclass < MAX_LOCKDEP_SUBCLASSES;
 368}
 369#else
 370#define xfs_lockdep_subclass_ok(subclass)	(true)
 371#endif
 372
 373/*
 374 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 375 * value. This can be called for any type of inode lock combination, including
 376 * parent locking. Care must be taken to ensure we don't overrun the subclass
 377 * storage fields in the class mask we build.
 378 */
 379static inline uint
 380xfs_lock_inumorder(
 381	uint	lock_mode,
 382	uint	subclass)
 383{
 384	uint	class = 0;
 385
 386	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 387			      XFS_ILOCK_RTSUM)));
 388	ASSERT(xfs_lockdep_subclass_ok(subclass));
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 391		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 392		class += subclass << XFS_IOLOCK_SHIFT;
 
 
 
 
 
 
 
 
 393	}
 394
 395	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 396		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 397		class += subclass << XFS_MMAPLOCK_SHIFT;
 398	}
 
 
 399
 400	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 401		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 402		class += subclass << XFS_ILOCK_SHIFT;
 403	}
 404
 405	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406}
 407
 408/*
 409 * The following routine will lock n inodes in exclusive mode.  We assume the
 410 * caller calls us with the inodes in i_ino order.
 411 *
 412 * We need to detect deadlock where an inode that we lock is in the AIL and we
 413 * start waiting for another inode that is locked by a thread in a long running
 414 * transaction (such as truncate). This can result in deadlock since the long
 415 * running trans might need to wait for the inode we just locked in order to
 416 * push the tail and free space in the log.
 417 *
 418 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 419 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 420 * lock more than one at a time, lockdep will report false positives saying we
 421 * have violated locking orders.
 422 */
 423static void
 424xfs_lock_inodes(
 425	struct xfs_inode	**ips,
 426	int			inodes,
 427	uint			lock_mode)
 428{
 429	int			attempts = 0;
 430	uint			i;
 431	int			j;
 432	bool			try_lock;
 433	struct xfs_log_item	*lp;
 434
 435	/*
 436	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 437	 * support an arbitrary depth of locking here, but absolute limits on
 438	 * inodes depend on the type of locking and the limits placed by
 439	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 440	 * the asserts.
 441	 */
 442	ASSERT(ips && inodes >= 2 && inodes <= 5);
 443	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 444			    XFS_ILOCK_EXCL));
 445	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 446			      XFS_ILOCK_SHARED)));
 447	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 448		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 449	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 450		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 451
 452	if (lock_mode & XFS_IOLOCK_EXCL) {
 453		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 454	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 455		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 456
 457again:
 458	try_lock = false;
 459	i = 0;
 460	for (; i < inodes; i++) {
 461		ASSERT(ips[i]);
 462
 463		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 464			continue;
 465
 466		/*
 467		 * If try_lock is not set yet, make sure all locked inodes are
 468		 * not in the AIL.  If any are, set try_lock to be used later.
 469		 */
 470		if (!try_lock) {
 471			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 472				lp = &ips[j]->i_itemp->ili_item;
 473				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 474					try_lock = true;
 475			}
 476		}
 477
 478		/*
 479		 * If any of the previous locks we have locked is in the AIL,
 480		 * we must TRY to get the second and subsequent locks. If
 481		 * we can't get any, we must release all we have
 482		 * and try again.
 483		 */
 484		if (!try_lock) {
 485			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 486			continue;
 487		}
 488
 489		/* try_lock means we have an inode locked that is in the AIL. */
 490		ASSERT(i != 0);
 491		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 492			continue;
 493
 494		/*
 495		 * Unlock all previous guys and try again.  xfs_iunlock will try
 496		 * to push the tail if the inode is in the AIL.
 497		 */
 498		attempts++;
 499		for (j = i - 1; j >= 0; j--) {
 500			/*
 501			 * Check to see if we've already unlocked this one.  Not
 502			 * the first one going back, and the inode ptr is the
 503			 * same.
 504			 */
 505			if (j != (i - 1) && ips[j] == ips[j + 1])
 506				continue;
 507
 508			xfs_iunlock(ips[j], lock_mode);
 509		}
 510
 511		if ((attempts % 5) == 0) {
 512			delay(1); /* Don't just spin the CPU */
 513		}
 514		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 515	}
 
 
 516}
 517
 518/*
 519 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 520 * mmaplock must be double-locked separately since we use i_rwsem and
 521 * invalidate_lock for that. We now support taking one lock EXCL and the
 522 * other SHARED.
 
 
 523 */
 524void
 525xfs_lock_two_inodes(
 526	struct xfs_inode	*ip0,
 527	uint			ip0_mode,
 528	struct xfs_inode	*ip1,
 529	uint			ip1_mode)
 530{
 531	int			attempts = 0;
 532	struct xfs_log_item	*lp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533
 534	ASSERT(hweight32(ip0_mode) == 1);
 535	ASSERT(hweight32(ip1_mode) == 1);
 536	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 537	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 538	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 539	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 540	ASSERT(ip0->i_ino != ip1->i_ino);
 541
 542	if (ip0->i_ino > ip1->i_ino) {
 543		swap(ip0, ip1);
 544		swap(ip0_mode, ip1_mode);
 545	}
 546
 547 again:
 548	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 549
 550	/*
 551	 * If the first lock we have locked is in the AIL, we must TRY to get
 552	 * the second lock. If we can't get it, we must release the first one
 553	 * and try again.
 554	 */
 555	lp = &ip0->i_itemp->ili_item;
 556	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 557		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 558			xfs_iunlock(ip0, ip0_mode);
 559			if ((++attempts % 5) == 0)
 560				delay(1); /* Don't just spin the CPU */
 561			goto again;
 562		}
 563	} else {
 564		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 565	}
 
 
 
 
 
 
 
 
 
 
 566}
 567
 568uint
 569xfs_ip2xflags(
 570	struct xfs_inode	*ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571{
 572	uint			flags = 0;
 573
 574	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 575		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 576			flags |= FS_XFLAG_REALTIME;
 577		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 578			flags |= FS_XFLAG_PREALLOC;
 579		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 580			flags |= FS_XFLAG_IMMUTABLE;
 581		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 582			flags |= FS_XFLAG_APPEND;
 583		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 584			flags |= FS_XFLAG_SYNC;
 585		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 586			flags |= FS_XFLAG_NOATIME;
 587		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 588			flags |= FS_XFLAG_NODUMP;
 589		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 590			flags |= FS_XFLAG_RTINHERIT;
 591		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 592			flags |= FS_XFLAG_PROJINHERIT;
 593		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 594			flags |= FS_XFLAG_NOSYMLINKS;
 595		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 596			flags |= FS_XFLAG_EXTSIZE;
 597		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 598			flags |= FS_XFLAG_EXTSZINHERIT;
 599		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 600			flags |= FS_XFLAG_NODEFRAG;
 601		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 602			flags |= FS_XFLAG_FILESTREAM;
 603	}
 604
 605	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 606		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 607			flags |= FS_XFLAG_DAX;
 608		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 609			flags |= FS_XFLAG_COWEXTSIZE;
 610	}
 611
 612	if (xfs_inode_has_attr_fork(ip))
 613		flags |= FS_XFLAG_HASATTR;
 614	return flags;
 615}
 616
 617/*
 618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 619 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 620 * ci_name->name will point to a the actual name (caller must free) or
 621 * will be set to NULL if an exact match is found.
 622 */
 623int
 624xfs_lookup(
 625	struct xfs_inode	*dp,
 626	const struct xfs_name	*name,
 627	struct xfs_inode	**ipp,
 628	struct xfs_name		*ci_name)
 629{
 630	xfs_ino_t		inum;
 631	int			error;
 632
 633	trace_xfs_lookup(dp, name);
 634
 635	if (xfs_is_shutdown(dp->i_mount))
 636		return -EIO;
 637	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 638		return -EIO;
 639
 640	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 641	if (error)
 642		goto out_unlock;
 643
 644	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 645	if (error)
 646		goto out_free_name;
 647
 648	return 0;
 649
 650out_free_name:
 651	if (ci_name)
 652		kfree(ci_name->name);
 653out_unlock:
 654	*ipp = NULL;
 655	return error;
 656}
 657
 658/* Propagate di_flags from a parent inode to a child inode. */
 659static void
 660xfs_inode_inherit_flags(
 661	struct xfs_inode	*ip,
 662	const struct xfs_inode	*pip)
 663{
 664	unsigned int		di_flags = 0;
 665	xfs_failaddr_t		failaddr;
 666	umode_t			mode = VFS_I(ip)->i_mode;
 667
 668	if (S_ISDIR(mode)) {
 669		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 670			di_flags |= XFS_DIFLAG_RTINHERIT;
 671		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 672			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 673			ip->i_extsize = pip->i_extsize;
 674		}
 675		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 676			di_flags |= XFS_DIFLAG_PROJINHERIT;
 677	} else if (S_ISREG(mode)) {
 678		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 679		    xfs_has_realtime(ip->i_mount))
 680			di_flags |= XFS_DIFLAG_REALTIME;
 681		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 682			di_flags |= XFS_DIFLAG_EXTSIZE;
 683			ip->i_extsize = pip->i_extsize;
 684		}
 685	}
 686	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 687	    xfs_inherit_noatime)
 688		di_flags |= XFS_DIFLAG_NOATIME;
 689	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 690	    xfs_inherit_nodump)
 691		di_flags |= XFS_DIFLAG_NODUMP;
 692	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 693	    xfs_inherit_sync)
 694		di_flags |= XFS_DIFLAG_SYNC;
 695	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 696	    xfs_inherit_nosymlinks)
 697		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 698	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 699	    xfs_inherit_nodefrag)
 700		di_flags |= XFS_DIFLAG_NODEFRAG;
 701	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 702		di_flags |= XFS_DIFLAG_FILESTREAM;
 703
 704	ip->i_diflags |= di_flags;
 705
 706	/*
 707	 * Inode verifiers on older kernels only check that the extent size
 708	 * hint is an integer multiple of the rt extent size on realtime files.
 709	 * They did not check the hint alignment on a directory with both
 710	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 711	 * propagated from a directory into a new realtime file, new file
 712	 * allocations will fail due to math errors in the rt allocator and/or
 713	 * trip the verifiers.  Validate the hint settings in the new file so
 714	 * that we don't let broken hints propagate.
 715	 */
 716	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 717			VFS_I(ip)->i_mode, ip->i_diflags);
 718	if (failaddr) {
 719		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 720				   XFS_DIFLAG_EXTSZINHERIT);
 721		ip->i_extsize = 0;
 722	}
 723}
 724
 725/* Propagate di_flags2 from a parent inode to a child inode. */
 726static void
 727xfs_inode_inherit_flags2(
 728	struct xfs_inode	*ip,
 729	const struct xfs_inode	*pip)
 730{
 731	xfs_failaddr_t		failaddr;
 732
 733	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 734		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 735		ip->i_cowextsize = pip->i_cowextsize;
 736	}
 737	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 738		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 739
 740	/* Don't let invalid cowextsize hints propagate. */
 741	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 742			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 743	if (failaddr) {
 744		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 745		ip->i_cowextsize = 0;
 746	}
 747}
 748
 749/*
 750 * Initialise a newly allocated inode and return the in-core inode to the
 751 * caller locked exclusively.
 752 */
 753int
 754xfs_init_new_inode(
 755	struct mnt_idmap	*idmap,
 756	struct xfs_trans	*tp,
 757	struct xfs_inode	*pip,
 758	xfs_ino_t		ino,
 759	umode_t			mode,
 760	xfs_nlink_t		nlink,
 761	dev_t			rdev,
 762	prid_t			prid,
 763	bool			init_xattrs,
 764	struct xfs_inode	**ipp)
 765{
 766	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 767	struct xfs_mount	*mp = tp->t_mountp;
 768	struct xfs_inode	*ip;
 769	unsigned int		flags;
 770	int			error;
 771	struct timespec64	tv;
 772	struct inode		*inode;
 773
 774	/*
 775	 * Protect against obviously corrupt allocation btree records. Later
 776	 * xfs_iget checks will catch re-allocation of other active in-memory
 777	 * and on-disk inodes. If we don't catch reallocating the parent inode
 778	 * here we will deadlock in xfs_iget() so we have to do these checks
 779	 * first.
 780	 */
 781	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 782		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 783		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
 784				XFS_SICK_AG_INOBT);
 785		return -EFSCORRUPTED;
 786	}
 787
 788	/*
 789	 * Get the in-core inode with the lock held exclusively to prevent
 790	 * others from looking at until we're done.
 791	 */
 792	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 793	if (error)
 794		return error;
 
 795
 796	ASSERT(ip != NULL);
 797	inode = VFS_I(ip);
 798	set_nlink(inode, nlink);
 799	inode->i_rdev = rdev;
 800	ip->i_projid = prid;
 801
 802	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
 803		inode_fsuid_set(inode, idmap);
 804		inode->i_gid = dir->i_gid;
 805		inode->i_mode = mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	} else {
 807		inode_init_owner(idmap, inode, dir, mode);
 
 
 
 
 
 
 
 
 
 
 
 808	}
 809
 810	/*
 811	 * If the group ID of the new file does not match the effective group
 812	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 813	 * (and only if the irix_sgid_inherit compatibility variable is set).
 
 
 
 
 
 
 814	 */
 815	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
 816	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
 817		inode->i_mode &= ~S_ISGID;
 818
 819	ip->i_disk_size = 0;
 820	ip->i_df.if_nextents = 0;
 821	ASSERT(ip->i_nblocks == 0);
 822
 823	tv = inode_set_ctime_current(inode);
 824	inode_set_mtime_to_ts(inode, tv);
 825	inode_set_atime_to_ts(inode, tv);
 826
 827	ip->i_extsize = 0;
 828	ip->i_diflags = 0;
 829
 830	if (xfs_has_v3inodes(mp)) {
 831		inode_set_iversion(inode, 1);
 832		ip->i_cowextsize = 0;
 833		ip->i_crtime = tv;
 834	}
 835
 836	flags = XFS_ILOG_CORE;
 837	switch (mode & S_IFMT) {
 838	case S_IFIFO:
 839	case S_IFCHR:
 840	case S_IFBLK:
 841	case S_IFSOCK:
 842		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 843		flags |= XFS_ILOG_DEV;
 844		break;
 845	case S_IFREG:
 846	case S_IFDIR:
 847		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 848			xfs_inode_inherit_flags(ip, pip);
 849		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 850			xfs_inode_inherit_flags2(ip, pip);
 851		fallthrough;
 852	case S_IFLNK:
 853		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 854		ip->i_df.if_bytes = 0;
 855		ip->i_df.if_data = NULL;
 856		break;
 857	default:
 858		ASSERT(0);
 859	}
 860
 861	/*
 862	 * If we need to create attributes immediately after allocating the
 863	 * inode, initialise an empty attribute fork right now. We use the
 864	 * default fork offset for attributes here as we don't know exactly what
 865	 * size or how many attributes we might be adding. We can do this
 866	 * safely here because we know the data fork is completely empty and
 867	 * this saves us from needing to run a separate transaction to set the
 868	 * fork offset in the immediate future.
 869	 */
 870	if (init_xattrs && xfs_has_attr(mp)) {
 871		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 872		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
 873	}
 874
 875	/*
 876	 * Log the new values stuffed into the inode.
 
 
 
 
 
 
 
 
 
 
 877	 */
 878	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 879	xfs_trans_log_inode(tp, ip, flags);
 880
 881	/* now that we have an i_mode we can setup the inode structure */
 882	xfs_setup_inode(ip);
 883
 884	*ipp = ip;
 885	return 0;
 886}
 887
 888/*
 889 * Decrement the link count on an inode & log the change.  If this causes the
 890 * link count to go to zero, move the inode to AGI unlinked list so that it can
 891 * be freed when the last active reference goes away via xfs_inactive().
 892 */
 893static int			/* error */
 894xfs_droplink(
 895	xfs_trans_t *tp,
 896	xfs_inode_t *ip)
 897{
 898	if (VFS_I(ip)->i_nlink == 0) {
 899		xfs_alert(ip->i_mount,
 900			  "%s: Attempt to drop inode (%llu) with nlink zero.",
 901			  __func__, ip->i_ino);
 902		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903	}
 904
 905	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 906
 907	drop_nlink(VFS_I(ip));
 908	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 909
 910	if (VFS_I(ip)->i_nlink)
 911		return 0;
 912
 913	return xfs_iunlink(tp, ip);
 914}
 915
 916/*
 917 * Increment the link count on an inode & log the change.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918 */
 919static void
 920xfs_bumplink(
 921	xfs_trans_t *tp,
 922	xfs_inode_t *ip)
 923{
 924	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 925
 926	inc_nlink(VFS_I(ip));
 927	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 928}
 929
 930#ifdef CONFIG_XFS_LIVE_HOOKS
 931/*
 932 * Use a static key here to reduce the overhead of directory live update hooks.
 933 * If the compiler supports jump labels, the static branch will be replaced by
 934 * a nop sled when there are no hook users.  Online fsck is currently the only
 935 * caller, so this is a reasonable tradeoff.
 936 *
 937 * Note: Patching the kernel code requires taking the cpu hotplug lock.  Other
 938 * parts of the kernel allocate memory with that lock held, which means that
 939 * XFS callers cannot hold any locks that might be used by memory reclaim or
 940 * writeback when calling the static_branch_{inc,dec} functions.
 941 */
 942DEFINE_STATIC_XFS_HOOK_SWITCH(xfs_dir_hooks_switch);
 943
 944void
 945xfs_dir_hook_disable(void)
 946{
 947	xfs_hooks_switch_off(&xfs_dir_hooks_switch);
 948}
 949
 950void
 951xfs_dir_hook_enable(void)
 952{
 953	xfs_hooks_switch_on(&xfs_dir_hooks_switch);
 954}
 955
 956/* Call hooks for a directory update relating to a child dirent update. */
 957inline void
 958xfs_dir_update_hook(
 959	struct xfs_inode		*dp,
 960	struct xfs_inode		*ip,
 961	int				delta,
 962	const struct xfs_name		*name)
 963{
 964	if (xfs_hooks_switched_on(&xfs_dir_hooks_switch)) {
 965		struct xfs_dir_update_params	p = {
 966			.dp		= dp,
 967			.ip		= ip,
 968			.delta		= delta,
 969			.name		= name,
 970		};
 971		struct xfs_mount	*mp = ip->i_mount;
 972
 973		xfs_hooks_call(&mp->m_dir_update_hooks, 0, &p);
 974	}
 975}
 976
 977/* Call the specified function during a directory update. */
 978int
 979xfs_dir_hook_add(
 980	struct xfs_mount	*mp,
 981	struct xfs_dir_hook	*hook)
 982{
 983	return xfs_hooks_add(&mp->m_dir_update_hooks, &hook->dirent_hook);
 984}
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986/* Stop calling the specified function during a directory update. */
 987void
 988xfs_dir_hook_del(
 989	struct xfs_mount	*mp,
 990	struct xfs_dir_hook	*hook)
 991{
 992	xfs_hooks_del(&mp->m_dir_update_hooks, &hook->dirent_hook);
 993}
 994
 995/* Configure directory update hook functions. */
 996void
 997xfs_dir_hook_setup(
 998	struct xfs_dir_hook	*hook,
 999	notifier_fn_t		mod_fn)
1000{
1001	xfs_hook_setup(&hook->dirent_hook, mod_fn);
1002}
1003#endif /* CONFIG_XFS_LIVE_HOOKS */
1004
1005int
1006xfs_create(
1007	struct mnt_idmap	*idmap,
1008	xfs_inode_t		*dp,
1009	struct xfs_name		*name,
1010	umode_t			mode,
1011	dev_t			rdev,
1012	bool			init_xattrs,
1013	xfs_inode_t		**ipp)
1014{
1015	int			is_dir = S_ISDIR(mode);
1016	struct xfs_mount	*mp = dp->i_mount;
1017	struct xfs_inode	*ip = NULL;
1018	struct xfs_trans	*tp = NULL;
1019	int			error;
1020	bool                    unlock_dp_on_error = false;
1021	prid_t			prid;
1022	struct xfs_dquot	*udqp = NULL;
1023	struct xfs_dquot	*gdqp = NULL;
1024	struct xfs_dquot	*pdqp = NULL;
1025	struct xfs_trans_res	*tres;
1026	uint			resblks;
1027	xfs_ino_t		ino;
1028
1029	trace_xfs_create(dp, name);
1030
1031	if (xfs_is_shutdown(mp))
1032		return -EIO;
1033	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1034		return -EIO;
1035
1036	prid = xfs_get_initial_prid(dp);
1037
1038	/*
1039	 * Make sure that we have allocated dquot(s) on disk.
1040	 */
1041	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1042			mapped_fsgid(idmap, &init_user_ns), prid,
1043			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1044			&udqp, &gdqp, &pdqp);
1045	if (error)
1046		return error;
1047
1048	if (is_dir) {
1049		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1050		tres = &M_RES(mp)->tr_mkdir;
1051	} else {
1052		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1053		tres = &M_RES(mp)->tr_create;
1054	}
 
1055
1056	/*
1057	 * Initially assume that the file does not exist and
1058	 * reserve the resources for that case.  If that is not
1059	 * the case we'll drop the one we have and get a more
1060	 * appropriate transaction later.
1061	 */
1062	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1063			&tp);
1064	if (error == -ENOSPC) {
1065		/* flush outstanding delalloc blocks and retry */
1066		xfs_flush_inodes(mp);
1067		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1068				resblks, &tp);
1069	}
1070	if (error)
1071		goto out_release_dquots;
 
1072
1073	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1074	unlock_dp_on_error = true;
 
 
 
 
 
 
1075
1076	/*
1077	 * A newly created regular or special file just has one directory
1078	 * entry pointing to them, but a directory also the "." entry
1079	 * pointing to itself.
 
1080	 */
1081	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1082	if (!error)
1083		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1084				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1085	if (error)
1086		goto out_trans_cancel;
 
 
1087
1088	/*
1089	 * Now we join the directory inode to the transaction.  We do not do it
1090	 * earlier because xfs_dialloc might commit the previous transaction
1091	 * (and release all the locks).  An error from here on will result in
1092	 * the transaction cancel unlocking dp so don't do it explicitly in the
1093	 * error path.
1094	 */
1095	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1096	unlock_dp_on_error = false;
1097
1098	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1099					resblks - XFS_IALLOC_SPACE_RES(mp));
1100	if (error) {
1101		ASSERT(error != -ENOSPC);
1102		goto out_trans_cancel;
1103	}
1104	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1105	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1106
1107	if (is_dir) {
1108		error = xfs_dir_init(tp, ip, dp);
1109		if (error)
1110			goto out_trans_cancel;
1111
1112		xfs_bumplink(tp, dp);
1113	}
1114
1115	/*
1116	 * Create ip with a reference from dp, and add '.' and '..' references
1117	 * if it's a directory.
 
1118	 */
1119	xfs_dir_update_hook(dp, ip, 1, name);
1120
1121	/*
1122	 * If this is a synchronous mount, make sure that the
1123	 * create transaction goes to disk before returning to
1124	 * the user.
1125	 */
1126	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1127		xfs_trans_set_sync(tp);
1128
1129	/*
1130	 * Attach the dquot(s) to the inodes and modify them incore.
1131	 * These ids of the inode couldn't have changed since the new
1132	 * inode has been locked ever since it was created.
1133	 */
1134	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1135
1136	error = xfs_trans_commit(tp);
1137	if (error)
1138		goto out_release_inode;
1139
1140	xfs_qm_dqrele(udqp);
1141	xfs_qm_dqrele(gdqp);
1142	xfs_qm_dqrele(pdqp);
1143
1144	*ipp = ip;
1145	return 0;
1146
1147 out_trans_cancel:
1148	xfs_trans_cancel(tp);
1149 out_release_inode:
1150	/*
1151	 * Wait until after the current transaction is aborted to finish the
1152	 * setup of the inode and release the inode.  This prevents recursive
1153	 * transactions and deadlocks from xfs_inactive.
1154	 */
1155	if (ip) {
1156		xfs_finish_inode_setup(ip);
1157		xfs_irele(ip);
1158	}
1159 out_release_dquots:
1160	xfs_qm_dqrele(udqp);
1161	xfs_qm_dqrele(gdqp);
1162	xfs_qm_dqrele(pdqp);
1163
1164	if (unlock_dp_on_error)
1165		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1166	return error;
1167}
1168
1169int
1170xfs_create_tmpfile(
1171	struct mnt_idmap	*idmap,
1172	struct xfs_inode	*dp,
1173	umode_t			mode,
1174	struct xfs_inode	**ipp)
1175{
1176	struct xfs_mount	*mp = dp->i_mount;
1177	struct xfs_inode	*ip = NULL;
1178	struct xfs_trans	*tp = NULL;
1179	int			error;
1180	prid_t                  prid;
1181	struct xfs_dquot	*udqp = NULL;
1182	struct xfs_dquot	*gdqp = NULL;
1183	struct xfs_dquot	*pdqp = NULL;
1184	struct xfs_trans_res	*tres;
1185	uint			resblks;
1186	xfs_ino_t		ino;
1187
1188	if (xfs_is_shutdown(mp))
1189		return -EIO;
1190
1191	prid = xfs_get_initial_prid(dp);
1192
1193	/*
1194	 * Make sure that we have allocated dquot(s) on disk.
1195	 */
1196	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1197			mapped_fsgid(idmap, &init_user_ns), prid,
1198			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1199			&udqp, &gdqp, &pdqp);
1200	if (error)
1201		return error;
1202
1203	resblks = XFS_IALLOC_SPACE_RES(mp);
1204	tres = &M_RES(mp)->tr_create_tmpfile;
1205
1206	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1207			&tp);
1208	if (error)
1209		goto out_release_dquots;
1210
1211	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1212	if (!error)
1213		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1214				0, 0, prid, false, &ip);
1215	if (error)
1216		goto out_trans_cancel;
1217
1218	if (xfs_has_wsync(mp))
1219		xfs_trans_set_sync(tp);
 
 
 
1220
1221	/*
1222	 * Attach the dquot(s) to the inodes and modify them incore.
1223	 * These ids of the inode couldn't have changed since the new
1224	 * inode has been locked ever since it was created.
1225	 */
1226	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1227
1228	error = xfs_iunlink(tp, ip);
1229	if (error)
1230		goto out_trans_cancel;
1231
1232	error = xfs_trans_commit(tp);
1233	if (error)
1234		goto out_release_inode;
1235
1236	xfs_qm_dqrele(udqp);
1237	xfs_qm_dqrele(gdqp);
1238	xfs_qm_dqrele(pdqp);
1239
1240	*ipp = ip;
1241	return 0;
1242
1243 out_trans_cancel:
1244	xfs_trans_cancel(tp);
1245 out_release_inode:
1246	/*
1247	 * Wait until after the current transaction is aborted to finish the
1248	 * setup of the inode and release the inode.  This prevents recursive
1249	 * transactions and deadlocks from xfs_inactive.
1250	 */
1251	if (ip) {
1252		xfs_finish_inode_setup(ip);
1253		xfs_irele(ip);
1254	}
1255 out_release_dquots:
1256	xfs_qm_dqrele(udqp);
1257	xfs_qm_dqrele(gdqp);
1258	xfs_qm_dqrele(pdqp);
1259
1260	return error;
1261}
1262
1263int
1264xfs_link(
1265	xfs_inode_t		*tdp,
1266	xfs_inode_t		*sip,
1267	struct xfs_name		*target_name)
1268{
1269	xfs_mount_t		*mp = tdp->i_mount;
1270	xfs_trans_t		*tp;
1271	int			error, nospace_error = 0;
1272	int			resblks;
1273
1274	trace_xfs_link(tdp, target_name);
1275
1276	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1277
1278	if (xfs_is_shutdown(mp))
1279		return -EIO;
1280	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1281		return -EIO;
1282
1283	error = xfs_qm_dqattach(sip);
1284	if (error)
1285		goto std_return;
1286
1287	error = xfs_qm_dqattach(tdp);
1288	if (error)
1289		goto std_return;
1290
1291	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1292	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1293			&tp, &nospace_error);
1294	if (error)
1295		goto std_return;
1296
1297	/*
1298	 * If we are using project inheritance, we only allow hard link
1299	 * creation in our tree when the project IDs are the same; else
1300	 * the tree quota mechanism could be circumvented.
1301	 */
1302	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1303		     tdp->i_projid != sip->i_projid)) {
1304		/*
1305		 * Project quota setup skips special files which can
1306		 * leave inodes in a PROJINHERIT directory without a
1307		 * project ID set. We need to allow links to be made
1308		 * to these "project-less" inodes because userspace
1309		 * expects them to succeed after project ID setup,
1310		 * but everything else should be rejected.
1311		 */
1312		if (!special_file(VFS_I(sip)->i_mode) ||
1313		    sip->i_projid != 0) {
1314			error = -EXDEV;
1315			goto error_return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316		}
 
 
 
 
 
 
 
 
 
1317	}
1318
1319	if (!resblks) {
1320		error = xfs_dir_canenter(tp, tdp, target_name);
1321		if (error)
1322			goto error_return;
1323	}
1324
1325	/*
1326	 * Handle initial link state of O_TMPFILE inode
1327	 */
1328	if (VFS_I(sip)->i_nlink == 0) {
1329		struct xfs_perag	*pag;
1330
1331		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1332		error = xfs_iunlink_remove(tp, pag, sip);
1333		xfs_perag_put(pag);
1334		if (error)
1335			goto error_return;
1336	}
1337
1338	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1339				   resblks);
1340	if (error)
1341		goto error_return;
1342	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1343	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1344
1345	xfs_bumplink(tp, sip);
1346	xfs_dir_update_hook(tdp, sip, 1, target_name);
1347
1348	/*
1349	 * If this is a synchronous mount, make sure that the
1350	 * link transaction goes to disk before returning to
1351	 * the user.
1352	 */
1353	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1354		xfs_trans_set_sync(tp);
1355
1356	return xfs_trans_commit(tp);
 
1357
1358 error_return:
1359	xfs_trans_cancel(tp);
1360 std_return:
1361	if (error == -ENOSPC && nospace_error)
1362		error = nospace_error;
1363	return error;
1364}
 
1365
1366/* Clear the reflink flag and the cowblocks tag if possible. */
1367static void
1368xfs_itruncate_clear_reflink_flags(
1369	struct xfs_inode	*ip)
1370{
1371	struct xfs_ifork	*dfork;
1372	struct xfs_ifork	*cfork;
1373
1374	if (!xfs_is_reflink_inode(ip))
1375		return;
1376	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1377	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1378	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1379		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1380	if (cfork->if_bytes == 0)
1381		xfs_inode_clear_cowblocks_tag(ip);
1382}
1383
1384/*
1385 * Free up the underlying blocks past new_size.  The new size must be smaller
1386 * than the current size.  This routine can be used both for the attribute and
1387 * data fork, and does not modify the inode size, which is left to the caller.
1388 *
1389 * The transaction passed to this routine must have made a permanent log
1390 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1391 * given transaction and start new ones, so make sure everything involved in
1392 * the transaction is tidy before calling here.  Some transaction will be
1393 * returned to the caller to be committed.  The incoming transaction must
1394 * already include the inode, and both inode locks must be held exclusively.
1395 * The inode must also be "held" within the transaction.  On return the inode
1396 * will be "held" within the returned transaction.  This routine does NOT
1397 * require any disk space to be reserved for it within the transaction.
1398 *
1399 * If we get an error, we must return with the inode locked and linked into the
1400 * current transaction. This keeps things simple for the higher level code,
1401 * because it always knows that the inode is locked and held in the transaction
1402 * that returns to it whether errors occur or not.  We don't mark the inode
1403 * dirty on error so that transactions can be easily aborted if possible.
1404 */
1405int
1406xfs_itruncate_extents_flags(
1407	struct xfs_trans	**tpp,
1408	struct xfs_inode	*ip,
1409	int			whichfork,
1410	xfs_fsize_t		new_size,
1411	int			flags)
1412{
1413	struct xfs_mount	*mp = ip->i_mount;
1414	struct xfs_trans	*tp = *tpp;
 
 
 
1415	xfs_fileoff_t		first_unmap_block;
 
 
 
1416	int			error = 0;
 
1417
1418	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1419	if (atomic_read(&VFS_I(ip)->i_count))
1420		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1421	ASSERT(new_size <= XFS_ISIZE(ip));
1422	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1423	ASSERT(ip->i_itemp != NULL);
1424	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1425	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1426
1427	trace_xfs_itruncate_extents_start(ip, new_size);
1428
1429	flags |= xfs_bmapi_aflag(whichfork);
1430
1431	/*
1432	 * Since it is possible for space to become allocated beyond
1433	 * the end of the file (in a crash where the space is allocated
1434	 * but the inode size is not yet updated), simply remove any
1435	 * blocks which show up between the new EOF and the maximum
1436	 * possible file size.
1437	 *
1438	 * We have to free all the blocks to the bmbt maximum offset, even if
1439	 * the page cache can't scale that far.
1440	 */
1441	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1442	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1443		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1444		return 0;
1445	}
1446
1447	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1448			XFS_MAX_FILEOFF);
1449	if (error)
1450		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451
1452	if (whichfork == XFS_DATA_FORK) {
1453		/* Remove all pending CoW reservations. */
1454		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1455				first_unmap_block, XFS_MAX_FILEOFF, true);
1456		if (error)
1457			goto out;
1458
1459		xfs_itruncate_clear_reflink_flags(ip);
 
 
 
 
 
 
 
 
 
 
1460	}
1461
1462	/*
1463	 * Always re-log the inode so that our permanent transaction can keep
1464	 * on rolling it forward in the log.
1465	 */
1466	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1467
1468	trace_xfs_itruncate_extents_end(ip, new_size);
1469
1470out:
1471	*tpp = tp;
1472	return error;
 
 
 
 
 
 
 
 
1473}
1474
 
 
 
 
 
1475int
1476xfs_release(
 
1477	xfs_inode_t	*ip)
1478{
1479	xfs_mount_t	*mp = ip->i_mount;
1480	int		error = 0;
 
 
 
 
 
 
 
 
 
 
1481
1482	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1483		return 0;
1484
1485	/* If this is a read-only mount, don't do this (would generate I/O) */
1486	if (xfs_is_readonly(mp))
1487		return 0;
1488
1489	if (!xfs_is_shutdown(mp)) {
1490		int truncated;
1491
1492		/*
1493		 * If we previously truncated this file and removed old data
1494		 * in the process, we want to initiate "early" writeout on
1495		 * the last close.  This is an attempt to combat the notorious
1496		 * NULL files problem which is particularly noticeable from a
1497		 * truncate down, buffered (re-)write (delalloc), followed by
1498		 * a crash.  What we are effectively doing here is
1499		 * significantly reducing the time window where we'd otherwise
1500		 * be exposed to that problem.
1501		 */
1502		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1503		if (truncated) {
1504			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1505			if (ip->i_delayed_blks > 0) {
1506				error = filemap_flush(VFS_I(ip)->i_mapping);
1507				if (error)
1508					return error;
1509			}
1510		}
1511	}
1512
1513	if (VFS_I(ip)->i_nlink == 0)
1514		return 0;
1515
1516	/*
1517	 * If we can't get the iolock just skip truncating the blocks past EOF
1518	 * because we could deadlock with the mmap_lock otherwise. We'll get
1519	 * another chance to drop them once the last reference to the inode is
1520	 * dropped, so we'll never leak blocks permanently.
1521	 */
1522	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1523		return 0;
 
 
 
1524
1525	if (xfs_can_free_eofblocks(ip, false)) {
1526		/*
1527		 * Check if the inode is being opened, written and closed
1528		 * frequently and we have delayed allocation blocks outstanding
1529		 * (e.g. streaming writes from the NFS server), truncating the
1530		 * blocks past EOF will cause fragmentation to occur.
1531		 *
1532		 * In this case don't do the truncation, but we have to be
1533		 * careful how we detect this case. Blocks beyond EOF show up as
1534		 * i_delayed_blks even when the inode is clean, so we need to
1535		 * truncate them away first before checking for a dirty release.
1536		 * Hence on the first dirty close we will still remove the
1537		 * speculative allocation, but after that we will leave it in
1538		 * place.
1539		 */
1540		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1541			goto out_unlock;
1542
1543		error = xfs_free_eofblocks(ip);
1544		if (error)
1545			goto out_unlock;
1546
1547		/* delalloc blocks after truncation means it really is dirty */
1548		if (ip->i_delayed_blks)
1549			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
 
 
 
 
 
1550	}
1551
1552out_unlock:
1553	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1554	return error;
 
 
 
 
 
 
 
1555}
1556
1557/*
1558 * xfs_inactive_truncate
1559 *
1560 * Called to perform a truncate when an inode becomes unlinked.
1561 */
1562STATIC int
1563xfs_inactive_truncate(
1564	struct xfs_inode *ip)
 
1565{
1566	struct xfs_mount	*mp = ip->i_mount;
1567	struct xfs_trans	*tp;
1568	int			error;
 
 
 
 
 
 
 
 
 
 
 
1569
1570	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1571	if (error) {
1572		ASSERT(xfs_is_shutdown(mp));
1573		return error;
1574	}
1575	xfs_ilock(ip, XFS_ILOCK_EXCL);
1576	xfs_trans_ijoin(tp, ip, 0);
1577
1578	/*
1579	 * Log the inode size first to prevent stale data exposure in the event
1580	 * of a system crash before the truncate completes. See the related
1581	 * comment in xfs_vn_setattr_size() for details.
1582	 */
1583	ip->i_disk_size = 0;
1584	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1587	if (error)
1588		goto error_trans_cancel;
1589
1590	ASSERT(ip->i_df.if_nextents == 0);
1591
1592	error = xfs_trans_commit(tp);
1593	if (error)
1594		goto error_unlock;
1595
1596	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1597	return 0;
1598
1599error_trans_cancel:
1600	xfs_trans_cancel(tp);
1601error_unlock:
1602	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1603	return error;
1604}
1605
1606/*
1607 * xfs_inactive_ifree()
1608 *
1609 * Perform the inode free when an inode is unlinked.
1610 */
1611STATIC int
1612xfs_inactive_ifree(
1613	struct xfs_inode *ip)
1614{
1615	struct xfs_mount	*mp = ip->i_mount;
1616	struct xfs_trans	*tp;
1617	int			error;
1618
1619	/*
1620	 * We try to use a per-AG reservation for any block needed by the finobt
1621	 * tree, but as the finobt feature predates the per-AG reservation
1622	 * support a degraded file system might not have enough space for the
1623	 * reservation at mount time.  In that case try to dip into the reserved
1624	 * pool and pray.
1625	 *
1626	 * Send a warning if the reservation does happen to fail, as the inode
1627	 * now remains allocated and sits on the unlinked list until the fs is
1628	 * repaired.
1629	 */
1630	if (unlikely(mp->m_finobt_nores)) {
1631		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1632				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1633				&tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	} else {
1635		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1636	}
1637	if (error) {
1638		if (error == -ENOSPC) {
1639			xfs_warn_ratelimited(mp,
1640			"Failed to remove inode(s) from unlinked list. "
1641			"Please free space, unmount and run xfs_repair.");
1642		} else {
1643			ASSERT(xfs_is_shutdown(mp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644		}
1645		return error;
1646	}
1647
1648	/*
1649	 * We do not hold the inode locked across the entire rolling transaction
1650	 * here. We only need to hold it for the first transaction that
1651	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1652	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1653	 * here breaks the relationship between cluster buffer invalidation and
1654	 * stale inode invalidation on cluster buffer item journal commit
1655	 * completion, and can result in leaving dirty stale inodes hanging
1656	 * around in memory.
1657	 *
1658	 * We have no need for serialising this inode operation against other
1659	 * operations - we freed the inode and hence reallocation is required
1660	 * and that will serialise on reallocating the space the deferops need
1661	 * to free. Hence we can unlock the inode on the first commit of
1662	 * the transaction rather than roll it right through the deferops. This
1663	 * avoids relogging the XFS_ISTALE inode.
1664	 *
1665	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1666	 * by asserting that the inode is still locked when it returns.
1667	 */
1668	xfs_ilock(ip, XFS_ILOCK_EXCL);
1669	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1670
1671	error = xfs_ifree(tp, ip);
1672	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1673	if (error) {
1674		/*
1675		 * If we fail to free the inode, shut down.  The cancel
1676		 * might do that, we need to make sure.  Otherwise the
1677		 * inode might be lost for a long time or forever.
1678		 */
1679		if (!xfs_is_shutdown(mp)) {
1680			xfs_notice(mp, "%s: xfs_ifree returned error %d",
 
1681				__func__, error);
1682			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683		}
1684		xfs_trans_cancel(tp);
1685		return error;
 
 
 
 
 
 
 
 
1686	}
1687
1688	/*
1689	 * Credit the quota account(s). The inode is gone.
1690	 */
1691	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1692
1693	return xfs_trans_commit(tp);
1694}
1695
1696/*
1697 * Returns true if we need to update the on-disk metadata before we can free
1698 * the memory used by this inode.  Updates include freeing post-eof
1699 * preallocations; freeing COW staging extents; and marking the inode free in
1700 * the inobt if it is on the unlinked list.
1701 */
1702bool
1703xfs_inode_needs_inactive(
1704	struct xfs_inode	*ip)
 
 
1705{
1706	struct xfs_mount	*mp = ip->i_mount;
1707	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1708
1709	/*
1710	 * If the inode is already free, then there can be nothing
1711	 * to clean up here.
1712	 */
1713	if (VFS_I(ip)->i_mode == 0)
1714		return false;
1715
1716	/*
1717	 * If this is a read-only mount, don't do this (would generate I/O)
1718	 * unless we're in log recovery and cleaning the iunlinked list.
1719	 */
1720	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1721		return false;
1722
1723	/* If the log isn't running, push inodes straight to reclaim. */
1724	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1725		return false;
1726
1727	/* Metadata inodes require explicit resource cleanup. */
1728	if (xfs_is_metadata_inode(ip))
1729		return false;
1730
1731	/* Want to clean out the cow blocks if there are any. */
1732	if (cow_ifp && cow_ifp->if_bytes > 0)
1733		return true;
1734
1735	/* Unlinked files must be freed. */
1736	if (VFS_I(ip)->i_nlink == 0)
1737		return true;
1738
1739	/*
1740	 * This file isn't being freed, so check if there are post-eof blocks
1741	 * to free.  @force is true because we are evicting an inode from the
1742	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1743	 * free space accounting.
1744	 *
1745	 * Note: don't bother with iolock here since lockdep complains about
1746	 * acquiring it in reclaim context. We have the only reference to the
1747	 * inode at this point anyways.
1748	 */
1749	return xfs_can_free_eofblocks(ip, true);
1750}
1751
1752/*
1753 * Save health status somewhere, if we're dumping an inode with uncorrected
1754 * errors and online repair isn't running.
1755 */
1756static inline void
1757xfs_inactive_health(
1758	struct xfs_inode	*ip)
1759{
1760	struct xfs_mount	*mp = ip->i_mount;
1761	struct xfs_perag	*pag;
1762	unsigned int		sick;
1763	unsigned int		checked;
1764
1765	xfs_inode_measure_sickness(ip, &sick, &checked);
1766	if (!sick)
1767		return;
1768
1769	trace_xfs_inode_unfixed_corruption(ip, sick);
1770
1771	if (sick & XFS_SICK_INO_FORGET)
1772		return;
1773
1774	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1775	if (!pag) {
1776		/* There had better still be a perag structure! */
1777		ASSERT(0);
1778		return;
1779	}
1780
1781	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1782	xfs_perag_put(pag);
1783}
1784
1785/*
1786 * xfs_inactive
1787 *
1788 * This is called when the vnode reference count for the vnode
1789 * goes to zero.  If the file has been unlinked, then it must
1790 * now be truncated.  Also, we clear all of the read-ahead state
1791 * kept for the inode here since the file is now closed.
1792 */
1793int
1794xfs_inactive(
1795	xfs_inode_t	*ip)
1796{
1797	struct xfs_mount	*mp;
1798	int			error = 0;
1799	int			truncate = 0;
1800
1801	/*
1802	 * If the inode is already free, then there can be nothing
1803	 * to clean up here.
1804	 */
1805	if (VFS_I(ip)->i_mode == 0) {
1806		ASSERT(ip->i_df.if_broot_bytes == 0);
1807		goto out;
1808	}
1809
1810	mp = ip->i_mount;
1811	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1812
1813	xfs_inactive_health(ip);
1814
1815	/*
1816	 * If this is a read-only mount, don't do this (would generate I/O)
1817	 * unless we're in log recovery and cleaning the iunlinked list.
1818	 */
1819	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1820		goto out;
1821
1822	/* Metadata inodes require explicit resource cleanup. */
1823	if (xfs_is_metadata_inode(ip))
1824		goto out;
1825
1826	/* Try to clean out the cow blocks if there are any. */
1827	if (xfs_inode_has_cow_data(ip))
1828		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1829
1830	if (VFS_I(ip)->i_nlink != 0) {
1831		/*
1832		 * force is true because we are evicting an inode from the
1833		 * cache. Post-eof blocks must be freed, lest we end up with
1834		 * broken free space accounting.
1835		 *
1836		 * Note: don't bother with iolock here since lockdep complains
1837		 * about acquiring it in reclaim context. We have the only
1838		 * reference to the inode at this point anyways.
1839		 */
1840		if (xfs_can_free_eofblocks(ip, true))
1841			error = xfs_free_eofblocks(ip);
1842
1843		goto out;
1844	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845
1846	if (S_ISREG(VFS_I(ip)->i_mode) &&
1847	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1848	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1849		truncate = 1;
1850
1851	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1852		/*
1853		 * If this inode is being inactivated during a quotacheck and
1854		 * has not yet been scanned by quotacheck, we /must/ remove
1855		 * the dquots from the inode before inactivation changes the
1856		 * block and inode counts.  Most probably this is a result of
1857		 * reloading the incore iunlinked list to purge unrecovered
1858		 * unlinked inodes.
 
 
1859		 */
1860		xfs_qm_dqdetach(ip);
1861	} else {
1862		error = xfs_qm_dqattach(ip);
1863		if (error)
1864			goto out;
1865	}
 
 
 
 
 
1866
1867	if (S_ISLNK(VFS_I(ip)->i_mode))
1868		error = xfs_inactive_symlink(ip);
1869	else if (truncate)
1870		error = xfs_inactive_truncate(ip);
1871	if (error)
1872		goto out;
 
 
 
 
 
 
 
 
 
1873
1874	/*
1875	 * If there are attributes associated with the file then blow them away
1876	 * now.  The code calls a routine that recursively deconstructs the
1877	 * attribute fork. If also blows away the in-core attribute fork.
1878	 */
1879	if (xfs_inode_has_attr_fork(ip)) {
1880		error = xfs_attr_inactive(ip);
1881		if (error)
1882			goto out;
1883	}
 
 
 
 
1884
1885	ASSERT(ip->i_forkoff == 0);
 
1886
1887	/*
1888	 * Free the inode.
1889	 */
1890	error = xfs_inactive_ifree(ip);
1891
1892out:
1893	/*
1894	 * We're done making metadata updates for this inode, so we can release
1895	 * the attached dquots.
1896	 */
1897	xfs_qm_dqdetach(ip);
1898	return error;
1899}
1900
1901/*
1902 * In-Core Unlinked List Lookups
1903 * =============================
1904 *
1905 * Every inode is supposed to be reachable from some other piece of metadata
1906 * with the exception of the root directory.  Inodes with a connection to a
1907 * file descriptor but not linked from anywhere in the on-disk directory tree
1908 * are collectively known as unlinked inodes, though the filesystem itself
1909 * maintains links to these inodes so that on-disk metadata are consistent.
1910 *
1911 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1912 * header contains a number of buckets that point to an inode, and each inode
1913 * record has a pointer to the next inode in the hash chain.  This
1914 * singly-linked list causes scaling problems in the iunlink remove function
1915 * because we must walk that list to find the inode that points to the inode
1916 * being removed from the unlinked hash bucket list.
1917 *
1918 * Hence we keep an in-memory double linked list to link each inode on an
1919 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1920 * based lists would require having 64 list heads in the perag, one for each
1921 * list. This is expensive in terms of memory (think millions of AGs) and cache
1922 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1923 * must be referenced at the VFS level to keep them on the list and hence we
1924 * have an existence guarantee for inodes on the unlinked list.
1925 *
1926 * Given we have an existence guarantee, we can use lockless inode cache lookups
1927 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1928 * for the double linked unlinked list, and we don't need any extra locking to
1929 * keep the list safe as all manipulations are done under the AGI buffer lock.
1930 * Keeping the list up to date does not require memory allocation, just finding
1931 * the XFS inode and updating the next/prev unlinked list aginos.
1932 */
1933
1934/*
1935 * Find an inode on the unlinked list. This does not take references to the
1936 * inode as we have existence guarantees by holding the AGI buffer lock and that
1937 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1938 * don't find the inode in cache, then let the caller handle the situation.
1939 */
1940static struct xfs_inode *
1941xfs_iunlink_lookup(
1942	struct xfs_perag	*pag,
1943	xfs_agino_t		agino)
1944{
1945	struct xfs_inode	*ip;
1946
1947	rcu_read_lock();
1948	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1949	if (!ip) {
1950		/* Caller can handle inode not being in memory. */
1951		rcu_read_unlock();
1952		return NULL;
1953	}
1954
1955	/*
1956	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1957	 * let the caller handle the failure.
1958	 */
1959	if (WARN_ON_ONCE(!ip->i_ino)) {
1960		rcu_read_unlock();
1961		return NULL;
1962	}
1963	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1964	rcu_read_unlock();
1965	return ip;
1966}
1967
1968/*
1969 * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1970 * is not in cache.
1971 */
1972static int
1973xfs_iunlink_update_backref(
1974	struct xfs_perag	*pag,
1975	xfs_agino_t		prev_agino,
1976	xfs_agino_t		next_agino)
1977{
1978	struct xfs_inode	*ip;
1979
1980	/* No update necessary if we are at the end of the list. */
1981	if (next_agino == NULLAGINO)
1982		return 0;
1983
1984	ip = xfs_iunlink_lookup(pag, next_agino);
1985	if (!ip)
1986		return -ENOLINK;
1987
1988	ip->i_prev_unlinked = prev_agino;
1989	return 0;
1990}
1991
1992/*
1993 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1994 * is responsible for validating the old value.
 
 
 
 
 
 
1995 */
1996STATIC int
1997xfs_iunlink_update_bucket(
1998	struct xfs_trans	*tp,
1999	struct xfs_perag	*pag,
2000	struct xfs_buf		*agibp,
2001	unsigned int		bucket_index,
2002	xfs_agino_t		new_agino)
2003{
2004	struct xfs_agi		*agi = agibp->b_addr;
2005	xfs_agino_t		old_value;
2006	int			offset;
2007
2008	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
2009
2010	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2011	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2012			old_value, new_agino);
2013
2014	/*
2015	 * We should never find the head of the list already set to the value
2016	 * passed in because either we're adding or removing ourselves from the
2017	 * head of the list.
2018	 */
2019	if (old_value == new_agino) {
2020		xfs_buf_mark_corrupt(agibp);
2021		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2022		return -EFSCORRUPTED;
2023	}
2024
2025	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2026	offset = offsetof(struct xfs_agi, agi_unlinked) +
2027			(sizeof(xfs_agino_t) * bucket_index);
2028	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2029	return 0;
2030}
2031
2032/*
2033 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
2034 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
2035 * to the unlinked list.
2036 */
2037STATIC int
2038xfs_iunlink_reload_next(
2039	struct xfs_trans	*tp,
2040	struct xfs_buf		*agibp,
2041	xfs_agino_t		prev_agino,
2042	xfs_agino_t		next_agino)
2043{
2044	struct xfs_perag	*pag = agibp->b_pag;
2045	struct xfs_mount	*mp = pag->pag_mount;
2046	struct xfs_inode	*next_ip = NULL;
2047	xfs_ino_t		ino;
2048	int			error;
2049
2050	ASSERT(next_agino != NULLAGINO);
2051
2052#ifdef DEBUG
2053	rcu_read_lock();
2054	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
2055	ASSERT(next_ip == NULL);
2056	rcu_read_unlock();
2057#endif
2058
2059	xfs_info_ratelimited(mp,
2060 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
2061			next_agino, pag->pag_agno);
2062
2063	/*
2064	 * Use an untrusted lookup just to be cautious in case the AGI has been
2065	 * corrupted and now points at a free inode.  That shouldn't happen,
2066	 * but we'd rather shut down now since we're already running in a weird
2067	 * situation.
2068	 */
2069	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
2070	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
2071	if (error) {
2072		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2073		return error;
2074	}
2075
2076	/* If this is not an unlinked inode, something is very wrong. */
2077	if (VFS_I(next_ip)->i_nlink != 0) {
2078		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2079		error = -EFSCORRUPTED;
2080		goto rele;
2081	}
2082
2083	next_ip->i_prev_unlinked = prev_agino;
2084	trace_xfs_iunlink_reload_next(next_ip);
2085rele:
2086	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
2087	if (xfs_is_quotacheck_running(mp) && next_ip)
2088		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
2089	xfs_irele(next_ip);
2090	return error;
2091}
2092
2093static int
2094xfs_iunlink_insert_inode(
2095	struct xfs_trans	*tp,
2096	struct xfs_perag	*pag,
2097	struct xfs_buf		*agibp,
2098	struct xfs_inode	*ip)
2099{
2100	struct xfs_mount	*mp = tp->t_mountp;
2101	struct xfs_agi		*agi = agibp->b_addr;
2102	xfs_agino_t		next_agino;
2103	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2104	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2105	int			error;
2106
2107	/*
2108	 * Get the index into the agi hash table for the list this inode will
2109	 * go on.  Make sure the pointer isn't garbage and that this inode
2110	 * isn't already on the list.
2111	 */
2112	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2113	if (next_agino == agino ||
2114	    !xfs_verify_agino_or_null(pag, next_agino)) {
2115		xfs_buf_mark_corrupt(agibp);
2116		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2117		return -EFSCORRUPTED;
2118	}
2119
2120	/*
2121	 * Update the prev pointer in the next inode to point back to this
2122	 * inode.
2123	 */
2124	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2125	if (error == -ENOLINK)
2126		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2127	if (error)
2128		return error;
2129
2130	if (next_agino != NULLAGINO) {
2131		/*
2132		 * There is already another inode in the bucket, so point this
2133		 * inode to the current head of the list.
2134		 */
2135		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2136		if (error)
2137			return error;
2138		ip->i_next_unlinked = next_agino;
2139	}
2140
2141	/* Point the head of the list to point to this inode. */
2142	ip->i_prev_unlinked = NULLAGINO;
2143	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2144}
2145
2146/*
2147 * This is called when the inode's link count has gone to 0 or we are creating
2148 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2149 *
2150 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2151 * list when the inode is freed.
2152 */
2153STATIC int
2154xfs_iunlink(
2155	struct xfs_trans	*tp,
2156	struct xfs_inode	*ip)
2157{
2158	struct xfs_mount	*mp = tp->t_mountp;
2159	struct xfs_perag	*pag;
2160	struct xfs_buf		*agibp;
2161	int			error;
2162
2163	ASSERT(VFS_I(ip)->i_nlink == 0);
2164	ASSERT(VFS_I(ip)->i_mode != 0);
2165	trace_xfs_iunlink(ip);
2166
2167	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2168
2169	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2170	error = xfs_read_agi(pag, tp, &agibp);
2171	if (error)
2172		goto out;
2173
2174	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2175out:
2176	xfs_perag_put(pag);
2177	return error;
2178}
2179
2180static int
2181xfs_iunlink_remove_inode(
2182	struct xfs_trans	*tp,
2183	struct xfs_perag	*pag,
2184	struct xfs_buf		*agibp,
2185	struct xfs_inode	*ip)
2186{
2187	struct xfs_mount	*mp = tp->t_mountp;
2188	struct xfs_agi		*agi = agibp->b_addr;
2189	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2190	xfs_agino_t		head_agino;
2191	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2192	int			error;
2193
2194	trace_xfs_iunlink_remove(ip);
2195
2196	/*
2197	 * Get the index into the agi hash table for the list this inode will
2198	 * go on.  Make sure the head pointer isn't garbage.
2199	 */
2200	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2201	if (!xfs_verify_agino(pag, head_agino)) {
2202		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2203				agi, sizeof(*agi));
2204		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2205		return -EFSCORRUPTED;
2206	}
2207
2208	/*
2209	 * Set our inode's next_unlinked pointer to NULL and then return
2210	 * the old pointer value so that we can update whatever was previous
2211	 * to us in the list to point to whatever was next in the list.
2212	 */
2213	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2214	if (error)
2215		return error;
2216
2217	/*
2218	 * Update the prev pointer in the next inode to point back to previous
2219	 * inode in the chain.
2220	 */
2221	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2222			ip->i_next_unlinked);
2223	if (error == -ENOLINK)
2224		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2225				ip->i_next_unlinked);
2226	if (error)
2227		return error;
2228
2229	if (head_agino != agino) {
2230		struct xfs_inode	*prev_ip;
 
 
 
 
 
 
 
 
 
 
 
2231
2232		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2233		if (!prev_ip) {
2234			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2235			return -EFSCORRUPTED;
2236		}
2237
2238		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2239				ip->i_next_unlinked);
2240		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2241	} else {
2242		/* Point the head of the list to the next unlinked inode. */
2243		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2244				ip->i_next_unlinked);
2245	}
2246
2247	ip->i_next_unlinked = NULLAGINO;
2248	ip->i_prev_unlinked = 0;
2249	return error;
2250}
2251
2252/*
2253 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254 */
2255STATIC int
2256xfs_iunlink_remove(
2257	struct xfs_trans	*tp,
2258	struct xfs_perag	*pag,
2259	struct xfs_inode	*ip)
2260{
2261	struct xfs_buf		*agibp;
2262	int			error;
 
 
 
 
 
 
2263
2264	trace_xfs_iunlink_remove(ip);
2265
2266	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2267	error = xfs_read_agi(pag, tp, &agibp);
2268	if (error)
2269		return error;
2270
2271	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2272}
2273
2274/*
2275 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2276 * mark it stale. We should only find clean inodes in this lookup that aren't
2277 * already stale.
2278 */
2279static void
2280xfs_ifree_mark_inode_stale(
2281	struct xfs_perag	*pag,
2282	struct xfs_inode	*free_ip,
2283	xfs_ino_t		inum)
2284{
2285	struct xfs_mount	*mp = pag->pag_mount;
2286	struct xfs_inode_log_item *iip;
2287	struct xfs_inode	*ip;
2288
2289retry:
2290	rcu_read_lock();
2291	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2292
2293	/* Inode not in memory, nothing to do */
2294	if (!ip) {
2295		rcu_read_unlock();
2296		return;
2297	}
2298
2299	/*
2300	 * because this is an RCU protected lookup, we could find a recently
2301	 * freed or even reallocated inode during the lookup. We need to check
2302	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2303	 * valid, the wrong inode or stale.
2304	 */
2305	spin_lock(&ip->i_flags_lock);
2306	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2307		goto out_iflags_unlock;
2308
2309	/*
2310	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2311	 * other inodes that we did not find in the list attached to the buffer
2312	 * and are not already marked stale. If we can't lock it, back off and
2313	 * retry.
2314	 */
2315	if (ip != free_ip) {
2316		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2317			spin_unlock(&ip->i_flags_lock);
2318			rcu_read_unlock();
2319			delay(1);
2320			goto retry;
2321		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322	}
2323	ip->i_flags |= XFS_ISTALE;
2324
2325	/*
2326	 * If the inode is flushing, it is already attached to the buffer.  All
2327	 * we needed to do here is mark the inode stale so buffer IO completion
2328	 * will remove it from the AIL.
2329	 */
2330	iip = ip->i_itemp;
2331	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2332		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2333		ASSERT(iip->ili_last_fields);
2334		goto out_iunlock;
 
 
 
 
 
 
 
 
 
 
 
 
2335	}
2336
2337	/*
2338	 * Inodes not attached to the buffer can be released immediately.
2339	 * Everything else has to go through xfs_iflush_abort() on journal
2340	 * commit as the flock synchronises removal of the inode from the
2341	 * cluster buffer against inode reclaim.
2342	 */
2343	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2344		goto out_iunlock;
 
 
 
 
 
2345
2346	__xfs_iflags_set(ip, XFS_IFLUSHING);
2347	spin_unlock(&ip->i_flags_lock);
2348	rcu_read_unlock();
2349
2350	/* we have a dirty inode in memory that has not yet been flushed. */
2351	spin_lock(&iip->ili_lock);
2352	iip->ili_last_fields = iip->ili_fields;
2353	iip->ili_fields = 0;
2354	iip->ili_fsync_fields = 0;
2355	spin_unlock(&iip->ili_lock);
2356	ASSERT(iip->ili_last_fields);
2357
2358	if (ip != free_ip)
2359		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2360	return;
 
2361
2362out_iunlock:
2363	if (ip != free_ip)
2364		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365out_iflags_unlock:
2366	spin_unlock(&ip->i_flags_lock);
2367	rcu_read_unlock();
2368}
2369
2370/*
2371 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2372 * inodes that are in memory - they all must be marked stale and attached to
2373 * the cluster buffer.
 
 
 
 
 
 
 
 
 
 
2374 */
2375static int
2376xfs_ifree_cluster(
2377	struct xfs_trans	*tp,
2378	struct xfs_perag	*pag,
2379	struct xfs_inode	*free_ip,
2380	struct xfs_icluster	*xic)
2381{
2382	struct xfs_mount	*mp = free_ip->i_mount;
2383	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2384	struct xfs_buf		*bp;
2385	xfs_daddr_t		blkno;
2386	xfs_ino_t		inum = xic->first_ino;
2387	int			nbufs;
2388	int			i, j;
2389	int			ioffset;
2390	int			error;
2391
2392	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
 
 
2393
2394	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395		/*
2396		 * The allocation bitmap tells us which inodes of the chunk were
2397		 * physically allocated. Skip the cluster if an inode falls into
2398		 * a sparse region.
2399		 */
2400		ioffset = inum - xic->first_ino;
2401		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2402			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2403			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404		}
2405
2406		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2407					 XFS_INO_TO_AGBNO(mp, inum));
2408
2409		/*
2410		 * We obtain and lock the backing buffer first in the process
2411		 * here to ensure dirty inodes attached to the buffer remain in
2412		 * the flushing state while we mark them stale.
2413		 *
2414		 * If we scan the in-memory inodes first, then buffer IO can
2415		 * complete before we get a lock on it, and hence we may fail
2416		 * to mark all the active inodes on the buffer stale.
2417		 */
2418		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2419				mp->m_bsize * igeo->blocks_per_cluster,
2420				XBF_UNMAPPED, &bp);
2421		if (error)
2422			return error;
2423
2424		/*
2425		 * This buffer may not have been correctly initialised as we
2426		 * didn't read it from disk. That's not important because we are
2427		 * only using to mark the buffer as stale in the log, and to
2428		 * attach stale cached inodes on it. That means it will never be
2429		 * dispatched for IO. If it is, we want to know about it, and we
2430		 * want it to fail. We can acheive this by adding a write
2431		 * verifier to the buffer.
2432		 */
2433		bp->b_ops = &xfs_inode_buf_ops;
2434
2435		/*
2436		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2437		 * too. This requires lookups, and will skip inodes that we've
2438		 * already marked XFS_ISTALE.
2439		 */
2440		for (i = 0; i < igeo->inodes_per_cluster; i++)
2441			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2442
2443		xfs_trans_stale_inode_buf(tp, bp);
2444		xfs_trans_binval(tp, bp);
2445	}
2446	return 0;
 
 
2447}
2448
2449/*
2450 * This is called to return an inode to the inode free list.  The inode should
2451 * already be truncated to 0 length and have no pages associated with it.  This
2452 * routine also assumes that the inode is already a part of the transaction.
2453 *
2454 * The on-disk copy of the inode will have been added to the list of unlinked
2455 * inodes in the AGI. We need to remove the inode from that list atomically with
2456 * respect to freeing it here.
2457 */
2458int
2459xfs_ifree(
2460	struct xfs_trans	*tp,
2461	struct xfs_inode	*ip)
2462{
2463	struct xfs_mount	*mp = ip->i_mount;
2464	struct xfs_perag	*pag;
2465	struct xfs_icluster	xic = { 0 };
2466	struct xfs_inode_log_item *iip = ip->i_itemp;
2467	int			error;
2468
2469	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
2470	ASSERT(VFS_I(ip)->i_nlink == 0);
2471	ASSERT(ip->i_df.if_nextents == 0);
2472	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2473	ASSERT(ip->i_nblocks == 0);
2474
2475	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2476
2477	/*
2478	 * Free the inode first so that we guarantee that the AGI lock is going
2479	 * to be taken before we remove the inode from the unlinked list. This
2480	 * makes the AGI lock -> unlinked list modification order the same as
2481	 * used in O_TMPFILE creation.
2482	 */
2483	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2484	if (error)
2485		goto out;
2486
2487	error = xfs_iunlink_remove(tp, pag, ip);
2488	if (error)
2489		goto out;
2490
2491	/*
2492	 * Free any local-format data sitting around before we reset the
2493	 * data fork to extents format.  Note that the attr fork data has
2494	 * already been freed by xfs_attr_inactive.
2495	 */
2496	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2497		kfree(ip->i_df.if_data);
2498		ip->i_df.if_data = NULL;
2499		ip->i_df.if_bytes = 0;
2500	}
2501
2502	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2503	ip->i_diflags = 0;
2504	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2505	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2506	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2507	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2508		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2509
2510	/* Don't attempt to replay owner changes for a deleted inode */
2511	spin_lock(&iip->ili_lock);
2512	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2513	spin_unlock(&iip->ili_lock);
2514
2515	/*
2516	 * Bump the generation count so no one will be confused
2517	 * by reincarnations of this inode.
2518	 */
2519	VFS_I(ip)->i_generation++;
2520	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2521
2522	if (xic.deleted)
2523		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2524out:
2525	xfs_perag_put(pag);
2526	return error;
2527}
2528
2529/*
2530 * This is called to unpin an inode.  The caller must have the inode locked
2531 * in at least shared mode so that the buffer cannot be subsequently pinned
2532 * once someone is waiting for it to be unpinned.
2533 */
2534static void
2535xfs_iunpin(
2536	struct xfs_inode	*ip)
2537{
2538	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2539
2540	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2541
2542	/* Give the log a push to start the unpinning I/O */
2543	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2544
2545}
2546
2547static void
2548__xfs_iunpin_wait(
2549	struct xfs_inode	*ip)
2550{
2551	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2552	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2553
2554	xfs_iunpin(ip);
2555
2556	do {
2557		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2558		if (xfs_ipincount(ip))
2559			io_schedule();
2560	} while (xfs_ipincount(ip));
2561	finish_wait(wq, &wait.wq_entry);
2562}
2563
2564void
2565xfs_iunpin_wait(
2566	struct xfs_inode	*ip)
2567{
2568	if (xfs_ipincount(ip))
2569		__xfs_iunpin_wait(ip);
2570}
2571
2572/*
2573 * Removing an inode from the namespace involves removing the directory entry
2574 * and dropping the link count on the inode. Removing the directory entry can
2575 * result in locking an AGF (directory blocks were freed) and removing a link
2576 * count can result in placing the inode on an unlinked list which results in
2577 * locking an AGI.
2578 *
2579 * The big problem here is that we have an ordering constraint on AGF and AGI
2580 * locking - inode allocation locks the AGI, then can allocate a new extent for
2581 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2582 * removes the inode from the unlinked list, requiring that we lock the AGI
2583 * first, and then freeing the inode can result in an inode chunk being freed
2584 * and hence freeing disk space requiring that we lock an AGF.
2585 *
2586 * Hence the ordering that is imposed by other parts of the code is AGI before
2587 * AGF. This means we cannot remove the directory entry before we drop the inode
2588 * reference count and put it on the unlinked list as this results in a lock
2589 * order of AGF then AGI, and this can deadlock against inode allocation and
2590 * freeing. Therefore we must drop the link counts before we remove the
2591 * directory entry.
2592 *
2593 * This is still safe from a transactional point of view - it is not until we
2594 * get to xfs_defer_finish() that we have the possibility of multiple
2595 * transactions in this operation. Hence as long as we remove the directory
2596 * entry and drop the link count in the first transaction of the remove
2597 * operation, there are no transactional constraints on the ordering here.
2598 */
2599int
2600xfs_remove(
2601	xfs_inode_t             *dp,
2602	struct xfs_name		*name,
2603	xfs_inode_t		*ip)
2604{
2605	xfs_mount_t		*mp = dp->i_mount;
2606	xfs_trans_t             *tp = NULL;
2607	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2608	int			dontcare;
2609	int                     error = 0;
2610	uint			resblks;
2611
2612	trace_xfs_remove(dp, name);
2613
2614	if (xfs_is_shutdown(mp))
2615		return -EIO;
2616	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2617		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618
2619	error = xfs_qm_dqattach(dp);
2620	if (error)
2621		goto std_return;
 
 
 
 
 
2622
2623	error = xfs_qm_dqattach(ip);
2624	if (error)
2625		goto std_return;
2626
2627	/*
2628	 * We try to get the real space reservation first, allowing for
2629	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2630	 * can't get the space reservation then we use 0 instead, and avoid the
2631	 * bmap btree insert(s) in the directory code by, if the bmap insert
2632	 * tries to happen, instead trimming the LAST block from the directory.
2633	 *
2634	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2635	 * the directory code can handle a reservationless update and we don't
2636	 * want to prevent a user from trying to free space by deleting things.
2637	 */
2638	resblks = XFS_REMOVE_SPACE_RES(mp);
2639	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2640			&tp, &dontcare);
2641	if (error) {
2642		ASSERT(error != -ENOSPC);
2643		goto std_return;
2644	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2645
 
 
 
2646	/*
2647	 * If we're removing a directory perform some additional validation.
 
2648	 */
2649	if (is_dir) {
2650		ASSERT(VFS_I(ip)->i_nlink >= 2);
2651		if (VFS_I(ip)->i_nlink != 2) {
2652			error = -ENOTEMPTY;
2653			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2654		}
2655		if (!xfs_dir_isempty(ip)) {
2656			error = -ENOTEMPTY;
2657			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2658		}
 
2659
2660		/* Drop the link from ip's "..".  */
2661		error = xfs_droplink(tp, dp);
2662		if (error)
2663			goto out_trans_cancel;
 
 
 
 
 
 
 
 
2664
2665		/* Drop the "." link from ip to self.  */
2666		error = xfs_droplink(tp, ip);
2667		if (error)
2668			goto out_trans_cancel;
 
 
2669
2670		/*
2671		 * Point the unlinked child directory's ".." entry to the root
2672		 * directory to eliminate back-references to inodes that may
2673		 * get freed before the child directory is closed.  If the fs
2674		 * gets shrunk, this can lead to dirent inode validation errors.
2675		 */
2676		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2677			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2678					tp->t_mountp->m_sb.sb_rootino, 0);
2679			if (error)
2680				goto out_trans_cancel;
2681		}
2682	} else {
2683		/*
2684		 * When removing a non-directory we need to log the parent
2685		 * inode here.  For a directory this is done implicitly
2686		 * by the xfs_droplink call for the ".." entry.
2687		 */
2688		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2689	}
2690	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2691
2692	/* Drop the link from dp to ip. */
2693	error = xfs_droplink(tp, ip);
2694	if (error)
2695		goto out_trans_cancel;
2696
2697	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2698	if (error) {
2699		ASSERT(error != -ENOENT);
2700		goto out_trans_cancel;
2701	}
 
2702
2703	/*
2704	 * Drop the link from dp to ip, and if ip was a directory, remove the
2705	 * '.' and '..' references since we freed the directory.
2706	 */
2707	xfs_dir_update_hook(dp, ip, -1, name);
 
 
 
 
 
 
 
 
 
 
 
2708
2709	/*
2710	 * If this is a synchronous mount, make sure that the
2711	 * remove transaction goes to disk before returning to
2712	 * the user.
2713	 */
2714	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2715		xfs_trans_set_sync(tp);
2716
2717	error = xfs_trans_commit(tp);
2718	if (error)
2719		goto std_return;
 
 
2720
2721	if (is_dir && xfs_inode_is_filestream(ip))
2722		xfs_filestream_deassociate(ip);
 
 
 
 
 
 
 
 
 
 
 
2723
2724	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2725
2726 out_trans_cancel:
2727	xfs_trans_cancel(tp);
2728 std_return:
2729	return error;
2730}
 
 
2731
2732/*
2733 * Enter all inodes for a rename transaction into a sorted array.
2734 */
2735#define __XFS_SORT_INODES	5
2736STATIC void
2737xfs_sort_for_rename(
2738	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2739	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2740	struct xfs_inode	*ip1,	/* in: inode of old entry */
2741	struct xfs_inode	*ip2,	/* in: inode of new entry */
2742	struct xfs_inode	*wip,	/* in: whiteout inode */
2743	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2744	int			*num_inodes)  /* in/out: inodes in array */
2745{
2746	int			i, j;
2747
2748	ASSERT(*num_inodes == __XFS_SORT_INODES);
2749	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
 
 
 
 
 
 
 
 
 
2750
2751	/*
2752	 * i_tab contains a list of pointers to inodes.  We initialize
2753	 * the table here & we'll sort it.  We will then use it to
2754	 * order the acquisition of the inode locks.
2755	 *
2756	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2757	 */
2758	i = 0;
2759	i_tab[i++] = dp1;
2760	i_tab[i++] = dp2;
2761	i_tab[i++] = ip1;
2762	if (ip2)
2763		i_tab[i++] = ip2;
2764	if (wip)
2765		i_tab[i++] = wip;
2766	*num_inodes = i;
2767
2768	/*
2769	 * Sort the elements via bubble sort.  (Remember, there are at
2770	 * most 5 elements to sort, so this is adequate.)
2771	 */
2772	for (i = 0; i < *num_inodes; i++) {
2773		for (j = 1; j < *num_inodes; j++) {
2774			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2775				struct xfs_inode *temp = i_tab[j];
2776				i_tab[j] = i_tab[j-1];
2777				i_tab[j-1] = temp;
2778			}
 
 
 
2779		}
 
2780	}
2781}
2782
2783static int
2784xfs_finish_rename(
2785	struct xfs_trans	*tp)
2786{
2787	/*
2788	 * If this is a synchronous mount, make sure that the rename transaction
2789	 * goes to disk before returning to the user.
2790	 */
2791	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2792		xfs_trans_set_sync(tp);
2793
2794	return xfs_trans_commit(tp);
2795}
 
 
 
 
2796
2797/*
2798 * xfs_cross_rename()
2799 *
2800 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2801 */
2802STATIC int
2803xfs_cross_rename(
2804	struct xfs_trans	*tp,
2805	struct xfs_inode	*dp1,
2806	struct xfs_name		*name1,
2807	struct xfs_inode	*ip1,
2808	struct xfs_inode	*dp2,
2809	struct xfs_name		*name2,
2810	struct xfs_inode	*ip2,
2811	int			spaceres)
2812{
2813	int		error = 0;
2814	int		ip1_flags = 0;
2815	int		ip2_flags = 0;
2816	int		dp2_flags = 0;
2817
2818	/* Swap inode number for dirent in first parent */
2819	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2820	if (error)
2821		goto out_trans_abort;
2822
2823	/* Swap inode number for dirent in second parent */
2824	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2825	if (error)
2826		goto out_trans_abort;
2827
 
 
 
 
 
 
2828	/*
2829	 * If we're renaming one or more directories across different parents,
2830	 * update the respective ".." entries (and link counts) to match the new
2831	 * parents.
2832	 */
2833	if (dp1 != dp2) {
2834		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2835
2836		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2837			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2838						dp1->i_ino, spaceres);
2839			if (error)
2840				goto out_trans_abort;
2841
2842			/* transfer ip2 ".." reference to dp1 */
2843			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2844				error = xfs_droplink(tp, dp2);
2845				if (error)
2846					goto out_trans_abort;
2847				xfs_bumplink(tp, dp1);
2848			}
2849
2850			/*
2851			 * Although ip1 isn't changed here, userspace needs
2852			 * to be warned about the change, so that applications
2853			 * relying on it (like backup ones), will properly
2854			 * notify the change
2855			 */
2856			ip1_flags |= XFS_ICHGTIME_CHG;
2857			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2858		}
2859
2860		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2861			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2862						dp2->i_ino, spaceres);
2863			if (error)
2864				goto out_trans_abort;
2865
2866			/* transfer ip1 ".." reference to dp2 */
2867			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2868				error = xfs_droplink(tp, dp1);
2869				if (error)
2870					goto out_trans_abort;
2871				xfs_bumplink(tp, dp2);
2872			}
2873
2874			/*
2875			 * Although ip2 isn't changed here, userspace needs
2876			 * to be warned about the change, so that applications
2877			 * relying on it (like backup ones), will properly
2878			 * notify the change
2879			 */
2880			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2881			ip2_flags |= XFS_ICHGTIME_CHG;
2882		}
2883	}
2884
2885	if (ip1_flags) {
2886		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2887		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2888	}
2889	if (ip2_flags) {
2890		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2891		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2892	}
2893	if (dp2_flags) {
2894		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2895		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2896	}
2897	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2898	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2899
2900	/*
2901	 * Inform our hook clients that we've finished an exchange operation as
2902	 * follows: removed the source and target files from their directories;
2903	 * added the target to the source directory; and added the source to
2904	 * the target directory.  All inodes are locked, so it's ok to model a
2905	 * rename this way so long as we say we deleted entries before we add
2906	 * new ones.
2907	 */
2908	xfs_dir_update_hook(dp1, ip1, -1, name1);
2909	xfs_dir_update_hook(dp2, ip2, -1, name2);
2910	xfs_dir_update_hook(dp1, ip2, 1, name1);
2911	xfs_dir_update_hook(dp2, ip1, 1, name2);
2912
2913	return xfs_finish_rename(tp);
2914
2915out_trans_abort:
2916	xfs_trans_cancel(tp);
2917	return error;
2918}
2919
2920/*
2921 * xfs_rename_alloc_whiteout()
 
 
 
 
2922 *
2923 * Return a referenced, unlinked, unlocked inode that can be used as a
2924 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2925 * crash between allocating the inode and linking it into the rename transaction
2926 * recovery will free the inode and we won't leak it.
2927 */
2928static int
2929xfs_rename_alloc_whiteout(
2930	struct mnt_idmap	*idmap,
2931	struct xfs_name		*src_name,
2932	struct xfs_inode	*dp,
2933	struct xfs_inode	**wip)
2934{
2935	struct xfs_inode	*tmpfile;
2936	struct qstr		name;
 
2937	int			error;
2938
2939	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2940				   &tmpfile);
2941	if (error)
2942		return error;
2943
2944	name.name = src_name->name;
2945	name.len = src_name->len;
2946	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2947	if (error) {
2948		xfs_finish_inode_setup(tmpfile);
2949		xfs_irele(tmpfile);
2950		return error;
2951	}
2952
2953	/*
2954	 * Prepare the tmpfile inode as if it were created through the VFS.
2955	 * Complete the inode setup and flag it as linkable.  nlink is already
2956	 * zero, so we can skip the drop_nlink.
2957	 */
2958	xfs_setup_iops(tmpfile);
2959	xfs_finish_inode_setup(tmpfile);
2960	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2961
2962	*wip = tmpfile;
2963	return 0;
2964}
2965
2966/*
2967 * xfs_rename
2968 */
2969int
2970xfs_rename(
2971	struct mnt_idmap	*idmap,
2972	struct xfs_inode	*src_dp,
2973	struct xfs_name		*src_name,
2974	struct xfs_inode	*src_ip,
2975	struct xfs_inode	*target_dp,
2976	struct xfs_name		*target_name,
2977	struct xfs_inode	*target_ip,
2978	unsigned int		flags)
2979{
2980	struct xfs_mount	*mp = src_dp->i_mount;
2981	struct xfs_trans	*tp;
2982	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2983	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2984	int			i;
2985	int			num_inodes = __XFS_SORT_INODES;
2986	bool			new_parent = (src_dp != target_dp);
2987	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2988	int			spaceres;
2989	bool			retried = false;
2990	int			error, nospace_error = 0;
2991
2992	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2993
2994	if ((flags & RENAME_EXCHANGE) && !target_ip)
2995		return -EINVAL;
2996
2997	/*
2998	 * If we are doing a whiteout operation, allocate the whiteout inode
2999	 * we will be placing at the target and ensure the type is set
3000	 * appropriately.
3001	 */
3002	if (flags & RENAME_WHITEOUT) {
3003		error = xfs_rename_alloc_whiteout(idmap, src_name,
3004						  target_dp, &wip);
3005		if (error)
3006			return error;
3007
3008		/* setup target dirent info as whiteout */
3009		src_name->type = XFS_DIR3_FT_CHRDEV;
3010	}
3011
3012	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3013				inodes, &num_inodes);
3014
3015retry:
3016	nospace_error = 0;
3017	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3018	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3019	if (error == -ENOSPC) {
3020		nospace_error = error;
3021		spaceres = 0;
3022		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3023				&tp);
3024	}
3025	if (error)
3026		goto out_release_wip;
3027
3028	/*
3029	 * Attach the dquots to the inodes
 
 
 
 
 
3030	 */
3031	error = xfs_qm_vop_rename_dqattach(inodes);
3032	if (error)
3033		goto out_trans_cancel;
3034
3035	/*
3036	 * Lock all the participating inodes. Depending upon whether
3037	 * the target_name exists in the target directory, and
3038	 * whether the target directory is the same as the source
3039	 * directory, we can lock from 2 to 5 inodes.
3040	 */
3041	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3042
3043	/*
3044	 * Join all the inodes to the transaction. From this point on,
3045	 * we can rely on either trans_commit or trans_cancel to unlock
3046	 * them.
3047	 */
3048	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3049	if (new_parent)
3050		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3051	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3052	if (target_ip)
3053		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3054	if (wip)
3055		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3056
3057	/*
3058	 * If we are using project inheritance, we only allow renames
3059	 * into our tree when the project IDs are the same; else the
3060	 * tree quota mechanism would be circumvented.
3061	 */
3062	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3063		     target_dp->i_projid != src_ip->i_projid)) {
3064		error = -EXDEV;
3065		goto out_trans_cancel;
3066	}
3067
3068	/* RENAME_EXCHANGE is unique from here on. */
3069	if (flags & RENAME_EXCHANGE)
3070		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3071					target_dp, target_name, target_ip,
3072					spaceres);
3073
3074	/*
3075	 * Try to reserve quota to handle an expansion of the target directory.
3076	 * We'll allow the rename to continue in reservationless mode if we hit
3077	 * a space usage constraint.  If we trigger reservationless mode, save
3078	 * the errno if there isn't any free space in the target directory.
 
 
3079	 */
3080	if (spaceres != 0) {
3081		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3082				0, false);
3083		if (error == -EDQUOT || error == -ENOSPC) {
3084			if (!retried) {
3085				xfs_trans_cancel(tp);
3086				xfs_blockgc_free_quota(target_dp, 0);
3087				retried = true;
3088				goto retry;
3089			}
3090
3091			nospace_error = error;
3092			spaceres = 0;
3093			error = 0;
3094		}
3095		if (error)
3096			goto out_trans_cancel;
3097	}
3098
3099	/*
3100	 * Check for expected errors before we dirty the transaction
3101	 * so we can return an error without a transaction abort.
3102	 */
3103	if (target_ip == NULL) {
3104		/*
3105		 * If there's no space reservation, check the entry will
3106		 * fit before actually inserting it.
3107		 */
3108		if (!spaceres) {
3109			error = xfs_dir_canenter(tp, target_dp, target_name);
3110			if (error)
3111				goto out_trans_cancel;
3112		}
3113	} else {
3114		/*
3115		 * If target exists and it's a directory, check that whether
3116		 * it can be destroyed.
3117		 */
3118		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3119		    (!xfs_dir_isempty(target_ip) ||
3120		     (VFS_I(target_ip)->i_nlink > 2))) {
3121			error = -EEXIST;
3122			goto out_trans_cancel;
3123		}
3124	}
3125
3126	/*
3127	 * Lock the AGI buffers we need to handle bumping the nlink of the
3128	 * whiteout inode off the unlinked list and to handle dropping the
3129	 * nlink of the target inode.  Per locking order rules, do this in
3130	 * increasing AG order and before directory block allocation tries to
3131	 * grab AGFs because we grab AGIs before AGFs.
3132	 *
3133	 * The (vfs) caller must ensure that if src is a directory then
3134	 * target_ip is either null or an empty directory.
3135	 */
3136	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3137		if (inodes[i] == wip ||
3138		    (inodes[i] == target_ip &&
3139		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3140			struct xfs_perag	*pag;
3141			struct xfs_buf		*bp;
3142
3143			pag = xfs_perag_get(mp,
3144					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3145			error = xfs_read_agi(pag, tp, &bp);
3146			xfs_perag_put(pag);
3147			if (error)
3148				goto out_trans_cancel;
3149		}
3150	}
3151
3152	/*
3153	 * Directory entry creation below may acquire the AGF. Remove
3154	 * the whiteout from the unlinked list first to preserve correct
3155	 * AGI/AGF locking order. This dirties the transaction so failures
3156	 * after this point will abort and log recovery will clean up the
3157	 * mess.
3158	 *
3159	 * For whiteouts, we need to bump the link count on the whiteout
3160	 * inode. After this point, we have a real link, clear the tmpfile
3161	 * state flag from the inode so it doesn't accidentally get misused
3162	 * in future.
3163	 */
3164	if (wip) {
3165		struct xfs_perag	*pag;
3166
3167		ASSERT(VFS_I(wip)->i_nlink == 0);
3168
3169		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3170		error = xfs_iunlink_remove(tp, pag, wip);
3171		xfs_perag_put(pag);
3172		if (error)
3173			goto out_trans_cancel;
3174
3175		xfs_bumplink(tp, wip);
3176		VFS_I(wip)->i_state &= ~I_LINKABLE;
3177	}
3178
3179	/*
3180	 * Set up the target.
3181	 */
3182	if (target_ip == NULL) {
3183		/*
3184		 * If target does not exist and the rename crosses
3185		 * directories, adjust the target directory link count
3186		 * to account for the ".." reference from the new entry.
3187		 */
3188		error = xfs_dir_createname(tp, target_dp, target_name,
3189					   src_ip->i_ino, spaceres);
3190		if (error)
3191			goto out_trans_cancel;
3192
3193		xfs_trans_ichgtime(tp, target_dp,
3194					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3195
3196		if (new_parent && src_is_directory) {
3197			xfs_bumplink(tp, target_dp);
3198		}
3199	} else { /* target_ip != NULL */
3200		/*
3201		 * Link the source inode under the target name.
3202		 * If the source inode is a directory and we are moving
3203		 * it across directories, its ".." entry will be
3204		 * inconsistent until we replace that down below.
3205		 *
3206		 * In case there is already an entry with the same
3207		 * name at the destination directory, remove it first.
3208		 */
3209		error = xfs_dir_replace(tp, target_dp, target_name,
3210					src_ip->i_ino, spaceres);
3211		if (error)
3212			goto out_trans_cancel;
3213
3214		xfs_trans_ichgtime(tp, target_dp,
3215					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3216
3217		/*
3218		 * Decrement the link count on the target since the target
3219		 * dir no longer points to it.
3220		 */
3221		error = xfs_droplink(tp, target_ip);
3222		if (error)
3223			goto out_trans_cancel;
3224
3225		if (src_is_directory) {
3226			/*
3227			 * Drop the link from the old "." entry.
3228			 */
3229			error = xfs_droplink(tp, target_ip);
3230			if (error)
3231				goto out_trans_cancel;
3232		}
3233	} /* target_ip != NULL */
3234
3235	/*
3236	 * Remove the source.
 
3237	 */
3238	if (new_parent && src_is_directory) {
3239		/*
3240		 * Rewrite the ".." entry to point to the new
3241		 * directory.
3242		 */
3243		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3244					target_dp->i_ino, spaceres);
3245		ASSERT(error != -EEXIST);
3246		if (error)
3247			goto out_trans_cancel;
3248	}
3249
3250	/*
3251	 * We always want to hit the ctime on the source inode.
3252	 *
3253	 * This isn't strictly required by the standards since the source
3254	 * inode isn't really being changed, but old unix file systems did
3255	 * it and some incremental backup programs won't work without it.
3256	 */
3257	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3258	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3259
3260	/*
3261	 * Adjust the link count on src_dp.  This is necessary when
3262	 * renaming a directory, either within one parent when
3263	 * the target existed, or across two parent directories.
3264	 */
3265	if (src_is_directory && (new_parent || target_ip != NULL)) {
3266
3267		/*
3268		 * Decrement link count on src_directory since the
3269		 * entry that's moved no longer points to it.
3270		 */
3271		error = xfs_droplink(tp, src_dp);
3272		if (error)
3273			goto out_trans_cancel;
3274	}
3275
 
 
 
 
 
 
3276	/*
3277	 * For whiteouts, we only need to update the source dirent with the
3278	 * inode number of the whiteout inode rather than removing it
3279	 * altogether.
3280	 */
3281	if (wip)
3282		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3283					spaceres);
3284	else
3285		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3286					   spaceres);
3287
3288	if (error)
3289		goto out_trans_cancel;
3290
3291	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3292	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3293	if (new_parent)
3294		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3295
3296	/*
3297	 * Inform our hook clients that we've finished a rename operation as
3298	 * follows: removed the source and target files from their directories;
3299	 * that we've added the source to the target directory; and finally
3300	 * that we've added the whiteout, if there was one.  All inodes are
3301	 * locked, so it's ok to model a rename this way so long as we say we
3302	 * deleted entries before we add new ones.
3303	 */
3304	if (target_ip)
3305		xfs_dir_update_hook(target_dp, target_ip, -1, target_name);
3306	xfs_dir_update_hook(src_dp, src_ip, -1, src_name);
3307	xfs_dir_update_hook(target_dp, src_ip, 1, target_name);
3308	if (wip)
3309		xfs_dir_update_hook(src_dp, wip, 1, src_name);
3310
3311	error = xfs_finish_rename(tp);
3312	if (wip)
3313		xfs_irele(wip);
3314	return error;
 
3315
3316out_trans_cancel:
3317	xfs_trans_cancel(tp);
3318out_release_wip:
3319	if (wip)
3320		xfs_irele(wip);
3321	if (error == -ENOSPC && nospace_error)
3322		error = nospace_error;
3323	return error;
3324}
3325
3326static int
3327xfs_iflush(
3328	struct xfs_inode	*ip,
3329	struct xfs_buf		*bp)
3330{
3331	struct xfs_inode_log_item *iip = ip->i_itemp;
3332	struct xfs_dinode	*dip;
3333	struct xfs_mount	*mp = ip->i_mount;
3334	int			error;
 
 
3335
3336	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
3337	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3338	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3339	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340	ASSERT(iip->ili_item.li_buf == bp);
3341
3342	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
 
 
3343
3344	/*
3345	 * We don't flush the inode if any of the following checks fail, but we
3346	 * do still update the log item and attach to the backing buffer as if
3347	 * the flush happened. This is a formality to facilitate predictable
3348	 * error handling as the caller will shutdown and fail the buffer.
3349	 */
3350	error = -EFSCORRUPTED;
3351	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3352			       mp, XFS_ERRTAG_IFLUSH_1)) {
3353		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3354			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3355			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3356		goto flush_out;
 
 
 
 
 
 
 
3357	}
3358	if (S_ISREG(VFS_I(ip)->i_mode)) {
3359		if (XFS_TEST_ERROR(
3360		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3361		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3362		    mp, XFS_ERRTAG_IFLUSH_3)) {
3363			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3364				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3365				__func__, ip->i_ino, ip);
3366			goto flush_out;
3367		}
3368	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3369		if (XFS_TEST_ERROR(
3370		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3371		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3372		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3373		    mp, XFS_ERRTAG_IFLUSH_4)) {
3374			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3375				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3376				__func__, ip->i_ino, ip);
3377			goto flush_out;
3378		}
3379	}
3380	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3381				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
 
3382		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3383			"%s: detected corrupt incore inode %llu, "
3384			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3385			__func__, ip->i_ino,
3386			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3387			ip->i_nblocks, ip);
3388		goto flush_out;
3389	}
3390	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3391				mp, XFS_ERRTAG_IFLUSH_6)) {
3392		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3393			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3394			__func__, ip->i_ino, ip->i_forkoff, ip);
3395		goto flush_out;
3396	}
3397
3398	/*
3399	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3400	 * count for correct sequencing.  We bump the flush iteration count so
3401	 * we can detect flushes which postdate a log record during recovery.
3402	 * This is redundant as we now log every change and hence this can't
3403	 * happen but we need to still do it to ensure backwards compatibility
3404	 * with old kernels that predate logging all inode changes.
3405	 */
3406	if (!xfs_has_v3inodes(mp))
3407		ip->i_flushiter++;
3408
3409	/*
3410	 * If there are inline format data / attr forks attached to this inode,
3411	 * make sure they are not corrupt.
3412	 */
3413	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3414	    xfs_ifork_verify_local_data(ip))
3415		goto flush_out;
3416	if (xfs_inode_has_attr_fork(ip) &&
3417	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3418	    xfs_ifork_verify_local_attr(ip))
3419		goto flush_out;
3420
3421	/*
3422	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3423	 * copy out the core of the inode, because if the inode is dirty at all
3424	 * the core must be.
 
3425	 */
3426	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3427
3428	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3429	if (!xfs_has_v3inodes(mp)) {
3430		if (ip->i_flushiter == DI_MAX_FLUSH)
3431			ip->i_flushiter = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3432	}
3433
3434	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3435	if (xfs_inode_has_attr_fork(ip))
3436		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 
3437
3438	/*
3439	 * We've recorded everything logged in the inode, so we'd like to clear
3440	 * the ili_fields bits so we don't log and flush things unnecessarily.
3441	 * However, we can't stop logging all this information until the data
3442	 * we've copied into the disk buffer is written to disk.  If we did we
3443	 * might overwrite the copy of the inode in the log with all the data
3444	 * after re-logging only part of it, and in the face of a crash we
3445	 * wouldn't have all the data we need to recover.
3446	 *
3447	 * What we do is move the bits to the ili_last_fields field.  When
3448	 * logging the inode, these bits are moved back to the ili_fields field.
3449	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3450	 * we know that the information those bits represent is permanently on
3451	 * disk.  As long as the flush completes before the inode is logged
3452	 * again, then both ili_fields and ili_last_fields will be cleared.
3453	 */
3454	error = 0;
3455flush_out:
3456	spin_lock(&iip->ili_lock);
3457	iip->ili_last_fields = iip->ili_fields;
3458	iip->ili_fields = 0;
3459	iip->ili_fsync_fields = 0;
3460	spin_unlock(&iip->ili_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3461
3462	/*
3463	 * Store the current LSN of the inode so that we can tell whether the
3464	 * item has moved in the AIL from xfs_buf_inode_iodone().
3465	 */
3466	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3467				&iip->ili_item.li_lsn);
3468
3469	/* generate the checksum. */
3470	xfs_dinode_calc_crc(mp, dip);
3471	if (error)
3472		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
3473	return error;
3474}
3475
3476/*
3477 * Non-blocking flush of dirty inode metadata into the backing buffer.
3478 *
3479 * The caller must have a reference to the inode and hold the cluster buffer
3480 * locked. The function will walk across all the inodes on the cluster buffer it
3481 * can find and lock without blocking, and flush them to the cluster buffer.
3482 *
3483 * On successful flushing of at least one inode, the caller must write out the
3484 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3485 * the caller needs to release the buffer. On failure, the filesystem will be
3486 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3487 * will be returned.
3488 */
3489int
3490xfs_iflush_cluster(
3491	struct xfs_buf		*bp)
 
3492{
3493	struct xfs_mount	*mp = bp->b_mount;
3494	struct xfs_log_item	*lip, *n;
3495	struct xfs_inode	*ip;
3496	struct xfs_inode_log_item *iip;
3497	int			clcount = 0;
3498	int			error = 0;
3499
3500	/*
3501	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3502	 * will remove itself from the list.
3503	 */
3504	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3505		iip = (struct xfs_inode_log_item *)lip;
3506		ip = iip->ili_inode;
3507
3508		/*
3509		 * Quick and dirty check to avoid locks if possible.
3510		 */
3511		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3512			continue;
3513		if (xfs_ipincount(ip))
3514			continue;
3515
3516		/*
3517		 * The inode is still attached to the buffer, which means it is
3518		 * dirty but reclaim might try to grab it. Check carefully for
3519		 * that, and grab the ilock while still holding the i_flags_lock
3520		 * to guarantee reclaim will not be able to reclaim this inode
3521		 * once we drop the i_flags_lock.
3522		 */
3523		spin_lock(&ip->i_flags_lock);
3524		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3525		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3526			spin_unlock(&ip->i_flags_lock);
3527			continue;
3528		}
3529
3530		/*
3531		 * ILOCK will pin the inode against reclaim and prevent
3532		 * concurrent transactions modifying the inode while we are
3533		 * flushing the inode. If we get the lock, set the flushing
3534		 * state before we drop the i_flags_lock.
3535		 */
3536		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3537			spin_unlock(&ip->i_flags_lock);
3538			continue;
3539		}
3540		__xfs_iflags_set(ip, XFS_IFLUSHING);
3541		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 
 
 
 
 
 
3542
3543		/*
3544		 * Abort flushing this inode if we are shut down because the
3545		 * inode may not currently be in the AIL. This can occur when
3546		 * log I/O failure unpins the inode without inserting into the
3547		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3548		 * that otherwise looks like it should be flushed.
3549		 */
3550		if (xlog_is_shutdown(mp->m_log)) {
3551			xfs_iunpin_wait(ip);
3552			xfs_iflush_abort(ip);
3553			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3554			error = -EIO;
3555			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3556		}
3557
3558		/* don't block waiting on a log force to unpin dirty inodes */
3559		if (xfs_ipincount(ip)) {
3560			xfs_iflags_clear(ip, XFS_IFLUSHING);
3561			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3562			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3563		}
3564
3565		if (!xfs_inode_clean(ip))
3566			error = xfs_iflush(ip, bp);
3567		else
3568			xfs_iflags_clear(ip, XFS_IFLUSHING);
3569		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3570		if (error)
3571			break;
3572		clcount++;
3573	}
 
 
3574
3575	if (error) {
3576		/*
3577		 * Shutdown first so we kill the log before we release this
3578		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3579		 * of the log, failing it before the _log_ is shut down can
3580		 * result in the log tail being moved forward in the journal
3581		 * on disk because log writes can still be taking place. Hence
3582		 * unpinning the tail will allow the ICREATE intent to be
3583		 * removed from the log an recovery will fail with uninitialised
3584		 * inode cluster buffers.
3585		 */
3586		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3587		bp->b_flags |= XBF_ASYNC;
3588		xfs_buf_ioend_fail(bp);
3589		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3590	}
3591
3592	if (!clcount)
3593		return -EAGAIN;
3594
3595	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3596	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3597	return 0;
3598
3599}
3600
3601/* Release an inode. */
 
 
 
3602void
3603xfs_irele(
3604	struct xfs_inode	*ip)
3605{
3606	trace_xfs_irele(ip, _RET_IP_);
3607	iput(VFS_I(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3608}
3609
3610/*
3611 * Ensure all commited transactions touching the inode are written to the log.
 
 
 
 
 
 
 
3612 */
3613int
3614xfs_log_force_inode(
3615	struct xfs_inode	*ip)
3616{
3617	xfs_csn_t		seq = 0;
 
 
 
 
 
 
 
 
3618
3619	xfs_ilock(ip, XFS_ILOCK_SHARED);
3620	if (xfs_ipincount(ip))
3621		seq = ip->i_itemp->ili_commit_seq;
3622	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3623
3624	if (!seq)
3625		return 0;
3626	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627}
3628
3629/*
3630 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3631 * abide vfs locking order (lowest pointer value goes first) and breaking the
3632 * layout leases before proceeding.  The loop is needed because we cannot call
3633 * the blocking break_layout() with the iolocks held, and therefore have to
3634 * back out both locks.
3635 */
3636static int
3637xfs_iolock_two_inodes_and_break_layout(
3638	struct inode		*src,
3639	struct inode		*dest)
3640{
3641	int			error;
 
 
3642
3643	if (src > dest)
3644		swap(src, dest);
 
3645
3646retry:
3647	/* Wait to break both inodes' layouts before we start locking. */
3648	error = break_layout(src, true);
3649	if (error)
3650		return error;
3651	if (src != dest) {
3652		error = break_layout(dest, true);
3653		if (error)
3654			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3655	}
3656
3657	/* Lock one inode and make sure nobody got in and leased it. */
3658	inode_lock(src);
3659	error = break_layout(src, false);
3660	if (error) {
3661		inode_unlock(src);
3662		if (error == -EWOULDBLOCK)
3663			goto retry;
3664		return error;
 
 
3665	}
 
 
 
3666
3667	if (src == dest)
3668		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669
3670	/* Lock the other inode and make sure nobody got in and leased it. */
3671	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3672	error = break_layout(dest, false);
3673	if (error) {
3674		inode_unlock(src);
3675		inode_unlock(dest);
3676		if (error == -EWOULDBLOCK)
3677			goto retry;
3678		return error;
 
 
 
 
 
 
 
 
 
 
 
3679	}
 
 
3680
3681	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3682}
3683
3684static int
3685xfs_mmaplock_two_inodes_and_break_dax_layout(
3686	struct xfs_inode	*ip1,
3687	struct xfs_inode	*ip2)
 
 
3688{
3689	int			error;
3690	bool			retry;
3691	struct page		*page;
3692
3693	if (ip1->i_ino > ip2->i_ino)
3694		swap(ip1, ip2);
 
 
3695
3696again:
3697	retry = false;
3698	/* Lock the first inode */
3699	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3700	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3701	if (error || retry) {
3702		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3703		if (error == 0 && retry)
3704			goto again;
3705		return error;
3706	}
3707
3708	if (ip1 == ip2)
3709		return 0;
3710
3711	/* Nested lock the second inode */
3712	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3713	/*
3714	 * We cannot use xfs_break_dax_layouts() directly here because it may
3715	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3716	 * for this nested lock case.
3717	 */
3718	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3719	if (page && page_ref_count(page) != 1) {
3720		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3721		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3722		goto again;
3723	}
3724
3725	return 0;
3726}
3727
3728/*
3729 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3730 * mmap activity.
3731 */
3732int
3733xfs_ilock2_io_mmap(
3734	struct xfs_inode	*ip1,
3735	struct xfs_inode	*ip2)
3736{
3737	int			ret;
3738
3739	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3740	if (ret)
3741		return ret;
3742
3743	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3744		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3745		if (ret) {
3746			inode_unlock(VFS_I(ip2));
3747			if (ip1 != ip2)
3748				inode_unlock(VFS_I(ip1));
3749			return ret;
3750		}
3751	} else
3752		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3753					    VFS_I(ip2)->i_mapping);
 
3754
3755	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756}
3757
3758/* Unlock both inodes to allow IO and mmap activity. */
3759void
3760xfs_iunlock2_io_mmap(
3761	struct xfs_inode	*ip1,
3762	struct xfs_inode	*ip2)
3763{
3764	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3765		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3766		if (ip1 != ip2)
3767			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3768	} else
3769		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3770					      VFS_I(ip2)->i_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3771
3772	inode_unlock(VFS_I(ip2));
3773	if (ip1 != ip2)
3774		inode_unlock(VFS_I(ip1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3775}
3776
3777/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
 
 
 
3778void
3779xfs_iunlock2_remapping(
3780	struct xfs_inode	*ip1,
3781	struct xfs_inode	*ip2)
3782{
3783	xfs_iflags_clear(ip1, XFS_IREMAPPING);
 
3784
3785	if (ip1 != ip2)
3786		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3787	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3788
3789	if (ip1 != ip2)
3790		inode_unlock_shared(VFS_I(ip1));
3791	inode_unlock(VFS_I(ip2));
3792}
3793
3794/*
3795 * Reload the incore inode list for this inode.  Caller should ensure that
3796 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3797 * preventing other threads from executing.
3798 */
3799int
3800xfs_inode_reload_unlinked_bucket(
3801	struct xfs_trans	*tp,
3802	struct xfs_inode	*ip)
3803{
3804	struct xfs_mount	*mp = tp->t_mountp;
3805	struct xfs_buf		*agibp;
3806	struct xfs_agi		*agi;
3807	struct xfs_perag	*pag;
3808	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3809	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3810	xfs_agino_t		prev_agino, next_agino;
3811	unsigned int		bucket;
3812	bool			foundit = false;
3813	int			error;
3814
3815	/* Grab the first inode in the list */
3816	pag = xfs_perag_get(mp, agno);
3817	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3818	xfs_perag_put(pag);
3819	if (error)
3820		return error;
3821
 
 
 
3822	/*
3823	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3824	 * incore unlinked list pointers for this inode.  Check once more to
3825	 * see if we raced with anyone else to reload the unlinked list.
3826	 */
3827	if (!xfs_inode_unlinked_incomplete(ip)) {
3828		foundit = true;
3829		goto out_agibp;
3830	}
 
3831
3832	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3833	agi = agibp->b_addr;
 
 
 
 
 
 
 
 
3834
3835	trace_xfs_inode_reload_unlinked_bucket(ip);
3836
3837	xfs_info_ratelimited(mp,
3838 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3839			agino, agno);
3840
3841	prev_agino = NULLAGINO;
3842	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3843	while (next_agino != NULLAGINO) {
3844		struct xfs_inode	*next_ip = NULL;
3845
3846		/* Found this caller's inode, set its backlink. */
3847		if (next_agino == agino) {
3848			next_ip = ip;
3849			next_ip->i_prev_unlinked = prev_agino;
3850			foundit = true;
3851			goto next_inode;
3852		}
3853
3854		/* Try in-memory lookup first. */
3855		next_ip = xfs_iunlink_lookup(pag, next_agino);
3856		if (next_ip)
3857			goto next_inode;
3858
3859		/* Inode not in memory, try reloading it. */
3860		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3861				next_agino);
3862		if (error)
3863			break;
3864
3865		/* Grab the reloaded inode. */
3866		next_ip = xfs_iunlink_lookup(pag, next_agino);
3867		if (!next_ip) {
3868			/* No incore inode at all?  We reloaded it... */
3869			ASSERT(next_ip != NULL);
3870			error = -EFSCORRUPTED;
3871			break;
3872		}
3873
3874next_inode:
3875		prev_agino = next_agino;
3876		next_agino = next_ip->i_next_unlinked;
3877	}
3878
3879out_agibp:
3880	xfs_trans_brelse(tp, agibp);
3881	/* Should have found this inode somewhere in the iunlinked bucket. */
3882	if (!error && !foundit)
3883		error = -EFSCORRUPTED;
3884	return error;
3885}
3886
3887/* Decide if this inode is missing its unlinked list and reload it. */
3888int
3889xfs_inode_reload_unlinked(
3890	struct xfs_inode	*ip)
 
 
 
 
 
 
 
 
 
 
3891{
3892	struct xfs_trans	*tp;
3893	int			error;
3894
3895	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3896	if (error)
3897		return error;
3898
3899	xfs_ilock(ip, XFS_ILOCK_SHARED);
3900	if (xfs_inode_unlinked_incomplete(ip))
3901		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3902	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3903	xfs_trans_cancel(tp);
3904
3905	return error;
 
 
 
3906}
3907
3908/* Has this inode fork been zapped by repair? */
3909bool
3910xfs_ifork_zapped(
3911	const struct xfs_inode	*ip,
3912	int			whichfork)
 
3913{
3914	unsigned int		datamask = 0;
3915
3916	switch (whichfork) {
3917	case XFS_DATA_FORK:
3918		switch (ip->i_vnode.i_mode & S_IFMT) {
3919		case S_IFDIR:
3920			datamask = XFS_SICK_INO_DIR_ZAPPED;
3921			break;
3922		case S_IFLNK:
3923			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3924			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3925		}
3926		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3927	case XFS_ATTR_FORK:
3928		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3929	default:
3930		return false;
3931	}
3932}
3933
3934/* Compute the number of data and realtime blocks used by a file. */
 
 
 
 
 
 
3935void
3936xfs_inode_count_blocks(
3937	struct xfs_trans	*tp,
3938	struct xfs_inode	*ip,
3939	xfs_filblks_t		*dblocks,
3940	xfs_filblks_t		*rblocks)
3941{
3942	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
3943
3944	*rblocks = 0;
3945	if (XFS_IS_REALTIME_INODE(ip))
3946		xfs_bmap_count_leaves(ifp, rblocks);
3947	*dblocks = ip->i_nblocks - *rblocks;
 
3948}