Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/bio.h>
 20#include <linux/slab.h>
 21#include <linux/pagemap.h>
 22#include <linux/highmem.h>
 
 
 
 23#include "ctree.h"
 24#include "disk-io.h"
 25#include "transaction.h"
 26#include "print-tree.h"
 
 
 
 
 27
 28#define __MAX_CSUM_ITEMS(r, size) ((((BTRFS_LEAF_DATA_SIZE(r) - \
 29				   sizeof(struct btrfs_item) * 2) / \
 30				  size) - 1))
 31
 32#define MAX_CSUM_ITEMS(r, size) (min(__MAX_CSUM_ITEMS(r, size), PAGE_CACHE_SIZE))
 
 33
 34#define MAX_ORDERED_SUM_BYTES(r) ((PAGE_SIZE - \
 35				   sizeof(struct btrfs_ordered_sum)) / \
 36				   sizeof(struct btrfs_sector_sum) * \
 37				   (r)->sectorsize - (r)->sectorsize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38
 39int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40			     struct btrfs_root *root,
 41			     u64 objectid, u64 pos,
 42			     u64 disk_offset, u64 disk_num_bytes,
 43			     u64 num_bytes, u64 offset, u64 ram_bytes,
 44			     u8 compression, u8 encryption, u16 other_encoding)
 45{
 46	int ret = 0;
 47	struct btrfs_file_extent_item *item;
 48	struct btrfs_key file_key;
 49	struct btrfs_path *path;
 50	struct extent_buffer *leaf;
 51
 52	path = btrfs_alloc_path();
 53	if (!path)
 54		return -ENOMEM;
 55	file_key.objectid = objectid;
 56	file_key.offset = pos;
 57	btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
 58
 59	path->leave_spinning = 1;
 60	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 61				      sizeof(*item));
 62	if (ret < 0)
 63		goto out;
 64	BUG_ON(ret); /* Can't happen */
 65	leaf = path->nodes[0];
 66	item = btrfs_item_ptr(leaf, path->slots[0],
 67			      struct btrfs_file_extent_item);
 68	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 69	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 70	btrfs_set_file_extent_offset(leaf, item, offset);
 71	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 72	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 73	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 74	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 75	btrfs_set_file_extent_compression(leaf, item, compression);
 76	btrfs_set_file_extent_encryption(leaf, item, encryption);
 77	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 78
 79	btrfs_mark_buffer_dirty(leaf);
 80out:
 81	btrfs_free_path(path);
 82	return ret;
 83}
 84
 85struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 86					  struct btrfs_root *root,
 87					  struct btrfs_path *path,
 88					  u64 bytenr, int cow)
 
 89{
 
 90	int ret;
 91	struct btrfs_key file_key;
 92	struct btrfs_key found_key;
 93	struct btrfs_csum_item *item;
 94	struct extent_buffer *leaf;
 95	u64 csum_offset = 0;
 96	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 97	int csums_in_item;
 98
 99	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
100	file_key.offset = bytenr;
101	btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
102	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
103	if (ret < 0)
104		goto fail;
105	leaf = path->nodes[0];
106	if (ret > 0) {
107		ret = 1;
108		if (path->slots[0] == 0)
109			goto fail;
110		path->slots[0]--;
111		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
112		if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY)
113			goto fail;
114
115		csum_offset = (bytenr - found_key.offset) >>
116				root->fs_info->sb->s_blocksize_bits;
117		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
118		csums_in_item /= csum_size;
119
120		if (csum_offset >= csums_in_item) {
121			ret = -EFBIG;
122			goto fail;
 
 
123		}
124	}
125	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
126	item = (struct btrfs_csum_item *)((unsigned char *)item +
127					  csum_offset * csum_size);
128	return item;
129fail:
130	if (ret > 0)
131		ret = -ENOENT;
132	return ERR_PTR(ret);
133}
134
135
136int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
137			     struct btrfs_root *root,
138			     struct btrfs_path *path, u64 objectid,
139			     u64 offset, int mod)
140{
141	int ret;
142	struct btrfs_key file_key;
143	int ins_len = mod < 0 ? -1 : 0;
144	int cow = mod != 0;
145
146	file_key.objectid = objectid;
147	file_key.offset = offset;
148	btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
149	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
150	return ret;
151}
152
 
 
153
154static int __btrfs_lookup_bio_sums(struct btrfs_root *root,
155				   struct inode *inode, struct bio *bio,
156				   u64 logical_offset, u32 *dst, int dio)
157{
158	u32 sum;
159	struct bio_vec *bvec = bio->bi_io_vec;
160	int bio_index = 0;
161	u64 offset = 0;
162	u64 item_start_offset = 0;
163	u64 item_last_offset = 0;
164	u64 disk_bytenr;
165	u32 diff;
166	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 
 
 
 
 
 
167	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168	struct btrfs_path *path;
169	struct btrfs_csum_item *item = NULL;
170	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 
 
 
 
 
 
 
 
 
171
 
 
 
 
 
 
 
 
 
 
 
 
 
172	path = btrfs_alloc_path();
173	if (!path)
174		return -ENOMEM;
175	if (bio->bi_size > PAGE_CACHE_SIZE * 8)
176		path->reada = 2;
177
178	WARN_ON(bio->bi_vcnt <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
180	/*
181	 * the free space stuff is only read when it hasn't been
182	 * updated in the current transaction.  So, we can safely
183	 * read from the commit root and sidestep a nasty deadlock
184	 * between reading the free space cache and updating the csum tree.
185	 */
186	if (btrfs_is_free_space_inode(root, inode)) {
187		path->search_commit_root = 1;
188		path->skip_locking = 1;
189	}
190
191	disk_bytenr = (u64)bio->bi_sector << 9;
192	if (dio)
193		offset = logical_offset;
194	while (bio_index < bio->bi_vcnt) {
195		if (!dio)
196			offset = page_offset(bvec->bv_page) + bvec->bv_offset;
197		ret = btrfs_find_ordered_sum(inode, offset, disk_bytenr, &sum);
198		if (ret == 0)
199			goto found;
200
201		if (!item || disk_bytenr < item_start_offset ||
202		    disk_bytenr >= item_last_offset) {
203			struct btrfs_key found_key;
204			u32 item_size;
205
206			if (item)
207				btrfs_release_path(path);
208			item = btrfs_lookup_csum(NULL, root->fs_info->csum_root,
209						 path, disk_bytenr, 0);
210			if (IS_ERR(item)) {
211				ret = PTR_ERR(item);
212				if (ret == -ENOENT || ret == -EFBIG)
213					ret = 0;
214				sum = 0;
215				if (BTRFS_I(inode)->root->root_key.objectid ==
216				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
217					set_extent_bits(io_tree, offset,
218						offset + bvec->bv_len - 1,
219						EXTENT_NODATASUM, GFP_NOFS);
220				} else {
221					printk(KERN_INFO "btrfs no csum found "
222					       "for inode %llu start %llu\n",
223					       (unsigned long long)
224					       btrfs_ino(inode),
225					       (unsigned long long)offset);
226				}
227				item = NULL;
228				btrfs_release_path(path);
229				goto found;
230			}
231			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
232					      path->slots[0]);
233
234			item_start_offset = found_key.offset;
235			item_size = btrfs_item_size_nr(path->nodes[0],
236						       path->slots[0]);
237			item_last_offset = item_start_offset +
238				(item_size / csum_size) *
239				root->sectorsize;
240			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
241					      struct btrfs_csum_item);
242		}
 
243		/*
244		 * this byte range must be able to fit inside
245		 * a single leaf so it will also fit inside a u32
 
 
 
 
 
 
246		 */
247		diff = disk_bytenr - item_start_offset;
248		diff = diff / root->sectorsize;
249		diff = diff * csum_size;
250
251		read_extent_buffer(path->nodes[0], &sum,
252				   ((unsigned long)item) + diff,
253				   csum_size);
254found:
255		if (dst)
256			*dst++ = sum;
257		else
258			set_state_private(io_tree, offset, sum);
259		disk_bytenr += bvec->bv_len;
260		offset += bvec->bv_len;
261		bio_index++;
262		bvec++;
 
 
263	}
264	btrfs_free_path(path);
265	return 0;
266}
267
268int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
269			  struct bio *bio, u32 *dst)
270{
271	return __btrfs_lookup_bio_sums(root, inode, bio, 0, dst, 0);
272}
273
274int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
275			      struct bio *bio, u64 offset, u32 *dst)
276{
277	return __btrfs_lookup_bio_sums(root, inode, bio, offset, dst, 1);
278}
279
280int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
281			     struct list_head *list, int search_commit)
 
282{
 
283	struct btrfs_key key;
284	struct btrfs_path *path;
285	struct extent_buffer *leaf;
286	struct btrfs_ordered_sum *sums;
287	struct btrfs_sector_sum *sector_sum;
288	struct btrfs_csum_item *item;
289	LIST_HEAD(tmplist);
290	unsigned long offset;
291	int ret;
292	size_t size;
293	u64 csum_end;
294	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
295
296	path = btrfs_alloc_path();
297	if (!path)
298		return -ENOMEM;
299
 
300	if (search_commit) {
301		path->skip_locking = 1;
302		path->reada = 2;
303		path->search_commit_root = 1;
304	}
305
306	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
307	key.offset = start;
308	key.type = BTRFS_EXTENT_CSUM_KEY;
309
310	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
311	if (ret < 0)
312		goto fail;
313	if (ret > 0 && path->slots[0] > 0) {
314		leaf = path->nodes[0];
315		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
317		    key.type == BTRFS_EXTENT_CSUM_KEY) {
318			offset = (start - key.offset) >>
319				 root->fs_info->sb->s_blocksize_bits;
320			if (offset * csum_size <
321			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
322				path->slots[0]--;
323		}
324	}
325
326	while (start <= end) {
 
 
327		leaf = path->nodes[0];
328		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
329			ret = btrfs_next_leaf(root, path);
330			if (ret < 0)
331				goto fail;
332			if (ret > 0)
333				break;
334			leaf = path->nodes[0];
335		}
336
337		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
338		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
339		    key.type != BTRFS_EXTENT_CSUM_KEY)
340			break;
341
342		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
343		if (key.offset > end)
344			break;
345
346		if (key.offset > start)
347			start = key.offset;
348
349		size = btrfs_item_size_nr(leaf, path->slots[0]);
350		csum_end = key.offset + (size / csum_size) * root->sectorsize;
351		if (csum_end <= start) {
352			path->slots[0]++;
353			continue;
354		}
355
356		csum_end = min(csum_end, end + 1);
357		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
358				      struct btrfs_csum_item);
359		while (start < csum_end) {
 
 
 
360			size = min_t(size_t, csum_end - start,
361					MAX_ORDERED_SUM_BYTES(root));
362			sums = kzalloc(btrfs_ordered_sum_size(root, size),
363					GFP_NOFS);
364			if (!sums) {
365				ret = -ENOMEM;
366				goto fail;
367			}
368
369			sector_sum = sums->sums;
370			sums->bytenr = start;
371			sums->len = size;
372
373			offset = (start - key.offset) >>
374				root->fs_info->sb->s_blocksize_bits;
375			offset *= csum_size;
376
377			while (size > 0) {
378				read_extent_buffer(path->nodes[0],
379						&sector_sum->sum,
380						((unsigned long)item) +
381						offset, csum_size);
382				sector_sum->bytenr = start;
383
384				size -= root->sectorsize;
385				start += root->sectorsize;
386				offset += csum_size;
387				sector_sum++;
388			}
389			list_add_tail(&sums->list, &tmplist);
390		}
391		path->slots[0]++;
392	}
393	ret = 0;
394fail:
395	while (ret < 0 && !list_empty(&tmplist)) {
396		sums = list_entry(&tmplist, struct btrfs_ordered_sum, list);
397		list_del(&sums->list);
398		kfree(sums);
399	}
400	list_splice_tail(&tmplist, list);
401
402	btrfs_free_path(path);
403	return ret;
404}
405
406int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
407		       struct bio *bio, u64 file_start, int contig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408{
 
 
 
 
 
409	struct btrfs_ordered_sum *sums;
410	struct btrfs_sector_sum *sector_sum;
411	struct btrfs_ordered_extent *ordered;
412	char *data;
413	struct bio_vec *bvec = bio->bi_io_vec;
414	int bio_index = 0;
415	unsigned long total_bytes = 0;
416	unsigned long this_sum_bytes = 0;
417	u64 offset;
418	u64 disk_bytenr;
 
 
 
 
 
419
420	WARN_ON(bio->bi_vcnt <= 0);
421	sums = kzalloc(btrfs_ordered_sum_size(root, bio->bi_size), GFP_NOFS);
422	if (!sums)
423		return -ENOMEM;
424
425	sector_sum = sums->sums;
426	disk_bytenr = (u64)bio->bi_sector << 9;
427	sums->len = bio->bi_size;
428	INIT_LIST_HEAD(&sums->list);
429
430	if (contig)
431		offset = file_start;
432	else
433		offset = page_offset(bvec->bv_page) + bvec->bv_offset;
434
435	ordered = btrfs_lookup_ordered_extent(inode, offset);
436	BUG_ON(!ordered); /* Logic error */
437	sums->bytenr = ordered->start;
438
439	while (bio_index < bio->bi_vcnt) {
440		if (!contig)
441			offset = page_offset(bvec->bv_page) + bvec->bv_offset;
442
443		if (!contig && (offset >= ordered->file_offset + ordered->len ||
444		    offset < ordered->file_offset)) {
445			unsigned long bytes_left;
446			sums->len = this_sum_bytes;
447			this_sum_bytes = 0;
448			btrfs_add_ordered_sum(inode, ordered, sums);
449			btrfs_put_ordered_extent(ordered);
450
451			bytes_left = bio->bi_size - total_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
452
453			sums = kzalloc(btrfs_ordered_sum_size(root, bytes_left),
454				       GFP_NOFS);
455			BUG_ON(!sums); /* -ENOMEM */
456			sector_sum = sums->sums;
457			sums->len = bytes_left;
458			ordered = btrfs_lookup_ordered_extent(inode, offset);
459			BUG_ON(!ordered); /* Logic error */
460			sums->bytenr = ordered->start;
461		}
462
463		data = kmap_atomic(bvec->bv_page);
464		sector_sum->sum = ~(u32)0;
465		sector_sum->sum = btrfs_csum_data(root,
466						  data + bvec->bv_offset,
467						  sector_sum->sum,
468						  bvec->bv_len);
469		kunmap_atomic(data);
470		btrfs_csum_final(sector_sum->sum,
471				 (char *)&sector_sum->sum);
472		sector_sum->bytenr = disk_bytenr;
473
474		sector_sum++;
475		bio_index++;
476		total_bytes += bvec->bv_len;
477		this_sum_bytes += bvec->bv_len;
478		disk_bytenr += bvec->bv_len;
479		offset += bvec->bv_len;
480		bvec++;
481	}
482	this_sum_bytes = 0;
483	btrfs_add_ordered_sum(inode, ordered, sums);
484	btrfs_put_ordered_extent(ordered);
485	return 0;
486}
487
488/*
489 * helper function for csum removal, this expects the
490 * key to describe the csum pointed to by the path, and it expects
491 * the csum to overlap the range [bytenr, len]
 
492 *
493 * The csum should not be entirely contained in the range and the
494 * range should not be entirely contained in the csum.
495 *
496 * This calls btrfs_truncate_item with the correct args based on the
497 * overlap, and fixes up the key as required.
498 */
499static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
500				       struct btrfs_root *root,
501				       struct btrfs_path *path,
502				       struct btrfs_key *key,
503				       u64 bytenr, u64 len)
504{
 
505	struct extent_buffer *leaf;
506	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
507	u64 csum_end;
508	u64 end_byte = bytenr + len;
509	u32 blocksize_bits = root->fs_info->sb->s_blocksize_bits;
510
511	leaf = path->nodes[0];
512	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
513	csum_end <<= root->fs_info->sb->s_blocksize_bits;
514	csum_end += key->offset;
515
516	if (key->offset < bytenr && csum_end <= end_byte) {
517		/*
518		 *         [ bytenr - len ]
519		 *         [   ]
520		 *   [csum     ]
521		 *   A simple truncate off the end of the item
522		 */
523		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
524		new_size *= csum_size;
525		btrfs_truncate_item(trans, root, path, new_size, 1);
526	} else if (key->offset >= bytenr && csum_end > end_byte &&
527		   end_byte > key->offset) {
528		/*
529		 *         [ bytenr - len ]
530		 *                 [ ]
531		 *                 [csum     ]
532		 * we need to truncate from the beginning of the csum
533		 */
534		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
535		new_size *= csum_size;
536
537		btrfs_truncate_item(trans, root, path, new_size, 0);
538
539		key->offset = end_byte;
540		btrfs_set_item_key_safe(trans, root, path, key);
541	} else {
542		BUG();
543	}
544}
545
546/*
547 * deletes the csum items from the csum tree for a given
548 * range of bytes.
549 */
550int btrfs_del_csums(struct btrfs_trans_handle *trans,
551		    struct btrfs_root *root, u64 bytenr, u64 len)
552{
 
553	struct btrfs_path *path;
554	struct btrfs_key key;
555	u64 end_byte = bytenr + len;
556	u64 csum_end;
557	struct extent_buffer *leaf;
558	int ret;
559	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
560	int blocksize_bits = root->fs_info->sb->s_blocksize_bits;
561
562	root = root->fs_info->csum_root;
 
563
564	path = btrfs_alloc_path();
565	if (!path)
566		return -ENOMEM;
567
568	while (1) {
569		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
570		key.offset = end_byte - 1;
571		key.type = BTRFS_EXTENT_CSUM_KEY;
572
573		path->leave_spinning = 1;
574		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
575		if (ret > 0) {
 
576			if (path->slots[0] == 0)
577				break;
578			path->slots[0]--;
579		} else if (ret < 0) {
580			break;
581		}
582
583		leaf = path->nodes[0];
584		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
585
586		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
587		    key.type != BTRFS_EXTENT_CSUM_KEY) {
588			break;
589		}
590
591		if (key.offset >= end_byte)
592			break;
593
594		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
595		csum_end <<= blocksize_bits;
596		csum_end += key.offset;
597
598		/* this csum ends before we start, we're done */
599		if (csum_end <= bytenr)
600			break;
601
602		/* delete the entire item, it is inside our range */
603		if (key.offset >= bytenr && csum_end <= end_byte) {
604			ret = btrfs_del_item(trans, root, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
605			if (ret)
606				goto out;
607			if (key.offset == bytenr)
608				break;
609		} else if (key.offset < bytenr && csum_end > end_byte) {
610			unsigned long offset;
611			unsigned long shift_len;
612			unsigned long item_offset;
613			/*
614			 *        [ bytenr - len ]
615			 *     [csum                ]
616			 *
617			 * Our bytes are in the middle of the csum,
618			 * we need to split this item and insert a new one.
619			 *
620			 * But we can't drop the path because the
621			 * csum could change, get removed, extended etc.
622			 *
623			 * The trick here is the max size of a csum item leaves
624			 * enough room in the tree block for a single
625			 * item header.  So, we split the item in place,
626			 * adding a new header pointing to the existing
627			 * bytes.  Then we loop around again and we have
628			 * a nicely formed csum item that we can neatly
629			 * truncate.
630			 */
631			offset = (bytenr - key.offset) >> blocksize_bits;
632			offset *= csum_size;
633
634			shift_len = (len >> blocksize_bits) * csum_size;
635
636			item_offset = btrfs_item_ptr_offset(leaf,
637							    path->slots[0]);
638
639			memset_extent_buffer(leaf, 0, item_offset + offset,
640					     shift_len);
641			key.offset = bytenr;
642
643			/*
644			 * btrfs_split_item returns -EAGAIN when the
645			 * item changed size or key
646			 */
647			ret = btrfs_split_item(trans, root, path, &key, offset);
648			if (ret && ret != -EAGAIN) {
649				btrfs_abort_transaction(trans, root, ret);
650				goto out;
651			}
 
652
653			key.offset = end_byte - 1;
654		} else {
655			truncate_one_csum(trans, root, path, &key, bytenr, len);
656			if (key.offset < bytenr)
657				break;
658		}
659		btrfs_release_path(path);
660	}
661	ret = 0;
662out:
663	btrfs_free_path(path);
664	return ret;
665}
666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
668			   struct btrfs_root *root,
669			   struct btrfs_ordered_sum *sums)
670{
671	u64 bytenr;
672	int ret;
673	struct btrfs_key file_key;
674	struct btrfs_key found_key;
675	u64 next_offset;
676	u64 total_bytes = 0;
677	int found_next;
678	struct btrfs_path *path;
679	struct btrfs_csum_item *item;
680	struct btrfs_csum_item *item_end;
681	struct extent_buffer *leaf = NULL;
 
 
682	u64 csum_offset;
683	struct btrfs_sector_sum *sector_sum;
684	u32 nritems;
685	u32 ins_size;
686	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 
 
 
687
688	path = btrfs_alloc_path();
689	if (!path)
690		return -ENOMEM;
691
692	sector_sum = sums->sums;
693again:
694	next_offset = (u64)-1;
695	found_next = 0;
 
696	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
697	file_key.offset = sector_sum->bytenr;
698	bytenr = sector_sum->bytenr;
699	btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
700
701	item = btrfs_lookup_csum(trans, root, path, sector_sum->bytenr, 1);
702	if (!IS_ERR(item)) {
703		leaf = path->nodes[0];
704		ret = 0;
 
 
 
 
 
705		goto found;
706	}
707	ret = PTR_ERR(item);
708	if (ret != -EFBIG && ret != -ENOENT)
709		goto fail_unlock;
710
711	if (ret == -EFBIG) {
712		u32 item_size;
713		/* we found one, but it isn't big enough yet */
714		leaf = path->nodes[0];
715		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
716		if ((item_size / csum_size) >=
717		    MAX_CSUM_ITEMS(root, csum_size)) {
718			/* already at max size, make a new one */
719			goto insert;
720		}
721	} else {
722		int slot = path->slots[0] + 1;
723		/* we didn't find a csum item, insert one */
724		nritems = btrfs_header_nritems(path->nodes[0]);
725		if (path->slots[0] >= nritems - 1) {
726			ret = btrfs_next_leaf(root, path);
727			if (ret == 1)
728				found_next = 1;
729			if (ret != 0)
730				goto insert;
731			slot = 0;
732		}
733		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
734		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
735		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
736			found_next = 1;
737			goto insert;
738		}
739		next_offset = found_key.offset;
740		found_next = 1;
741		goto insert;
742	}
743
744	/*
745	 * at this point, we know the tree has an item, but it isn't big
746	 * enough yet to put our csum in.  Grow it
 
 
 
 
 
 
747	 */
 
 
 
 
 
 
 
748	btrfs_release_path(path);
 
749	ret = btrfs_search_slot(trans, root, &file_key, path,
750				csum_size, 1);
 
751	if (ret < 0)
752		goto fail_unlock;
753
754	if (ret > 0) {
755		if (path->slots[0] == 0)
756			goto insert;
757		path->slots[0]--;
758	}
759
760	leaf = path->nodes[0];
761	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
762	csum_offset = (bytenr - found_key.offset) >>
763			root->fs_info->sb->s_blocksize_bits;
764
765	if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY ||
766	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
767	    csum_offset >= MAX_CSUM_ITEMS(root, csum_size)) {
768		goto insert;
769	}
770
771	if (csum_offset >= btrfs_item_size_nr(leaf, path->slots[0]) /
 
772	    csum_size) {
773		u32 diff = (csum_offset + 1) * csum_size;
 
 
 
 
 
 
 
774
775		/*
776		 * is the item big enough already?  we dropped our lock
777		 * before and need to recheck
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778		 */
779		if (diff < btrfs_item_size_nr(leaf, path->slots[0]))
780			goto csum;
 
 
 
 
 
 
 
781
782		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
783		if (diff != csum_size)
784			goto insert;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
785
786		btrfs_extend_item(trans, root, path, diff);
 
787		goto csum;
788	}
789
790insert:
791	btrfs_release_path(path);
792	csum_offset = 0;
793	if (found_next) {
794		u64 tmp = total_bytes + root->sectorsize;
795		u64 next_sector = sector_sum->bytenr;
796		struct btrfs_sector_sum *next = sector_sum + 1;
797
798		while (tmp < sums->len) {
799			if (next_sector + root->sectorsize != next->bytenr)
800				break;
801			tmp += root->sectorsize;
802			next_sector = next->bytenr;
803			next++;
804		}
805		tmp = min(tmp, next_offset - file_key.offset);
806		tmp >>= root->fs_info->sb->s_blocksize_bits;
807		tmp = max((u64)1, tmp);
808		tmp = min(tmp, (u64)MAX_CSUM_ITEMS(root, csum_size));
809		ins_size = csum_size * tmp;
810	} else {
811		ins_size = csum_size;
812	}
813	path->leave_spinning = 1;
814	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
815				      ins_size);
816	path->leave_spinning = 0;
817	if (ret < 0)
818		goto fail_unlock;
819	if (ret != 0) {
820		WARN_ON(1);
821		goto fail_unlock;
822	}
823csum:
824	leaf = path->nodes[0];
 
825	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
826	ret = 0;
 
827	item = (struct btrfs_csum_item *)((unsigned char *)item +
828					  csum_offset * csum_size);
829found:
830	item_end = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
831	item_end = (struct btrfs_csum_item *)((unsigned char *)item_end +
832				      btrfs_item_size_nr(leaf, path->slots[0]));
833next_sector:
834
835	write_extent_buffer(leaf, &sector_sum->sum, (unsigned long)item, csum_size);
836
837	total_bytes += root->sectorsize;
838	sector_sum++;
839	if (total_bytes < sums->len) {
840		item = (struct btrfs_csum_item *)((char *)item +
841						  csum_size);
842		if (item < item_end && bytenr + PAGE_CACHE_SIZE ==
843		    sector_sum->bytenr) {
844			bytenr = sector_sum->bytenr;
845			goto next_sector;
846		}
847	}
848
849	btrfs_mark_buffer_dirty(path->nodes[0]);
850	if (total_bytes < sums->len) {
851		btrfs_release_path(path);
852		cond_resched();
853		goto again;
854	}
855out:
856	btrfs_free_path(path);
857	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858
859fail_unlock:
860	goto out;
861}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "messages.h"
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "bio.h"
  17#include "compression.h"
  18#include "fs.h"
  19#include "accessors.h"
  20#include "file-item.h"
  21
  22#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  23				   sizeof(struct btrfs_item) * 2) / \
  24				  size) - 1))
  25
  26#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  27				       PAGE_SIZE))
  28
  29/*
  30 * Set inode's size according to filesystem options.
  31 *
  32 * @inode:      inode we want to update the disk_i_size for
  33 * @new_i_size: i_size we want to set to, 0 if we use i_size
  34 *
  35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  36 * returns as it is perfectly fine with a file that has holes without hole file
  37 * extent items.
  38 *
  39 * However without NO_HOLES we need to only return the area that is contiguous
  40 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  41 * to an extent that has a gap in between.
  42 *
  43 * Finally new_i_size should only be set in the case of truncate where we're not
  44 * ready to use i_size_read() as the limiter yet.
  45 */
  46void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  47{
  48	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  49	u64 start, end, i_size;
  50	int ret;
  51
  52	spin_lock(&inode->lock);
  53	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  54	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  55		inode->disk_i_size = i_size;
  56		goto out_unlock;
  57	}
  58
  59	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
  60					 &end, EXTENT_DIRTY);
  61	if (!ret && start == 0)
  62		i_size = min(i_size, end + 1);
  63	else
  64		i_size = 0;
  65	inode->disk_i_size = i_size;
  66out_unlock:
  67	spin_unlock(&inode->lock);
  68}
  69
  70/*
  71 * Mark range within a file as having a new extent inserted.
  72 *
  73 * @inode: inode being modified
  74 * @start: start file offset of the file extent we've inserted
  75 * @len:   logical length of the file extent item
  76 *
  77 * Call when we are inserting a new file extent where there was none before.
  78 * Does not need to call this in the case where we're replacing an existing file
  79 * extent, however if not sure it's fine to call this multiple times.
  80 *
  81 * The start and len must match the file extent item, so thus must be sectorsize
  82 * aligned.
  83 */
  84int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  85				      u64 len)
  86{
  87	if (len == 0)
  88		return 0;
  89
  90	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  91
  92	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  93		return 0;
  94	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
  95			      EXTENT_DIRTY, NULL);
  96}
  97
  98/*
  99 * Mark an inode range as not having a backing extent.
 100 *
 101 * @inode: inode being modified
 102 * @start: start file offset of the file extent we've inserted
 103 * @len:   logical length of the file extent item
 104 *
 105 * Called when we drop a file extent, for example when we truncate.  Doesn't
 106 * need to be called for cases where we're replacing a file extent, like when
 107 * we've COWed a file extent.
 108 *
 109 * The start and len must match the file extent item, so thus must be sectorsize
 110 * aligned.
 111 */
 112int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 113					u64 len)
 114{
 115	if (len == 0)
 116		return 0;
 117
 118	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 119	       len == (u64)-1);
 120
 121	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 122		return 0;
 123	return clear_extent_bit(inode->file_extent_tree, start,
 124				start + len - 1, EXTENT_DIRTY, NULL);
 125}
 126
 127static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
 128{
 129	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
 130
 131	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
 132}
 133
 134static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
 135{
 136	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
 137
 138	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
 139}
 140
 141static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
 142{
 143	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
 144				       fs_info->csum_size);
 145
 146	return csum_size_to_bytes(fs_info, max_csum_size);
 147}
 148
 149/*
 150 * Calculate the total size needed to allocate for an ordered sum structure
 151 * spanning @bytes in the file.
 152 */
 153static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
 154{
 155	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
 156}
 157
 158int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
 159			     struct btrfs_root *root,
 160			     u64 objectid, u64 pos, u64 num_bytes)
 
 
 
 161{
 162	int ret = 0;
 163	struct btrfs_file_extent_item *item;
 164	struct btrfs_key file_key;
 165	struct btrfs_path *path;
 166	struct extent_buffer *leaf;
 167
 168	path = btrfs_alloc_path();
 169	if (!path)
 170		return -ENOMEM;
 171	file_key.objectid = objectid;
 172	file_key.offset = pos;
 173	file_key.type = BTRFS_EXTENT_DATA_KEY;
 174
 
 175	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 176				      sizeof(*item));
 177	if (ret < 0)
 178		goto out;
 
 179	leaf = path->nodes[0];
 180	item = btrfs_item_ptr(leaf, path->slots[0],
 181			      struct btrfs_file_extent_item);
 182	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
 183	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
 184	btrfs_set_file_extent_offset(leaf, item, 0);
 185	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 186	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
 187	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 188	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 189	btrfs_set_file_extent_compression(leaf, item, 0);
 190	btrfs_set_file_extent_encryption(leaf, item, 0);
 191	btrfs_set_file_extent_other_encoding(leaf, item, 0);
 192
 193	btrfs_mark_buffer_dirty(trans, leaf);
 194out:
 195	btrfs_free_path(path);
 196	return ret;
 197}
 198
 199static struct btrfs_csum_item *
 200btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 201		  struct btrfs_root *root,
 202		  struct btrfs_path *path,
 203		  u64 bytenr, int cow)
 204{
 205	struct btrfs_fs_info *fs_info = root->fs_info;
 206	int ret;
 207	struct btrfs_key file_key;
 208	struct btrfs_key found_key;
 209	struct btrfs_csum_item *item;
 210	struct extent_buffer *leaf;
 211	u64 csum_offset = 0;
 212	const u32 csum_size = fs_info->csum_size;
 213	int csums_in_item;
 214
 215	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 216	file_key.offset = bytenr;
 217	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 218	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 219	if (ret < 0)
 220		goto fail;
 221	leaf = path->nodes[0];
 222	if (ret > 0) {
 223		ret = 1;
 224		if (path->slots[0] == 0)
 225			goto fail;
 226		path->slots[0]--;
 227		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 228		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 229			goto fail;
 230
 231		csum_offset = (bytenr - found_key.offset) >>
 232				fs_info->sectorsize_bits;
 233		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
 234		csums_in_item /= csum_size;
 235
 236		if (csum_offset == csums_in_item) {
 237			ret = -EFBIG;
 238			goto fail;
 239		} else if (csum_offset > csums_in_item) {
 240			goto fail;
 241		}
 242	}
 243	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 244	item = (struct btrfs_csum_item *)((unsigned char *)item +
 245					  csum_offset * csum_size);
 246	return item;
 247fail:
 248	if (ret > 0)
 249		ret = -ENOENT;
 250	return ERR_PTR(ret);
 251}
 252
 
 253int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 254			     struct btrfs_root *root,
 255			     struct btrfs_path *path, u64 objectid,
 256			     u64 offset, int mod)
 257{
 
 258	struct btrfs_key file_key;
 259	int ins_len = mod < 0 ? -1 : 0;
 260	int cow = mod != 0;
 261
 262	file_key.objectid = objectid;
 263	file_key.offset = offset;
 264	file_key.type = BTRFS_EXTENT_DATA_KEY;
 
 
 
 265
 266	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 267}
 268
 269/*
 270 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 271 * store the result to @dst.
 272 *
 273 * Return >0 for the number of sectors we found.
 274 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 275 * for it. Caller may want to try next sector until one range is hit.
 276 * Return <0 for fatal error.
 277 */
 278static int search_csum_tree(struct btrfs_fs_info *fs_info,
 279			    struct btrfs_path *path, u64 disk_bytenr,
 280			    u64 len, u8 *dst)
 281{
 282	struct btrfs_root *csum_root;
 283	struct btrfs_csum_item *item = NULL;
 284	struct btrfs_key key;
 285	const u32 sectorsize = fs_info->sectorsize;
 286	const u32 csum_size = fs_info->csum_size;
 287	u32 itemsize;
 288	int ret;
 289	u64 csum_start;
 290	u64 csum_len;
 291
 292	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 293	       IS_ALIGNED(len, sectorsize));
 294
 295	/* Check if the current csum item covers disk_bytenr */
 296	if (path->nodes[0]) {
 297		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 298				      struct btrfs_csum_item);
 299		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 300		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 301
 302		csum_start = key.offset;
 303		csum_len = (itemsize / csum_size) * sectorsize;
 304
 305		if (in_range(disk_bytenr, csum_start, csum_len))
 306			goto found;
 307	}
 308
 309	/* Current item doesn't contain the desired range, search again */
 310	btrfs_release_path(path);
 311	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
 312	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
 313	if (IS_ERR(item)) {
 314		ret = PTR_ERR(item);
 315		goto out;
 316	}
 317	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 318	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 319
 320	csum_start = key.offset;
 321	csum_len = (itemsize / csum_size) * sectorsize;
 322	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 323
 324found:
 325	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 326		   disk_bytenr) >> fs_info->sectorsize_bits;
 327	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 328			ret * csum_size);
 329out:
 330	if (ret == -ENOENT || ret == -EFBIG)
 331		ret = 0;
 332	return ret;
 333}
 334
 335/*
 336 * Lookup the checksum for the read bio in csum tree.
 337 *
 338 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 339 */
 340blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
 341{
 342	struct btrfs_inode *inode = bbio->inode;
 343	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 344	struct bio *bio = &bbio->bio;
 345	struct btrfs_path *path;
 346	const u32 sectorsize = fs_info->sectorsize;
 347	const u32 csum_size = fs_info->csum_size;
 348	u32 orig_len = bio->bi_iter.bi_size;
 349	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 350	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 351	blk_status_t ret = BLK_STS_OK;
 352	u32 bio_offset = 0;
 353
 354	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
 355	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
 356		return BLK_STS_OK;
 357
 358	/*
 359	 * This function is only called for read bio.
 360	 *
 361	 * This means two things:
 362	 * - All our csums should only be in csum tree
 363	 *   No ordered extents csums, as ordered extents are only for write
 364	 *   path.
 365	 * - No need to bother any other info from bvec
 366	 *   Since we're looking up csums, the only important info is the
 367	 *   disk_bytenr and the length, which can be extracted from bi_iter
 368	 *   directly.
 369	 */
 370	ASSERT(bio_op(bio) == REQ_OP_READ);
 371	path = btrfs_alloc_path();
 372	if (!path)
 373		return BLK_STS_RESOURCE;
 
 
 374
 375	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 376		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
 377		if (!bbio->csum) {
 378			btrfs_free_path(path);
 379			return BLK_STS_RESOURCE;
 380		}
 381	} else {
 382		bbio->csum = bbio->csum_inline;
 383	}
 384
 385	/*
 386	 * If requested number of sectors is larger than one leaf can contain,
 387	 * kick the readahead for csum tree.
 388	 */
 389	if (nblocks > fs_info->csums_per_leaf)
 390		path->reada = READA_FORWARD;
 391
 392	/*
 393	 * the free space stuff is only read when it hasn't been
 394	 * updated in the current transaction.  So, we can safely
 395	 * read from the commit root and sidestep a nasty deadlock
 396	 * between reading the free space cache and updating the csum tree.
 397	 */
 398	if (btrfs_is_free_space_inode(inode)) {
 399		path->search_commit_root = 1;
 400		path->skip_locking = 1;
 401	}
 402
 403	while (bio_offset < orig_len) {
 404		int count;
 405		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
 406		u8 *csum_dst = bbio->csum +
 407			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
 408
 409		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 410					 orig_len - bio_offset, csum_dst);
 411		if (count < 0) {
 412			ret = errno_to_blk_status(count);
 413			if (bbio->csum != bbio->csum_inline)
 414				kfree(bbio->csum);
 415			bbio->csum = NULL;
 416			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417		}
 418
 419		/*
 420		 * We didn't find a csum for this range.  We need to make sure
 421		 * we complain loudly about this, because we are not NODATASUM.
 422		 *
 423		 * However for the DATA_RELOC inode we could potentially be
 424		 * relocating data extents for a NODATASUM inode, so the inode
 425		 * itself won't be marked with NODATASUM, but the extent we're
 426		 * copying is in fact NODATASUM.  If we don't find a csum we
 427		 * assume this is the case.
 428		 */
 429		if (count == 0) {
 430			memset(csum_dst, 0, csum_size);
 431			count = 1;
 432
 433			if (inode->root->root_key.objectid ==
 434			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 435				u64 file_offset = bbio->file_offset + bio_offset;
 436
 437				set_extent_bit(&inode->io_tree, file_offset,
 438					       file_offset + sectorsize - 1,
 439					       EXTENT_NODATASUM, NULL);
 440			} else {
 441				btrfs_warn_rl(fs_info,
 442			"csum hole found for disk bytenr range [%llu, %llu)",
 443				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 444			}
 445		}
 446		bio_offset += count * sectorsize;
 447	}
 
 
 
 
 
 
 
 
 
 448
 449	btrfs_free_path(path);
 450	return ret;
 
 
 451}
 452
 453int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
 454			    struct list_head *list, int search_commit,
 455			    bool nowait)
 456{
 457	struct btrfs_fs_info *fs_info = root->fs_info;
 458	struct btrfs_key key;
 459	struct btrfs_path *path;
 460	struct extent_buffer *leaf;
 461	struct btrfs_ordered_sum *sums;
 
 462	struct btrfs_csum_item *item;
 463	LIST_HEAD(tmplist);
 
 464	int ret;
 465
 466	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 467	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 468
 469	path = btrfs_alloc_path();
 470	if (!path)
 471		return -ENOMEM;
 472
 473	path->nowait = nowait;
 474	if (search_commit) {
 475		path->skip_locking = 1;
 476		path->reada = READA_FORWARD;
 477		path->search_commit_root = 1;
 478	}
 479
 480	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 481	key.offset = start;
 482	key.type = BTRFS_EXTENT_CSUM_KEY;
 483
 484	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 485	if (ret < 0)
 486		goto fail;
 487	if (ret > 0 && path->slots[0] > 0) {
 488		leaf = path->nodes[0];
 489		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 490
 491		/*
 492		 * There are two cases we can hit here for the previous csum
 493		 * item:
 494		 *
 495		 *		|<- search range ->|
 496		 *	|<- csum item ->|
 497		 *
 498		 * Or
 499		 *				|<- search range ->|
 500		 *	|<- csum item ->|
 501		 *
 502		 * Check if the previous csum item covers the leading part of
 503		 * the search range.  If so we have to start from previous csum
 504		 * item.
 505		 */
 506		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 507		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 508			if (bytes_to_csum_size(fs_info, start - key.offset) <
 509			    btrfs_item_size(leaf, path->slots[0] - 1))
 
 
 510				path->slots[0]--;
 511		}
 512	}
 513
 514	while (start <= end) {
 515		u64 csum_end;
 516
 517		leaf = path->nodes[0];
 518		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 519			ret = btrfs_next_leaf(root, path);
 520			if (ret < 0)
 521				goto fail;
 522			if (ret > 0)
 523				break;
 524			leaf = path->nodes[0];
 525		}
 526
 527		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 528		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 529		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 530		    key.offset > end)
 
 
 
 531			break;
 532
 533		if (key.offset > start)
 534			start = key.offset;
 535
 536		csum_end = key.offset + csum_size_to_bytes(fs_info,
 537					btrfs_item_size(leaf, path->slots[0]));
 538		if (csum_end <= start) {
 539			path->slots[0]++;
 540			continue;
 541		}
 542
 543		csum_end = min(csum_end, end + 1);
 544		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 545				      struct btrfs_csum_item);
 546		while (start < csum_end) {
 547			unsigned long offset;
 548			size_t size;
 549
 550			size = min_t(size_t, csum_end - start,
 551				     max_ordered_sum_bytes(fs_info));
 552			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 553				       GFP_NOFS);
 554			if (!sums) {
 555				ret = -ENOMEM;
 556				goto fail;
 557			}
 558
 559			sums->logical = start;
 
 560			sums->len = size;
 561
 562			offset = bytes_to_csum_size(fs_info, start - key.offset);
 
 
 563
 564			read_extent_buffer(path->nodes[0],
 565					   sums->sums,
 566					   ((unsigned long)item) + offset,
 567					   bytes_to_csum_size(fs_info, size));
 568
 569			start += size;
 
 
 
 
 
 
 570			list_add_tail(&sums->list, &tmplist);
 571		}
 572		path->slots[0]++;
 573	}
 574	ret = 0;
 575fail:
 576	while (ret < 0 && !list_empty(&tmplist)) {
 577		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 578		list_del(&sums->list);
 579		kfree(sums);
 580	}
 581	list_splice_tail(&tmplist, list);
 582
 583	btrfs_free_path(path);
 584	return ret;
 585}
 586
 587/*
 588 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
 589 * we return the result.
 590 *
 591 * This version will set the corresponding bits in @csum_bitmap to represent
 592 * that there is a csum found.
 593 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
 594 * in is large enough to contain all csums.
 595 */
 596int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
 597			      u64 start, u64 end, u8 *csum_buf,
 598			      unsigned long *csum_bitmap)
 599{
 600	struct btrfs_fs_info *fs_info = root->fs_info;
 601	struct btrfs_key key;
 602	struct extent_buffer *leaf;
 603	struct btrfs_csum_item *item;
 604	const u64 orig_start = start;
 605	bool free_path = false;
 606	int ret;
 607
 608	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 609	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 610
 611	if (!path) {
 612		path = btrfs_alloc_path();
 613		if (!path)
 614			return -ENOMEM;
 615		free_path = true;
 616	}
 617
 618	/* Check if we can reuse the previous path. */
 619	if (path->nodes[0]) {
 620		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 621
 622		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 623		    key.type == BTRFS_EXTENT_CSUM_KEY &&
 624		    key.offset <= start)
 625			goto search_forward;
 626		btrfs_release_path(path);
 627	}
 628
 629	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 630	key.type = BTRFS_EXTENT_CSUM_KEY;
 631	key.offset = start;
 632
 633	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 634	if (ret < 0)
 635		goto fail;
 636	if (ret > 0 && path->slots[0] > 0) {
 637		leaf = path->nodes[0];
 638		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 639
 640		/*
 641		 * There are two cases we can hit here for the previous csum
 642		 * item:
 643		 *
 644		 *		|<- search range ->|
 645		 *	|<- csum item ->|
 646		 *
 647		 * Or
 648		 *				|<- search range ->|
 649		 *	|<- csum item ->|
 650		 *
 651		 * Check if the previous csum item covers the leading part of
 652		 * the search range.  If so we have to start from previous csum
 653		 * item.
 654		 */
 655		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 656		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 657			if (bytes_to_csum_size(fs_info, start - key.offset) <
 658			    btrfs_item_size(leaf, path->slots[0] - 1))
 659				path->slots[0]--;
 660		}
 661	}
 662
 663search_forward:
 664	while (start <= end) {
 665		u64 csum_end;
 666
 667		leaf = path->nodes[0];
 668		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 669			ret = btrfs_next_leaf(root, path);
 670			if (ret < 0)
 671				goto fail;
 672			if (ret > 0)
 673				break;
 674			leaf = path->nodes[0];
 675		}
 676
 677		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 678		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 679		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 680		    key.offset > end)
 681			break;
 682
 683		if (key.offset > start)
 684			start = key.offset;
 685
 686		csum_end = key.offset + csum_size_to_bytes(fs_info,
 687					btrfs_item_size(leaf, path->slots[0]));
 688		if (csum_end <= start) {
 689			path->slots[0]++;
 690			continue;
 691		}
 692
 693		csum_end = min(csum_end, end + 1);
 694		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 695				      struct btrfs_csum_item);
 696		while (start < csum_end) {
 697			unsigned long offset;
 698			size_t size;
 699			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
 700						start - orig_start);
 701
 702			size = min_t(size_t, csum_end - start, end + 1 - start);
 703
 704			offset = bytes_to_csum_size(fs_info, start - key.offset);
 705
 706			read_extent_buffer(path->nodes[0], csum_dest,
 707					   ((unsigned long)item) + offset,
 708					   bytes_to_csum_size(fs_info, size));
 709
 710			bitmap_set(csum_bitmap,
 711				(start - orig_start) >> fs_info->sectorsize_bits,
 712				size >> fs_info->sectorsize_bits);
 713
 714			start += size;
 715		}
 716		path->slots[0]++;
 717	}
 718	ret = 0;
 719fail:
 720	if (free_path)
 721		btrfs_free_path(path);
 722	return ret;
 723}
 724
 725/*
 726 * Calculate checksums of the data contained inside a bio.
 727 */
 728blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
 729{
 730	struct btrfs_ordered_extent *ordered = bbio->ordered;
 731	struct btrfs_inode *inode = bbio->inode;
 732	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 733	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 734	struct bio *bio = &bbio->bio;
 735	struct btrfs_ordered_sum *sums;
 
 
 736	char *data;
 737	struct bvec_iter iter;
 738	struct bio_vec bvec;
 739	int index;
 740	unsigned int blockcount;
 741	int i;
 742	unsigned nofs_flag;
 743
 744	nofs_flag = memalloc_nofs_save();
 745	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 746		       GFP_KERNEL);
 747	memalloc_nofs_restore(nofs_flag);
 748
 
 
 749	if (!sums)
 750		return BLK_STS_RESOURCE;
 751
 752	sums->len = bio->bi_iter.bi_size;
 
 
 753	INIT_LIST_HEAD(&sums->list);
 754
 755	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 756	index = 0;
 
 
 757
 758	shash->tfm = fs_info->csum_shash;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759
 760	bio_for_each_segment(bvec, bio, iter) {
 761		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
 762						 bvec.bv_len + fs_info->sectorsize
 763						 - 1);
 764
 765		for (i = 0; i < blockcount; i++) {
 766			data = bvec_kmap_local(&bvec);
 767			crypto_shash_digest(shash,
 768					    data + (i * fs_info->sectorsize),
 769					    fs_info->sectorsize,
 770					    sums->sums + index);
 771			kunmap_local(data);
 772			index += fs_info->csum_size;
 773		}
 774
 775	}
 776
 777	bbio->sums = sums;
 778	btrfs_add_ordered_sum(ordered, sums);
 779	return 0;
 780}
 781
 782/*
 783 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
 784 * record the updated logical address on Zone Append completion.
 785 * Allocate just the structure with an empty sums array here for that case.
 786 */
 787blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
 788{
 789	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
 790	if (!bbio->sums)
 791		return BLK_STS_RESOURCE;
 792	bbio->sums->len = bbio->bio.bi_iter.bi_size;
 793	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
 794	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
 
 
 
 
 
 
 
 
 
 
 
 
 795	return 0;
 796}
 797
 798/*
 799 * Remove one checksum overlapping a range.
 800 *
 801 * This expects the key to describe the csum pointed to by the path, and it
 802 * expects the csum to overlap the range [bytenr, len]
 803 *
 804 * The csum should not be entirely contained in the range and the range should
 805 * not be entirely contained in the csum.
 806 *
 807 * This calls btrfs_truncate_item with the correct args based on the overlap,
 808 * and fixes up the key as required.
 809 */
 810static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
 
 811				       struct btrfs_path *path,
 812				       struct btrfs_key *key,
 813				       u64 bytenr, u64 len)
 814{
 815	struct btrfs_fs_info *fs_info = trans->fs_info;
 816	struct extent_buffer *leaf;
 817	const u32 csum_size = fs_info->csum_size;
 818	u64 csum_end;
 819	u64 end_byte = bytenr + len;
 820	u32 blocksize_bits = fs_info->sectorsize_bits;
 821
 822	leaf = path->nodes[0];
 823	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 824	csum_end <<= blocksize_bits;
 825	csum_end += key->offset;
 826
 827	if (key->offset < bytenr && csum_end <= end_byte) {
 828		/*
 829		 *         [ bytenr - len ]
 830		 *         [   ]
 831		 *   [csum     ]
 832		 *   A simple truncate off the end of the item
 833		 */
 834		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 835		new_size *= csum_size;
 836		btrfs_truncate_item(trans, path, new_size, 1);
 837	} else if (key->offset >= bytenr && csum_end > end_byte &&
 838		   end_byte > key->offset) {
 839		/*
 840		 *         [ bytenr - len ]
 841		 *                 [ ]
 842		 *                 [csum     ]
 843		 * we need to truncate from the beginning of the csum
 844		 */
 845		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 846		new_size *= csum_size;
 847
 848		btrfs_truncate_item(trans, path, new_size, 0);
 849
 850		key->offset = end_byte;
 851		btrfs_set_item_key_safe(trans, path, key);
 852	} else {
 853		BUG();
 854	}
 855}
 856
 857/*
 858 * Delete the csum items from the csum tree for a given range of bytes.
 
 859 */
 860int btrfs_del_csums(struct btrfs_trans_handle *trans,
 861		    struct btrfs_root *root, u64 bytenr, u64 len)
 862{
 863	struct btrfs_fs_info *fs_info = trans->fs_info;
 864	struct btrfs_path *path;
 865	struct btrfs_key key;
 866	u64 end_byte = bytenr + len;
 867	u64 csum_end;
 868	struct extent_buffer *leaf;
 869	int ret = 0;
 870	const u32 csum_size = fs_info->csum_size;
 871	u32 blocksize_bits = fs_info->sectorsize_bits;
 872
 873	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
 874	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 875
 876	path = btrfs_alloc_path();
 877	if (!path)
 878		return -ENOMEM;
 879
 880	while (1) {
 881		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 882		key.offset = end_byte - 1;
 883		key.type = BTRFS_EXTENT_CSUM_KEY;
 884
 
 885		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 886		if (ret > 0) {
 887			ret = 0;
 888			if (path->slots[0] == 0)
 889				break;
 890			path->slots[0]--;
 891		} else if (ret < 0) {
 892			break;
 893		}
 894
 895		leaf = path->nodes[0];
 896		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 897
 898		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 899		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 900			break;
 901		}
 902
 903		if (key.offset >= end_byte)
 904			break;
 905
 906		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 907		csum_end <<= blocksize_bits;
 908		csum_end += key.offset;
 909
 910		/* this csum ends before we start, we're done */
 911		if (csum_end <= bytenr)
 912			break;
 913
 914		/* delete the entire item, it is inside our range */
 915		if (key.offset >= bytenr && csum_end <= end_byte) {
 916			int del_nr = 1;
 917
 918			/*
 919			 * Check how many csum items preceding this one in this
 920			 * leaf correspond to our range and then delete them all
 921			 * at once.
 922			 */
 923			if (key.offset > bytenr && path->slots[0] > 0) {
 924				int slot = path->slots[0] - 1;
 925
 926				while (slot >= 0) {
 927					struct btrfs_key pk;
 928
 929					btrfs_item_key_to_cpu(leaf, &pk, slot);
 930					if (pk.offset < bytenr ||
 931					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 932					    pk.objectid !=
 933					    BTRFS_EXTENT_CSUM_OBJECTID)
 934						break;
 935					path->slots[0] = slot;
 936					del_nr++;
 937					key.offset = pk.offset;
 938					slot--;
 939				}
 940			}
 941			ret = btrfs_del_items(trans, root, path,
 942					      path->slots[0], del_nr);
 943			if (ret)
 944				break;
 945			if (key.offset == bytenr)
 946				break;
 947		} else if (key.offset < bytenr && csum_end > end_byte) {
 948			unsigned long offset;
 949			unsigned long shift_len;
 950			unsigned long item_offset;
 951			/*
 952			 *        [ bytenr - len ]
 953			 *     [csum                ]
 954			 *
 955			 * Our bytes are in the middle of the csum,
 956			 * we need to split this item and insert a new one.
 957			 *
 958			 * But we can't drop the path because the
 959			 * csum could change, get removed, extended etc.
 960			 *
 961			 * The trick here is the max size of a csum item leaves
 962			 * enough room in the tree block for a single
 963			 * item header.  So, we split the item in place,
 964			 * adding a new header pointing to the existing
 965			 * bytes.  Then we loop around again and we have
 966			 * a nicely formed csum item that we can neatly
 967			 * truncate.
 968			 */
 969			offset = (bytenr - key.offset) >> blocksize_bits;
 970			offset *= csum_size;
 971
 972			shift_len = (len >> blocksize_bits) * csum_size;
 973
 974			item_offset = btrfs_item_ptr_offset(leaf,
 975							    path->slots[0]);
 976
 977			memzero_extent_buffer(leaf, item_offset + offset,
 978					     shift_len);
 979			key.offset = bytenr;
 980
 981			/*
 982			 * btrfs_split_item returns -EAGAIN when the
 983			 * item changed size or key
 984			 */
 985			ret = btrfs_split_item(trans, root, path, &key, offset);
 986			if (ret && ret != -EAGAIN) {
 987				btrfs_abort_transaction(trans, ret);
 988				break;
 989			}
 990			ret = 0;
 991
 992			key.offset = end_byte - 1;
 993		} else {
 994			truncate_one_csum(trans, path, &key, bytenr, len);
 995			if (key.offset < bytenr)
 996				break;
 997		}
 998		btrfs_release_path(path);
 999	}
 
 
1000	btrfs_free_path(path);
1001	return ret;
1002}
1003
1004static int find_next_csum_offset(struct btrfs_root *root,
1005				 struct btrfs_path *path,
1006				 u64 *next_offset)
1007{
1008	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1009	struct btrfs_key found_key;
1010	int slot = path->slots[0] + 1;
1011	int ret;
1012
1013	if (nritems == 0 || slot >= nritems) {
1014		ret = btrfs_next_leaf(root, path);
1015		if (ret < 0) {
1016			return ret;
1017		} else if (ret > 0) {
1018			*next_offset = (u64)-1;
1019			return 0;
1020		}
1021		slot = path->slots[0];
1022	}
1023
1024	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1025
1026	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1027	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1028		*next_offset = (u64)-1;
1029	else
1030		*next_offset = found_key.offset;
1031
1032	return 0;
1033}
1034
1035int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1036			   struct btrfs_root *root,
1037			   struct btrfs_ordered_sum *sums)
1038{
1039	struct btrfs_fs_info *fs_info = root->fs_info;
 
1040	struct btrfs_key file_key;
1041	struct btrfs_key found_key;
 
 
 
1042	struct btrfs_path *path;
1043	struct btrfs_csum_item *item;
1044	struct btrfs_csum_item *item_end;
1045	struct extent_buffer *leaf = NULL;
1046	u64 next_offset;
1047	u64 total_bytes = 0;
1048	u64 csum_offset;
1049	u64 bytenr;
 
1050	u32 ins_size;
1051	int index = 0;
1052	int found_next;
1053	int ret;
1054	const u32 csum_size = fs_info->csum_size;
1055
1056	path = btrfs_alloc_path();
1057	if (!path)
1058		return -ENOMEM;
 
 
1059again:
1060	next_offset = (u64)-1;
1061	found_next = 0;
1062	bytenr = sums->logical + total_bytes;
1063	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1064	file_key.offset = bytenr;
1065	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 
1066
1067	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1068	if (!IS_ERR(item)) {
 
1069		ret = 0;
1070		leaf = path->nodes[0];
1071		item_end = btrfs_item_ptr(leaf, path->slots[0],
1072					  struct btrfs_csum_item);
1073		item_end = (struct btrfs_csum_item *)((char *)item_end +
1074			   btrfs_item_size(leaf, path->slots[0]));
1075		goto found;
1076	}
1077	ret = PTR_ERR(item);
1078	if (ret != -EFBIG && ret != -ENOENT)
1079		goto out;
1080
1081	if (ret == -EFBIG) {
1082		u32 item_size;
1083		/* we found one, but it isn't big enough yet */
1084		leaf = path->nodes[0];
1085		item_size = btrfs_item_size(leaf, path->slots[0]);
1086		if ((item_size / csum_size) >=
1087		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1088			/* already at max size, make a new one */
1089			goto insert;
1090		}
1091	} else {
1092		/* We didn't find a csum item, insert one. */
1093		ret = find_next_csum_offset(root, path, &next_offset);
1094		if (ret < 0)
1095			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096		found_next = 1;
1097		goto insert;
1098	}
1099
1100	/*
1101	 * At this point, we know the tree has a checksum item that ends at an
1102	 * offset matching the start of the checksum range we want to insert.
1103	 * We try to extend that item as much as possible and then add as many
1104	 * checksums to it as they fit.
1105	 *
1106	 * First check if the leaf has enough free space for at least one
1107	 * checksum. If it has go directly to the item extension code, otherwise
1108	 * release the path and do a search for insertion before the extension.
1109	 */
1110	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1111		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1112		csum_offset = (bytenr - found_key.offset) >>
1113			fs_info->sectorsize_bits;
1114		goto extend_csum;
1115	}
1116
1117	btrfs_release_path(path);
1118	path->search_for_extension = 1;
1119	ret = btrfs_search_slot(trans, root, &file_key, path,
1120				csum_size, 1);
1121	path->search_for_extension = 0;
1122	if (ret < 0)
1123		goto out;
1124
1125	if (ret > 0) {
1126		if (path->slots[0] == 0)
1127			goto insert;
1128		path->slots[0]--;
1129	}
1130
1131	leaf = path->nodes[0];
1132	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1133	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
 
1134
1135	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1136	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1137	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1138		goto insert;
1139	}
1140
1141extend_csum:
1142	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1143	    csum_size) {
1144		int extend_nr;
1145		u64 tmp;
1146		u32 diff;
1147
1148		tmp = sums->len - total_bytes;
1149		tmp >>= fs_info->sectorsize_bits;
1150		WARN_ON(tmp < 1);
1151		extend_nr = max_t(int, 1, tmp);
1152
1153		/*
1154		 * A log tree can already have checksum items with a subset of
1155		 * the checksums we are trying to log. This can happen after
1156		 * doing a sequence of partial writes into prealloc extents and
1157		 * fsyncs in between, with a full fsync logging a larger subrange
1158		 * of an extent for which a previous fast fsync logged a smaller
1159		 * subrange. And this happens in particular due to merging file
1160		 * extent items when we complete an ordered extent for a range
1161		 * covered by a prealloc extent - this is done at
1162		 * btrfs_mark_extent_written().
1163		 *
1164		 * So if we try to extend the previous checksum item, which has
1165		 * a range that ends at the start of the range we want to insert,
1166		 * make sure we don't extend beyond the start offset of the next
1167		 * checksum item. If we are at the last item in the leaf, then
1168		 * forget the optimization of extending and add a new checksum
1169		 * item - it is not worth the complexity of releasing the path,
1170		 * getting the first key for the next leaf, repeat the btree
1171		 * search, etc, because log trees are temporary anyway and it
1172		 * would only save a few bytes of leaf space.
1173		 */
1174		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1175			if (path->slots[0] + 1 >=
1176			    btrfs_header_nritems(path->nodes[0])) {
1177				ret = find_next_csum_offset(root, path, &next_offset);
1178				if (ret < 0)
1179					goto out;
1180				found_next = 1;
1181				goto insert;
1182			}
1183
1184			ret = find_next_csum_offset(root, path, &next_offset);
1185			if (ret < 0)
1186				goto out;
1187
1188			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1189			if (tmp <= INT_MAX)
1190				extend_nr = min_t(int, extend_nr, tmp);
1191		}
1192
1193		diff = (csum_offset + extend_nr) * csum_size;
1194		diff = min(diff,
1195			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1196
1197		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1198		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1199		diff /= csum_size;
1200		diff *= csum_size;
1201
1202		btrfs_extend_item(trans, path, diff);
1203		ret = 0;
1204		goto csum;
1205	}
1206
1207insert:
1208	btrfs_release_path(path);
1209	csum_offset = 0;
1210	if (found_next) {
1211		u64 tmp;
 
 
1212
1213		tmp = sums->len - total_bytes;
1214		tmp >>= fs_info->sectorsize_bits;
1215		tmp = min(tmp, (next_offset - file_key.offset) >>
1216					 fs_info->sectorsize_bits);
1217
1218		tmp = max_t(u64, 1, tmp);
1219		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
 
 
 
 
1220		ins_size = csum_size * tmp;
1221	} else {
1222		ins_size = csum_size;
1223	}
 
1224	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1225				      ins_size);
 
1226	if (ret < 0)
1227		goto out;
 
 
 
 
 
1228	leaf = path->nodes[0];
1229csum:
1230	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1231	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1232				      btrfs_item_size(leaf, path->slots[0]));
1233	item = (struct btrfs_csum_item *)((unsigned char *)item +
1234					  csum_offset * csum_size);
1235found:
1236	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1237	ins_size *= csum_size;
1238	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1239			      ins_size);
1240	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1241			    ins_size);
1242
1243	index += ins_size;
1244	ins_size /= csum_size;
1245	total_bytes += ins_size * fs_info->sectorsize;
 
 
 
 
 
 
 
 
1246
1247	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1248	if (total_bytes < sums->len) {
1249		btrfs_release_path(path);
1250		cond_resched();
1251		goto again;
1252	}
1253out:
1254	btrfs_free_path(path);
1255	return ret;
1256}
1257
1258void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1259				     const struct btrfs_path *path,
1260				     struct btrfs_file_extent_item *fi,
1261				     struct extent_map *em)
1262{
1263	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1264	struct btrfs_root *root = inode->root;
1265	struct extent_buffer *leaf = path->nodes[0];
1266	const int slot = path->slots[0];
1267	struct btrfs_key key;
1268	u64 extent_start, extent_end;
1269	u64 bytenr;
1270	u8 type = btrfs_file_extent_type(leaf, fi);
1271	int compress_type = btrfs_file_extent_compression(leaf, fi);
1272
1273	btrfs_item_key_to_cpu(leaf, &key, slot);
1274	extent_start = key.offset;
1275	extent_end = btrfs_file_extent_end(path);
1276	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1277	em->generation = btrfs_file_extent_generation(leaf, fi);
1278	if (type == BTRFS_FILE_EXTENT_REG ||
1279	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1280		em->start = extent_start;
1281		em->len = extent_end - extent_start;
1282		em->orig_start = extent_start -
1283			btrfs_file_extent_offset(leaf, fi);
1284		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1285		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1286		if (bytenr == 0) {
1287			em->block_start = EXTENT_MAP_HOLE;
1288			return;
1289		}
1290		if (compress_type != BTRFS_COMPRESS_NONE) {
1291			extent_map_set_compression(em, compress_type);
1292			em->block_start = bytenr;
1293			em->block_len = em->orig_block_len;
1294		} else {
1295			bytenr += btrfs_file_extent_offset(leaf, fi);
1296			em->block_start = bytenr;
1297			em->block_len = em->len;
1298			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1299				em->flags |= EXTENT_FLAG_PREALLOC;
1300		}
1301	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1302		em->block_start = EXTENT_MAP_INLINE;
1303		em->start = extent_start;
1304		em->len = extent_end - extent_start;
1305		/*
1306		 * Initialize orig_start and block_len with the same values
1307		 * as in inode.c:btrfs_get_extent().
1308		 */
1309		em->orig_start = EXTENT_MAP_HOLE;
1310		em->block_len = (u64)-1;
1311		extent_map_set_compression(em, compress_type);
1312	} else {
1313		btrfs_err(fs_info,
1314			  "unknown file extent item type %d, inode %llu, offset %llu, "
1315			  "root %llu", type, btrfs_ino(inode), extent_start,
1316			  root->root_key.objectid);
1317	}
1318}
1319
1320/*
1321 * Returns the end offset (non inclusive) of the file extent item the given path
1322 * points to. If it points to an inline extent, the returned offset is rounded
1323 * up to the sector size.
1324 */
1325u64 btrfs_file_extent_end(const struct btrfs_path *path)
1326{
1327	const struct extent_buffer *leaf = path->nodes[0];
1328	const int slot = path->slots[0];
1329	struct btrfs_file_extent_item *fi;
1330	struct btrfs_key key;
1331	u64 end;
1332
1333	btrfs_item_key_to_cpu(leaf, &key, slot);
1334	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1335	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1336
1337	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1338		end = btrfs_file_extent_ram_bytes(leaf, fi);
1339		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1340	} else {
1341		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1342	}
1343
1344	return end;
 
1345}