Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.5.6
 
   1/******************************************************************************
   2*******************************************************************************
   3**
   4**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   5**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   6**
   7**  This copyrighted material is made available to anyone wishing to use,
   8**  modify, copy, or redistribute it subject to the terms and conditions
   9**  of the GNU General Public License v.2.
  10**
  11*******************************************************************************
  12******************************************************************************/
  13
  14/*
  15 * lowcomms.c
  16 *
  17 * This is the "low-level" comms layer.
  18 *
  19 * It is responsible for sending/receiving messages
  20 * from other nodes in the cluster.
  21 *
  22 * Cluster nodes are referred to by their nodeids. nodeids are
  23 * simply 32 bit numbers to the locking module - if they need to
  24 * be expanded for the cluster infrastructure then that is its
  25 * responsibility. It is this layer's
  26 * responsibility to resolve these into IP address or
  27 * whatever it needs for inter-node communication.
  28 *
  29 * The comms level is two kernel threads that deal mainly with
  30 * the receiving of messages from other nodes and passing them
  31 * up to the mid-level comms layer (which understands the
  32 * message format) for execution by the locking core, and
  33 * a send thread which does all the setting up of connections
  34 * to remote nodes and the sending of data. Threads are not allowed
  35 * to send their own data because it may cause them to wait in times
  36 * of high load. Also, this way, the sending thread can collect together
  37 * messages bound for one node and send them in one block.
  38 *
  39 * lowcomms will choose to use either TCP or SCTP as its transport layer
  40 * depending on the configuration variable 'protocol'. This should be set
  41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  43 * for the DLM to function.
  44 *
  45 */
  46
  47#include <asm/ioctls.h>
  48#include <net/sock.h>
  49#include <net/tcp.h>
  50#include <linux/pagemap.h>
  51#include <linux/file.h>
  52#include <linux/mutex.h>
  53#include <linux/sctp.h>
  54#include <linux/slab.h>
  55#include <net/sctp/sctp.h>
  56#include <net/sctp/user.h>
  57#include <net/ipv6.h>
  58
 
 
 
  59#include "dlm_internal.h"
  60#include "lowcomms.h"
  61#include "midcomms.h"
 
  62#include "config.h"
  63
 
 
  64#define NEEDED_RMEM (4*1024*1024)
  65#define CONN_HASH_SIZE 32
  66
  67/* Number of messages to send before rescheduling */
  68#define MAX_SEND_MSG_COUNT 25
  69
  70struct cbuf {
  71	unsigned int base;
  72	unsigned int len;
  73	unsigned int mask;
  74};
  75
  76static void cbuf_add(struct cbuf *cb, int n)
  77{
  78	cb->len += n;
  79}
  80
  81static int cbuf_data(struct cbuf *cb)
  82{
  83	return ((cb->base + cb->len) & cb->mask);
  84}
  85
  86static void cbuf_init(struct cbuf *cb, int size)
  87{
  88	cb->base = cb->len = 0;
  89	cb->mask = size-1;
  90}
  91
  92static void cbuf_eat(struct cbuf *cb, int n)
  93{
  94	cb->len  -= n;
  95	cb->base += n;
  96	cb->base &= cb->mask;
  97}
  98
  99static bool cbuf_empty(struct cbuf *cb)
 100{
 101	return cb->len == 0;
 102}
 103
 104struct connection {
 105	struct socket *sock;	/* NULL if not connected */
 106	uint32_t nodeid;	/* So we know who we are in the list */
 107	struct mutex sock_mutex;
 
 
 
 
 
 
 
 108	unsigned long flags;
 109#define CF_READ_PENDING 1
 110#define CF_WRITE_PENDING 2
 111#define CF_CONNECT_PENDING 3
 112#define CF_INIT_PENDING 4
 
 113#define CF_IS_OTHERCON 5
 114#define CF_CLOSE 6
 115#define CF_APP_LIMITED 7
 116	struct list_head writequeue;  /* List of outgoing writequeue_entries */
 117	spinlock_t writequeue_lock;
 118	int (*rx_action) (struct connection *);	/* What to do when active */
 119	void (*connect_action) (struct connection *);	/* What to do to connect */
 120	struct page *rx_page;
 121	struct cbuf cb;
 122	int retries;
 123#define MAX_CONNECT_RETRIES 3
 124	int sctp_assoc;
 125	struct hlist_node list;
 
 
 
 
 
 
 
 
 
 
 
 126	struct connection *othercon;
 127	struct work_struct rwork; /* Receive workqueue */
 128	struct work_struct swork; /* Send workqueue */
 
 
 
 
 
 
 
 
 
 129};
 130#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 131
 
 
 
 
 
 
 
 
 132/* An entry waiting to be sent */
 133struct writequeue_entry {
 134	struct list_head list;
 135	struct page *page;
 136	int offset;
 137	int len;
 138	int end;
 139	int users;
 
 140	struct connection *con;
 
 
 141};
 142
 143static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144static int dlm_local_count;
 145static int dlm_allow_conn;
 146
 147/* Work queues */
 148static struct workqueue_struct *recv_workqueue;
 149static struct workqueue_struct *send_workqueue;
 150
 151static struct hlist_head connection_hash[CONN_HASH_SIZE];
 152static DEFINE_MUTEX(connections_lock);
 153static struct kmem_cache *con_cache;
 
 
 
 
 
 
 
 
 154
 155static void process_recv_sockets(struct work_struct *work);
 156static void process_send_sockets(struct work_struct *work);
 
 157
 
 
 
 
 
 158
 159/* This is deliberately very simple because most clusters have simple
 160   sequential nodeids, so we should be able to go straight to a connection
 161   struct in the array */
 162static inline int nodeid_hash(int nodeid)
 163{
 164	return nodeid & (CONN_HASH_SIZE-1);
 165}
 166
 167static struct connection *__find_con(int nodeid)
 168{
 169	int r;
 170	struct hlist_node *h;
 171	struct connection *con;
 172
 173	r = nodeid_hash(nodeid);
 
 
 
 
 174
 175	hlist_for_each_entry(con, h, &connection_hash[r], list) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176		if (con->nodeid == nodeid)
 177			return con;
 178	}
 
 179	return NULL;
 180}
 181
 
 
 
 
 
 
 
 
 
 
 
 
 182/*
 183 * If 'allocation' is zero then we don't attempt to create a new
 184 * connection structure for this node.
 185 */
 186static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
 187{
 188	struct connection *con = NULL;
 189	int r;
 190
 191	con = __find_con(nodeid);
 
 192	if (con || !alloc)
 193		return con;
 194
 195	con = kmem_cache_zalloc(con_cache, alloc);
 196	if (!con)
 197		return NULL;
 198
 199	r = nodeid_hash(nodeid);
 200	hlist_add_head(&con->list, &connection_hash[r]);
 201
 202	con->nodeid = nodeid;
 203	mutex_init(&con->sock_mutex);
 204	INIT_LIST_HEAD(&con->writequeue);
 205	spin_lock_init(&con->writequeue_lock);
 206	INIT_WORK(&con->swork, process_send_sockets);
 207	INIT_WORK(&con->rwork, process_recv_sockets);
 208
 209	/* Setup action pointers for child sockets */
 210	if (con->nodeid) {
 211		struct connection *zerocon = __find_con(0);
 212
 213		con->connect_action = zerocon->connect_action;
 214		if (!con->rx_action)
 215			con->rx_action = zerocon->rx_action;
 216	}
 217
 
 
 
 218	return con;
 219}
 220
 221/* Loop round all connections */
 222static void foreach_conn(void (*conn_func)(struct connection *c))
 223{
 224	int i;
 225	struct hlist_node *h, *n;
 226	struct connection *con;
 227
 228	for (i = 0; i < CONN_HASH_SIZE; i++) {
 229		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
 230			conn_func(con);
 231		}
 
 
 
 
 
 
 
 
 
 
 232	}
 
 
 
 
 233}
 234
 235static struct connection *nodeid2con(int nodeid, gfp_t allocation)
 
 
 236{
 
 237	struct connection *con;
 
 
 
 
 238
 239	mutex_lock(&connections_lock);
 240	con = __nodeid2con(nodeid, allocation);
 241	mutex_unlock(&connections_lock);
 
 
 
 242
 243	return con;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244}
 245
 246/* This is a bit drastic, but only called when things go wrong */
 247static struct connection *assoc2con(int assoc_id)
 248{
 249	int i;
 250	struct hlist_node *h;
 251	struct connection *con;
 
 252
 253	mutex_lock(&connections_lock);
 
 
 
 254
 255	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
 256		hlist_for_each_entry(con, h, &connection_hash[i], list) {
 257			if (con->sctp_assoc == assoc_id) {
 258				mutex_unlock(&connections_lock);
 259				return con;
 
 
 
 
 260			}
 
 261		}
 262	}
 263	mutex_unlock(&connections_lock);
 264	return NULL;
 
 265}
 266
 267static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
 
 268{
 269	struct sockaddr_storage addr;
 270	int error;
 271
 272	if (!dlm_local_count)
 273		return -1;
 
 
 274
 275	error = dlm_nodeid_to_addr(nodeid, &addr);
 276	if (error)
 277		return error;
 278
 279	if (dlm_local_addr[0]->ss_family == AF_INET) {
 280		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
 281		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
 282		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 283	} else {
 284		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
 285		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
 286		ret6->sin6_addr = in6->sin6_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 287	}
 288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289	return 0;
 290}
 291
 292/* Data available on socket or listen socket received a connect */
 293static void lowcomms_data_ready(struct sock *sk, int count_unused)
 294{
 295	struct connection *con = sock2con(sk);
 296	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
 297		queue_work(recv_workqueue, &con->rwork);
 
 
 
 298}
 299
 300static void lowcomms_write_space(struct sock *sk)
 301{
 302	struct connection *con = sock2con(sk);
 303
 304	if (!con)
 305		return;
 306
 307	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 308
 
 309	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 310		con->sock->sk->sk_write_pending--;
 311		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
 312	}
 313
 314	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
 315		queue_work(send_workqueue, &con->swork);
 316}
 317
 318static inline void lowcomms_connect_sock(struct connection *con)
 319{
 320	if (test_bit(CF_CLOSE, &con->flags))
 321		return;
 322	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
 323		queue_work(send_workqueue, &con->swork);
 
 324}
 325
 326static void lowcomms_state_change(struct sock *sk)
 327{
 328	if (sk->sk_state == TCP_ESTABLISHED)
 329		lowcomms_write_space(sk);
 
 330}
 331
 332int dlm_lowcomms_connect_node(int nodeid)
 333{
 334	struct connection *con;
 
 335
 336	/* with sctp there's no connecting without sending */
 337	if (dlm_config.ci_protocol != 0)
 338		return 0;
 
 
 
 339
 340	if (nodeid == dlm_our_nodeid())
 341		return 0;
 
 
 
 
 
 
 342
 343	con = nodeid2con(nodeid, GFP_NOFS);
 344	if (!con)
 345		return -ENOMEM;
 346	lowcomms_connect_sock(con);
 347	return 0;
 348}
 349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350/* Make a socket active */
 351static int add_sock(struct socket *sock, struct connection *con)
 352{
 
 
 
 353	con->sock = sock;
 354
 355	/* Install a data_ready callback */
 356	con->sock->sk->sk_data_ready = lowcomms_data_ready;
 357	con->sock->sk->sk_write_space = lowcomms_write_space;
 358	con->sock->sk->sk_state_change = lowcomms_state_change;
 359	con->sock->sk->sk_user_data = con;
 360	con->sock->sk->sk_allocation = GFP_NOFS;
 361	return 0;
 
 
 362}
 363
 364/* Add the port number to an IPv6 or 4 sockaddr and return the address
 365   length */
 366static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 367			  int *addr_len)
 368{
 369	saddr->ss_family =  dlm_local_addr[0]->ss_family;
 370	if (saddr->ss_family == AF_INET) {
 371		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 372		in4_addr->sin_port = cpu_to_be16(port);
 373		*addr_len = sizeof(struct sockaddr_in);
 374		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 375	} else {
 376		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 377		in6_addr->sin6_port = cpu_to_be16(port);
 378		*addr_len = sizeof(struct sockaddr_in6);
 379	}
 380	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 381}
 382
 383/* Close a remote connection and tidy up */
 384static void close_connection(struct connection *con, bool and_other)
 385{
 386	mutex_lock(&con->sock_mutex);
 
 387
 388	if (con->sock) {
 389		sock_release(con->sock);
 390		con->sock = NULL;
 391	}
 392	if (con->othercon && and_other) {
 393		/* Will only re-enter once. */
 394		close_connection(con->othercon, false);
 395	}
 396	if (con->rx_page) {
 397		__free_page(con->rx_page);
 398		con->rx_page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 399	}
 400
 401	con->retries = 0;
 402	mutex_unlock(&con->sock_mutex);
 403}
 404
 405/* We only send shutdown messages to nodes that are not part of the cluster */
 406static void sctp_send_shutdown(sctp_assoc_t associd)
 407{
 408	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
 409	struct msghdr outmessage;
 410	struct cmsghdr *cmsg;
 411	struct sctp_sndrcvinfo *sinfo;
 412	int ret;
 413	struct connection *con;
 414
 415	con = nodeid2con(0,0);
 416	BUG_ON(con == NULL);
 
 417
 418	outmessage.msg_name = NULL;
 419	outmessage.msg_namelen = 0;
 420	outmessage.msg_control = outcmsg;
 421	outmessage.msg_controllen = sizeof(outcmsg);
 422	outmessage.msg_flags = MSG_EOR;
 
 423
 424	cmsg = CMSG_FIRSTHDR(&outmessage);
 425	cmsg->cmsg_level = IPPROTO_SCTP;
 426	cmsg->cmsg_type = SCTP_SNDRCV;
 427	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
 428	outmessage.msg_controllen = cmsg->cmsg_len;
 429	sinfo = CMSG_DATA(cmsg);
 430	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
 431
 432	sinfo->sinfo_flags |= MSG_EOF;
 433	sinfo->sinfo_assoc_id = associd;
 
 434
 435	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
 
 
 
 
 
 
 436
 437	if (ret != 0)
 438		log_print("send EOF to node failed: %d", ret);
 439}
 440
 441static void sctp_init_failed_foreach(struct connection *con)
 
 442{
 443	con->sctp_assoc = 0;
 444	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
 445		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
 446			queue_work(send_workqueue, &con->swork);
 
 
 
 
 
 447	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448}
 449
 450/* INIT failed but we don't know which node...
 451   restart INIT on all pending nodes */
 452static void sctp_init_failed(void)
 453{
 454	mutex_lock(&connections_lock);
 455
 456	foreach_conn(sctp_init_failed_foreach);
 
 457
 458	mutex_unlock(&connections_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459}
 460
 461/* Something happened to an association */
 462static void process_sctp_notification(struct connection *con,
 463				      struct msghdr *msg, char *buf)
 464{
 465	union sctp_notification *sn = (union sctp_notification *)buf;
 466
 467	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
 468		switch (sn->sn_assoc_change.sac_state) {
 
 469
 470		case SCTP_COMM_UP:
 471		case SCTP_RESTART:
 472		{
 473			/* Check that the new node is in the lockspace */
 474			struct sctp_prim prim;
 475			int nodeid;
 476			int prim_len, ret;
 477			int addr_len;
 478			struct connection *new_con;
 479
 480			/*
 481			 * We get this before any data for an association.
 482			 * We verify that the node is in the cluster and
 483			 * then peel off a socket for it.
 484			 */
 485			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
 486				log_print("COMM_UP for invalid assoc ID %d",
 487					 (int)sn->sn_assoc_change.sac_assoc_id);
 488				sctp_init_failed();
 489				return;
 490			}
 491			memset(&prim, 0, sizeof(struct sctp_prim));
 492			prim_len = sizeof(struct sctp_prim);
 493			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
 494
 495			ret = kernel_getsockopt(con->sock,
 496						IPPROTO_SCTP,
 497						SCTP_PRIMARY_ADDR,
 498						(char*)&prim,
 499						&prim_len);
 500			if (ret < 0) {
 501				log_print("getsockopt/sctp_primary_addr on "
 502					  "new assoc %d failed : %d",
 503					  (int)sn->sn_assoc_change.sac_assoc_id,
 504					  ret);
 505
 506				/* Retry INIT later */
 507				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
 508				if (new_con)
 509					clear_bit(CF_CONNECT_PENDING, &con->flags);
 510				return;
 511			}
 512			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
 513			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
 514				unsigned char *b=(unsigned char *)&prim.ssp_addr;
 515				log_print("reject connect from unknown addr");
 516				print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
 517						     b, sizeof(struct sockaddr_storage));
 518				sctp_send_shutdown(prim.ssp_assoc_id);
 519				return;
 520			}
 521
 522			new_con = nodeid2con(nodeid, GFP_NOFS);
 523			if (!new_con)
 524				return;
 
 
 525
 526			/* Peel off a new sock */
 527			sctp_lock_sock(con->sock->sk);
 528			ret = sctp_do_peeloff(con->sock->sk,
 529				sn->sn_assoc_change.sac_assoc_id,
 530				&new_con->sock);
 531			sctp_release_sock(con->sock->sk);
 532			if (ret < 0) {
 533				log_print("Can't peel off a socket for "
 534					  "connection %d to node %d: err=%d",
 535					  (int)sn->sn_assoc_change.sac_assoc_id,
 536					  nodeid, ret);
 537				return;
 538			}
 539			add_sock(new_con->sock, new_con);
 540
 541			log_print("connecting to %d sctp association %d",
 542				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
 543
 544			/* Send any pending writes */
 545			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
 546			clear_bit(CF_INIT_PENDING, &con->flags);
 547			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
 548				queue_work(send_workqueue, &new_con->swork);
 549			}
 550			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
 551				queue_work(recv_workqueue, &new_con->rwork);
 552		}
 553		break;
 554
 555		case SCTP_COMM_LOST:
 556		case SCTP_SHUTDOWN_COMP:
 557		{
 558			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
 559			if (con) {
 560				con->sctp_assoc = 0;
 561			}
 562		}
 563		break;
 564
 565		/* We don't know which INIT failed, so clear the PENDING flags
 566		 * on them all.  if assoc_id is zero then it will then try
 567		 * again */
 568
 569		case SCTP_CANT_STR_ASSOC:
 570		{
 571			log_print("Can't start SCTP association - retrying");
 572			sctp_init_failed();
 573		}
 574		break;
 575
 576		default:
 577			log_print("unexpected SCTP assoc change id=%d state=%d",
 578				  (int)sn->sn_assoc_change.sac_assoc_id,
 579				  sn->sn_assoc_change.sac_state);
 
 
 
 
 
 
 
 
 580		}
 
 
 
 
 581	}
 582}
 583
 584/* Data received from remote end */
 585static int receive_from_sock(struct connection *con)
 586{
 587	int ret = 0;
 588	struct msghdr msg = {};
 589	struct kvec iov[2];
 590	unsigned len;
 591	int r;
 592	int call_again_soon = 0;
 593	int nvec;
 594	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
 595
 596	mutex_lock(&con->sock_mutex);
 597
 598	if (con->sock == NULL) {
 599		ret = -EAGAIN;
 600		goto out_close;
 601	}
 602
 603	if (con->rx_page == NULL) {
 604		/*
 605		 * This doesn't need to be atomic, but I think it should
 606		 * improve performance if it is.
 607		 */
 608		con->rx_page = alloc_page(GFP_ATOMIC);
 609		if (con->rx_page == NULL)
 610			goto out_resched;
 611		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
 612	}
 613
 614	/* Only SCTP needs these really */
 615	memset(&incmsg, 0, sizeof(incmsg));
 616	msg.msg_control = incmsg;
 617	msg.msg_controllen = sizeof(incmsg);
 618
 619	/*
 620	 * iov[0] is the bit of the circular buffer between the current end
 621	 * point (cb.base + cb.len) and the end of the buffer.
 622	 */
 623	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
 624	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
 625	iov[1].iov_len = 0;
 626	nvec = 1;
 627
 628	/*
 629	 * iov[1] is the bit of the circular buffer between the start of the
 630	 * buffer and the start of the currently used section (cb.base)
 
 631	 */
 632	if (cbuf_data(&con->cb) >= con->cb.base) {
 633		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
 634		iov[1].iov_len = con->cb.base;
 635		iov[1].iov_base = page_address(con->rx_page);
 636		nvec = 2;
 637	}
 638	len = iov[0].iov_len + iov[1].iov_len;
 639
 640	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
 641			       MSG_DONTWAIT | MSG_NOSIGNAL);
 642	if (ret <= 0)
 643		goto out_close;
 644
 645	/* Process SCTP notifications */
 646	if (msg.msg_flags & MSG_NOTIFICATION) {
 647		msg.msg_control = incmsg;
 648		msg.msg_controllen = sizeof(incmsg);
 649
 650		process_sctp_notification(con, &msg,
 651				page_address(con->rx_page) + con->cb.base);
 652		mutex_unlock(&con->sock_mutex);
 653		return 0;
 654	}
 655	BUG_ON(con->nodeid == 0);
 656
 657	if (ret == len)
 658		call_again_soon = 1;
 659	cbuf_add(&con->cb, ret);
 660	ret = dlm_process_incoming_buffer(con->nodeid,
 661					  page_address(con->rx_page),
 662					  con->cb.base, con->cb.len,
 663					  PAGE_CACHE_SIZE);
 664	if (ret == -EBADMSG) {
 665		log_print("lowcomms: addr=%p, base=%u, len=%u, "
 666			  "iov_len=%u, iov_base[0]=%p, read=%d",
 667			  page_address(con->rx_page), con->cb.base, con->cb.len,
 668			  len, iov[0].iov_base, r);
 669	}
 670	if (ret < 0)
 671		goto out_close;
 672	cbuf_eat(&con->cb, ret);
 673
 674	if (cbuf_empty(&con->cb) && !call_again_soon) {
 675		__free_page(con->rx_page);
 676		con->rx_page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677	}
 678
 679	if (call_again_soon)
 680		goto out_resched;
 681	mutex_unlock(&con->sock_mutex);
 682	return 0;
 683
 684out_resched:
 685	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
 686		queue_work(recv_workqueue, &con->rwork);
 687	mutex_unlock(&con->sock_mutex);
 688	return -EAGAIN;
 689
 690out_close:
 691	mutex_unlock(&con->sock_mutex);
 692	if (ret != -EAGAIN) {
 693		close_connection(con, false);
 694		/* Reconnect when there is something to send */
 
 
 
 695	}
 696	/* Don't return success if we really got EOF */
 697	if (ret == 0)
 698		ret = -EAGAIN;
 699
 700	return ret;
 
 
 
 701}
 702
 703/* Listening socket is busy, accept a connection */
 704static int tcp_accept_from_sock(struct connection *con)
 705{
 706	int result;
 707	struct sockaddr_storage peeraddr;
 708	struct socket *newsock;
 709	int len;
 710	int nodeid;
 711	struct connection *newcon;
 712	struct connection *addcon;
 713
 714	mutex_lock(&connections_lock);
 715	if (!dlm_allow_conn) {
 716		mutex_unlock(&connections_lock);
 717		return -1;
 718	}
 719	mutex_unlock(&connections_lock);
 720
 721	memset(&peeraddr, 0, sizeof(peeraddr));
 722	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
 723				  IPPROTO_TCP, &newsock);
 724	if (result < 0)
 725		return -ENOMEM;
 726
 727	mutex_lock_nested(&con->sock_mutex, 0);
 728
 729	result = -ENOTCONN;
 730	if (con->sock == NULL)
 731		goto accept_err;
 732
 733	newsock->type = con->sock->type;
 734	newsock->ops = con->sock->ops;
 735
 736	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
 737	if (result < 0)
 
 
 738		goto accept_err;
 739
 740	/* Get the connected socket's peer */
 741	memset(&peeraddr, 0, sizeof(peeraddr));
 742	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
 743				  &len, 2)) {
 744		result = -ECONNABORTED;
 745		goto accept_err;
 746	}
 747
 748	/* Get the new node's NODEID */
 749	make_sockaddr(&peeraddr, 0, &len);
 750	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
 751		unsigned char *b=(unsigned char *)&peeraddr;
 752		log_print("connect from non cluster node");
 753		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
 754				     b, sizeof(struct sockaddr_storage));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755		sock_release(newsock);
 756		mutex_unlock(&con->sock_mutex);
 757		return -1;
 758	}
 759
 760	log_print("got connection from %d", nodeid);
 761
 762	/*  Check to see if we already have a connection to this node. This
 763	 *  could happen if the two nodes initiate a connection at roughly
 764	 *  the same time and the connections cross on the wire.
 765	 *  In this case we store the incoming one in "othercon"
 766	 */
 767	newcon = nodeid2con(nodeid, GFP_NOFS);
 768	if (!newcon) {
 769		result = -ENOMEM;
 
 
 770		goto accept_err;
 771	}
 772	mutex_lock_nested(&newcon->sock_mutex, 1);
 
 
 
 773	if (newcon->sock) {
 774		struct connection *othercon = newcon->othercon;
 775
 776		if (!othercon) {
 777			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 778			if (!othercon) {
 779				log_print("failed to allocate incoming socket");
 780				mutex_unlock(&newcon->sock_mutex);
 
 781				result = -ENOMEM;
 782				goto accept_err;
 783			}
 784			othercon->nodeid = nodeid;
 785			othercon->rx_action = receive_from_sock;
 786			mutex_init(&othercon->sock_mutex);
 787			INIT_WORK(&othercon->swork, process_send_sockets);
 788			INIT_WORK(&othercon->rwork, process_recv_sockets);
 789			set_bit(CF_IS_OTHERCON, &othercon->flags);
 790		}
 791		if (!othercon->sock) {
 792			newcon->othercon = othercon;
 793			othercon->sock = newsock;
 794			newsock->sk->sk_user_data = othercon;
 795			add_sock(newsock, othercon);
 796			addcon = othercon;
 797		}
 798		else {
 799			printk("Extra connection from node %d attempted\n", nodeid);
 800			result = -EAGAIN;
 801			mutex_unlock(&newcon->sock_mutex);
 802			goto accept_err;
 803		}
 
 
 
 
 
 
 
 
 
 804	}
 805	else {
 806		newsock->sk->sk_user_data = newcon;
 807		newcon->rx_action = receive_from_sock;
 
 808		add_sock(newsock, newcon);
 809		addcon = newcon;
 810	}
 811
 812	mutex_unlock(&newcon->sock_mutex);
 813
 814	/*
 815	 * Add it to the active queue in case we got data
 816	 * between processing the accept adding the socket
 817	 * to the read_sockets list
 818	 */
 819	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 820		queue_work(recv_workqueue, &addcon->rwork);
 821	mutex_unlock(&con->sock_mutex);
 822
 823	return 0;
 824
 825accept_err:
 826	mutex_unlock(&con->sock_mutex);
 827	sock_release(newsock);
 828
 829	if (result != -EAGAIN)
 830		log_print("error accepting connection from node: %d", result);
 831	return result;
 832}
 833
 834static void free_entry(struct writequeue_entry *e)
 
 
 
 
 
 
 
 835{
 836	__free_page(e->page);
 837	kfree(e);
 
 
 
 
 
 838}
 839
 840/* Initiate an SCTP association.
 841   This is a special case of send_to_sock() in that we don't yet have a
 842   peeled-off socket for this association, so we use the listening socket
 843   and add the primary IP address of the remote node.
 844 */
 845static void sctp_init_assoc(struct connection *con)
 846{
 847	struct sockaddr_storage rem_addr;
 848	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
 849	struct msghdr outmessage;
 850	struct cmsghdr *cmsg;
 851	struct sctp_sndrcvinfo *sinfo;
 852	struct connection *base_con;
 853	struct writequeue_entry *e;
 854	int len, offset;
 855	int ret;
 856	int addrlen;
 857	struct kvec iov[1];
 858
 859	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
 860		return;
 861
 862	if (con->retries++ > MAX_CONNECT_RETRIES)
 863		return;
 
 864
 865	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
 866		log_print("no address for nodeid %d", con->nodeid);
 867		return;
 
 
 
 
 
 
 
 868	}
 869	base_con = nodeid2con(0, 0);
 870	BUG_ON(base_con == NULL);
 871
 872	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
 
 
 
 
 873
 874	outmessage.msg_name = &rem_addr;
 875	outmessage.msg_namelen = addrlen;
 876	outmessage.msg_control = outcmsg;
 877	outmessage.msg_controllen = sizeof(outcmsg);
 878	outmessage.msg_flags = MSG_EOR;
 879
 880	spin_lock(&con->writequeue_lock);
 881
 882	if (list_empty(&con->writequeue)) {
 883		spin_unlock(&con->writequeue_lock);
 884		log_print("writequeue empty for nodeid %d", con->nodeid);
 885		return;
 886	}
 887
 888	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
 889	len = e->len;
 890	offset = e->offset;
 891	spin_unlock(&con->writequeue_lock);
 892
 893	/* Send the first block off the write queue */
 894	iov[0].iov_base = page_address(e->page)+offset;
 895	iov[0].iov_len = len;
 896
 897	cmsg = CMSG_FIRSTHDR(&outmessage);
 898	cmsg->cmsg_level = IPPROTO_SCTP;
 899	cmsg->cmsg_type = SCTP_SNDRCV;
 900	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
 901	sinfo = CMSG_DATA(cmsg);
 902	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
 903	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
 904	outmessage.msg_controllen = cmsg->cmsg_len;
 905
 906	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
 907	if (ret < 0) {
 908		log_print("Send first packet to node %d failed: %d",
 909			  con->nodeid, ret);
 910
 911		/* Try again later */
 912		clear_bit(CF_CONNECT_PENDING, &con->flags);
 913		clear_bit(CF_INIT_PENDING, &con->flags);
 
 914	}
 915	else {
 916		spin_lock(&con->writequeue_lock);
 917		e->offset += ret;
 918		e->len -= ret;
 919
 920		if (e->len == 0 && e->users == 0) {
 921			list_del(&e->list);
 922			free_entry(e);
 923		}
 924		spin_unlock(&con->writequeue_lock);
 925	}
 
 
 926}
 927
 928/* Connect a new socket to its peer */
 929static void tcp_connect_to_sock(struct connection *con)
 
 930{
 931	int result = -EHOSTUNREACH;
 932	struct sockaddr_storage saddr, src_addr;
 933	int addr_len;
 934	struct socket *sock = NULL;
 935	int one = 1;
 936
 937	if (con->nodeid == 0) {
 938		log_print("attempt to connect sock 0 foiled");
 939		return;
 
 
 
 
 
 
 
 
 
 
 
 940	}
 941
 942	mutex_lock(&con->sock_mutex);
 943	if (con->retries++ > MAX_CONNECT_RETRIES)
 944		goto out;
 945
 946	/* Some odd races can cause double-connects, ignore them */
 947	if (con->sock) {
 948		result = 0;
 949		goto out;
 950	}
 951
 952	/* Create a socket to communicate with */
 953	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
 954				  IPPROTO_TCP, &sock);
 955	if (result < 0)
 956		goto out_err;
 957
 958	memset(&saddr, 0, sizeof(saddr));
 959	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
 960		goto out_err;
 961
 962	sock->sk->sk_user_data = con;
 963	con->rx_action = receive_from_sock;
 964	con->connect_action = tcp_connect_to_sock;
 965	add_sock(sock, con);
 966
 967	/* Bind to our cluster-known address connecting to avoid
 968	   routing problems */
 969	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
 970	make_sockaddr(&src_addr, 0, &addr_len);
 971	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
 972				 addr_len);
 973	if (result < 0) {
 974		log_print("could not bind for connect: %d", result);
 975		/* This *may* not indicate a critical error */
 
 
 
 
 
 
 
 
 
 976	}
 977
 978	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
 
 
 
 
 979
 980	log_print("connecting to %d", con->nodeid);
 
 981
 982	/* Turn off Nagle's algorithm */
 983	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
 984			  sizeof(one));
 
 
 
 
 
 
 
 
 985
 986	result =
 987		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
 988				   O_NONBLOCK);
 989	if (result == -EINPROGRESS)
 990		result = 0;
 991	if (result == 0)
 992		goto out;
 993
 994out_err:
 995	if (con->sock) {
 996		sock_release(con->sock);
 997		con->sock = NULL;
 998	} else if (sock) {
 999		sock_release(sock);
1000	}
1001	/*
1002	 * Some errors are fatal and this list might need adjusting. For other
1003	 * errors we try again until the max number of retries is reached.
1004	 */
1005	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
1006	    result != -ENETDOWN && result != -EINVAL
1007	    && result != -EPROTONOSUPPORT) {
1008		lowcomms_connect_sock(con);
1009		result = 0;
1010	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011out:
1012	mutex_unlock(&con->sock_mutex);
1013	return;
1014}
1015
1016static struct socket *tcp_create_listen_sock(struct connection *con,
1017					     struct sockaddr_storage *saddr)
 
 
 
1018{
1019	struct socket *sock = NULL;
1020	int result = 0;
1021	int one = 1;
1022	int addr_len;
 
 
1023
1024	if (dlm_local_addr[0]->ss_family == AF_INET)
1025		addr_len = sizeof(struct sockaddr_in);
1026	else
1027		addr_len = sizeof(struct sockaddr_in6);
1028
1029	/* Create a socket to communicate with */
1030	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1031				  IPPROTO_TCP, &sock);
1032	if (result < 0) {
1033		log_print("Can't create listening comms socket");
1034		goto create_out;
1035	}
1036
1037	/* Turn off Nagle's algorithm */
1038	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1039			  sizeof(one));
1040
1041	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1042				   (char *)&one, sizeof(one));
 
 
1043
1044	if (result < 0) {
1045		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1046	}
1047	sock->sk->sk_user_data = con;
1048	con->rx_action = tcp_accept_from_sock;
1049	con->connect_action = tcp_connect_to_sock;
1050	con->sock = sock;
1051
1052	/* Bind to our port */
1053	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1054	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1055	if (result < 0) {
1056		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1057		sock_release(sock);
1058		sock = NULL;
1059		con->sock = NULL;
1060		goto create_out;
1061	}
1062	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1063				 (char *)&one, sizeof(one));
1064	if (result < 0) {
1065		log_print("Set keepalive failed: %d", result);
 
 
 
 
 
1066	}
1067
1068	result = sock->ops->listen(sock, 5);
1069	if (result < 0) {
1070		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1071		sock_release(sock);
1072		sock = NULL;
1073		goto create_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	}
1075
1076create_out:
1077	return sock;
 
 
 
1078}
1079
1080/* Get local addresses */
1081static void init_local(void)
1082{
1083	struct sockaddr_storage sas, *addr;
1084	int i;
1085
1086	dlm_local_count = 0;
1087	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1088		if (dlm_our_addr(&sas, i))
1089			break;
1090
1091		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1092		if (!addr)
1093			break;
1094		memcpy(addr, &sas, sizeof(*addr));
1095		dlm_local_addr[dlm_local_count++] = addr;
1096	}
 
1097}
1098
1099/* Bind to an IP address. SCTP allows multiple address so it can do
1100   multi-homing */
1101static int add_sctp_bind_addr(struct connection *sctp_con,
1102			      struct sockaddr_storage *addr,
1103			      int addr_len, int num)
1104{
1105	int result = 0;
1106
1107	if (num == 1)
1108		result = kernel_bind(sctp_con->sock,
1109				     (struct sockaddr *) addr,
1110				     addr_len);
1111	else
1112		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1113					   SCTP_SOCKOPT_BINDX_ADD,
1114					   (char *)addr, addr_len);
1115
1116	if (result < 0)
1117		log_print("Can't bind to port %d addr number %d",
1118			  dlm_config.ci_tcp_port, num);
1119
1120	return result;
 
 
1121}
1122
1123/* Initialise SCTP socket and bind to all interfaces */
1124static int sctp_listen_for_all(void)
 
1125{
1126	struct socket *sock = NULL;
1127	struct sockaddr_storage localaddr;
1128	struct sctp_event_subscribe subscribe;
1129	int result = -EINVAL, num = 1, i, addr_len;
1130	struct connection *con = nodeid2con(0, GFP_NOFS);
1131	int bufsize = NEEDED_RMEM;
1132
1133	if (!con)
1134		return -ENOMEM;
1135
1136	log_print("Using SCTP for communications");
1137
1138	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1139				  IPPROTO_SCTP, &sock);
1140	if (result < 0) {
1141		log_print("Can't create comms socket, check SCTP is loaded");
1142		goto out;
1143	}
1144
1145	/* Listen for events */
1146	memset(&subscribe, 0, sizeof(subscribe));
1147	subscribe.sctp_data_io_event = 1;
1148	subscribe.sctp_association_event = 1;
1149	subscribe.sctp_send_failure_event = 1;
1150	subscribe.sctp_shutdown_event = 1;
1151	subscribe.sctp_partial_delivery_event = 1;
1152
1153	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1154				 (char *)&bufsize, sizeof(bufsize));
1155	if (result)
1156		log_print("Error increasing buffer space on socket %d", result);
1157
1158	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1159				   (char *)&subscribe, sizeof(subscribe));
1160	if (result < 0) {
1161		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1162			  result);
1163		goto create_delsock;
1164	}
 
 
 
 
 
 
 
 
 
 
1165
1166	/* Init con struct */
1167	sock->sk->sk_user_data = con;
1168	con->sock = sock;
1169	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1170	con->rx_action = receive_from_sock;
1171	con->connect_action = sctp_init_assoc;
1172
1173	/* Bind to all interfaces. */
1174	for (i = 0; i < dlm_local_count; i++) {
1175		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1176		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
 
1177
1178		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1179		if (result)
1180			goto create_delsock;
1181		++num;
1182	}
1183
1184	result = sock->ops->listen(sock, 5);
1185	if (result < 0) {
1186		log_print("Can't set socket listening");
1187		goto create_delsock;
1188	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189
1190	return 0;
 
 
 
 
 
1191
1192create_delsock:
1193	sock_release(sock);
1194	con->sock = NULL;
1195out:
1196	return result;
1197}
1198
1199static int tcp_listen_for_all(void)
1200{
1201	struct socket *sock = NULL;
1202	struct connection *con = nodeid2con(0, GFP_NOFS);
1203	int result = -EINVAL;
1204
1205	if (!con)
1206		return -ENOMEM;
1207
1208	/* We don't support multi-homed hosts */
1209	if (dlm_local_addr[1] != NULL) {
1210		log_print("TCP protocol can't handle multi-homed hosts, "
1211			  "try SCTP");
1212		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213	}
1214
1215	log_print("Using TCP for communications");
 
 
 
 
 
 
 
1216
1217	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1218	if (sock) {
1219		add_sock(sock, con);
1220		result = 0;
1221	}
1222	else {
1223		result = -EADDRINUSE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224	}
1225
1226	return result;
1227}
1228
1229
1230
1231static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1232						     gfp_t allocation)
1233{
1234	struct writequeue_entry *entry;
 
1235
1236	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1237	if (!entry)
1238		return NULL;
1239
1240	entry->page = alloc_page(allocation);
1241	if (!entry->page) {
1242		kfree(entry);
1243		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244	}
1245
1246	entry->offset = 0;
1247	entry->len = 0;
1248	entry->end = 0;
1249	entry->users = 0;
1250	entry->con = con;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251
1252	return entry;
 
 
1253}
1254
1255void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1256{
1257	struct connection *con;
1258	struct writequeue_entry *e;
1259	int offset = 0;
1260	int users = 0;
1261
1262	con = nodeid2con(nodeid, allocation);
1263	if (!con)
1264		return NULL;
 
 
1265
1266	spin_lock(&con->writequeue_lock);
1267	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1268	if ((&e->list == &con->writequeue) ||
1269	    (PAGE_CACHE_SIZE - e->end < len)) {
1270		e = NULL;
1271	} else {
1272		offset = e->end;
1273		e->end += len;
1274		users = e->users++;
1275	}
1276	spin_unlock(&con->writequeue_lock);
1277
1278	if (e) {
1279	got_one:
1280		*ppc = page_address(e->page) + offset;
1281		return e;
1282	}
1283
1284	e = new_writequeue_entry(con, allocation);
1285	if (e) {
1286		spin_lock(&con->writequeue_lock);
1287		offset = e->end;
1288		e->end += len;
1289		users = e->users++;
1290		list_add_tail(&e->list, &con->writequeue);
1291		spin_unlock(&con->writequeue_lock);
1292		goto got_one;
1293	}
1294	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1295}
1296
1297void dlm_lowcomms_commit_buffer(void *mh)
1298{
1299	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1300	struct connection *con = e->con;
1301	int users;
1302
1303	spin_lock(&con->writequeue_lock);
1304	users = --e->users;
1305	if (users)
1306		goto out;
1307	e->len = e->end - e->offset;
1308	spin_unlock(&con->writequeue_lock);
1309
1310	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1311		queue_work(send_workqueue, &con->swork);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	}
1313	return;
 
1314
1315out:
1316	spin_unlock(&con->writequeue_lock);
1317	return;
 
1318}
1319
1320/* Send a message */
1321static void send_to_sock(struct connection *con)
1322{
1323	int ret = 0;
1324	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1325	struct writequeue_entry *e;
1326	int len, offset;
1327	int count = 0;
1328
1329	mutex_lock(&con->sock_mutex);
1330	if (con->sock == NULL)
1331		goto out_connect;
1332
1333	spin_lock(&con->writequeue_lock);
1334	for (;;) {
1335		e = list_entry(con->writequeue.next, struct writequeue_entry,
1336			       list);
1337		if ((struct list_head *) e == &con->writequeue)
1338			break;
1339
1340		len = e->len;
1341		offset = e->offset;
1342		BUG_ON(len == 0 && e->users == 0);
1343		spin_unlock(&con->writequeue_lock);
1344
1345		ret = 0;
1346		if (len) {
1347			ret = kernel_sendpage(con->sock, e->page, offset, len,
1348					      msg_flags);
1349			if (ret == -EAGAIN || ret == 0) {
1350				if (ret == -EAGAIN &&
1351				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1352				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1353					/* Notify TCP that we're limited by the
1354					 * application window size.
1355					 */
1356					set_bit(SOCK_NOSPACE, &con->sock->flags);
1357					con->sock->sk->sk_write_pending++;
1358				}
1359				cond_resched();
1360				goto out;
1361			}
1362			if (ret <= 0)
1363				goto send_error;
1364		}
1365
1366		/* Don't starve people filling buffers */
1367		if (++count >= MAX_SEND_MSG_COUNT) {
1368			cond_resched();
1369			count = 0;
1370		}
1371
1372		spin_lock(&con->writequeue_lock);
1373		e->offset += ret;
1374		e->len -= ret;
1375
1376		if (e->len == 0 && e->users == 0) {
1377			list_del(&e->list);
1378			free_entry(e);
1379			continue;
1380		}
 
 
 
 
 
 
 
 
 
 
 
 
1381	}
1382	spin_unlock(&con->writequeue_lock);
1383out:
1384	mutex_unlock(&con->sock_mutex);
1385	return;
1386
1387send_error:
1388	mutex_unlock(&con->sock_mutex);
1389	close_connection(con, false);
1390	lowcomms_connect_sock(con);
1391	return;
1392
1393out_connect:
1394	mutex_unlock(&con->sock_mutex);
1395	if (!test_bit(CF_INIT_PENDING, &con->flags))
1396		lowcomms_connect_sock(con);
1397	return;
1398}
1399
1400static void clean_one_writequeue(struct connection *con)
1401{
1402	struct writequeue_entry *e, *safe;
 
1403
1404	spin_lock(&con->writequeue_lock);
1405	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1406		list_del(&e->list);
1407		free_entry(e);
 
 
 
 
 
 
 
1408	}
1409	spin_unlock(&con->writequeue_lock);
 
1410}
1411
1412/* Called from recovery when it knows that a node has
1413   left the cluster */
1414int dlm_lowcomms_close(int nodeid)
1415{
1416	struct connection *con;
 
1417
1418	log_print("closing connection to node %d", nodeid);
1419	con = nodeid2con(nodeid, 0);
1420	if (con) {
1421		clear_bit(CF_CONNECT_PENDING, &con->flags);
1422		clear_bit(CF_WRITE_PENDING, &con->flags);
1423		set_bit(CF_CLOSE, &con->flags);
1424		if (cancel_work_sync(&con->swork))
1425			log_print("canceled swork for node %d", nodeid);
1426		if (cancel_work_sync(&con->rwork))
1427			log_print("canceled rwork for node %d", nodeid);
1428		clean_one_writequeue(con);
1429		close_connection(con, true);
1430	}
 
1431	return 0;
1432}
1433
1434/* Receive workqueue function */
1435static void process_recv_sockets(struct work_struct *work)
1436{
1437	struct connection *con = container_of(work, struct connection, rwork);
1438	int err;
 
1439
1440	clear_bit(CF_READ_PENDING, &con->flags);
1441	do {
1442		err = con->rx_action(con);
1443	} while (!err);
1444}
1445
1446/* Send workqueue function */
1447static void process_send_sockets(struct work_struct *work)
1448{
1449	struct connection *con = container_of(work, struct connection, swork);
1450
1451	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1452		con->connect_action(con);
1453		set_bit(CF_WRITE_PENDING, &con->flags);
1454	}
1455	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1456		send_to_sock(con);
1457}
1458
 
 
 
 
 
 
 
 
 
 
1459
1460/* Discard all entries on the write queues */
1461static void clean_writequeues(void)
1462{
1463	foreach_conn(clean_one_writequeue);
1464}
1465
1466static void work_stop(void)
 
1467{
1468	destroy_workqueue(recv_workqueue);
1469	destroy_workqueue(send_workqueue);
 
 
 
 
 
 
 
 
 
1470}
1471
1472static int work_start(void)
1473{
1474	recv_workqueue = alloc_workqueue("dlm_recv",
1475					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1476	if (!recv_workqueue) {
1477		log_print("can't start dlm_recv");
1478		return -ENOMEM;
1479	}
1480
1481	send_workqueue = alloc_workqueue("dlm_send",
1482					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1483	if (!send_workqueue) {
1484		log_print("can't start dlm_send");
1485		destroy_workqueue(recv_workqueue);
1486		return -ENOMEM;
1487	}
1488
 
1489	return 0;
1490}
1491
1492static void stop_conn(struct connection *con)
1493{
1494	con->flags |= 0x0F;
1495	if (con->sock && con->sock->sk)
1496		con->sock->sk->sk_user_data = NULL;
1497}
1498
1499static void free_conn(struct connection *con)
1500{
1501	close_connection(con, true);
1502	if (con->othercon)
1503		kmem_cache_free(con_cache, con->othercon);
1504	hlist_del(&con->list);
1505	kmem_cache_free(con_cache, con);
1506}
1507
1508void dlm_lowcomms_stop(void)
1509{
1510	/* Set all the flags to prevent any
1511	   socket activity.
1512	*/
1513	mutex_lock(&connections_lock);
1514	dlm_allow_conn = 0;
1515	foreach_conn(stop_conn);
1516	mutex_unlock(&connections_lock);
1517
1518	work_stop();
1519
1520	mutex_lock(&connections_lock);
1521	clean_writequeues();
1522
1523	foreach_conn(free_conn);
1524
1525	mutex_unlock(&connections_lock);
1526	kmem_cache_destroy(con_cache);
1527}
1528
1529int dlm_lowcomms_start(void)
1530{
1531	int error = -EINVAL;
1532	struct connection *con;
1533	int i;
1534
1535	for (i = 0; i < CONN_HASH_SIZE; i++)
1536		INIT_HLIST_HEAD(&connection_hash[i]);
1537
1538	init_local();
1539	if (!dlm_local_count) {
1540		error = -ENOTCONN;
1541		log_print("no local IP address has been set");
1542		goto fail;
1543	}
1544
1545	error = -ENOMEM;
1546	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1547				      __alignof__(struct connection), 0,
1548				      NULL);
1549	if (!con_cache)
1550		goto fail;
1551
1552	error = work_start();
1553	if (error)
1554		goto fail_destroy;
1555
1556	dlm_allow_conn = 1;
1557
1558	/* Start listening */
1559	if (dlm_config.ci_protocol == 0)
1560		error = tcp_listen_for_all();
1561	else
1562		error = sctp_listen_for_all();
 
 
 
 
 
 
 
 
 
 
 
1563	if (error)
1564		goto fail_unlisten;
1565
1566	return 0;
1567
1568fail_unlisten:
1569	dlm_allow_conn = 0;
1570	con = nodeid2con(0,0);
1571	if (con) {
1572		close_connection(con, false);
1573		kmem_cache_free(con_cache, con);
1574	}
1575fail_destroy:
1576	kmem_cache_destroy(con_cache);
1577fail:
1578	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3*******************************************************************************
   4**
   5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   7**
 
 
 
   8**
   9*******************************************************************************
  10******************************************************************************/
  11
  12/*
  13 * lowcomms.c
  14 *
  15 * This is the "low-level" comms layer.
  16 *
  17 * It is responsible for sending/receiving messages
  18 * from other nodes in the cluster.
  19 *
  20 * Cluster nodes are referred to by their nodeids. nodeids are
  21 * simply 32 bit numbers to the locking module - if they need to
  22 * be expanded for the cluster infrastructure then that is its
  23 * responsibility. It is this layer's
  24 * responsibility to resolve these into IP address or
  25 * whatever it needs for inter-node communication.
  26 *
  27 * The comms level is two kernel threads that deal mainly with
  28 * the receiving of messages from other nodes and passing them
  29 * up to the mid-level comms layer (which understands the
  30 * message format) for execution by the locking core, and
  31 * a send thread which does all the setting up of connections
  32 * to remote nodes and the sending of data. Threads are not allowed
  33 * to send their own data because it may cause them to wait in times
  34 * of high load. Also, this way, the sending thread can collect together
  35 * messages bound for one node and send them in one block.
  36 *
  37 * lowcomms will choose to use either TCP or SCTP as its transport layer
  38 * depending on the configuration variable 'protocol'. This should be set
  39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  41 * for the DLM to function.
  42 *
  43 */
  44
  45#include <asm/ioctls.h>
  46#include <net/sock.h>
  47#include <net/tcp.h>
  48#include <linux/pagemap.h>
  49#include <linux/file.h>
  50#include <linux/mutex.h>
  51#include <linux/sctp.h>
  52#include <linux/slab.h>
  53#include <net/sctp/sctp.h>
 
  54#include <net/ipv6.h>
  55
  56#include <trace/events/dlm.h>
  57#include <trace/events/sock.h>
  58
  59#include "dlm_internal.h"
  60#include "lowcomms.h"
  61#include "midcomms.h"
  62#include "memory.h"
  63#include "config.h"
  64
  65#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
  66#define DLM_MAX_PROCESS_BUFFERS 24
  67#define NEEDED_RMEM (4*1024*1024)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69struct connection {
  70	struct socket *sock;	/* NULL if not connected */
  71	uint32_t nodeid;	/* So we know who we are in the list */
  72	/* this semaphore is used to allow parallel recv/send in read
  73	 * lock mode. When we release a sock we need to held the write lock.
  74	 *
  75	 * However this is locking code and not nice. When we remove the
  76	 * othercon handling we can look into other mechanism to synchronize
  77	 * io handling to call sock_release() at the right time.
  78	 */
  79	struct rw_semaphore sock_lock;
  80	unsigned long flags;
  81#define CF_APP_LIMITED 0
  82#define CF_RECV_PENDING 1
  83#define CF_SEND_PENDING 2
  84#define CF_RECV_INTR 3
  85#define CF_IO_STOP 4
  86#define CF_IS_OTHERCON 5
 
 
  87	struct list_head writequeue;  /* List of outgoing writequeue_entries */
  88	spinlock_t writequeue_lock;
 
 
 
 
  89	int retries;
 
 
  90	struct hlist_node list;
  91	/* due some connect()/accept() races we currently have this cross over
  92	 * connection attempt second connection for one node.
  93	 *
  94	 * There is a solution to avoid the race by introducing a connect
  95	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
  96	 * connect. Otherside can connect but will only be considered that
  97	 * the other side wants to have a reconnect.
  98	 *
  99	 * However changing to this behaviour will break backwards compatible.
 100	 * In a DLM protocol major version upgrade we should remove this!
 101	 */
 102	struct connection *othercon;
 103	struct work_struct rwork; /* receive worker */
 104	struct work_struct swork; /* send worker */
 105	wait_queue_head_t shutdown_wait;
 106	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
 107	int rx_leftover;
 108	int mark;
 109	int addr_count;
 110	int curr_addr_index;
 111	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
 112	spinlock_t addrs_lock;
 113	struct rcu_head rcu;
 114};
 115#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 116
 117struct listen_connection {
 118	struct socket *sock;
 119	struct work_struct rwork;
 120};
 121
 122#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
 123#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
 124
 125/* An entry waiting to be sent */
 126struct writequeue_entry {
 127	struct list_head list;
 128	struct page *page;
 129	int offset;
 130	int len;
 131	int end;
 132	int users;
 133	bool dirty;
 134	struct connection *con;
 135	struct list_head msgs;
 136	struct kref ref;
 137};
 138
 139struct dlm_msg {
 140	struct writequeue_entry *entry;
 141	struct dlm_msg *orig_msg;
 142	bool retransmit;
 143	void *ppc;
 144	int len;
 145	int idx; /* new()/commit() idx exchange */
 146
 147	struct list_head list;
 148	struct kref ref;
 149};
 150
 151struct processqueue_entry {
 152	unsigned char *buf;
 153	int nodeid;
 154	int buflen;
 155
 156	struct list_head list;
 157};
 158
 159struct dlm_proto_ops {
 160	bool try_new_addr;
 161	const char *name;
 162	int proto;
 163
 164	int (*connect)(struct connection *con, struct socket *sock,
 165		       struct sockaddr *addr, int addr_len);
 166	void (*sockopts)(struct socket *sock);
 167	int (*bind)(struct socket *sock);
 168	int (*listen_validate)(void);
 169	void (*listen_sockopts)(struct socket *sock);
 170	int (*listen_bind)(struct socket *sock);
 171};
 172
 173static struct listen_sock_callbacks {
 174	void (*sk_error_report)(struct sock *);
 175	void (*sk_data_ready)(struct sock *);
 176	void (*sk_state_change)(struct sock *);
 177	void (*sk_write_space)(struct sock *);
 178} listen_sock;
 179
 180static struct listen_connection listen_con;
 181static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
 182static int dlm_local_count;
 
 183
 184/* Work queues */
 185static struct workqueue_struct *io_workqueue;
 186static struct workqueue_struct *process_workqueue;
 187
 188static struct hlist_head connection_hash[CONN_HASH_SIZE];
 189static DEFINE_SPINLOCK(connections_lock);
 190DEFINE_STATIC_SRCU(connections_srcu);
 191
 192static const struct dlm_proto_ops *dlm_proto_ops;
 193
 194#define DLM_IO_SUCCESS 0
 195#define DLM_IO_END 1
 196#define DLM_IO_EOF 2
 197#define DLM_IO_RESCHED 3
 198#define DLM_IO_FLUSH 4
 199
 200static void process_recv_sockets(struct work_struct *work);
 201static void process_send_sockets(struct work_struct *work);
 202static void process_dlm_messages(struct work_struct *work);
 203
 204static DECLARE_WORK(process_work, process_dlm_messages);
 205static DEFINE_SPINLOCK(processqueue_lock);
 206static bool process_dlm_messages_pending;
 207static atomic_t processqueue_count;
 208static LIST_HEAD(processqueue);
 209
 210bool dlm_lowcomms_is_running(void)
 
 
 
 211{
 212	return !!listen_con.sock;
 213}
 214
 215static void lowcomms_queue_swork(struct connection *con)
 216{
 217	assert_spin_locked(&con->writequeue_lock);
 
 
 218
 219	if (!test_bit(CF_IO_STOP, &con->flags) &&
 220	    !test_bit(CF_APP_LIMITED, &con->flags) &&
 221	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
 222		queue_work(io_workqueue, &con->swork);
 223}
 224
 225static void lowcomms_queue_rwork(struct connection *con)
 226{
 227#ifdef CONFIG_LOCKDEP
 228	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
 229#endif
 230
 231	if (!test_bit(CF_IO_STOP, &con->flags) &&
 232	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
 233		queue_work(io_workqueue, &con->rwork);
 234}
 235
 236static void writequeue_entry_ctor(void *data)
 237{
 238	struct writequeue_entry *entry = data;
 239
 240	INIT_LIST_HEAD(&entry->msgs);
 241}
 242
 243struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
 244{
 245	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
 246				 0, 0, writequeue_entry_ctor);
 247}
 248
 249struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
 250{
 251	return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
 252}
 253
 254/* need to held writequeue_lock */
 255static struct writequeue_entry *con_next_wq(struct connection *con)
 256{
 257	struct writequeue_entry *e;
 258
 259	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
 260				     list);
 261	/* if len is zero nothing is to send, if there are users filling
 262	 * buffers we wait until the users are done so we can send more.
 263	 */
 264	if (!e || e->users || e->len == 0)
 265		return NULL;
 266
 267	return e;
 268}
 269
 270static struct connection *__find_con(int nodeid, int r)
 271{
 272	struct connection *con;
 273
 274	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
 275		if (con->nodeid == nodeid)
 276			return con;
 277	}
 278
 279	return NULL;
 280}
 281
 282static void dlm_con_init(struct connection *con, int nodeid)
 283{
 284	con->nodeid = nodeid;
 285	init_rwsem(&con->sock_lock);
 286	INIT_LIST_HEAD(&con->writequeue);
 287	spin_lock_init(&con->writequeue_lock);
 288	INIT_WORK(&con->swork, process_send_sockets);
 289	INIT_WORK(&con->rwork, process_recv_sockets);
 290	spin_lock_init(&con->addrs_lock);
 291	init_waitqueue_head(&con->shutdown_wait);
 292}
 293
 294/*
 295 * If 'allocation' is zero then we don't attempt to create a new
 296 * connection structure for this node.
 297 */
 298static struct connection *nodeid2con(int nodeid, gfp_t alloc)
 299{
 300	struct connection *con, *tmp;
 301	int r;
 302
 303	r = nodeid_hash(nodeid);
 304	con = __find_con(nodeid, r);
 305	if (con || !alloc)
 306		return con;
 307
 308	con = kzalloc(sizeof(*con), alloc);
 309	if (!con)
 310		return NULL;
 311
 312	dlm_con_init(con, nodeid);
 
 313
 314	spin_lock(&connections_lock);
 315	/* Because multiple workqueues/threads calls this function it can
 316	 * race on multiple cpu's. Instead of locking hot path __find_con()
 317	 * we just check in rare cases of recently added nodes again
 318	 * under protection of connections_lock. If this is the case we
 319	 * abort our connection creation and return the existing connection.
 320	 */
 321	tmp = __find_con(nodeid, r);
 322	if (tmp) {
 323		spin_unlock(&connections_lock);
 324		kfree(con);
 325		return tmp;
 
 
 326	}
 327
 328	hlist_add_head_rcu(&con->list, &connection_hash[r]);
 329	spin_unlock(&connections_lock);
 330
 331	return con;
 332}
 333
 334static int addr_compare(const struct sockaddr_storage *x,
 335			const struct sockaddr_storage *y)
 336{
 337	switch (x->ss_family) {
 338	case AF_INET: {
 339		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 340		struct sockaddr_in *siny = (struct sockaddr_in *)y;
 341		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 342			return 0;
 343		if (sinx->sin_port != siny->sin_port)
 344			return 0;
 345		break;
 346	}
 347	case AF_INET6: {
 348		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 349		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 350		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 351			return 0;
 352		if (sinx->sin6_port != siny->sin6_port)
 353			return 0;
 354		break;
 355	}
 356	default:
 357		return 0;
 358	}
 359	return 1;
 360}
 361
 362static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 363			  struct sockaddr *sa_out, bool try_new_addr,
 364			  unsigned int *mark)
 365{
 366	struct sockaddr_storage sas;
 367	struct connection *con;
 368	int idx;
 369
 370	if (!dlm_local_count)
 371		return -1;
 372
 373	idx = srcu_read_lock(&connections_srcu);
 374	con = nodeid2con(nodeid, 0);
 375	if (!con) {
 376		srcu_read_unlock(&connections_srcu, idx);
 377		return -ENOENT;
 378	}
 379
 380	spin_lock(&con->addrs_lock);
 381	if (!con->addr_count) {
 382		spin_unlock(&con->addrs_lock);
 383		srcu_read_unlock(&connections_srcu, idx);
 384		return -ENOENT;
 385	}
 386
 387	memcpy(&sas, &con->addr[con->curr_addr_index],
 388	       sizeof(struct sockaddr_storage));
 389
 390	if (try_new_addr) {
 391		con->curr_addr_index++;
 392		if (con->curr_addr_index == con->addr_count)
 393			con->curr_addr_index = 0;
 394	}
 395
 396	*mark = con->mark;
 397	spin_unlock(&con->addrs_lock);
 398
 399	if (sas_out)
 400		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 401
 402	if (!sa_out) {
 403		srcu_read_unlock(&connections_srcu, idx);
 404		return 0;
 405	}
 406
 407	if (dlm_local_addr[0].ss_family == AF_INET) {
 408		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 409		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 410		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 411	} else {
 412		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 413		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 414		ret6->sin6_addr = in6->sin6_addr;
 415	}
 416
 417	srcu_read_unlock(&connections_srcu, idx);
 418	return 0;
 419}
 420
 421static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
 422			  unsigned int *mark)
 423{
 
 
 424	struct connection *con;
 425	int i, idx, addr_i;
 426
 427	idx = srcu_read_lock(&connections_srcu);
 428	for (i = 0; i < CONN_HASH_SIZE; i++) {
 429		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
 430			WARN_ON_ONCE(!con->addr_count);
 431
 432			spin_lock(&con->addrs_lock);
 433			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
 434				if (addr_compare(&con->addr[addr_i], addr)) {
 435					*nodeid = con->nodeid;
 436					*mark = con->mark;
 437					spin_unlock(&con->addrs_lock);
 438					srcu_read_unlock(&connections_srcu, idx);
 439					return 0;
 440				}
 441			}
 442			spin_unlock(&con->addrs_lock);
 443		}
 444	}
 445	srcu_read_unlock(&connections_srcu, idx);
 446
 447	return -ENOENT;
 448}
 449
 450static bool dlm_lowcomms_con_has_addr(const struct connection *con,
 451				      const struct sockaddr_storage *addr)
 452{
 453	int i;
 
 454
 455	for (i = 0; i < con->addr_count; i++) {
 456		if (addr_compare(&con->addr[i], addr))
 457			return true;
 458	}
 459
 460	return false;
 461}
 
 462
 463int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 464{
 465	struct connection *con;
 466	bool ret, idx;
 467
 468	idx = srcu_read_lock(&connections_srcu);
 469	con = nodeid2con(nodeid, GFP_NOFS);
 470	if (!con) {
 471		srcu_read_unlock(&connections_srcu, idx);
 472		return -ENOMEM;
 473	}
 474
 475	spin_lock(&con->addrs_lock);
 476	if (!con->addr_count) {
 477		memcpy(&con->addr[0], addr, sizeof(*addr));
 478		con->addr_count = 1;
 479		con->mark = dlm_config.ci_mark;
 480		spin_unlock(&con->addrs_lock);
 481		srcu_read_unlock(&connections_srcu, idx);
 482		return 0;
 483	}
 484
 485	ret = dlm_lowcomms_con_has_addr(con, addr);
 486	if (ret) {
 487		spin_unlock(&con->addrs_lock);
 488		srcu_read_unlock(&connections_srcu, idx);
 489		return -EEXIST;
 490	}
 491
 492	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
 493		spin_unlock(&con->addrs_lock);
 494		srcu_read_unlock(&connections_srcu, idx);
 495		return -ENOSPC;
 496	}
 497
 498	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
 499	srcu_read_unlock(&connections_srcu, idx);
 500	spin_unlock(&con->addrs_lock);
 501	return 0;
 502}
 503
 504/* Data available on socket or listen socket received a connect */
 505static void lowcomms_data_ready(struct sock *sk)
 506{
 507	struct connection *con = sock2con(sk);
 508
 509	trace_sk_data_ready(sk);
 510
 511	set_bit(CF_RECV_INTR, &con->flags);
 512	lowcomms_queue_rwork(con);
 513}
 514
 515static void lowcomms_write_space(struct sock *sk)
 516{
 517	struct connection *con = sock2con(sk);
 518
 
 
 
 519	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 520
 521	spin_lock_bh(&con->writequeue_lock);
 522	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 523		con->sock->sk->sk_write_pending--;
 524		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 525	}
 526
 527	lowcomms_queue_swork(con);
 528	spin_unlock_bh(&con->writequeue_lock);
 529}
 530
 531static void lowcomms_state_change(struct sock *sk)
 532{
 533	/* SCTP layer is not calling sk_data_ready when the connection
 534	 * is done, so we catch the signal through here.
 535	 */
 536	if (sk->sk_shutdown == RCV_SHUTDOWN)
 537		lowcomms_data_ready(sk);
 538}
 539
 540static void lowcomms_listen_data_ready(struct sock *sk)
 541{
 542	trace_sk_data_ready(sk);
 543
 544	queue_work(io_workqueue, &listen_con.rwork);
 545}
 546
 547int dlm_lowcomms_connect_node(int nodeid)
 548{
 549	struct connection *con;
 550	int idx;
 551
 552	idx = srcu_read_lock(&connections_srcu);
 553	con = nodeid2con(nodeid, 0);
 554	if (WARN_ON_ONCE(!con)) {
 555		srcu_read_unlock(&connections_srcu, idx);
 556		return -ENOENT;
 557	}
 558
 559	down_read(&con->sock_lock);
 560	if (!con->sock) {
 561		spin_lock_bh(&con->writequeue_lock);
 562		lowcomms_queue_swork(con);
 563		spin_unlock_bh(&con->writequeue_lock);
 564	}
 565	up_read(&con->sock_lock);
 566	srcu_read_unlock(&connections_srcu, idx);
 567
 568	cond_resched();
 
 
 
 569	return 0;
 570}
 571
 572int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
 573{
 574	struct connection *con;
 575	int idx;
 576
 577	idx = srcu_read_lock(&connections_srcu);
 578	con = nodeid2con(nodeid, 0);
 579	if (!con) {
 580		srcu_read_unlock(&connections_srcu, idx);
 581		return -ENOENT;
 582	}
 583
 584	spin_lock(&con->addrs_lock);
 585	con->mark = mark;
 586	spin_unlock(&con->addrs_lock);
 587	srcu_read_unlock(&connections_srcu, idx);
 588	return 0;
 589}
 590
 591static void lowcomms_error_report(struct sock *sk)
 592{
 593	struct connection *con = sock2con(sk);
 594	struct inet_sock *inet;
 595
 596	inet = inet_sk(sk);
 597	switch (sk->sk_family) {
 598	case AF_INET:
 599		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 600				   "sending to node %d at %pI4, dport %d, "
 601				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 602				   con->nodeid, &inet->inet_daddr,
 603				   ntohs(inet->inet_dport), sk->sk_err,
 604				   READ_ONCE(sk->sk_err_soft));
 605		break;
 606#if IS_ENABLED(CONFIG_IPV6)
 607	case AF_INET6:
 608		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 609				   "sending to node %d at %pI6c, "
 610				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 611				   con->nodeid, &sk->sk_v6_daddr,
 612				   ntohs(inet->inet_dport), sk->sk_err,
 613				   READ_ONCE(sk->sk_err_soft));
 614		break;
 615#endif
 616	default:
 617		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 618				   "invalid socket family %d set, "
 619				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 620				   sk->sk_family, sk->sk_err,
 621				   READ_ONCE(sk->sk_err_soft));
 622		break;
 623	}
 624
 625	dlm_midcomms_unack_msg_resend(con->nodeid);
 626
 627	listen_sock.sk_error_report(sk);
 628}
 629
 630static void restore_callbacks(struct sock *sk)
 631{
 632#ifdef CONFIG_LOCKDEP
 633	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
 634#endif
 635
 636	sk->sk_user_data = NULL;
 637	sk->sk_data_ready = listen_sock.sk_data_ready;
 638	sk->sk_state_change = listen_sock.sk_state_change;
 639	sk->sk_write_space = listen_sock.sk_write_space;
 640	sk->sk_error_report = listen_sock.sk_error_report;
 641}
 642
 643/* Make a socket active */
 644static void add_sock(struct socket *sock, struct connection *con)
 645{
 646	struct sock *sk = sock->sk;
 647
 648	lock_sock(sk);
 649	con->sock = sock;
 650
 651	sk->sk_user_data = con;
 652	sk->sk_data_ready = lowcomms_data_ready;
 653	sk->sk_write_space = lowcomms_write_space;
 654	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
 655		sk->sk_state_change = lowcomms_state_change;
 656	sk->sk_allocation = GFP_NOFS;
 657	sk->sk_use_task_frag = false;
 658	sk->sk_error_report = lowcomms_error_report;
 659	release_sock(sk);
 660}
 661
 662/* Add the port number to an IPv6 or 4 sockaddr and return the address
 663   length */
 664static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 665			  int *addr_len)
 666{
 667	saddr->ss_family =  dlm_local_addr[0].ss_family;
 668	if (saddr->ss_family == AF_INET) {
 669		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 670		in4_addr->sin_port = cpu_to_be16(port);
 671		*addr_len = sizeof(struct sockaddr_in);
 672		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 673	} else {
 674		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 675		in6_addr->sin6_port = cpu_to_be16(port);
 676		*addr_len = sizeof(struct sockaddr_in6);
 677	}
 678	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 679}
 680
 681static void dlm_page_release(struct kref *kref)
 
 682{
 683	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
 684						  ref);
 685
 686	__free_page(e->page);
 687	dlm_free_writequeue(e);
 688}
 689
 690static void dlm_msg_release(struct kref *kref)
 691{
 692	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
 693
 694	kref_put(&msg->entry->ref, dlm_page_release);
 695	dlm_free_msg(msg);
 696}
 697
 698static void free_entry(struct writequeue_entry *e)
 699{
 700	struct dlm_msg *msg, *tmp;
 701
 702	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
 703		if (msg->orig_msg) {
 704			msg->orig_msg->retransmit = false;
 705			kref_put(&msg->orig_msg->ref, dlm_msg_release);
 706		}
 707
 708		list_del(&msg->list);
 709		kref_put(&msg->ref, dlm_msg_release);
 710	}
 711
 712	list_del(&e->list);
 713	kref_put(&e->ref, dlm_page_release);
 714}
 715
 716static void dlm_close_sock(struct socket **sock)
 
 717{
 718	lock_sock((*sock)->sk);
 719	restore_callbacks((*sock)->sk);
 720	release_sock((*sock)->sk);
 
 
 
 721
 722	sock_release(*sock);
 723	*sock = NULL;
 724}
 725
 726static void allow_connection_io(struct connection *con)
 727{
 728	if (con->othercon)
 729		clear_bit(CF_IO_STOP, &con->othercon->flags);
 730	clear_bit(CF_IO_STOP, &con->flags);
 731}
 732
 733static void stop_connection_io(struct connection *con)
 734{
 735	if (con->othercon)
 736		stop_connection_io(con->othercon);
 
 
 
 737
 738	spin_lock_bh(&con->writequeue_lock);
 739	set_bit(CF_IO_STOP, &con->flags);
 740	spin_unlock_bh(&con->writequeue_lock);
 741
 742	down_write(&con->sock_lock);
 743	if (con->sock) {
 744		lock_sock(con->sock->sk);
 745		restore_callbacks(con->sock->sk);
 746		release_sock(con->sock->sk);
 747	}
 748	up_write(&con->sock_lock);
 749
 750	cancel_work_sync(&con->swork);
 751	cancel_work_sync(&con->rwork);
 752}
 753
 754/* Close a remote connection and tidy up */
 755static void close_connection(struct connection *con, bool and_other)
 756{
 757	struct writequeue_entry *e;
 758
 759	if (con->othercon && and_other)
 760		close_connection(con->othercon, false);
 761
 762	down_write(&con->sock_lock);
 763	if (!con->sock) {
 764		up_write(&con->sock_lock);
 765		return;
 766	}
 767
 768	dlm_close_sock(&con->sock);
 769
 770	/* if we send a writequeue entry only a half way, we drop the
 771	 * whole entry because reconnection and that we not start of the
 772	 * middle of a msg which will confuse the other end.
 773	 *
 774	 * we can always drop messages because retransmits, but what we
 775	 * cannot allow is to transmit half messages which may be processed
 776	 * at the other side.
 777	 *
 778	 * our policy is to start on a clean state when disconnects, we don't
 779	 * know what's send/received on transport layer in this case.
 780	 */
 781	spin_lock_bh(&con->writequeue_lock);
 782	if (!list_empty(&con->writequeue)) {
 783		e = list_first_entry(&con->writequeue, struct writequeue_entry,
 784				     list);
 785		if (e->dirty)
 786			free_entry(e);
 787	}
 788	spin_unlock_bh(&con->writequeue_lock);
 789
 790	con->rx_leftover = 0;
 791	con->retries = 0;
 792	clear_bit(CF_APP_LIMITED, &con->flags);
 793	clear_bit(CF_RECV_PENDING, &con->flags);
 794	clear_bit(CF_SEND_PENDING, &con->flags);
 795	up_write(&con->sock_lock);
 796}
 797
 798static void shutdown_connection(struct connection *con, bool and_other)
 
 
 799{
 800	int ret;
 801
 802	if (con->othercon && and_other)
 803		shutdown_connection(con->othercon, false);
 804
 805	flush_workqueue(io_workqueue);
 806	down_read(&con->sock_lock);
 807	/* nothing to shutdown */
 808	if (!con->sock) {
 809		up_read(&con->sock_lock);
 810		return;
 811	}
 812
 813	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
 814	up_read(&con->sock_lock);
 815	if (ret) {
 816		log_print("Connection %p failed to shutdown: %d will force close",
 817			  con, ret);
 818		goto force_close;
 819	} else {
 820		ret = wait_event_timeout(con->shutdown_wait, !con->sock,
 821					 DLM_SHUTDOWN_WAIT_TIMEOUT);
 822		if (ret == 0) {
 823			log_print("Connection %p shutdown timed out, will force close",
 824				  con);
 825			goto force_close;
 826		}
 827	}
 828
 829	return;
 830
 831force_close:
 832	close_connection(con, false);
 833}
 834
 835static struct processqueue_entry *new_processqueue_entry(int nodeid,
 836							 int buflen)
 
 837{
 838	struct processqueue_entry *pentry;
 839
 840	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
 841	if (!pentry)
 842		return NULL;
 843
 844	pentry->buf = kmalloc(buflen, GFP_NOFS);
 845	if (!pentry->buf) {
 846		kfree(pentry);
 847		return NULL;
 848	}
 
 
 
 
 849
 850	pentry->nodeid = nodeid;
 851	return pentry;
 852}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853
 854static void free_processqueue_entry(struct processqueue_entry *pentry)
 855{
 856	kfree(pentry->buf);
 857	kfree(pentry);
 858}
 859
 860struct dlm_processed_nodes {
 861	int nodeid;
 
 
 
 
 
 
 
 
 
 
 
 
 862
 863	struct list_head list;
 864};
 865
 866static void process_dlm_messages(struct work_struct *work)
 867{
 868	struct processqueue_entry *pentry;
 
 
 
 
 
 
 
 869
 870	spin_lock(&processqueue_lock);
 871	pentry = list_first_entry_or_null(&processqueue,
 872					  struct processqueue_entry, list);
 873	if (WARN_ON_ONCE(!pentry)) {
 874		process_dlm_messages_pending = false;
 875		spin_unlock(&processqueue_lock);
 876		return;
 877	}
 
 878
 879	list_del(&pentry->list);
 880	atomic_dec(&processqueue_count);
 881	spin_unlock(&processqueue_lock);
 
 
 
 
 
 
 
 882
 883	for (;;) {
 884		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
 885					    pentry->buflen);
 886		free_processqueue_entry(pentry);
 887
 888		spin_lock(&processqueue_lock);
 889		pentry = list_first_entry_or_null(&processqueue,
 890						  struct processqueue_entry, list);
 891		if (!pentry) {
 892			process_dlm_messages_pending = false;
 893			spin_unlock(&processqueue_lock);
 894			break;
 895		}
 896
 897		list_del(&pentry->list);
 898		atomic_dec(&processqueue_count);
 899		spin_unlock(&processqueue_lock);
 900	}
 901}
 902
 903/* Data received from remote end */
 904static int receive_from_sock(struct connection *con, int buflen)
 905{
 906	struct processqueue_entry *pentry;
 907	int ret, buflen_real;
 908	struct msghdr msg;
 909	struct kvec iov;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	pentry = new_processqueue_entry(con->nodeid, buflen);
 912	if (!pentry)
 913		return DLM_IO_RESCHED;
 
 
 
 
 
 914
 915	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
 916
 917	/* calculate new buffer parameter regarding last receive and
 918	 * possible leftover bytes
 919	 */
 920	iov.iov_base = pentry->buf + con->rx_leftover;
 921	iov.iov_len = buflen - con->rx_leftover;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923	memset(&msg, 0, sizeof(msg));
 924	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
 925	clear_bit(CF_RECV_INTR, &con->flags);
 926again:
 927	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
 928			     msg.msg_flags);
 929	trace_dlm_recv(con->nodeid, ret);
 930	if (ret == -EAGAIN) {
 931		lock_sock(con->sock->sk);
 932		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
 933			release_sock(con->sock->sk);
 934			goto again;
 935		}
 
 
 
 936
 937		clear_bit(CF_RECV_PENDING, &con->flags);
 938		release_sock(con->sock->sk);
 939		free_processqueue_entry(pentry);
 940		return DLM_IO_END;
 941	} else if (ret == 0) {
 942		/* close will clear CF_RECV_PENDING */
 943		free_processqueue_entry(pentry);
 944		return DLM_IO_EOF;
 945	} else if (ret < 0) {
 946		free_processqueue_entry(pentry);
 947		return ret;
 948	}
 949
 950	/* new buflen according readed bytes and leftover from last receive */
 951	buflen_real = ret + con->rx_leftover;
 952	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
 953					   buflen_real);
 954	if (ret < 0) {
 955		free_processqueue_entry(pentry);
 956		return ret;
 957	}
 958
 959	pentry->buflen = ret;
 
 
 
 960
 961	/* calculate leftover bytes from process and put it into begin of
 962	 * the receive buffer, so next receive we have the full message
 963	 * at the start address of the receive buffer.
 964	 */
 965	con->rx_leftover = buflen_real - ret;
 966	memmove(con->rx_leftover_buf, pentry->buf + ret,
 967		con->rx_leftover);
 968
 969	spin_lock(&processqueue_lock);
 970	ret = atomic_inc_return(&processqueue_count);
 971	list_add_tail(&pentry->list, &processqueue);
 972	if (!process_dlm_messages_pending) {
 973		process_dlm_messages_pending = true;
 974		queue_work(process_workqueue, &process_work);
 975	}
 976	spin_unlock(&processqueue_lock);
 
 
 977
 978	if (ret > DLM_MAX_PROCESS_BUFFERS)
 979		return DLM_IO_FLUSH;
 980
 981	return DLM_IO_SUCCESS;
 982}
 983
 984/* Listening socket is busy, accept a connection */
 985static int accept_from_sock(void)
 986{
 
 987	struct sockaddr_storage peeraddr;
 988	int len, idx, result, nodeid;
 
 
 989	struct connection *newcon;
 990	struct socket *newsock;
 991	unsigned int mark;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
 994	if (result == -EAGAIN)
 995		return DLM_IO_END;
 996	else if (result < 0)
 997		goto accept_err;
 998
 999	/* Get the connected socket's peer */
1000	memset(&peeraddr, 0, sizeof(peeraddr));
1001	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
1002	if (len < 0) {
1003		result = -ECONNABORTED;
1004		goto accept_err;
1005	}
1006
1007	/* Get the new node's NODEID */
1008	make_sockaddr(&peeraddr, 0, &len);
1009	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1010		switch (peeraddr.ss_family) {
1011		case AF_INET: {
1012			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1013
1014			log_print("connect from non cluster IPv4 node %pI4",
1015				  &sin->sin_addr);
1016			break;
1017		}
1018#if IS_ENABLED(CONFIG_IPV6)
1019		case AF_INET6: {
1020			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1021
1022			log_print("connect from non cluster IPv6 node %pI6c",
1023				  &sin6->sin6_addr);
1024			break;
1025		}
1026#endif
1027		default:
1028			log_print("invalid family from non cluster node");
1029			break;
1030		}
1031
1032		sock_release(newsock);
 
1033		return -1;
1034	}
1035
1036	log_print("got connection from %d", nodeid);
1037
1038	/*  Check to see if we already have a connection to this node. This
1039	 *  could happen if the two nodes initiate a connection at roughly
1040	 *  the same time and the connections cross on the wire.
1041	 *  In this case we store the incoming one in "othercon"
1042	 */
1043	idx = srcu_read_lock(&connections_srcu);
1044	newcon = nodeid2con(nodeid, 0);
1045	if (WARN_ON_ONCE(!newcon)) {
1046		srcu_read_unlock(&connections_srcu, idx);
1047		result = -ENOENT;
1048		goto accept_err;
1049	}
1050
1051	sock_set_mark(newsock->sk, mark);
1052
1053	down_write(&newcon->sock_lock);
1054	if (newcon->sock) {
1055		struct connection *othercon = newcon->othercon;
1056
1057		if (!othercon) {
1058			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1059			if (!othercon) {
1060				log_print("failed to allocate incoming socket");
1061				up_write(&newcon->sock_lock);
1062				srcu_read_unlock(&connections_srcu, idx);
1063				result = -ENOMEM;
1064				goto accept_err;
1065			}
1066
1067			dlm_con_init(othercon, nodeid);
1068			lockdep_set_subclass(&othercon->sock_lock, 1);
 
 
 
 
 
1069			newcon->othercon = othercon;
1070			set_bit(CF_IS_OTHERCON, &othercon->flags);
1071		} else {
1072			/* close other sock con if we have something new */
1073			close_connection(othercon, false);
 
 
 
 
 
 
1074		}
1075
1076		down_write(&othercon->sock_lock);
1077		add_sock(newsock, othercon);
1078
1079		/* check if we receved something while adding */
1080		lock_sock(othercon->sock->sk);
1081		lowcomms_queue_rwork(othercon);
1082		release_sock(othercon->sock->sk);
1083		up_write(&othercon->sock_lock);
1084	}
1085	else {
1086		/* accept copies the sk after we've saved the callbacks, so we
1087		   don't want to save them a second time or comm errors will
1088		   result in calling sk_error_report recursively. */
1089		add_sock(newsock, newcon);
 
 
 
 
1090
1091		/* check if we receved something while adding */
1092		lock_sock(newcon->sock->sk);
1093		lowcomms_queue_rwork(newcon);
1094		release_sock(newcon->sock->sk);
1095	}
1096	up_write(&newcon->sock_lock);
1097	srcu_read_unlock(&connections_srcu, idx);
 
1098
1099	return DLM_IO_SUCCESS;
1100
1101accept_err:
1102	if (newsock)
1103		sock_release(newsock);
1104
 
 
1105	return result;
1106}
1107
1108/*
1109 * writequeue_entry_complete - try to delete and free write queue entry
1110 * @e: write queue entry to try to delete
1111 * @completed: bytes completed
1112 *
1113 * writequeue_lock must be held.
1114 */
1115static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1116{
1117	e->offset += completed;
1118	e->len -= completed;
1119	/* signal that page was half way transmitted */
1120	e->dirty = true;
1121
1122	if (e->len == 0 && e->users == 0)
1123		free_entry(e);
1124}
1125
1126/*
1127 * sctp_bind_addrs - bind a SCTP socket to all our addresses
 
 
1128 */
1129static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1130{
1131	struct sockaddr_storage localaddr;
1132	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1133	int i, addr_len, result = 0;
 
 
 
 
 
 
 
 
 
 
 
1134
1135	for (i = 0; i < dlm_local_count; i++) {
1136		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1137		make_sockaddr(&localaddr, port, &addr_len);
1138
1139		if (!i)
1140			result = kernel_bind(sock, addr, addr_len);
1141		else
1142			result = sock_bind_add(sock->sk, addr, addr_len);
1143
1144		if (result < 0) {
1145			log_print("Can't bind to %d addr number %d, %d.\n",
1146				  port, i + 1, result);
1147			break;
1148		}
1149	}
1150	return result;
1151}
1152
1153/* Get local addresses */
1154static void init_local(void)
1155{
1156	struct sockaddr_storage sas;
1157	int i;
1158
1159	dlm_local_count = 0;
1160	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1161		if (dlm_our_addr(&sas, i))
1162			break;
 
 
 
 
 
 
 
 
 
1163
1164		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1165	}
1166}
 
1167
1168static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1169{
1170	struct writequeue_entry *entry;
 
 
 
 
 
 
 
 
 
1171
1172	entry = dlm_allocate_writequeue();
1173	if (!entry)
1174		return NULL;
 
1175
1176	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1177	if (!entry->page) {
1178		dlm_free_writequeue(entry);
1179		return NULL;
1180	}
 
 
 
 
1181
1182	entry->offset = 0;
1183	entry->len = 0;
1184	entry->end = 0;
1185	entry->dirty = false;
1186	entry->con = con;
1187	entry->users = 1;
1188	kref_init(&entry->ref);
1189	return entry;
1190}
1191
1192static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1193					     char **ppc, void (*cb)(void *data),
1194					     void *data)
1195{
1196	struct writequeue_entry *e;
 
 
 
 
1197
1198	spin_lock_bh(&con->writequeue_lock);
1199	if (!list_empty(&con->writequeue)) {
1200		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1201		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1202			kref_get(&e->ref);
1203
1204			*ppc = page_address(e->page) + e->end;
1205			if (cb)
1206				cb(data);
1207
1208			e->end += len;
1209			e->users++;
1210			goto out;
1211		}
1212	}
1213
1214	e = new_writequeue_entry(con);
1215	if (!e)
1216		goto out;
1217
1218	kref_get(&e->ref);
1219	*ppc = page_address(e->page);
1220	e->end += len;
1221	if (cb)
1222		cb(data);
1223
1224	list_add_tail(&e->list, &con->writequeue);
 
 
 
 
1225
1226out:
1227	spin_unlock_bh(&con->writequeue_lock);
1228	return e;
1229};
 
 
 
 
1230
1231static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1232						gfp_t allocation, char **ppc,
1233						void (*cb)(void *data),
1234						void *data)
1235{
1236	struct writequeue_entry *e;
1237	struct dlm_msg *msg;
1238
1239	msg = dlm_allocate_msg(allocation);
1240	if (!msg)
1241		return NULL;
1242
1243	kref_init(&msg->ref);
1244
1245	e = new_wq_entry(con, len, ppc, cb, data);
1246	if (!e) {
1247		dlm_free_msg(msg);
1248		return NULL;
1249	}
1250
1251	msg->retransmit = false;
1252	msg->orig_msg = NULL;
1253	msg->ppc = *ppc;
1254	msg->len = len;
1255	msg->entry = e;
1256
1257	return msg;
1258}
1259
1260/* avoid false positive for nodes_srcu, unlock happens in
1261 * dlm_lowcomms_commit_msg which is a must call if success
1262 */
1263#ifndef __CHECKER__
1264struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1265				     char **ppc, void (*cb)(void *data),
1266				     void *data)
1267{
1268	struct connection *con;
1269	struct dlm_msg *msg;
1270	int idx;
1271
1272	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1273	    len < sizeof(struct dlm_header)) {
1274		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1275		log_print("failed to allocate a buffer of size %d", len);
1276		WARN_ON_ONCE(1);
1277		return NULL;
1278	}
1279
1280	idx = srcu_read_lock(&connections_srcu);
1281	con = nodeid2con(nodeid, 0);
1282	if (WARN_ON_ONCE(!con)) {
1283		srcu_read_unlock(&connections_srcu, idx);
1284		return NULL;
 
1285	}
1286
1287	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1288	if (!msg) {
1289		srcu_read_unlock(&connections_srcu, idx);
1290		return NULL;
 
 
 
 
1291	}
1292
1293	/* for dlm_lowcomms_commit_msg() */
1294	kref_get(&msg->ref);
1295	/* we assume if successful commit must called */
1296	msg->idx = idx;
1297	return msg;
1298}
1299#endif
1300
1301static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1302{
1303	struct writequeue_entry *e = msg->entry;
1304	struct connection *con = e->con;
1305	int users;
1306
1307	spin_lock_bh(&con->writequeue_lock);
1308	kref_get(&msg->ref);
1309	list_add(&msg->list, &e->msgs);
1310
1311	users = --e->users;
1312	if (users)
1313		goto out;
1314
1315	e->len = DLM_WQ_LENGTH_BYTES(e);
1316
1317	lowcomms_queue_swork(con);
1318
1319out:
1320	spin_unlock_bh(&con->writequeue_lock);
1321	return;
1322}
1323
1324/* avoid false positive for nodes_srcu, lock was happen in
1325 * dlm_lowcomms_new_msg
1326 */
1327#ifndef __CHECKER__
1328void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1329{
1330	_dlm_lowcomms_commit_msg(msg);
1331	srcu_read_unlock(&connections_srcu, msg->idx);
1332	/* because dlm_lowcomms_new_msg() */
1333	kref_put(&msg->ref, dlm_msg_release);
1334}
1335#endif
1336
1337void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1338{
1339	kref_put(&msg->ref, dlm_msg_release);
1340}
1341
1342/* does not held connections_srcu, usage lowcomms_error_report only */
1343int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1344{
1345	struct dlm_msg *msg_resend;
1346	char *ppc;
 
 
1347
1348	if (msg->retransmit)
1349		return 1;
 
1350
1351	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1352					      GFP_ATOMIC, &ppc, NULL, NULL);
1353	if (!msg_resend)
1354		return -ENOMEM;
1355
1356	msg->retransmit = true;
1357	kref_get(&msg->ref);
1358	msg_resend->orig_msg = msg;
1359
1360	memcpy(ppc, msg->ppc, msg->len);
1361	_dlm_lowcomms_commit_msg(msg_resend);
1362	dlm_lowcomms_put_msg(msg_resend);
1363
1364	return 0;
1365}
1366
1367/* Send a message */
1368static int send_to_sock(struct connection *con)
1369{
1370	struct writequeue_entry *e;
1371	struct bio_vec bvec;
1372	struct msghdr msg = {
1373		.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1374	};
1375	int len, offset, ret;
1376
1377	spin_lock_bh(&con->writequeue_lock);
1378	e = con_next_wq(con);
1379	if (!e) {
1380		clear_bit(CF_SEND_PENDING, &con->flags);
1381		spin_unlock_bh(&con->writequeue_lock);
1382		return DLM_IO_END;
1383	}
1384
1385	len = e->len;
1386	offset = e->offset;
1387	WARN_ON_ONCE(len == 0 && e->users == 0);
1388	spin_unlock_bh(&con->writequeue_lock);
1389
1390	bvec_set_page(&bvec, e->page, len, offset);
1391	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1392	ret = sock_sendmsg(con->sock, &msg);
1393	trace_dlm_send(con->nodeid, ret);
1394	if (ret == -EAGAIN || ret == 0) {
1395		lock_sock(con->sock->sk);
1396		spin_lock_bh(&con->writequeue_lock);
1397		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1398		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1399			/* Notify TCP that we're limited by the
1400			 * application window size.
1401			 */
1402			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1403			con->sock->sk->sk_write_pending++;
1404
1405			clear_bit(CF_SEND_PENDING, &con->flags);
1406			spin_unlock_bh(&con->writequeue_lock);
1407			release_sock(con->sock->sk);
1408
1409			/* wait for write_space() event */
1410			return DLM_IO_END;
1411		}
1412		spin_unlock_bh(&con->writequeue_lock);
1413		release_sock(con->sock->sk);
1414
1415		return DLM_IO_RESCHED;
1416	} else if (ret < 0) {
1417		return ret;
1418	}
1419
1420	spin_lock_bh(&con->writequeue_lock);
1421	writequeue_entry_complete(e, ret);
1422	spin_unlock_bh(&con->writequeue_lock);
1423
1424	return DLM_IO_SUCCESS;
1425}
1426
1427static void clean_one_writequeue(struct connection *con)
 
1428{
1429	struct writequeue_entry *e, *safe;
 
 
 
 
 
 
1430
1431	spin_lock_bh(&con->writequeue_lock);
1432	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1433		free_entry(e);
 
 
1434	}
1435	spin_unlock_bh(&con->writequeue_lock);
1436}
1437
1438static void connection_release(struct rcu_head *rcu)
1439{
1440	struct connection *con = container_of(rcu, struct connection, rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442	WARN_ON_ONCE(!list_empty(&con->writequeue));
1443	WARN_ON_ONCE(con->sock);
1444	kfree(con);
1445}
1446
1447/* Called from recovery when it knows that a node has
1448   left the cluster */
1449int dlm_lowcomms_close(int nodeid)
1450{
1451	struct connection *con;
1452	int idx;
 
 
 
 
 
 
 
1453
1454	log_print("closing connection to node %d", nodeid);
1455
1456	idx = srcu_read_lock(&connections_srcu);
1457	con = nodeid2con(nodeid, 0);
1458	if (WARN_ON_ONCE(!con)) {
1459		srcu_read_unlock(&connections_srcu, idx);
1460		return -ENOENT;
1461	}
1462
1463	stop_connection_io(con);
1464	log_print("io handling for node: %d stopped", nodeid);
1465	close_connection(con, true);
 
 
 
 
 
 
 
 
 
1466
1467	spin_lock(&connections_lock);
1468	hlist_del_rcu(&con->list);
1469	spin_unlock(&connections_lock);
1470
1471	clean_one_writequeue(con);
1472	call_srcu(&connections_srcu, &con->rcu, connection_release);
1473	if (con->othercon) {
1474		clean_one_writequeue(con->othercon);
1475		call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1476	}
1477	srcu_read_unlock(&connections_srcu, idx);
1478
1479	/* for debugging we print when we are done to compare with other
1480	 * messages in between. This function need to be correctly synchronized
1481	 * with io handling
1482	 */
1483	log_print("closing connection to node %d done", nodeid);
1484
1485	return 0;
1486}
 
 
 
 
1487
1488/* Receive worker function */
1489static void process_recv_sockets(struct work_struct *work)
1490{
1491	struct connection *con = container_of(work, struct connection, rwork);
1492	int ret, buflen;
1493
1494	down_read(&con->sock_lock);
1495	if (!con->sock) {
1496		up_read(&con->sock_lock);
1497		return;
1498	}
1499
1500	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1501	do {
1502		ret = receive_from_sock(con, buflen);
1503	} while (ret == DLM_IO_SUCCESS);
1504	up_read(&con->sock_lock);
1505
1506	switch (ret) {
1507	case DLM_IO_END:
1508		/* CF_RECV_PENDING cleared */
1509		break;
1510	case DLM_IO_EOF:
1511		close_connection(con, false);
1512		wake_up(&con->shutdown_wait);
1513		/* CF_RECV_PENDING cleared */
1514		break;
1515	case DLM_IO_FLUSH:
1516		flush_workqueue(process_workqueue);
1517		fallthrough;
1518	case DLM_IO_RESCHED:
1519		cond_resched();
1520		queue_work(io_workqueue, &con->rwork);
1521		/* CF_RECV_PENDING not cleared */
1522		break;
1523	default:
1524		if (ret < 0) {
1525			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1526				close_connection(con, false);
1527			} else {
1528				spin_lock_bh(&con->writequeue_lock);
1529				lowcomms_queue_swork(con);
1530				spin_unlock_bh(&con->writequeue_lock);
1531			}
1532
1533			/* CF_RECV_PENDING cleared for othercon
1534			 * we trigger send queue if not already done
1535			 * and process_send_sockets will handle it
1536			 */
1537			break;
1538		}
1539
1540		WARN_ON_ONCE(1);
1541		break;
1542	}
 
 
1543}
1544
1545static void process_listen_recv_socket(struct work_struct *work)
1546{
1547	int ret;
 
 
1548
1549	if (WARN_ON_ONCE(!listen_con.sock))
1550		return;
1551
1552	do {
1553		ret = accept_from_sock();
1554	} while (ret == DLM_IO_SUCCESS);
1555
1556	if (ret < 0)
1557		log_print("critical error accepting connection: %d", ret);
1558}
1559
1560static int dlm_connect(struct connection *con)
1561{
1562	struct sockaddr_storage addr;
1563	int result, addr_len;
1564	struct socket *sock;
1565	unsigned int mark;
1566
1567	memset(&addr, 0, sizeof(addr));
1568	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1569				dlm_proto_ops->try_new_addr, &mark);
1570	if (result < 0) {
1571		log_print("no address for nodeid %d", con->nodeid);
1572		return result;
1573	}
1574
1575	/* Create a socket to communicate with */
1576	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1577				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1578	if (result < 0)
1579		return result;
1580
1581	sock_set_mark(sock->sk, mark);
1582	dlm_proto_ops->sockopts(sock);
1583
1584	result = dlm_proto_ops->bind(sock);
1585	if (result < 0) {
1586		sock_release(sock);
1587		return result;
1588	}
1589
1590	add_sock(sock, con);
1591
1592	log_print_ratelimited("connecting to %d", con->nodeid);
1593	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1594	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1595					addr_len);
1596	switch (result) {
1597	case -EINPROGRESS:
1598		/* not an error */
1599		fallthrough;
1600	case 0:
1601		break;
1602	default:
1603		if (result < 0)
1604			dlm_close_sock(&con->sock);
1605
1606		break;
1607	}
1608
1609	return result;
1610}
1611
1612/* Send worker function */
1613static void process_send_sockets(struct work_struct *work)
 
 
1614{
1615	struct connection *con = container_of(work, struct connection, swork);
1616	int ret;
1617
1618	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
 
 
1619
1620	down_read(&con->sock_lock);
1621	if (!con->sock) {
1622		up_read(&con->sock_lock);
1623		down_write(&con->sock_lock);
1624		if (!con->sock) {
1625			ret = dlm_connect(con);
1626			switch (ret) {
1627			case 0:
1628				break;
1629			case -EINPROGRESS:
1630				/* avoid spamming resched on connection
1631				 * we might can switch to a state_change
1632				 * event based mechanism if established
1633				 */
1634				msleep(100);
1635				break;
1636			default:
1637				/* CF_SEND_PENDING not cleared */
1638				up_write(&con->sock_lock);
1639				log_print("connect to node %d try %d error %d",
1640					  con->nodeid, con->retries++, ret);
1641				msleep(1000);
1642				/* For now we try forever to reconnect. In
1643				 * future we should send a event to cluster
1644				 * manager to fence itself after certain amount
1645				 * of retries.
1646				 */
1647				queue_work(io_workqueue, &con->swork);
1648				return;
1649			}
1650		}
1651		downgrade_write(&con->sock_lock);
1652	}
1653
1654	do {
1655		ret = send_to_sock(con);
1656	} while (ret == DLM_IO_SUCCESS);
1657	up_read(&con->sock_lock);
1658
1659	switch (ret) {
1660	case DLM_IO_END:
1661		/* CF_SEND_PENDING cleared */
1662		break;
1663	case DLM_IO_RESCHED:
1664		/* CF_SEND_PENDING not cleared */
1665		cond_resched();
1666		queue_work(io_workqueue, &con->swork);
1667		break;
1668	default:
1669		if (ret < 0) {
1670			close_connection(con, false);
1671
1672			/* CF_SEND_PENDING cleared */
1673			spin_lock_bh(&con->writequeue_lock);
1674			lowcomms_queue_swork(con);
1675			spin_unlock_bh(&con->writequeue_lock);
1676			break;
1677		}
1678
1679		WARN_ON_ONCE(1);
1680		break;
1681	}
1682}
1683
1684static void work_stop(void)
1685{
1686	if (io_workqueue) {
1687		destroy_workqueue(io_workqueue);
1688		io_workqueue = NULL;
1689	}
1690
1691	if (process_workqueue) {
1692		destroy_workqueue(process_workqueue);
1693		process_workqueue = NULL;
1694	}
1695}
1696
1697static int work_start(void)
1698{
1699	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1700				       WQ_UNBOUND, 0);
1701	if (!io_workqueue) {
1702		log_print("can't start dlm_io");
1703		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704	}
1705
1706	/* ordered dlm message process queue,
1707	 * should be converted to a tasklet
1708	 */
1709	process_workqueue = alloc_ordered_workqueue("dlm_process",
1710						    WQ_HIGHPRI | WQ_MEM_RECLAIM);
1711	if (!process_workqueue) {
1712		log_print("can't start dlm_process");
1713		destroy_workqueue(io_workqueue);
1714		io_workqueue = NULL;
1715		return -ENOMEM;
1716	}
1717
1718	return 0;
1719}
1720
1721void dlm_lowcomms_shutdown(void)
1722{
1723	struct connection *con;
1724	int i, idx;
 
1725
1726	/* stop lowcomms_listen_data_ready calls */
1727	lock_sock(listen_con.sock->sk);
1728	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1729	release_sock(listen_con.sock->sk);
 
 
1730
1731	cancel_work_sync(&listen_con.rwork);
1732	dlm_close_sock(&listen_con.sock);
1733
1734	idx = srcu_read_lock(&connections_srcu);
1735	for (i = 0; i < CONN_HASH_SIZE; i++) {
1736		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1737			shutdown_connection(con, true);
1738			stop_connection_io(con);
1739			flush_workqueue(process_workqueue);
1740			close_connection(con, true);
1741
1742			clean_one_writequeue(con);
1743			if (con->othercon)
1744				clean_one_writequeue(con->othercon);
1745			allow_connection_io(con);
1746		}
1747	}
1748	srcu_read_unlock(&connections_srcu, idx);
1749}
1750
1751void dlm_lowcomms_stop(void)
1752{
1753	work_stop();
1754	dlm_proto_ops = NULL;
1755}
1756
1757static int dlm_listen_for_all(void)
 
1758{
1759	struct socket *sock;
1760	int result;
 
 
 
1761
1762	log_print("Using %s for communications",
1763		  dlm_proto_ops->name);
 
1764
1765	result = dlm_proto_ops->listen_validate();
1766	if (result < 0)
1767		return result;
 
 
 
1768
1769	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1770				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1771	if (result < 0) {
1772		log_print("Can't create comms socket: %d", result);
1773		return result;
1774	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775
1776	sock_set_mark(sock->sk, dlm_config.ci_mark);
1777	dlm_proto_ops->listen_sockopts(sock);
 
 
 
1778
1779	result = dlm_proto_ops->listen_bind(sock);
1780	if (result < 0)
1781		goto out;
1782
1783	lock_sock(sock->sk);
1784	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1785	listen_sock.sk_write_space = sock->sk->sk_write_space;
1786	listen_sock.sk_error_report = sock->sk->sk_error_report;
1787	listen_sock.sk_state_change = sock->sk->sk_state_change;
1788
1789	listen_con.sock = sock;
1790
1791	sock->sk->sk_allocation = GFP_NOFS;
1792	sock->sk->sk_use_task_frag = false;
1793	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1794	release_sock(sock->sk);
1795
1796	result = sock->ops->listen(sock, 128);
1797	if (result < 0) {
1798		dlm_close_sock(&listen_con.sock);
1799		return result;
1800	}
 
 
 
 
1801
1802	return 0;
 
 
 
 
1803
1804out:
1805	sock_release(sock);
1806	return result;
 
 
1807}
1808
1809static int dlm_tcp_bind(struct socket *sock)
1810{
1811	struct sockaddr_storage src_addr;
1812	int result, addr_len;
1813
1814	/* Bind to our cluster-known address connecting to avoid
1815	 * routing problems.
1816	 */
1817	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1818	make_sockaddr(&src_addr, 0, &addr_len);
1819
1820	result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1821			     addr_len);
1822	if (result < 0) {
1823		/* This *may* not indicate a critical error */
1824		log_print("could not bind for connect: %d", result);
1825	}
1826
1827	return 0;
1828}
1829
1830static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1831			   struct sockaddr *addr, int addr_len)
 
1832{
1833	return kernel_connect(sock, addr, addr_len, O_NONBLOCK);
1834}
1835
1836static int dlm_tcp_listen_validate(void)
1837{
1838	/* We don't support multi-homed hosts */
1839	if (dlm_local_count > 1) {
1840		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1841		return -EINVAL;
 
 
 
 
 
 
1842	}
1843
1844	return 0;
1845}
1846
1847static void dlm_tcp_sockopts(struct socket *sock)
 
1848{
1849	/* Turn off Nagle's algorithm */
1850	tcp_sock_set_nodelay(sock->sk);
1851}
1852
1853static void dlm_tcp_listen_sockopts(struct socket *sock)
1854{
1855	dlm_tcp_sockopts(sock);
1856	sock_set_reuseaddr(sock->sk);
1857}
1858
1859static int dlm_tcp_listen_bind(struct socket *sock)
 
1860{
1861	int addr_len;
1862
1863	/* Bind to our port */
1864	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1865	return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1866			   addr_len);
 
 
1867}
1868
1869static const struct dlm_proto_ops dlm_tcp_ops = {
1870	.name = "TCP",
1871	.proto = IPPROTO_TCP,
1872	.connect = dlm_tcp_connect,
1873	.sockopts = dlm_tcp_sockopts,
1874	.bind = dlm_tcp_bind,
1875	.listen_validate = dlm_tcp_listen_validate,
1876	.listen_sockopts = dlm_tcp_listen_sockopts,
1877	.listen_bind = dlm_tcp_listen_bind,
1878};
1879
1880static int dlm_sctp_bind(struct socket *sock)
 
1881{
1882	return sctp_bind_addrs(sock, 0);
1883}
1884
1885static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1886			    struct sockaddr *addr, int addr_len)
1887{
1888	int ret;
1889
1890	/*
1891	 * Make kernel_connect() function return in specified time,
1892	 * since O_NONBLOCK argument in connect() function does not work here,
1893	 * then, we should restore the default value of this attribute.
1894	 */
1895	sock_set_sndtimeo(sock->sk, 5);
1896	ret = kernel_connect(sock, addr, addr_len, 0);
1897	sock_set_sndtimeo(sock->sk, 0);
1898	return ret;
1899}
1900
1901static int dlm_sctp_listen_validate(void)
1902{
1903	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1904		log_print("SCTP is not enabled by this kernel");
1905		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
1906	}
1907
1908	request_module("sctp");
1909	return 0;
1910}
1911
1912static int dlm_sctp_bind_listen(struct socket *sock)
1913{
1914	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
 
 
1915}
1916
1917static void dlm_sctp_sockopts(struct socket *sock)
1918{
1919	/* Turn off Nagle's algorithm */
1920	sctp_sock_set_nodelay(sock->sk);
1921	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
 
 
1922}
1923
1924static const struct dlm_proto_ops dlm_sctp_ops = {
1925	.name = "SCTP",
1926	.proto = IPPROTO_SCTP,
1927	.try_new_addr = true,
1928	.connect = dlm_sctp_connect,
1929	.sockopts = dlm_sctp_sockopts,
1930	.bind = dlm_sctp_bind,
1931	.listen_validate = dlm_sctp_listen_validate,
1932	.listen_sockopts = dlm_sctp_sockopts,
1933	.listen_bind = dlm_sctp_bind_listen,
1934};
 
 
 
 
 
 
 
 
 
1935
1936int dlm_lowcomms_start(void)
1937{
1938	int error;
 
 
 
 
 
1939
1940	init_local();
1941	if (!dlm_local_count) {
1942		error = -ENOTCONN;
1943		log_print("no local IP address has been set");
1944		goto fail;
1945	}
1946
 
 
 
 
 
 
 
1947	error = work_start();
1948	if (error)
1949		goto fail;
 
 
1950
1951	/* Start listening */
1952	switch (dlm_config.ci_protocol) {
1953	case DLM_PROTO_TCP:
1954		dlm_proto_ops = &dlm_tcp_ops;
1955		break;
1956	case DLM_PROTO_SCTP:
1957		dlm_proto_ops = &dlm_sctp_ops;
1958		break;
1959	default:
1960		log_print("Invalid protocol identifier %d set",
1961			  dlm_config.ci_protocol);
1962		error = -EINVAL;
1963		goto fail_proto_ops;
1964	}
1965
1966	error = dlm_listen_for_all();
1967	if (error)
1968		goto fail_listen;
1969
1970	return 0;
1971
1972fail_listen:
1973	dlm_proto_ops = NULL;
1974fail_proto_ops:
1975	work_stop();
 
 
 
 
 
1976fail:
1977	return error;
1978}
1979
1980void dlm_lowcomms_init(void)
1981{
1982	int i;
1983
1984	for (i = 0; i < CONN_HASH_SIZE; i++)
1985		INIT_HLIST_HEAD(&connection_hash[i]);
1986
1987	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1988}
1989
1990void dlm_lowcomms_exit(void)
1991{
1992	struct connection *con;
1993	int i, idx;
1994
1995	idx = srcu_read_lock(&connections_srcu);
1996	for (i = 0; i < CONN_HASH_SIZE; i++) {
1997		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1998			spin_lock(&connections_lock);
1999			hlist_del_rcu(&con->list);
2000			spin_unlock(&connections_lock);
2001
2002			if (con->othercon)
2003				call_srcu(&connections_srcu, &con->othercon->rcu,
2004					  connection_release);
2005			call_srcu(&connections_srcu, &con->rcu, connection_release);
2006		}
2007	}
2008	srcu_read_unlock(&connections_srcu, idx);
2009}