Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v3.5.6
 
  1/*
  2 * linux/fs/nfs/direct.c
  3 *
  4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5 *
  6 * High-performance uncached I/O for the Linux NFS client
  7 *
  8 * There are important applications whose performance or correctness
  9 * depends on uncached access to file data.  Database clusters
 10 * (multiple copies of the same instance running on separate hosts)
 11 * implement their own cache coherency protocol that subsumes file
 12 * system cache protocols.  Applications that process datasets
 13 * considerably larger than the client's memory do not always benefit
 14 * from a local cache.  A streaming video server, for instance, has no
 15 * need to cache the contents of a file.
 16 *
 17 * When an application requests uncached I/O, all read and write requests
 18 * are made directly to the server; data stored or fetched via these
 19 * requests is not cached in the Linux page cache.  The client does not
 20 * correct unaligned requests from applications.  All requested bytes are
 21 * held on permanent storage before a direct write system call returns to
 22 * an application.
 23 *
 24 * Solaris implements an uncached I/O facility called directio() that
 25 * is used for backups and sequential I/O to very large files.  Solaris
 26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 27 * an undocumented mount option.
 28 *
 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 30 * help from Andrew Morton.
 31 *
 32 * 18 Dec 2001	Initial implementation for 2.4  --cel
 33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 34 * 08 Jun 2003	Port to 2.5 APIs  --cel
 35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 36 * 15 Sep 2004	Parallel async reads  --cel
 37 * 04 May 2005	support O_DIRECT with aio  --cel
 38 *
 39 */
 40
 41#include <linux/errno.h>
 42#include <linux/sched.h>
 43#include <linux/kernel.h>
 44#include <linux/file.h>
 45#include <linux/pagemap.h>
 46#include <linux/kref.h>
 47#include <linux/slab.h>
 48#include <linux/task_io_accounting_ops.h>
 
 49
 50#include <linux/nfs_fs.h>
 51#include <linux/nfs_page.h>
 52#include <linux/sunrpc/clnt.h>
 53
 54#include <asm/uaccess.h>
 55#include <linux/atomic.h>
 56
 57#include "internal.h"
 58#include "iostat.h"
 59#include "pnfs.h"
 
 
 60
 61#define NFSDBG_FACILITY		NFSDBG_VFS
 62
 63static struct kmem_cache *nfs_direct_cachep;
 64
 65/*
 66 * This represents a set of asynchronous requests that we're waiting on
 67 */
 68struct nfs_direct_req {
 69	struct kref		kref;		/* release manager */
 70
 71	/* I/O parameters */
 72	struct nfs_open_context	*ctx;		/* file open context info */
 73	struct nfs_lock_context *l_ctx;		/* Lock context info */
 74	struct kiocb *		iocb;		/* controlling i/o request */
 75	struct inode *		inode;		/* target file of i/o */
 76
 77	/* completion state */
 78	atomic_t		io_count;	/* i/os we're waiting for */
 79	spinlock_t		lock;		/* protect completion state */
 80	ssize_t			count,		/* bytes actually processed */
 81				error;		/* any reported error */
 82	struct completion	completion;	/* wait for i/o completion */
 83
 84	/* commit state */
 85	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
 86	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
 87	struct work_struct	work;
 88	int			flags;
 89#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 90#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 91	struct nfs_writeverf	verf;		/* unstable write verifier */
 92};
 93
 94static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 95static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 96static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
 97static void nfs_direct_write_schedule_work(struct work_struct *work);
 98
 99static inline void get_dreq(struct nfs_direct_req *dreq)
100{
101	atomic_inc(&dreq->io_count);
102}
103
104static inline int put_dreq(struct nfs_direct_req *dreq)
105{
106	return atomic_dec_and_test(&dreq->io_count);
107}
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109/**
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
116 *
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O.  However, we shunt off direct
119 * read and write requests before the VFS gets them, so this method
120 * should never be called.
121 */
122ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123{
124	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
125			iocb->ki_filp->f_path.dentry->d_name.name,
126			(long long) pos, nr_segs);
127
128	return -EINVAL;
 
 
 
 
 
 
129}
130
131static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
132{
133	unsigned int i;
134	for (i = 0; i < npages; i++)
135		page_cache_release(pages[i]);
136}
137
138void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
139			      struct nfs_direct_req *dreq)
140{
141	cinfo->lock = &dreq->lock;
142	cinfo->mds = &dreq->mds_cinfo;
143	cinfo->ds = &dreq->ds_cinfo;
144	cinfo->dreq = dreq;
145	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
146}
147
148static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
149{
150	struct nfs_direct_req *dreq;
151
152	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
153	if (!dreq)
154		return NULL;
155
156	kref_init(&dreq->kref);
157	kref_get(&dreq->kref);
158	init_completion(&dreq->completion);
159	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 
160	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
161	spin_lock_init(&dreq->lock);
162
163	return dreq;
164}
165
166static void nfs_direct_req_free(struct kref *kref)
167{
168	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
169
 
170	if (dreq->l_ctx != NULL)
171		nfs_put_lock_context(dreq->l_ctx);
172	if (dreq->ctx != NULL)
173		put_nfs_open_context(dreq->ctx);
174	kmem_cache_free(nfs_direct_cachep, dreq);
175}
176
177static void nfs_direct_req_release(struct nfs_direct_req *dreq)
178{
179	kref_put(&dreq->kref, nfs_direct_req_free);
180}
181
 
 
 
 
 
 
 
182/*
183 * Collects and returns the final error value/byte-count.
184 */
185static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
186{
187	ssize_t result = -EIOCBQUEUED;
188
189	/* Async requests don't wait here */
190	if (dreq->iocb)
191		goto out;
192
193	result = wait_for_completion_killable(&dreq->completion);
194
 
 
 
 
195	if (!result)
196		result = dreq->error;
197	if (!result)
198		result = dreq->count;
199
200out:
201	return (ssize_t) result;
202}
203
204/*
205 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
206 * the iocb is still valid here if this is a synchronous request.
207 */
208static void nfs_direct_complete(struct nfs_direct_req *dreq)
209{
 
 
 
 
210	if (dreq->iocb) {
211		long res = (long) dreq->error;
212		if (!res)
213			res = (long) dreq->count;
214		aio_complete(dreq->iocb, res, 0);
 
 
215	}
216	complete_all(&dreq->completion);
217
218	nfs_direct_req_release(dreq);
219}
220
221static void nfs_direct_readpage_release(struct nfs_page *req)
222{
223	dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
224		req->wb_context->dentry->d_inode->i_sb->s_id,
225		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
226		req->wb_bytes,
227		(long long)req_offset(req));
228	nfs_release_request(req);
229}
230
231static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
232{
233	unsigned long bytes = 0;
234	struct nfs_direct_req *dreq = hdr->dreq;
235
236	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 
 
237		goto out_put;
 
238
239	spin_lock(&dreq->lock);
240	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
241		dreq->error = hdr->error;
242	else
243		dreq->count += hdr->good_bytes;
244	spin_unlock(&dreq->lock);
245
246	while (!list_empty(&hdr->pages)) {
247		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
248		struct page *page = req->wb_page;
249
250		if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
251			if (bytes > hdr->good_bytes)
252				zero_user(page, 0, PAGE_SIZE);
253			else if (hdr->good_bytes - bytes < PAGE_SIZE)
254				zero_user_segment(page,
255					hdr->good_bytes & ~PAGE_MASK,
256					PAGE_SIZE);
257		}
258		if (!PageCompound(page)) {
259			if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
260				if (bytes < hdr->good_bytes)
261					set_page_dirty(page);
262			} else
263				set_page_dirty(page);
264		}
265		bytes += req->wb_bytes;
266		nfs_list_remove_request(req);
267		nfs_direct_readpage_release(req);
268	}
269out_put:
270	if (put_dreq(dreq))
271		nfs_direct_complete(dreq);
272	hdr->release(hdr);
273}
274
275static void nfs_read_sync_pgio_error(struct list_head *head)
276{
277	struct nfs_page *req;
278
279	while (!list_empty(head)) {
280		req = nfs_list_entry(head->next);
281		nfs_list_remove_request(req);
282		nfs_release_request(req);
283	}
284}
285
286static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
287{
288	get_dreq(hdr->dreq);
289}
290
291static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
292	.error_cleanup = nfs_read_sync_pgio_error,
293	.init_hdr = nfs_direct_pgio_init,
294	.completion = nfs_direct_read_completion,
295};
296
297/*
298 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
299 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
300 * bail and stop sending more reads.  Read length accounting is
301 * handled automatically by nfs_direct_read_result().  Otherwise, if
302 * no requests have been sent, just return an error.
303 */
304static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
305						const struct iovec *iov,
306						loff_t pos)
307{
308	struct nfs_direct_req *dreq = desc->pg_dreq;
309	struct nfs_open_context *ctx = dreq->ctx;
310	struct inode *inode = ctx->dentry->d_inode;
311	unsigned long user_addr = (unsigned long)iov->iov_base;
312	size_t count = iov->iov_len;
313	size_t rsize = NFS_SERVER(inode)->rsize;
314	unsigned int pgbase;
315	int result;
316	ssize_t started = 0;
317	struct page **pagevec = NULL;
318	unsigned int npages;
319
320	do {
321		size_t bytes;
322		int i;
 
 
 
 
 
 
 
 
 
 
 
 
323
324		pgbase = user_addr & ~PAGE_MASK;
325		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
 
 
 
326
327		result = -ENOMEM;
328		npages = nfs_page_array_len(pgbase, bytes);
329		if (!pagevec)
330			pagevec = kmalloc(npages * sizeof(struct page *),
331					  GFP_KERNEL);
332		if (!pagevec)
333			break;
334		down_read(&current->mm->mmap_sem);
335		result = get_user_pages(current, current->mm, user_addr,
336					npages, 1, 0, pagevec, NULL);
337		up_read(&current->mm->mmap_sem);
338		if (result < 0)
339			break;
340		if ((unsigned)result < npages) {
341			bytes = result * PAGE_SIZE;
342			if (bytes <= pgbase) {
343				nfs_direct_release_pages(pagevec, result);
344				break;
345			}
346			bytes -= pgbase;
347			npages = result;
348		}
349
350		for (i = 0; i < npages; i++) {
351			struct nfs_page *req;
352			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
353			/* XXX do we need to do the eof zeroing found in async_filler? */
354			req = nfs_create_request(dreq->ctx, dreq->inode,
355						 pagevec[i],
356						 pgbase, req_len);
357			if (IS_ERR(req)) {
358				result = PTR_ERR(req);
359				break;
360			}
361			req->wb_index = pos >> PAGE_SHIFT;
362			req->wb_offset = pos & ~PAGE_MASK;
363			if (!nfs_pageio_add_request(desc, req)) {
364				result = desc->pg_error;
365				nfs_release_request(req);
366				break;
367			}
368			pgbase = 0;
369			bytes -= req_len;
370			started += req_len;
371			user_addr += req_len;
372			pos += req_len;
373			count -= req_len;
374		}
375		/* The nfs_page now hold references to these pages */
376		nfs_direct_release_pages(pagevec, npages);
377	} while (count != 0 && result >= 0);
378
379	kfree(pagevec);
380
381	if (started)
382		return started;
383	return result < 0 ? (ssize_t) result : -EFAULT;
384}
385
386static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
387					      const struct iovec *iov,
388					      unsigned long nr_segs,
389					      loff_t pos)
390{
391	struct nfs_pageio_descriptor desc;
392	ssize_t result = -EINVAL;
393	size_t requested_bytes = 0;
394	unsigned long seg;
395
396	nfs_pageio_init_read(&desc, dreq->inode,
397			     &nfs_direct_read_completion_ops);
398	get_dreq(dreq);
399	desc.pg_dreq = dreq;
400
401	for (seg = 0; seg < nr_segs; seg++) {
402		const struct iovec *vec = &iov[seg];
403		result = nfs_direct_read_schedule_segment(&desc, vec, pos);
404		if (result < 0)
405			break;
406		requested_bytes += result;
407		if ((size_t)result < vec->iov_len)
408			break;
409		pos += vec->iov_len;
410	}
411
412	nfs_pageio_complete(&desc);
413
414	/*
415	 * If no bytes were started, return the error, and let the
416	 * generic layer handle the completion.
417	 */
418	if (requested_bytes == 0) {
 
419		nfs_direct_req_release(dreq);
420		return result < 0 ? result : -EIO;
421	}
422
423	if (put_dreq(dreq))
424		nfs_direct_complete(dreq);
425	return 0;
426}
427
428static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
429			       unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430{
431	ssize_t result = -ENOMEM;
432	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
433	struct nfs_direct_req *dreq;
 
 
 
 
 
 
 
 
 
 
 
 
 
434
 
435	dreq = nfs_direct_req_alloc();
436	if (dreq == NULL)
437		goto out;
438
439	dreq->inode = inode;
 
 
440	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
441	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
442	if (dreq->l_ctx == NULL)
 
 
443		goto out_release;
 
 
444	if (!is_sync_kiocb(iocb))
445		dreq->iocb = iocb;
446
447	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
448	if (!result)
 
 
 
 
 
 
 
 
 
 
 
449		result = nfs_direct_wait(dreq);
450	NFS_I(inode)->read_io += result;
 
 
 
 
 
 
 
 
451out_release:
452	nfs_direct_req_release(dreq);
453out:
454	return result;
455}
456
457static void nfs_inode_dio_write_done(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458{
459	nfs_zap_mapping(inode, inode->i_mapping);
460	inode_dio_done(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461}
462
463#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
464static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
465{
466	struct nfs_pageio_descriptor desc;
467	struct nfs_page *req, *tmp;
468	LIST_HEAD(reqs);
469	struct nfs_commit_info cinfo;
470	LIST_HEAD(failed);
471
472	nfs_init_cinfo_from_dreq(&cinfo, dreq);
473	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
474	spin_lock(cinfo.lock);
475	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
476	spin_unlock(cinfo.lock);
477
478	dreq->count = 0;
479	get_dreq(dreq);
480
481	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
482			      &nfs_direct_write_completion_ops);
483	desc.pg_dreq = dreq;
484
485	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 
 
 
486		if (!nfs_pageio_add_request(&desc, req)) {
487			nfs_list_remove_request(req);
488			nfs_list_add_request(req, &failed);
489			spin_lock(cinfo.lock);
490			dreq->flags = 0;
491			dreq->error = -EIO;
492			spin_unlock(cinfo.lock);
 
 
 
 
 
 
493		}
494		nfs_release_request(req);
495	}
496	nfs_pageio_complete(&desc);
497
498	while (!list_empty(&failed)) {
499		req = nfs_list_entry(failed.next);
500		nfs_list_remove_request(req);
501		nfs_unlock_and_release_request(req);
 
 
 
 
 
 
 
 
502	}
503
504	if (put_dreq(dreq))
505		nfs_direct_write_complete(dreq, dreq->inode);
506}
507
508static void nfs_direct_commit_complete(struct nfs_commit_data *data)
509{
 
510	struct nfs_direct_req *dreq = data->dreq;
511	struct nfs_commit_info cinfo;
512	struct nfs_page *req;
513	int status = data->task.tk_status;
514
515	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 
 
516	if (status < 0) {
517		dprintk("NFS: %5u commit failed with error %d.\n",
518			data->task.tk_pid, status);
519		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
520	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
521		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
522		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
523	}
 
 
 
524
525	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
526	while (!list_empty(&data->pages)) {
527		req = nfs_list_entry(data->pages.next);
528		nfs_list_remove_request(req);
529		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
530			/* Note the rewrite will go through mds */
531			nfs_mark_request_commit(req, NULL, &cinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
532		} else
533			nfs_release_request(req);
534		nfs_unlock_and_release_request(req);
535	}
536
537	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
538		nfs_direct_write_complete(dreq, data->inode);
539}
540
541static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 
542{
543	/* There is no lock to clear */
 
 
 
 
 
 
 
 
544}
545
546static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
547	.completion = nfs_direct_commit_complete,
548	.error_cleanup = nfs_direct_error_cleanup,
549};
550
551static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
552{
553	int res;
554	struct nfs_commit_info cinfo;
555	LIST_HEAD(mds_list);
556
557	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 
558	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
559	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
560	if (res < 0) /* res == -ENOMEM */
561		nfs_direct_write_reschedule(dreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562}
563
564static void nfs_direct_write_schedule_work(struct work_struct *work)
565{
566	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
567	int flags = dreq->flags;
568
569	dreq->flags = 0;
570	switch (flags) {
571		case NFS_ODIRECT_DO_COMMIT:
572			nfs_direct_commit_schedule(dreq);
573			break;
574		case NFS_ODIRECT_RESCHED_WRITES:
575			nfs_direct_write_reschedule(dreq);
576			break;
577		default:
578			nfs_inode_dio_write_done(dreq->inode);
 
579			nfs_direct_complete(dreq);
580	}
581}
582
583static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
584{
585	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
586}
587
588#else
589static void nfs_direct_write_schedule_work(struct work_struct *work)
590{
591}
592
593static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
594{
595	nfs_inode_dio_write_done(inode);
596	nfs_direct_complete(dreq);
597}
598#endif
599
600/*
601 * NB: Return the value of the first error return code.  Subsequent
602 *     errors after the first one are ignored.
603 */
604/*
605 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
606 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
607 * bail and stop sending more writes.  Write length accounting is
608 * handled automatically by nfs_direct_write_result().  Otherwise, if
609 * no requests have been sent, just return an error.
610 */
611static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
612						 const struct iovec *iov,
613						 loff_t pos)
614{
615	struct nfs_direct_req *dreq = desc->pg_dreq;
616	struct nfs_open_context *ctx = dreq->ctx;
617	struct inode *inode = ctx->dentry->d_inode;
618	unsigned long user_addr = (unsigned long)iov->iov_base;
619	size_t count = iov->iov_len;
620	size_t wsize = NFS_SERVER(inode)->wsize;
621	unsigned int pgbase;
622	int result;
623	ssize_t started = 0;
624	struct page **pagevec = NULL;
625	unsigned int npages;
626
627	do {
628		size_t bytes;
629		int i;
630
631		pgbase = user_addr & ~PAGE_MASK;
632		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
633
634		result = -ENOMEM;
635		npages = nfs_page_array_len(pgbase, bytes);
636		if (!pagevec)
637			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
638		if (!pagevec)
639			break;
640
641		down_read(&current->mm->mmap_sem);
642		result = get_user_pages(current, current->mm, user_addr,
643					npages, 0, 0, pagevec, NULL);
644		up_read(&current->mm->mmap_sem);
645		if (result < 0)
646			break;
647
648		if ((unsigned)result < npages) {
649			bytes = result * PAGE_SIZE;
650			if (bytes <= pgbase) {
651				nfs_direct_release_pages(pagevec, result);
652				break;
653			}
654			bytes -= pgbase;
655			npages = result;
656		}
657
658		for (i = 0; i < npages; i++) {
659			struct nfs_page *req;
660			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
661
662			req = nfs_create_request(dreq->ctx, dreq->inode,
663						 pagevec[i],
664						 pgbase, req_len);
665			if (IS_ERR(req)) {
666				result = PTR_ERR(req);
667				break;
668			}
669			nfs_lock_request(req);
670			req->wb_index = pos >> PAGE_SHIFT;
671			req->wb_offset = pos & ~PAGE_MASK;
672			if (!nfs_pageio_add_request(desc, req)) {
673				result = desc->pg_error;
674				nfs_unlock_and_release_request(req);
675				break;
676			}
677			pgbase = 0;
678			bytes -= req_len;
679			started += req_len;
680			user_addr += req_len;
681			pos += req_len;
682			count -= req_len;
683		}
684		/* The nfs_page now hold references to these pages */
685		nfs_direct_release_pages(pagevec, npages);
686	} while (count != 0 && result >= 0);
687
688	kfree(pagevec);
689
690	if (started)
691		return started;
692	return result < 0 ? (ssize_t) result : -EFAULT;
693}
694
695static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
696{
697	struct nfs_direct_req *dreq = hdr->dreq;
698	struct nfs_commit_info cinfo;
699	int bit = -1;
700	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 
701
702	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
703		goto out_put;
704
705	nfs_init_cinfo_from_dreq(&cinfo, dreq);
706
707	spin_lock(&dreq->lock);
708
709	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
710		dreq->flags = 0;
711		dreq->error = hdr->error;
712	}
713	if (dreq->error != 0)
714		bit = NFS_IOHDR_ERROR;
715	else {
716		dreq->count += hdr->good_bytes;
717		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
718			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
719			bit = NFS_IOHDR_NEED_RESCHED;
720		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
721			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
722				bit = NFS_IOHDR_NEED_RESCHED;
723			else if (dreq->flags == 0) {
724				memcpy(&dreq->verf, hdr->verf,
725				       sizeof(dreq->verf));
726				bit = NFS_IOHDR_NEED_COMMIT;
727				dreq->flags = NFS_ODIRECT_DO_COMMIT;
728			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
729				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
730					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
731					bit = NFS_IOHDR_NEED_RESCHED;
732				} else
733					bit = NFS_IOHDR_NEED_COMMIT;
734			}
735		}
736	}
737	spin_unlock(&dreq->lock);
738
739	while (!list_empty(&hdr->pages)) {
 
740		req = nfs_list_entry(hdr->pages.next);
741		nfs_list_remove_request(req);
742		switch (bit) {
743		case NFS_IOHDR_NEED_RESCHED:
744		case NFS_IOHDR_NEED_COMMIT:
745			kref_get(&req->wb_kref);
746			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 
 
 
 
 
 
747		}
748		nfs_unlock_and_release_request(req);
749	}
750
751out_put:
752	if (put_dreq(dreq))
753		nfs_direct_write_complete(dreq, hdr->inode);
754	hdr->release(hdr);
755}
756
757static void nfs_write_sync_pgio_error(struct list_head *head)
758{
759	struct nfs_page *req;
760
761	while (!list_empty(head)) {
762		req = nfs_list_entry(head->next);
763		nfs_list_remove_request(req);
764		nfs_unlock_and_release_request(req);
765	}
766}
767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
769	.error_cleanup = nfs_write_sync_pgio_error,
770	.init_hdr = nfs_direct_pgio_init,
771	.completion = nfs_direct_write_completion,
 
772};
773
 
 
 
 
 
 
 
 
 
 
 
 
774static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
775					       const struct iovec *iov,
776					       unsigned long nr_segs,
777					       loff_t pos)
778{
779	struct nfs_pageio_descriptor desc;
780	struct inode *inode = dreq->inode;
 
781	ssize_t result = 0;
782	size_t requested_bytes = 0;
783	unsigned long seg;
 
 
 
784
785	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE,
786			      &nfs_direct_write_completion_ops);
787	desc.pg_dreq = dreq;
788	get_dreq(dreq);
789	atomic_inc(&inode->i_dio_count);
790
791	for (seg = 0; seg < nr_segs; seg++) {
792		const struct iovec *vec = &iov[seg];
793		result = nfs_direct_write_schedule_segment(&desc, vec, pos);
 
 
 
 
 
 
794		if (result < 0)
795			break;
796		requested_bytes += result;
797		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798			break;
799		pos += vec->iov_len;
800	}
801	nfs_pageio_complete(&desc);
802	NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
803
804	/*
805	 * If no bytes were started, return the error, and let the
806	 * generic layer handle the completion.
807	 */
808	if (requested_bytes == 0) {
809		inode_dio_done(inode);
810		nfs_direct_req_release(dreq);
811		return result < 0 ? result : -EIO;
812	}
813
814	if (put_dreq(dreq))
815		nfs_direct_write_complete(dreq, dreq->inode);
816	return 0;
817}
818
819static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
820				unsigned long nr_segs, loff_t pos,
821				size_t count)
822{
823	ssize_t result = -ENOMEM;
824	struct inode *inode = iocb->ki_filp->f_mapping->host;
825	struct nfs_direct_req *dreq;
826
827	dreq = nfs_direct_req_alloc();
828	if (!dreq)
829		goto out;
830
831	dreq->inode = inode;
832	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
833	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
834	if (dreq->l_ctx == NULL)
835		goto out_release;
836	if (!is_sync_kiocb(iocb))
837		dreq->iocb = iocb;
838
839	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
840	if (!result)
841		result = nfs_direct_wait(dreq);
842out_release:
843	nfs_direct_req_release(dreq);
844out:
845	return result;
846}
847
848/**
849 * nfs_file_direct_read - file direct read operation for NFS files
850 * @iocb: target I/O control block
851 * @iov: vector of user buffers into which to read data
852 * @nr_segs: size of iov vector
853 * @pos: byte offset in file where reading starts
854 *
855 * We use this function for direct reads instead of calling
856 * generic_file_aio_read() in order to avoid gfar's check to see if
857 * the request starts before the end of the file.  For that check
858 * to work, we must generate a GETATTR before each direct read, and
859 * even then there is a window between the GETATTR and the subsequent
860 * READ where the file size could change.  Our preference is simply
861 * to do all reads the application wants, and the server will take
862 * care of managing the end of file boundary.
863 *
864 * This function also eliminates unnecessarily updating the file's
865 * atime locally, as the NFS server sets the file's atime, and this
866 * client must read the updated atime from the server back into its
867 * cache.
868 */
869ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
870				unsigned long nr_segs, loff_t pos)
871{
872	ssize_t retval = -EINVAL;
873	struct file *file = iocb->ki_filp;
874	struct address_space *mapping = file->f_mapping;
875	size_t count;
876
877	count = iov_length(iov, nr_segs);
878	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
879
880	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
881		file->f_path.dentry->d_parent->d_name.name,
882		file->f_path.dentry->d_name.name,
883		count, (long long) pos);
884
885	retval = 0;
886	if (!count)
887		goto out;
888
889	retval = nfs_sync_mapping(mapping);
890	if (retval)
891		goto out;
892
893	task_io_account_read(count);
894
895	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
896	if (retval > 0)
897		iocb->ki_pos = pos + retval;
898
899out:
900	return retval;
901}
902
903/**
904 * nfs_file_direct_write - file direct write operation for NFS files
905 * @iocb: target I/O control block
906 * @iov: vector of user buffers from which to write data
907 * @nr_segs: size of iov vector
908 * @pos: byte offset in file where writing starts
909 *
910 * We use this function for direct writes instead of calling
911 * generic_file_aio_write() in order to avoid taking the inode
912 * semaphore and updating the i_size.  The NFS server will set
913 * the new i_size and this client must read the updated size
914 * back into its cache.  We let the server do generic write
915 * parameter checking and report problems.
916 *
917 * We eliminate local atime updates, see direct read above.
918 *
919 * We avoid unnecessary page cache invalidations for normal cached
920 * readers of this file.
921 *
922 * Note that O_APPEND is not supported for NFS direct writes, as there
923 * is no atomic O_APPEND write facility in the NFS protocol.
924 */
925ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
926				unsigned long nr_segs, loff_t pos)
927{
928	ssize_t retval = -EINVAL;
 
929	struct file *file = iocb->ki_filp;
930	struct address_space *mapping = file->f_mapping;
931	size_t count;
 
 
 
 
 
 
932
933	count = iov_length(iov, nr_segs);
 
 
 
 
 
 
 
934	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
935
936	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
937		file->f_path.dentry->d_parent->d_name.name,
938		file->f_path.dentry->d_name.name,
939		count, (long long) pos);
940
941	retval = generic_write_checks(file, &pos, &count, 0);
942	if (retval)
943		goto out;
944
945	retval = -EINVAL;
946	if ((ssize_t) count < 0)
947		goto out;
948	retval = 0;
949	if (!count)
950		goto out;
951
952	retval = nfs_sync_mapping(mapping);
953	if (retval)
954		goto out;
 
 
 
 
 
 
 
 
 
 
 
955
956	task_io_account_write(count);
 
 
 
 
 
 
 
 
 
 
 
 
957
958	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
959	if (retval > 0) {
960		struct inode *inode = mapping->host;
961
962		iocb->ki_pos = pos + retval;
963		spin_lock(&inode->i_lock);
964		if (i_size_read(inode) < iocb->ki_pos)
965			i_size_write(inode, iocb->ki_pos);
966		spin_unlock(&inode->i_lock);
967	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968out:
969	return retval;
970}
971
972/**
973 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
974 *
975 */
976int __init nfs_init_directcache(void)
977{
978	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
979						sizeof(struct nfs_direct_req),
980						0, (SLAB_RECLAIM_ACCOUNT|
981							SLAB_MEM_SPREAD),
982						NULL);
983	if (nfs_direct_cachep == NULL)
984		return -ENOMEM;
985
986	return 0;
987}
988
989/**
990 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
991 *
992 */
993void nfs_destroy_directcache(void)
994{
995	kmem_cache_destroy(nfs_direct_cachep);
996}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/fs/nfs/direct.c
   4 *
   5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   6 *
   7 * High-performance uncached I/O for the Linux NFS client
   8 *
   9 * There are important applications whose performance or correctness
  10 * depends on uncached access to file data.  Database clusters
  11 * (multiple copies of the same instance running on separate hosts)
  12 * implement their own cache coherency protocol that subsumes file
  13 * system cache protocols.  Applications that process datasets
  14 * considerably larger than the client's memory do not always benefit
  15 * from a local cache.  A streaming video server, for instance, has no
  16 * need to cache the contents of a file.
  17 *
  18 * When an application requests uncached I/O, all read and write requests
  19 * are made directly to the server; data stored or fetched via these
  20 * requests is not cached in the Linux page cache.  The client does not
  21 * correct unaligned requests from applications.  All requested bytes are
  22 * held on permanent storage before a direct write system call returns to
  23 * an application.
  24 *
  25 * Solaris implements an uncached I/O facility called directio() that
  26 * is used for backups and sequential I/O to very large files.  Solaris
  27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  28 * an undocumented mount option.
  29 *
  30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  31 * help from Andrew Morton.
  32 *
  33 * 18 Dec 2001	Initial implementation for 2.4  --cel
  34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  35 * 08 Jun 2003	Port to 2.5 APIs  --cel
  36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  37 * 15 Sep 2004	Parallel async reads  --cel
  38 * 04 May 2005	support O_DIRECT with aio  --cel
  39 *
  40 */
  41
  42#include <linux/errno.h>
  43#include <linux/sched.h>
  44#include <linux/kernel.h>
  45#include <linux/file.h>
  46#include <linux/pagemap.h>
  47#include <linux/kref.h>
  48#include <linux/slab.h>
  49#include <linux/task_io_accounting_ops.h>
  50#include <linux/module.h>
  51
  52#include <linux/nfs_fs.h>
  53#include <linux/nfs_page.h>
  54#include <linux/sunrpc/clnt.h>
  55
  56#include <linux/uaccess.h>
  57#include <linux/atomic.h>
  58
  59#include "internal.h"
  60#include "iostat.h"
  61#include "pnfs.h"
  62#include "fscache.h"
  63#include "nfstrace.h"
  64
  65#define NFSDBG_FACILITY		NFSDBG_VFS
  66
  67static struct kmem_cache *nfs_direct_cachep;
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  70static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  71static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
  72static void nfs_direct_write_schedule_work(struct work_struct *work);
  73
  74static inline void get_dreq(struct nfs_direct_req *dreq)
  75{
  76	atomic_inc(&dreq->io_count);
  77}
  78
  79static inline int put_dreq(struct nfs_direct_req *dreq)
  80{
  81	return atomic_dec_and_test(&dreq->io_count);
  82}
  83
  84static void
  85nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
  86			    const struct nfs_pgio_header *hdr,
  87			    ssize_t dreq_len)
  88{
  89	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
  90	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
  91		return;
  92	if (dreq->max_count >= dreq_len) {
  93		dreq->max_count = dreq_len;
  94		if (dreq->count > dreq_len)
  95			dreq->count = dreq_len;
  96	}
  97
  98	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error)
  99		dreq->error = hdr->error;
 100}
 101
 102static void
 103nfs_direct_count_bytes(struct nfs_direct_req *dreq,
 104		       const struct nfs_pgio_header *hdr)
 105{
 106	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
 107	ssize_t dreq_len = 0;
 108
 109	if (hdr_end > dreq->io_start)
 110		dreq_len = hdr_end - dreq->io_start;
 111
 112	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
 113
 114	if (dreq_len > dreq->max_count)
 115		dreq_len = dreq->max_count;
 116
 117	if (dreq->count < dreq_len)
 118		dreq->count = dreq_len;
 119}
 120
 121static void nfs_direct_truncate_request(struct nfs_direct_req *dreq,
 122					struct nfs_page *req)
 123{
 124	loff_t offs = req_offset(req);
 125	size_t req_start = (size_t)(offs - dreq->io_start);
 126
 127	if (req_start < dreq->max_count)
 128		dreq->max_count = req_start;
 129	if (req_start < dreq->count)
 130		dreq->count = req_start;
 131}
 132
 133/**
 134 * nfs_swap_rw - NFS address space operation for swap I/O
 
 135 * @iocb: target I/O control block
 136 * @iter: I/O buffer
 137 *
 138 * Perform IO to the swap-file.  This is much like direct IO.
 
 
 
 
 
 139 */
 140int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
 141{
 142	ssize_t ret;
 143
 144	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
 145
 146	if (iov_iter_rw(iter) == READ)
 147		ret = nfs_file_direct_read(iocb, iter, true);
 148	else
 149		ret = nfs_file_direct_write(iocb, iter, true);
 150	if (ret < 0)
 151		return ret;
 152	return 0;
 153}
 154
 155static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 156{
 157	unsigned int i;
 158	for (i = 0; i < npages; i++)
 159		put_page(pages[i]);
 160}
 161
 162void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 163			      struct nfs_direct_req *dreq)
 164{
 165	cinfo->inode = dreq->inode;
 166	cinfo->mds = &dreq->mds_cinfo;
 167	cinfo->ds = &dreq->ds_cinfo;
 168	cinfo->dreq = dreq;
 169	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 170}
 171
 172static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 173{
 174	struct nfs_direct_req *dreq;
 175
 176	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 177	if (!dreq)
 178		return NULL;
 179
 180	kref_init(&dreq->kref);
 181	kref_get(&dreq->kref);
 182	init_completion(&dreq->completion);
 183	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 184	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
 185	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 186	spin_lock_init(&dreq->lock);
 187
 188	return dreq;
 189}
 190
 191static void nfs_direct_req_free(struct kref *kref)
 192{
 193	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 194
 195	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
 196	if (dreq->l_ctx != NULL)
 197		nfs_put_lock_context(dreq->l_ctx);
 198	if (dreq->ctx != NULL)
 199		put_nfs_open_context(dreq->ctx);
 200	kmem_cache_free(nfs_direct_cachep, dreq);
 201}
 202
 203static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 204{
 205	kref_put(&dreq->kref, nfs_direct_req_free);
 206}
 207
 208ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset)
 209{
 210	loff_t start = offset - dreq->io_start;
 211	return dreq->max_count - start;
 212}
 213EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 214
 215/*
 216 * Collects and returns the final error value/byte-count.
 217 */
 218static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 219{
 220	ssize_t result = -EIOCBQUEUED;
 221
 222	/* Async requests don't wait here */
 223	if (dreq->iocb)
 224		goto out;
 225
 226	result = wait_for_completion_killable(&dreq->completion);
 227
 228	if (!result) {
 229		result = dreq->count;
 230		WARN_ON_ONCE(dreq->count < 0);
 231	}
 232	if (!result)
 233		result = dreq->error;
 
 
 234
 235out:
 236	return (ssize_t) result;
 237}
 238
 239/*
 240 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 241 * the iocb is still valid here if this is a synchronous request.
 242 */
 243static void nfs_direct_complete(struct nfs_direct_req *dreq)
 244{
 245	struct inode *inode = dreq->inode;
 246
 247	inode_dio_end(inode);
 248
 249	if (dreq->iocb) {
 250		long res = (long) dreq->error;
 251		if (dreq->count != 0) {
 252			res = (long) dreq->count;
 253			WARN_ON_ONCE(dreq->count < 0);
 254		}
 255		dreq->iocb->ki_complete(dreq->iocb, res);
 256	}
 
 257
 258	complete(&dreq->completion);
 
 259
 260	nfs_direct_req_release(dreq);
 
 
 
 
 
 
 
 261}
 262
 263static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 264{
 265	unsigned long bytes = 0;
 266	struct nfs_direct_req *dreq = hdr->dreq;
 267
 268	spin_lock(&dreq->lock);
 269	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
 270		spin_unlock(&dreq->lock);
 271		goto out_put;
 272	}
 273
 274	nfs_direct_count_bytes(dreq, hdr);
 
 
 
 
 275	spin_unlock(&dreq->lock);
 276
 277	while (!list_empty(&hdr->pages)) {
 278		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 279		struct page *page = req->wb_page;
 280
 281		if (!PageCompound(page) && bytes < hdr->good_bytes &&
 282		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
 283			set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 284		bytes += req->wb_bytes;
 285		nfs_list_remove_request(req);
 286		nfs_release_request(req);
 287	}
 288out_put:
 289	if (put_dreq(dreq))
 290		nfs_direct_complete(dreq);
 291	hdr->release(hdr);
 292}
 293
 294static void nfs_read_sync_pgio_error(struct list_head *head, int error)
 295{
 296	struct nfs_page *req;
 297
 298	while (!list_empty(head)) {
 299		req = nfs_list_entry(head->next);
 300		nfs_list_remove_request(req);
 301		nfs_release_request(req);
 302	}
 303}
 304
 305static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 306{
 307	get_dreq(hdr->dreq);
 308}
 309
 310static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 311	.error_cleanup = nfs_read_sync_pgio_error,
 312	.init_hdr = nfs_direct_pgio_init,
 313	.completion = nfs_direct_read_completion,
 314};
 315
 316/*
 317 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 318 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 319 * bail and stop sending more reads.  Read length accounting is
 320 * handled automatically by nfs_direct_read_result().  Otherwise, if
 321 * no requests have been sent, just return an error.
 322 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323
 324static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 325					      struct iov_iter *iter,
 326					      loff_t pos)
 327{
 328	struct nfs_pageio_descriptor desc;
 329	struct inode *inode = dreq->inode;
 330	ssize_t result = -EINVAL;
 331	size_t requested_bytes = 0;
 332	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
 333
 334	nfs_pageio_init_read(&desc, dreq->inode, false,
 335			     &nfs_direct_read_completion_ops);
 336	get_dreq(dreq);
 337	desc.pg_dreq = dreq;
 338	inode_dio_begin(inode);
 339
 340	while (iov_iter_count(iter)) {
 341		struct page **pagevec;
 342		size_t bytes;
 343		size_t pgbase;
 344		unsigned npages, i;
 345
 346		result = iov_iter_get_pages_alloc2(iter, &pagevec,
 347						  rsize, &pgbase);
 
 
 
 
 
 
 
 
 
 348		if (result < 0)
 349			break;
 350	
 351		bytes = result;
 352		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
 
 
 
 
 
 353		for (i = 0; i < npages; i++) {
 354			struct nfs_page *req;
 355			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 356			/* XXX do we need to do the eof zeroing found in async_filler? */
 357			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
 358							pgbase, pos, req_len);
 
 359			if (IS_ERR(req)) {
 360				result = PTR_ERR(req);
 361				break;
 362			}
 363			if (!nfs_pageio_add_request(&desc, req)) {
 364				result = desc.pg_error;
 
 
 365				nfs_release_request(req);
 366				break;
 367			}
 368			pgbase = 0;
 369			bytes -= req_len;
 370			requested_bytes += req_len;
 
 371			pos += req_len;
 
 372		}
 
 373		nfs_direct_release_pages(pagevec, npages);
 374		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375		if (result < 0)
 376			break;
 
 
 
 
 377	}
 378
 379	nfs_pageio_complete(&desc);
 380
 381	/*
 382	 * If no bytes were started, return the error, and let the
 383	 * generic layer handle the completion.
 384	 */
 385	if (requested_bytes == 0) {
 386		inode_dio_end(inode);
 387		nfs_direct_req_release(dreq);
 388		return result < 0 ? result : -EIO;
 389	}
 390
 391	if (put_dreq(dreq))
 392		nfs_direct_complete(dreq);
 393	return requested_bytes;
 394}
 395
 396/**
 397 * nfs_file_direct_read - file direct read operation for NFS files
 398 * @iocb: target I/O control block
 399 * @iter: vector of user buffers into which to read data
 400 * @swap: flag indicating this is swap IO, not O_DIRECT IO
 401 *
 402 * We use this function for direct reads instead of calling
 403 * generic_file_aio_read() in order to avoid gfar's check to see if
 404 * the request starts before the end of the file.  For that check
 405 * to work, we must generate a GETATTR before each direct read, and
 406 * even then there is a window between the GETATTR and the subsequent
 407 * READ where the file size could change.  Our preference is simply
 408 * to do all reads the application wants, and the server will take
 409 * care of managing the end of file boundary.
 410 *
 411 * This function also eliminates unnecessarily updating the file's
 412 * atime locally, as the NFS server sets the file's atime, and this
 413 * client must read the updated atime from the server back into its
 414 * cache.
 415 */
 416ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
 417			     bool swap)
 418{
 419	struct file *file = iocb->ki_filp;
 420	struct address_space *mapping = file->f_mapping;
 421	struct inode *inode = mapping->host;
 422	struct nfs_direct_req *dreq;
 423	struct nfs_lock_context *l_ctx;
 424	ssize_t result, requested;
 425	size_t count = iov_iter_count(iter);
 426	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 427
 428	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 429		file, count, (long long) iocb->ki_pos);
 430
 431	result = 0;
 432	if (!count)
 433		goto out;
 434
 435	task_io_account_read(count);
 436
 437	result = -ENOMEM;
 438	dreq = nfs_direct_req_alloc();
 439	if (dreq == NULL)
 440		goto out;
 441
 442	dreq->inode = inode;
 443	dreq->max_count = count;
 444	dreq->io_start = iocb->ki_pos;
 445	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 446	l_ctx = nfs_get_lock_context(dreq->ctx);
 447	if (IS_ERR(l_ctx)) {
 448		result = PTR_ERR(l_ctx);
 449		nfs_direct_req_release(dreq);
 450		goto out_release;
 451	}
 452	dreq->l_ctx = l_ctx;
 453	if (!is_sync_kiocb(iocb))
 454		dreq->iocb = iocb;
 455
 456	if (user_backed_iter(iter))
 457		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
 458
 459	if (!swap)
 460		nfs_start_io_direct(inode);
 461
 462	NFS_I(inode)->read_io += count;
 463	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
 464
 465	if (!swap)
 466		nfs_end_io_direct(inode);
 467
 468	if (requested > 0) {
 469		result = nfs_direct_wait(dreq);
 470		if (result > 0) {
 471			requested -= result;
 472			iocb->ki_pos += result;
 473		}
 474		iov_iter_revert(iter, requested);
 475	} else {
 476		result = requested;
 477	}
 478
 479out_release:
 480	nfs_direct_req_release(dreq);
 481out:
 482	return result;
 483}
 484
 485static void nfs_direct_add_page_head(struct list_head *list,
 486				     struct nfs_page *req)
 487{
 488	struct nfs_page *head = req->wb_head;
 489
 490	if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
 491		return;
 492	if (!list_empty(&head->wb_list)) {
 493		nfs_unlock_request(head);
 494		return;
 495	}
 496	list_add(&head->wb_list, list);
 497	kref_get(&head->wb_kref);
 498	kref_get(&head->wb_kref);
 499}
 500
 501static void nfs_direct_join_group(struct list_head *list,
 502				  struct nfs_commit_info *cinfo,
 503				  struct inode *inode)
 504{
 505	struct nfs_page *req, *subreq;
 506
 507	list_for_each_entry(req, list, wb_list) {
 508		if (req->wb_head != req) {
 509			nfs_direct_add_page_head(&req->wb_list, req);
 510			continue;
 511		}
 512		subreq = req->wb_this_page;
 513		if (subreq == req)
 514			continue;
 515		do {
 516			/*
 517			 * Remove subrequests from this list before freeing
 518			 * them in the call to nfs_join_page_group().
 519			 */
 520			if (!list_empty(&subreq->wb_list)) {
 521				nfs_list_remove_request(subreq);
 522				nfs_release_request(subreq);
 523			}
 524		} while ((subreq = subreq->wb_this_page) != req);
 525		nfs_join_page_group(req, cinfo, inode);
 526	}
 527}
 528
 529static void
 530nfs_direct_write_scan_commit_list(struct inode *inode,
 531				  struct list_head *list,
 532				  struct nfs_commit_info *cinfo)
 533{
 534	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
 535	pnfs_recover_commit_reqs(list, cinfo);
 536	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
 537	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
 538}
 539
 
 540static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 541{
 542	struct nfs_pageio_descriptor desc;
 543	struct nfs_page *req;
 544	LIST_HEAD(reqs);
 545	struct nfs_commit_info cinfo;
 
 546
 547	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 548	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 549
 550	nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
 
 551
 552	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
 553	get_dreq(dreq);
 554
 555	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
 556			      &nfs_direct_write_completion_ops);
 557	desc.pg_dreq = dreq;
 558
 559	while (!list_empty(&reqs)) {
 560		req = nfs_list_entry(reqs.next);
 561		/* Bump the transmission count */
 562		req->wb_nio++;
 563		if (!nfs_pageio_add_request(&desc, req)) {
 564			spin_lock(&dreq->lock);
 565			if (dreq->error < 0) {
 566				desc.pg_error = dreq->error;
 567			} else if (desc.pg_error != -EAGAIN) {
 568				dreq->flags = 0;
 569				if (!desc.pg_error)
 570					desc.pg_error = -EIO;
 571				dreq->error = desc.pg_error;
 572			} else
 573				dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 574			spin_unlock(&dreq->lock);
 575			break;
 576		}
 577		nfs_release_request(req);
 578	}
 579	nfs_pageio_complete(&desc);
 580
 581	while (!list_empty(&reqs)) {
 582		req = nfs_list_entry(reqs.next);
 583		nfs_list_remove_request(req);
 584		nfs_unlock_and_release_request(req);
 585		if (desc.pg_error == -EAGAIN) {
 586			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 587		} else {
 588			spin_lock(&dreq->lock);
 589			nfs_direct_truncate_request(dreq, req);
 590			spin_unlock(&dreq->lock);
 591			nfs_release_request(req);
 592		}
 593	}
 594
 595	if (put_dreq(dreq))
 596		nfs_direct_write_complete(dreq);
 597}
 598
 599static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 600{
 601	const struct nfs_writeverf *verf = data->res.verf;
 602	struct nfs_direct_req *dreq = data->dreq;
 603	struct nfs_commit_info cinfo;
 604	struct nfs_page *req;
 605	int status = data->task.tk_status;
 606
 607	trace_nfs_direct_commit_complete(dreq);
 608
 609	spin_lock(&dreq->lock);
 610	if (status < 0) {
 611		/* Errors in commit are fatal */
 612		dreq->error = status;
 613		dreq->flags = NFS_ODIRECT_DONE;
 614	} else {
 615		status = dreq->error;
 
 616	}
 617	spin_unlock(&dreq->lock);
 618
 619	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 620
 
 621	while (!list_empty(&data->pages)) {
 622		req = nfs_list_entry(data->pages.next);
 623		nfs_list_remove_request(req);
 624		if (status < 0) {
 625			spin_lock(&dreq->lock);
 626			nfs_direct_truncate_request(dreq, req);
 627			spin_unlock(&dreq->lock);
 628			nfs_release_request(req);
 629		} else if (!nfs_write_match_verf(verf, req)) {
 630			spin_lock(&dreq->lock);
 631			if (dreq->flags == 0)
 632				dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 633			spin_unlock(&dreq->lock);
 634			/*
 635			 * Despite the reboot, the write was successful,
 636			 * so reset wb_nio.
 637			 */
 638			req->wb_nio = 0;
 639			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 640		} else
 641			nfs_release_request(req);
 642		nfs_unlock_and_release_request(req);
 643	}
 644
 645	if (nfs_commit_end(cinfo.mds))
 646		nfs_direct_write_complete(dreq);
 647}
 648
 649static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
 650		struct nfs_page *req)
 651{
 652	struct nfs_direct_req *dreq = cinfo->dreq;
 653
 654	trace_nfs_direct_resched_write(dreq);
 655
 656	spin_lock(&dreq->lock);
 657	if (dreq->flags != NFS_ODIRECT_DONE)
 658		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 659	spin_unlock(&dreq->lock);
 660	nfs_mark_request_commit(req, NULL, cinfo, 0);
 661}
 662
 663static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 664	.completion = nfs_direct_commit_complete,
 665	.resched_write = nfs_direct_resched_write,
 666};
 667
 668static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 669{
 670	int res;
 671	struct nfs_commit_info cinfo;
 672	LIST_HEAD(mds_list);
 673
 674	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 675	nfs_commit_begin(cinfo.mds);
 676	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 677	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 678	if (res < 0) { /* res == -ENOMEM */
 679		spin_lock(&dreq->lock);
 680		if (dreq->flags == 0)
 681			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 682		spin_unlock(&dreq->lock);
 683	}
 684	if (nfs_commit_end(cinfo.mds))
 685		nfs_direct_write_complete(dreq);
 686}
 687
 688static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
 689{
 690	struct nfs_commit_info cinfo;
 691	struct nfs_page *req;
 692	LIST_HEAD(reqs);
 693
 694	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 695	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 696
 697	while (!list_empty(&reqs)) {
 698		req = nfs_list_entry(reqs.next);
 699		nfs_list_remove_request(req);
 700		nfs_direct_truncate_request(dreq, req);
 701		nfs_release_request(req);
 702		nfs_unlock_and_release_request(req);
 703	}
 704}
 705
 706static void nfs_direct_write_schedule_work(struct work_struct *work)
 707{
 708	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 709	int flags = dreq->flags;
 710
 711	dreq->flags = 0;
 712	switch (flags) {
 713		case NFS_ODIRECT_DO_COMMIT:
 714			nfs_direct_commit_schedule(dreq);
 715			break;
 716		case NFS_ODIRECT_RESCHED_WRITES:
 717			nfs_direct_write_reschedule(dreq);
 718			break;
 719		default:
 720			nfs_direct_write_clear_reqs(dreq);
 721			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
 722			nfs_direct_complete(dreq);
 723	}
 724}
 725
 726static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
 
 
 
 
 
 
 
 
 
 
 727{
 728	trace_nfs_direct_write_complete(dreq);
 729	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730}
 731
 732static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 733{
 734	struct nfs_direct_req *dreq = hdr->dreq;
 735	struct nfs_commit_info cinfo;
 
 736	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 737	int flags = NFS_ODIRECT_DONE;
 738
 739	trace_nfs_direct_write_completion(dreq);
 
 740
 741	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 742
 743	spin_lock(&dreq->lock);
 744	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
 745		spin_unlock(&dreq->lock);
 746		goto out_put;
 
 747	}
 748
 749	nfs_direct_count_bytes(dreq, hdr);
 750	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) &&
 751	    !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 752		if (!dreq->flags)
 753			dreq->flags = NFS_ODIRECT_DO_COMMIT;
 754		flags = dreq->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755	}
 756	spin_unlock(&dreq->lock);
 757
 758	while (!list_empty(&hdr->pages)) {
 759
 760		req = nfs_list_entry(hdr->pages.next);
 761		nfs_list_remove_request(req);
 762		if (flags == NFS_ODIRECT_DO_COMMIT) {
 
 
 763			kref_get(&req->wb_kref);
 764			memcpy(&req->wb_verf, &hdr->verf.verifier,
 765			       sizeof(req->wb_verf));
 766			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
 767				hdr->ds_commit_idx);
 768		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
 769			kref_get(&req->wb_kref);
 770			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 771		}
 772		nfs_unlock_and_release_request(req);
 773	}
 774
 775out_put:
 776	if (put_dreq(dreq))
 777		nfs_direct_write_complete(dreq);
 778	hdr->release(hdr);
 779}
 780
 781static void nfs_write_sync_pgio_error(struct list_head *head, int error)
 782{
 783	struct nfs_page *req;
 784
 785	while (!list_empty(head)) {
 786		req = nfs_list_entry(head->next);
 787		nfs_list_remove_request(req);
 788		nfs_unlock_and_release_request(req);
 789	}
 790}
 791
 792static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
 793{
 794	struct nfs_direct_req *dreq = hdr->dreq;
 795	struct nfs_page *req;
 796	struct nfs_commit_info cinfo;
 797
 798	trace_nfs_direct_write_reschedule_io(dreq);
 799
 800	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 801	spin_lock(&dreq->lock);
 802	if (dreq->error == 0)
 803		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 804	set_bit(NFS_IOHDR_REDO, &hdr->flags);
 805	spin_unlock(&dreq->lock);
 806	while (!list_empty(&hdr->pages)) {
 807		req = nfs_list_entry(hdr->pages.next);
 808		nfs_list_remove_request(req);
 809		nfs_unlock_request(req);
 810		nfs_mark_request_commit(req, NULL, &cinfo, 0);
 811	}
 812}
 813
 814static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 815	.error_cleanup = nfs_write_sync_pgio_error,
 816	.init_hdr = nfs_direct_pgio_init,
 817	.completion = nfs_direct_write_completion,
 818	.reschedule_io = nfs_direct_write_reschedule_io,
 819};
 820
 821
 822/*
 823 * NB: Return the value of the first error return code.  Subsequent
 824 *     errors after the first one are ignored.
 825 */
 826/*
 827 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 828 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 829 * bail and stop sending more writes.  Write length accounting is
 830 * handled automatically by nfs_direct_write_result().  Otherwise, if
 831 * no requests have been sent, just return an error.
 832 */
 833static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 834					       struct iov_iter *iter,
 835					       loff_t pos, int ioflags)
 
 836{
 837	struct nfs_pageio_descriptor desc;
 838	struct inode *inode = dreq->inode;
 839	struct nfs_commit_info cinfo;
 840	ssize_t result = 0;
 841	size_t requested_bytes = 0;
 842	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 843	bool defer = false;
 844
 845	trace_nfs_direct_write_schedule_iovec(dreq);
 846
 847	nfs_pageio_init_write(&desc, inode, ioflags, false,
 848			      &nfs_direct_write_completion_ops);
 849	desc.pg_dreq = dreq;
 850	get_dreq(dreq);
 851	inode_dio_begin(inode);
 852
 853	NFS_I(inode)->write_io += iov_iter_count(iter);
 854	while (iov_iter_count(iter)) {
 855		struct page **pagevec;
 856		size_t bytes;
 857		size_t pgbase;
 858		unsigned npages, i;
 859
 860		result = iov_iter_get_pages_alloc2(iter, &pagevec,
 861						  wsize, &pgbase);
 862		if (result < 0)
 863			break;
 864
 865		bytes = result;
 866		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 867		for (i = 0; i < npages; i++) {
 868			struct nfs_page *req;
 869			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 870
 871			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
 872							pgbase, pos, req_len);
 873			if (IS_ERR(req)) {
 874				result = PTR_ERR(req);
 875				break;
 876			}
 877
 878			if (desc.pg_error < 0) {
 879				nfs_free_request(req);
 880				result = desc.pg_error;
 881				break;
 882			}
 883
 884			pgbase = 0;
 885			bytes -= req_len;
 886			requested_bytes += req_len;
 887			pos += req_len;
 888
 889			if (defer) {
 890				nfs_mark_request_commit(req, NULL, &cinfo, 0);
 891				continue;
 892			}
 893
 894			nfs_lock_request(req);
 895			if (nfs_pageio_add_request(&desc, req))
 896				continue;
 897
 898			/* Exit on hard errors */
 899			if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) {
 900				result = desc.pg_error;
 901				nfs_unlock_and_release_request(req);
 902				break;
 903			}
 904
 905			/* If the error is soft, defer remaining requests */
 906			nfs_init_cinfo_from_dreq(&cinfo, dreq);
 907			spin_lock(&dreq->lock);
 908			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 909			spin_unlock(&dreq->lock);
 910			nfs_unlock_request(req);
 911			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 912			desc.pg_error = 0;
 913			defer = true;
 914		}
 915		nfs_direct_release_pages(pagevec, npages);
 916		kvfree(pagevec);
 917		if (result < 0)
 918			break;
 
 919	}
 920	nfs_pageio_complete(&desc);
 
 921
 922	/*
 923	 * If no bytes were started, return the error, and let the
 924	 * generic layer handle the completion.
 925	 */
 926	if (requested_bytes == 0) {
 927		inode_dio_end(inode);
 928		nfs_direct_req_release(dreq);
 929		return result < 0 ? result : -EIO;
 930	}
 931
 932	if (put_dreq(dreq))
 933		nfs_direct_write_complete(dreq);
 934	return requested_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935}
 936
 937/**
 938 * nfs_file_direct_write - file direct write operation for NFS files
 939 * @iocb: target I/O control block
 940 * @iter: vector of user buffers from which to write data
 941 * @swap: flag indicating this is swap IO, not O_DIRECT IO
 
 942 *
 943 * We use this function for direct writes instead of calling
 944 * generic_file_aio_write() in order to avoid taking the inode
 945 * semaphore and updating the i_size.  The NFS server will set
 946 * the new i_size and this client must read the updated size
 947 * back into its cache.  We let the server do generic write
 948 * parameter checking and report problems.
 949 *
 950 * We eliminate local atime updates, see direct read above.
 951 *
 952 * We avoid unnecessary page cache invalidations for normal cached
 953 * readers of this file.
 954 *
 955 * Note that O_APPEND is not supported for NFS direct writes, as there
 956 * is no atomic O_APPEND write facility in the NFS protocol.
 957 */
 958ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
 959			      bool swap)
 960{
 961	ssize_t result, requested;
 962	size_t count;
 963	struct file *file = iocb->ki_filp;
 964	struct address_space *mapping = file->f_mapping;
 965	struct inode *inode = mapping->host;
 966	struct nfs_direct_req *dreq;
 967	struct nfs_lock_context *l_ctx;
 968	loff_t pos, end;
 969
 970	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 971		file, iov_iter_count(iter), (long long) iocb->ki_pos);
 972
 973	if (swap)
 974		/* bypass generic checks */
 975		result =  iov_iter_count(iter);
 976	else
 977		result = generic_write_checks(iocb, iter);
 978	if (result <= 0)
 979		return result;
 980	count = result;
 981	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 982
 983	pos = iocb->ki_pos;
 984	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 
 
 985
 986	task_io_account_write(count);
 
 
 987
 988	result = -ENOMEM;
 989	dreq = nfs_direct_req_alloc();
 990	if (!dreq)
 
 
 991		goto out;
 992
 993	dreq->inode = inode;
 994	dreq->max_count = count;
 995	dreq->io_start = pos;
 996	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 997	l_ctx = nfs_get_lock_context(dreq->ctx);
 998	if (IS_ERR(l_ctx)) {
 999		result = PTR_ERR(l_ctx);
1000		nfs_direct_req_release(dreq);
1001		goto out_release;
1002	}
1003	dreq->l_ctx = l_ctx;
1004	if (!is_sync_kiocb(iocb))
1005		dreq->iocb = iocb;
1006	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
1007
1008	if (swap) {
1009		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1010							    FLUSH_STABLE);
1011	} else {
1012		nfs_start_io_direct(inode);
1013
1014		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1015							    FLUSH_COND_STABLE);
1016
1017		if (mapping->nrpages) {
1018			invalidate_inode_pages2_range(mapping,
1019						      pos >> PAGE_SHIFT, end);
1020		}
1021
1022		nfs_end_io_direct(inode);
 
 
 
 
 
 
 
 
1023	}
1024
1025	if (requested > 0) {
1026		result = nfs_direct_wait(dreq);
1027		if (result > 0) {
1028			requested -= result;
1029			iocb->ki_pos = pos + result;
1030			/* XXX: should check the generic_write_sync retval */
1031			generic_write_sync(iocb, result);
1032		}
1033		iov_iter_revert(iter, requested);
1034	} else {
1035		result = requested;
1036	}
1037	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
1038out_release:
1039	nfs_direct_req_release(dreq);
1040out:
1041	return result;
1042}
1043
1044/**
1045 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1046 *
1047 */
1048int __init nfs_init_directcache(void)
1049{
1050	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1051						sizeof(struct nfs_direct_req),
1052						0, SLAB_RECLAIM_ACCOUNT,
 
1053						NULL);
1054	if (nfs_direct_cachep == NULL)
1055		return -ENOMEM;
1056
1057	return 0;
1058}
1059
1060/**
1061 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1062 *
1063 */
1064void nfs_destroy_directcache(void)
1065{
1066	kmem_cache_destroy(nfs_direct_cachep);
1067}