Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
 
   2 *	x86 SMP booting functions
   3 *
   4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   5 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   6 *	Copyright 2001 Andi Kleen, SuSE Labs.
   7 *
   8 *	Much of the core SMP work is based on previous work by Thomas Radke, to
   9 *	whom a great many thanks are extended.
  10 *
  11 *	Thanks to Intel for making available several different Pentium,
  12 *	Pentium Pro and Pentium-II/Xeon MP machines.
  13 *	Original development of Linux SMP code supported by Caldera.
  14 *
  15 *	This code is released under the GNU General Public License version 2 or
  16 *	later.
  17 *
  18 *	Fixes
  19 *		Felix Koop	:	NR_CPUS used properly
  20 *		Jose Renau	:	Handle single CPU case.
  21 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  22 *		Greg Wright	:	Fix for kernel stacks panic.
  23 *		Erich Boleyn	:	MP v1.4 and additional changes.
  24 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  25 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  26 *	Michael Chastain	:	Change trampoline.S to gnu as.
  27 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  28 *		Ingo Molnar	:	Added APIC timers, based on code
  29 *					from Jose Renau
  30 *		Ingo Molnar	:	various cleanups and rewrites
  31 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  32 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  33 *	Andi Kleen		:	Changed for SMP boot into long mode.
  34 *		Martin J. Bligh	: 	Added support for multi-quad systems
  35 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  36 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  37 *      Andi Kleen              :       Converted to new state machine.
  38 *	Ashok Raj		: 	CPU hotplug support
  39 *	Glauber Costa		:	i386 and x86_64 integration
  40 */
  41
 
 
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/module.h>
  45#include <linux/sched.h>
 
 
 
  46#include <linux/percpu.h>
  47#include <linux/bootmem.h>
  48#include <linux/err.h>
  49#include <linux/nmi.h>
  50#include <linux/tboot.h>
  51#include <linux/stackprotector.h>
  52#include <linux/gfp.h>
  53#include <linux/cpuidle.h>
 
 
 
 
 
 
 
  54
  55#include <asm/acpi.h>
 
  56#include <asm/desc.h>
  57#include <asm/nmi.h>
  58#include <asm/irq.h>
  59#include <asm/idle.h>
  60#include <asm/realmode.h>
  61#include <asm/cpu.h>
  62#include <asm/numa.h>
  63#include <asm/pgtable.h>
  64#include <asm/tlbflush.h>
  65#include <asm/mtrr.h>
  66#include <asm/mwait.h>
  67#include <asm/apic.h>
  68#include <asm/io_apic.h>
 
  69#include <asm/setup.h>
  70#include <asm/uv/uv.h>
  71#include <linux/mc146818rtc.h>
  72
  73#include <asm/smpboot_hooks.h>
  74#include <asm/i8259.h>
  75
  76#include <asm/realmode.h>
  77
  78/* State of each CPU */
  79DEFINE_PER_CPU(int, cpu_state) = { 0 };
  80
  81#ifdef CONFIG_HOTPLUG_CPU
  82/*
  83 * We need this for trampoline_base protection from concurrent accesses when
  84 * off- and onlining cores wildly.
  85 */
  86static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex);
  87
  88void cpu_hotplug_driver_lock(void)
  89{
  90	mutex_lock(&x86_cpu_hotplug_driver_mutex);
  91}
  92
  93void cpu_hotplug_driver_unlock(void)
  94{
  95	mutex_unlock(&x86_cpu_hotplug_driver_mutex);
  96}
  97
  98ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; }
  99ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; }
 100#endif
 101
 102/* Number of siblings per CPU package */
 103int smp_num_siblings = 1;
 104EXPORT_SYMBOL(smp_num_siblings);
 105
 106/* Last level cache ID of each logical CPU */
 107DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
 108
 109/* representing HT siblings of each logical CPU */
 110DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
 111EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 112
 113/* representing HT and core siblings of each logical CPU */
 114DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
 115EXPORT_PER_CPU_SYMBOL(cpu_core_map);
 116
 117DEFINE_PER_CPU(cpumask_var_t, cpu_llc_shared_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 118
 119/* Per CPU bogomips and other parameters */
 120DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
 121EXPORT_PER_CPU_SYMBOL(cpu_info);
 122
 123atomic_t init_deasserted;
 124
 125/*
 126 * Report back to the Boot Processor.
 127 * Running on AP.
 128 */
 129static void __cpuinit smp_callin(void)
 
 
 
 
 
 
 
 
 130{
 131	int cpuid, phys_id;
 132	unsigned long timeout;
 133
 134	/*
 135	 * If waken up by an INIT in an 82489DX configuration
 136	 * we may get here before an INIT-deassert IPI reaches
 137	 * our local APIC.  We have to wait for the IPI or we'll
 138	 * lock up on an APIC access.
 139	 */
 140	if (apic->wait_for_init_deassert)
 141		apic->wait_for_init_deassert(&init_deasserted);
 142
 143	/*
 144	 * (This works even if the APIC is not enabled.)
 145	 */
 146	phys_id = read_apic_id();
 147	cpuid = smp_processor_id();
 148	if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
 149		panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
 150					phys_id, cpuid);
 
 
 
 151	}
 152	pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
 
 153
 154	/*
 155	 * STARTUP IPIs are fragile beasts as they might sometimes
 156	 * trigger some glue motherboard logic. Complete APIC bus
 157	 * silence for 1 second, this overestimates the time the
 158	 * boot CPU is spending to send the up to 2 STARTUP IPIs
 159	 * by a factor of two. This should be enough.
 160	 */
 161
 162	/*
 163	 * Waiting 2s total for startup (udelay is not yet working)
 
 164	 */
 165	timeout = jiffies + 2*HZ;
 166	while (time_before(jiffies, timeout)) {
 167		/*
 168		 * Has the boot CPU finished it's STARTUP sequence?
 169		 */
 170		if (cpumask_test_cpu(cpuid, cpu_callout_mask))
 171			break;
 172		cpu_relax();
 173	}
 
 174
 175	if (!time_before(jiffies, timeout)) {
 176		panic("%s: CPU%d started up but did not get a callout!\n",
 177		      __func__, cpuid);
 178	}
 179
 180	/*
 181	 * the boot CPU has finished the init stage and is spinning
 182	 * on callin_map until we finish. We are free to set up this
 183	 * CPU, first the APIC. (this is probably redundant on most
 184	 * boards)
 185	 */
 186
 187	pr_debug("CALLIN, before setup_local_APIC().\n");
 188	if (apic->smp_callin_clear_local_apic)
 189		apic->smp_callin_clear_local_apic();
 190	setup_local_APIC();
 191	end_local_APIC_setup();
 192
 193	/*
 194	 * Need to setup vector mappings before we enable interrupts.
 
 
 
 
 
 
 195	 */
 196	setup_vector_irq(smp_processor_id());
 197
 198	/*
 199	 * Save our processor parameters. Note: this information
 200	 * is needed for clock calibration.
 201	 */
 202	smp_store_cpu_info(cpuid);
 203
 204	/*
 205	 * Get our bogomips.
 206	 * Update loops_per_jiffy in cpu_data. Previous call to
 207	 * smp_store_cpu_info() stored a value that is close but not as
 208	 * accurate as the value just calculated.
 209	 */
 210	calibrate_delay();
 211	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 
 
 212	pr_debug("Stack at about %p\n", &cpuid);
 213
 214	/*
 215	 * This must be done before setting cpu_online_mask
 216	 * or calling notify_cpu_starting.
 217	 */
 218	set_cpu_sibling_map(raw_smp_processor_id());
 219	wmb();
 220
 
 
 
 
 221	notify_cpu_starting(cpuid);
 
 222
 
 
 223	/*
 224	 * Allow the master to continue.
 
 
 
 
 
 
 225	 */
 226	cpumask_set_cpu(cpuid, cpu_callin_mask);
 
 227}
 228
 229/*
 230 * Activate a secondary processor.
 231 */
 232notrace static void __cpuinit start_secondary(void *unused)
 233{
 234	/*
 235	 * Don't put *anything* before cpu_init(), SMP booting is too
 236	 * fragile that we want to limit the things done here to the
 237	 * most necessary things.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238	 */
 
 
 
 
 
 
 
 
 
 239	cpu_init();
 
 
 240	x86_cpuinit.early_percpu_clock_init();
 241	preempt_disable();
 242	smp_callin();
 243
 244#ifdef CONFIG_X86_32
 245	/* switch away from the initial page table */
 246	load_cr3(swapper_pg_dir);
 247	__flush_tlb_all();
 248#endif
 249
 250	/* otherwise gcc will move up smp_processor_id before the cpu_init */
 251	barrier();
 252	/*
 253	 * Check TSC synchronization with the BP:
 
 
 254	 */
 255	check_tsc_sync_target();
 
 
 256
 257	/*
 258	 * We need to hold call_lock, so there is no inconsistency
 259	 * between the time smp_call_function() determines number of
 260	 * IPI recipients, and the time when the determination is made
 261	 * for which cpus receive the IPI. Holding this
 262	 * lock helps us to not include this cpu in a currently in progress
 263	 * smp_call_function().
 264	 *
 265	 * We need to hold vector_lock so there the set of online cpus
 266	 * does not change while we are assigning vectors to cpus.  Holding
 267	 * this lock ensures we don't half assign or remove an irq from a cpu.
 268	 */
 269	ipi_call_lock();
 270	lock_vector_lock();
 271	set_cpu_online(smp_processor_id(), true);
 
 272	unlock_vector_lock();
 273	ipi_call_unlock();
 274	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 275	x86_platform.nmi_init();
 276
 277	/* enable local interrupts */
 278	local_irq_enable();
 279
 280	/* to prevent fake stack check failure in clock setup */
 281	boot_init_stack_canary();
 282
 283	x86_cpuinit.setup_percpu_clockev();
 284
 285	wmb();
 286	cpu_idle();
 287}
 288
 289/*
 290 * The bootstrap kernel entry code has set these up. Save them for
 291 * a given CPU
 292 */
 293
 294void __cpuinit smp_store_cpu_info(int id)
 295{
 296	struct cpuinfo_x86 *c = &cpu_data(id);
 297
 298	*c = boot_cpu_data;
 
 
 299	c->cpu_index = id;
 300	if (id != 0)
 301		identify_secondary_cpu(c);
 
 
 
 
 
 
 
 
 
 
 
 
 302}
 303
 304static bool __cpuinit
 305topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 306{
 307	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 308
 309	return !WARN_ONCE(cpu_to_node(cpu1) != cpu_to_node(cpu2),
 310		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 311		"[node: %d != %d]. Ignoring dependency.\n",
 312		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 313}
 314
 315#define link_mask(_m, c1, c2)						\
 316do {									\
 317	cpumask_set_cpu((c1), cpu_##_m##_mask(c2));			\
 318	cpumask_set_cpu((c2), cpu_##_m##_mask(c1));			\
 319} while (0)
 320
 321static bool __cpuinit match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 322{
 323	if (cpu_has(c, X86_FEATURE_TOPOEXT)) {
 324		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 325
 326		if (c->phys_proc_id == o->phys_proc_id &&
 327		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
 328		    c->compute_unit_id == o->compute_unit_id)
 329			return topology_sane(c, o, "smt");
 
 
 
 
 
 
 
 
 330
 331	} else if (c->phys_proc_id == o->phys_proc_id &&
 332		   c->cpu_core_id == o->cpu_core_id) {
 
 333		return topology_sane(c, o, "smt");
 334	}
 335
 336	return false;
 337}
 338
 339static bool __cpuinit match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 
 
 
 
 
 
 
 
 
 
 
 340{
 341	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 342
 343	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
 344	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
 345		return topology_sane(c, o, "llc");
 
 
 
 
 
 
 
 346
 
 
 
 
 
 
 
 
 
 347	return false;
 348}
 349
 350static bool __cpuinit match_mc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351{
 352	if (c->phys_proc_id == o->phys_proc_id) {
 353		if (cpu_has(c, X86_FEATURE_AMD_DCM))
 354			return true;
 355
 356		return topology_sane(c, o, "mc");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 358	return false;
 
 
 
 
 
 
 359}
 360
 361void __cpuinit set_cpu_sibling_map(int cpu)
 362{
 363	bool has_mc = boot_cpu_data.x86_max_cores > 1;
 364	bool has_smt = smp_num_siblings > 1;
 365	struct cpuinfo_x86 *c = &cpu_data(cpu);
 366	struct cpuinfo_x86 *o;
 367	int i;
 368
 369	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 370
 371	if (!has_smt && !has_mc) {
 372		cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
 373		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 374		cpumask_set_cpu(cpu, cpu_core_mask(cpu));
 
 
 375		c->booted_cores = 1;
 376		return;
 377	}
 378
 379	for_each_cpu(i, cpu_sibling_setup_mask) {
 380		o = &cpu_data(i);
 381
 
 
 
 382		if ((i == cpu) || (has_smt && match_smt(c, o)))
 383			link_mask(sibling, cpu, i);
 
 
 
 384
 385		if ((i == cpu) || (has_mc && match_llc(c, o)))
 386			link_mask(llc_shared, cpu, i);
 387
 
 
 388	}
 389
 
 
 
 
 
 
 
 390	/*
 391	 * This needs a separate iteration over the cpus because we rely on all
 392	 * cpu_sibling_mask links to be set-up.
 393	 */
 394	for_each_cpu(i, cpu_sibling_setup_mask) {
 395		o = &cpu_data(i);
 396
 397		if ((i == cpu) || (has_mc && match_mc(c, o))) {
 398			link_mask(core, cpu, i);
 399
 400			/*
 401			 *  Does this new cpu bringup a new core?
 402			 */
 403			if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
 404				/*
 405				 * for each core in package, increment
 406				 * the booted_cores for this new cpu
 407				 */
 408				if (cpumask_first(cpu_sibling_mask(i)) == i)
 
 409					c->booted_cores++;
 410				/*
 411				 * increment the core count for all
 412				 * the other cpus in this package
 413				 */
 414				if (i != cpu)
 415					cpu_data(i).booted_cores++;
 416			} else if (i != cpu && !c->booted_cores)
 417				c->booted_cores = cpu_data(i).booted_cores;
 418		}
 419	}
 420}
 421
 422/* maps the cpu to the sched domain representing multi-core */
 423const struct cpumask *cpu_coregroup_mask(int cpu)
 424{
 425	return cpu_llc_shared_mask(cpu);
 426}
 427
 
 
 
 
 
 
 428static void impress_friends(void)
 429{
 430	int cpu;
 431	unsigned long bogosum = 0;
 432	/*
 433	 * Allow the user to impress friends.
 434	 */
 435	pr_debug("Before bogomips.\n");
 436	for_each_possible_cpu(cpu)
 437		if (cpumask_test_cpu(cpu, cpu_callout_mask))
 438			bogosum += cpu_data(cpu).loops_per_jiffy;
 439	printk(KERN_INFO
 440		"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 441		num_online_cpus(),
 442		bogosum/(500000/HZ),
 443		(bogosum/(5000/HZ))%100);
 444
 445	pr_debug("Before bogocount - setting activated=1.\n");
 446}
 447
 448void __inquire_remote_apic(int apicid)
 449{
 450	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 451	const char * const names[] = { "ID", "VERSION", "SPIV" };
 452	int timeout;
 453	u32 status;
 
 
 
 
 
 454
 455	printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid);
 456
 457	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 458		printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]);
 
 459
 460		/*
 461		 * Wait for idle.
 462		 */
 463		status = safe_apic_wait_icr_idle();
 464		if (status)
 465			printk(KERN_CONT
 466			       "a previous APIC delivery may have failed\n");
 467
 468		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 469
 470		timeout = 0;
 471		do {
 472			udelay(100);
 473			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 474		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 475
 476		switch (status) {
 477		case APIC_ICR_RR_VALID:
 478			status = apic_read(APIC_RRR);
 479			printk(KERN_CONT "%08x\n", status);
 480			break;
 481		default:
 482			printk(KERN_CONT "failed\n");
 483		}
 484	}
 485}
 
 486
 487/*
 488 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 489 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 490 * won't ... remember to clear down the APIC, etc later.
 491 */
 492int __cpuinit
 493wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip)
 494{
 495	unsigned long send_status, accept_status = 0;
 496	int maxlvt;
 497
 498	/* Target chip */
 499	/* Boot on the stack */
 500	/* Kick the second */
 501	apic_icr_write(APIC_DM_NMI | apic->dest_logical, logical_apicid);
 502
 503	pr_debug("Waiting for send to finish...\n");
 504	send_status = safe_apic_wait_icr_idle();
 505
 506	/*
 507	 * Give the other CPU some time to accept the IPI.
 508	 */
 509	udelay(200);
 510	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
 511		maxlvt = lapic_get_maxlvt();
 512		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
 513			apic_write(APIC_ESR, 0);
 514		accept_status = (apic_read(APIC_ESR) & 0xEF);
 515	}
 516	pr_debug("NMI sent.\n");
 517
 518	if (send_status)
 519		printk(KERN_ERR "APIC never delivered???\n");
 520	if (accept_status)
 521		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
 522
 523	return (send_status | accept_status);
 524}
 525
 526static int __cpuinit
 527wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 
 
 528{
 529	unsigned long send_status, accept_status = 0;
 530	int maxlvt, num_starts, j;
 531
 532	maxlvt = lapic_get_maxlvt();
 533
 534	/*
 535	 * Be paranoid about clearing APIC errors.
 536	 */
 537	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
 538		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 539			apic_write(APIC_ESR, 0);
 540		apic_read(APIC_ESR);
 541	}
 542
 543	pr_debug("Asserting INIT.\n");
 544
 545	/*
 546	 * Turn INIT on target chip
 547	 */
 548	/*
 549	 * Send IPI
 550	 */
 551	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 552		       phys_apicid);
 553
 554	pr_debug("Waiting for send to finish...\n");
 555	send_status = safe_apic_wait_icr_idle();
 556
 557	mdelay(10);
 558
 559	pr_debug("Deasserting INIT.\n");
 560
 561	/* Target chip */
 562	/* Send IPI */
 563	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 
 
 564
 565	pr_debug("Waiting for send to finish...\n");
 566	send_status = safe_apic_wait_icr_idle();
 
 
 
 
 
 
 
 
 
 567
 568	mb();
 569	atomic_set(&init_deasserted, 1);
 570
 571	/*
 572	 * Should we send STARTUP IPIs ?
 573	 *
 574	 * Determine this based on the APIC version.
 575	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 576	 */
 577	if (APIC_INTEGRATED(apic_version[phys_apicid]))
 578		num_starts = 2;
 579	else
 580		num_starts = 0;
 581
 582	/*
 583	 * Paravirt / VMI wants a startup IPI hook here to set up the
 584	 * target processor state.
 585	 */
 586	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
 587			 stack_start);
 588
 589	/*
 590	 * Run STARTUP IPI loop.
 591	 */
 592	pr_debug("#startup loops: %d.\n", num_starts);
 593
 594	for (j = 1; j <= num_starts; j++) {
 595		pr_debug("Sending STARTUP #%d.\n", j);
 596		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 597			apic_write(APIC_ESR, 0);
 598		apic_read(APIC_ESR);
 599		pr_debug("After apic_write.\n");
 600
 601		/*
 602		 * STARTUP IPI
 603		 */
 604
 605		/* Target chip */
 606		/* Boot on the stack */
 607		/* Kick the second */
 608		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 609			       phys_apicid);
 610
 611		/*
 612		 * Give the other CPU some time to accept the IPI.
 613		 */
 614		udelay(300);
 
 
 
 615
 616		pr_debug("Startup point 1.\n");
 617
 618		pr_debug("Waiting for send to finish...\n");
 619		send_status = safe_apic_wait_icr_idle();
 620
 621		/*
 622		 * Give the other CPU some time to accept the IPI.
 623		 */
 624		udelay(200);
 
 
 
 
 625		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 626			apic_write(APIC_ESR, 0);
 627		accept_status = (apic_read(APIC_ESR) & 0xEF);
 628		if (send_status || accept_status)
 629			break;
 630	}
 631	pr_debug("After Startup.\n");
 632
 633	if (send_status)
 634		printk(KERN_ERR "APIC never delivered???\n");
 635	if (accept_status)
 636		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
 637
 
 638	return (send_status | accept_status);
 639}
 640
 641/* reduce the number of lines printed when booting a large cpu count system */
 642static void __cpuinit announce_cpu(int cpu, int apicid)
 643{
 644	static int current_node = -1;
 
 645	int node = early_cpu_to_node(cpu);
 646
 647	if (system_state == SYSTEM_BOOTING) {
 
 
 
 
 
 
 
 
 
 648		if (node != current_node) {
 649			if (current_node > (-1))
 650				pr_cont(" Ok.\n");
 651			current_node = node;
 652			pr_info("Booting Node %3d, Processors ", node);
 
 
 653		}
 654		pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " Ok.\n" : "");
 655		return;
 
 
 
 
 
 656	} else
 657		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 658			node, cpu, apicid);
 659}
 660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661/*
 662 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 663 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 664 * Returns zero if CPU booted OK, else error code from
 665 * ->wakeup_secondary_cpu.
 666 */
 667static int __cpuinit do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
 668{
 669	volatile u32 *trampoline_status =
 670		(volatile u32 *) __va(real_mode_header->trampoline_status);
 671	/* start_ip had better be page-aligned! */
 672	unsigned long start_ip = real_mode_header->trampoline_start;
 
 673
 674	unsigned long boot_error = 0;
 675	int timeout;
 676
 677	alternatives_smp_switch(1);
 678
 679	idle->thread.sp = (unsigned long) (((struct pt_regs *)
 680			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
 681	per_cpu(current_task, cpu) = idle;
 682
 683#ifdef CONFIG_X86_32
 684	/* Stack for startup_32 can be just as for start_secondary onwards */
 685	irq_ctx_init(cpu);
 686#else
 687	clear_tsk_thread_flag(idle, TIF_FORK);
 688	initial_gs = per_cpu_offset(cpu);
 689	per_cpu(kernel_stack, cpu) =
 690		(unsigned long)task_stack_page(idle) -
 691		KERNEL_STACK_OFFSET + THREAD_SIZE;
 692#endif
 693	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
 694	initial_code = (unsigned long)start_secondary;
 695	stack_start  = idle->thread.sp;
 
 
 
 
 
 
 
 
 
 696
 697	/* So we see what's up */
 698	announce_cpu(cpu, apicid);
 699
 700	/*
 701	 * This grunge runs the startup process for
 702	 * the targeted processor.
 703	 */
 704
 705	atomic_set(&init_deasserted, 0);
 706
 707	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
 708
 709		pr_debug("Setting warm reset code and vector.\n");
 710
 711		smpboot_setup_warm_reset_vector(start_ip);
 712		/*
 713		 * Be paranoid about clearing APIC errors.
 714		*/
 715		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
 716			apic_write(APIC_ESR, 0);
 717			apic_read(APIC_ESR);
 718		}
 719	}
 720
 
 
 721	/*
 722	 * Kick the secondary CPU. Use the method in the APIC driver
 723	 * if it's defined - or use an INIT boot APIC message otherwise:
 724	 */
 725	if (apic->wakeup_secondary_cpu)
 726		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
 
 
 
 
 
 727	else
 728		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 729
 730	if (!boot_error) {
 731		/*
 732		 * allow APs to start initializing.
 733		 */
 734		pr_debug("Before Callout %d.\n", cpu);
 735		cpumask_set_cpu(cpu, cpu_callout_mask);
 736		pr_debug("After Callout %d.\n", cpu);
 737
 738		/*
 739		 * Wait 5s total for a response
 740		 */
 741		for (timeout = 0; timeout < 50000; timeout++) {
 742			if (cpumask_test_cpu(cpu, cpu_callin_mask))
 743				break;	/* It has booted */
 744			udelay(100);
 745			/*
 746			 * Allow other tasks to run while we wait for the
 747			 * AP to come online. This also gives a chance
 748			 * for the MTRR work(triggered by the AP coming online)
 749			 * to be completed in the stop machine context.
 750			 */
 751			schedule();
 752		}
 753
 754		if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
 755			print_cpu_msr(&cpu_data(cpu));
 756			pr_debug("CPU%d: has booted.\n", cpu);
 757		} else {
 758			boot_error = 1;
 759			if (*trampoline_status == 0xA5A5A5A5)
 760				/* trampoline started but...? */
 761				pr_err("CPU%d: Stuck ??\n", cpu);
 762			else
 763				/* trampoline code not run */
 764				pr_err("CPU%d: Not responding.\n", cpu);
 765			if (apic->inquire_remote_apic)
 766				apic->inquire_remote_apic(apicid);
 767		}
 768	}
 769
 770	if (boot_error) {
 771		/* Try to put things back the way they were before ... */
 772		numa_remove_cpu(cpu); /* was set by numa_add_cpu */
 773
 774		/* was set by do_boot_cpu() */
 775		cpumask_clear_cpu(cpu, cpu_callout_mask);
 776
 777		/* was set by cpu_init() */
 778		cpumask_clear_cpu(cpu, cpu_initialized_mask);
 779
 780		set_cpu_present(cpu, false);
 781		per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
 782	}
 783
 784	/* mark "stuck" area as not stuck */
 785	*trampoline_status = 0;
 786
 787	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
 788		/*
 789		 * Cleanup possible dangling ends...
 790		 */
 791		smpboot_restore_warm_reset_vector();
 792	}
 793	return boot_error;
 794}
 795
 796int __cpuinit native_cpu_up(unsigned int cpu, struct task_struct *tidle)
 797{
 798	int apicid = apic->cpu_present_to_apicid(cpu);
 799	unsigned long flags;
 800	int err;
 801
 802	WARN_ON(irqs_disabled());
 803
 804	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 805
 806	if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
 807	    !physid_isset(apicid, phys_cpu_present_map) ||
 808	    !apic->apic_id_valid(apicid)) {
 809		printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
 810		return -EINVAL;
 811	}
 812
 813	/*
 814	 * Already booted CPU?
 815	 */
 816	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
 817		pr_debug("do_boot_cpu %d Already started\n", cpu);
 818		return -ENOSYS;
 819	}
 820
 821	/*
 822	 * Save current MTRR state in case it was changed since early boot
 823	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
 824	 */
 825	mtrr_save_state();
 826
 827	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 
 
 
 
 
 828
 829	err = do_boot_cpu(apicid, cpu, tidle);
 830	if (err) {
 831		pr_debug("do_boot_cpu failed %d\n", err);
 832		return -EIO;
 833	}
 834
 835	/*
 836	 * Check TSC synchronization with the AP (keep irqs disabled
 837	 * while doing so):
 838	 */
 839	local_irq_save(flags);
 840	check_tsc_sync_source(cpu);
 841	local_irq_restore(flags);
 842
 843	while (!cpu_online(cpu)) {
 844		cpu_relax();
 845		touch_nmi_watchdog();
 846	}
 847
 848	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849}
 850
 851/**
 852 * arch_disable_smp_support() - disables SMP support for x86 at runtime
 853 */
 854void arch_disable_smp_support(void)
 855{
 856	disable_ioapic_support();
 857}
 858
 859/*
 860 * Fall back to non SMP mode after errors.
 861 *
 862 * RED-PEN audit/test this more. I bet there is more state messed up here.
 863 */
 864static __init void disable_smp(void)
 865{
 866	init_cpu_present(cpumask_of(0));
 867	init_cpu_possible(cpumask_of(0));
 868	smpboot_clear_io_apic_irqs();
 869
 870	if (smp_found_config)
 871		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
 872	else
 873		physid_set_mask_of_physid(0, &phys_cpu_present_map);
 874	cpumask_set_cpu(0, cpu_sibling_mask(0));
 875	cpumask_set_cpu(0, cpu_core_mask(0));
 876}
 877
 878/*
 879 * Various sanity checks.
 880 */
 881static int __init smp_sanity_check(unsigned max_cpus)
 882{
 883	preempt_disable();
 884
 885#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
 886	if (def_to_bigsmp && nr_cpu_ids > 8) {
 887		unsigned int cpu;
 888		unsigned nr;
 889
 890		printk(KERN_WARNING
 891		       "More than 8 CPUs detected - skipping them.\n"
 892		       "Use CONFIG_X86_BIGSMP.\n");
 893
 894		nr = 0;
 895		for_each_present_cpu(cpu) {
 896			if (nr >= 8)
 897				set_cpu_present(cpu, false);
 898			nr++;
 899		}
 900
 901		nr = 0;
 902		for_each_possible_cpu(cpu) {
 903			if (nr >= 8)
 904				set_cpu_possible(cpu, false);
 905			nr++;
 906		}
 907
 908		nr_cpu_ids = 8;
 909	}
 910#endif
 911
 912	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
 913		printk(KERN_WARNING
 914			"weird, boot CPU (#%d) not listed by the BIOS.\n",
 915			hard_smp_processor_id());
 916
 917		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
 918	}
 919
 920	/*
 921	 * If we couldn't find an SMP configuration at boot time,
 922	 * get out of here now!
 923	 */
 924	if (!smp_found_config && !acpi_lapic) {
 925		preempt_enable();
 926		printk(KERN_NOTICE "SMP motherboard not detected.\n");
 927		disable_smp();
 928		if (APIC_init_uniprocessor())
 929			printk(KERN_NOTICE "Local APIC not detected."
 930					   " Using dummy APIC emulation.\n");
 931		return -1;
 932	}
 933
 934	/*
 935	 * Should not be necessary because the MP table should list the boot
 936	 * CPU too, but we do it for the sake of robustness anyway.
 937	 */
 938	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
 939		printk(KERN_NOTICE
 940			"weird, boot CPU (#%d) not listed by the BIOS.\n",
 941			boot_cpu_physical_apicid);
 942		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
 943	}
 944	preempt_enable();
 945
 946	/*
 947	 * If we couldn't find a local APIC, then get out of here now!
 948	 */
 949	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
 950	    !cpu_has_apic) {
 951		if (!disable_apic) {
 952			pr_err("BIOS bug, local APIC #%d not detected!...\n",
 953				boot_cpu_physical_apicid);
 954			pr_err("... forcing use of dummy APIC emulation."
 955				"(tell your hw vendor)\n");
 956		}
 957		smpboot_clear_io_apic();
 958		disable_ioapic_support();
 959		return -1;
 960	}
 961
 962	verify_local_APIC();
 963
 964	/*
 965	 * If SMP should be disabled, then really disable it!
 966	 */
 967	if (!max_cpus) {
 968		printk(KERN_INFO "SMP mode deactivated.\n");
 969		smpboot_clear_io_apic();
 970
 971		connect_bsp_APIC();
 972		setup_local_APIC();
 973		bsp_end_local_APIC_setup();
 974		return -1;
 975	}
 976
 977	return 0;
 978}
 979
 980static void __init smp_cpu_index_default(void)
 981{
 982	int i;
 983	struct cpuinfo_x86 *c;
 984
 985	for_each_possible_cpu(i) {
 986		c = &cpu_data(i);
 987		/* mark all to hotplug */
 988		c->cpu_index = nr_cpu_ids;
 
 
 
 989	}
 
 
 
 
 990}
 
 991
 992/*
 993 * Prepare for SMP bootup.  The MP table or ACPI has been read
 994 * earlier.  Just do some sanity checking here and enable APIC mode.
 
 995 */
 996void __init native_smp_prepare_cpus(unsigned int max_cpus)
 997{
 998	unsigned int i;
 999
1000	preempt_disable();
1001	smp_cpu_index_default();
1002
1003	/*
1004	 * Setup boot CPU information
1005	 */
1006	smp_store_cpu_info(0); /* Final full version of the data */
1007	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1008	mb();
1009
1010	current_thread_info()->cpu = 0;  /* needed? */
1011	for_each_possible_cpu(i) {
1012		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1013		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1014		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1015	}
1016	set_cpu_sibling_map(0);
1017
1018
1019	if (smp_sanity_check(max_cpus) < 0) {
1020		printk(KERN_INFO "SMP disabled\n");
 
1021		disable_smp();
1022		goto out;
1023	}
1024
1025	default_setup_apic_routing();
1026
1027	preempt_disable();
1028	if (read_apic_id() != boot_cpu_physical_apicid) {
1029		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1030		     read_apic_id(), boot_cpu_physical_apicid);
1031		/* Or can we switch back to PIC here? */
1032	}
1033	preempt_enable();
1034
1035	connect_bsp_APIC();
1036
1037	/*
1038	 * Switch from PIC to APIC mode.
1039	 */
1040	setup_local_APIC();
1041
1042	/*
1043	 * Enable IO APIC before setting up error vector
1044	 */
1045	if (!skip_ioapic_setup && nr_ioapics)
1046		enable_IO_APIC();
1047
1048	bsp_end_local_APIC_setup();
1049
1050	if (apic->setup_portio_remap)
1051		apic->setup_portio_remap();
1052
1053	smpboot_setup_io_apic();
1054	/*
1055	 * Set up local APIC timer on boot CPU.
1056	 */
1057
1058	printk(KERN_INFO "CPU%d: ", 0);
1059	print_cpu_info(&cpu_data(0));
1060	x86_init.timers.setup_percpu_clockev();
1061
1062	if (is_uv_system())
1063		uv_system_init();
1064
1065	set_mtrr_aps_delayed_init();
1066out:
1067	preempt_enable();
1068}
1069
1070void arch_disable_nonboot_cpus_begin(void)
1071{
1072	/*
1073	 * Avoid the smp alternatives switch during the disable_nonboot_cpus().
1074	 * In the suspend path, we will be back in the SMP mode shortly anyways.
1075	 */
1076	skip_smp_alternatives = true;
1077}
1078
1079void arch_disable_nonboot_cpus_end(void)
1080{
1081	skip_smp_alternatives = false;
1082}
1083
1084void arch_enable_nonboot_cpus_begin(void)
1085{
1086	set_mtrr_aps_delayed_init();
1087}
1088
1089void arch_enable_nonboot_cpus_end(void)
1090{
1091	mtrr_aps_init();
1092}
1093
1094/*
1095 * Early setup to make printk work.
1096 */
1097void __init native_smp_prepare_boot_cpu(void)
1098{
1099	int me = smp_processor_id();
1100	switch_to_new_gdt(me);
1101	/* already set me in cpu_online_mask in boot_cpu_init() */
1102	cpumask_set_cpu(me, cpu_callout_mask);
1103	per_cpu(cpu_state, me) = CPU_ONLINE;
 
 
1104}
1105
1106void __init native_smp_cpus_done(unsigned int max_cpus)
1107{
1108	pr_debug("Boot done.\n");
1109
 
1110	nmi_selftest();
1111	impress_friends();
1112#ifdef CONFIG_X86_IO_APIC
1113	setup_ioapic_dest();
1114#endif
1115	mtrr_aps_init();
1116}
1117
1118static int __initdata setup_possible_cpus = -1;
1119static int __init _setup_possible_cpus(char *str)
1120{
1121	get_option(&str, &setup_possible_cpus);
1122	return 0;
1123}
1124early_param("possible_cpus", _setup_possible_cpus);
1125
 
1126
1127/*
1128 * cpu_possible_mask should be static, it cannot change as cpu's
1129 * are onlined, or offlined. The reason is per-cpu data-structures
1130 * are allocated by some modules at init time, and dont expect to
1131 * do this dynamically on cpu arrival/departure.
1132 * cpu_present_mask on the other hand can change dynamically.
1133 * In case when cpu_hotplug is not compiled, then we resort to current
1134 * behaviour, which is cpu_possible == cpu_present.
1135 * - Ashok Raj
1136 *
1137 * Three ways to find out the number of additional hotplug CPUs:
1138 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1139 * - The user can overwrite it with possible_cpus=NUM
1140 * - Otherwise don't reserve additional CPUs.
1141 * We do this because additional CPUs waste a lot of memory.
1142 * -AK
1143 */
1144__init void prefill_possible_map(void)
1145{
1146	int i, possible;
1147
1148	/* no processor from mptable or madt */
1149	if (!num_processors)
1150		num_processors = 1;
1151
1152	i = setup_max_cpus ?: 1;
1153	if (setup_possible_cpus == -1) {
1154		possible = num_processors;
1155#ifdef CONFIG_HOTPLUG_CPU
1156		if (setup_max_cpus)
1157			possible += disabled_cpus;
1158#else
1159		if (possible > i)
1160			possible = i;
1161#endif
1162	} else
1163		possible = setup_possible_cpus;
1164
1165	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
 
 
1166
1167	/* nr_cpu_ids could be reduced via nr_cpus= */
1168	if (possible > nr_cpu_ids) {
1169		printk(KERN_WARNING
1170			"%d Processors exceeds NR_CPUS limit of %d\n",
1171			possible, nr_cpu_ids);
1172		possible = nr_cpu_ids;
1173	}
1174
1175#ifdef CONFIG_HOTPLUG_CPU
1176	if (!setup_max_cpus)
1177#endif
1178	if (possible > i) {
1179		printk(KERN_WARNING
1180			"%d Processors exceeds max_cpus limit of %u\n",
1181			possible, setup_max_cpus);
1182		possible = i;
1183	}
1184
1185	printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1186		possible, max_t(int, possible - num_processors, 0));
1187
1188	for (i = 0; i < possible; i++)
1189		set_cpu_possible(i, true);
1190	for (; i < NR_CPUS; i++)
1191		set_cpu_possible(i, false);
1192
1193	nr_cpu_ids = possible;
1194}
1195
1196#ifdef CONFIG_HOTPLUG_CPU
1197
1198static void remove_siblinginfo(int cpu)
1199{
1200	int sibling;
1201	struct cpuinfo_x86 *c = &cpu_data(cpu);
1202
1203	for_each_cpu(sibling, cpu_core_mask(cpu)) {
1204		cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1205		/*/
1206		 * last thread sibling in this cpu core going down
1207		 */
1208		if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1209			cpu_data(sibling).booted_cores--;
1210	}
1211
1212	for_each_cpu(sibling, cpu_sibling_mask(cpu))
1213		cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1214	cpumask_clear(cpu_sibling_mask(cpu));
1215	cpumask_clear(cpu_core_mask(cpu));
1216	c->phys_proc_id = 0;
1217	c->cpu_core_id = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
 
1219}
1220
1221static void __ref remove_cpu_from_maps(int cpu)
1222{
1223	set_cpu_online(cpu, false);
1224	cpumask_clear_cpu(cpu, cpu_callout_mask);
1225	cpumask_clear_cpu(cpu, cpu_callin_mask);
1226	/* was set by cpu_init() */
1227	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1228	numa_remove_cpu(cpu);
1229}
1230
1231void cpu_disable_common(void)
1232{
1233	int cpu = smp_processor_id();
1234
1235	remove_siblinginfo(cpu);
1236
1237	/* It's now safe to remove this processor from the online map */
1238	lock_vector_lock();
1239	remove_cpu_from_maps(cpu);
1240	unlock_vector_lock();
1241	fixup_irqs();
 
1242}
1243
1244int native_cpu_disable(void)
1245{
1246	int cpu = smp_processor_id();
1247
1248	/*
1249	 * Perhaps use cpufreq to drop frequency, but that could go
1250	 * into generic code.
1251	 *
1252	 * We won't take down the boot processor on i386 due to some
1253	 * interrupts only being able to be serviced by the BSP.
1254	 * Especially so if we're not using an IOAPIC	-zwane
1255	 */
1256	if (cpu == 0)
1257		return -EBUSY;
1258
1259	clear_local_APIC();
1260
1261	cpu_disable_common();
1262	return 0;
1263}
1264
1265void native_cpu_die(unsigned int cpu)
1266{
1267	/* We don't do anything here: idle task is faking death itself. */
1268	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269
1270	for (i = 0; i < 10; i++) {
1271		/* They ack this in play_dead by setting CPU_DEAD */
1272		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1273			if (system_state == SYSTEM_RUNNING)
1274				pr_info("CPU %u is now offline\n", cpu);
1275
1276			if (1 == num_online_cpus())
1277				alternatives_smp_switch(0);
1278			return;
1279		}
1280		msleep(100);
1281	}
1282	pr_err("CPU %u didn't die...\n", cpu);
1283}
1284
1285void play_dead_common(void)
1286{
1287	idle_task_exit();
1288	reset_lazy_tlbstate();
1289	amd_e400_remove_cpu(raw_smp_processor_id());
1290
1291	mb();
1292	/* Ack it */
1293	__this_cpu_write(cpu_state, CPU_DEAD);
1294
1295	/*
1296	 * With physical CPU hotplug, we should halt the cpu
1297	 */
1298	local_irq_disable();
1299}
1300
1301/*
1302 * We need to flush the caches before going to sleep, lest we have
1303 * dirty data in our caches when we come back up.
1304 */
1305static inline void mwait_play_dead(void)
1306{
 
1307	unsigned int eax, ebx, ecx, edx;
1308	unsigned int highest_cstate = 0;
1309	unsigned int highest_subcstate = 0;
1310	int i;
1311	void *mwait_ptr;
1312	struct cpuinfo_x86 *c = __this_cpu_ptr(&cpu_info);
1313
1314	if (!(this_cpu_has(X86_FEATURE_MWAIT) && mwait_usable(c)))
 
1315		return;
1316	if (!this_cpu_has(X86_FEATURE_CLFLSH))
 
 
1317		return;
1318	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1319		return;
1320
1321	eax = CPUID_MWAIT_LEAF;
1322	ecx = 0;
1323	native_cpuid(&eax, &ebx, &ecx, &edx);
1324
1325	/*
1326	 * eax will be 0 if EDX enumeration is not valid.
1327	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1328	 */
1329	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1330		eax = 0;
1331	} else {
1332		edx >>= MWAIT_SUBSTATE_SIZE;
1333		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1334			if (edx & MWAIT_SUBSTATE_MASK) {
1335				highest_cstate = i;
1336				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1337			}
1338		}
1339		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1340			(highest_subcstate - 1);
1341	}
1342
1343	/*
1344	 * This should be a memory location in a cache line which is
1345	 * unlikely to be touched by other processors.  The actual
1346	 * content is immaterial as it is not actually modified in any way.
1347	 */
1348	mwait_ptr = &current_thread_info()->flags;
1349
1350	wbinvd();
1351
1352	while (1) {
1353		/*
1354		 * The CLFLUSH is a workaround for erratum AAI65 for
1355		 * the Xeon 7400 series.  It's not clear it is actually
1356		 * needed, but it should be harmless in either case.
1357		 * The WBINVD is insufficient due to the spurious-wakeup
1358		 * case where we return around the loop.
1359		 */
1360		clflush(mwait_ptr);
1361		__monitor(mwait_ptr, 0, 0);
 
 
1362		mb();
1363		__mwait(eax, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364	}
1365}
1366
1367static inline void hlt_play_dead(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368{
1369	if (__this_cpu_read(cpu_info.x86) >= 4)
1370		wbinvd();
1371
1372	while (1) {
1373		native_halt();
1374	}
1375}
1376
 
 
 
 
1377void native_play_dead(void)
1378{
 
 
 
1379	play_dead_common();
1380	tboot_shutdown(TB_SHUTDOWN_WFS);
1381
1382	mwait_play_dead();	/* Only returns on failure */
1383	if (cpuidle_play_dead())
1384		hlt_play_dead();
1385}
1386
1387#else /* ... !CONFIG_HOTPLUG_CPU */
1388int native_cpu_disable(void)
1389{
1390	return -ENOSYS;
1391}
1392
1393void native_cpu_die(unsigned int cpu)
1394{
1395	/* We said "no" in __cpu_disable */
1396	BUG();
1397}
1398
1399void native_play_dead(void)
1400{
1401	BUG();
1402}
1403
1404#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
 
 
 
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
 
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
  63
  64#include <asm/acpi.h>
  65#include <asm/cacheinfo.h>
  66#include <asm/desc.h>
  67#include <asm/nmi.h>
  68#include <asm/irq.h>
 
  69#include <asm/realmode.h>
  70#include <asm/cpu.h>
  71#include <asm/numa.h>
 
  72#include <asm/tlbflush.h>
  73#include <asm/mtrr.h>
  74#include <asm/mwait.h>
  75#include <asm/apic.h>
  76#include <asm/io_apic.h>
  77#include <asm/fpu/api.h>
  78#include <asm/setup.h>
  79#include <asm/uv/uv.h>
  80#include <asm/microcode.h>
 
 
  81#include <asm/i8259.h>
  82#include <asm/misc.h>
  83#include <asm/qspinlock.h>
  84#include <asm/intel-family.h>
  85#include <asm/cpu_device_id.h>
  86#include <asm/spec-ctrl.h>
  87#include <asm/hw_irq.h>
  88#include <asm/stackprotector.h>
  89#include <asm/sev.h>
  90#include <asm/spec-ctrl.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92/* representing HT siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  95
  96/* representing HT and core siblings of each logical CPU */
  97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  98EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  99
 100/* representing HT, core, and die siblings of each logical CPU */
 101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 102EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 103
 104/* CPUs which are the primary SMT threads */
 105struct cpumask __cpu_primary_thread_mask __read_mostly;
 106
 107/* Representing CPUs for which sibling maps can be computed */
 108static cpumask_var_t cpu_sibling_setup_mask;
 109
 110struct mwait_cpu_dead {
 111	unsigned int	control;
 112	unsigned int	status;
 113};
 114
 115#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 116#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 
 
 
 117
 118/*
 119 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 120 * that it's unlikely to be touched by other CPUs.
 121 */
 122static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 123
 124/* Maximum number of SMT threads on any online core */
 125int __read_mostly __max_smt_threads = 1;
 126
 127/* Flag to indicate if a complete sched domain rebuild is required */
 128bool x86_topology_update;
 129
 130int arch_update_cpu_topology(void)
 131{
 132	int retval = x86_topology_update;
 
 133
 134	x86_topology_update = false;
 135	return retval;
 136}
 
 
 
 
 
 137
 138static unsigned int smpboot_warm_reset_vector_count;
 139
 140static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 141{
 142	unsigned long flags;
 143
 144	spin_lock_irqsave(&rtc_lock, flags);
 145	if (!smpboot_warm_reset_vector_count++) {
 146		CMOS_WRITE(0xa, 0xf);
 147		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 148		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 149	}
 150	spin_unlock_irqrestore(&rtc_lock, flags);
 151}
 152
 153static inline void smpboot_restore_warm_reset_vector(void)
 154{
 155	unsigned long flags;
 
 
 
 
 156
 157	/*
 158	 * Paranoid:  Set warm reset code and vector here back
 159	 * to default values.
 160	 */
 161	spin_lock_irqsave(&rtc_lock, flags);
 162	if (!--smpboot_warm_reset_vector_count) {
 163		CMOS_WRITE(0, 0xf);
 164		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 
 
 
 
 165	}
 166	spin_unlock_irqrestore(&rtc_lock, flags);
 167
 168}
 
 
 
 169
 170/* Run the next set of setup steps for the upcoming CPU */
 171static void ap_starting(void)
 172{
 173	int cpuid = smp_processor_id();
 
 
 174
 175	/* Mop up eventual mwait_play_dead() wreckage */
 176	this_cpu_write(mwait_cpu_dead.status, 0);
 177	this_cpu_write(mwait_cpu_dead.control, 0);
 
 
 178
 179	/*
 180	 * If woken up by an INIT in an 82489DX configuration the alive
 181	 * synchronization guarantees that the CPU does not reach this
 182	 * point before an INIT_deassert IPI reaches the local APIC, so it
 183	 * is now safe to touch the local APIC.
 184	 *
 185	 * Set up this CPU, first the APIC, which is probably redundant on
 186	 * most boards.
 187	 */
 188	apic_ap_setup();
 189
 190	/* Save the processor parameters. */
 
 
 
 191	smp_store_cpu_info(cpuid);
 192
 193	/*
 194	 * The topology information must be up to date before
 195	 * notify_cpu_starting().
 
 
 196	 */
 197	set_cpu_sibling_map(cpuid);
 198
 199	ap_init_aperfmperf();
 200
 201	pr_debug("Stack at about %p\n", &cpuid);
 202
 
 
 
 
 
 203	wmb();
 204
 205	/*
 206	 * This runs the AP through all the cpuhp states to its target
 207	 * state CPUHP_ONLINE.
 208	 */
 209	notify_cpu_starting(cpuid);
 210}
 211
 212static void ap_calibrate_delay(void)
 213{
 214	/*
 215	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 216	 * smp_store_cpu_info() stored a value that is close but not as
 217	 * accurate as the value just calculated.
 218	 *
 219	 * As this is invoked after the TSC synchronization check,
 220	 * calibrate_delay_is_known() will skip the calibration routine
 221	 * when TSC is synchronized across sockets.
 222	 */
 223	calibrate_delay();
 224	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 225}
 226
 227/*
 228 * Activate a secondary processor.
 229 */
 230static void notrace start_secondary(void *unused)
 231{
 232	/*
 233	 * Don't put *anything* except direct CPU state initialization
 234	 * before cpu_init(), SMP booting is too fragile that we want to
 235	 * limit the things done here to the most necessary things.
 236	 */
 237	cr4_init();
 238
 239	/*
 240	 * 32-bit specific. 64-bit reaches this code with the correct page
 241	 * table established. Yet another historical divergence.
 242	 */
 243	if (IS_ENABLED(CONFIG_X86_32)) {
 244		/* switch away from the initial page table */
 245		load_cr3(swapper_pg_dir);
 246		__flush_tlb_all();
 247	}
 248
 249	cpu_init_exception_handling();
 250
 251	/*
 252	 * Load the microcode before reaching the AP alive synchronization
 253	 * point below so it is not part of the full per CPU serialized
 254	 * bringup part when "parallel" bringup is enabled.
 255	 *
 256	 * That's even safe when hyperthreading is enabled in the CPU as
 257	 * the core code starts the primary threads first and leaves the
 258	 * secondary threads waiting for SIPI. Loading microcode on
 259	 * physical cores concurrently is a safe operation.
 260	 *
 261	 * This covers both the Intel specific issue that concurrent
 262	 * microcode loading on SMT siblings must be prohibited and the
 263	 * vendor independent issue`that microcode loading which changes
 264	 * CPUID, MSRs etc. must be strictly serialized to maintain
 265	 * software state correctness.
 266	 */
 267	load_ucode_ap();
 268
 269	/*
 270	 * Synchronization point with the hotplug core. Sets this CPUs
 271	 * synchronization state to ALIVE and spin-waits for the control CPU to
 272	 * release this CPU for further bringup.
 273	 */
 274	cpuhp_ap_sync_alive();
 275
 276	cpu_init();
 277	fpu__init_cpu();
 278	rcutree_report_cpu_starting(raw_smp_processor_id());
 279	x86_cpuinit.early_percpu_clock_init();
 
 
 280
 281	ap_starting();
 282
 283	/* Check TSC synchronization with the control CPU. */
 284	check_tsc_sync_target();
 
 285
 
 
 286	/*
 287	 * Calibrate the delay loop after the TSC synchronization check.
 288	 * This allows to skip the calibration when TSC is synchronized
 289	 * across sockets.
 290	 */
 291	ap_calibrate_delay();
 292
 293	speculative_store_bypass_ht_init();
 294
 295	/*
 296	 * Lock vector_lock, set CPU online and bring the vector
 297	 * allocator online. Online must be set with vector_lock held
 298	 * to prevent a concurrent irq setup/teardown from seeing a
 299	 * half valid vector space.
 
 
 
 
 
 
 300	 */
 
 301	lock_vector_lock();
 302	set_cpu_online(smp_processor_id(), true);
 303	lapic_online();
 304	unlock_vector_lock();
 
 
 305	x86_platform.nmi_init();
 306
 307	/* enable local interrupts */
 308	local_irq_enable();
 309
 
 
 
 310	x86_cpuinit.setup_percpu_clockev();
 311
 312	wmb();
 313	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 314}
 315
 316/*
 317 * The bootstrap kernel entry code has set these up. Save them for
 318 * a given CPU
 319 */
 320void smp_store_cpu_info(int id)
 
 321{
 322	struct cpuinfo_x86 *c = &cpu_data(id);
 323
 324	/* Copy boot_cpu_data only on the first bringup */
 325	if (!c->initialized)
 326		*c = boot_cpu_data;
 327	c->cpu_index = id;
 328	/*
 329	 * During boot time, CPU0 has this setup already. Save the info when
 330	 * bringing up an AP.
 331	 */
 332	identify_secondary_cpu(c);
 333	c->initialized = true;
 334}
 335
 336static bool
 337topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 338{
 339	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 340
 341	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 342}
 343
 344static bool
 345topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 346{
 347	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 348
 349	return !WARN_ONCE(!topology_same_node(c, o),
 350		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 351		"[node: %d != %d]. Ignoring dependency.\n",
 352		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 353}
 354
 355#define link_mask(mfunc, c1, c2)					\
 356do {									\
 357	cpumask_set_cpu((c1), mfunc(c2));				\
 358	cpumask_set_cpu((c2), mfunc(c1));				\
 359} while (0)
 360
 361static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 362{
 363	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 364		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 365
 366		if (c->topo.pkg_id == o->topo.pkg_id &&
 367		    c->topo.die_id == o->topo.die_id &&
 368		    c->topo.amd_node_id == o->topo.amd_node_id &&
 369		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 370			if (c->topo.core_id == o->topo.core_id)
 371				return topology_sane(c, o, "smt");
 372
 373			if ((c->topo.cu_id != 0xff) &&
 374			    (o->topo.cu_id != 0xff) &&
 375			    (c->topo.cu_id == o->topo.cu_id))
 376				return topology_sane(c, o, "smt");
 377		}
 378
 379	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 380		   c->topo.die_id == o->topo.die_id &&
 381		   c->topo.core_id == o->topo.core_id) {
 382		return topology_sane(c, o, "smt");
 383	}
 384
 385	return false;
 386}
 387
 388static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 389{
 390	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
 391		return false;
 392
 393	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
 394		return c->topo.amd_node_id == o->topo.amd_node_id;
 395
 396	return true;
 397}
 398
 399static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 400{
 401	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 402
 403	/* If the arch didn't set up l2c_id, fall back to SMT */
 404	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 405		return match_smt(c, o);
 406
 407	/* Do not match if L2 cache id does not match: */
 408	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 409		return false;
 410
 411	return topology_sane(c, o, "l2c");
 412}
 413
 414/*
 415 * Unlike the other levels, we do not enforce keeping a
 416 * multicore group inside a NUMA node.  If this happens, we will
 417 * discard the MC level of the topology later.
 418 */
 419static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 420{
 421	if (c->topo.pkg_id == o->topo.pkg_id)
 422		return true;
 423	return false;
 424}
 425
 426/*
 427 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 428 *
 429 * Any Intel CPU that has multiple nodes per package and does not
 430 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 431 *
 432 * When in SNC mode, these CPUs enumerate an LLC that is shared
 433 * by multiple NUMA nodes. The LLC is shared for off-package data
 434 * access but private to the NUMA node (half of the package) for
 435 * on-package access. CPUID (the source of the information about
 436 * the LLC) can only enumerate the cache as shared or unshared,
 437 * but not this particular configuration.
 438 */
 439
 440static const struct x86_cpu_id intel_cod_cpu[] = {
 441	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
 442	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
 443	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
 444	{}
 445};
 446
 447static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 448{
 449	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 450	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 451	bool intel_snc = id && id->driver_data;
 452
 453	/* Do not match if we do not have a valid APICID for cpu: */
 454	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 455		return false;
 456
 457	/* Do not match if LLC id does not match: */
 458	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 459		return false;
 460
 461	/*
 462	 * Allow the SNC topology without warning. Return of false
 463	 * means 'c' does not share the LLC of 'o'. This will be
 464	 * reflected to userspace.
 465	 */
 466	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 467		return false;
 468
 469	return topology_sane(c, o, "llc");
 470}
 471
 472
 473static inline int x86_sched_itmt_flags(void)
 474{
 475	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 476}
 477
 478#ifdef CONFIG_SCHED_MC
 479static int x86_core_flags(void)
 480{
 481	return cpu_core_flags() | x86_sched_itmt_flags();
 482}
 483#endif
 484#ifdef CONFIG_SCHED_SMT
 485static int x86_smt_flags(void)
 486{
 487	return cpu_smt_flags();
 488}
 489#endif
 490#ifdef CONFIG_SCHED_CLUSTER
 491static int x86_cluster_flags(void)
 492{
 493	return cpu_cluster_flags() | x86_sched_itmt_flags();
 494}
 495#endif
 496
 497static int x86_die_flags(void)
 498{
 499	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
 500	       return x86_sched_itmt_flags();
 501
 502	return 0;
 503}
 504
 505/*
 506 * Set if a package/die has multiple NUMA nodes inside.
 507 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 508 * Sub-NUMA Clustering have this.
 509 */
 510static bool x86_has_numa_in_package;
 511
 512static struct sched_domain_topology_level x86_topology[6];
 513
 514static void __init build_sched_topology(void)
 515{
 516	int i = 0;
 
 
 517
 518#ifdef CONFIG_SCHED_SMT
 519	x86_topology[i++] = (struct sched_domain_topology_level){
 520		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 521	};
 522#endif
 523#ifdef CONFIG_SCHED_CLUSTER
 524	x86_topology[i++] = (struct sched_domain_topology_level){
 525		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 526	};
 527#endif
 528#ifdef CONFIG_SCHED_MC
 529	x86_topology[i++] = (struct sched_domain_topology_level){
 530		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 531	};
 532#endif
 533	/*
 534	 * When there is NUMA topology inside the package skip the PKG domain
 535	 * since the NUMA domains will auto-magically create the right spanning
 536	 * domains based on the SLIT.
 537	 */
 538	if (!x86_has_numa_in_package) {
 539		x86_topology[i++] = (struct sched_domain_topology_level){
 540			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
 541		};
 542	}
 543
 544	/*
 545	 * There must be one trailing NULL entry left.
 546	 */
 547	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 548
 549	set_sched_topology(x86_topology);
 550}
 551
 552void set_cpu_sibling_map(int cpu)
 553{
 554	bool has_smt = __max_threads_per_core > 1;
 555	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
 556	struct cpuinfo_x86 *c = &cpu_data(cpu);
 557	struct cpuinfo_x86 *o;
 558	int i, threads;
 559
 560	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 561
 562	if (!has_mp) {
 563		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 564		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 565		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 566		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 567		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 568		c->booted_cores = 1;
 569		return;
 570	}
 571
 572	for_each_cpu(i, cpu_sibling_setup_mask) {
 573		o = &cpu_data(i);
 574
 575		if (match_pkg(c, o) && !topology_same_node(c, o))
 576			x86_has_numa_in_package = true;
 577
 578		if ((i == cpu) || (has_smt && match_smt(c, o)))
 579			link_mask(topology_sibling_cpumask, cpu, i);
 580
 581		if ((i == cpu) || (has_mp && match_llc(c, o)))
 582			link_mask(cpu_llc_shared_mask, cpu, i);
 583
 584		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 585			link_mask(cpu_l2c_shared_mask, cpu, i);
 586
 587		if ((i == cpu) || (has_mp && match_die(c, o)))
 588			link_mask(topology_die_cpumask, cpu, i);
 589	}
 590
 591	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 592	if (threads > __max_smt_threads)
 593		__max_smt_threads = threads;
 594
 595	for_each_cpu(i, topology_sibling_cpumask(cpu))
 596		cpu_data(i).smt_active = threads > 1;
 597
 598	/*
 599	 * This needs a separate iteration over the cpus because we rely on all
 600	 * topology_sibling_cpumask links to be set-up.
 601	 */
 602	for_each_cpu(i, cpu_sibling_setup_mask) {
 603		o = &cpu_data(i);
 604
 605		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 606			link_mask(topology_core_cpumask, cpu, i);
 607
 608			/*
 609			 *  Does this new cpu bringup a new core?
 610			 */
 611			if (threads == 1) {
 612				/*
 613				 * for each core in package, increment
 614				 * the booted_cores for this new cpu
 615				 */
 616				if (cpumask_first(
 617				    topology_sibling_cpumask(i)) == i)
 618					c->booted_cores++;
 619				/*
 620				 * increment the core count for all
 621				 * the other cpus in this package
 622				 */
 623				if (i != cpu)
 624					cpu_data(i).booted_cores++;
 625			} else if (i != cpu && !c->booted_cores)
 626				c->booted_cores = cpu_data(i).booted_cores;
 627		}
 628	}
 629}
 630
 631/* maps the cpu to the sched domain representing multi-core */
 632const struct cpumask *cpu_coregroup_mask(int cpu)
 633{
 634	return cpu_llc_shared_mask(cpu);
 635}
 636
 637const struct cpumask *cpu_clustergroup_mask(int cpu)
 638{
 639	return cpu_l2c_shared_mask(cpu);
 640}
 641EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 642
 643static void impress_friends(void)
 644{
 645	int cpu;
 646	unsigned long bogosum = 0;
 647	/*
 648	 * Allow the user to impress friends.
 649	 */
 650	pr_debug("Before bogomips\n");
 651	for_each_online_cpu(cpu)
 652		bogosum += cpu_data(cpu).loops_per_jiffy;
 653
 654	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 
 655		num_online_cpus(),
 656		bogosum/(500000/HZ),
 657		(bogosum/(5000/HZ))%100);
 658
 659	pr_debug("Before bogocount - setting activated=1\n");
 660}
 661
 662/*
 663 * The Multiprocessor Specification 1.4 (1997) example code suggests
 664 * that there should be a 10ms delay between the BSP asserting INIT
 665 * and de-asserting INIT, when starting a remote processor.
 666 * But that slows boot and resume on modern processors, which include
 667 * many cores and don't require that delay.
 668 *
 669 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 670 * Modern processor families are quirked to remove the delay entirely.
 671 */
 672#define UDELAY_10MS_DEFAULT 10000
 673
 674static unsigned int init_udelay = UINT_MAX;
 675
 676static int __init cpu_init_udelay(char *str)
 677{
 678	get_option(&str, &init_udelay);
 679
 680	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681}
 682early_param("cpu_init_udelay", cpu_init_udelay);
 683
 684static void __init smp_quirk_init_udelay(void)
 
 
 
 
 
 
 685{
 686	/* if cmdline changed it from default, leave it alone */
 687	if (init_udelay != UINT_MAX)
 688		return;
 
 
 
 
 
 
 
 689
 690	/* if modern processor, use no delay */
 691	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 692	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 693	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 694		init_udelay = 0;
 695		return;
 
 
 
 696	}
 697	/* else, use legacy delay */
 698	init_udelay = UDELAY_10MS_DEFAULT;
 
 
 
 
 
 
 699}
 700
 701/*
 702 * Wake up AP by INIT, INIT, STARTUP sequence.
 703 */
 704static void send_init_sequence(u32 phys_apicid)
 705{
 706	int maxlvt = lapic_get_maxlvt();
 
 
 
 707
 708	/* Be paranoid about clearing APIC errors. */
 709	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 710		/* Due to the Pentium erratum 3AP.  */
 711		if (maxlvt > 3)
 
 712			apic_write(APIC_ESR, 0);
 713		apic_read(APIC_ESR);
 714	}
 715
 716	/* Assert INIT on the target CPU */
 717	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 718	safe_apic_wait_icr_idle();
 
 
 
 
 
 
 
 719
 720	udelay(init_udelay);
 
 721
 722	/* Deassert INIT on the target CPU */
 
 
 
 
 
 723	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 724	safe_apic_wait_icr_idle();
 725}
 726
 727/*
 728 * Wake up AP by INIT, INIT, STARTUP sequence.
 729 */
 730static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 731{
 732	unsigned long send_status = 0, accept_status = 0;
 733	int num_starts, j, maxlvt;
 734
 735	preempt_disable();
 736	maxlvt = lapic_get_maxlvt();
 737	send_init_sequence(phys_apicid);
 738
 739	mb();
 
 740
 741	/*
 742	 * Should we send STARTUP IPIs ?
 743	 *
 744	 * Determine this based on the APIC version.
 745	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 746	 */
 747	if (APIC_INTEGRATED(boot_cpu_apic_version))
 748		num_starts = 2;
 749	else
 750		num_starts = 0;
 751
 752	/*
 
 
 
 
 
 
 
 753	 * Run STARTUP IPI loop.
 754	 */
 755	pr_debug("#startup loops: %d\n", num_starts);
 756
 757	for (j = 1; j <= num_starts; j++) {
 758		pr_debug("Sending STARTUP #%d\n", j);
 759		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 760			apic_write(APIC_ESR, 0);
 761		apic_read(APIC_ESR);
 762		pr_debug("After apic_write\n");
 763
 764		/*
 765		 * STARTUP IPI
 766		 */
 767
 768		/* Target chip */
 769		/* Boot on the stack */
 770		/* Kick the second */
 771		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 772			       phys_apicid);
 773
 774		/*
 775		 * Give the other CPU some time to accept the IPI.
 776		 */
 777		if (init_udelay == 0)
 778			udelay(10);
 779		else
 780			udelay(300);
 781
 782		pr_debug("Startup point 1\n");
 783
 784		pr_debug("Waiting for send to finish...\n");
 785		send_status = safe_apic_wait_icr_idle();
 786
 787		/*
 788		 * Give the other CPU some time to accept the IPI.
 789		 */
 790		if (init_udelay == 0)
 791			udelay(10);
 792		else
 793			udelay(200);
 794
 795		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 796			apic_write(APIC_ESR, 0);
 797		accept_status = (apic_read(APIC_ESR) & 0xEF);
 798		if (send_status || accept_status)
 799			break;
 800	}
 801	pr_debug("After Startup\n");
 802
 803	if (send_status)
 804		pr_err("APIC never delivered???\n");
 805	if (accept_status)
 806		pr_err("APIC delivery error (%lx)\n", accept_status);
 807
 808	preempt_enable();
 809	return (send_status | accept_status);
 810}
 811
 812/* reduce the number of lines printed when booting a large cpu count system */
 813static void announce_cpu(int cpu, int apicid)
 814{
 815	static int width, node_width, first = 1;
 816	static int current_node = NUMA_NO_NODE;
 817	int node = early_cpu_to_node(cpu);
 818
 819	if (!width)
 820		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 821
 822	if (!node_width)
 823		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 824
 825	if (system_state < SYSTEM_RUNNING) {
 826		if (first)
 827			pr_info("x86: Booting SMP configuration:\n");
 828
 829		if (node != current_node) {
 830			if (current_node > (-1))
 831				pr_cont("\n");
 832			current_node = node;
 833
 834			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 835			       node_width - num_digits(node), " ", node);
 836		}
 837
 838		/* Add padding for the BSP */
 839		if (first)
 840			pr_cont("%*s", width + 1, " ");
 841		first = 0;
 842
 843		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 844	} else
 845		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 846			node, cpu, apicid);
 847}
 848
 849int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 850{
 851	int ret;
 852
 853	/* Just in case we booted with a single CPU. */
 854	alternatives_enable_smp();
 855
 856	per_cpu(pcpu_hot.current_task, cpu) = idle;
 857	cpu_init_stack_canary(cpu, idle);
 858
 859	/* Initialize the interrupt stack(s) */
 860	ret = irq_init_percpu_irqstack(cpu);
 861	if (ret)
 862		return ret;
 863
 864#ifdef CONFIG_X86_32
 865	/* Stack for startup_32 can be just as for start_secondary onwards */
 866	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 867#endif
 868	return 0;
 869}
 870
 871/*
 872 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 873 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 874 * Returns zero if startup was successfully sent, else error code from
 875 * ->wakeup_secondary_cpu.
 876 */
 877static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 878{
 
 
 
 879	unsigned long start_ip = real_mode_header->trampoline_start;
 880	int ret;
 881
 882#ifdef CONFIG_X86_64
 883	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
 884	if (apic->wakeup_secondary_cpu_64)
 885		start_ip = real_mode_header->trampoline_start64;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886#endif
 887	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 888	initial_code = (unsigned long)start_secondary;
 889
 890	if (IS_ENABLED(CONFIG_X86_32)) {
 891		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
 892		initial_stack  = idle->thread.sp;
 893	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
 894		smpboot_control = cpu;
 895	}
 896
 897	/* Enable the espfix hack for this CPU */
 898	init_espfix_ap(cpu);
 899
 900	/* So we see what's up */
 901	announce_cpu(cpu, apicid);
 902
 903	/*
 904	 * This grunge runs the startup process for
 905	 * the targeted processor.
 906	 */
 907	if (x86_platform.legacy.warm_reset) {
 
 
 
 908
 909		pr_debug("Setting warm reset code and vector.\n");
 910
 911		smpboot_setup_warm_reset_vector(start_ip);
 912		/*
 913		 * Be paranoid about clearing APIC errors.
 914		*/
 915		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 916			apic_write(APIC_ESR, 0);
 917			apic_read(APIC_ESR);
 918		}
 919	}
 920
 921	smp_mb();
 922
 923	/*
 924	 * Wake up a CPU in difference cases:
 925	 * - Use a method from the APIC driver if one defined, with wakeup
 926	 *   straight to 64-bit mode preferred over wakeup to RM.
 927	 * Otherwise,
 928	 * - Use an INIT boot APIC message
 929	 */
 930	if (apic->wakeup_secondary_cpu_64)
 931		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
 932	else if (apic->wakeup_secondary_cpu)
 933		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
 934	else
 935		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
 936
 937	/* If the wakeup mechanism failed, cleanup the warm reset vector */
 938	if (ret)
 939		arch_cpuhp_cleanup_kick_cpu(cpu);
 940	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941}
 942
 943int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
 944{
 945	u32 apicid = apic->cpu_present_to_apicid(cpu);
 
 946	int err;
 947
 948	lockdep_assert_irqs_enabled();
 949
 950	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 951
 952	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
 953		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
 
 
 954		return -EINVAL;
 955	}
 956
 957	if (!test_bit(apicid, phys_cpu_present_map)) {
 958		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
 959		return -EINVAL;
 
 
 
 960	}
 961
 962	/*
 963	 * Save current MTRR state in case it was changed since early boot
 964	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
 965	 */
 966	mtrr_save_state();
 967
 968	/* the FPU context is blank, nobody can own it */
 969	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
 970
 971	err = common_cpu_up(cpu, tidle);
 972	if (err)
 973		return err;
 974
 975	err = do_boot_cpu(apicid, cpu, tidle);
 976	if (err)
 977		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
 
 
 978
 979	return err;
 980}
 
 
 
 
 
 981
 982int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
 983{
 984	return smp_ops.kick_ap_alive(cpu, tidle);
 985}
 986
 987void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
 988{
 989	/* Cleanup possible dangling ends... */
 990	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
 991		smpboot_restore_warm_reset_vector();
 992}
 993
 994void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
 995{
 996	if (smp_ops.cleanup_dead_cpu)
 997		smp_ops.cleanup_dead_cpu(cpu);
 998
 999	if (system_state == SYSTEM_RUNNING)
1000		pr_info("CPU %u is now offline\n", cpu);
1001}
1002
1003void arch_cpuhp_sync_state_poll(void)
1004{
1005	if (smp_ops.poll_sync_state)
1006		smp_ops.poll_sync_state();
1007}
1008
1009/**
1010 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1011 */
1012void __init arch_disable_smp_support(void)
1013{
1014	disable_ioapic_support();
1015}
1016
1017/*
1018 * Fall back to non SMP mode after errors.
1019 *
1020 * RED-PEN audit/test this more. I bet there is more state messed up here.
1021 */
1022static __init void disable_smp(void)
1023{
1024	pr_info("SMP disabled\n");
 
 
1025
1026	disable_ioapic_support();
1027	topology_reset_possible_cpus_up();
1028
1029	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1030	cpumask_set_cpu(0, topology_core_cpumask(0));
1031	cpumask_set_cpu(0, topology_die_cpumask(0));
1032}
1033
1034void __init smp_prepare_cpus_common(void)
 
 
 
1035{
1036	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	/* Mark all except the boot CPU as hotpluggable */
1039	for_each_possible_cpu(i) {
1040		if (i)
1041			per_cpu(cpu_info.cpu_index, i) = nr_cpu_ids;
 
 
 
 
 
 
 
 
 
 
1042	}
1043
1044	for_each_possible_cpu(i) {
1045		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1046		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1047		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1048		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1049		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
 
 
 
 
 
 
 
1050	}
1051
1052	set_cpu_sibling_map(0);
1053}
1054
1055void __init smp_prepare_boot_cpu(void)
1056{
1057	smp_ops.smp_prepare_boot_cpu();
1058}
1059
1060#ifdef CONFIG_X86_64
1061/* Establish whether parallel bringup can be supported. */
1062bool __init arch_cpuhp_init_parallel_bringup(void)
1063{
1064	if (!x86_cpuinit.parallel_bringup) {
1065		pr_info("Parallel CPU startup disabled by the platform\n");
1066		return false;
1067	}
1068
1069	smpboot_control = STARTUP_READ_APICID;
1070	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1071	return true;
1072}
1073#endif
1074
1075/*
1076 * Prepare for SMP bootup.
1077 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1078 *            for common interface support.
1079 */
1080void __init native_smp_prepare_cpus(unsigned int max_cpus)
1081{
1082	smp_prepare_cpus_common();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083
1084	switch (apic_intr_mode) {
1085	case APIC_PIC:
1086	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1087		disable_smp();
1088		return;
1089	case APIC_SYMMETRIC_IO_NO_ROUTING:
1090		disable_smp();
1091		/* Setup local timer */
1092		x86_init.timers.setup_percpu_clockev();
1093		return;
1094	case APIC_VIRTUAL_WIRE:
1095	case APIC_SYMMETRIC_IO:
1096		break;
 
1097	}
 
 
 
 
 
 
 
 
1098
1099	/* Setup local timer */
1100	x86_init.timers.setup_percpu_clockev();
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	pr_info("CPU0: ");
1103	print_cpu_info(&cpu_data(0));
 
1104
1105	uv_system_init();
 
1106
1107	smp_quirk_init_udelay();
 
 
 
1108
1109	speculative_store_bypass_ht_init();
 
 
 
 
 
 
 
1110
1111	snp_set_wakeup_secondary_cpu();
 
 
1112}
1113
1114void arch_thaw_secondary_cpus_begin(void)
1115{
1116	set_cache_aps_delayed_init(true);
1117}
1118
1119void arch_thaw_secondary_cpus_end(void)
1120{
1121	cache_aps_init();
1122}
1123
1124/*
1125 * Early setup to make printk work.
1126 */
1127void __init native_smp_prepare_boot_cpu(void)
1128{
1129	int me = smp_processor_id();
1130
1131	/* SMP handles this from setup_per_cpu_areas() */
1132	if (!IS_ENABLED(CONFIG_SMP))
1133		switch_gdt_and_percpu_base(me);
1134
1135	native_pv_lock_init();
1136}
1137
1138void __init native_smp_cpus_done(unsigned int max_cpus)
1139{
1140	pr_debug("Boot done\n");
1141
1142	build_sched_topology();
1143	nmi_selftest();
1144	impress_friends();
1145	cache_aps_init();
 
 
 
1146}
1147
1148/* correctly size the local cpu masks */
1149void __init setup_cpu_local_masks(void)
1150{
1151	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
 
1152}
 
1153
1154#ifdef CONFIG_HOTPLUG_CPU
1155
1156/* Recompute SMT state for all CPUs on offline */
1157static void recompute_smt_state(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158{
1159	int max_threads, cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160
1161	max_threads = 0;
1162	for_each_online_cpu (cpu) {
1163		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1164
1165		if (threads > max_threads)
1166			max_threads = threads;
 
 
 
 
1167	}
1168	__max_smt_threads = max_threads;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169}
1170
 
 
1171static void remove_siblinginfo(int cpu)
1172{
1173	int sibling;
1174	struct cpuinfo_x86 *c = &cpu_data(cpu);
1175
1176	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1177		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1178		/*/
1179		 * last thread sibling in this cpu core going down
1180		 */
1181		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1182			cpu_data(sibling).booted_cores--;
1183	}
1184
1185	for_each_cpu(sibling, topology_die_cpumask(cpu))
1186		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1187
1188	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1189		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1190		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1191			cpu_data(sibling).smt_active = false;
1192	}
1193
1194	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1195		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1196	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1197		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1198	cpumask_clear(cpu_llc_shared_mask(cpu));
1199	cpumask_clear(cpu_l2c_shared_mask(cpu));
1200	cpumask_clear(topology_sibling_cpumask(cpu));
1201	cpumask_clear(topology_core_cpumask(cpu));
1202	cpumask_clear(topology_die_cpumask(cpu));
1203	c->topo.core_id = 0;
1204	c->booted_cores = 0;
1205	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1206	recompute_smt_state();
1207}
1208
1209static void remove_cpu_from_maps(int cpu)
1210{
1211	set_cpu_online(cpu, false);
 
 
 
 
1212	numa_remove_cpu(cpu);
1213}
1214
1215void cpu_disable_common(void)
1216{
1217	int cpu = smp_processor_id();
1218
1219	remove_siblinginfo(cpu);
1220
1221	/* It's now safe to remove this processor from the online map */
1222	lock_vector_lock();
1223	remove_cpu_from_maps(cpu);
1224	unlock_vector_lock();
1225	fixup_irqs();
1226	lapic_offline();
1227}
1228
1229int native_cpu_disable(void)
1230{
1231	int ret;
1232
1233	ret = lapic_can_unplug_cpu();
1234	if (ret)
1235		return ret;
 
 
 
 
 
 
 
 
 
1236
1237	cpu_disable_common();
 
 
1238
1239        /*
1240         * Disable the local APIC. Otherwise IPI broadcasts will reach
1241         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1242         * messages.
1243         *
1244         * Disabling the APIC must happen after cpu_disable_common()
1245         * which invokes fixup_irqs().
1246         *
1247         * Disabling the APIC preserves already set bits in IRR, but
1248         * an interrupt arriving after disabling the local APIC does not
1249         * set the corresponding IRR bit.
1250         *
1251         * fixup_irqs() scans IRR for set bits so it can raise a not
1252         * yet handled interrupt on the new destination CPU via an IPI
1253         * but obviously it can't do so for IRR bits which are not set.
1254         * IOW, interrupts arriving after disabling the local APIC will
1255         * be lost.
1256         */
1257	apic_soft_disable();
1258
1259	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1260}
1261
1262void play_dead_common(void)
1263{
1264	idle_task_exit();
 
 
1265
1266	cpuhp_ap_report_dead();
 
 
1267
 
 
 
1268	local_irq_disable();
1269}
1270
1271/*
1272 * We need to flush the caches before going to sleep, lest we have
1273 * dirty data in our caches when we come back up.
1274 */
1275static inline void mwait_play_dead(void)
1276{
1277	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1278	unsigned int eax, ebx, ecx, edx;
1279	unsigned int highest_cstate = 0;
1280	unsigned int highest_subcstate = 0;
1281	int i;
 
 
1282
1283	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1284	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1285		return;
1286	if (!this_cpu_has(X86_FEATURE_MWAIT))
1287		return;
1288	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1289		return;
1290	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1291		return;
1292
1293	eax = CPUID_MWAIT_LEAF;
1294	ecx = 0;
1295	native_cpuid(&eax, &ebx, &ecx, &edx);
1296
1297	/*
1298	 * eax will be 0 if EDX enumeration is not valid.
1299	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1300	 */
1301	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1302		eax = 0;
1303	} else {
1304		edx >>= MWAIT_SUBSTATE_SIZE;
1305		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1306			if (edx & MWAIT_SUBSTATE_MASK) {
1307				highest_cstate = i;
1308				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1309			}
1310		}
1311		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1312			(highest_subcstate - 1);
1313	}
1314
1315	/* Set up state for the kexec() hack below */
1316	md->status = CPUDEAD_MWAIT_WAIT;
1317	md->control = CPUDEAD_MWAIT_WAIT;
 
 
 
1318
1319	wbinvd();
1320
1321	while (1) {
1322		/*
1323		 * The CLFLUSH is a workaround for erratum AAI65 for
1324		 * the Xeon 7400 series.  It's not clear it is actually
1325		 * needed, but it should be harmless in either case.
1326		 * The WBINVD is insufficient due to the spurious-wakeup
1327		 * case where we return around the loop.
1328		 */
1329		mb();
1330		clflush(md);
1331		mb();
1332		__monitor(md, 0, 0);
1333		mb();
1334		__mwait(eax, 0);
1335
1336		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1337			/*
1338			 * Kexec is about to happen. Don't go back into mwait() as
1339			 * the kexec kernel might overwrite text and data including
1340			 * page tables and stack. So mwait() would resume when the
1341			 * monitor cache line is written to and then the CPU goes
1342			 * south due to overwritten text, page tables and stack.
1343			 *
1344			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1345			 * SMI. They will resume execution at the instruction
1346			 * following the HLT instruction and run into the problem
1347			 * which this is trying to prevent.
1348			 */
1349			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1350			while(1)
1351				native_halt();
1352		}
1353	}
1354}
1355
1356/*
1357 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1358 * mwait_play_dead().
1359 */
1360void smp_kick_mwait_play_dead(void)
1361{
1362	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1363	struct mwait_cpu_dead *md;
1364	unsigned int cpu, i;
1365
1366	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1367		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1368
1369		/* Does it sit in mwait_play_dead() ? */
1370		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1371			continue;
1372
1373		/* Wait up to 5ms */
1374		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1375			/* Bring it out of mwait */
1376			WRITE_ONCE(md->control, newstate);
1377			udelay(5);
1378		}
1379
1380		if (READ_ONCE(md->status) != newstate)
1381			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1382	}
1383}
1384
1385void __noreturn hlt_play_dead(void)
1386{
1387	if (__this_cpu_read(cpu_info.x86) >= 4)
1388		wbinvd();
1389
1390	while (1)
1391		native_halt();
 
1392}
1393
1394/*
1395 * native_play_dead() is essentially a __noreturn function, but it can't
1396 * be marked as such as the compiler may complain about it.
1397 */
1398void native_play_dead(void)
1399{
1400	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1401		__update_spec_ctrl(0);
1402
1403	play_dead_common();
1404	tboot_shutdown(TB_SHUTDOWN_WFS);
1405
1406	mwait_play_dead();
1407	if (cpuidle_play_dead())
1408		hlt_play_dead();
1409}
1410
1411#else /* ... !CONFIG_HOTPLUG_CPU */
1412int native_cpu_disable(void)
1413{
1414	return -ENOSYS;
 
 
 
 
 
 
1415}
1416
1417void native_play_dead(void)
1418{
1419	BUG();
1420}
1421
1422#endif