Loading...
1/*
2 * Copyright (c) 2007-2011 Nicira Networks.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#include "flow.h"
20#include "datapath.h"
21#include <linux/uaccess.h>
22#include <linux/netdevice.h>
23#include <linux/etherdevice.h>
24#include <linux/if_ether.h>
25#include <linux/if_vlan.h>
26#include <net/llc_pdu.h>
27#include <linux/kernel.h>
28#include <linux/jhash.h>
29#include <linux/jiffies.h>
30#include <linux/llc.h>
31#include <linux/module.h>
32#include <linux/in.h>
33#include <linux/rcupdate.h>
34#include <linux/if_arp.h>
35#include <linux/ip.h>
36#include <linux/ipv6.h>
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/icmp.h>
40#include <linux/icmpv6.h>
41#include <linux/rculist.h>
42#include <net/ip.h>
43#include <net/ipv6.h>
44#include <net/ndisc.h>
45
46static struct kmem_cache *flow_cache;
47
48static int check_header(struct sk_buff *skb, int len)
49{
50 if (unlikely(skb->len < len))
51 return -EINVAL;
52 if (unlikely(!pskb_may_pull(skb, len)))
53 return -ENOMEM;
54 return 0;
55}
56
57static bool arphdr_ok(struct sk_buff *skb)
58{
59 return pskb_may_pull(skb, skb_network_offset(skb) +
60 sizeof(struct arp_eth_header));
61}
62
63static int check_iphdr(struct sk_buff *skb)
64{
65 unsigned int nh_ofs = skb_network_offset(skb);
66 unsigned int ip_len;
67 int err;
68
69 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70 if (unlikely(err))
71 return err;
72
73 ip_len = ip_hdrlen(skb);
74 if (unlikely(ip_len < sizeof(struct iphdr) ||
75 skb->len < nh_ofs + ip_len))
76 return -EINVAL;
77
78 skb_set_transport_header(skb, nh_ofs + ip_len);
79 return 0;
80}
81
82static bool tcphdr_ok(struct sk_buff *skb)
83{
84 int th_ofs = skb_transport_offset(skb);
85 int tcp_len;
86
87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88 return false;
89
90 tcp_len = tcp_hdrlen(skb);
91 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92 skb->len < th_ofs + tcp_len))
93 return false;
94
95 return true;
96}
97
98static bool udphdr_ok(struct sk_buff *skb)
99{
100 return pskb_may_pull(skb, skb_transport_offset(skb) +
101 sizeof(struct udphdr));
102}
103
104static bool icmphdr_ok(struct sk_buff *skb)
105{
106 return pskb_may_pull(skb, skb_transport_offset(skb) +
107 sizeof(struct icmphdr));
108}
109
110u64 ovs_flow_used_time(unsigned long flow_jiffies)
111{
112 struct timespec cur_ts;
113 u64 cur_ms, idle_ms;
114
115 ktime_get_ts(&cur_ts);
116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118 cur_ts.tv_nsec / NSEC_PER_MSEC;
119
120 return cur_ms - idle_ms;
121}
122
123#define SW_FLOW_KEY_OFFSET(field) \
124 (offsetof(struct sw_flow_key, field) + \
125 FIELD_SIZEOF(struct sw_flow_key, field))
126
127static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128 int *key_lenp)
129{
130 unsigned int nh_ofs = skb_network_offset(skb);
131 unsigned int nh_len;
132 int payload_ofs;
133 struct ipv6hdr *nh;
134 uint8_t nexthdr;
135 __be16 frag_off;
136 int err;
137
138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139
140 err = check_header(skb, nh_ofs + sizeof(*nh));
141 if (unlikely(err))
142 return err;
143
144 nh = ipv6_hdr(skb);
145 nexthdr = nh->nexthdr;
146 payload_ofs = (u8 *)(nh + 1) - skb->data;
147
148 key->ip.proto = NEXTHDR_NONE;
149 key->ip.tos = ipv6_get_dsfield(nh);
150 key->ip.ttl = nh->hop_limit;
151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152 key->ipv6.addr.src = nh->saddr;
153 key->ipv6.addr.dst = nh->daddr;
154
155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156 if (unlikely(payload_ofs < 0))
157 return -EINVAL;
158
159 if (frag_off) {
160 if (frag_off & htons(~0x7))
161 key->ip.frag = OVS_FRAG_TYPE_LATER;
162 else
163 key->ip.frag = OVS_FRAG_TYPE_FIRST;
164 }
165
166 nh_len = payload_ofs - nh_ofs;
167 skb_set_transport_header(skb, nh_ofs + nh_len);
168 key->ip.proto = nexthdr;
169 return nh_len;
170}
171
172static bool icmp6hdr_ok(struct sk_buff *skb)
173{
174 return pskb_may_pull(skb, skb_transport_offset(skb) +
175 sizeof(struct icmp6hdr));
176}
177
178#define TCP_FLAGS_OFFSET 13
179#define TCP_FLAG_MASK 0x3f
180
181void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182{
183 u8 tcp_flags = 0;
184
185 if (flow->key.eth.type == htons(ETH_P_IP) &&
186 flow->key.ip.proto == IPPROTO_TCP &&
187 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
188 u8 *tcp = (u8 *)tcp_hdr(skb);
189 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
190 }
191
192 spin_lock(&flow->lock);
193 flow->used = jiffies;
194 flow->packet_count++;
195 flow->byte_count += skb->len;
196 flow->tcp_flags |= tcp_flags;
197 spin_unlock(&flow->lock);
198}
199
200struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
201{
202 int actions_len = nla_len(actions);
203 struct sw_flow_actions *sfa;
204
205 /* At least DP_MAX_PORTS actions are required to be able to flood a
206 * packet to every port. Factor of 2 allows for setting VLAN tags,
207 * etc. */
208 if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
209 return ERR_PTR(-EINVAL);
210
211 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
212 if (!sfa)
213 return ERR_PTR(-ENOMEM);
214
215 sfa->actions_len = actions_len;
216 memcpy(sfa->actions, nla_data(actions), actions_len);
217 return sfa;
218}
219
220struct sw_flow *ovs_flow_alloc(void)
221{
222 struct sw_flow *flow;
223
224 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
225 if (!flow)
226 return ERR_PTR(-ENOMEM);
227
228 spin_lock_init(&flow->lock);
229 flow->sf_acts = NULL;
230
231 return flow;
232}
233
234static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
235{
236 hash = jhash_1word(hash, table->hash_seed);
237 return flex_array_get(table->buckets,
238 (hash & (table->n_buckets - 1)));
239}
240
241static struct flex_array *alloc_buckets(unsigned int n_buckets)
242{
243 struct flex_array *buckets;
244 int i, err;
245
246 buckets = flex_array_alloc(sizeof(struct hlist_head *),
247 n_buckets, GFP_KERNEL);
248 if (!buckets)
249 return NULL;
250
251 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
252 if (err) {
253 flex_array_free(buckets);
254 return NULL;
255 }
256
257 for (i = 0; i < n_buckets; i++)
258 INIT_HLIST_HEAD((struct hlist_head *)
259 flex_array_get(buckets, i));
260
261 return buckets;
262}
263
264static void free_buckets(struct flex_array *buckets)
265{
266 flex_array_free(buckets);
267}
268
269struct flow_table *ovs_flow_tbl_alloc(int new_size)
270{
271 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
272
273 if (!table)
274 return NULL;
275
276 table->buckets = alloc_buckets(new_size);
277
278 if (!table->buckets) {
279 kfree(table);
280 return NULL;
281 }
282 table->n_buckets = new_size;
283 table->count = 0;
284 table->node_ver = 0;
285 table->keep_flows = false;
286 get_random_bytes(&table->hash_seed, sizeof(u32));
287
288 return table;
289}
290
291void ovs_flow_tbl_destroy(struct flow_table *table)
292{
293 int i;
294
295 if (!table)
296 return;
297
298 if (table->keep_flows)
299 goto skip_flows;
300
301 for (i = 0; i < table->n_buckets; i++) {
302 struct sw_flow *flow;
303 struct hlist_head *head = flex_array_get(table->buckets, i);
304 struct hlist_node *node, *n;
305 int ver = table->node_ver;
306
307 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
308 hlist_del_rcu(&flow->hash_node[ver]);
309 ovs_flow_free(flow);
310 }
311 }
312
313skip_flows:
314 free_buckets(table->buckets);
315 kfree(table);
316}
317
318static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
319{
320 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
321
322 ovs_flow_tbl_destroy(table);
323}
324
325void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
326{
327 if (!table)
328 return;
329
330 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
331}
332
333struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
334{
335 struct sw_flow *flow;
336 struct hlist_head *head;
337 struct hlist_node *n;
338 int ver;
339 int i;
340
341 ver = table->node_ver;
342 while (*bucket < table->n_buckets) {
343 i = 0;
344 head = flex_array_get(table->buckets, *bucket);
345 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
346 if (i < *last) {
347 i++;
348 continue;
349 }
350 *last = i + 1;
351 return flow;
352 }
353 (*bucket)++;
354 *last = 0;
355 }
356
357 return NULL;
358}
359
360static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
361{
362 int old_ver;
363 int i;
364
365 old_ver = old->node_ver;
366 new->node_ver = !old_ver;
367
368 /* Insert in new table. */
369 for (i = 0; i < old->n_buckets; i++) {
370 struct sw_flow *flow;
371 struct hlist_head *head;
372 struct hlist_node *n;
373
374 head = flex_array_get(old->buckets, i);
375
376 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
377 ovs_flow_tbl_insert(new, flow);
378 }
379 old->keep_flows = true;
380}
381
382static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
383{
384 struct flow_table *new_table;
385
386 new_table = ovs_flow_tbl_alloc(n_buckets);
387 if (!new_table)
388 return ERR_PTR(-ENOMEM);
389
390 flow_table_copy_flows(table, new_table);
391
392 return new_table;
393}
394
395struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
396{
397 return __flow_tbl_rehash(table, table->n_buckets);
398}
399
400struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
401{
402 return __flow_tbl_rehash(table, table->n_buckets * 2);
403}
404
405void ovs_flow_free(struct sw_flow *flow)
406{
407 if (unlikely(!flow))
408 return;
409
410 kfree((struct sf_flow_acts __force *)flow->sf_acts);
411 kmem_cache_free(flow_cache, flow);
412}
413
414/* RCU callback used by ovs_flow_deferred_free. */
415static void rcu_free_flow_callback(struct rcu_head *rcu)
416{
417 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
418
419 ovs_flow_free(flow);
420}
421
422/* Schedules 'flow' to be freed after the next RCU grace period.
423 * The caller must hold rcu_read_lock for this to be sensible. */
424void ovs_flow_deferred_free(struct sw_flow *flow)
425{
426 call_rcu(&flow->rcu, rcu_free_flow_callback);
427}
428
429/* RCU callback used by ovs_flow_deferred_free_acts. */
430static void rcu_free_acts_callback(struct rcu_head *rcu)
431{
432 struct sw_flow_actions *sf_acts = container_of(rcu,
433 struct sw_flow_actions, rcu);
434 kfree(sf_acts);
435}
436
437/* Schedules 'sf_acts' to be freed after the next RCU grace period.
438 * The caller must hold rcu_read_lock for this to be sensible. */
439void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
440{
441 call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
442}
443
444static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
445{
446 struct qtag_prefix {
447 __be16 eth_type; /* ETH_P_8021Q */
448 __be16 tci;
449 };
450 struct qtag_prefix *qp;
451
452 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
453 return 0;
454
455 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
456 sizeof(__be16))))
457 return -ENOMEM;
458
459 qp = (struct qtag_prefix *) skb->data;
460 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
461 __skb_pull(skb, sizeof(struct qtag_prefix));
462
463 return 0;
464}
465
466static __be16 parse_ethertype(struct sk_buff *skb)
467{
468 struct llc_snap_hdr {
469 u8 dsap; /* Always 0xAA */
470 u8 ssap; /* Always 0xAA */
471 u8 ctrl;
472 u8 oui[3];
473 __be16 ethertype;
474 };
475 struct llc_snap_hdr *llc;
476 __be16 proto;
477
478 proto = *(__be16 *) skb->data;
479 __skb_pull(skb, sizeof(__be16));
480
481 if (ntohs(proto) >= 1536)
482 return proto;
483
484 if (skb->len < sizeof(struct llc_snap_hdr))
485 return htons(ETH_P_802_2);
486
487 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
488 return htons(0);
489
490 llc = (struct llc_snap_hdr *) skb->data;
491 if (llc->dsap != LLC_SAP_SNAP ||
492 llc->ssap != LLC_SAP_SNAP ||
493 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
494 return htons(ETH_P_802_2);
495
496 __skb_pull(skb, sizeof(struct llc_snap_hdr));
497 return llc->ethertype;
498}
499
500static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
501 int *key_lenp, int nh_len)
502{
503 struct icmp6hdr *icmp = icmp6_hdr(skb);
504 int error = 0;
505 int key_len;
506
507 /* The ICMPv6 type and code fields use the 16-bit transport port
508 * fields, so we need to store them in 16-bit network byte order.
509 */
510 key->ipv6.tp.src = htons(icmp->icmp6_type);
511 key->ipv6.tp.dst = htons(icmp->icmp6_code);
512 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
513
514 if (icmp->icmp6_code == 0 &&
515 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
516 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
517 int icmp_len = skb->len - skb_transport_offset(skb);
518 struct nd_msg *nd;
519 int offset;
520
521 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
522
523 /* In order to process neighbor discovery options, we need the
524 * entire packet.
525 */
526 if (unlikely(icmp_len < sizeof(*nd)))
527 goto out;
528 if (unlikely(skb_linearize(skb))) {
529 error = -ENOMEM;
530 goto out;
531 }
532
533 nd = (struct nd_msg *)skb_transport_header(skb);
534 key->ipv6.nd.target = nd->target;
535 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
536
537 icmp_len -= sizeof(*nd);
538 offset = 0;
539 while (icmp_len >= 8) {
540 struct nd_opt_hdr *nd_opt =
541 (struct nd_opt_hdr *)(nd->opt + offset);
542 int opt_len = nd_opt->nd_opt_len * 8;
543
544 if (unlikely(!opt_len || opt_len > icmp_len))
545 goto invalid;
546
547 /* Store the link layer address if the appropriate
548 * option is provided. It is considered an error if
549 * the same link layer option is specified twice.
550 */
551 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
552 && opt_len == 8) {
553 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
554 goto invalid;
555 memcpy(key->ipv6.nd.sll,
556 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
557 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
558 && opt_len == 8) {
559 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
560 goto invalid;
561 memcpy(key->ipv6.nd.tll,
562 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
563 }
564
565 icmp_len -= opt_len;
566 offset += opt_len;
567 }
568 }
569
570 goto out;
571
572invalid:
573 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
574 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
575 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
576
577out:
578 *key_lenp = key_len;
579 return error;
580}
581
582/**
583 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
584 * @skb: sk_buff that contains the frame, with skb->data pointing to the
585 * Ethernet header
586 * @in_port: port number on which @skb was received.
587 * @key: output flow key
588 * @key_lenp: length of output flow key
589 *
590 * The caller must ensure that skb->len >= ETH_HLEN.
591 *
592 * Returns 0 if successful, otherwise a negative errno value.
593 *
594 * Initializes @skb header pointers as follows:
595 *
596 * - skb->mac_header: the Ethernet header.
597 *
598 * - skb->network_header: just past the Ethernet header, or just past the
599 * VLAN header, to the first byte of the Ethernet payload.
600 *
601 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
602 * on output, then just past the IP header, if one is present and
603 * of a correct length, otherwise the same as skb->network_header.
604 * For other key->dl_type values it is left untouched.
605 */
606int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
607 int *key_lenp)
608{
609 int error = 0;
610 int key_len = SW_FLOW_KEY_OFFSET(eth);
611 struct ethhdr *eth;
612
613 memset(key, 0, sizeof(*key));
614
615 key->phy.priority = skb->priority;
616 key->phy.in_port = in_port;
617
618 skb_reset_mac_header(skb);
619
620 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
621 * header in the linear data area.
622 */
623 eth = eth_hdr(skb);
624 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
625 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
626
627 __skb_pull(skb, 2 * ETH_ALEN);
628
629 if (vlan_tx_tag_present(skb))
630 key->eth.tci = htons(skb->vlan_tci);
631 else if (eth->h_proto == htons(ETH_P_8021Q))
632 if (unlikely(parse_vlan(skb, key)))
633 return -ENOMEM;
634
635 key->eth.type = parse_ethertype(skb);
636 if (unlikely(key->eth.type == htons(0)))
637 return -ENOMEM;
638
639 skb_reset_network_header(skb);
640 __skb_push(skb, skb->data - skb_mac_header(skb));
641
642 /* Network layer. */
643 if (key->eth.type == htons(ETH_P_IP)) {
644 struct iphdr *nh;
645 __be16 offset;
646
647 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
648
649 error = check_iphdr(skb);
650 if (unlikely(error)) {
651 if (error == -EINVAL) {
652 skb->transport_header = skb->network_header;
653 error = 0;
654 }
655 goto out;
656 }
657
658 nh = ip_hdr(skb);
659 key->ipv4.addr.src = nh->saddr;
660 key->ipv4.addr.dst = nh->daddr;
661
662 key->ip.proto = nh->protocol;
663 key->ip.tos = nh->tos;
664 key->ip.ttl = nh->ttl;
665
666 offset = nh->frag_off & htons(IP_OFFSET);
667 if (offset) {
668 key->ip.frag = OVS_FRAG_TYPE_LATER;
669 goto out;
670 }
671 if (nh->frag_off & htons(IP_MF) ||
672 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
673 key->ip.frag = OVS_FRAG_TYPE_FIRST;
674
675 /* Transport layer. */
676 if (key->ip.proto == IPPROTO_TCP) {
677 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
678 if (tcphdr_ok(skb)) {
679 struct tcphdr *tcp = tcp_hdr(skb);
680 key->ipv4.tp.src = tcp->source;
681 key->ipv4.tp.dst = tcp->dest;
682 }
683 } else if (key->ip.proto == IPPROTO_UDP) {
684 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
685 if (udphdr_ok(skb)) {
686 struct udphdr *udp = udp_hdr(skb);
687 key->ipv4.tp.src = udp->source;
688 key->ipv4.tp.dst = udp->dest;
689 }
690 } else if (key->ip.proto == IPPROTO_ICMP) {
691 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
692 if (icmphdr_ok(skb)) {
693 struct icmphdr *icmp = icmp_hdr(skb);
694 /* The ICMP type and code fields use the 16-bit
695 * transport port fields, so we need to store
696 * them in 16-bit network byte order. */
697 key->ipv4.tp.src = htons(icmp->type);
698 key->ipv4.tp.dst = htons(icmp->code);
699 }
700 }
701
702 } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
703 struct arp_eth_header *arp;
704
705 arp = (struct arp_eth_header *)skb_network_header(skb);
706
707 if (arp->ar_hrd == htons(ARPHRD_ETHER)
708 && arp->ar_pro == htons(ETH_P_IP)
709 && arp->ar_hln == ETH_ALEN
710 && arp->ar_pln == 4) {
711
712 /* We only match on the lower 8 bits of the opcode. */
713 if (ntohs(arp->ar_op) <= 0xff)
714 key->ip.proto = ntohs(arp->ar_op);
715
716 if (key->ip.proto == ARPOP_REQUEST
717 || key->ip.proto == ARPOP_REPLY) {
718 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
719 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
720 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
721 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
722 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
723 }
724 }
725 } else if (key->eth.type == htons(ETH_P_IPV6)) {
726 int nh_len; /* IPv6 Header + Extensions */
727
728 nh_len = parse_ipv6hdr(skb, key, &key_len);
729 if (unlikely(nh_len < 0)) {
730 if (nh_len == -EINVAL)
731 skb->transport_header = skb->network_header;
732 else
733 error = nh_len;
734 goto out;
735 }
736
737 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
738 goto out;
739 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
740 key->ip.frag = OVS_FRAG_TYPE_FIRST;
741
742 /* Transport layer. */
743 if (key->ip.proto == NEXTHDR_TCP) {
744 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
745 if (tcphdr_ok(skb)) {
746 struct tcphdr *tcp = tcp_hdr(skb);
747 key->ipv6.tp.src = tcp->source;
748 key->ipv6.tp.dst = tcp->dest;
749 }
750 } else if (key->ip.proto == NEXTHDR_UDP) {
751 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
752 if (udphdr_ok(skb)) {
753 struct udphdr *udp = udp_hdr(skb);
754 key->ipv6.tp.src = udp->source;
755 key->ipv6.tp.dst = udp->dest;
756 }
757 } else if (key->ip.proto == NEXTHDR_ICMP) {
758 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
759 if (icmp6hdr_ok(skb)) {
760 error = parse_icmpv6(skb, key, &key_len, nh_len);
761 if (error < 0)
762 goto out;
763 }
764 }
765 }
766
767out:
768 *key_lenp = key_len;
769 return error;
770}
771
772u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
773{
774 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
775}
776
777struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
778 struct sw_flow_key *key, int key_len)
779{
780 struct sw_flow *flow;
781 struct hlist_node *n;
782 struct hlist_head *head;
783 u32 hash;
784
785 hash = ovs_flow_hash(key, key_len);
786
787 head = find_bucket(table, hash);
788 hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
789
790 if (flow->hash == hash &&
791 !memcmp(&flow->key, key, key_len)) {
792 return flow;
793 }
794 }
795 return NULL;
796}
797
798void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
799{
800 struct hlist_head *head;
801
802 head = find_bucket(table, flow->hash);
803 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
804 table->count++;
805}
806
807void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
808{
809 hlist_del_rcu(&flow->hash_node[table->node_ver]);
810 table->count--;
811 BUG_ON(table->count < 0);
812}
813
814/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
815const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
816 [OVS_KEY_ATTR_ENCAP] = -1,
817 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
818 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
819 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
820 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
821 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
822 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
823 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
824 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
825 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
826 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
827 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
828 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
829 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
830};
831
832static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
833 const struct nlattr *a[], u32 *attrs)
834{
835 const struct ovs_key_icmp *icmp_key;
836 const struct ovs_key_tcp *tcp_key;
837 const struct ovs_key_udp *udp_key;
838
839 switch (swkey->ip.proto) {
840 case IPPROTO_TCP:
841 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
842 return -EINVAL;
843 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
844
845 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
846 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
847 swkey->ipv4.tp.src = tcp_key->tcp_src;
848 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
849 break;
850
851 case IPPROTO_UDP:
852 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
853 return -EINVAL;
854 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
855
856 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
857 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
858 swkey->ipv4.tp.src = udp_key->udp_src;
859 swkey->ipv4.tp.dst = udp_key->udp_dst;
860 break;
861
862 case IPPROTO_ICMP:
863 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
864 return -EINVAL;
865 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
866
867 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
868 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
869 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
870 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
871 break;
872 }
873
874 return 0;
875}
876
877static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
878 const struct nlattr *a[], u32 *attrs)
879{
880 const struct ovs_key_icmpv6 *icmpv6_key;
881 const struct ovs_key_tcp *tcp_key;
882 const struct ovs_key_udp *udp_key;
883
884 switch (swkey->ip.proto) {
885 case IPPROTO_TCP:
886 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
887 return -EINVAL;
888 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
889
890 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
891 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
892 swkey->ipv6.tp.src = tcp_key->tcp_src;
893 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
894 break;
895
896 case IPPROTO_UDP:
897 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
898 return -EINVAL;
899 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
900
901 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
902 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
903 swkey->ipv6.tp.src = udp_key->udp_src;
904 swkey->ipv6.tp.dst = udp_key->udp_dst;
905 break;
906
907 case IPPROTO_ICMPV6:
908 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
909 return -EINVAL;
910 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
911
912 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
913 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
914 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
915 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
916
917 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
918 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
919 const struct ovs_key_nd *nd_key;
920
921 if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
922 return -EINVAL;
923 *attrs &= ~(1 << OVS_KEY_ATTR_ND);
924
925 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
926 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
927 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
928 sizeof(swkey->ipv6.nd.target));
929 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
930 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
931 }
932 break;
933 }
934
935 return 0;
936}
937
938static int parse_flow_nlattrs(const struct nlattr *attr,
939 const struct nlattr *a[], u32 *attrsp)
940{
941 const struct nlattr *nla;
942 u32 attrs;
943 int rem;
944
945 attrs = 0;
946 nla_for_each_nested(nla, attr, rem) {
947 u16 type = nla_type(nla);
948 int expected_len;
949
950 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
951 return -EINVAL;
952
953 expected_len = ovs_key_lens[type];
954 if (nla_len(nla) != expected_len && expected_len != -1)
955 return -EINVAL;
956
957 attrs |= 1 << type;
958 a[type] = nla;
959 }
960 if (rem)
961 return -EINVAL;
962
963 *attrsp = attrs;
964 return 0;
965}
966
967/**
968 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
969 * @swkey: receives the extracted flow key.
970 * @key_lenp: number of bytes used in @swkey.
971 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
972 * sequence.
973 */
974int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
975 const struct nlattr *attr)
976{
977 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
978 const struct ovs_key_ethernet *eth_key;
979 int key_len;
980 u32 attrs;
981 int err;
982
983 memset(swkey, 0, sizeof(struct sw_flow_key));
984 key_len = SW_FLOW_KEY_OFFSET(eth);
985
986 err = parse_flow_nlattrs(attr, a, &attrs);
987 if (err)
988 return err;
989
990 /* Metadata attributes. */
991 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
992 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
993 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
994 }
995 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
996 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
997 if (in_port >= DP_MAX_PORTS)
998 return -EINVAL;
999 swkey->phy.in_port = in_port;
1000 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1001 } else {
1002 swkey->phy.in_port = USHRT_MAX;
1003 }
1004
1005 /* Data attributes. */
1006 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1007 return -EINVAL;
1008 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1009
1010 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1011 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1012 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1013
1014 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1015 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1016 const struct nlattr *encap;
1017 __be16 tci;
1018
1019 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1020 (1 << OVS_KEY_ATTR_ETHERTYPE) |
1021 (1 << OVS_KEY_ATTR_ENCAP)))
1022 return -EINVAL;
1023
1024 encap = a[OVS_KEY_ATTR_ENCAP];
1025 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1026 if (tci & htons(VLAN_TAG_PRESENT)) {
1027 swkey->eth.tci = tci;
1028
1029 err = parse_flow_nlattrs(encap, a, &attrs);
1030 if (err)
1031 return err;
1032 } else if (!tci) {
1033 /* Corner case for truncated 802.1Q header. */
1034 if (nla_len(encap))
1035 return -EINVAL;
1036
1037 swkey->eth.type = htons(ETH_P_8021Q);
1038 *key_lenp = key_len;
1039 return 0;
1040 } else {
1041 return -EINVAL;
1042 }
1043 }
1044
1045 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1046 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1047 if (ntohs(swkey->eth.type) < 1536)
1048 return -EINVAL;
1049 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1050 } else {
1051 swkey->eth.type = htons(ETH_P_802_2);
1052 }
1053
1054 if (swkey->eth.type == htons(ETH_P_IP)) {
1055 const struct ovs_key_ipv4 *ipv4_key;
1056
1057 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1058 return -EINVAL;
1059 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1060
1061 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1062 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1063 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1064 return -EINVAL;
1065 swkey->ip.proto = ipv4_key->ipv4_proto;
1066 swkey->ip.tos = ipv4_key->ipv4_tos;
1067 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1068 swkey->ip.frag = ipv4_key->ipv4_frag;
1069 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1070 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1071
1072 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1073 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1074 if (err)
1075 return err;
1076 }
1077 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1078 const struct ovs_key_ipv6 *ipv6_key;
1079
1080 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1081 return -EINVAL;
1082 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1083
1084 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1085 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1086 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1087 return -EINVAL;
1088 swkey->ipv6.label = ipv6_key->ipv6_label;
1089 swkey->ip.proto = ipv6_key->ipv6_proto;
1090 swkey->ip.tos = ipv6_key->ipv6_tclass;
1091 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1092 swkey->ip.frag = ipv6_key->ipv6_frag;
1093 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1094 sizeof(swkey->ipv6.addr.src));
1095 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1096 sizeof(swkey->ipv6.addr.dst));
1097
1098 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1099 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1100 if (err)
1101 return err;
1102 }
1103 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1104 const struct ovs_key_arp *arp_key;
1105
1106 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1107 return -EINVAL;
1108 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1109
1110 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1111 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1112 swkey->ipv4.addr.src = arp_key->arp_sip;
1113 swkey->ipv4.addr.dst = arp_key->arp_tip;
1114 if (arp_key->arp_op & htons(0xff00))
1115 return -EINVAL;
1116 swkey->ip.proto = ntohs(arp_key->arp_op);
1117 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1118 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1119 }
1120
1121 if (attrs)
1122 return -EINVAL;
1123 *key_lenp = key_len;
1124
1125 return 0;
1126}
1127
1128/**
1129 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1130 * @in_port: receives the extracted input port.
1131 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1132 * sequence.
1133 *
1134 * This parses a series of Netlink attributes that form a flow key, which must
1135 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1136 * get the metadata, that is, the parts of the flow key that cannot be
1137 * extracted from the packet itself.
1138 */
1139int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1140 const struct nlattr *attr)
1141{
1142 const struct nlattr *nla;
1143 int rem;
1144
1145 *in_port = USHRT_MAX;
1146 *priority = 0;
1147
1148 nla_for_each_nested(nla, attr, rem) {
1149 int type = nla_type(nla);
1150
1151 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1152 if (nla_len(nla) != ovs_key_lens[type])
1153 return -EINVAL;
1154
1155 switch (type) {
1156 case OVS_KEY_ATTR_PRIORITY:
1157 *priority = nla_get_u32(nla);
1158 break;
1159
1160 case OVS_KEY_ATTR_IN_PORT:
1161 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1162 return -EINVAL;
1163 *in_port = nla_get_u32(nla);
1164 break;
1165 }
1166 }
1167 }
1168 if (rem)
1169 return -EINVAL;
1170 return 0;
1171}
1172
1173int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1174{
1175 struct ovs_key_ethernet *eth_key;
1176 struct nlattr *nla, *encap;
1177
1178 if (swkey->phy.priority &&
1179 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1180 goto nla_put_failure;
1181
1182 if (swkey->phy.in_port != USHRT_MAX &&
1183 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1184 goto nla_put_failure;
1185
1186 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1187 if (!nla)
1188 goto nla_put_failure;
1189 eth_key = nla_data(nla);
1190 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1191 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1192
1193 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1194 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1195 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1196 goto nla_put_failure;
1197 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1198 if (!swkey->eth.tci)
1199 goto unencap;
1200 } else {
1201 encap = NULL;
1202 }
1203
1204 if (swkey->eth.type == htons(ETH_P_802_2))
1205 goto unencap;
1206
1207 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1208 goto nla_put_failure;
1209
1210 if (swkey->eth.type == htons(ETH_P_IP)) {
1211 struct ovs_key_ipv4 *ipv4_key;
1212
1213 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1214 if (!nla)
1215 goto nla_put_failure;
1216 ipv4_key = nla_data(nla);
1217 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1218 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1219 ipv4_key->ipv4_proto = swkey->ip.proto;
1220 ipv4_key->ipv4_tos = swkey->ip.tos;
1221 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1222 ipv4_key->ipv4_frag = swkey->ip.frag;
1223 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1224 struct ovs_key_ipv6 *ipv6_key;
1225
1226 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1227 if (!nla)
1228 goto nla_put_failure;
1229 ipv6_key = nla_data(nla);
1230 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1231 sizeof(ipv6_key->ipv6_src));
1232 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1233 sizeof(ipv6_key->ipv6_dst));
1234 ipv6_key->ipv6_label = swkey->ipv6.label;
1235 ipv6_key->ipv6_proto = swkey->ip.proto;
1236 ipv6_key->ipv6_tclass = swkey->ip.tos;
1237 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1238 ipv6_key->ipv6_frag = swkey->ip.frag;
1239 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1240 struct ovs_key_arp *arp_key;
1241
1242 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1243 if (!nla)
1244 goto nla_put_failure;
1245 arp_key = nla_data(nla);
1246 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1247 arp_key->arp_sip = swkey->ipv4.addr.src;
1248 arp_key->arp_tip = swkey->ipv4.addr.dst;
1249 arp_key->arp_op = htons(swkey->ip.proto);
1250 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1251 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1252 }
1253
1254 if ((swkey->eth.type == htons(ETH_P_IP) ||
1255 swkey->eth.type == htons(ETH_P_IPV6)) &&
1256 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1257
1258 if (swkey->ip.proto == IPPROTO_TCP) {
1259 struct ovs_key_tcp *tcp_key;
1260
1261 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1262 if (!nla)
1263 goto nla_put_failure;
1264 tcp_key = nla_data(nla);
1265 if (swkey->eth.type == htons(ETH_P_IP)) {
1266 tcp_key->tcp_src = swkey->ipv4.tp.src;
1267 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1268 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1269 tcp_key->tcp_src = swkey->ipv6.tp.src;
1270 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1271 }
1272 } else if (swkey->ip.proto == IPPROTO_UDP) {
1273 struct ovs_key_udp *udp_key;
1274
1275 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1276 if (!nla)
1277 goto nla_put_failure;
1278 udp_key = nla_data(nla);
1279 if (swkey->eth.type == htons(ETH_P_IP)) {
1280 udp_key->udp_src = swkey->ipv4.tp.src;
1281 udp_key->udp_dst = swkey->ipv4.tp.dst;
1282 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1283 udp_key->udp_src = swkey->ipv6.tp.src;
1284 udp_key->udp_dst = swkey->ipv6.tp.dst;
1285 }
1286 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1287 swkey->ip.proto == IPPROTO_ICMP) {
1288 struct ovs_key_icmp *icmp_key;
1289
1290 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1291 if (!nla)
1292 goto nla_put_failure;
1293 icmp_key = nla_data(nla);
1294 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1295 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1296 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1297 swkey->ip.proto == IPPROTO_ICMPV6) {
1298 struct ovs_key_icmpv6 *icmpv6_key;
1299
1300 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1301 sizeof(*icmpv6_key));
1302 if (!nla)
1303 goto nla_put_failure;
1304 icmpv6_key = nla_data(nla);
1305 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1306 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1307
1308 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1309 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1310 struct ovs_key_nd *nd_key;
1311
1312 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1313 if (!nla)
1314 goto nla_put_failure;
1315 nd_key = nla_data(nla);
1316 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1317 sizeof(nd_key->nd_target));
1318 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1319 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1320 }
1321 }
1322 }
1323
1324unencap:
1325 if (encap)
1326 nla_nest_end(skb, encap);
1327
1328 return 0;
1329
1330nla_put_failure:
1331 return -EMSGSIZE;
1332}
1333
1334/* Initializes the flow module.
1335 * Returns zero if successful or a negative error code. */
1336int ovs_flow_init(void)
1337{
1338 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1339 0, NULL);
1340 if (flow_cache == NULL)
1341 return -ENOMEM;
1342
1343 return 0;
1344}
1345
1346/* Uninitializes the flow module. */
1347void ovs_flow_exit(void)
1348{
1349 kmem_cache_destroy(flow_cache);
1350}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6#include <linux/uaccess.h>
7#include <linux/netdevice.h>
8#include <linux/etherdevice.h>
9#include <linux/if_ether.h>
10#include <linux/if_vlan.h>
11#include <net/llc_pdu.h>
12#include <linux/kernel.h>
13#include <linux/jhash.h>
14#include <linux/jiffies.h>
15#include <linux/llc.h>
16#include <linux/module.h>
17#include <linux/in.h>
18#include <linux/rcupdate.h>
19#include <linux/cpumask.h>
20#include <linux/if_arp.h>
21#include <linux/ip.h>
22#include <linux/ipv6.h>
23#include <linux/mpls.h>
24#include <linux/sctp.h>
25#include <linux/smp.h>
26#include <linux/tcp.h>
27#include <linux/udp.h>
28#include <linux/icmp.h>
29#include <linux/icmpv6.h>
30#include <linux/rculist.h>
31#include <net/ip.h>
32#include <net/ip_tunnels.h>
33#include <net/ipv6.h>
34#include <net/mpls.h>
35#include <net/ndisc.h>
36#include <net/nsh.h>
37#include <net/pkt_cls.h>
38#include <net/netfilter/nf_conntrack_zones.h>
39
40#include "conntrack.h"
41#include "datapath.h"
42#include "flow.h"
43#include "flow_netlink.h"
44#include "vport.h"
45
46u64 ovs_flow_used_time(unsigned long flow_jiffies)
47{
48 struct timespec64 cur_ts;
49 u64 cur_ms, idle_ms;
50
51 ktime_get_ts64(&cur_ts);
52 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
53 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
54 cur_ts.tv_nsec / NSEC_PER_MSEC;
55
56 return cur_ms - idle_ms;
57}
58
59#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
60
61void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
62 const struct sk_buff *skb)
63{
64 struct sw_flow_stats *stats;
65 unsigned int cpu = smp_processor_id();
66 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
67
68 stats = rcu_dereference(flow->stats[cpu]);
69
70 /* Check if already have CPU-specific stats. */
71 if (likely(stats)) {
72 spin_lock(&stats->lock);
73 /* Mark if we write on the pre-allocated stats. */
74 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
75 flow->stats_last_writer = cpu;
76 } else {
77 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
78 spin_lock(&stats->lock);
79
80 /* If the current CPU is the only writer on the
81 * pre-allocated stats keep using them.
82 */
83 if (unlikely(flow->stats_last_writer != cpu)) {
84 /* A previous locker may have already allocated the
85 * stats, so we need to check again. If CPU-specific
86 * stats were already allocated, we update the pre-
87 * allocated stats as we have already locked them.
88 */
89 if (likely(flow->stats_last_writer != -1) &&
90 likely(!rcu_access_pointer(flow->stats[cpu]))) {
91 /* Try to allocate CPU-specific stats. */
92 struct sw_flow_stats *new_stats;
93
94 new_stats =
95 kmem_cache_alloc_node(flow_stats_cache,
96 GFP_NOWAIT |
97 __GFP_THISNODE |
98 __GFP_NOWARN |
99 __GFP_NOMEMALLOC,
100 numa_node_id());
101 if (likely(new_stats)) {
102 new_stats->used = jiffies;
103 new_stats->packet_count = 1;
104 new_stats->byte_count = len;
105 new_stats->tcp_flags = tcp_flags;
106 spin_lock_init(&new_stats->lock);
107
108 rcu_assign_pointer(flow->stats[cpu],
109 new_stats);
110 cpumask_set_cpu(cpu,
111 flow->cpu_used_mask);
112 goto unlock;
113 }
114 }
115 flow->stats_last_writer = cpu;
116 }
117 }
118
119 stats->used = jiffies;
120 stats->packet_count++;
121 stats->byte_count += len;
122 stats->tcp_flags |= tcp_flags;
123unlock:
124 spin_unlock(&stats->lock);
125}
126
127/* Must be called with rcu_read_lock or ovs_mutex. */
128void ovs_flow_stats_get(const struct sw_flow *flow,
129 struct ovs_flow_stats *ovs_stats,
130 unsigned long *used, __be16 *tcp_flags)
131{
132 int cpu;
133
134 *used = 0;
135 *tcp_flags = 0;
136 memset(ovs_stats, 0, sizeof(*ovs_stats));
137
138 /* We open code this to make sure cpu 0 is always considered */
139 for (cpu = 0; cpu < nr_cpu_ids;
140 cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
141 struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
142
143 if (stats) {
144 /* Local CPU may write on non-local stats, so we must
145 * block bottom-halves here.
146 */
147 spin_lock_bh(&stats->lock);
148 if (!*used || time_after(stats->used, *used))
149 *used = stats->used;
150 *tcp_flags |= stats->tcp_flags;
151 ovs_stats->n_packets += stats->packet_count;
152 ovs_stats->n_bytes += stats->byte_count;
153 spin_unlock_bh(&stats->lock);
154 }
155 }
156}
157
158/* Called with ovs_mutex. */
159void ovs_flow_stats_clear(struct sw_flow *flow)
160{
161 int cpu;
162
163 /* We open code this to make sure cpu 0 is always considered */
164 for (cpu = 0; cpu < nr_cpu_ids;
165 cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
166 struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
167
168 if (stats) {
169 spin_lock_bh(&stats->lock);
170 stats->used = 0;
171 stats->packet_count = 0;
172 stats->byte_count = 0;
173 stats->tcp_flags = 0;
174 spin_unlock_bh(&stats->lock);
175 }
176 }
177}
178
179static int check_header(struct sk_buff *skb, int len)
180{
181 if (unlikely(skb->len < len))
182 return -EINVAL;
183 if (unlikely(!pskb_may_pull(skb, len)))
184 return -ENOMEM;
185 return 0;
186}
187
188static bool arphdr_ok(struct sk_buff *skb)
189{
190 return pskb_may_pull(skb, skb_network_offset(skb) +
191 sizeof(struct arp_eth_header));
192}
193
194static int check_iphdr(struct sk_buff *skb)
195{
196 unsigned int nh_ofs = skb_network_offset(skb);
197 unsigned int ip_len;
198 int err;
199
200 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
201 if (unlikely(err))
202 return err;
203
204 ip_len = ip_hdrlen(skb);
205 if (unlikely(ip_len < sizeof(struct iphdr) ||
206 skb->len < nh_ofs + ip_len))
207 return -EINVAL;
208
209 skb_set_transport_header(skb, nh_ofs + ip_len);
210 return 0;
211}
212
213static bool tcphdr_ok(struct sk_buff *skb)
214{
215 int th_ofs = skb_transport_offset(skb);
216 int tcp_len;
217
218 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
219 return false;
220
221 tcp_len = tcp_hdrlen(skb);
222 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
223 skb->len < th_ofs + tcp_len))
224 return false;
225
226 return true;
227}
228
229static bool udphdr_ok(struct sk_buff *skb)
230{
231 return pskb_may_pull(skb, skb_transport_offset(skb) +
232 sizeof(struct udphdr));
233}
234
235static bool sctphdr_ok(struct sk_buff *skb)
236{
237 return pskb_may_pull(skb, skb_transport_offset(skb) +
238 sizeof(struct sctphdr));
239}
240
241static bool icmphdr_ok(struct sk_buff *skb)
242{
243 return pskb_may_pull(skb, skb_transport_offset(skb) +
244 sizeof(struct icmphdr));
245}
246
247/**
248 * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
249 *
250 * @skb: buffer where extension header data starts in packet
251 * @nh: ipv6 header
252 * @ext_hdrs: flags are stored here
253 *
254 * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
255 * is unexpectedly encountered. (Two destination options headers may be
256 * expected and would not cause this bit to be set.)
257 *
258 * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
259 * preferred (but not required) by RFC 2460:
260 *
261 * When more than one extension header is used in the same packet, it is
262 * recommended that those headers appear in the following order:
263 * IPv6 header
264 * Hop-by-Hop Options header
265 * Destination Options header
266 * Routing header
267 * Fragment header
268 * Authentication header
269 * Encapsulating Security Payload header
270 * Destination Options header
271 * upper-layer header
272 */
273static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
274 u16 *ext_hdrs)
275{
276 u8 next_type = nh->nexthdr;
277 unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
278 int dest_options_header_count = 0;
279
280 *ext_hdrs = 0;
281
282 while (ipv6_ext_hdr(next_type)) {
283 struct ipv6_opt_hdr _hdr, *hp;
284
285 switch (next_type) {
286 case IPPROTO_NONE:
287 *ext_hdrs |= OFPIEH12_NONEXT;
288 /* stop parsing */
289 return;
290
291 case IPPROTO_ESP:
292 if (*ext_hdrs & OFPIEH12_ESP)
293 *ext_hdrs |= OFPIEH12_UNREP;
294 if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
295 OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
296 OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
297 dest_options_header_count >= 2) {
298 *ext_hdrs |= OFPIEH12_UNSEQ;
299 }
300 *ext_hdrs |= OFPIEH12_ESP;
301 break;
302
303 case IPPROTO_AH:
304 if (*ext_hdrs & OFPIEH12_AUTH)
305 *ext_hdrs |= OFPIEH12_UNREP;
306 if ((*ext_hdrs &
307 ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
308 IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
309 dest_options_header_count >= 2) {
310 *ext_hdrs |= OFPIEH12_UNSEQ;
311 }
312 *ext_hdrs |= OFPIEH12_AUTH;
313 break;
314
315 case IPPROTO_DSTOPTS:
316 if (dest_options_header_count == 0) {
317 if (*ext_hdrs &
318 ~(OFPIEH12_HOP | OFPIEH12_UNREP))
319 *ext_hdrs |= OFPIEH12_UNSEQ;
320 *ext_hdrs |= OFPIEH12_DEST;
321 } else if (dest_options_header_count == 1) {
322 if (*ext_hdrs &
323 ~(OFPIEH12_HOP | OFPIEH12_DEST |
324 OFPIEH12_ROUTER | OFPIEH12_FRAG |
325 OFPIEH12_AUTH | OFPIEH12_ESP |
326 OFPIEH12_UNREP)) {
327 *ext_hdrs |= OFPIEH12_UNSEQ;
328 }
329 } else {
330 *ext_hdrs |= OFPIEH12_UNREP;
331 }
332 dest_options_header_count++;
333 break;
334
335 case IPPROTO_FRAGMENT:
336 if (*ext_hdrs & OFPIEH12_FRAG)
337 *ext_hdrs |= OFPIEH12_UNREP;
338 if ((*ext_hdrs & ~(OFPIEH12_HOP |
339 OFPIEH12_DEST |
340 OFPIEH12_ROUTER |
341 OFPIEH12_UNREP)) ||
342 dest_options_header_count >= 2) {
343 *ext_hdrs |= OFPIEH12_UNSEQ;
344 }
345 *ext_hdrs |= OFPIEH12_FRAG;
346 break;
347
348 case IPPROTO_ROUTING:
349 if (*ext_hdrs & OFPIEH12_ROUTER)
350 *ext_hdrs |= OFPIEH12_UNREP;
351 if ((*ext_hdrs & ~(OFPIEH12_HOP |
352 OFPIEH12_DEST |
353 OFPIEH12_UNREP)) ||
354 dest_options_header_count >= 2) {
355 *ext_hdrs |= OFPIEH12_UNSEQ;
356 }
357 *ext_hdrs |= OFPIEH12_ROUTER;
358 break;
359
360 case IPPROTO_HOPOPTS:
361 if (*ext_hdrs & OFPIEH12_HOP)
362 *ext_hdrs |= OFPIEH12_UNREP;
363 /* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
364 * extension header is present as the first
365 * extension header in the packet.
366 */
367 if (*ext_hdrs == 0)
368 *ext_hdrs |= OFPIEH12_HOP;
369 else
370 *ext_hdrs |= OFPIEH12_UNSEQ;
371 break;
372
373 default:
374 return;
375 }
376
377 hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
378 if (!hp)
379 break;
380 next_type = hp->nexthdr;
381 start += ipv6_optlen(hp);
382 }
383}
384
385static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
386{
387 unsigned short frag_off;
388 unsigned int payload_ofs = 0;
389 unsigned int nh_ofs = skb_network_offset(skb);
390 unsigned int nh_len;
391 struct ipv6hdr *nh;
392 int err, nexthdr, flags = 0;
393
394 err = check_header(skb, nh_ofs + sizeof(*nh));
395 if (unlikely(err))
396 return err;
397
398 nh = ipv6_hdr(skb);
399
400 get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
401
402 key->ip.proto = NEXTHDR_NONE;
403 key->ip.tos = ipv6_get_dsfield(nh);
404 key->ip.ttl = nh->hop_limit;
405 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
406 key->ipv6.addr.src = nh->saddr;
407 key->ipv6.addr.dst = nh->daddr;
408
409 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
410 if (flags & IP6_FH_F_FRAG) {
411 if (frag_off) {
412 key->ip.frag = OVS_FRAG_TYPE_LATER;
413 key->ip.proto = NEXTHDR_FRAGMENT;
414 return 0;
415 }
416 key->ip.frag = OVS_FRAG_TYPE_FIRST;
417 } else {
418 key->ip.frag = OVS_FRAG_TYPE_NONE;
419 }
420
421 /* Delayed handling of error in ipv6_find_hdr() as it
422 * always sets flags and frag_off to a valid value which may be
423 * used to set key->ip.frag above.
424 */
425 if (unlikely(nexthdr < 0))
426 return -EPROTO;
427
428 nh_len = payload_ofs - nh_ofs;
429 skb_set_transport_header(skb, nh_ofs + nh_len);
430 key->ip.proto = nexthdr;
431 return nh_len;
432}
433
434static bool icmp6hdr_ok(struct sk_buff *skb)
435{
436 return pskb_may_pull(skb, skb_transport_offset(skb) +
437 sizeof(struct icmp6hdr));
438}
439
440/**
441 * parse_vlan_tag - Parse vlan tag from vlan header.
442 * @skb: skb containing frame to parse
443 * @key_vh: pointer to parsed vlan tag
444 * @untag_vlan: should the vlan header be removed from the frame
445 *
446 * Return: ERROR on memory error.
447 * %0 if it encounters a non-vlan or incomplete packet.
448 * %1 after successfully parsing vlan tag.
449 */
450static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
451 bool untag_vlan)
452{
453 struct vlan_head *vh = (struct vlan_head *)skb->data;
454
455 if (likely(!eth_type_vlan(vh->tpid)))
456 return 0;
457
458 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
459 return 0;
460
461 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
462 sizeof(__be16))))
463 return -ENOMEM;
464
465 vh = (struct vlan_head *)skb->data;
466 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
467 key_vh->tpid = vh->tpid;
468
469 if (unlikely(untag_vlan)) {
470 int offset = skb->data - skb_mac_header(skb);
471 u16 tci;
472 int err;
473
474 __skb_push(skb, offset);
475 err = __skb_vlan_pop(skb, &tci);
476 __skb_pull(skb, offset);
477 if (err)
478 return err;
479 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
480 } else {
481 __skb_pull(skb, sizeof(struct vlan_head));
482 }
483 return 1;
484}
485
486static void clear_vlan(struct sw_flow_key *key)
487{
488 key->eth.vlan.tci = 0;
489 key->eth.vlan.tpid = 0;
490 key->eth.cvlan.tci = 0;
491 key->eth.cvlan.tpid = 0;
492}
493
494static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
495{
496 int res;
497
498 if (skb_vlan_tag_present(skb)) {
499 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
500 key->eth.vlan.tpid = skb->vlan_proto;
501 } else {
502 /* Parse outer vlan tag in the non-accelerated case. */
503 res = parse_vlan_tag(skb, &key->eth.vlan, true);
504 if (res <= 0)
505 return res;
506 }
507
508 /* Parse inner vlan tag. */
509 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
510 if (res <= 0)
511 return res;
512
513 return 0;
514}
515
516static __be16 parse_ethertype(struct sk_buff *skb)
517{
518 struct llc_snap_hdr {
519 u8 dsap; /* Always 0xAA */
520 u8 ssap; /* Always 0xAA */
521 u8 ctrl;
522 u8 oui[3];
523 __be16 ethertype;
524 };
525 struct llc_snap_hdr *llc;
526 __be16 proto;
527
528 proto = *(__be16 *) skb->data;
529 __skb_pull(skb, sizeof(__be16));
530
531 if (eth_proto_is_802_3(proto))
532 return proto;
533
534 if (skb->len < sizeof(struct llc_snap_hdr))
535 return htons(ETH_P_802_2);
536
537 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
538 return htons(0);
539
540 llc = (struct llc_snap_hdr *) skb->data;
541 if (llc->dsap != LLC_SAP_SNAP ||
542 llc->ssap != LLC_SAP_SNAP ||
543 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
544 return htons(ETH_P_802_2);
545
546 __skb_pull(skb, sizeof(struct llc_snap_hdr));
547
548 if (eth_proto_is_802_3(llc->ethertype))
549 return llc->ethertype;
550
551 return htons(ETH_P_802_2);
552}
553
554static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
555 int nh_len)
556{
557 struct icmp6hdr *icmp = icmp6_hdr(skb);
558
559 /* The ICMPv6 type and code fields use the 16-bit transport port
560 * fields, so we need to store them in 16-bit network byte order.
561 */
562 key->tp.src = htons(icmp->icmp6_type);
563 key->tp.dst = htons(icmp->icmp6_code);
564 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
565
566 if (icmp->icmp6_code == 0 &&
567 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
568 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
569 int icmp_len = skb->len - skb_transport_offset(skb);
570 struct nd_msg *nd;
571 int offset;
572
573 /* In order to process neighbor discovery options, we need the
574 * entire packet.
575 */
576 if (unlikely(icmp_len < sizeof(*nd)))
577 return 0;
578
579 if (unlikely(skb_linearize(skb)))
580 return -ENOMEM;
581
582 nd = (struct nd_msg *)skb_transport_header(skb);
583 key->ipv6.nd.target = nd->target;
584
585 icmp_len -= sizeof(*nd);
586 offset = 0;
587 while (icmp_len >= 8) {
588 struct nd_opt_hdr *nd_opt =
589 (struct nd_opt_hdr *)(nd->opt + offset);
590 int opt_len = nd_opt->nd_opt_len * 8;
591
592 if (unlikely(!opt_len || opt_len > icmp_len))
593 return 0;
594
595 /* Store the link layer address if the appropriate
596 * option is provided. It is considered an error if
597 * the same link layer option is specified twice.
598 */
599 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
600 && opt_len == 8) {
601 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
602 goto invalid;
603 ether_addr_copy(key->ipv6.nd.sll,
604 &nd->opt[offset+sizeof(*nd_opt)]);
605 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
606 && opt_len == 8) {
607 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
608 goto invalid;
609 ether_addr_copy(key->ipv6.nd.tll,
610 &nd->opt[offset+sizeof(*nd_opt)]);
611 }
612
613 icmp_len -= opt_len;
614 offset += opt_len;
615 }
616 }
617
618 return 0;
619
620invalid:
621 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
622 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
623 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
624
625 return 0;
626}
627
628static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
629{
630 struct nshhdr *nh;
631 unsigned int nh_ofs = skb_network_offset(skb);
632 u8 version, length;
633 int err;
634
635 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
636 if (unlikely(err))
637 return err;
638
639 nh = nsh_hdr(skb);
640 version = nsh_get_ver(nh);
641 length = nsh_hdr_len(nh);
642
643 if (version != 0)
644 return -EINVAL;
645
646 err = check_header(skb, nh_ofs + length);
647 if (unlikely(err))
648 return err;
649
650 nh = nsh_hdr(skb);
651 key->nsh.base.flags = nsh_get_flags(nh);
652 key->nsh.base.ttl = nsh_get_ttl(nh);
653 key->nsh.base.mdtype = nh->mdtype;
654 key->nsh.base.np = nh->np;
655 key->nsh.base.path_hdr = nh->path_hdr;
656 switch (key->nsh.base.mdtype) {
657 case NSH_M_TYPE1:
658 if (length != NSH_M_TYPE1_LEN)
659 return -EINVAL;
660 memcpy(key->nsh.context, nh->md1.context,
661 sizeof(nh->md1));
662 break;
663 case NSH_M_TYPE2:
664 memset(key->nsh.context, 0,
665 sizeof(nh->md1));
666 break;
667 default:
668 return -EINVAL;
669 }
670
671 return 0;
672}
673
674/**
675 * key_extract_l3l4 - extracts L3/L4 header information.
676 * @skb: sk_buff that contains the frame, with skb->data pointing to the
677 * L3 header
678 * @key: output flow key
679 *
680 * Return: %0 if successful, otherwise a negative errno value.
681 */
682static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
683{
684 int error;
685
686 /* Network layer. */
687 if (key->eth.type == htons(ETH_P_IP)) {
688 struct iphdr *nh;
689 __be16 offset;
690
691 error = check_iphdr(skb);
692 if (unlikely(error)) {
693 memset(&key->ip, 0, sizeof(key->ip));
694 memset(&key->ipv4, 0, sizeof(key->ipv4));
695 if (error == -EINVAL) {
696 skb->transport_header = skb->network_header;
697 error = 0;
698 }
699 return error;
700 }
701
702 nh = ip_hdr(skb);
703 key->ipv4.addr.src = nh->saddr;
704 key->ipv4.addr.dst = nh->daddr;
705
706 key->ip.proto = nh->protocol;
707 key->ip.tos = nh->tos;
708 key->ip.ttl = nh->ttl;
709
710 offset = nh->frag_off & htons(IP_OFFSET);
711 if (offset) {
712 key->ip.frag = OVS_FRAG_TYPE_LATER;
713 memset(&key->tp, 0, sizeof(key->tp));
714 return 0;
715 }
716 if (nh->frag_off & htons(IP_MF) ||
717 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
718 key->ip.frag = OVS_FRAG_TYPE_FIRST;
719 else
720 key->ip.frag = OVS_FRAG_TYPE_NONE;
721
722 /* Transport layer. */
723 if (key->ip.proto == IPPROTO_TCP) {
724 if (tcphdr_ok(skb)) {
725 struct tcphdr *tcp = tcp_hdr(skb);
726 key->tp.src = tcp->source;
727 key->tp.dst = tcp->dest;
728 key->tp.flags = TCP_FLAGS_BE16(tcp);
729 } else {
730 memset(&key->tp, 0, sizeof(key->tp));
731 }
732
733 } else if (key->ip.proto == IPPROTO_UDP) {
734 if (udphdr_ok(skb)) {
735 struct udphdr *udp = udp_hdr(skb);
736 key->tp.src = udp->source;
737 key->tp.dst = udp->dest;
738 } else {
739 memset(&key->tp, 0, sizeof(key->tp));
740 }
741 } else if (key->ip.proto == IPPROTO_SCTP) {
742 if (sctphdr_ok(skb)) {
743 struct sctphdr *sctp = sctp_hdr(skb);
744 key->tp.src = sctp->source;
745 key->tp.dst = sctp->dest;
746 } else {
747 memset(&key->tp, 0, sizeof(key->tp));
748 }
749 } else if (key->ip.proto == IPPROTO_ICMP) {
750 if (icmphdr_ok(skb)) {
751 struct icmphdr *icmp = icmp_hdr(skb);
752 /* The ICMP type and code fields use the 16-bit
753 * transport port fields, so we need to store
754 * them in 16-bit network byte order. */
755 key->tp.src = htons(icmp->type);
756 key->tp.dst = htons(icmp->code);
757 } else {
758 memset(&key->tp, 0, sizeof(key->tp));
759 }
760 }
761
762 } else if (key->eth.type == htons(ETH_P_ARP) ||
763 key->eth.type == htons(ETH_P_RARP)) {
764 struct arp_eth_header *arp;
765 bool arp_available = arphdr_ok(skb);
766
767 arp = (struct arp_eth_header *)skb_network_header(skb);
768
769 if (arp_available &&
770 arp->ar_hrd == htons(ARPHRD_ETHER) &&
771 arp->ar_pro == htons(ETH_P_IP) &&
772 arp->ar_hln == ETH_ALEN &&
773 arp->ar_pln == 4) {
774
775 /* We only match on the lower 8 bits of the opcode. */
776 if (ntohs(arp->ar_op) <= 0xff)
777 key->ip.proto = ntohs(arp->ar_op);
778 else
779 key->ip.proto = 0;
780
781 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
782 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
783 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
784 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
785 } else {
786 memset(&key->ip, 0, sizeof(key->ip));
787 memset(&key->ipv4, 0, sizeof(key->ipv4));
788 }
789 } else if (eth_p_mpls(key->eth.type)) {
790 u8 label_count = 1;
791
792 memset(&key->mpls, 0, sizeof(key->mpls));
793 skb_set_inner_network_header(skb, skb->mac_len);
794 while (1) {
795 __be32 lse;
796
797 error = check_header(skb, skb->mac_len +
798 label_count * MPLS_HLEN);
799 if (unlikely(error))
800 return 0;
801
802 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
803
804 if (label_count <= MPLS_LABEL_DEPTH)
805 memcpy(&key->mpls.lse[label_count - 1], &lse,
806 MPLS_HLEN);
807
808 skb_set_inner_network_header(skb, skb->mac_len +
809 label_count * MPLS_HLEN);
810 if (lse & htonl(MPLS_LS_S_MASK))
811 break;
812
813 label_count++;
814 }
815 if (label_count > MPLS_LABEL_DEPTH)
816 label_count = MPLS_LABEL_DEPTH;
817
818 key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
819 } else if (key->eth.type == htons(ETH_P_IPV6)) {
820 int nh_len; /* IPv6 Header + Extensions */
821
822 nh_len = parse_ipv6hdr(skb, key);
823 if (unlikely(nh_len < 0)) {
824 switch (nh_len) {
825 case -EINVAL:
826 memset(&key->ip, 0, sizeof(key->ip));
827 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
828 fallthrough;
829 case -EPROTO:
830 skb->transport_header = skb->network_header;
831 error = 0;
832 break;
833 default:
834 error = nh_len;
835 }
836 return error;
837 }
838
839 if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
840 memset(&key->tp, 0, sizeof(key->tp));
841 return 0;
842 }
843 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
844 key->ip.frag = OVS_FRAG_TYPE_FIRST;
845
846 /* Transport layer. */
847 if (key->ip.proto == NEXTHDR_TCP) {
848 if (tcphdr_ok(skb)) {
849 struct tcphdr *tcp = tcp_hdr(skb);
850 key->tp.src = tcp->source;
851 key->tp.dst = tcp->dest;
852 key->tp.flags = TCP_FLAGS_BE16(tcp);
853 } else {
854 memset(&key->tp, 0, sizeof(key->tp));
855 }
856 } else if (key->ip.proto == NEXTHDR_UDP) {
857 if (udphdr_ok(skb)) {
858 struct udphdr *udp = udp_hdr(skb);
859 key->tp.src = udp->source;
860 key->tp.dst = udp->dest;
861 } else {
862 memset(&key->tp, 0, sizeof(key->tp));
863 }
864 } else if (key->ip.proto == NEXTHDR_SCTP) {
865 if (sctphdr_ok(skb)) {
866 struct sctphdr *sctp = sctp_hdr(skb);
867 key->tp.src = sctp->source;
868 key->tp.dst = sctp->dest;
869 } else {
870 memset(&key->tp, 0, sizeof(key->tp));
871 }
872 } else if (key->ip.proto == NEXTHDR_ICMP) {
873 if (icmp6hdr_ok(skb)) {
874 error = parse_icmpv6(skb, key, nh_len);
875 if (error)
876 return error;
877 } else {
878 memset(&key->tp, 0, sizeof(key->tp));
879 }
880 }
881 } else if (key->eth.type == htons(ETH_P_NSH)) {
882 error = parse_nsh(skb, key);
883 if (error)
884 return error;
885 }
886 return 0;
887}
888
889/**
890 * key_extract - extracts a flow key from an Ethernet frame.
891 * @skb: sk_buff that contains the frame, with skb->data pointing to the
892 * Ethernet header
893 * @key: output flow key
894 *
895 * The caller must ensure that skb->len >= ETH_HLEN.
896 *
897 * Initializes @skb header fields as follows:
898 *
899 * - skb->mac_header: the L2 header.
900 *
901 * - skb->network_header: just past the L2 header, or just past the
902 * VLAN header, to the first byte of the L2 payload.
903 *
904 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
905 * on output, then just past the IP header, if one is present and
906 * of a correct length, otherwise the same as skb->network_header.
907 * For other key->eth.type values it is left untouched.
908 *
909 * - skb->protocol: the type of the data starting at skb->network_header.
910 * Equals to key->eth.type.
911 *
912 * Return: %0 if successful, otherwise a negative errno value.
913 */
914static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
915{
916 struct ethhdr *eth;
917
918 /* Flags are always used as part of stats */
919 key->tp.flags = 0;
920
921 skb_reset_mac_header(skb);
922
923 /* Link layer. */
924 clear_vlan(key);
925 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
926 if (unlikely(eth_type_vlan(skb->protocol)))
927 return -EINVAL;
928
929 skb_reset_network_header(skb);
930 key->eth.type = skb->protocol;
931 } else {
932 eth = eth_hdr(skb);
933 ether_addr_copy(key->eth.src, eth->h_source);
934 ether_addr_copy(key->eth.dst, eth->h_dest);
935
936 __skb_pull(skb, 2 * ETH_ALEN);
937 /* We are going to push all headers that we pull, so no need to
938 * update skb->csum here.
939 */
940
941 if (unlikely(parse_vlan(skb, key)))
942 return -ENOMEM;
943
944 key->eth.type = parse_ethertype(skb);
945 if (unlikely(key->eth.type == htons(0)))
946 return -ENOMEM;
947
948 /* Multiple tagged packets need to retain TPID to satisfy
949 * skb_vlan_pop(), which will later shift the ethertype into
950 * skb->protocol.
951 */
952 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
953 skb->protocol = key->eth.cvlan.tpid;
954 else
955 skb->protocol = key->eth.type;
956
957 skb_reset_network_header(skb);
958 __skb_push(skb, skb->data - skb_mac_header(skb));
959 }
960
961 skb_reset_mac_len(skb);
962
963 /* Fill out L3/L4 key info, if any */
964 return key_extract_l3l4(skb, key);
965}
966
967/* In the case of conntrack fragment handling it expects L3 headers,
968 * add a helper.
969 */
970int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
971{
972 return key_extract_l3l4(skb, key);
973}
974
975int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
976{
977 int res;
978
979 res = key_extract(skb, key);
980 if (!res)
981 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
982
983 return res;
984}
985
986static int key_extract_mac_proto(struct sk_buff *skb)
987{
988 switch (skb->dev->type) {
989 case ARPHRD_ETHER:
990 return MAC_PROTO_ETHERNET;
991 case ARPHRD_NONE:
992 if (skb->protocol == htons(ETH_P_TEB))
993 return MAC_PROTO_ETHERNET;
994 return MAC_PROTO_NONE;
995 }
996 WARN_ON_ONCE(1);
997 return -EINVAL;
998}
999
1000int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
1001 struct sk_buff *skb, struct sw_flow_key *key)
1002{
1003#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1004 struct tc_skb_ext *tc_ext;
1005#endif
1006 bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
1007 int res, err;
1008 u16 zone = 0;
1009
1010 /* Extract metadata from packet. */
1011 if (tun_info) {
1012 key->tun_proto = ip_tunnel_info_af(tun_info);
1013 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
1014
1015 if (tun_info->options_len) {
1016 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
1017 8)) - 1
1018 > sizeof(key->tun_opts));
1019
1020 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
1021 tun_info);
1022 key->tun_opts_len = tun_info->options_len;
1023 } else {
1024 key->tun_opts_len = 0;
1025 }
1026 } else {
1027 key->tun_proto = 0;
1028 key->tun_opts_len = 0;
1029 memset(&key->tun_key, 0, sizeof(key->tun_key));
1030 }
1031
1032 key->phy.priority = skb->priority;
1033 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
1034 key->phy.skb_mark = skb->mark;
1035 key->ovs_flow_hash = 0;
1036 res = key_extract_mac_proto(skb);
1037 if (res < 0)
1038 return res;
1039 key->mac_proto = res;
1040
1041#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1042 if (tc_skb_ext_tc_enabled()) {
1043 tc_ext = skb_ext_find(skb, TC_SKB_EXT);
1044 key->recirc_id = tc_ext && !tc_ext->act_miss ?
1045 tc_ext->chain : 0;
1046 OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
1047 post_ct = tc_ext ? tc_ext->post_ct : false;
1048 post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
1049 post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
1050 zone = post_ct ? tc_ext->zone : 0;
1051 } else {
1052 key->recirc_id = 0;
1053 }
1054#else
1055 key->recirc_id = 0;
1056#endif
1057
1058 err = key_extract(skb, key);
1059 if (!err) {
1060 ovs_ct_fill_key(skb, key, post_ct); /* Must be after key_extract(). */
1061 if (post_ct) {
1062 if (!skb_get_nfct(skb)) {
1063 key->ct_zone = zone;
1064 } else {
1065 if (!post_ct_dnat)
1066 key->ct_state &= ~OVS_CS_F_DST_NAT;
1067 if (!post_ct_snat)
1068 key->ct_state &= ~OVS_CS_F_SRC_NAT;
1069 }
1070 }
1071 }
1072 return err;
1073}
1074
1075int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
1076 struct sk_buff *skb,
1077 struct sw_flow_key *key, bool log)
1078{
1079 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1080 u64 attrs = 0;
1081 int err;
1082
1083 err = parse_flow_nlattrs(attr, a, &attrs, log);
1084 if (err)
1085 return -EINVAL;
1086
1087 /* Extract metadata from netlink attributes. */
1088 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
1089 if (err)
1090 return err;
1091
1092 /* key_extract assumes that skb->protocol is set-up for
1093 * layer 3 packets which is the case for other callers,
1094 * in particular packets received from the network stack.
1095 * Here the correct value can be set from the metadata
1096 * extracted above.
1097 * For L2 packet key eth type would be zero. skb protocol
1098 * would be set to correct value later during key-extact.
1099 */
1100
1101 skb->protocol = key->eth.type;
1102 err = key_extract(skb, key);
1103 if (err)
1104 return err;
1105
1106 /* Check that we have conntrack original direction tuple metadata only
1107 * for packets for which it makes sense. Otherwise the key may be
1108 * corrupted due to overlapping key fields.
1109 */
1110 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
1111 key->eth.type != htons(ETH_P_IP))
1112 return -EINVAL;
1113 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
1114 (key->eth.type != htons(ETH_P_IPV6) ||
1115 sw_flow_key_is_nd(key)))
1116 return -EINVAL;
1117
1118 return 0;
1119}