Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36 .sysctl_max_tw_buckets = NR_FILE * 2,
37 .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 .hashinfo = &tcp_hashinfo,
40 .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 (unsigned long)&tcp_death_row),
42 .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46 .twcal_hand = -1,
47 .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52/* VJ's idea. Save last timestamp seen from this destination
53 * and hold it at least for normal timewait interval to use for duplicate
54 * segment detection in subsequent connections, before they enter synchronized
55 * state.
56 */
57
58static bool tcp_remember_stamp(struct sock *sk)
59{
60 const struct inet_connection_sock *icsk = inet_csk(sk);
61 struct tcp_sock *tp = tcp_sk(sk);
62 struct inet_peer *peer;
63 bool release_it;
64
65 peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
66 if (peer) {
67 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
68 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
69 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
70 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
71 peer->tcp_ts = tp->rx_opt.ts_recent;
72 }
73 if (release_it)
74 inet_putpeer(peer);
75 return true;
76 }
77
78 return false;
79}
80
81static bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
82{
83 struct sock *sk = (struct sock *) tw;
84 struct inet_peer *peer;
85
86 peer = twsk_getpeer(sk);
87 if (peer) {
88 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
89
90 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
91 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
92 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
93 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
94 peer->tcp_ts = tcptw->tw_ts_recent;
95 }
96 inet_putpeer(peer);
97 return true;
98 }
99 return false;
100}
101
102static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103{
104 if (seq == s_win)
105 return true;
106 if (after(end_seq, s_win) && before(seq, e_win))
107 return true;
108 return seq == e_win && seq == end_seq;
109}
110
111/*
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 * (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 * lifetime in the internet, which results in wrong conclusion, that
117 * it is set to catch "old duplicate segments" wandering out of their path.
118 * It is not quite correct. This timeout is calculated so that it exceeds
119 * maximal retransmission timeout enough to allow to lose one (or more)
120 * segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 * finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128 *
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
132 *
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc. --ANK
138 */
139enum tcp_tw_status
140tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141 const struct tcphdr *th)
142{
143 struct tcp_options_received tmp_opt;
144 const u8 *hash_location;
145 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146 bool paws_reject = false;
147
148 tmp_opt.saw_tstamp = 0;
149 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151
152 if (tmp_opt.saw_tstamp) {
153 tmp_opt.ts_recent = tcptw->tw_ts_recent;
154 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
155 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156 }
157 }
158
159 if (tw->tw_substate == TCP_FIN_WAIT2) {
160 /* Just repeat all the checks of tcp_rcv_state_process() */
161
162 /* Out of window, send ACK */
163 if (paws_reject ||
164 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165 tcptw->tw_rcv_nxt,
166 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167 return TCP_TW_ACK;
168
169 if (th->rst)
170 goto kill;
171
172 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173 goto kill_with_rst;
174
175 /* Dup ACK? */
176 if (!th->ack ||
177 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179 inet_twsk_put(tw);
180 return TCP_TW_SUCCESS;
181 }
182
183 /* New data or FIN. If new data arrive after half-duplex close,
184 * reset.
185 */
186 if (!th->fin ||
187 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188kill_with_rst:
189 inet_twsk_deschedule(tw, &tcp_death_row);
190 inet_twsk_put(tw);
191 return TCP_TW_RST;
192 }
193
194 /* FIN arrived, enter true time-wait state. */
195 tw->tw_substate = TCP_TIME_WAIT;
196 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197 if (tmp_opt.saw_tstamp) {
198 tcptw->tw_ts_recent_stamp = get_seconds();
199 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
200 }
201
202 if (tcp_death_row.sysctl_tw_recycle &&
203 tcptw->tw_ts_recent_stamp &&
204 tcp_tw_remember_stamp(tw))
205 inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206 TCP_TIMEWAIT_LEN);
207 else
208 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209 TCP_TIMEWAIT_LEN);
210 return TCP_TW_ACK;
211 }
212
213 /*
214 * Now real TIME-WAIT state.
215 *
216 * RFC 1122:
217 * "When a connection is [...] on TIME-WAIT state [...]
218 * [a TCP] MAY accept a new SYN from the remote TCP to
219 * reopen the connection directly, if it:
220 *
221 * (1) assigns its initial sequence number for the new
222 * connection to be larger than the largest sequence
223 * number it used on the previous connection incarnation,
224 * and
225 *
226 * (2) returns to TIME-WAIT state if the SYN turns out
227 * to be an old duplicate".
228 */
229
230 if (!paws_reject &&
231 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233 /* In window segment, it may be only reset or bare ack. */
234
235 if (th->rst) {
236 /* This is TIME_WAIT assassination, in two flavors.
237 * Oh well... nobody has a sufficient solution to this
238 * protocol bug yet.
239 */
240 if (sysctl_tcp_rfc1337 == 0) {
241kill:
242 inet_twsk_deschedule(tw, &tcp_death_row);
243 inet_twsk_put(tw);
244 return TCP_TW_SUCCESS;
245 }
246 }
247 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248 TCP_TIMEWAIT_LEN);
249
250 if (tmp_opt.saw_tstamp) {
251 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
252 tcptw->tw_ts_recent_stamp = get_seconds();
253 }
254
255 inet_twsk_put(tw);
256 return TCP_TW_SUCCESS;
257 }
258
259 /* Out of window segment.
260
261 All the segments are ACKed immediately.
262
263 The only exception is new SYN. We accept it, if it is
264 not old duplicate and we are not in danger to be killed
265 by delayed old duplicates. RFC check is that it has
266 newer sequence number works at rates <40Mbit/sec.
267 However, if paws works, it is reliable AND even more,
268 we even may relax silly seq space cutoff.
269
270 RED-PEN: we violate main RFC requirement, if this SYN will appear
271 old duplicate (i.e. we receive RST in reply to SYN-ACK),
272 we must return socket to time-wait state. It is not good,
273 but not fatal yet.
274 */
275
276 if (th->syn && !th->rst && !th->ack && !paws_reject &&
277 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278 (tmp_opt.saw_tstamp &&
279 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281 if (isn == 0)
282 isn++;
283 TCP_SKB_CB(skb)->when = isn;
284 return TCP_TW_SYN;
285 }
286
287 if (paws_reject)
288 NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289
290 if (!th->rst) {
291 /* In this case we must reset the TIMEWAIT timer.
292 *
293 * If it is ACKless SYN it may be both old duplicate
294 * and new good SYN with random sequence number <rcv_nxt.
295 * Do not reschedule in the last case.
296 */
297 if (paws_reject || th->ack)
298 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299 TCP_TIMEWAIT_LEN);
300
301 /* Send ACK. Note, we do not put the bucket,
302 * it will be released by caller.
303 */
304 return TCP_TW_ACK;
305 }
306 inet_twsk_put(tw);
307 return TCP_TW_SUCCESS;
308}
309EXPORT_SYMBOL(tcp_timewait_state_process);
310
311/*
312 * Move a socket to time-wait or dead fin-wait-2 state.
313 */
314void tcp_time_wait(struct sock *sk, int state, int timeo)
315{
316 struct inet_timewait_sock *tw = NULL;
317 const struct inet_connection_sock *icsk = inet_csk(sk);
318 const struct tcp_sock *tp = tcp_sk(sk);
319 bool recycle_ok = false;
320
321 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322 recycle_ok = tcp_remember_stamp(sk);
323
324 if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325 tw = inet_twsk_alloc(sk, state);
326
327 if (tw != NULL) {
328 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
330
331 tw->tw_transparent = inet_sk(sk)->transparent;
332 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
333 tcptw->tw_rcv_nxt = tp->rcv_nxt;
334 tcptw->tw_snd_nxt = tp->snd_nxt;
335 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
336 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
337 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
338
339#if IS_ENABLED(CONFIG_IPV6)
340 if (tw->tw_family == PF_INET6) {
341 struct ipv6_pinfo *np = inet6_sk(sk);
342 struct inet6_timewait_sock *tw6;
343
344 tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345 tw6 = inet6_twsk((struct sock *)tw);
346 tw6->tw_v6_daddr = np->daddr;
347 tw6->tw_v6_rcv_saddr = np->rcv_saddr;
348 tw->tw_tclass = np->tclass;
349 tw->tw_ipv6only = np->ipv6only;
350 }
351#endif
352
353#ifdef CONFIG_TCP_MD5SIG
354 /*
355 * The timewait bucket does not have the key DB from the
356 * sock structure. We just make a quick copy of the
357 * md5 key being used (if indeed we are using one)
358 * so the timewait ack generating code has the key.
359 */
360 do {
361 struct tcp_md5sig_key *key;
362 tcptw->tw_md5_key = NULL;
363 key = tp->af_specific->md5_lookup(sk, sk);
364 if (key != NULL) {
365 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
366 if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
367 BUG();
368 }
369 } while (0);
370#endif
371
372 /* Linkage updates. */
373 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
374
375 /* Get the TIME_WAIT timeout firing. */
376 if (timeo < rto)
377 timeo = rto;
378
379 if (recycle_ok) {
380 tw->tw_timeout = rto;
381 } else {
382 tw->tw_timeout = TCP_TIMEWAIT_LEN;
383 if (state == TCP_TIME_WAIT)
384 timeo = TCP_TIMEWAIT_LEN;
385 }
386
387 inet_twsk_schedule(tw, &tcp_death_row, timeo,
388 TCP_TIMEWAIT_LEN);
389 inet_twsk_put(tw);
390 } else {
391 /* Sorry, if we're out of memory, just CLOSE this
392 * socket up. We've got bigger problems than
393 * non-graceful socket closings.
394 */
395 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
396 }
397
398 tcp_update_metrics(sk);
399 tcp_done(sk);
400}
401
402void tcp_twsk_destructor(struct sock *sk)
403{
404#ifdef CONFIG_TCP_MD5SIG
405 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
406 if (twsk->tw_md5_key) {
407 tcp_free_md5sig_pool();
408 kfree_rcu(twsk->tw_md5_key, rcu);
409 }
410#endif
411}
412EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
413
414static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
415 struct request_sock *req)
416{
417 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
418}
419
420/* This is not only more efficient than what we used to do, it eliminates
421 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422 *
423 * Actually, we could lots of memory writes here. tp of listening
424 * socket contains all necessary default parameters.
425 */
426struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
427{
428 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
429
430 if (newsk != NULL) {
431 const struct inet_request_sock *ireq = inet_rsk(req);
432 struct tcp_request_sock *treq = tcp_rsk(req);
433 struct inet_connection_sock *newicsk = inet_csk(newsk);
434 struct tcp_sock *newtp = tcp_sk(newsk);
435 struct tcp_sock *oldtp = tcp_sk(sk);
436 struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
437
438 /* TCP Cookie Transactions require space for the cookie pair,
439 * as it differs for each connection. There is no need to
440 * copy any s_data_payload stored at the original socket.
441 * Failure will prevent resuming the connection.
442 *
443 * Presumed copied, in order of appearance:
444 * cookie_in_always, cookie_out_never
445 */
446 if (oldcvp != NULL) {
447 struct tcp_cookie_values *newcvp =
448 kzalloc(sizeof(*newtp->cookie_values),
449 GFP_ATOMIC);
450
451 if (newcvp != NULL) {
452 kref_init(&newcvp->kref);
453 newcvp->cookie_desired =
454 oldcvp->cookie_desired;
455 newtp->cookie_values = newcvp;
456 } else {
457 /* Not Yet Implemented */
458 newtp->cookie_values = NULL;
459 }
460 }
461
462 /* Now setup tcp_sock */
463 newtp->pred_flags = 0;
464
465 newtp->rcv_wup = newtp->copied_seq =
466 newtp->rcv_nxt = treq->rcv_isn + 1;
467
468 newtp->snd_sml = newtp->snd_una =
469 newtp->snd_nxt = newtp->snd_up =
470 treq->snt_isn + 1 + tcp_s_data_size(oldtp);
471
472 tcp_prequeue_init(newtp);
473
474 tcp_init_wl(newtp, treq->rcv_isn);
475
476 newtp->srtt = 0;
477 newtp->mdev = TCP_TIMEOUT_INIT;
478 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
479
480 newtp->packets_out = 0;
481 newtp->retrans_out = 0;
482 newtp->sacked_out = 0;
483 newtp->fackets_out = 0;
484 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
485 tcp_enable_early_retrans(newtp);
486
487 /* So many TCP implementations out there (incorrectly) count the
488 * initial SYN frame in their delayed-ACK and congestion control
489 * algorithms that we must have the following bandaid to talk
490 * efficiently to them. -DaveM
491 */
492 newtp->snd_cwnd = TCP_INIT_CWND;
493 newtp->snd_cwnd_cnt = 0;
494 newtp->bytes_acked = 0;
495
496 newtp->frto_counter = 0;
497 newtp->frto_highmark = 0;
498
499 if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
500 !try_module_get(newicsk->icsk_ca_ops->owner))
501 newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
502
503 tcp_set_ca_state(newsk, TCP_CA_Open);
504 tcp_init_xmit_timers(newsk);
505 skb_queue_head_init(&newtp->out_of_order_queue);
506 newtp->write_seq = newtp->pushed_seq =
507 treq->snt_isn + 1 + tcp_s_data_size(oldtp);
508
509 newtp->rx_opt.saw_tstamp = 0;
510
511 newtp->rx_opt.dsack = 0;
512 newtp->rx_opt.num_sacks = 0;
513
514 newtp->urg_data = 0;
515
516 if (sock_flag(newsk, SOCK_KEEPOPEN))
517 inet_csk_reset_keepalive_timer(newsk,
518 keepalive_time_when(newtp));
519
520 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
521 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
522 if (sysctl_tcp_fack)
523 tcp_enable_fack(newtp);
524 }
525 newtp->window_clamp = req->window_clamp;
526 newtp->rcv_ssthresh = req->rcv_wnd;
527 newtp->rcv_wnd = req->rcv_wnd;
528 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
529 if (newtp->rx_opt.wscale_ok) {
530 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
531 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
532 } else {
533 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
534 newtp->window_clamp = min(newtp->window_clamp, 65535U);
535 }
536 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
537 newtp->rx_opt.snd_wscale);
538 newtp->max_window = newtp->snd_wnd;
539
540 if (newtp->rx_opt.tstamp_ok) {
541 newtp->rx_opt.ts_recent = req->ts_recent;
542 newtp->rx_opt.ts_recent_stamp = get_seconds();
543 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
544 } else {
545 newtp->rx_opt.ts_recent_stamp = 0;
546 newtp->tcp_header_len = sizeof(struct tcphdr);
547 }
548#ifdef CONFIG_TCP_MD5SIG
549 newtp->md5sig_info = NULL; /*XXX*/
550 if (newtp->af_specific->md5_lookup(sk, newsk))
551 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
552#endif
553 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
554 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
555 newtp->rx_opt.mss_clamp = req->mss;
556 TCP_ECN_openreq_child(newtp, req);
557
558 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
559 }
560 return newsk;
561}
562EXPORT_SYMBOL(tcp_create_openreq_child);
563
564/*
565 * Process an incoming packet for SYN_RECV sockets represented
566 * as a request_sock.
567 */
568
569struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
570 struct request_sock *req,
571 struct request_sock **prev)
572{
573 struct tcp_options_received tmp_opt;
574 const u8 *hash_location;
575 struct sock *child;
576 const struct tcphdr *th = tcp_hdr(skb);
577 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578 bool paws_reject = false;
579
580 tmp_opt.saw_tstamp = 0;
581 if (th->doff > (sizeof(struct tcphdr)>>2)) {
582 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
583
584 if (tmp_opt.saw_tstamp) {
585 tmp_opt.ts_recent = req->ts_recent;
586 /* We do not store true stamp, but it is not required,
587 * it can be estimated (approximately)
588 * from another data.
589 */
590 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
591 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
592 }
593 }
594
595 /* Check for pure retransmitted SYN. */
596 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
597 flg == TCP_FLAG_SYN &&
598 !paws_reject) {
599 /*
600 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
601 * this case on figure 6 and figure 8, but formal
602 * protocol description says NOTHING.
603 * To be more exact, it says that we should send ACK,
604 * because this segment (at least, if it has no data)
605 * is out of window.
606 *
607 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
608 * describe SYN-RECV state. All the description
609 * is wrong, we cannot believe to it and should
610 * rely only on common sense and implementation
611 * experience.
612 *
613 * Enforce "SYN-ACK" according to figure 8, figure 6
614 * of RFC793, fixed by RFC1122.
615 */
616 req->rsk_ops->rtx_syn_ack(sk, req, NULL);
617 return NULL;
618 }
619
620 /* Further reproduces section "SEGMENT ARRIVES"
621 for state SYN-RECEIVED of RFC793.
622 It is broken, however, it does not work only
623 when SYNs are crossed.
624
625 You would think that SYN crossing is impossible here, since
626 we should have a SYN_SENT socket (from connect()) on our end,
627 but this is not true if the crossed SYNs were sent to both
628 ends by a malicious third party. We must defend against this,
629 and to do that we first verify the ACK (as per RFC793, page
630 36) and reset if it is invalid. Is this a true full defense?
631 To convince ourselves, let us consider a way in which the ACK
632 test can still pass in this 'malicious crossed SYNs' case.
633 Malicious sender sends identical SYNs (and thus identical sequence
634 numbers) to both A and B:
635
636 A: gets SYN, seq=7
637 B: gets SYN, seq=7
638
639 By our good fortune, both A and B select the same initial
640 send sequence number of seven :-)
641
642 A: sends SYN|ACK, seq=7, ack_seq=8
643 B: sends SYN|ACK, seq=7, ack_seq=8
644
645 So we are now A eating this SYN|ACK, ACK test passes. So
646 does sequence test, SYN is truncated, and thus we consider
647 it a bare ACK.
648
649 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
650 bare ACK. Otherwise, we create an established connection. Both
651 ends (listening sockets) accept the new incoming connection and try
652 to talk to each other. 8-)
653
654 Note: This case is both harmless, and rare. Possibility is about the
655 same as us discovering intelligent life on another plant tomorrow.
656
657 But generally, we should (RFC lies!) to accept ACK
658 from SYNACK both here and in tcp_rcv_state_process().
659 tcp_rcv_state_process() does not, hence, we do not too.
660
661 Note that the case is absolutely generic:
662 we cannot optimize anything here without
663 violating protocol. All the checks must be made
664 before attempt to create socket.
665 */
666
667 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
668 * and the incoming segment acknowledges something not yet
669 * sent (the segment carries an unacceptable ACK) ...
670 * a reset is sent."
671 *
672 * Invalid ACK: reset will be sent by listening socket
673 */
674 if ((flg & TCP_FLAG_ACK) &&
675 (TCP_SKB_CB(skb)->ack_seq !=
676 tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
677 return sk;
678
679 /* Also, it would be not so bad idea to check rcv_tsecr, which
680 * is essentially ACK extension and too early or too late values
681 * should cause reset in unsynchronized states.
682 */
683
684 /* RFC793: "first check sequence number". */
685
686 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
687 tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
688 /* Out of window: send ACK and drop. */
689 if (!(flg & TCP_FLAG_RST))
690 req->rsk_ops->send_ack(sk, skb, req);
691 if (paws_reject)
692 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
693 return NULL;
694 }
695
696 /* In sequence, PAWS is OK. */
697
698 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
699 req->ts_recent = tmp_opt.rcv_tsval;
700
701 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
702 /* Truncate SYN, it is out of window starting
703 at tcp_rsk(req)->rcv_isn + 1. */
704 flg &= ~TCP_FLAG_SYN;
705 }
706
707 /* RFC793: "second check the RST bit" and
708 * "fourth, check the SYN bit"
709 */
710 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
711 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
712 goto embryonic_reset;
713 }
714
715 /* ACK sequence verified above, just make sure ACK is
716 * set. If ACK not set, just silently drop the packet.
717 */
718 if (!(flg & TCP_FLAG_ACK))
719 return NULL;
720
721 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
722 if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
723 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
724 inet_rsk(req)->acked = 1;
725 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
726 return NULL;
727 }
728 if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
729 tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
730 else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
731 tcp_rsk(req)->snt_synack = 0;
732
733 /* OK, ACK is valid, create big socket and
734 * feed this segment to it. It will repeat all
735 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
736 * ESTABLISHED STATE. If it will be dropped after
737 * socket is created, wait for troubles.
738 */
739 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
740 if (child == NULL)
741 goto listen_overflow;
742
743 inet_csk_reqsk_queue_unlink(sk, req, prev);
744 inet_csk_reqsk_queue_removed(sk, req);
745
746 inet_csk_reqsk_queue_add(sk, req, child);
747 return child;
748
749listen_overflow:
750 if (!sysctl_tcp_abort_on_overflow) {
751 inet_rsk(req)->acked = 1;
752 return NULL;
753 }
754
755embryonic_reset:
756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
757 if (!(flg & TCP_FLAG_RST))
758 req->rsk_ops->send_reset(sk, skb);
759
760 inet_csk_reqsk_queue_drop(sk, req, prev);
761 return NULL;
762}
763EXPORT_SYMBOL(tcp_check_req);
764
765/*
766 * Queue segment on the new socket if the new socket is active,
767 * otherwise we just shortcircuit this and continue with
768 * the new socket.
769 */
770
771int tcp_child_process(struct sock *parent, struct sock *child,
772 struct sk_buff *skb)
773{
774 int ret = 0;
775 int state = child->sk_state;
776
777 if (!sock_owned_by_user(child)) {
778 ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
779 skb->len);
780 /* Wakeup parent, send SIGIO */
781 if (state == TCP_SYN_RECV && child->sk_state != state)
782 parent->sk_data_ready(parent, 0);
783 } else {
784 /* Alas, it is possible again, because we do lookup
785 * in main socket hash table and lock on listening
786 * socket does not protect us more.
787 */
788 __sk_add_backlog(child, skb);
789 }
790
791 bh_unlock_sock(child);
792 sock_put(child);
793 return ret;
794}
795EXPORT_SYMBOL(tcp_child_process);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22#include <net/tcp.h>
23#include <net/xfrm.h>
24#include <net/busy_poll.h>
25
26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27{
28 if (seq == s_win)
29 return true;
30 if (after(end_seq, s_win) && before(seq, e_win))
31 return true;
32 return seq == e_win && seq == end_seq;
33}
34
35static enum tcp_tw_status
36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 const struct sk_buff *skb, int mib_idx)
38{
39 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40
41 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 &tcptw->tw_last_oow_ack_time)) {
43 /* Send ACK. Note, we do not put the bucket,
44 * it will be released by caller.
45 */
46 return TCP_TW_ACK;
47 }
48
49 /* We are rate-limiting, so just release the tw sock and drop skb. */
50 inet_twsk_put(tw);
51 return TCP_TW_SUCCESS;
52}
53
54static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
55{
56#ifdef CONFIG_TCP_AO
57 struct tcp_ao_info *ao;
58
59 ao = rcu_dereference(tcptw->ao_info);
60 if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
61 WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
62#endif
63 tcptw->tw_rcv_nxt = seq;
64}
65
66/*
67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
68 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69 * (and, probably, tail of data) and one or more our ACKs are lost.
70 * * What is TIME-WAIT timeout? It is associated with maximal packet
71 * lifetime in the internet, which results in wrong conclusion, that
72 * it is set to catch "old duplicate segments" wandering out of their path.
73 * It is not quite correct. This timeout is calculated so that it exceeds
74 * maximal retransmission timeout enough to allow to lose one (or more)
75 * segments sent by peer and our ACKs. This time may be calculated from RTO.
76 * * When TIME-WAIT socket receives RST, it means that another end
77 * finally closed and we are allowed to kill TIME-WAIT too.
78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
79 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
80 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81 * * If we invented some more clever way to catch duplicates
82 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83 *
84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86 * from the very beginning.
87 *
88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
89 * is _not_ stateless. It means, that strictly speaking we must
90 * spinlock it. I do not want! Well, probability of misbehaviour
91 * is ridiculously low and, seems, we could use some mb() tricks
92 * to avoid misread sequence numbers, states etc. --ANK
93 *
94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
95 */
96enum tcp_tw_status
97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 const struct tcphdr *th)
99{
100 struct tcp_options_received tmp_opt;
101 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 bool paws_reject = false;
103
104 tmp_opt.saw_tstamp = 0;
105 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
107
108 if (tmp_opt.saw_tstamp) {
109 if (tmp_opt.rcv_tsecr)
110 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
111 tmp_opt.ts_recent = tcptw->tw_ts_recent;
112 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
113 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
114 }
115 }
116
117 if (tw->tw_substate == TCP_FIN_WAIT2) {
118 /* Just repeat all the checks of tcp_rcv_state_process() */
119
120 /* Out of window, send ACK */
121 if (paws_reject ||
122 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123 tcptw->tw_rcv_nxt,
124 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
125 return tcp_timewait_check_oow_rate_limit(
126 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
127
128 if (th->rst)
129 goto kill;
130
131 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
132 return TCP_TW_RST;
133
134 /* Dup ACK? */
135 if (!th->ack ||
136 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
137 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
138 inet_twsk_put(tw);
139 return TCP_TW_SUCCESS;
140 }
141
142 /* New data or FIN. If new data arrive after half-duplex close,
143 * reset.
144 */
145 if (!th->fin ||
146 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
147 return TCP_TW_RST;
148
149 /* FIN arrived, enter true time-wait state. */
150 tw->tw_substate = TCP_TIME_WAIT;
151 twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
152
153 if (tmp_opt.saw_tstamp) {
154 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
155 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
156 }
157
158 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
159 return TCP_TW_ACK;
160 }
161
162 /*
163 * Now real TIME-WAIT state.
164 *
165 * RFC 1122:
166 * "When a connection is [...] on TIME-WAIT state [...]
167 * [a TCP] MAY accept a new SYN from the remote TCP to
168 * reopen the connection directly, if it:
169 *
170 * (1) assigns its initial sequence number for the new
171 * connection to be larger than the largest sequence
172 * number it used on the previous connection incarnation,
173 * and
174 *
175 * (2) returns to TIME-WAIT state if the SYN turns out
176 * to be an old duplicate".
177 */
178
179 if (!paws_reject &&
180 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
181 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182 /* In window segment, it may be only reset or bare ack. */
183
184 if (th->rst) {
185 /* This is TIME_WAIT assassination, in two flavors.
186 * Oh well... nobody has a sufficient solution to this
187 * protocol bug yet.
188 */
189 if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
190kill:
191 inet_twsk_deschedule_put(tw);
192 return TCP_TW_SUCCESS;
193 }
194 } else {
195 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
196 }
197
198 if (tmp_opt.saw_tstamp) {
199 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
200 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
201 }
202
203 inet_twsk_put(tw);
204 return TCP_TW_SUCCESS;
205 }
206
207 /* Out of window segment.
208
209 All the segments are ACKed immediately.
210
211 The only exception is new SYN. We accept it, if it is
212 not old duplicate and we are not in danger to be killed
213 by delayed old duplicates. RFC check is that it has
214 newer sequence number works at rates <40Mbit/sec.
215 However, if paws works, it is reliable AND even more,
216 we even may relax silly seq space cutoff.
217
218 RED-PEN: we violate main RFC requirement, if this SYN will appear
219 old duplicate (i.e. we receive RST in reply to SYN-ACK),
220 we must return socket to time-wait state. It is not good,
221 but not fatal yet.
222 */
223
224 if (th->syn && !th->rst && !th->ack && !paws_reject &&
225 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226 (tmp_opt.saw_tstamp &&
227 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
229 if (isn == 0)
230 isn++;
231 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
232 return TCP_TW_SYN;
233 }
234
235 if (paws_reject)
236 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
237
238 if (!th->rst) {
239 /* In this case we must reset the TIMEWAIT timer.
240 *
241 * If it is ACKless SYN it may be both old duplicate
242 * and new good SYN with random sequence number <rcv_nxt.
243 * Do not reschedule in the last case.
244 */
245 if (paws_reject || th->ack)
246 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
247
248 return tcp_timewait_check_oow_rate_limit(
249 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
250 }
251 inet_twsk_put(tw);
252 return TCP_TW_SUCCESS;
253}
254EXPORT_SYMBOL(tcp_timewait_state_process);
255
256static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
257{
258#ifdef CONFIG_TCP_MD5SIG
259 const struct tcp_sock *tp = tcp_sk(sk);
260 struct tcp_md5sig_key *key;
261
262 /*
263 * The timewait bucket does not have the key DB from the
264 * sock structure. We just make a quick copy of the
265 * md5 key being used (if indeed we are using one)
266 * so the timewait ack generating code has the key.
267 */
268 tcptw->tw_md5_key = NULL;
269 if (!static_branch_unlikely(&tcp_md5_needed.key))
270 return;
271
272 key = tp->af_specific->md5_lookup(sk, sk);
273 if (key) {
274 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
275 if (!tcptw->tw_md5_key)
276 return;
277 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
278 goto out_free;
279 tcp_md5_add_sigpool();
280 }
281 return;
282out_free:
283 WARN_ON_ONCE(1);
284 kfree(tcptw->tw_md5_key);
285 tcptw->tw_md5_key = NULL;
286#endif
287}
288
289/*
290 * Move a socket to time-wait or dead fin-wait-2 state.
291 */
292void tcp_time_wait(struct sock *sk, int state, int timeo)
293{
294 const struct inet_connection_sock *icsk = inet_csk(sk);
295 struct tcp_sock *tp = tcp_sk(sk);
296 struct net *net = sock_net(sk);
297 struct inet_timewait_sock *tw;
298
299 tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
300
301 if (tw) {
302 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
303 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
304
305 tw->tw_transparent = inet_test_bit(TRANSPARENT, sk);
306 tw->tw_mark = sk->sk_mark;
307 tw->tw_priority = READ_ONCE(sk->sk_priority);
308 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
309 tcptw->tw_rcv_nxt = tp->rcv_nxt;
310 tcptw->tw_snd_nxt = tp->snd_nxt;
311 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
312 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
313 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
314 tcptw->tw_ts_offset = tp->tsoffset;
315 tw->tw_usec_ts = tp->tcp_usec_ts;
316 tcptw->tw_last_oow_ack_time = 0;
317 tcptw->tw_tx_delay = tp->tcp_tx_delay;
318 tw->tw_txhash = sk->sk_txhash;
319#if IS_ENABLED(CONFIG_IPV6)
320 if (tw->tw_family == PF_INET6) {
321 struct ipv6_pinfo *np = inet6_sk(sk);
322
323 tw->tw_v6_daddr = sk->sk_v6_daddr;
324 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
325 tw->tw_tclass = np->tclass;
326 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
327 tw->tw_ipv6only = sk->sk_ipv6only;
328 }
329#endif
330
331 tcp_time_wait_init(sk, tcptw);
332 tcp_ao_time_wait(tcptw, tp);
333
334 /* Get the TIME_WAIT timeout firing. */
335 if (timeo < rto)
336 timeo = rto;
337
338 if (state == TCP_TIME_WAIT)
339 timeo = TCP_TIMEWAIT_LEN;
340
341 /* tw_timer is pinned, so we need to make sure BH are disabled
342 * in following section, otherwise timer handler could run before
343 * we complete the initialization.
344 */
345 local_bh_disable();
346 inet_twsk_schedule(tw, timeo);
347 /* Linkage updates.
348 * Note that access to tw after this point is illegal.
349 */
350 inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
351 local_bh_enable();
352 } else {
353 /* Sorry, if we're out of memory, just CLOSE this
354 * socket up. We've got bigger problems than
355 * non-graceful socket closings.
356 */
357 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358 }
359
360 tcp_update_metrics(sk);
361 tcp_done(sk);
362}
363EXPORT_SYMBOL(tcp_time_wait);
364
365#ifdef CONFIG_TCP_MD5SIG
366static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367{
368 struct tcp_md5sig_key *key;
369
370 key = container_of(head, struct tcp_md5sig_key, rcu);
371 kfree(key);
372 static_branch_slow_dec_deferred(&tcp_md5_needed);
373 tcp_md5_release_sigpool();
374}
375#endif
376
377void tcp_twsk_destructor(struct sock *sk)
378{
379#ifdef CONFIG_TCP_MD5SIG
380 if (static_branch_unlikely(&tcp_md5_needed.key)) {
381 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382
383 if (twsk->tw_md5_key)
384 call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385 }
386#endif
387 tcp_ao_destroy_sock(sk, true);
388}
389EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390
391void tcp_twsk_purge(struct list_head *net_exit_list, int family)
392{
393 bool purged_once = false;
394 struct net *net;
395
396 list_for_each_entry(net, net_exit_list, exit_list) {
397 if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398 /* Even if tw_refcount == 1, we must clean up kernel reqsk */
399 inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
400 } else if (!purged_once) {
401 /* The last refcount is decremented in tcp_sk_exit_batch() */
402 if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
403 continue;
404
405 inet_twsk_purge(&tcp_hashinfo, family);
406 purged_once = true;
407 }
408 }
409}
410EXPORT_SYMBOL_GPL(tcp_twsk_purge);
411
412/* Warning : This function is called without sk_listener being locked.
413 * Be sure to read socket fields once, as their value could change under us.
414 */
415void tcp_openreq_init_rwin(struct request_sock *req,
416 const struct sock *sk_listener,
417 const struct dst_entry *dst)
418{
419 struct inet_request_sock *ireq = inet_rsk(req);
420 const struct tcp_sock *tp = tcp_sk(sk_listener);
421 int full_space = tcp_full_space(sk_listener);
422 u32 window_clamp;
423 __u8 rcv_wscale;
424 u32 rcv_wnd;
425 int mss;
426
427 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
428 window_clamp = READ_ONCE(tp->window_clamp);
429 /* Set this up on the first call only */
430 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
431
432 /* limit the window selection if the user enforce a smaller rx buffer */
433 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
434 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
435 req->rsk_window_clamp = full_space;
436
437 rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
438 if (rcv_wnd == 0)
439 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
440 else if (full_space < rcv_wnd * mss)
441 full_space = rcv_wnd * mss;
442
443 /* tcp_full_space because it is guaranteed to be the first packet */
444 tcp_select_initial_window(sk_listener, full_space,
445 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
446 &req->rsk_rcv_wnd,
447 &req->rsk_window_clamp,
448 ireq->wscale_ok,
449 &rcv_wscale,
450 rcv_wnd);
451 ireq->rcv_wscale = rcv_wscale;
452}
453EXPORT_SYMBOL(tcp_openreq_init_rwin);
454
455static void tcp_ecn_openreq_child(struct tcp_sock *tp,
456 const struct request_sock *req)
457{
458 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
459}
460
461void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
462{
463 struct inet_connection_sock *icsk = inet_csk(sk);
464 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
465 bool ca_got_dst = false;
466
467 if (ca_key != TCP_CA_UNSPEC) {
468 const struct tcp_congestion_ops *ca;
469
470 rcu_read_lock();
471 ca = tcp_ca_find_key(ca_key);
472 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
473 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
474 icsk->icsk_ca_ops = ca;
475 ca_got_dst = true;
476 }
477 rcu_read_unlock();
478 }
479
480 /* If no valid choice made yet, assign current system default ca. */
481 if (!ca_got_dst &&
482 (!icsk->icsk_ca_setsockopt ||
483 !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
484 tcp_assign_congestion_control(sk);
485
486 tcp_set_ca_state(sk, TCP_CA_Open);
487}
488EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
489
490static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
491 struct request_sock *req,
492 struct tcp_sock *newtp)
493{
494#if IS_ENABLED(CONFIG_SMC)
495 struct inet_request_sock *ireq;
496
497 if (static_branch_unlikely(&tcp_have_smc)) {
498 ireq = inet_rsk(req);
499 if (oldtp->syn_smc && !ireq->smc_ok)
500 newtp->syn_smc = 0;
501 }
502#endif
503}
504
505/* This is not only more efficient than what we used to do, it eliminates
506 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
507 *
508 * Actually, we could lots of memory writes here. tp of listening
509 * socket contains all necessary default parameters.
510 */
511struct sock *tcp_create_openreq_child(const struct sock *sk,
512 struct request_sock *req,
513 struct sk_buff *skb)
514{
515 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
516 const struct inet_request_sock *ireq = inet_rsk(req);
517 struct tcp_request_sock *treq = tcp_rsk(req);
518 struct inet_connection_sock *newicsk;
519 const struct tcp_sock *oldtp;
520 struct tcp_sock *newtp;
521 u32 seq;
522#ifdef CONFIG_TCP_AO
523 struct tcp_ao_key *ao_key;
524#endif
525
526 if (!newsk)
527 return NULL;
528
529 newicsk = inet_csk(newsk);
530 newtp = tcp_sk(newsk);
531 oldtp = tcp_sk(sk);
532
533 smc_check_reset_syn_req(oldtp, req, newtp);
534
535 /* Now setup tcp_sock */
536 newtp->pred_flags = 0;
537
538 seq = treq->rcv_isn + 1;
539 newtp->rcv_wup = seq;
540 WRITE_ONCE(newtp->copied_seq, seq);
541 WRITE_ONCE(newtp->rcv_nxt, seq);
542 newtp->segs_in = 1;
543
544 seq = treq->snt_isn + 1;
545 newtp->snd_sml = newtp->snd_una = seq;
546 WRITE_ONCE(newtp->snd_nxt, seq);
547 newtp->snd_up = seq;
548
549 INIT_LIST_HEAD(&newtp->tsq_node);
550 INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
551
552 tcp_init_wl(newtp, treq->rcv_isn);
553
554 minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
555 newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
556
557 newtp->lsndtime = tcp_jiffies32;
558 newsk->sk_txhash = READ_ONCE(treq->txhash);
559 newtp->total_retrans = req->num_retrans;
560
561 tcp_init_xmit_timers(newsk);
562 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
563
564 if (sock_flag(newsk, SOCK_KEEPOPEN))
565 inet_csk_reset_keepalive_timer(newsk,
566 keepalive_time_when(newtp));
567
568 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
569 newtp->rx_opt.sack_ok = ireq->sack_ok;
570 newtp->window_clamp = req->rsk_window_clamp;
571 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
572 newtp->rcv_wnd = req->rsk_rcv_wnd;
573 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
574 if (newtp->rx_opt.wscale_ok) {
575 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
576 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
577 } else {
578 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
579 newtp->window_clamp = min(newtp->window_clamp, 65535U);
580 }
581 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
582 newtp->max_window = newtp->snd_wnd;
583
584 if (newtp->rx_opt.tstamp_ok) {
585 newtp->tcp_usec_ts = treq->req_usec_ts;
586 newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
587 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
588 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
589 } else {
590 newtp->tcp_usec_ts = 0;
591 newtp->rx_opt.ts_recent_stamp = 0;
592 newtp->tcp_header_len = sizeof(struct tcphdr);
593 }
594 if (req->num_timeout) {
595 newtp->total_rto = req->num_timeout;
596 newtp->undo_marker = treq->snt_isn;
597 if (newtp->tcp_usec_ts) {
598 newtp->retrans_stamp = treq->snt_synack;
599 newtp->total_rto_time = (u32)(tcp_clock_us() -
600 newtp->retrans_stamp) / USEC_PER_MSEC;
601 } else {
602 newtp->retrans_stamp = div_u64(treq->snt_synack,
603 USEC_PER_SEC / TCP_TS_HZ);
604 newtp->total_rto_time = tcp_clock_ms() -
605 newtp->retrans_stamp;
606 }
607 newtp->total_rto_recoveries = 1;
608 }
609 newtp->tsoffset = treq->ts_off;
610#ifdef CONFIG_TCP_MD5SIG
611 newtp->md5sig_info = NULL; /*XXX*/
612#endif
613#ifdef CONFIG_TCP_AO
614 newtp->ao_info = NULL;
615 ao_key = treq->af_specific->ao_lookup(sk, req,
616 tcp_rsk(req)->ao_keyid, -1);
617 if (ao_key)
618 newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
619 #endif
620 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
621 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
622 newtp->rx_opt.mss_clamp = req->mss;
623 tcp_ecn_openreq_child(newtp, req);
624 newtp->fastopen_req = NULL;
625 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
626
627 newtp->bpf_chg_cc_inprogress = 0;
628 tcp_bpf_clone(sk, newsk);
629
630 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
631
632 return newsk;
633}
634EXPORT_SYMBOL(tcp_create_openreq_child);
635
636/*
637 * Process an incoming packet for SYN_RECV sockets represented as a
638 * request_sock. Normally sk is the listener socket but for TFO it
639 * points to the child socket.
640 *
641 * XXX (TFO) - The current impl contains a special check for ack
642 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
643 *
644 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
645 *
646 * Note: If @fastopen is true, this can be called from process context.
647 * Otherwise, this is from BH context.
648 */
649
650struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
651 struct request_sock *req,
652 bool fastopen, bool *req_stolen)
653{
654 struct tcp_options_received tmp_opt;
655 struct sock *child;
656 const struct tcphdr *th = tcp_hdr(skb);
657 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
658 bool paws_reject = false;
659 bool own_req;
660
661 tmp_opt.saw_tstamp = 0;
662 if (th->doff > (sizeof(struct tcphdr)>>2)) {
663 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
664
665 if (tmp_opt.saw_tstamp) {
666 tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
667 if (tmp_opt.rcv_tsecr)
668 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
669 /* We do not store true stamp, but it is not required,
670 * it can be estimated (approximately)
671 * from another data.
672 */
673 tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
674 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
675 }
676 }
677
678 /* Check for pure retransmitted SYN. */
679 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
680 flg == TCP_FLAG_SYN &&
681 !paws_reject) {
682 /*
683 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
684 * this case on figure 6 and figure 8, but formal
685 * protocol description says NOTHING.
686 * To be more exact, it says that we should send ACK,
687 * because this segment (at least, if it has no data)
688 * is out of window.
689 *
690 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
691 * describe SYN-RECV state. All the description
692 * is wrong, we cannot believe to it and should
693 * rely only on common sense and implementation
694 * experience.
695 *
696 * Enforce "SYN-ACK" according to figure 8, figure 6
697 * of RFC793, fixed by RFC1122.
698 *
699 * Note that even if there is new data in the SYN packet
700 * they will be thrown away too.
701 *
702 * Reset timer after retransmitting SYNACK, similar to
703 * the idea of fast retransmit in recovery.
704 */
705 if (!tcp_oow_rate_limited(sock_net(sk), skb,
706 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
707 &tcp_rsk(req)->last_oow_ack_time) &&
708
709 !inet_rtx_syn_ack(sk, req)) {
710 unsigned long expires = jiffies;
711
712 expires += reqsk_timeout(req, TCP_RTO_MAX);
713 if (!fastopen)
714 mod_timer_pending(&req->rsk_timer, expires);
715 else
716 req->rsk_timer.expires = expires;
717 }
718 return NULL;
719 }
720
721 /* Further reproduces section "SEGMENT ARRIVES"
722 for state SYN-RECEIVED of RFC793.
723 It is broken, however, it does not work only
724 when SYNs are crossed.
725
726 You would think that SYN crossing is impossible here, since
727 we should have a SYN_SENT socket (from connect()) on our end,
728 but this is not true if the crossed SYNs were sent to both
729 ends by a malicious third party. We must defend against this,
730 and to do that we first verify the ACK (as per RFC793, page
731 36) and reset if it is invalid. Is this a true full defense?
732 To convince ourselves, let us consider a way in which the ACK
733 test can still pass in this 'malicious crossed SYNs' case.
734 Malicious sender sends identical SYNs (and thus identical sequence
735 numbers) to both A and B:
736
737 A: gets SYN, seq=7
738 B: gets SYN, seq=7
739
740 By our good fortune, both A and B select the same initial
741 send sequence number of seven :-)
742
743 A: sends SYN|ACK, seq=7, ack_seq=8
744 B: sends SYN|ACK, seq=7, ack_seq=8
745
746 So we are now A eating this SYN|ACK, ACK test passes. So
747 does sequence test, SYN is truncated, and thus we consider
748 it a bare ACK.
749
750 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
751 bare ACK. Otherwise, we create an established connection. Both
752 ends (listening sockets) accept the new incoming connection and try
753 to talk to each other. 8-)
754
755 Note: This case is both harmless, and rare. Possibility is about the
756 same as us discovering intelligent life on another plant tomorrow.
757
758 But generally, we should (RFC lies!) to accept ACK
759 from SYNACK both here and in tcp_rcv_state_process().
760 tcp_rcv_state_process() does not, hence, we do not too.
761
762 Note that the case is absolutely generic:
763 we cannot optimize anything here without
764 violating protocol. All the checks must be made
765 before attempt to create socket.
766 */
767
768 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
769 * and the incoming segment acknowledges something not yet
770 * sent (the segment carries an unacceptable ACK) ...
771 * a reset is sent."
772 *
773 * Invalid ACK: reset will be sent by listening socket.
774 * Note that the ACK validity check for a Fast Open socket is done
775 * elsewhere and is checked directly against the child socket rather
776 * than req because user data may have been sent out.
777 */
778 if ((flg & TCP_FLAG_ACK) && !fastopen &&
779 (TCP_SKB_CB(skb)->ack_seq !=
780 tcp_rsk(req)->snt_isn + 1))
781 return sk;
782
783 /* Also, it would be not so bad idea to check rcv_tsecr, which
784 * is essentially ACK extension and too early or too late values
785 * should cause reset in unsynchronized states.
786 */
787
788 /* RFC793: "first check sequence number". */
789
790 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
791 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
792 /* Out of window: send ACK and drop. */
793 if (!(flg & TCP_FLAG_RST) &&
794 !tcp_oow_rate_limited(sock_net(sk), skb,
795 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
796 &tcp_rsk(req)->last_oow_ack_time))
797 req->rsk_ops->send_ack(sk, skb, req);
798 if (paws_reject)
799 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
800 return NULL;
801 }
802
803 /* In sequence, PAWS is OK. */
804
805 /* TODO: We probably should defer ts_recent change once
806 * we take ownership of @req.
807 */
808 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
809 WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
810
811 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
812 /* Truncate SYN, it is out of window starting
813 at tcp_rsk(req)->rcv_isn + 1. */
814 flg &= ~TCP_FLAG_SYN;
815 }
816
817 /* RFC793: "second check the RST bit" and
818 * "fourth, check the SYN bit"
819 */
820 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
821 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
822 goto embryonic_reset;
823 }
824
825 /* ACK sequence verified above, just make sure ACK is
826 * set. If ACK not set, just silently drop the packet.
827 *
828 * XXX (TFO) - if we ever allow "data after SYN", the
829 * following check needs to be removed.
830 */
831 if (!(flg & TCP_FLAG_ACK))
832 return NULL;
833
834 /* For Fast Open no more processing is needed (sk is the
835 * child socket).
836 */
837 if (fastopen)
838 return sk;
839
840 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
841 if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
842 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
843 inet_rsk(req)->acked = 1;
844 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
845 return NULL;
846 }
847
848 /* OK, ACK is valid, create big socket and
849 * feed this segment to it. It will repeat all
850 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
851 * ESTABLISHED STATE. If it will be dropped after
852 * socket is created, wait for troubles.
853 */
854 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
855 req, &own_req);
856 if (!child)
857 goto listen_overflow;
858
859 if (own_req && rsk_drop_req(req)) {
860 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
861 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
862 return child;
863 }
864
865 sock_rps_save_rxhash(child, skb);
866 tcp_synack_rtt_meas(child, req);
867 *req_stolen = !own_req;
868 return inet_csk_complete_hashdance(sk, child, req, own_req);
869
870listen_overflow:
871 if (sk != req->rsk_listener)
872 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
873
874 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
875 inet_rsk(req)->acked = 1;
876 return NULL;
877 }
878
879embryonic_reset:
880 if (!(flg & TCP_FLAG_RST)) {
881 /* Received a bad SYN pkt - for TFO We try not to reset
882 * the local connection unless it's really necessary to
883 * avoid becoming vulnerable to outside attack aiming at
884 * resetting legit local connections.
885 */
886 req->rsk_ops->send_reset(sk, skb);
887 } else if (fastopen) { /* received a valid RST pkt */
888 reqsk_fastopen_remove(sk, req, true);
889 tcp_reset(sk, skb);
890 }
891 if (!fastopen) {
892 bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
893
894 if (unlinked)
895 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
896 *req_stolen = !unlinked;
897 }
898 return NULL;
899}
900EXPORT_SYMBOL(tcp_check_req);
901
902/*
903 * Queue segment on the new socket if the new socket is active,
904 * otherwise we just shortcircuit this and continue with
905 * the new socket.
906 *
907 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
908 * when entering. But other states are possible due to a race condition
909 * where after __inet_lookup_established() fails but before the listener
910 * locked is obtained, other packets cause the same connection to
911 * be created.
912 */
913
914int tcp_child_process(struct sock *parent, struct sock *child,
915 struct sk_buff *skb)
916 __releases(&((child)->sk_lock.slock))
917{
918 int ret = 0;
919 int state = child->sk_state;
920
921 /* record sk_napi_id and sk_rx_queue_mapping of child. */
922 sk_mark_napi_id_set(child, skb);
923
924 tcp_segs_in(tcp_sk(child), skb);
925 if (!sock_owned_by_user(child)) {
926 ret = tcp_rcv_state_process(child, skb);
927 /* Wakeup parent, send SIGIO */
928 if (state == TCP_SYN_RECV && child->sk_state != state)
929 parent->sk_data_ready(parent);
930 } else {
931 /* Alas, it is possible again, because we do lookup
932 * in main socket hash table and lock on listening
933 * socket does not protect us more.
934 */
935 __sk_add_backlog(child, skb);
936 }
937
938 bh_unlock_sock(child);
939 sock_put(child);
940 return ret;
941}
942EXPORT_SYMBOL(tcp_child_process);