Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RISC-V performance counter support.
   4 *
   5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
   6 *
   7 * This code is based on ARM perf event code which is in turn based on
   8 * sparc64 and x86 code.
   9 */
  10
  11#define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
  12
  13#include <linux/mod_devicetable.h>
  14#include <linux/perf/riscv_pmu.h>
  15#include <linux/platform_device.h>
  16#include <linux/irq.h>
  17#include <linux/irqdomain.h>
  18#include <linux/of_irq.h>
  19#include <linux/of.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/sched/clock.h>
  22#include <linux/soc/andes/irq.h>
  23
  24#include <asm/errata_list.h>
  25#include <asm/sbi.h>
  26#include <asm/cpufeature.h>
  27
  28#define ALT_SBI_PMU_OVERFLOW(__ovl)					\
  29asm volatile(ALTERNATIVE_2(						\
  30	"csrr %0, " __stringify(CSR_SCOUNTOVF),				\
  31	"csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),		\
  32		THEAD_VENDOR_ID, ERRATA_THEAD_PMU,			\
  33		CONFIG_ERRATA_THEAD_PMU,				\
  34	"csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),			\
  35		0, RISCV_ISA_EXT_XANDESPMU,				\
  36		CONFIG_ANDES_CUSTOM_PMU)				\
  37	: "=r" (__ovl) :						\
  38	: "memory")
  39
  40#define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)			\
  41asm volatile(ALTERNATIVE(						\
  42	"csrc " __stringify(CSR_IP) ", %0\n\t",				\
  43	"csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",			\
  44		0, RISCV_ISA_EXT_XANDESPMU,				\
  45		CONFIG_ANDES_CUSTOM_PMU)				\
  46	: : "r"(__irq_mask)						\
  47	: "memory")
  48
  49#define SYSCTL_NO_USER_ACCESS	0
  50#define SYSCTL_USER_ACCESS	1
  51#define SYSCTL_LEGACY		2
  52
  53#define PERF_EVENT_FLAG_NO_USER_ACCESS	BIT(SYSCTL_NO_USER_ACCESS)
  54#define PERF_EVENT_FLAG_USER_ACCESS	BIT(SYSCTL_USER_ACCESS)
  55#define PERF_EVENT_FLAG_LEGACY		BIT(SYSCTL_LEGACY)
  56
  57PMU_FORMAT_ATTR(event, "config:0-47");
  58PMU_FORMAT_ATTR(firmware, "config:63");
  59
  60static struct attribute *riscv_arch_formats_attr[] = {
  61	&format_attr_event.attr,
  62	&format_attr_firmware.attr,
  63	NULL,
  64};
  65
  66static struct attribute_group riscv_pmu_format_group = {
  67	.name = "format",
  68	.attrs = riscv_arch_formats_attr,
  69};
  70
  71static const struct attribute_group *riscv_pmu_attr_groups[] = {
  72	&riscv_pmu_format_group,
  73	NULL,
  74};
  75
  76/* Allow user mode access by default */
  77static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
  78
  79/*
  80 * RISC-V doesn't have heterogeneous harts yet. This need to be part of
  81 * per_cpu in case of harts with different pmu counters
  82 */
  83static union sbi_pmu_ctr_info *pmu_ctr_list;
  84static bool riscv_pmu_use_irq;
  85static unsigned int riscv_pmu_irq_num;
  86static unsigned int riscv_pmu_irq_mask;
  87static unsigned int riscv_pmu_irq;
  88
  89/* Cache the available counters in a bitmask */
  90static unsigned long cmask;
  91
  92struct sbi_pmu_event_data {
  93	union {
  94		union {
  95			struct hw_gen_event {
  96				uint32_t event_code:16;
  97				uint32_t event_type:4;
  98				uint32_t reserved:12;
  99			} hw_gen_event;
 100			struct hw_cache_event {
 101				uint32_t result_id:1;
 102				uint32_t op_id:2;
 103				uint32_t cache_id:13;
 104				uint32_t event_type:4;
 105				uint32_t reserved:12;
 106			} hw_cache_event;
 107		};
 108		uint32_t event_idx;
 109	};
 110};
 111
 112static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
 113	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
 114							SBI_PMU_HW_CPU_CYCLES,
 115							SBI_PMU_EVENT_TYPE_HW, 0}},
 116	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
 117							SBI_PMU_HW_INSTRUCTIONS,
 118							SBI_PMU_EVENT_TYPE_HW, 0}},
 119	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
 120							SBI_PMU_HW_CACHE_REFERENCES,
 121							SBI_PMU_EVENT_TYPE_HW, 0}},
 122	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
 123							SBI_PMU_HW_CACHE_MISSES,
 124							SBI_PMU_EVENT_TYPE_HW, 0}},
 125	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
 126							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
 127							SBI_PMU_EVENT_TYPE_HW, 0}},
 128	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
 129							SBI_PMU_HW_BRANCH_MISSES,
 130							SBI_PMU_EVENT_TYPE_HW, 0}},
 131	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
 132							SBI_PMU_HW_BUS_CYCLES,
 133							SBI_PMU_EVENT_TYPE_HW, 0}},
 134	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
 135							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
 136							SBI_PMU_EVENT_TYPE_HW, 0}},
 137	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
 138							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
 139							SBI_PMU_EVENT_TYPE_HW, 0}},
 140	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
 141							SBI_PMU_HW_REF_CPU_CYCLES,
 142							SBI_PMU_EVENT_TYPE_HW, 0}},
 143};
 144
 145#define C(x) PERF_COUNT_HW_CACHE_##x
 146static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
 147[PERF_COUNT_HW_CACHE_OP_MAX]
 148[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 149	[C(L1D)] = {
 150		[C(OP_READ)] = {
 151			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 152					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 153			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 154					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 155		},
 156		[C(OP_WRITE)] = {
 157			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 158					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 159			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 160					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 161		},
 162		[C(OP_PREFETCH)] = {
 163			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 164					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 165			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 166					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 167		},
 168	},
 169	[C(L1I)] = {
 170		[C(OP_READ)] = {
 171			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
 172					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 173			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
 174					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 175		},
 176		[C(OP_WRITE)] = {
 177			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 178					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 179			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 180					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 181		},
 182		[C(OP_PREFETCH)] = {
 183			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 184					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 185			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 186					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 187		},
 188	},
 189	[C(LL)] = {
 190		[C(OP_READ)] = {
 191			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 192					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 193			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 194					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 195		},
 196		[C(OP_WRITE)] = {
 197			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 198					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 199			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 200					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 201		},
 202		[C(OP_PREFETCH)] = {
 203			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 204					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 205			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 206					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 207		},
 208	},
 209	[C(DTLB)] = {
 210		[C(OP_READ)] = {
 211			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 212					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 213			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 214					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 215		},
 216		[C(OP_WRITE)] = {
 217			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 218					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 219			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 220					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 221		},
 222		[C(OP_PREFETCH)] = {
 223			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 224					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 225			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 226					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 227		},
 228	},
 229	[C(ITLB)] = {
 230		[C(OP_READ)] = {
 231			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 232					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 233			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 234					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 235		},
 236		[C(OP_WRITE)] = {
 237			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 238					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 239			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 240					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 241		},
 242		[C(OP_PREFETCH)] = {
 243			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 244					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 245			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 246					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 247		},
 248	},
 249	[C(BPU)] = {
 250		[C(OP_READ)] = {
 251			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 252					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 253			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 254					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 255		},
 256		[C(OP_WRITE)] = {
 257			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 258					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 259			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 260					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 261		},
 262		[C(OP_PREFETCH)] = {
 263			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 264					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 265			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 266					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 267		},
 268	},
 269	[C(NODE)] = {
 270		[C(OP_READ)] = {
 271			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 272					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 273			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 274					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 275		},
 276		[C(OP_WRITE)] = {
 277			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 278					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 279			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 280					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 281		},
 282		[C(OP_PREFETCH)] = {
 283			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 284					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 285			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 286					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 287		},
 288	},
 289};
 290
 291static int pmu_sbi_ctr_get_width(int idx)
 292{
 293	return pmu_ctr_list[idx].width;
 294}
 295
 296static bool pmu_sbi_ctr_is_fw(int cidx)
 297{
 298	union sbi_pmu_ctr_info *info;
 299
 300	info = &pmu_ctr_list[cidx];
 301	if (!info)
 302		return false;
 303
 304	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
 305}
 306
 307/*
 308 * Returns the counter width of a programmable counter and number of hardware
 309 * counters. As we don't support heterogeneous CPUs yet, it is okay to just
 310 * return the counter width of the first programmable counter.
 311 */
 312int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
 313{
 314	int i;
 315	union sbi_pmu_ctr_info *info;
 316	u32 hpm_width = 0, hpm_count = 0;
 317
 318	if (!cmask)
 319		return -EINVAL;
 320
 321	for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
 322		info = &pmu_ctr_list[i];
 323		if (!info)
 324			continue;
 325		if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
 326			hpm_width = info->width;
 327		if (info->type == SBI_PMU_CTR_TYPE_HW)
 328			hpm_count++;
 329	}
 330
 331	*hw_ctr_width = hpm_width;
 332	*num_hw_ctr = hpm_count;
 333
 334	return 0;
 335}
 336EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
 337
 338static uint8_t pmu_sbi_csr_index(struct perf_event *event)
 339{
 340	return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
 341}
 342
 343static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
 344{
 345	unsigned long cflags = 0;
 346	bool guest_events = false;
 347
 348	if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
 349		guest_events = true;
 350	if (event->attr.exclude_kernel)
 351		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
 352	if (event->attr.exclude_user)
 353		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
 354	if (guest_events && event->attr.exclude_hv)
 355		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
 356	if (event->attr.exclude_host)
 357		cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
 358	if (event->attr.exclude_guest)
 359		cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
 360
 361	return cflags;
 362}
 363
 364static int pmu_sbi_ctr_get_idx(struct perf_event *event)
 365{
 366	struct hw_perf_event *hwc = &event->hw;
 367	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 368	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 369	struct sbiret ret;
 370	int idx;
 371	uint64_t cbase = 0, cmask = rvpmu->cmask;
 372	unsigned long cflags = 0;
 373
 374	cflags = pmu_sbi_get_filter_flags(event);
 375
 376	/*
 377	 * In legacy mode, we have to force the fixed counters for those events
 378	 * but not in the user access mode as we want to use the other counters
 379	 * that support sampling/filtering.
 380	 */
 381	if (hwc->flags & PERF_EVENT_FLAG_LEGACY) {
 382		if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
 383			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 384			cmask = 1;
 385		} else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
 386			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 387			cmask = 1UL << (CSR_INSTRET - CSR_CYCLE);
 388		}
 389	}
 390
 391	/* retrieve the available counter index */
 392#if defined(CONFIG_32BIT)
 393	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 394			cmask, cflags, hwc->event_base, hwc->config,
 395			hwc->config >> 32);
 396#else
 397	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 398			cmask, cflags, hwc->event_base, hwc->config, 0);
 399#endif
 400	if (ret.error) {
 401		pr_debug("Not able to find a counter for event %lx config %llx\n",
 402			hwc->event_base, hwc->config);
 403		return sbi_err_map_linux_errno(ret.error);
 404	}
 405
 406	idx = ret.value;
 407	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
 408		return -ENOENT;
 409
 410	/* Additional sanity check for the counter id */
 411	if (pmu_sbi_ctr_is_fw(idx)) {
 412		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
 413			return idx;
 414	} else {
 415		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
 416			return idx;
 417	}
 418
 419	return -ENOENT;
 420}
 421
 422static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
 423{
 424
 425	struct hw_perf_event *hwc = &event->hw;
 426	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 427	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 428	int idx = hwc->idx;
 429
 430	if (pmu_sbi_ctr_is_fw(idx))
 431		clear_bit(idx, cpuc->used_fw_ctrs);
 432	else
 433		clear_bit(idx, cpuc->used_hw_ctrs);
 434}
 435
 436static int pmu_event_find_cache(u64 config)
 437{
 438	unsigned int cache_type, cache_op, cache_result, ret;
 439
 440	cache_type = (config >>  0) & 0xff;
 441	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 442		return -EINVAL;
 443
 444	cache_op = (config >>  8) & 0xff;
 445	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 446		return -EINVAL;
 447
 448	cache_result = (config >> 16) & 0xff;
 449	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 450		return -EINVAL;
 451
 452	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
 453
 454	return ret;
 455}
 456
 457static bool pmu_sbi_is_fw_event(struct perf_event *event)
 458{
 459	u32 type = event->attr.type;
 460	u64 config = event->attr.config;
 461
 462	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
 463		return true;
 464	else
 465		return false;
 466}
 467
 468static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
 469{
 470	u32 type = event->attr.type;
 471	u64 config = event->attr.config;
 472	int bSoftware;
 473	u64 raw_config_val;
 474	int ret;
 475
 476	switch (type) {
 477	case PERF_TYPE_HARDWARE:
 478		if (config >= PERF_COUNT_HW_MAX)
 479			return -EINVAL;
 480		ret = pmu_hw_event_map[event->attr.config].event_idx;
 481		break;
 482	case PERF_TYPE_HW_CACHE:
 483		ret = pmu_event_find_cache(config);
 484		break;
 485	case PERF_TYPE_RAW:
 486		/*
 487		 * As per SBI specification, the upper 16 bits must be unused for
 488		 * a raw event. Use the MSB (63b) to distinguish between hardware
 489		 * raw event and firmware events.
 490		 */
 491		bSoftware = config >> 63;
 492		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
 493		if (bSoftware) {
 494			ret = (raw_config_val & 0xFFFF) |
 495				(SBI_PMU_EVENT_TYPE_FW << 16);
 496		} else {
 497			ret = RISCV_PMU_RAW_EVENT_IDX;
 498			*econfig = raw_config_val;
 499		}
 500		break;
 501	default:
 502		ret = -EINVAL;
 503		break;
 504	}
 505
 506	return ret;
 507}
 508
 509static u64 pmu_sbi_ctr_read(struct perf_event *event)
 510{
 511	struct hw_perf_event *hwc = &event->hw;
 512	int idx = hwc->idx;
 513	struct sbiret ret;
 514	union sbi_pmu_ctr_info info;
 515	u64 val = 0;
 516
 517	if (pmu_sbi_is_fw_event(event)) {
 518		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
 519				hwc->idx, 0, 0, 0, 0, 0);
 520		if (!ret.error)
 521			val = ret.value;
 522	} else {
 523		info = pmu_ctr_list[idx];
 524		val = riscv_pmu_ctr_read_csr(info.csr);
 525		if (IS_ENABLED(CONFIG_32BIT))
 526			val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
 527	}
 528
 529	return val;
 530}
 531
 532static void pmu_sbi_set_scounteren(void *arg)
 533{
 534	struct perf_event *event = (struct perf_event *)arg;
 535
 536	if (event->hw.idx != -1)
 537		csr_write(CSR_SCOUNTEREN,
 538			  csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
 539}
 540
 541static void pmu_sbi_reset_scounteren(void *arg)
 542{
 543	struct perf_event *event = (struct perf_event *)arg;
 544
 545	if (event->hw.idx != -1)
 546		csr_write(CSR_SCOUNTEREN,
 547			  csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
 548}
 549
 550static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
 551{
 552	struct sbiret ret;
 553	struct hw_perf_event *hwc = &event->hw;
 554	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 555
 556#if defined(CONFIG_32BIT)
 557	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 558			1, flag, ival, ival >> 32, 0);
 559#else
 560	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 561			1, flag, ival, 0, 0);
 562#endif
 563	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
 564		pr_err("Starting counter idx %d failed with error %d\n",
 565			hwc->idx, sbi_err_map_linux_errno(ret.error));
 566
 567	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 568	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 569		pmu_sbi_set_scounteren((void *)event);
 570}
 571
 572static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
 573{
 574	struct sbiret ret;
 575	struct hw_perf_event *hwc = &event->hw;
 576
 577	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 578	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 579		pmu_sbi_reset_scounteren((void *)event);
 580
 581	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
 582	if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
 583		flag != SBI_PMU_STOP_FLAG_RESET)
 584		pr_err("Stopping counter idx %d failed with error %d\n",
 585			hwc->idx, sbi_err_map_linux_errno(ret.error));
 586}
 587
 588static int pmu_sbi_find_num_ctrs(void)
 589{
 590	struct sbiret ret;
 591
 592	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
 593	if (!ret.error)
 594		return ret.value;
 595	else
 596		return sbi_err_map_linux_errno(ret.error);
 597}
 598
 599static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
 600{
 601	struct sbiret ret;
 602	int i, num_hw_ctr = 0, num_fw_ctr = 0;
 603	union sbi_pmu_ctr_info cinfo;
 604
 605	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
 606	if (!pmu_ctr_list)
 607		return -ENOMEM;
 608
 609	for (i = 0; i < nctr; i++) {
 610		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
 611		if (ret.error)
 612			/* The logical counter ids are not expected to be contiguous */
 613			continue;
 614
 615		*mask |= BIT(i);
 616
 617		cinfo.value = ret.value;
 618		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
 619			num_fw_ctr++;
 620		else
 621			num_hw_ctr++;
 622		pmu_ctr_list[i].value = cinfo.value;
 623	}
 624
 625	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
 626
 627	return 0;
 628}
 629
 630static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
 631{
 632	/*
 633	 * No need to check the error because we are disabling all the counters
 634	 * which may include counters that are not enabled yet.
 635	 */
 636	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
 637		  0, pmu->cmask, 0, 0, 0, 0);
 638}
 639
 640static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
 641{
 642	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 643
 644	/* No need to check the error here as we can't do anything about the error */
 645	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
 646		  cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
 647}
 648
 649/*
 650 * This function starts all the used counters in two step approach.
 651 * Any counter that did not overflow can be start in a single step
 652 * while the overflowed counters need to be started with updated initialization
 653 * value.
 654 */
 655static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
 656					       unsigned long ctr_ovf_mask)
 657{
 658	int idx = 0;
 659	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 660	struct perf_event *event;
 661	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 662	unsigned long ctr_start_mask = 0;
 663	uint64_t max_period;
 664	struct hw_perf_event *hwc;
 665	u64 init_val = 0;
 666
 667	ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
 668
 669	/* Start all the counters that did not overflow in a single shot */
 670	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
 671		  0, 0, 0, 0);
 672
 673	/* Reinitialize and start all the counter that overflowed */
 674	while (ctr_ovf_mask) {
 675		if (ctr_ovf_mask & 0x01) {
 676			event = cpu_hw_evt->events[idx];
 677			hwc = &event->hw;
 678			max_period = riscv_pmu_ctr_get_width_mask(event);
 679			init_val = local64_read(&hwc->prev_count) & max_period;
 680#if defined(CONFIG_32BIT)
 681			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 682				  flag, init_val, init_val >> 32, 0);
 683#else
 684			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 685				  flag, init_val, 0, 0);
 686#endif
 687			perf_event_update_userpage(event);
 688		}
 689		ctr_ovf_mask = ctr_ovf_mask >> 1;
 690		idx++;
 691	}
 692}
 693
 694static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
 695{
 696	struct perf_sample_data data;
 697	struct pt_regs *regs;
 698	struct hw_perf_event *hw_evt;
 699	union sbi_pmu_ctr_info *info;
 700	int lidx, hidx, fidx;
 701	struct riscv_pmu *pmu;
 702	struct perf_event *event;
 703	unsigned long overflow;
 704	unsigned long overflowed_ctrs = 0;
 705	struct cpu_hw_events *cpu_hw_evt = dev;
 706	u64 start_clock = sched_clock();
 707
 708	if (WARN_ON_ONCE(!cpu_hw_evt))
 709		return IRQ_NONE;
 710
 711	/* Firmware counter don't support overflow yet */
 712	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
 713	if (fidx == RISCV_MAX_COUNTERS) {
 714		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
 715		return IRQ_NONE;
 716	}
 717
 718	event = cpu_hw_evt->events[fidx];
 719	if (!event) {
 720		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 721		return IRQ_NONE;
 722	}
 723
 724	pmu = to_riscv_pmu(event->pmu);
 725	pmu_sbi_stop_hw_ctrs(pmu);
 726
 727	/* Overflow status register should only be read after counter are stopped */
 728	ALT_SBI_PMU_OVERFLOW(overflow);
 729
 730	/*
 731	 * Overflow interrupt pending bit should only be cleared after stopping
 732	 * all the counters to avoid any race condition.
 733	 */
 734	ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 735
 736	/* No overflow bit is set */
 737	if (!overflow)
 738		return IRQ_NONE;
 739
 740	regs = get_irq_regs();
 741
 742	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
 743		struct perf_event *event = cpu_hw_evt->events[lidx];
 744
 745		/* Skip if invalid event or user did not request a sampling */
 746		if (!event || !is_sampling_event(event))
 747			continue;
 748
 749		info = &pmu_ctr_list[lidx];
 750		/* Do a sanity check */
 751		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
 752			continue;
 753
 754		/* compute hardware counter index */
 755		hidx = info->csr - CSR_CYCLE;
 756		/* check if the corresponding bit is set in sscountovf */
 757		if (!(overflow & BIT(hidx)))
 758			continue;
 759
 760		/*
 761		 * Keep a track of overflowed counters so that they can be started
 762		 * with updated initial value.
 763		 */
 764		overflowed_ctrs |= BIT(lidx);
 765		hw_evt = &event->hw;
 766		riscv_pmu_event_update(event);
 767		perf_sample_data_init(&data, 0, hw_evt->last_period);
 768		if (riscv_pmu_event_set_period(event)) {
 769			/*
 770			 * Unlike other ISAs, RISC-V don't have to disable interrupts
 771			 * to avoid throttling here. As per the specification, the
 772			 * interrupt remains disabled until the OF bit is set.
 773			 * Interrupts are enabled again only during the start.
 774			 * TODO: We will need to stop the guest counters once
 775			 * virtualization support is added.
 776			 */
 777			perf_event_overflow(event, &data, regs);
 778		}
 779	}
 780
 781	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
 782	perf_sample_event_took(sched_clock() - start_clock);
 783
 784	return IRQ_HANDLED;
 785}
 786
 787static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
 788{
 789	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
 790	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 791
 792	/*
 793	 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
 794	 * legacy option but that will be removed in the future.
 795	 */
 796	if (sysctl_perf_user_access == SYSCTL_LEGACY)
 797		csr_write(CSR_SCOUNTEREN, 0x7);
 798	else
 799		csr_write(CSR_SCOUNTEREN, 0x2);
 800
 801	/* Stop all the counters so that they can be enabled from perf */
 802	pmu_sbi_stop_all(pmu);
 803
 804	if (riscv_pmu_use_irq) {
 805		cpu_hw_evt->irq = riscv_pmu_irq;
 806		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 807		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
 808	}
 809
 810	return 0;
 811}
 812
 813static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
 814{
 815	if (riscv_pmu_use_irq) {
 816		disable_percpu_irq(riscv_pmu_irq);
 817	}
 818
 819	/* Disable all counters access for user mode now */
 820	csr_write(CSR_SCOUNTEREN, 0x0);
 821
 822	return 0;
 823}
 824
 825static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
 826{
 827	int ret;
 828	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
 829	struct irq_domain *domain = NULL;
 830
 831	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
 832		riscv_pmu_irq_num = RV_IRQ_PMU;
 833		riscv_pmu_use_irq = true;
 834	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
 835		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
 836		   riscv_cached_marchid(0) == 0 &&
 837		   riscv_cached_mimpid(0) == 0) {
 838		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
 839		riscv_pmu_use_irq = true;
 840	} else if (riscv_isa_extension_available(NULL, XANDESPMU) &&
 841		   IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
 842		riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
 843		riscv_pmu_use_irq = true;
 844	}
 845
 846	riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);
 847
 848	if (!riscv_pmu_use_irq)
 849		return -EOPNOTSUPP;
 850
 851	domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
 852					  DOMAIN_BUS_ANY);
 853	if (!domain) {
 854		pr_err("Failed to find INTC IRQ root domain\n");
 855		return -ENODEV;
 856	}
 857
 858	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
 859	if (!riscv_pmu_irq) {
 860		pr_err("Failed to map PMU interrupt for node\n");
 861		return -ENODEV;
 862	}
 863
 864	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
 865	if (ret) {
 866		pr_err("registering percpu irq failed [%d]\n", ret);
 867		return ret;
 868	}
 869
 870	return 0;
 871}
 872
 873#ifdef CONFIG_CPU_PM
 874static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 875				void *v)
 876{
 877	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
 878	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 879	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
 880	struct perf_event *event;
 881	int idx;
 882
 883	if (!enabled)
 884		return NOTIFY_OK;
 885
 886	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
 887		event = cpuc->events[idx];
 888		if (!event)
 889			continue;
 890
 891		switch (cmd) {
 892		case CPU_PM_ENTER:
 893			/*
 894			 * Stop and update the counter
 895			 */
 896			riscv_pmu_stop(event, PERF_EF_UPDATE);
 897			break;
 898		case CPU_PM_EXIT:
 899		case CPU_PM_ENTER_FAILED:
 900			/*
 901			 * Restore and enable the counter.
 902			 */
 903			riscv_pmu_start(event, PERF_EF_RELOAD);
 904			break;
 905		default:
 906			break;
 907		}
 908	}
 909
 910	return NOTIFY_OK;
 911}
 912
 913static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
 914{
 915	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
 916	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
 917}
 918
 919static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
 920{
 921	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
 922}
 923#else
 924static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
 925static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
 926#endif
 927
 928static void riscv_pmu_destroy(struct riscv_pmu *pmu)
 929{
 930	riscv_pm_pmu_unregister(pmu);
 931	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
 932}
 933
 934static void pmu_sbi_event_init(struct perf_event *event)
 935{
 936	/*
 937	 * The permissions are set at event_init so that we do not depend
 938	 * on the sysctl value that can change.
 939	 */
 940	if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
 941		event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
 942	else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
 943		event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
 944	else
 945		event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
 946}
 947
 948static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
 949{
 950	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
 951		return;
 952
 953	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
 954		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
 955		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
 956			return;
 957		}
 958	}
 959
 960	/*
 961	 * The user mmapped the event to directly access it: this is where
 962	 * we determine based on sysctl_perf_user_access if we grant userspace
 963	 * the direct access to this event. That means that within the same
 964	 * task, some events may be directly accessible and some other may not,
 965	 * if the user changes the value of sysctl_perf_user_accesss in the
 966	 * meantime.
 967	 */
 968
 969	event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
 970
 971	/*
 972	 * We must enable userspace access *before* advertising in the user page
 973	 * that it is possible to do so to avoid any race.
 974	 * And we must notify all cpus here because threads that currently run
 975	 * on other cpus will try to directly access the counter too without
 976	 * calling pmu_sbi_ctr_start.
 977	 */
 978	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
 979		on_each_cpu_mask(mm_cpumask(mm),
 980				 pmu_sbi_set_scounteren, (void *)event, 1);
 981}
 982
 983static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
 984{
 985	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
 986		return;
 987
 988	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
 989		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
 990		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
 991			return;
 992		}
 993	}
 994
 995	/*
 996	 * Here we can directly remove user access since the user does not have
 997	 * access to the user page anymore so we avoid the racy window where the
 998	 * user could have read cap_user_rdpmc to true right before we disable
 999	 * it.
1000	 */
1001	event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
1002
1003	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1004		on_each_cpu_mask(mm_cpumask(mm),
1005				 pmu_sbi_reset_scounteren, (void *)event, 1);
1006}
1007
1008static void riscv_pmu_update_counter_access(void *info)
1009{
1010	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1011		csr_write(CSR_SCOUNTEREN, 0x7);
1012	else
1013		csr_write(CSR_SCOUNTEREN, 0x2);
1014}
1015
1016static int riscv_pmu_proc_user_access_handler(struct ctl_table *table,
1017					      int write, void *buffer,
1018					      size_t *lenp, loff_t *ppos)
1019{
1020	int prev = sysctl_perf_user_access;
1021	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1022
1023	/*
1024	 * Test against the previous value since we clear SCOUNTEREN when
1025	 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1026	 * not do that if that was already the case.
1027	 */
1028	if (ret || !write || prev == sysctl_perf_user_access)
1029		return ret;
1030
1031	on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1032
1033	return 0;
1034}
1035
1036static struct ctl_table sbi_pmu_sysctl_table[] = {
1037	{
1038		.procname       = "perf_user_access",
1039		.data		= &sysctl_perf_user_access,
1040		.maxlen		= sizeof(unsigned int),
1041		.mode           = 0644,
1042		.proc_handler	= riscv_pmu_proc_user_access_handler,
1043		.extra1		= SYSCTL_ZERO,
1044		.extra2		= SYSCTL_TWO,
1045	},
1046	{ }
1047};
1048
1049static int pmu_sbi_device_probe(struct platform_device *pdev)
1050{
1051	struct riscv_pmu *pmu = NULL;
1052	int ret = -ENODEV;
1053	int num_counters;
1054
1055	pr_info("SBI PMU extension is available\n");
1056	pmu = riscv_pmu_alloc();
1057	if (!pmu)
1058		return -ENOMEM;
1059
1060	num_counters = pmu_sbi_find_num_ctrs();
1061	if (num_counters < 0) {
1062		pr_err("SBI PMU extension doesn't provide any counters\n");
1063		goto out_free;
1064	}
1065
1066	/* It is possible to get from SBI more than max number of counters */
1067	if (num_counters > RISCV_MAX_COUNTERS) {
1068		num_counters = RISCV_MAX_COUNTERS;
1069		pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1070	}
1071
1072	/* cache all the information about counters now */
1073	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1074		goto out_free;
1075
1076	ret = pmu_sbi_setup_irqs(pmu, pdev);
1077	if (ret < 0) {
1078		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1079		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1080		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1081	}
1082
1083	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1084	pmu->cmask = cmask;
1085	pmu->ctr_start = pmu_sbi_ctr_start;
1086	pmu->ctr_stop = pmu_sbi_ctr_stop;
1087	pmu->event_map = pmu_sbi_event_map;
1088	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1089	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1090	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1091	pmu->ctr_read = pmu_sbi_ctr_read;
1092	pmu->event_init = pmu_sbi_event_init;
1093	pmu->event_mapped = pmu_sbi_event_mapped;
1094	pmu->event_unmapped = pmu_sbi_event_unmapped;
1095	pmu->csr_index = pmu_sbi_csr_index;
1096
1097	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1098	if (ret)
1099		return ret;
1100
1101	ret = riscv_pm_pmu_register(pmu);
1102	if (ret)
1103		goto out_unregister;
1104
1105	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1106	if (ret)
1107		goto out_unregister;
1108
1109	register_sysctl("kernel", sbi_pmu_sysctl_table);
1110
1111	return 0;
1112
1113out_unregister:
1114	riscv_pmu_destroy(pmu);
1115
1116out_free:
1117	kfree(pmu);
1118	return ret;
1119}
1120
1121static struct platform_driver pmu_sbi_driver = {
1122	.probe		= pmu_sbi_device_probe,
1123	.driver		= {
1124		.name	= RISCV_PMU_SBI_PDEV_NAME,
1125	},
1126};
1127
1128static int __init pmu_sbi_devinit(void)
1129{
1130	int ret;
1131	struct platform_device *pdev;
1132
1133	if (sbi_spec_version < sbi_mk_version(0, 3) ||
1134	    !sbi_probe_extension(SBI_EXT_PMU)) {
1135		return 0;
1136	}
1137
1138	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1139				      "perf/riscv/pmu:starting",
1140				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1141	if (ret) {
1142		pr_err("CPU hotplug notifier could not be registered: %d\n",
1143		       ret);
1144		return ret;
1145	}
1146
1147	ret = platform_driver_register(&pmu_sbi_driver);
1148	if (ret)
1149		return ret;
1150
1151	pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1152	if (IS_ERR(pdev)) {
1153		platform_driver_unregister(&pmu_sbi_driver);
1154		return PTR_ERR(pdev);
1155	}
1156
1157	/* Notify legacy implementation that SBI pmu is available*/
1158	riscv_pmu_legacy_skip_init();
1159
1160	return ret;
1161}
1162device_initcall(pmu_sbi_devinit)