Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; if not, write to the Free Software
  24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  27 *
  28 */
  29
 
 
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/mm.h>
  34#include <linux/highmem.h>
 
  35#include <linux/pci.h>
  36#include <linux/interrupt.h>
  37#include <linux/kmod.h>
  38#include <linux/delay.h>
  39#include <linux/workqueue.h>
  40#include <linux/nmi.h>
  41#include <linux/acpi.h>
  42#include <linux/acpi_io.h>
  43#include <linux/efi.h>
  44#include <linux/ioport.h>
  45#include <linux/list.h>
  46#include <linux/jiffies.h>
  47#include <linux/semaphore.h>
 
  48
  49#include <asm/io.h>
  50#include <asm/uaccess.h>
 
  51
  52#include <acpi/acpi.h>
  53#include <acpi/acpi_bus.h>
  54#include <acpi/processor.h>
  55
 
  56#define _COMPONENT		ACPI_OS_SERVICES
  57ACPI_MODULE_NAME("osl");
  58#define PREFIX		"ACPI: "
  59struct acpi_os_dpc {
  60	acpi_osd_exec_callback function;
  61	void *context;
  62	struct work_struct work;
  63	int wait;
  64};
  65
  66#ifdef CONFIG_ACPI_CUSTOM_DSDT
  67#include CONFIG_ACPI_CUSTOM_DSDT_FILE
  68#endif
  69
  70#ifdef ENABLE_DEBUGGER
  71#include <linux/kdb.h>
  72
  73/* stuff for debugger support */
  74int acpi_in_debugger;
  75EXPORT_SYMBOL(acpi_in_debugger);
  76
  77extern char line_buf[80];
  78#endif				/*ENABLE_DEBUGGER */
  79
  80static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  81				      u32 pm1b_ctrl);
 
 
  82
  83static acpi_osd_handler acpi_irq_handler;
  84static void *acpi_irq_context;
  85static struct workqueue_struct *kacpid_wq;
  86static struct workqueue_struct *kacpi_notify_wq;
  87struct workqueue_struct *kacpi_hotplug_wq;
  88EXPORT_SYMBOL(kacpi_hotplug_wq);
 
 
  89
  90/*
  91 * This list of permanent mappings is for memory that may be accessed from
  92 * interrupt context, where we can't do the ioremap().
  93 */
  94struct acpi_ioremap {
  95	struct list_head list;
  96	void __iomem *virt;
  97	acpi_physical_address phys;
  98	acpi_size size;
  99	unsigned long refcount;
 
 
 
 100};
 101
 102static LIST_HEAD(acpi_ioremaps);
 103static DEFINE_MUTEX(acpi_ioremap_lock);
 104
 105static void __init acpi_osi_setup_late(void);
 106
 107/*
 108 * The story of _OSI(Linux)
 109 *
 110 * From pre-history through Linux-2.6.22,
 111 * Linux responded TRUE upon a BIOS OSI(Linux) query.
 112 *
 113 * Unfortunately, reference BIOS writers got wind of this
 114 * and put OSI(Linux) in their example code, quickly exposing
 115 * this string as ill-conceived and opening the door to
 116 * an un-bounded number of BIOS incompatibilities.
 117 *
 118 * For example, OSI(Linux) was used on resume to re-POST a
 119 * video card on one system, because Linux at that time
 120 * could not do a speedy restore in its native driver.
 121 * But then upon gaining quick native restore capability,
 122 * Linux has no way to tell the BIOS to skip the time-consuming
 123 * POST -- putting Linux at a permanent performance disadvantage.
 124 * On another system, the BIOS writer used OSI(Linux)
 125 * to infer native OS support for IPMI!  On other systems,
 126 * OSI(Linux) simply got in the way of Linux claiming to
 127 * be compatible with other operating systems, exposing
 128 * BIOS issues such as skipped device initialization.
 129 *
 130 * So "Linux" turned out to be a really poor chose of
 131 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
 132 *
 133 * BIOS writers should NOT query _OSI(Linux) on future systems.
 134 * Linux will complain on the console when it sees it, and return FALSE.
 135 * To get Linux to return TRUE for your system  will require
 136 * a kernel source update to add a DMI entry,
 137 * or boot with "acpi_osi=Linux"
 138 */
 139
 140static struct osi_linux {
 141	unsigned int	enable:1;
 142	unsigned int	dmi:1;
 143	unsigned int	cmdline:1;
 144} osi_linux = {0, 0, 0};
 145
 146static u32 acpi_osi_handler(acpi_string interface, u32 supported)
 147{
 148	if (!strcmp("Linux", interface)) {
 149
 150		printk_once(KERN_NOTICE FW_BUG PREFIX
 151			"BIOS _OSI(Linux) query %s%s\n",
 152			osi_linux.enable ? "honored" : "ignored",
 153			osi_linux.cmdline ? " via cmdline" :
 154			osi_linux.dmi ? " via DMI" : "");
 155	}
 156
 157	return supported;
 158}
 159
 160static void __init acpi_request_region (struct acpi_generic_address *gas,
 161	unsigned int length, char *desc)
 162{
 163	u64 addr;
 164
 165	/* Handle possible alignment issues */
 166	memcpy(&addr, &gas->address, sizeof(addr));
 167	if (!addr || !length)
 168		return;
 169
 170	/* Resources are never freed */
 171	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 172		request_region(addr, length, desc);
 173	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 174		request_mem_region(addr, length, desc);
 175}
 176
 177static int __init acpi_reserve_resources(void)
 178{
 179	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 180		"ACPI PM1a_EVT_BLK");
 181
 182	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 183		"ACPI PM1b_EVT_BLK");
 184
 185	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 186		"ACPI PM1a_CNT_BLK");
 187
 188	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 189		"ACPI PM1b_CNT_BLK");
 190
 191	if (acpi_gbl_FADT.pm_timer_length == 4)
 192		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 193
 194	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 195		"ACPI PM2_CNT_BLK");
 196
 197	/* Length of GPE blocks must be a non-negative multiple of 2 */
 198
 199	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 200		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 201			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 202
 203	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 204		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 205			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 206
 207	return 0;
 208}
 209device_initcall(acpi_reserve_resources);
 210
 211void acpi_os_printf(const char *fmt, ...)
 212{
 213	va_list args;
 214	va_start(args, fmt);
 215	acpi_os_vprintf(fmt, args);
 216	va_end(args);
 217}
 
 218
 219void acpi_os_vprintf(const char *fmt, va_list args)
 220{
 221	static char buffer[512];
 222
 223	vsprintf(buffer, fmt, args);
 224
 225#ifdef ENABLE_DEBUGGER
 226	if (acpi_in_debugger) {
 227		kdb_printf("%s", buffer);
 228	} else {
 229		printk(KERN_CONT "%s", buffer);
 
 
 
 230	}
 231#else
 232	printk(KERN_CONT "%s", buffer);
 
 
 
 
 
 233#endif
 234}
 235
 236#ifdef CONFIG_KEXEC
 237static unsigned long acpi_rsdp;
 238static int __init setup_acpi_rsdp(char *arg)
 239{
 240	acpi_rsdp = simple_strtoul(arg, NULL, 16);
 241	return 0;
 242}
 243early_param("acpi_rsdp", setup_acpi_rsdp);
 244#endif
 245
 246acpi_physical_address __init acpi_os_get_root_pointer(void)
 247{
 
 
 248#ifdef CONFIG_KEXEC
 249	if (acpi_rsdp)
 
 
 
 
 
 
 
 
 
 
 250		return acpi_rsdp;
 
 251#endif
 
 
 
 252
 253	if (efi_enabled) {
 254		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 255			return efi.acpi20;
 256		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 257			return efi.acpi;
 258		else {
 259			printk(KERN_ERR PREFIX
 260			       "System description tables not found\n");
 261			return 0;
 262		}
 263	} else {
 264		acpi_physical_address pa = 0;
 265
 266		acpi_find_root_pointer(&pa);
 267		return pa;
 268	}
 
 
 269}
 270
 271/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 272static struct acpi_ioremap *
 273acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 274{
 275	struct acpi_ioremap *map;
 276
 277	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 278		if (map->phys <= phys &&
 279		    phys + size <= map->phys + map->size)
 280			return map;
 281
 282	return NULL;
 283}
 284
 285/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 286static void __iomem *
 287acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 288{
 289	struct acpi_ioremap *map;
 290
 291	map = acpi_map_lookup(phys, size);
 292	if (map)
 293		return map->virt + (phys - map->phys);
 294
 295	return NULL;
 296}
 297
 298void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 299{
 300	struct acpi_ioremap *map;
 301	void __iomem *virt = NULL;
 302
 303	mutex_lock(&acpi_ioremap_lock);
 304	map = acpi_map_lookup(phys, size);
 305	if (map) {
 306		virt = map->virt + (phys - map->phys);
 307		map->refcount++;
 308	}
 309	mutex_unlock(&acpi_ioremap_lock);
 310	return virt;
 311}
 312EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 313
 314/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 315static struct acpi_ioremap *
 316acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 317{
 318	struct acpi_ioremap *map;
 319
 320	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 321		if (map->virt <= virt &&
 322		    virt + size <= map->virt + map->size)
 323			return map;
 324
 325	return NULL;
 326}
 327
 328#ifndef CONFIG_IA64
 329#define should_use_kmap(pfn)   page_is_ram(pfn)
 330#else
 331/* ioremap will take care of cache attributes */
 332#define should_use_kmap(pfn)   0
 
 
 333#endif
 334
 335static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 336{
 337	unsigned long pfn;
 338
 339	pfn = pg_off >> PAGE_SHIFT;
 340	if (should_use_kmap(pfn)) {
 341		if (pg_sz > PAGE_SIZE)
 342			return NULL;
 343		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 344	} else
 345		return acpi_os_ioremap(pg_off, pg_sz);
 346}
 347
 348static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 349{
 350	unsigned long pfn;
 351
 352	pfn = pg_off >> PAGE_SHIFT;
 353	if (should_use_kmap(pfn))
 354		kunmap(pfn_to_page(pfn));
 355	else
 356		iounmap(vaddr);
 357}
 358
 359void __iomem *__init_refok
 360acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 361{
 362	struct acpi_ioremap *map;
 363	void __iomem *virt;
 364	acpi_physical_address pg_off;
 365	acpi_size pg_sz;
 366
 367	if (phys > ULONG_MAX) {
 368		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 369		return NULL;
 370	}
 371
 372	if (!acpi_gbl_permanent_mmap)
 373		return __acpi_map_table((unsigned long)phys, size);
 374
 375	mutex_lock(&acpi_ioremap_lock);
 376	/* Check if there's a suitable mapping already. */
 377	map = acpi_map_lookup(phys, size);
 378	if (map) {
 379		map->refcount++;
 380		goto out;
 381	}
 382
 383	map = kzalloc(sizeof(*map), GFP_KERNEL);
 384	if (!map) {
 385		mutex_unlock(&acpi_ioremap_lock);
 386		return NULL;
 387	}
 388
 389	pg_off = round_down(phys, PAGE_SIZE);
 390	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 391	virt = acpi_map(pg_off, pg_sz);
 392	if (!virt) {
 393		mutex_unlock(&acpi_ioremap_lock);
 394		kfree(map);
 395		return NULL;
 396	}
 397
 398	INIT_LIST_HEAD(&map->list);
 399	map->virt = virt;
 400	map->phys = pg_off;
 401	map->size = pg_sz;
 402	map->refcount = 1;
 403
 404	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 405
 406 out:
 407	mutex_unlock(&acpi_ioremap_lock);
 408	return map->virt + (phys - map->phys);
 409}
 
 
 
 
 
 
 410EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 411
 412static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 413{
 414	if (!--map->refcount)
 415		list_del_rcu(&map->list);
 
 
 
 
 416}
 417
 418static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 
 419{
 420	if (!map->refcount) {
 421		synchronize_rcu();
 422		acpi_unmap(map->phys, map->virt);
 423		kfree(map);
 424	}
 
 
 425}
 426
 427void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428{
 429	struct acpi_ioremap *map;
 430
 431	if (!acpi_gbl_permanent_mmap) {
 432		__acpi_unmap_table(virt, size);
 433		return;
 434	}
 435
 436	mutex_lock(&acpi_ioremap_lock);
 
 437	map = acpi_map_lookup_virt(virt, size);
 438	if (!map) {
 439		mutex_unlock(&acpi_ioremap_lock);
 440		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 441		return;
 442	}
 443	acpi_os_drop_map_ref(map);
 444	mutex_unlock(&acpi_ioremap_lock);
 445
 446	acpi_os_map_cleanup(map);
 447}
 448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 449
 450void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 
 
 
 
 
 451{
 452	if (!acpi_gbl_permanent_mmap)
 453		__acpi_unmap_table(virt, size);
 454}
 
 455
 456int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 457{
 458	u64 addr;
 459	void __iomem *virt;
 460
 461	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 462		return 0;
 463
 464	/* Handle possible alignment issues */
 465	memcpy(&addr, &gas->address, sizeof(addr));
 466	if (!addr || !gas->bit_width)
 467		return -EINVAL;
 468
 469	virt = acpi_os_map_memory(addr, gas->bit_width / 8);
 470	if (!virt)
 471		return -EIO;
 472
 473	return 0;
 474}
 475EXPORT_SYMBOL(acpi_os_map_generic_address);
 476
 477void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 478{
 479	u64 addr;
 480	struct acpi_ioremap *map;
 481
 482	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 483		return;
 484
 485	/* Handle possible alignment issues */
 486	memcpy(&addr, &gas->address, sizeof(addr));
 487	if (!addr || !gas->bit_width)
 488		return;
 489
 490	mutex_lock(&acpi_ioremap_lock);
 
 491	map = acpi_map_lookup(addr, gas->bit_width / 8);
 492	if (!map) {
 493		mutex_unlock(&acpi_ioremap_lock);
 494		return;
 495	}
 496	acpi_os_drop_map_ref(map);
 497	mutex_unlock(&acpi_ioremap_lock);
 498
 499	acpi_os_map_cleanup(map);
 500}
 501EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 502
 503#ifdef ACPI_FUTURE_USAGE
 504acpi_status
 505acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 506{
 507	if (!phys || !virt)
 508		return AE_BAD_PARAMETER;
 509
 510	*phys = virt_to_phys(virt);
 511
 512	return AE_OK;
 513}
 514#endif
 515
 
 
 
 
 
 
 
 
 
 
 
 
 
 516#define ACPI_MAX_OVERRIDE_LEN 100
 517
 518static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 519
 520acpi_status
 521acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 522			    acpi_string * new_val)
 523{
 524	if (!init_val || !new_val)
 525		return AE_BAD_PARAMETER;
 526
 527	*new_val = NULL;
 528	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 529		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 530		       acpi_os_name);
 531		*new_val = acpi_os_name;
 532	}
 533
 534	return AE_OK;
 535}
 536
 537acpi_status
 538acpi_os_table_override(struct acpi_table_header * existing_table,
 539		       struct acpi_table_header ** new_table)
 540{
 541	if (!existing_table || !new_table)
 542		return AE_BAD_PARAMETER;
 543
 544	*new_table = NULL;
 545
 546#ifdef CONFIG_ACPI_CUSTOM_DSDT
 547	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
 548		*new_table = (struct acpi_table_header *)AmlCode;
 549#endif
 550	if (*new_table != NULL) {
 551		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
 552			   "this is unsafe: tainting kernel\n",
 553		       existing_table->signature,
 554		       existing_table->oem_table_id);
 555		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
 556	}
 557	return AE_OK;
 558}
 559
 560acpi_status
 561acpi_os_physical_table_override(struct acpi_table_header *existing_table,
 562				acpi_physical_address * new_address,
 563				u32 *new_table_length)
 564{
 565	return AE_SUPPORT;
 566}
 567
 568
 569static irqreturn_t acpi_irq(int irq, void *dev_id)
 570{
 571	u32 handled;
 572
 573	handled = (*acpi_irq_handler) (acpi_irq_context);
 574
 575	if (handled) {
 576		acpi_irq_handled++;
 577		return IRQ_HANDLED;
 578	} else {
 579		acpi_irq_not_handled++;
 580		return IRQ_NONE;
 581	}
 582}
 583
 584acpi_status
 585acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 586				  void *context)
 587{
 588	unsigned int irq;
 589
 590	acpi_irq_stats_init();
 591
 592	/*
 593	 * ACPI interrupts different from the SCI in our copy of the FADT are
 594	 * not supported.
 595	 */
 596	if (gsi != acpi_gbl_FADT.sci_interrupt)
 597		return AE_BAD_PARAMETER;
 598
 599	if (acpi_irq_handler)
 600		return AE_ALREADY_ACQUIRED;
 601
 602	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 603		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 604		       gsi);
 605		return AE_OK;
 606	}
 607
 608	acpi_irq_handler = handler;
 609	acpi_irq_context = context;
 610	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 611		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 
 612		acpi_irq_handler = NULL;
 613		return AE_NOT_ACQUIRED;
 614	}
 
 615
 616	return AE_OK;
 617}
 618
 619acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
 620{
 621	if (irq != acpi_gbl_FADT.sci_interrupt)
 622		return AE_BAD_PARAMETER;
 623
 624	free_irq(irq, acpi_irq);
 625	acpi_irq_handler = NULL;
 
 626
 627	return AE_OK;
 628}
 629
 630/*
 631 * Running in interpreter thread context, safe to sleep
 632 */
 633
 634void acpi_os_sleep(u64 ms)
 635{
 636	schedule_timeout_interruptible(msecs_to_jiffies(ms));
 637}
 638
 639void acpi_os_stall(u32 us)
 640{
 641	while (us) {
 642		u32 delay = 1000;
 643
 644		if (delay > us)
 645			delay = us;
 646		udelay(delay);
 647		touch_nmi_watchdog();
 648		us -= delay;
 649	}
 650}
 651
 652/*
 653 * Support ACPI 3.0 AML Timer operand
 654 * Returns 64-bit free-running, monotonically increasing timer
 655 * with 100ns granularity
 
 
 
 
 656 */
 657u64 acpi_os_get_timer(void)
 658{
 659	static u64 t;
 660
 661#ifdef	CONFIG_HPET
 662	/* TBD: use HPET if available */
 663#endif
 664
 665#ifdef	CONFIG_X86_PM_TIMER
 666	/* TBD: default to PM timer if HPET was not available */
 667#endif
 668	if (!t)
 669		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
 670
 671	return ++t;
 672}
 673
 674acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 675{
 676	u32 dummy;
 677
 678	if (!value)
 
 
 679		value = &dummy;
 680
 681	*value = 0;
 682	if (width <= 8) {
 683		*(u8 *) value = inb(port);
 684	} else if (width <= 16) {
 685		*(u16 *) value = inw(port);
 686	} else if (width <= 32) {
 687		*(u32 *) value = inl(port);
 688	} else {
 689		BUG();
 
 690	}
 691
 692	return AE_OK;
 693}
 694
 695EXPORT_SYMBOL(acpi_os_read_port);
 696
 697acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 698{
 699	if (width <= 8) {
 700		outb(value, port);
 701	} else if (width <= 16) {
 702		outw(value, port);
 703	} else if (width <= 32) {
 704		outl(value, port);
 705	} else {
 706		BUG();
 
 707	}
 708
 709	return AE_OK;
 710}
 711
 712EXPORT_SYMBOL(acpi_os_write_port);
 713
 714#ifdef readq
 715static inline u64 read64(const volatile void __iomem *addr)
 716{
 717	return readq(addr);
 718}
 719#else
 720static inline u64 read64(const volatile void __iomem *addr)
 721{
 722	u64 l, h;
 723	l = readl(addr);
 724	h = readl(addr+4);
 725	return l | (h << 32);
 
 
 
 
 
 
 
 
 
 
 726}
 727#endif
 728
 729acpi_status
 730acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 731{
 732	void __iomem *virt_addr;
 733	unsigned int size = width / 8;
 734	bool unmap = false;
 735	u64 dummy;
 
 736
 737	rcu_read_lock();
 738	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 739	if (!virt_addr) {
 740		rcu_read_unlock();
 741		virt_addr = acpi_os_ioremap(phys_addr, size);
 742		if (!virt_addr)
 743			return AE_BAD_ADDRESS;
 744		unmap = true;
 745	}
 746
 747	if (!value)
 748		value = &dummy;
 749
 750	switch (width) {
 751	case 8:
 752		*(u8 *) value = readb(virt_addr);
 753		break;
 754	case 16:
 755		*(u16 *) value = readw(virt_addr);
 756		break;
 757	case 32:
 758		*(u32 *) value = readl(virt_addr);
 759		break;
 760	case 64:
 761		*(u64 *) value = read64(virt_addr);
 762		break;
 763	default:
 764		BUG();
 765	}
 766
 767	if (unmap)
 768		iounmap(virt_addr);
 769	else
 770		rcu_read_unlock();
 771
 772	return AE_OK;
 773}
 774
 775#ifdef writeq
 776static inline void write64(u64 val, volatile void __iomem *addr)
 777{
 778	writeq(val, addr);
 779}
 780#else
 781static inline void write64(u64 val, volatile void __iomem *addr)
 782{
 783	writel(val, addr);
 784	writel(val>>32, addr+4);
 785}
 786#endif
 787
 788acpi_status
 789acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 790{
 791	void __iomem *virt_addr;
 792	unsigned int size = width / 8;
 793	bool unmap = false;
 794
 795	rcu_read_lock();
 796	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 797	if (!virt_addr) {
 798		rcu_read_unlock();
 799		virt_addr = acpi_os_ioremap(phys_addr, size);
 800		if (!virt_addr)
 801			return AE_BAD_ADDRESS;
 802		unmap = true;
 803	}
 804
 805	switch (width) {
 806	case 8:
 807		writeb(value, virt_addr);
 808		break;
 809	case 16:
 810		writew(value, virt_addr);
 811		break;
 812	case 32:
 813		writel(value, virt_addr);
 814		break;
 815	case 64:
 816		write64(value, virt_addr);
 817		break;
 818	default:
 819		BUG();
 820	}
 821
 822	if (unmap)
 823		iounmap(virt_addr);
 824	else
 825		rcu_read_unlock();
 826
 827	return AE_OK;
 828}
 829
 
 830acpi_status
 831acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 832			       u64 *value, u32 width)
 833{
 834	int result, size;
 835	u32 value32;
 836
 837	if (!value)
 838		return AE_BAD_PARAMETER;
 839
 840	switch (width) {
 841	case 8:
 842		size = 1;
 843		break;
 844	case 16:
 845		size = 2;
 846		break;
 847	case 32:
 848		size = 4;
 849		break;
 850	default:
 851		return AE_ERROR;
 852	}
 853
 854	result = raw_pci_read(pci_id->segment, pci_id->bus,
 855				PCI_DEVFN(pci_id->device, pci_id->function),
 856				reg, size, &value32);
 857	*value = value32;
 858
 859	return (result ? AE_ERROR : AE_OK);
 860}
 861
 862acpi_status
 863acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 864				u64 value, u32 width)
 865{
 866	int result, size;
 867
 868	switch (width) {
 869	case 8:
 870		size = 1;
 871		break;
 872	case 16:
 873		size = 2;
 874		break;
 875	case 32:
 876		size = 4;
 877		break;
 878	default:
 879		return AE_ERROR;
 880	}
 881
 882	result = raw_pci_write(pci_id->segment, pci_id->bus,
 883				PCI_DEVFN(pci_id->device, pci_id->function),
 884				reg, size, value);
 885
 886	return (result ? AE_ERROR : AE_OK);
 887}
 
 888
 889static void acpi_os_execute_deferred(struct work_struct *work)
 890{
 891	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 892
 893	if (dpc->wait)
 894		acpi_os_wait_events_complete(NULL);
 895
 896	dpc->function(dpc->context);
 897	kfree(dpc);
 898}
 899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900/*******************************************************************************
 901 *
 902 * FUNCTION:    acpi_os_execute
 903 *
 904 * PARAMETERS:  Type               - Type of the callback
 905 *              Function           - Function to be executed
 906 *              Context            - Function parameters
 907 *
 908 * RETURN:      Status
 909 *
 910 * DESCRIPTION: Depending on type, either queues function for deferred execution or
 911 *              immediately executes function on a separate thread.
 912 *
 913 ******************************************************************************/
 914
 915static acpi_status __acpi_os_execute(acpi_execute_type type,
 916	acpi_osd_exec_callback function, void *context, int hp)
 917{
 918	acpi_status status = AE_OK;
 919	struct acpi_os_dpc *dpc;
 920	struct workqueue_struct *queue;
 921	int ret;
 
 922	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
 923			  "Scheduling function [%p(%p)] for deferred execution.\n",
 924			  function, context));
 925
 
 
 
 
 
 
 
 
 
 926	/*
 927	 * Allocate/initialize DPC structure.  Note that this memory will be
 928	 * freed by the callee.  The kernel handles the work_struct list  in a
 929	 * way that allows us to also free its memory inside the callee.
 930	 * Because we may want to schedule several tasks with different
 931	 * parameters we can't use the approach some kernel code uses of
 932	 * having a static work_struct.
 933	 */
 934
 935	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
 936	if (!dpc)
 937		return AE_NO_MEMORY;
 938
 939	dpc->function = function;
 940	dpc->context = context;
 
 941
 942	/*
 943	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
 944	 * because the hotplug code may call driver .remove() functions,
 945	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
 946	 * to flush these workqueues.
 947	 */
 948	queue = hp ? kacpi_hotplug_wq :
 949		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
 950	dpc->wait = hp ? 1 : 0;
 951
 952	if (queue == kacpi_hotplug_wq)
 953		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 954	else if (queue == kacpi_notify_wq)
 955		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 956	else
 957		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 958
 959	/*
 960	 * On some machines, a software-initiated SMI causes corruption unless
 961	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
 962	 * typically it's done in GPE-related methods that are run via
 963	 * workqueues, so we can avoid the known corruption cases by always
 964	 * queueing on CPU 0.
 965	 */
 966	ret = queue_work_on(0, queue, &dpc->work);
 967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968	if (!ret) {
 969		printk(KERN_ERR PREFIX
 970			  "Call to queue_work() failed.\n");
 971		status = AE_ERROR;
 972		kfree(dpc);
 973	}
 974	return status;
 
 
 
 
 
 975}
 
 976
 977acpi_status acpi_os_execute(acpi_execute_type type,
 978			    acpi_osd_exec_callback function, void *context)
 979{
 980	return __acpi_os_execute(type, function, context, 0);
 
 
 
 
 
 
 
 981}
 982EXPORT_SYMBOL(acpi_os_execute);
 
 
 
 
 
 
 983
 984acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
 985	void *context)
 986{
 987	return __acpi_os_execute(0, function, context, 1);
 
 
 
 
 988}
 989
 990void acpi_os_wait_events_complete(void *context)
 991{
 992	flush_workqueue(kacpid_wq);
 993	flush_workqueue(kacpi_notify_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994}
 995
 996EXPORT_SYMBOL(acpi_os_wait_events_complete);
 
 
 
 997
 998acpi_status
 999acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1000{
1001	struct semaphore *sem = NULL;
1002
1003	sem = acpi_os_allocate(sizeof(struct semaphore));
1004	if (!sem)
1005		return AE_NO_MEMORY;
1006	memset(sem, 0, sizeof(struct semaphore));
1007
1008	sema_init(sem, initial_units);
1009
1010	*handle = (acpi_handle *) sem;
1011
1012	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1013			  *handle, initial_units));
1014
1015	return AE_OK;
1016}
1017
1018/*
1019 * TODO: A better way to delete semaphores?  Linux doesn't have a
1020 * 'delete_semaphore()' function -- may result in an invalid
1021 * pointer dereference for non-synchronized consumers.	Should
1022 * we at least check for blocked threads and signal/cancel them?
1023 */
1024
1025acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1026{
1027	struct semaphore *sem = (struct semaphore *)handle;
1028
1029	if (!sem)
1030		return AE_BAD_PARAMETER;
1031
1032	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1033
1034	BUG_ON(!list_empty(&sem->wait_list));
1035	kfree(sem);
1036	sem = NULL;
1037
1038	return AE_OK;
1039}
1040
1041/*
1042 * TODO: Support for units > 1?
1043 */
1044acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1045{
1046	acpi_status status = AE_OK;
1047	struct semaphore *sem = (struct semaphore *)handle;
1048	long jiffies;
1049	int ret = 0;
1050
 
 
 
1051	if (!sem || (units < 1))
1052		return AE_BAD_PARAMETER;
1053
1054	if (units > 1)
1055		return AE_SUPPORT;
1056
1057	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1058			  handle, units, timeout));
1059
1060	if (timeout == ACPI_WAIT_FOREVER)
1061		jiffies = MAX_SCHEDULE_TIMEOUT;
1062	else
1063		jiffies = msecs_to_jiffies(timeout);
1064	
1065	ret = down_timeout(sem, jiffies);
1066	if (ret)
1067		status = AE_TIME;
1068
1069	if (ACPI_FAILURE(status)) {
1070		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1071				  "Failed to acquire semaphore[%p|%d|%d], %s",
1072				  handle, units, timeout,
1073				  acpi_format_exception(status)));
1074	} else {
1075		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1076				  "Acquired semaphore[%p|%d|%d]", handle,
1077				  units, timeout));
1078	}
1079
1080	return status;
1081}
1082
1083/*
1084 * TODO: Support for units > 1?
1085 */
1086acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1087{
1088	struct semaphore *sem = (struct semaphore *)handle;
1089
 
 
 
1090	if (!sem || (units < 1))
1091		return AE_BAD_PARAMETER;
1092
1093	if (units > 1)
1094		return AE_SUPPORT;
1095
1096	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1097			  units));
1098
1099	up(sem);
1100
1101	return AE_OK;
1102}
1103
1104#ifdef ACPI_FUTURE_USAGE
1105u32 acpi_os_get_line(char *buffer)
1106{
1107
1108#ifdef ENABLE_DEBUGGER
1109	if (acpi_in_debugger) {
1110		u32 chars;
1111
1112		kdb_read(buffer, sizeof(line_buf));
1113
1114		/* remove the CR kdb includes */
1115		chars = strlen(buffer) - 1;
1116		buffer[chars] = '\0';
1117	}
 
 
 
 
 
 
 
 
1118#endif
1119
1120	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122#endif				/*  ACPI_FUTURE_USAGE  */
1123
1124acpi_status acpi_os_signal(u32 function, void *info)
1125{
1126	switch (function) {
1127	case ACPI_SIGNAL_FATAL:
1128		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1129		break;
1130	case ACPI_SIGNAL_BREAKPOINT:
1131		/*
1132		 * AML Breakpoint
1133		 * ACPI spec. says to treat it as a NOP unless
1134		 * you are debugging.  So if/when we integrate
1135		 * AML debugger into the kernel debugger its
1136		 * hook will go here.  But until then it is
1137		 * not useful to print anything on breakpoints.
1138		 */
1139		break;
1140	default:
1141		break;
1142	}
1143
1144	return AE_OK;
1145}
1146
1147static int __init acpi_os_name_setup(char *str)
1148{
1149	char *p = acpi_os_name;
1150	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1151
1152	if (!str || !*str)
1153		return 0;
1154
1155	for (; count-- && str && *str; str++) {
1156		if (isalnum(*str) || *str == ' ' || *str == ':')
1157			*p++ = *str;
1158		else if (*str == '\'' || *str == '"')
1159			continue;
1160		else
1161			break;
1162	}
1163	*p = 0;
1164
1165	return 1;
1166
1167}
1168
1169__setup("acpi_os_name=", acpi_os_name_setup);
1170
1171#define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1172#define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1173
1174struct osi_setup_entry {
1175	char string[OSI_STRING_LENGTH_MAX];
1176	bool enable;
1177};
1178
1179static struct osi_setup_entry __initdata
1180		osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1181	{"Module Device", true},
1182	{"Processor Device", true},
1183	{"3.0 _SCP Extensions", true},
1184	{"Processor Aggregator Device", true},
1185};
1186
1187void __init acpi_osi_setup(char *str)
1188{
1189	struct osi_setup_entry *osi;
1190	bool enable = true;
1191	int i;
1192
1193	if (!acpi_gbl_create_osi_method)
1194		return;
1195
1196	if (str == NULL || *str == '\0') {
1197		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1198		acpi_gbl_create_osi_method = FALSE;
1199		return;
1200	}
1201
1202	if (*str == '!') {
1203		str++;
1204		enable = false;
1205	}
1206
1207	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1208		osi = &osi_setup_entries[i];
1209		if (!strcmp(osi->string, str)) {
1210			osi->enable = enable;
1211			break;
1212		} else if (osi->string[0] == '\0') {
1213			osi->enable = enable;
1214			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1215			break;
1216		}
1217	}
1218}
1219
1220static void __init set_osi_linux(unsigned int enable)
1221{
1222	if (osi_linux.enable != enable)
1223		osi_linux.enable = enable;
1224
1225	if (osi_linux.enable)
1226		acpi_osi_setup("Linux");
1227	else
1228		acpi_osi_setup("!Linux");
1229
1230	return;
1231}
1232
1233static void __init acpi_cmdline_osi_linux(unsigned int enable)
1234{
1235	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1236	osi_linux.dmi = 0;
1237	set_osi_linux(enable);
1238
1239	return;
1240}
1241
1242void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1243{
1244	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1245
1246	if (enable == -1)
1247		return;
1248
1249	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1250	set_osi_linux(enable);
1251
1252	return;
1253}
1254
1255/*
1256 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1257 *
1258 * empty string disables _OSI
1259 * string starting with '!' disables that string
1260 * otherwise string is added to list, augmenting built-in strings
1261 */
1262static void __init acpi_osi_setup_late(void)
1263{
1264	struct osi_setup_entry *osi;
1265	char *str;
1266	int i;
1267	acpi_status status;
1268
1269	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1270		osi = &osi_setup_entries[i];
1271		str = osi->string;
1272
1273		if (*str == '\0')
1274			break;
1275		if (osi->enable) {
1276			status = acpi_install_interface(str);
1277
1278			if (ACPI_SUCCESS(status))
1279				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1280		} else {
1281			status = acpi_remove_interface(str);
1282
1283			if (ACPI_SUCCESS(status))
1284				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1285		}
1286	}
1287}
1288
1289static int __init osi_setup(char *str)
1290{
1291	if (str && !strcmp("Linux", str))
1292		acpi_cmdline_osi_linux(1);
1293	else if (str && !strcmp("!Linux", str))
1294		acpi_cmdline_osi_linux(0);
1295	else
1296		acpi_osi_setup(str);
1297
1298	return 1;
1299}
1300
1301__setup("acpi_osi=", osi_setup);
1302
1303/* enable serialization to combat AE_ALREADY_EXISTS errors */
1304static int __init acpi_serialize_setup(char *str)
1305{
1306	printk(KERN_INFO PREFIX "serialize enabled\n");
1307
1308	acpi_gbl_all_methods_serialized = TRUE;
1309
1310	return 1;
1311}
1312
1313__setup("acpi_serialize", acpi_serialize_setup);
1314
1315/* Check of resource interference between native drivers and ACPI
1316 * OperationRegions (SystemIO and System Memory only).
1317 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1318 * in arbitrary AML code and can interfere with legacy drivers.
1319 * acpi_enforce_resources= can be set to:
1320 *
1321 *   - strict (default) (2)
1322 *     -> further driver trying to access the resources will not load
1323 *   - lax              (1)
1324 *     -> further driver trying to access the resources will load, but you
1325 *     get a system message that something might go wrong...
1326 *
1327 *   - no               (0)
1328 *     -> ACPI Operation Region resources will not be registered
1329 *
1330 */
1331#define ENFORCE_RESOURCES_STRICT 2
1332#define ENFORCE_RESOURCES_LAX    1
1333#define ENFORCE_RESOURCES_NO     0
1334
1335static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1336
1337static int __init acpi_enforce_resources_setup(char *str)
1338{
1339	if (str == NULL || *str == '\0')
1340		return 0;
1341
1342	if (!strcmp("strict", str))
1343		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1344	else if (!strcmp("lax", str))
1345		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1346	else if (!strcmp("no", str))
1347		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1348
1349	return 1;
1350}
1351
1352__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1353
1354/* Check for resource conflicts between ACPI OperationRegions and native
1355 * drivers */
1356int acpi_check_resource_conflict(const struct resource *res)
1357{
1358	acpi_adr_space_type space_id;
1359	acpi_size length;
1360	u8 warn = 0;
1361	int clash = 0;
1362
1363	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1364		return 0;
1365	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1366		return 0;
1367
1368	if (res->flags & IORESOURCE_IO)
1369		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1370	else
1371		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
 
 
 
 
 
 
 
 
 
 
 
 
 
1372
1373	length = res->end - res->start + 1;
1374	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1375		warn = 1;
1376	clash = acpi_check_address_range(space_id, res->start, length, warn);
1377
1378	if (clash) {
1379		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1380			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1381				printk(KERN_NOTICE "ACPI: This conflict may"
1382				       " cause random problems and system"
1383				       " instability\n");
1384			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1385			       " for this device, you should use it instead of"
1386			       " the native driver\n");
1387		}
1388		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1389			return -EBUSY;
1390	}
1391	return 0;
1392}
1393EXPORT_SYMBOL(acpi_check_resource_conflict);
1394
1395int acpi_check_region(resource_size_t start, resource_size_t n,
1396		      const char *name)
1397{
1398	struct resource res = {
1399		.start = start,
1400		.end   = start + n - 1,
1401		.name  = name,
1402		.flags = IORESOURCE_IO,
1403	};
1404
1405	return acpi_check_resource_conflict(&res);
1406}
1407EXPORT_SYMBOL(acpi_check_region);
1408
1409/*
1410 * Let drivers know whether the resource checks are effective
1411 */
1412int acpi_resources_are_enforced(void)
1413{
1414	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1415}
1416EXPORT_SYMBOL(acpi_resources_are_enforced);
1417
1418/*
1419 * Deallocate the memory for a spinlock.
1420 */
1421void acpi_os_delete_lock(acpi_spinlock handle)
1422{
1423	ACPI_FREE(handle);
1424}
1425
1426/*
1427 * Acquire a spinlock.
1428 *
1429 * handle is a pointer to the spinlock_t.
1430 */
1431
1432acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
 
1433{
1434	acpi_cpu_flags flags;
1435	spin_lock_irqsave(lockp, flags);
1436	return flags;
1437}
1438
1439/*
1440 * Release a spinlock. See above.
1441 */
1442
1443void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
 
1444{
1445	spin_unlock_irqrestore(lockp, flags);
1446}
1447
1448#ifndef ACPI_USE_LOCAL_CACHE
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION:    acpi_os_create_cache
1453 *
1454 * PARAMETERS:  name      - Ascii name for the cache
1455 *              size      - Size of each cached object
1456 *              depth     - Maximum depth of the cache (in objects) <ignored>
1457 *              cache     - Where the new cache object is returned
1458 *
1459 * RETURN:      status
1460 *
1461 * DESCRIPTION: Create a cache object
1462 *
1463 ******************************************************************************/
1464
1465acpi_status
1466acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1467{
1468	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1469	if (*cache == NULL)
1470		return AE_ERROR;
1471	else
1472		return AE_OK;
1473}
1474
1475/*******************************************************************************
1476 *
1477 * FUNCTION:    acpi_os_purge_cache
1478 *
1479 * PARAMETERS:  Cache           - Handle to cache object
1480 *
1481 * RETURN:      Status
1482 *
1483 * DESCRIPTION: Free all objects within the requested cache.
1484 *
1485 ******************************************************************************/
1486
1487acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1488{
1489	kmem_cache_shrink(cache);
1490	return (AE_OK);
1491}
1492
1493/*******************************************************************************
1494 *
1495 * FUNCTION:    acpi_os_delete_cache
1496 *
1497 * PARAMETERS:  Cache           - Handle to cache object
1498 *
1499 * RETURN:      Status
1500 *
1501 * DESCRIPTION: Free all objects within the requested cache and delete the
1502 *              cache object.
1503 *
1504 ******************************************************************************/
1505
1506acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1507{
1508	kmem_cache_destroy(cache);
1509	return (AE_OK);
1510}
1511
1512/*******************************************************************************
1513 *
1514 * FUNCTION:    acpi_os_release_object
1515 *
1516 * PARAMETERS:  Cache       - Handle to cache object
1517 *              Object      - The object to be released
1518 *
1519 * RETURN:      None
1520 *
1521 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1522 *              the object is deleted.
1523 *
1524 ******************************************************************************/
1525
1526acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1527{
1528	kmem_cache_free(cache, object);
1529	return (AE_OK);
1530}
1531#endif
1532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533acpi_status __init acpi_os_initialize(void)
1534{
1535	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1536	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1537	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1538	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539
1540	return AE_OK;
1541}
1542
1543acpi_status __init acpi_os_initialize1(void)
1544{
1545	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1546	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1547	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1548	BUG_ON(!kacpid_wq);
1549	BUG_ON(!kacpi_notify_wq);
1550	BUG_ON(!kacpi_hotplug_wq);
1551	acpi_install_interface_handler(acpi_osi_handler);
1552	acpi_osi_setup_late();
1553	return AE_OK;
1554}
1555
1556acpi_status acpi_os_terminate(void)
1557{
1558	if (acpi_irq_handler) {
1559		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1560						 acpi_irq_handler);
1561	}
1562
1563	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1564	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
 
 
 
1565	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1566	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1567
 
 
 
1568	destroy_workqueue(kacpid_wq);
1569	destroy_workqueue(kacpi_notify_wq);
1570	destroy_workqueue(kacpi_hotplug_wq);
1571
1572	return AE_OK;
1573}
1574
1575acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1576				  u32 pm1b_control)
1577{
1578	int rc = 0;
 
1579	if (__acpi_os_prepare_sleep)
1580		rc = __acpi_os_prepare_sleep(sleep_state,
1581					     pm1a_control, pm1b_control);
1582	if (rc < 0)
1583		return AE_ERROR;
1584	else if (rc > 0)
1585		return AE_CTRL_SKIP;
1586
1587	return AE_OK;
1588}
1589
1590void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1591			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1592{
1593	__acpi_os_prepare_sleep = func;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#define pr_fmt(fmt) "ACPI: OSL: " fmt
  13
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/highmem.h>
  19#include <linux/lockdep.h>
  20#include <linux/pci.h>
  21#include <linux/interrupt.h>
  22#include <linux/kmod.h>
  23#include <linux/delay.h>
  24#include <linux/workqueue.h>
  25#include <linux/nmi.h>
  26#include <linux/acpi.h>
 
  27#include <linux/efi.h>
  28#include <linux/ioport.h>
  29#include <linux/list.h>
  30#include <linux/jiffies.h>
  31#include <linux/semaphore.h>
  32#include <linux/security.h>
  33
  34#include <asm/io.h>
  35#include <linux/uaccess.h>
  36#include <linux/io-64-nonatomic-lo-hi.h>
  37
  38#include "acpica/accommon.h"
  39#include "internal.h"
 
  40
  41/* Definitions for ACPI_DEBUG_PRINT() */
  42#define _COMPONENT		ACPI_OS_SERVICES
  43ACPI_MODULE_NAME("osl");
  44
  45struct acpi_os_dpc {
  46	acpi_osd_exec_callback function;
  47	void *context;
  48	struct work_struct work;
 
  49};
  50
 
 
 
 
  51#ifdef ENABLE_DEBUGGER
  52#include <linux/kdb.h>
  53
  54/* stuff for debugger support */
  55int acpi_in_debugger;
  56EXPORT_SYMBOL(acpi_in_debugger);
 
 
  57#endif				/*ENABLE_DEBUGGER */
  58
  59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  60				      u32 pm1b_ctrl);
  61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  62				      u32 val_b);
  63
  64static acpi_osd_handler acpi_irq_handler;
  65static void *acpi_irq_context;
  66static struct workqueue_struct *kacpid_wq;
  67static struct workqueue_struct *kacpi_notify_wq;
  68static struct workqueue_struct *kacpi_hotplug_wq;
  69static bool acpi_os_initialized;
  70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  71bool acpi_permanent_mmap = false;
  72
  73/*
  74 * This list of permanent mappings is for memory that may be accessed from
  75 * interrupt context, where we can't do the ioremap().
  76 */
  77struct acpi_ioremap {
  78	struct list_head list;
  79	void __iomem *virt;
  80	acpi_physical_address phys;
  81	acpi_size size;
  82	union {
  83		unsigned long refcount;
  84		struct rcu_work rwork;
  85	} track;
  86};
  87
  88static LIST_HEAD(acpi_ioremaps);
  89static DEFINE_MUTEX(acpi_ioremap_lock);
  90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92static void __init acpi_request_region (struct acpi_generic_address *gas,
  93	unsigned int length, char *desc)
  94{
  95	u64 addr;
  96
  97	/* Handle possible alignment issues */
  98	memcpy(&addr, &gas->address, sizeof(addr));
  99	if (!addr || !length)
 100		return;
 101
 102	/* Resources are never freed */
 103	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 104		request_region(addr, length, desc);
 105	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 106		request_mem_region(addr, length, desc);
 107}
 108
 109static int __init acpi_reserve_resources(void)
 110{
 111	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 112		"ACPI PM1a_EVT_BLK");
 113
 114	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 115		"ACPI PM1b_EVT_BLK");
 116
 117	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 118		"ACPI PM1a_CNT_BLK");
 119
 120	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 121		"ACPI PM1b_CNT_BLK");
 122
 123	if (acpi_gbl_FADT.pm_timer_length == 4)
 124		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 125
 126	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 127		"ACPI PM2_CNT_BLK");
 128
 129	/* Length of GPE blocks must be a non-negative multiple of 2 */
 130
 131	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 132		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 133			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 134
 135	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 136		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 137			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 138
 139	return 0;
 140}
 141fs_initcall_sync(acpi_reserve_resources);
 142
 143void acpi_os_printf(const char *fmt, ...)
 144{
 145	va_list args;
 146	va_start(args, fmt);
 147	acpi_os_vprintf(fmt, args);
 148	va_end(args);
 149}
 150EXPORT_SYMBOL(acpi_os_printf);
 151
 152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
 153{
 154	static char buffer[512];
 155
 156	vsprintf(buffer, fmt, args);
 157
 158#ifdef ENABLE_DEBUGGER
 159	if (acpi_in_debugger) {
 160		kdb_printf("%s", buffer);
 161	} else {
 162		if (printk_get_level(buffer))
 163			printk("%s", buffer);
 164		else
 165			printk(KERN_CONT "%s", buffer);
 166	}
 167#else
 168	if (acpi_debugger_write_log(buffer) < 0) {
 169		if (printk_get_level(buffer))
 170			printk("%s", buffer);
 171		else
 172			printk(KERN_CONT "%s", buffer);
 173	}
 174#endif
 175}
 176
 177#ifdef CONFIG_KEXEC
 178static unsigned long acpi_rsdp;
 179static int __init setup_acpi_rsdp(char *arg)
 180{
 181	return kstrtoul(arg, 16, &acpi_rsdp);
 
 182}
 183early_param("acpi_rsdp", setup_acpi_rsdp);
 184#endif
 185
 186acpi_physical_address __init acpi_os_get_root_pointer(void)
 187{
 188	acpi_physical_address pa;
 189
 190#ifdef CONFIG_KEXEC
 191	/*
 192	 * We may have been provided with an RSDP on the command line,
 193	 * but if a malicious user has done so they may be pointing us
 194	 * at modified ACPI tables that could alter kernel behaviour -
 195	 * so, we check the lockdown status before making use of
 196	 * it. If we trust it then also stash it in an architecture
 197	 * specific location (if appropriate) so it can be carried
 198	 * over further kexec()s.
 199	 */
 200	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 201		acpi_arch_set_root_pointer(acpi_rsdp);
 202		return acpi_rsdp;
 203	}
 204#endif
 205	pa = acpi_arch_get_root_pointer();
 206	if (pa)
 207		return pa;
 208
 209	if (efi_enabled(EFI_CONFIG_TABLES)) {
 210		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 211			return efi.acpi20;
 212		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 213			return efi.acpi;
 214		pr_err("System description tables not found\n");
 215	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 
 
 
 
 
 
 216		acpi_find_root_pointer(&pa);
 
 217	}
 218
 219	return pa;
 220}
 221
 222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 223static struct acpi_ioremap *
 224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 225{
 226	struct acpi_ioremap *map;
 227
 228	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 229		if (map->phys <= phys &&
 230		    phys + size <= map->phys + map->size)
 231			return map;
 232
 233	return NULL;
 234}
 235
 236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 237static void __iomem *
 238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 239{
 240	struct acpi_ioremap *map;
 241
 242	map = acpi_map_lookup(phys, size);
 243	if (map)
 244		return map->virt + (phys - map->phys);
 245
 246	return NULL;
 247}
 248
 249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 250{
 251	struct acpi_ioremap *map;
 252	void __iomem *virt = NULL;
 253
 254	mutex_lock(&acpi_ioremap_lock);
 255	map = acpi_map_lookup(phys, size);
 256	if (map) {
 257		virt = map->virt + (phys - map->phys);
 258		map->track.refcount++;
 259	}
 260	mutex_unlock(&acpi_ioremap_lock);
 261	return virt;
 262}
 263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 264
 265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 266static struct acpi_ioremap *
 267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 268{
 269	struct acpi_ioremap *map;
 270
 271	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 272		if (map->virt <= virt &&
 273		    virt + size <= map->virt + map->size)
 274			return map;
 275
 276	return NULL;
 277}
 278
 279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
 
 
 280/* ioremap will take care of cache attributes */
 281#define should_use_kmap(pfn)   0
 282#else
 283#define should_use_kmap(pfn)   page_is_ram(pfn)
 284#endif
 285
 286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 287{
 288	unsigned long pfn;
 289
 290	pfn = pg_off >> PAGE_SHIFT;
 291	if (should_use_kmap(pfn)) {
 292		if (pg_sz > PAGE_SIZE)
 293			return NULL;
 294		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 295	} else
 296		return acpi_os_ioremap(pg_off, pg_sz);
 297}
 298
 299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 300{
 301	unsigned long pfn;
 302
 303	pfn = pg_off >> PAGE_SHIFT;
 304	if (should_use_kmap(pfn))
 305		kunmap(pfn_to_page(pfn));
 306	else
 307		iounmap(vaddr);
 308}
 309
 310/**
 311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 312 * @phys: Start of the physical address range to map.
 313 * @size: Size of the physical address range to map.
 314 *
 315 * Look up the given physical address range in the list of existing ACPI memory
 316 * mappings.  If found, get a reference to it and return a pointer to it (its
 317 * virtual address).  If not found, map it, add it to that list and return a
 318 * pointer to it.
 319 *
 320 * During early init (when acpi_permanent_mmap has not been set yet) this
 321 * routine simply calls __acpi_map_table() to get the job done.
 322 */
 323void __iomem __ref
 324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 325{
 326	struct acpi_ioremap *map;
 327	void __iomem *virt;
 328	acpi_physical_address pg_off;
 329	acpi_size pg_sz;
 330
 331	if (phys > ULONG_MAX) {
 332		pr_err("Cannot map memory that high: 0x%llx\n", phys);
 333		return NULL;
 334	}
 335
 336	if (!acpi_permanent_mmap)
 337		return __acpi_map_table((unsigned long)phys, size);
 338
 339	mutex_lock(&acpi_ioremap_lock);
 340	/* Check if there's a suitable mapping already. */
 341	map = acpi_map_lookup(phys, size);
 342	if (map) {
 343		map->track.refcount++;
 344		goto out;
 345	}
 346
 347	map = kzalloc(sizeof(*map), GFP_KERNEL);
 348	if (!map) {
 349		mutex_unlock(&acpi_ioremap_lock);
 350		return NULL;
 351	}
 352
 353	pg_off = round_down(phys, PAGE_SIZE);
 354	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 355	virt = acpi_map(phys, size);
 356	if (!virt) {
 357		mutex_unlock(&acpi_ioremap_lock);
 358		kfree(map);
 359		return NULL;
 360	}
 361
 362	INIT_LIST_HEAD(&map->list);
 363	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
 364	map->phys = pg_off;
 365	map->size = pg_sz;
 366	map->track.refcount = 1;
 367
 368	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 369
 370out:
 371	mutex_unlock(&acpi_ioremap_lock);
 372	return map->virt + (phys - map->phys);
 373}
 374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 375
 376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 377{
 378	return (void *)acpi_os_map_iomem(phys, size);
 379}
 380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 381
 382static void acpi_os_map_remove(struct work_struct *work)
 383{
 384	struct acpi_ioremap *map = container_of(to_rcu_work(work),
 385						struct acpi_ioremap,
 386						track.rwork);
 387
 388	acpi_unmap(map->phys, map->virt);
 389	kfree(map);
 390}
 391
 392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
 393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 394{
 395	if (--map->track.refcount)
 396		return;
 397
 398	list_del_rcu(&map->list);
 399
 400	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
 401	queue_rcu_work(system_wq, &map->track.rwork);
 402}
 403
 404/**
 405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 406 * @virt: Start of the address range to drop a reference to.
 407 * @size: Size of the address range to drop a reference to.
 408 *
 409 * Look up the given virtual address range in the list of existing ACPI memory
 410 * mappings, drop a reference to it and if there are no more active references
 411 * to it, queue it up for later removal.
 412 *
 413 * During early init (when acpi_permanent_mmap has not been set yet) this
 414 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 416 * here.
 417 */
 418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 419{
 420	struct acpi_ioremap *map;
 421
 422	if (!acpi_permanent_mmap) {
 423		__acpi_unmap_table(virt, size);
 424		return;
 425	}
 426
 427	mutex_lock(&acpi_ioremap_lock);
 428
 429	map = acpi_map_lookup_virt(virt, size);
 430	if (!map) {
 431		mutex_unlock(&acpi_ioremap_lock);
 432		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
 433		return;
 434	}
 435	acpi_os_drop_map_ref(map);
 
 436
 437	mutex_unlock(&acpi_ioremap_lock);
 438}
 439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 440
 441/**
 442 * acpi_os_unmap_memory - Drop a memory mapping reference.
 443 * @virt: Start of the address range to drop a reference to.
 444 * @size: Size of the address range to drop a reference to.
 445 */
 446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 447{
 448	acpi_os_unmap_iomem((void __iomem *)virt, size);
 
 449}
 450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 451
 452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
 453{
 454	u64 addr;
 
 455
 456	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 457		return NULL;
 458
 459	/* Handle possible alignment issues */
 460	memcpy(&addr, &gas->address, sizeof(addr));
 461	if (!addr || !gas->bit_width)
 462		return NULL;
 
 
 
 
 463
 464	return acpi_os_map_iomem(addr, gas->bit_width / 8);
 465}
 466EXPORT_SYMBOL(acpi_os_map_generic_address);
 467
 468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 469{
 470	u64 addr;
 471	struct acpi_ioremap *map;
 472
 473	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 474		return;
 475
 476	/* Handle possible alignment issues */
 477	memcpy(&addr, &gas->address, sizeof(addr));
 478	if (!addr || !gas->bit_width)
 479		return;
 480
 481	mutex_lock(&acpi_ioremap_lock);
 482
 483	map = acpi_map_lookup(addr, gas->bit_width / 8);
 484	if (!map) {
 485		mutex_unlock(&acpi_ioremap_lock);
 486		return;
 487	}
 488	acpi_os_drop_map_ref(map);
 
 489
 490	mutex_unlock(&acpi_ioremap_lock);
 491}
 492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 493
 494#ifdef ACPI_FUTURE_USAGE
 495acpi_status
 496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
 497{
 498	if (!phys || !virt)
 499		return AE_BAD_PARAMETER;
 500
 501	*phys = virt_to_phys(virt);
 502
 503	return AE_OK;
 504}
 505#endif
 506
 507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 508static bool acpi_rev_override;
 509
 510int __init acpi_rev_override_setup(char *str)
 511{
 512	acpi_rev_override = true;
 513	return 1;
 514}
 515__setup("acpi_rev_override", acpi_rev_override_setup);
 516#else
 517#define acpi_rev_override	false
 518#endif
 519
 520#define ACPI_MAX_OVERRIDE_LEN 100
 521
 522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 523
 524acpi_status
 525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 526			    acpi_string *new_val)
 527{
 528	if (!init_val || !new_val)
 529		return AE_BAD_PARAMETER;
 530
 531	*new_val = NULL;
 532	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 533		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
 
 534		*new_val = acpi_os_name;
 535	}
 536
 537	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 538		pr_info("Overriding _REV return value to 5\n");
 539		*new_val = (char *)5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540	}
 
 
 541
 542	return AE_OK;
 
 
 
 
 
 543}
 544
 
 545static irqreturn_t acpi_irq(int irq, void *dev_id)
 546{
 547	if ((*acpi_irq_handler)(acpi_irq_context)) {
 
 
 
 
 548		acpi_irq_handled++;
 549		return IRQ_HANDLED;
 550	} else {
 551		acpi_irq_not_handled++;
 552		return IRQ_NONE;
 553	}
 554}
 555
 556acpi_status
 557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 558				  void *context)
 559{
 560	unsigned int irq;
 561
 562	acpi_irq_stats_init();
 563
 564	/*
 565	 * ACPI interrupts different from the SCI in our copy of the FADT are
 566	 * not supported.
 567	 */
 568	if (gsi != acpi_gbl_FADT.sci_interrupt)
 569		return AE_BAD_PARAMETER;
 570
 571	if (acpi_irq_handler)
 572		return AE_ALREADY_ACQUIRED;
 573
 574	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 575		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
 
 576		return AE_OK;
 577	}
 578
 579	acpi_irq_handler = handler;
 580	acpi_irq_context = context;
 581	if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
 582			         "acpi", acpi_irq)) {
 583		pr_err("SCI (IRQ%d) allocation failed\n", irq);
 584		acpi_irq_handler = NULL;
 585		return AE_NOT_ACQUIRED;
 586	}
 587	acpi_sci_irq = irq;
 588
 589	return AE_OK;
 590}
 591
 592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 593{
 594	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 595		return AE_BAD_PARAMETER;
 596
 597	free_irq(acpi_sci_irq, acpi_irq);
 598	acpi_irq_handler = NULL;
 599	acpi_sci_irq = INVALID_ACPI_IRQ;
 600
 601	return AE_OK;
 602}
 603
 604/*
 605 * Running in interpreter thread context, safe to sleep
 606 */
 607
 608void acpi_os_sleep(u64 ms)
 609{
 610	msleep(ms);
 611}
 612
 613void acpi_os_stall(u32 us)
 614{
 615	while (us) {
 616		u32 delay = 1000;
 617
 618		if (delay > us)
 619			delay = us;
 620		udelay(delay);
 621		touch_nmi_watchdog();
 622		us -= delay;
 623	}
 624}
 625
 626/*
 627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 628 * monotonically increasing timer with 100ns granularity. Do not use
 629 * ktime_get() to implement this function because this function may get
 630 * called after timekeeping has been suspended. Note: calling this function
 631 * after timekeeping has been suspended may lead to unexpected results
 632 * because when timekeeping is suspended the jiffies counter is not
 633 * incremented. See also timekeeping_suspend().
 634 */
 635u64 acpi_os_get_timer(void)
 636{
 637	return (get_jiffies_64() - INITIAL_JIFFIES) *
 638		(ACPI_100NSEC_PER_SEC / HZ);
 
 
 
 
 
 
 
 
 
 
 
 639}
 640
 641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
 642{
 643	u32 dummy;
 644
 645	if (value)
 646		*value = 0;
 647	else
 648		value = &dummy;
 649
 
 650	if (width <= 8) {
 651		*value = inb(port);
 652	} else if (width <= 16) {
 653		*value = inw(port);
 654	} else if (width <= 32) {
 655		*value = inl(port);
 656	} else {
 657		pr_debug("%s: Access width %d not supported\n", __func__, width);
 658		return AE_BAD_PARAMETER;
 659	}
 660
 661	return AE_OK;
 662}
 663
 664EXPORT_SYMBOL(acpi_os_read_port);
 665
 666acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 667{
 668	if (width <= 8) {
 669		outb(value, port);
 670	} else if (width <= 16) {
 671		outw(value, port);
 672	} else if (width <= 32) {
 673		outl(value, port);
 674	} else {
 675		pr_debug("%s: Access width %d not supported\n", __func__, width);
 676		return AE_BAD_PARAMETER;
 677	}
 678
 679	return AE_OK;
 680}
 681
 682EXPORT_SYMBOL(acpi_os_write_port);
 683
 684int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 
 685{
 686
 687	switch (width) {
 688	case 8:
 689		*(u8 *) value = readb(virt_addr);
 690		break;
 691	case 16:
 692		*(u16 *) value = readw(virt_addr);
 693		break;
 694	case 32:
 695		*(u32 *) value = readl(virt_addr);
 696		break;
 697	case 64:
 698		*(u64 *) value = readq(virt_addr);
 699		break;
 700	default:
 701		return -EINVAL;
 702	}
 703
 704	return 0;
 705}
 
 706
 707acpi_status
 708acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 709{
 710	void __iomem *virt_addr;
 711	unsigned int size = width / 8;
 712	bool unmap = false;
 713	u64 dummy;
 714	int error;
 715
 716	rcu_read_lock();
 717	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 718	if (!virt_addr) {
 719		rcu_read_unlock();
 720		virt_addr = acpi_os_ioremap(phys_addr, size);
 721		if (!virt_addr)
 722			return AE_BAD_ADDRESS;
 723		unmap = true;
 724	}
 725
 726	if (!value)
 727		value = &dummy;
 728
 729	error = acpi_os_read_iomem(virt_addr, value, width);
 730	BUG_ON(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732	if (unmap)
 733		iounmap(virt_addr);
 734	else
 735		rcu_read_unlock();
 736
 737	return AE_OK;
 738}
 739
 
 
 
 
 
 
 
 
 
 
 
 
 
 740acpi_status
 741acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 742{
 743	void __iomem *virt_addr;
 744	unsigned int size = width / 8;
 745	bool unmap = false;
 746
 747	rcu_read_lock();
 748	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 749	if (!virt_addr) {
 750		rcu_read_unlock();
 751		virt_addr = acpi_os_ioremap(phys_addr, size);
 752		if (!virt_addr)
 753			return AE_BAD_ADDRESS;
 754		unmap = true;
 755	}
 756
 757	switch (width) {
 758	case 8:
 759		writeb(value, virt_addr);
 760		break;
 761	case 16:
 762		writew(value, virt_addr);
 763		break;
 764	case 32:
 765		writel(value, virt_addr);
 766		break;
 767	case 64:
 768		writeq(value, virt_addr);
 769		break;
 770	default:
 771		BUG();
 772	}
 773
 774	if (unmap)
 775		iounmap(virt_addr);
 776	else
 777		rcu_read_unlock();
 778
 779	return AE_OK;
 780}
 781
 782#ifdef CONFIG_PCI
 783acpi_status
 784acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
 785			       u64 *value, u32 width)
 786{
 787	int result, size;
 788	u32 value32;
 789
 790	if (!value)
 791		return AE_BAD_PARAMETER;
 792
 793	switch (width) {
 794	case 8:
 795		size = 1;
 796		break;
 797	case 16:
 798		size = 2;
 799		break;
 800	case 32:
 801		size = 4;
 802		break;
 803	default:
 804		return AE_ERROR;
 805	}
 806
 807	result = raw_pci_read(pci_id->segment, pci_id->bus,
 808				PCI_DEVFN(pci_id->device, pci_id->function),
 809				reg, size, &value32);
 810	*value = value32;
 811
 812	return (result ? AE_ERROR : AE_OK);
 813}
 814
 815acpi_status
 816acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
 817				u64 value, u32 width)
 818{
 819	int result, size;
 820
 821	switch (width) {
 822	case 8:
 823		size = 1;
 824		break;
 825	case 16:
 826		size = 2;
 827		break;
 828	case 32:
 829		size = 4;
 830		break;
 831	default:
 832		return AE_ERROR;
 833	}
 834
 835	result = raw_pci_write(pci_id->segment, pci_id->bus,
 836				PCI_DEVFN(pci_id->device, pci_id->function),
 837				reg, size, value);
 838
 839	return (result ? AE_ERROR : AE_OK);
 840}
 841#endif
 842
 843static void acpi_os_execute_deferred(struct work_struct *work)
 844{
 845	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 846
 
 
 
 847	dpc->function(dpc->context);
 848	kfree(dpc);
 849}
 850
 851#ifdef CONFIG_ACPI_DEBUGGER
 852static struct acpi_debugger acpi_debugger;
 853static bool acpi_debugger_initialized;
 854
 855int acpi_register_debugger(struct module *owner,
 856			   const struct acpi_debugger_ops *ops)
 857{
 858	int ret = 0;
 859
 860	mutex_lock(&acpi_debugger.lock);
 861	if (acpi_debugger.ops) {
 862		ret = -EBUSY;
 863		goto err_lock;
 864	}
 865
 866	acpi_debugger.owner = owner;
 867	acpi_debugger.ops = ops;
 868
 869err_lock:
 870	mutex_unlock(&acpi_debugger.lock);
 871	return ret;
 872}
 873EXPORT_SYMBOL(acpi_register_debugger);
 874
 875void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 876{
 877	mutex_lock(&acpi_debugger.lock);
 878	if (ops == acpi_debugger.ops) {
 879		acpi_debugger.ops = NULL;
 880		acpi_debugger.owner = NULL;
 881	}
 882	mutex_unlock(&acpi_debugger.lock);
 883}
 884EXPORT_SYMBOL(acpi_unregister_debugger);
 885
 886int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 887{
 888	int ret;
 889	int (*func)(acpi_osd_exec_callback, void *);
 890	struct module *owner;
 891
 892	if (!acpi_debugger_initialized)
 893		return -ENODEV;
 894	mutex_lock(&acpi_debugger.lock);
 895	if (!acpi_debugger.ops) {
 896		ret = -ENODEV;
 897		goto err_lock;
 898	}
 899	if (!try_module_get(acpi_debugger.owner)) {
 900		ret = -ENODEV;
 901		goto err_lock;
 902	}
 903	func = acpi_debugger.ops->create_thread;
 904	owner = acpi_debugger.owner;
 905	mutex_unlock(&acpi_debugger.lock);
 906
 907	ret = func(function, context);
 908
 909	mutex_lock(&acpi_debugger.lock);
 910	module_put(owner);
 911err_lock:
 912	mutex_unlock(&acpi_debugger.lock);
 913	return ret;
 914}
 915
 916ssize_t acpi_debugger_write_log(const char *msg)
 917{
 918	ssize_t ret;
 919	ssize_t (*func)(const char *);
 920	struct module *owner;
 921
 922	if (!acpi_debugger_initialized)
 923		return -ENODEV;
 924	mutex_lock(&acpi_debugger.lock);
 925	if (!acpi_debugger.ops) {
 926		ret = -ENODEV;
 927		goto err_lock;
 928	}
 929	if (!try_module_get(acpi_debugger.owner)) {
 930		ret = -ENODEV;
 931		goto err_lock;
 932	}
 933	func = acpi_debugger.ops->write_log;
 934	owner = acpi_debugger.owner;
 935	mutex_unlock(&acpi_debugger.lock);
 936
 937	ret = func(msg);
 938
 939	mutex_lock(&acpi_debugger.lock);
 940	module_put(owner);
 941err_lock:
 942	mutex_unlock(&acpi_debugger.lock);
 943	return ret;
 944}
 945
 946ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 947{
 948	ssize_t ret;
 949	ssize_t (*func)(char *, size_t);
 950	struct module *owner;
 951
 952	if (!acpi_debugger_initialized)
 953		return -ENODEV;
 954	mutex_lock(&acpi_debugger.lock);
 955	if (!acpi_debugger.ops) {
 956		ret = -ENODEV;
 957		goto err_lock;
 958	}
 959	if (!try_module_get(acpi_debugger.owner)) {
 960		ret = -ENODEV;
 961		goto err_lock;
 962	}
 963	func = acpi_debugger.ops->read_cmd;
 964	owner = acpi_debugger.owner;
 965	mutex_unlock(&acpi_debugger.lock);
 966
 967	ret = func(buffer, buffer_length);
 968
 969	mutex_lock(&acpi_debugger.lock);
 970	module_put(owner);
 971err_lock:
 972	mutex_unlock(&acpi_debugger.lock);
 973	return ret;
 974}
 975
 976int acpi_debugger_wait_command_ready(void)
 977{
 978	int ret;
 979	int (*func)(bool, char *, size_t);
 980	struct module *owner;
 981
 982	if (!acpi_debugger_initialized)
 983		return -ENODEV;
 984	mutex_lock(&acpi_debugger.lock);
 985	if (!acpi_debugger.ops) {
 986		ret = -ENODEV;
 987		goto err_lock;
 988	}
 989	if (!try_module_get(acpi_debugger.owner)) {
 990		ret = -ENODEV;
 991		goto err_lock;
 992	}
 993	func = acpi_debugger.ops->wait_command_ready;
 994	owner = acpi_debugger.owner;
 995	mutex_unlock(&acpi_debugger.lock);
 996
 997	ret = func(acpi_gbl_method_executing,
 998		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 999
1000	mutex_lock(&acpi_debugger.lock);
1001	module_put(owner);
1002err_lock:
1003	mutex_unlock(&acpi_debugger.lock);
1004	return ret;
1005}
1006
1007int acpi_debugger_notify_command_complete(void)
1008{
1009	int ret;
1010	int (*func)(void);
1011	struct module *owner;
1012
1013	if (!acpi_debugger_initialized)
1014		return -ENODEV;
1015	mutex_lock(&acpi_debugger.lock);
1016	if (!acpi_debugger.ops) {
1017		ret = -ENODEV;
1018		goto err_lock;
1019	}
1020	if (!try_module_get(acpi_debugger.owner)) {
1021		ret = -ENODEV;
1022		goto err_lock;
1023	}
1024	func = acpi_debugger.ops->notify_command_complete;
1025	owner = acpi_debugger.owner;
1026	mutex_unlock(&acpi_debugger.lock);
1027
1028	ret = func();
1029
1030	mutex_lock(&acpi_debugger.lock);
1031	module_put(owner);
1032err_lock:
1033	mutex_unlock(&acpi_debugger.lock);
1034	return ret;
1035}
1036
1037int __init acpi_debugger_init(void)
1038{
1039	mutex_init(&acpi_debugger.lock);
1040	acpi_debugger_initialized = true;
1041	return 0;
1042}
1043#endif
1044
1045/*******************************************************************************
1046 *
1047 * FUNCTION:    acpi_os_execute
1048 *
1049 * PARAMETERS:  Type               - Type of the callback
1050 *              Function           - Function to be executed
1051 *              Context            - Function parameters
1052 *
1053 * RETURN:      Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 *              immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
1060acpi_status acpi_os_execute(acpi_execute_type type,
1061			    acpi_osd_exec_callback function, void *context)
1062{
 
1063	struct acpi_os_dpc *dpc;
 
1064	int ret;
1065
1066	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067			  "Scheduling function [%p(%p)] for deferred execution.\n",
1068			  function, context));
1069
1070	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071		ret = acpi_debugger_create_thread(function, context);
1072		if (ret) {
1073			pr_err("Kernel thread creation failed\n");
1074			return AE_ERROR;
1075		}
1076		return AE_OK;
1077	}
1078
1079	/*
1080	 * Allocate/initialize DPC structure.  Note that this memory will be
1081	 * freed by the callee.  The kernel handles the work_struct list  in a
1082	 * way that allows us to also free its memory inside the callee.
1083	 * Because we may want to schedule several tasks with different
1084	 * parameters we can't use the approach some kernel code uses of
1085	 * having a static work_struct.
1086	 */
1087
1088	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089	if (!dpc)
1090		return AE_NO_MEMORY;
1091
1092	dpc->function = function;
1093	dpc->context = context;
1094	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096	/*
1097	 * To prevent lockdep from complaining unnecessarily, make sure that
1098	 * there is a different static lockdep key for each workqueue by using
1099	 * INIT_WORK() for each of them separately.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100	 */
1101	switch (type) {
1102	case OSL_NOTIFY_HANDLER:
1103		ret = queue_work(kacpi_notify_wq, &dpc->work);
1104		break;
1105	case OSL_GPE_HANDLER:
1106		/*
1107		 * On some machines, a software-initiated SMI causes corruption
1108		 * unless the SMI runs on CPU 0.  An SMI can be initiated by
1109		 * any AML, but typically it's done in GPE-related methods that
1110		 * are run via workqueues, so we can avoid the known corruption
1111		 * cases by always queueing on CPU 0.
1112		 */
1113		ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114		break;
1115	default:
1116		pr_err("Unsupported os_execute type %d.\n", type);
1117		goto err;
1118	}
1119	if (!ret) {
1120		pr_err("Unable to queue work\n");
1121		goto err;
 
 
1122	}
1123
1124	return AE_OK;
1125
1126err:
1127	kfree(dpc);
1128	return AE_ERROR;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
 
1133{
1134	/*
1135	 * Make sure the GPE handler or the fixed event handler is not used
1136	 * on another CPU after removal.
1137	 */
1138	if (acpi_sci_irq_valid())
1139		synchronize_hardirq(acpi_sci_irq);
1140	flush_workqueue(kacpid_wq);
1141	flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146	struct work_struct work;
1147	struct acpi_device *adev;
1148	u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
 
1152{
1153	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155	acpi_os_wait_events_complete();
1156	acpi_device_hotplug(hpw->adev, hpw->src);
1157	kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162	struct acpi_hp_work *hpw;
1163
1164	acpi_handle_debug(adev->handle,
1165			  "Scheduling hotplug event %u for deferred handling\n",
1166			   src);
1167
1168	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169	if (!hpw)
1170		return AE_NO_MEMORY;
1171
1172	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173	hpw->adev = adev;
1174	hpw->src = src;
1175	/*
1176	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177	 * the hotplug code may call driver .remove() functions, which may
1178	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179	 * these workqueues.
1180	 */
1181	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182		kfree(hpw);
1183		return AE_ERROR;
1184	}
1185	return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190	return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195{
1196	struct semaphore *sem = NULL;
1197
1198	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199	if (!sem)
1200		return AE_NO_MEMORY;
 
1201
1202	sema_init(sem, initial_units);
1203
1204	*handle = (acpi_handle *) sem;
1205
1206	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207			  *handle, initial_units));
1208
1209	return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores?  Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers.	Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221	struct semaphore *sem = (struct semaphore *)handle;
1222
1223	if (!sem)
1224		return AE_BAD_PARAMETER;
1225
1226	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228	BUG_ON(!list_empty(&sem->wait_list));
1229	kfree(sem);
1230	sem = NULL;
1231
1232	return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240	acpi_status status = AE_OK;
1241	struct semaphore *sem = (struct semaphore *)handle;
1242	long jiffies;
1243	int ret = 0;
1244
1245	if (!acpi_os_initialized)
1246		return AE_OK;
1247
1248	if (!sem || (units < 1))
1249		return AE_BAD_PARAMETER;
1250
1251	if (units > 1)
1252		return AE_SUPPORT;
1253
1254	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255			  handle, units, timeout));
1256
1257	if (timeout == ACPI_WAIT_FOREVER)
1258		jiffies = MAX_SCHEDULE_TIMEOUT;
1259	else
1260		jiffies = msecs_to_jiffies(timeout);
1261
1262	ret = down_timeout(sem, jiffies);
1263	if (ret)
1264		status = AE_TIME;
1265
1266	if (ACPI_FAILURE(status)) {
1267		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268				  "Failed to acquire semaphore[%p|%d|%d], %s",
1269				  handle, units, timeout,
1270				  acpi_format_exception(status)));
1271	} else {
1272		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273				  "Acquired semaphore[%p|%d|%d]", handle,
1274				  units, timeout));
1275	}
1276
1277	return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285	struct semaphore *sem = (struct semaphore *)handle;
1286
1287	if (!acpi_os_initialized)
1288		return AE_OK;
1289
1290	if (!sem || (units < 1))
1291		return AE_BAD_PARAMETER;
1292
1293	if (units > 1)
1294		return AE_SUPPORT;
1295
1296	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297			  units));
1298
1299	up(sem);
1300
1301	return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
 
1305{
 
1306#ifdef ENABLE_DEBUGGER
1307	if (acpi_in_debugger) {
1308		u32 chars;
1309
1310		kdb_read(buffer, buffer_length);
1311
1312		/* remove the CR kdb includes */
1313		chars = strlen(buffer) - 1;
1314		buffer[chars] = '\0';
1315	}
1316#else
1317	int ret;
1318
1319	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320	if (ret < 0)
1321		return AE_ERROR;
1322	if (bytes_read)
1323		*bytes_read = ret;
1324#endif
1325
1326	return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332	int ret;
1333
1334	ret = acpi_debugger_wait_command_ready();
1335	if (ret < 0)
1336		return AE_ERROR;
1337	return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342	int ret;
1343
1344	ret = acpi_debugger_notify_command_complete();
1345	if (ret < 0)
1346		return AE_ERROR;
1347	return AE_OK;
1348}
 
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352	switch (function) {
1353	case ACPI_SIGNAL_FATAL:
1354		pr_err("Fatal opcode executed\n");
1355		break;
1356	case ACPI_SIGNAL_BREAKPOINT:
1357		/*
1358		 * AML Breakpoint
1359		 * ACPI spec. says to treat it as a NOP unless
1360		 * you are debugging.  So if/when we integrate
1361		 * AML debugger into the kernel debugger its
1362		 * hook will go here.  But until then it is
1363		 * not useful to print anything on breakpoints.
1364		 */
1365		break;
1366	default:
1367		break;
1368	}
1369
1370	return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375	char *p = acpi_os_name;
1376	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378	if (!str || !*str)
1379		return 0;
1380
1381	for (; count-- && *str; str++) {
1382		if (isalnum(*str) || *str == ' ' || *str == ':')
1383			*p++ = *str;
1384		else if (*str == '\'' || *str == '"')
1385			continue;
1386		else
1387			break;
1388	}
1389	*p = 0;
1390
1391	return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default.  It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
 
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405	acpi_gbl_auto_serialize_methods = FALSE;
1406	pr_info("Auto-serialization disabled\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407
1408	return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
 
 
 
 
 
 
 
 
 
 
 
 
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 *   - strict (default) (2)
1420 *     -> further driver trying to access the resources will not load
1421 *   - lax              (1)
1422 *     -> further driver trying to access the resources will load, but you
1423 *     get a system message that something might go wrong...
1424 *
1425 *   - no               (0)
1426 *     -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX    1
1431#define ENFORCE_RESOURCES_NO     0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437	if (str == NULL || *str == '\0')
1438		return 0;
1439
1440	if (!strcmp("strict", str))
1441		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442	else if (!strcmp("lax", str))
1443		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444	else if (!strcmp("no", str))
1445		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447	return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456	acpi_adr_space_type space_id;
 
 
 
1457
1458	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459		return 0;
 
 
1460
1461	if (res->flags & IORESOURCE_IO)
1462		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463	else if (res->flags & IORESOURCE_MEM)
1464		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465	else
1466		return 0;
1467
1468	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469		return 0;
1470
1471	pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474		return -EBUSY;
1475
1476	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479	return 0;
1480}
1481EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483int acpi_check_region(resource_size_t start, resource_size_t n,
1484		      const char *name)
1485{
1486	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
 
 
 
 
 
1487
1488	return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506	ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516	__acquires(lockp)
1517{
1518	spin_lock(lockp);
1519	return 0;
 
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527	__releases(lockp)
1528{
1529	spin_unlock(lockp);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION:    acpi_os_create_cache
1537 *
1538 * PARAMETERS:  name      - Ascii name for the cache
1539 *              size      - Size of each cached object
1540 *              depth     - Maximum depth of the cache (in objects) <ignored>
1541 *              cache     - Where the new cache object is returned
1542 *
1543 * RETURN:      status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551{
1552	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1553	if (*cache == NULL)
1554		return AE_ERROR;
1555	else
1556		return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION:    acpi_os_purge_cache
1562 *
1563 * PARAMETERS:  Cache           - Handle to cache object
1564 *
1565 * RETURN:      Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572{
1573	kmem_cache_shrink(cache);
1574	return AE_OK;
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION:    acpi_os_delete_cache
1580 *
1581 * PARAMETERS:  Cache           - Handle to cache object
1582 *
1583 * RETURN:      Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 *              cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591{
1592	kmem_cache_destroy(cache);
1593	return AE_OK;
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION:    acpi_os_release_object
1599 *
1600 * PARAMETERS:  Cache       - Handle to cache object
1601 *              Object      - The object to be released
1602 *
1603 * RETURN:      None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1606 *              the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611{
1612	kmem_cache_free(cache, object);
1613	return AE_OK;
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619	acpi_gbl_disable_ssdt_table_install = TRUE;
1620	pr_info("Static SSDT installation disabled\n");
1621
1622	return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629	pr_notice("Predefined validation mechanism disabled\n");
1630	acpi_gbl_disable_auto_repair = TRUE;
1631
1632	return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642	acpi_gbl_xgpe0_block_logical_address =
1643		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644	acpi_gbl_xgpe1_block_logical_address =
1645		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648		/*
1649		 * Use acpi_os_map_generic_address to pre-map the reset
1650		 * register if it's in system memory.
1651		 */
1652		void *rv;
1653
1654		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655		pr_debug("%s: Reset register mapping %s\n", __func__,
1656			 rv ? "successful" : "failed");
1657	}
1658	acpi_os_initialized = true;
1659
1660	return AE_OK;
1661}
1662
1663acpi_status __init acpi_os_initialize1(void)
1664{
1665	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668	BUG_ON(!kacpid_wq);
1669	BUG_ON(!kacpi_notify_wq);
1670	BUG_ON(!kacpi_hotplug_wq);
1671	acpi_osi_init();
 
1672	return AE_OK;
1673}
1674
1675acpi_status acpi_os_terminate(void)
1676{
1677	if (acpi_irq_handler) {
1678		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679						 acpi_irq_handler);
1680	}
1681
1682	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684	acpi_gbl_xgpe0_block_logical_address = 0UL;
1685	acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693	destroy_workqueue(kacpid_wq);
1694	destroy_workqueue(kacpi_notify_wq);
1695	destroy_workqueue(kacpi_hotplug_wq);
1696
1697	return AE_OK;
1698}
1699
1700acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701				  u32 pm1b_control)
1702{
1703	int rc = 0;
1704
1705	if (__acpi_os_prepare_sleep)
1706		rc = __acpi_os_prepare_sleep(sleep_state,
1707					     pm1a_control, pm1b_control);
1708	if (rc < 0)
1709		return AE_ERROR;
1710	else if (rc > 0)
1711		return AE_CTRL_TERMINATE;
1712
1713	return AE_OK;
1714}
1715
1716void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1718{
1719	__acpi_os_prepare_sleep = func;
1720}
1721
1722#if (ACPI_REDUCED_HARDWARE)
1723acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724				  u32 val_b)
1725{
1726	int rc = 0;
1727
1728	if (__acpi_os_prepare_extended_sleep)
1729		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730					     val_a, val_b);
1731	if (rc < 0)
1732		return AE_ERROR;
1733	else if (rc > 0)
1734		return AE_CTRL_TERMINATE;
1735
1736	return AE_OK;
1737}
1738#else
1739acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740				  u32 val_b)
1741{
1742	return AE_OK;
1743}
1744#endif
1745
1746void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747			       u32 val_a, u32 val_b))
1748{
1749	__acpi_os_prepare_extended_sleep = func;
1750}
1751
1752acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753				u32 reg_a_value, u32 reg_b_value)
1754{
1755	acpi_status status;
1756
1757	if (acpi_gbl_reduced_hardware)
1758		status = acpi_os_prepare_extended_sleep(sleep_state,
1759							reg_a_value,
1760							reg_b_value);
1761	else
1762		status = acpi_os_prepare_sleep(sleep_state,
1763					       reg_a_value, reg_b_value);
1764	return status;
1765}