Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * 	NET3	Protocol independent device support routines.
   3 *
   4 *		This program is free software; you can redistribute it and/or
   5 *		modify it under the terms of the GNU General Public License
   6 *		as published by the Free Software Foundation; either version
   7 *		2 of the License, or (at your option) any later version.
   8 *
   9 *	Derived from the non IP parts of dev.c 1.0.19
  10 * 		Authors:	Ross Biro
  11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *	Additional Authors:
  15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *		David Hinds <dahinds@users.sourceforge.net>
  18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *		Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *	Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *              			to 2 if register_netdev gets called
  25 *              			before net_dev_init & also removed a
  26 *              			few lines of code in the process.
  27 *		Alan Cox	:	device private ioctl copies fields back.
  28 *		Alan Cox	:	Transmit queue code does relevant
  29 *					stunts to keep the queue safe.
  30 *		Alan Cox	:	Fixed double lock.
  31 *		Alan Cox	:	Fixed promisc NULL pointer trap
  32 *		????????	:	Support the full private ioctl range
  33 *		Alan Cox	:	Moved ioctl permission check into
  34 *					drivers
  35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
  36 *		Alan Cox	:	100 backlog just doesn't cut it when
  37 *					you start doing multicast video 8)
  38 *		Alan Cox	:	Rewrote net_bh and list manager.
  39 *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
  40 *		Alan Cox	:	Took out transmit every packet pass
  41 *					Saved a few bytes in the ioctl handler
  42 *		Alan Cox	:	Network driver sets packet type before
  43 *					calling netif_rx. Saves a function
  44 *					call a packet.
  45 *		Alan Cox	:	Hashed net_bh()
  46 *		Richard Kooijman:	Timestamp fixes.
  47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
  48 *		Alan Cox	:	Device lock protection.
  49 *		Alan Cox	: 	Fixed nasty side effect of device close
  50 *					changes.
  51 *		Rudi Cilibrasi	:	Pass the right thing to
  52 *					set_mac_address()
  53 *		Dave Miller	:	32bit quantity for the device lock to
  54 *					make it work out on a Sparc.
  55 *		Bjorn Ekwall	:	Added KERNELD hack.
  56 *		Alan Cox	:	Cleaned up the backlog initialise.
  57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
  58 *					1 device.
  59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
  60 *					is no device open function.
  61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
  62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
  63 *		Cyrus Durgin	:	Cleaned for KMOD
  64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
  65 *					A network device unload needs to purge
  66 *					the backlog queue.
  67 *	Paul Rusty Russell	:	SIOCSIFNAME
  68 *              Pekka Riikonen  :	Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *              			indefinitely on dev->refcnt
  71 * 		J Hadi Salim	:	- Backlog queue sampling
  72 *				        - netif_rx() feedback
  73 */
  74
  75#include <asm/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
 
  84#include <linux/mutex.h>
 
  85#include <linux/string.h>
  86#include <linux/mm.h>
  87#include <linux/socket.h>
  88#include <linux/sockios.h>
  89#include <linux/errno.h>
  90#include <linux/interrupt.h>
  91#include <linux/if_ether.h>
  92#include <linux/netdevice.h>
  93#include <linux/etherdevice.h>
  94#include <linux/ethtool.h>
  95#include <linux/notifier.h>
  96#include <linux/skbuff.h>
 
 
 
  97#include <net/net_namespace.h>
  98#include <net/sock.h>
 
  99#include <linux/rtnetlink.h>
 100#include <linux/proc_fs.h>
 101#include <linux/seq_file.h>
 102#include <linux/stat.h>
 
 103#include <net/dst.h>
 
 
 104#include <net/pkt_sched.h>
 
 105#include <net/checksum.h>
 106#include <net/xfrm.h>
 
 107#include <linux/highmem.h>
 108#include <linux/init.h>
 109#include <linux/kmod.h>
 110#include <linux/module.h>
 111#include <linux/netpoll.h>
 112#include <linux/rcupdate.h>
 113#include <linux/delay.h>
 114#include <net/wext.h>
 115#include <net/iw_handler.h>
 116#include <asm/current.h>
 117#include <linux/audit.h>
 118#include <linux/dmaengine.h>
 119#include <linux/err.h>
 120#include <linux/ctype.h>
 121#include <linux/if_arp.h>
 122#include <linux/if_vlan.h>
 123#include <linux/ip.h>
 124#include <net/ip.h>
 
 125#include <linux/ipv6.h>
 126#include <linux/in.h>
 127#include <linux/jhash.h>
 128#include <linux/random.h>
 129#include <trace/events/napi.h>
 130#include <trace/events/net.h>
 131#include <trace/events/skb.h>
 132#include <linux/pci.h>
 
 133#include <linux/inetdevice.h>
 134#include <linux/cpu_rmap.h>
 135#include <linux/net_tstamp.h>
 136#include <linux/static_key.h>
 137#include <net/flow_keys.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138
 
 139#include "net-sysfs.h"
 140
 141/* Instead of increasing this, you should create a hash table. */
 142#define MAX_GRO_SKBS 8
 143
 144/* This should be increased if a protocol with a bigger head is added. */
 145#define GRO_MAX_HEAD (MAX_HEADER + 128)
 146
 147/*
 148 *	The list of packet types we will receive (as opposed to discard)
 149 *	and the routines to invoke.
 150 *
 151 *	Why 16. Because with 16 the only overlap we get on a hash of the
 152 *	low nibble of the protocol value is RARP/SNAP/X.25.
 153 *
 154 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
 155 *             sure which should go first, but I bet it won't make much
 156 *             difference if we are running VLANs.  The good news is that
 157 *             this protocol won't be in the list unless compiled in, so
 158 *             the average user (w/out VLANs) will not be adversely affected.
 159 *             --BLG
 160 *
 161 *		0800	IP
 162 *		8100    802.1Q VLAN
 163 *		0001	802.3
 164 *		0002	AX.25
 165 *		0004	802.2
 166 *		8035	RARP
 167 *		0005	SNAP
 168 *		0805	X.25
 169 *		0806	ARP
 170 *		8137	IPX
 171 *		0009	Localtalk
 172 *		86DD	IPv6
 173 */
 174
 175#define PTYPE_HASH_SIZE	(16)
 176#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
 177
 178static DEFINE_SPINLOCK(ptype_lock);
 179static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 180static struct list_head ptype_all __read_mostly;	/* Taps */
 
 
 
 
 
 181
 182/*
 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 184 * semaphore.
 185 *
 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 187 *
 188 * Writers must hold the rtnl semaphore while they loop through the
 189 * dev_base_head list, and hold dev_base_lock for writing when they do the
 190 * actual updates.  This allows pure readers to access the list even
 191 * while a writer is preparing to update it.
 192 *
 193 * To put it another way, dev_base_lock is held for writing only to
 194 * protect against pure readers; the rtnl semaphore provides the
 195 * protection against other writers.
 196 *
 197 * See, for example usages, register_netdevice() and
 198 * unregister_netdevice(), which must be called with the rtnl
 199 * semaphore held.
 200 */
 201DEFINE_RWLOCK(dev_base_lock);
 202EXPORT_SYMBOL(dev_base_lock);
 203
 
 
 
 
 
 
 
 
 
 
 204static inline void dev_base_seq_inc(struct net *net)
 205{
 206	while (++net->dev_base_seq == 0);
 
 207}
 208
 209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 210{
 211	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
 212
 213	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 214}
 215
 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 217{
 218	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 219}
 220
 221static inline void rps_lock(struct softnet_data *sd)
 
 222{
 223#ifdef CONFIG_RPS
 224	spin_lock(&sd->input_pkt_queue.lock);
 225#endif
 
 226}
 227
 228static inline void rps_unlock(struct softnet_data *sd)
 229{
 230#ifdef CONFIG_RPS
 231	spin_unlock(&sd->input_pkt_queue.lock);
 232#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233}
 234
 235/* Device list insertion */
 236static int list_netdevice(struct net_device *dev)
 237{
 
 238	struct net *net = dev_net(dev);
 239
 240	ASSERT_RTNL();
 241
 242	write_lock_bh(&dev_base_lock);
 243	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 244	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 245	hlist_add_head_rcu(&dev->index_hlist,
 246			   dev_index_hash(net, dev->ifindex));
 247	write_unlock_bh(&dev_base_lock);
 248
 249	dev_base_seq_inc(net);
 
 250
 251	return 0;
 
 
 
 252}
 253
 254/* Device list removal
 255 * caller must respect a RCU grace period before freeing/reusing dev
 256 */
 257static void unlist_netdevice(struct net_device *dev)
 258{
 
 
 
 259	ASSERT_RTNL();
 260
 
 
 
 
 
 261	/* Unlink dev from the device chain */
 262	write_lock_bh(&dev_base_lock);
 
 263	list_del_rcu(&dev->dev_list);
 264	hlist_del_rcu(&dev->name_hlist);
 265	hlist_del_rcu(&dev->index_hlist);
 266	write_unlock_bh(&dev_base_lock);
 
 267
 268	dev_base_seq_inc(dev_net(dev));
 269}
 270
 271/*
 272 *	Our notifier list
 273 */
 274
 275static RAW_NOTIFIER_HEAD(netdev_chain);
 276
 277/*
 278 *	Device drivers call our routines to queue packets here. We empty the
 279 *	queue in the local softnet handler.
 280 */
 281
 282DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 283EXPORT_PER_CPU_SYMBOL(softnet_data);
 284
 285#ifdef CONFIG_LOCKDEP
 286/*
 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 288 * according to dev->type
 289 */
 290static const unsigned short netdev_lock_type[] =
 291	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 292	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 293	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 294	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 295	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 296	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 297	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 298	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 299	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 300	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 301	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 302	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 303	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 304	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 305	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 306
 307static const char *const netdev_lock_name[] =
 308	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 309	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 310	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 311	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 312	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 313	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 314	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 315	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 316	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 317	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 318	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 319	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 320	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 321	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 322	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 323
 324static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 325static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 326
 327static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 328{
 329	int i;
 330
 331	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 332		if (netdev_lock_type[i] == dev_type)
 333			return i;
 334	/* the last key is used by default */
 335	return ARRAY_SIZE(netdev_lock_type) - 1;
 336}
 337
 338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 339						 unsigned short dev_type)
 340{
 341	int i;
 342
 343	i = netdev_lock_pos(dev_type);
 344	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 345				   netdev_lock_name[i]);
 346}
 347
 348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 349{
 350	int i;
 351
 352	i = netdev_lock_pos(dev->type);
 353	lockdep_set_class_and_name(&dev->addr_list_lock,
 354				   &netdev_addr_lock_key[i],
 355				   netdev_lock_name[i]);
 356}
 357#else
 358static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 359						 unsigned short dev_type)
 360{
 361}
 
 362static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 363{
 364}
 365#endif
 366
 367/*******************************************************************************
 
 
 
 
 368
 369		Protocol management and registration routines
 370
 371*******************************************************************************/
 372
 373/*
 374 *	Add a protocol ID to the list. Now that the input handler is
 375 *	smarter we can dispense with all the messy stuff that used to be
 376 *	here.
 377 *
 378 *	BEWARE!!! Protocol handlers, mangling input packets,
 379 *	MUST BE last in hash buckets and checking protocol handlers
 380 *	MUST start from promiscuous ptype_all chain in net_bh.
 381 *	It is true now, do not change it.
 382 *	Explanation follows: if protocol handler, mangling packet, will
 383 *	be the first on list, it is not able to sense, that packet
 384 *	is cloned and should be copied-on-write, so that it will
 385 *	change it and subsequent readers will get broken packet.
 386 *							--ANK (980803)
 387 */
 388
 389static inline struct list_head *ptype_head(const struct packet_type *pt)
 390{
 391	if (pt->type == htons(ETH_P_ALL))
 392		return &ptype_all;
 393	else
 394		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 
 395}
 396
 397/**
 398 *	dev_add_pack - add packet handler
 399 *	@pt: packet type declaration
 400 *
 401 *	Add a protocol handler to the networking stack. The passed &packet_type
 402 *	is linked into kernel lists and may not be freed until it has been
 403 *	removed from the kernel lists.
 404 *
 405 *	This call does not sleep therefore it can not
 406 *	guarantee all CPU's that are in middle of receiving packets
 407 *	will see the new packet type (until the next received packet).
 408 */
 409
 410void dev_add_pack(struct packet_type *pt)
 411{
 412	struct list_head *head = ptype_head(pt);
 413
 414	spin_lock(&ptype_lock);
 415	list_add_rcu(&pt->list, head);
 416	spin_unlock(&ptype_lock);
 417}
 418EXPORT_SYMBOL(dev_add_pack);
 419
 420/**
 421 *	__dev_remove_pack	 - remove packet handler
 422 *	@pt: packet type declaration
 423 *
 424 *	Remove a protocol handler that was previously added to the kernel
 425 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 426 *	from the kernel lists and can be freed or reused once this function
 427 *	returns.
 428 *
 429 *      The packet type might still be in use by receivers
 430 *	and must not be freed until after all the CPU's have gone
 431 *	through a quiescent state.
 432 */
 433void __dev_remove_pack(struct packet_type *pt)
 434{
 435	struct list_head *head = ptype_head(pt);
 436	struct packet_type *pt1;
 437
 438	spin_lock(&ptype_lock);
 439
 440	list_for_each_entry(pt1, head, list) {
 441		if (pt == pt1) {
 442			list_del_rcu(&pt->list);
 443			goto out;
 444		}
 445	}
 446
 447	pr_warn("dev_remove_pack: %p not found\n", pt);
 448out:
 449	spin_unlock(&ptype_lock);
 450}
 451EXPORT_SYMBOL(__dev_remove_pack);
 452
 453/**
 454 *	dev_remove_pack	 - remove packet handler
 455 *	@pt: packet type declaration
 456 *
 457 *	Remove a protocol handler that was previously added to the kernel
 458 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 459 *	from the kernel lists and can be freed or reused once this function
 460 *	returns.
 461 *
 462 *	This call sleeps to guarantee that no CPU is looking at the packet
 463 *	type after return.
 464 */
 465void dev_remove_pack(struct packet_type *pt)
 466{
 467	__dev_remove_pack(pt);
 468
 469	synchronize_net();
 470}
 471EXPORT_SYMBOL(dev_remove_pack);
 472
 473/******************************************************************************
 474
 475		      Device Boot-time Settings Routines
 476
 477*******************************************************************************/
 478
 479/* Boot time configuration table */
 480static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 
 481
 482/**
 483 *	netdev_boot_setup_add	- add new setup entry
 484 *	@name: name of the device
 485 *	@map: configured settings for the device
 486 *
 487 *	Adds new setup entry to the dev_boot_setup list.  The function
 488 *	returns 0 on error and 1 on success.  This is a generic routine to
 489 *	all netdevices.
 490 */
 491static int netdev_boot_setup_add(char *name, struct ifmap *map)
 492{
 493	struct netdev_boot_setup *s;
 494	int i;
 495
 496	s = dev_boot_setup;
 497	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 498		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 499			memset(s[i].name, 0, sizeof(s[i].name));
 500			strlcpy(s[i].name, name, IFNAMSIZ);
 501			memcpy(&s[i].map, map, sizeof(s[i].map));
 502			break;
 503		}
 504	}
 505
 506	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 507}
 
 508
 509/**
 510 *	netdev_boot_setup_check	- check boot time settings
 511 *	@dev: the netdevice
 
 512 *
 513 * 	Check boot time settings for the device.
 514 *	The found settings are set for the device to be used
 515 *	later in the device probing.
 516 *	Returns 0 if no settings found, 1 if they are.
 517 */
 518int netdev_boot_setup_check(struct net_device *dev)
 519{
 520	struct netdev_boot_setup *s = dev_boot_setup;
 521	int i;
 522
 523	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 524		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 525		    !strcmp(dev->name, s[i].name)) {
 526			dev->irq 	= s[i].map.irq;
 527			dev->base_addr 	= s[i].map.base_addr;
 528			dev->mem_start 	= s[i].map.mem_start;
 529			dev->mem_end 	= s[i].map.mem_end;
 530			return 1;
 531		}
 532	}
 533	return 0;
 534}
 535EXPORT_SYMBOL(netdev_boot_setup_check);
 536
 
 
 
 
 
 537
 538/**
 539 *	netdev_boot_base	- get address from boot time settings
 540 *	@prefix: prefix for network device
 541 *	@unit: id for network device
 542 *
 543 * 	Check boot time settings for the base address of device.
 544 *	The found settings are set for the device to be used
 545 *	later in the device probing.
 546 *	Returns 0 if no settings found.
 547 */
 548unsigned long netdev_boot_base(const char *prefix, int unit)
 549{
 550	const struct netdev_boot_setup *s = dev_boot_setup;
 551	char name[IFNAMSIZ];
 552	int i;
 553
 554	sprintf(name, "%s%d", prefix, unit);
 
 
 555
 556	/*
 557	 * If device already registered then return base of 1
 558	 * to indicate not to probe for this interface
 559	 */
 560	if (__dev_get_by_name(&init_net, name))
 561		return 1;
 562
 563	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 564		if (!strcmp(name, s[i].name))
 565			return s[i].map.base_addr;
 566	return 0;
 567}
 568
 569/*
 570 * Saves at boot time configured settings for any netdevice.
 571 */
 572int __init netdev_boot_setup(char *str)
 573{
 574	int ints[5];
 575	struct ifmap map;
 
 
 
 
 576
 577	str = get_options(str, ARRAY_SIZE(ints), ints);
 578	if (!str || !*str)
 579		return 0;
 
 
 
 
 580
 581	/* Save settings */
 582	memset(&map, 0, sizeof(map));
 583	if (ints[0] > 0)
 584		map.irq = ints[1];
 585	if (ints[0] > 1)
 586		map.base_addr = ints[2];
 587	if (ints[0] > 2)
 588		map.mem_start = ints[3];
 589	if (ints[0] > 3)
 590		map.mem_end = ints[4];
 591
 592	/* Add new entry to the list */
 593	return netdev_boot_setup_add(str, &map);
 594}
 595
 596__setup("netdev=", netdev_boot_setup);
 597
 598/*******************************************************************************
 
 599
 600			    Device Interface Subroutines
 
 
 
 
 601
 602*******************************************************************************/
 
 
 603
 604/**
 605 *	__dev_get_by_name	- find a device by its name
 606 *	@net: the applicable net namespace
 607 *	@name: name to find
 608 *
 609 *	Find an interface by name. Must be called under RTNL semaphore
 610 *	or @dev_base_lock. If the name is found a pointer to the device
 611 *	is returned. If the name is not found then %NULL is returned. The
 612 *	reference counters are not incremented so the caller must be
 613 *	careful with locks.
 614 */
 615
 616struct net_device *__dev_get_by_name(struct net *net, const char *name)
 617{
 618	struct hlist_node *p;
 619	struct net_device *dev;
 620	struct hlist_head *head = dev_name_hash(net, name);
 621
 622	hlist_for_each_entry(dev, p, head, name_hlist)
 623		if (!strncmp(dev->name, name, IFNAMSIZ))
 624			return dev;
 625
 626	return NULL;
 627}
 628EXPORT_SYMBOL(__dev_get_by_name);
 629
 630/**
 631 *	dev_get_by_name_rcu	- find a device by its name
 632 *	@net: the applicable net namespace
 633 *	@name: name to find
 634 *
 635 *	Find an interface by name.
 636 *	If the name is found a pointer to the device is returned.
 637 * 	If the name is not found then %NULL is returned.
 638 *	The reference counters are not incremented so the caller must be
 639 *	careful with locks. The caller must hold RCU lock.
 640 */
 641
 642struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 643{
 644	struct hlist_node *p;
 645	struct net_device *dev;
 646	struct hlist_head *head = dev_name_hash(net, name);
 647
 648	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
 649		if (!strncmp(dev->name, name, IFNAMSIZ))
 650			return dev;
 651
 652	return NULL;
 
 653}
 654EXPORT_SYMBOL(dev_get_by_name_rcu);
 655
 
 
 
 
 
 
 
 
 
 
 
 
 
 656/**
 657 *	dev_get_by_name		- find a device by its name
 658 *	@net: the applicable net namespace
 659 *	@name: name to find
 
 
 660 *
 661 *	Find an interface by name. This can be called from any
 662 *	context and does its own locking. The returned handle has
 663 *	the usage count incremented and the caller must use dev_put() to
 664 *	release it when it is no longer needed. %NULL is returned if no
 665 *	matching device is found.
 666 */
 667
 668struct net_device *dev_get_by_name(struct net *net, const char *name)
 669{
 670	struct net_device *dev;
 671
 672	rcu_read_lock();
 673	dev = dev_get_by_name_rcu(net, name);
 674	if (dev)
 675		dev_hold(dev);
 676	rcu_read_unlock();
 677	return dev;
 678}
 679EXPORT_SYMBOL(dev_get_by_name);
 680
 681/**
 682 *	__dev_get_by_index - find a device by its ifindex
 683 *	@net: the applicable net namespace
 684 *	@ifindex: index of device
 685 *
 686 *	Search for an interface by index. Returns %NULL if the device
 687 *	is not found or a pointer to the device. The device has not
 688 *	had its reference counter increased so the caller must be careful
 689 *	about locking. The caller must hold either the RTNL semaphore
 690 *	or @dev_base_lock.
 691 */
 692
 693struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 694{
 695	struct hlist_node *p;
 696	struct net_device *dev;
 697	struct hlist_head *head = dev_index_hash(net, ifindex);
 698
 699	hlist_for_each_entry(dev, p, head, index_hlist)
 700		if (dev->ifindex == ifindex)
 701			return dev;
 702
 703	return NULL;
 704}
 705EXPORT_SYMBOL(__dev_get_by_index);
 706
 707/**
 708 *	dev_get_by_index_rcu - find a device by its ifindex
 709 *	@net: the applicable net namespace
 710 *	@ifindex: index of device
 711 *
 712 *	Search for an interface by index. Returns %NULL if the device
 713 *	is not found or a pointer to the device. The device has not
 714 *	had its reference counter increased so the caller must be careful
 715 *	about locking. The caller must hold RCU lock.
 716 */
 717
 718struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 719{
 720	struct hlist_node *p;
 721	struct net_device *dev;
 722	struct hlist_head *head = dev_index_hash(net, ifindex);
 723
 724	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
 725		if (dev->ifindex == ifindex)
 726			return dev;
 727
 728	return NULL;
 729}
 730EXPORT_SYMBOL(dev_get_by_index_rcu);
 731
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733/**
 734 *	dev_get_by_index - find a device by its ifindex
 735 *	@net: the applicable net namespace
 736 *	@ifindex: index of device
 
 
 737 *
 738 *	Search for an interface by index. Returns NULL if the device
 739 *	is not found or a pointer to the device. The device returned has
 740 *	had a reference added and the pointer is safe until the user calls
 741 *	dev_put to indicate they have finished with it.
 742 */
 
 
 
 
 743
 744struct net_device *dev_get_by_index(struct net *net, int ifindex)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745{
 746	struct net_device *dev;
 
 747
 
 748	rcu_read_lock();
 
 749	dev = dev_get_by_index_rcu(net, ifindex);
 750	if (dev)
 751		dev_hold(dev);
 
 
 
 
 
 
 
 752	rcu_read_unlock();
 753	return dev;
 
 754}
 755EXPORT_SYMBOL(dev_get_by_index);
 756
 757/**
 758 *	dev_getbyhwaddr_rcu - find a device by its hardware address
 759 *	@net: the applicable net namespace
 760 *	@type: media type of device
 761 *	@ha: hardware address
 762 *
 763 *	Search for an interface by MAC address. Returns NULL if the device
 764 *	is not found or a pointer to the device.
 765 *	The caller must hold RCU or RTNL.
 766 *	The returned device has not had its ref count increased
 767 *	and the caller must therefore be careful about locking
 768 *
 769 */
 770
 771struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 772				       const char *ha)
 773{
 774	struct net_device *dev;
 775
 776	for_each_netdev_rcu(net, dev)
 777		if (dev->type == type &&
 778		    !memcmp(dev->dev_addr, ha, dev->addr_len))
 779			return dev;
 780
 781	return NULL;
 782}
 783EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 784
 785struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 786{
 787	struct net_device *dev;
 788
 789	ASSERT_RTNL();
 790	for_each_netdev(net, dev)
 791		if (dev->type == type)
 792			return dev;
 793
 794	return NULL;
 795}
 796EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 797
 798struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 799{
 800	struct net_device *dev, *ret = NULL;
 801
 802	rcu_read_lock();
 803	for_each_netdev_rcu(net, dev)
 804		if (dev->type == type) {
 805			dev_hold(dev);
 806			ret = dev;
 807			break;
 808		}
 809	rcu_read_unlock();
 810	return ret;
 811}
 812EXPORT_SYMBOL(dev_getfirstbyhwtype);
 813
 814/**
 815 *	dev_get_by_flags_rcu - find any device with given flags
 816 *	@net: the applicable net namespace
 817 *	@if_flags: IFF_* values
 818 *	@mask: bitmask of bits in if_flags to check
 819 *
 820 *	Search for any interface with the given flags. Returns NULL if a device
 821 *	is not found or a pointer to the device. Must be called inside
 822 *	rcu_read_lock(), and result refcount is unchanged.
 823 */
 824
 825struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
 826				    unsigned short mask)
 827{
 828	struct net_device *dev, *ret;
 829
 
 
 830	ret = NULL;
 831	for_each_netdev_rcu(net, dev) {
 832		if (((dev->flags ^ if_flags) & mask) == 0) {
 833			ret = dev;
 834			break;
 835		}
 836	}
 837	return ret;
 838}
 839EXPORT_SYMBOL(dev_get_by_flags_rcu);
 840
 841/**
 842 *	dev_valid_name - check if name is okay for network device
 843 *	@name: name string
 844 *
 845 *	Network device names need to be valid file names to
 846 *	to allow sysfs to work.  We also disallow any kind of
 847 *	whitespace.
 848 */
 849bool dev_valid_name(const char *name)
 850{
 851	if (*name == '\0')
 852		return false;
 853	if (strlen(name) >= IFNAMSIZ)
 854		return false;
 855	if (!strcmp(name, ".") || !strcmp(name, ".."))
 856		return false;
 857
 858	while (*name) {
 859		if (*name == '/' || isspace(*name))
 860			return false;
 861		name++;
 862	}
 863	return true;
 864}
 865EXPORT_SYMBOL(dev_valid_name);
 866
 867/**
 868 *	__dev_alloc_name - allocate a name for a device
 869 *	@net: network namespace to allocate the device name in
 870 *	@name: name format string
 871 *	@buf:  scratch buffer and result name string
 872 *
 873 *	Passed a format string - eg "lt%d" it will try and find a suitable
 874 *	id. It scans list of devices to build up a free map, then chooses
 875 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 876 *	while allocating the name and adding the device in order to avoid
 877 *	duplicates.
 878 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 879 *	Returns the number of the unit assigned or a negative errno code.
 880 */
 881
 882static int __dev_alloc_name(struct net *net, const char *name, char *buf)
 883{
 884	int i = 0;
 885	const char *p;
 886	const int max_netdevices = 8*PAGE_SIZE;
 887	unsigned long *inuse;
 888	struct net_device *d;
 
 889
 890	p = strnchr(name, IFNAMSIZ-1, '%');
 891	if (p) {
 892		/*
 893		 * Verify the string as this thing may have come from
 894		 * the user.  There must be either one "%d" and no other "%"
 895		 * characters.
 896		 */
 897		if (p[1] != 'd' || strchr(p + 2, '%'))
 898			return -EINVAL;
 899
 900		/* Use one page as a bit array of possible slots */
 901		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 902		if (!inuse)
 903			return -ENOMEM;
 
 
 
 904
 905		for_each_netdev(net, d) {
 906			if (!sscanf(d->name, name, &i))
 907				continue;
 908			if (i < 0 || i >= max_netdevices)
 909				continue;
 910
 911			/*  avoid cases where sscanf is not exact inverse of printf */
 912			snprintf(buf, IFNAMSIZ, name, i);
 913			if (!strncmp(buf, d->name, IFNAMSIZ))
 914				set_bit(i, inuse);
 915		}
 
 
 
 
 916
 917		i = find_first_zero_bit(inuse, max_netdevices);
 918		free_page((unsigned long) inuse);
 
 
 919	}
 920
 921	if (buf != name)
 922		snprintf(buf, IFNAMSIZ, name, i);
 923	if (!__dev_get_by_name(net, buf))
 924		return i;
 925
 926	/* It is possible to run out of possible slots
 927	 * when the name is long and there isn't enough space left
 928	 * for the digits, or if all bits are used.
 929	 */
 930	return -ENFILE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931}
 932
 933/**
 934 *	dev_alloc_name - allocate a name for a device
 935 *	@dev: device
 936 *	@name: name format string
 937 *
 938 *	Passed a format string - eg "lt%d" it will try and find a suitable
 939 *	id. It scans list of devices to build up a free map, then chooses
 940 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 941 *	while allocating the name and adding the device in order to avoid
 942 *	duplicates.
 943 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 944 *	Returns the number of the unit assigned or a negative errno code.
 945 */
 946
 947int dev_alloc_name(struct net_device *dev, const char *name)
 948{
 949	char buf[IFNAMSIZ];
 950	struct net *net;
 951	int ret;
 952
 953	BUG_ON(!dev_net(dev));
 954	net = dev_net(dev);
 955	ret = __dev_alloc_name(net, name, buf);
 956	if (ret >= 0)
 957		strlcpy(dev->name, buf, IFNAMSIZ);
 958	return ret;
 959}
 960EXPORT_SYMBOL(dev_alloc_name);
 961
 962static int dev_get_valid_name(struct net_device *dev, const char *name)
 
 963{
 964	struct net *net;
 965
 966	BUG_ON(!dev_net(dev));
 967	net = dev_net(dev);
 968
 969	if (!dev_valid_name(name))
 970		return -EINVAL;
 971
 972	if (strchr(name, '%'))
 973		return dev_alloc_name(dev, name);
 974	else if (__dev_get_by_name(net, name))
 975		return -EEXIST;
 976	else if (dev->name != name)
 977		strlcpy(dev->name, name, IFNAMSIZ);
 978
 979	return 0;
 
 980}
 981
 982/**
 983 *	dev_change_name - change name of a device
 984 *	@dev: device
 985 *	@newname: name (or format string) must be at least IFNAMSIZ
 986 *
 987 *	Change name of a device, can pass format strings "eth%d".
 988 *	for wildcarding.
 989 */
 990int dev_change_name(struct net_device *dev, const char *newname)
 991{
 
 992	char oldname[IFNAMSIZ];
 993	int err = 0;
 994	int ret;
 995	struct net *net;
 996
 997	ASSERT_RTNL();
 998	BUG_ON(!dev_net(dev));
 999
1000	net = dev_net(dev);
1001	if (dev->flags & IFF_UP)
1002		return -EBUSY;
1003
1004	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
 
 
 
1005		return 0;
 
1006
1007	memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009	err = dev_get_valid_name(dev, newname);
1010	if (err < 0)
 
1011		return err;
 
 
 
 
 
 
 
 
1012
1013rollback:
1014	ret = device_rename(&dev->dev, dev->name);
1015	if (ret) {
1016		memcpy(dev->name, oldname, IFNAMSIZ);
 
 
1017		return ret;
1018	}
1019
1020	write_lock_bh(&dev_base_lock);
1021	hlist_del_rcu(&dev->name_hlist);
1022	write_unlock_bh(&dev_base_lock);
 
 
 
 
1023
1024	synchronize_rcu();
1025
1026	write_lock_bh(&dev_base_lock);
1027	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028	write_unlock_bh(&dev_base_lock);
1029
1030	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031	ret = notifier_to_errno(ret);
1032
1033	if (ret) {
1034		/* err >= 0 after dev_alloc_name() or stores the first errno */
1035		if (err >= 0) {
1036			err = ret;
 
1037			memcpy(dev->name, oldname, IFNAMSIZ);
 
 
 
1038			goto rollback;
1039		} else {
1040			pr_err("%s: name change rollback failed: %d\n",
1041			       dev->name, ret);
1042		}
1043	}
1044
1045	return err;
1046}
1047
1048/**
1049 *	dev_set_alias - change ifalias of a device
1050 *	@dev: device
1051 *	@alias: name up to IFALIASZ
1052 *	@len: limit of bytes to copy from info
1053 *
1054 *	Set ifalias for a device,
1055 */
1056int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057{
1058	char *new_ifalias;
1059
1060	ASSERT_RTNL();
1061
1062	if (len >= IFALIASZ)
1063		return -EINVAL;
1064
1065	if (!len) {
1066		if (dev->ifalias) {
1067			kfree(dev->ifalias);
1068			dev->ifalias = NULL;
1069		}
1070		return 0;
 
1071	}
1072
1073	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074	if (!new_ifalias)
1075		return -ENOMEM;
1076	dev->ifalias = new_ifalias;
 
 
 
1077
1078	strlcpy(dev->ifalias, alias, len+1);
1079	return len;
1080}
 
1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082
1083/**
1084 *	netdev_features_change - device changes features
1085 *	@dev: device to cause notification
1086 *
1087 *	Called to indicate a device has changed features.
1088 */
1089void netdev_features_change(struct net_device *dev)
1090{
1091	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092}
1093EXPORT_SYMBOL(netdev_features_change);
1094
1095/**
1096 *	netdev_state_change - device changes state
1097 *	@dev: device to cause notification
1098 *
1099 *	Called to indicate a device has changed state. This function calls
1100 *	the notifier chains for netdev_chain and sends a NEWLINK message
1101 *	to the routing socket.
1102 */
1103void netdev_state_change(struct net_device *dev)
1104{
1105	if (dev->flags & IFF_UP) {
1106		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
 
 
 
 
 
1108	}
1109}
1110EXPORT_SYMBOL(netdev_state_change);
1111
1112int netdev_bonding_change(struct net_device *dev, unsigned long event)
 
 
 
 
 
 
 
 
 
 
 
1113{
1114	return call_netdevice_notifiers(event, dev);
 
 
1115}
1116EXPORT_SYMBOL(netdev_bonding_change);
1117
1118/**
1119 *	dev_load 	- load a network module
1120 *	@net: the applicable net namespace
1121 *	@name: name of interface
1122 *
1123 *	If a network interface is not present and the process has suitable
1124 *	privileges this function loads the module. If module loading is not
1125 *	available in this kernel then it becomes a nop.
 
 
1126 */
1127
1128void dev_load(struct net *net, const char *name)
1129{
1130	struct net_device *dev;
1131	int no_module;
 
 
 
1132
1133	rcu_read_lock();
1134	dev = dev_get_by_name_rcu(net, name);
1135	rcu_read_unlock();
 
 
1136
1137	no_module = !dev;
1138	if (no_module && capable(CAP_NET_ADMIN))
1139		no_module = request_module("netdev-%s", name);
1140	if (no_module && capable(CAP_SYS_MODULE)) {
1141		if (!request_module("%s", name))
1142			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143				name);
 
 
 
1144	}
 
 
1145}
1146EXPORT_SYMBOL(dev_load);
1147
1148static int __dev_open(struct net_device *dev)
1149{
1150	const struct net_device_ops *ops = dev->netdev_ops;
1151	int ret;
1152
1153	ASSERT_RTNL();
 
1154
1155	if (!netif_device_present(dev))
1156		return -ENODEV;
 
 
 
 
 
1157
1158	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
 
 
 
 
 
 
1159	ret = notifier_to_errno(ret);
1160	if (ret)
1161		return ret;
1162
1163	set_bit(__LINK_STATE_START, &dev->state);
1164
1165	if (ops->ndo_validate_addr)
1166		ret = ops->ndo_validate_addr(dev);
1167
1168	if (!ret && ops->ndo_open)
1169		ret = ops->ndo_open(dev);
1170
 
 
1171	if (ret)
1172		clear_bit(__LINK_STATE_START, &dev->state);
1173	else {
1174		dev->flags |= IFF_UP;
1175		net_dmaengine_get();
1176		dev_set_rx_mode(dev);
1177		dev_activate(dev);
1178		add_device_randomness(dev->dev_addr, dev->addr_len);
1179	}
1180
1181	return ret;
1182}
1183
1184/**
1185 *	dev_open	- prepare an interface for use.
1186 *	@dev:	device to open
 
1187 *
1188 *	Takes a device from down to up state. The device's private open
1189 *	function is invoked and then the multicast lists are loaded. Finally
1190 *	the device is moved into the up state and a %NETDEV_UP message is
1191 *	sent to the netdev notifier chain.
1192 *
1193 *	Calling this function on an active interface is a nop. On a failure
1194 *	a negative errno code is returned.
1195 */
1196int dev_open(struct net_device *dev)
1197{
1198	int ret;
1199
1200	if (dev->flags & IFF_UP)
1201		return 0;
1202
1203	ret = __dev_open(dev);
1204	if (ret < 0)
1205		return ret;
1206
1207	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208	call_netdevice_notifiers(NETDEV_UP, dev);
1209
1210	return ret;
1211}
1212EXPORT_SYMBOL(dev_open);
1213
1214static int __dev_close_many(struct list_head *head)
1215{
1216	struct net_device *dev;
1217
1218	ASSERT_RTNL();
1219	might_sleep();
1220
1221	list_for_each_entry(dev, head, unreg_list) {
 
 
 
1222		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223
1224		clear_bit(__LINK_STATE_START, &dev->state);
1225
1226		/* Synchronize to scheduled poll. We cannot touch poll list, it
1227		 * can be even on different cpu. So just clear netif_running().
1228		 *
1229		 * dev->stop() will invoke napi_disable() on all of it's
1230		 * napi_struct instances on this device.
1231		 */
1232		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233	}
1234
1235	dev_deactivate_many(head);
1236
1237	list_for_each_entry(dev, head, unreg_list) {
1238		const struct net_device_ops *ops = dev->netdev_ops;
1239
1240		/*
1241		 *	Call the device specific close. This cannot fail.
1242		 *	Only if device is UP
1243		 *
1244		 *	We allow it to be called even after a DETACH hot-plug
1245		 *	event.
1246		 */
1247		if (ops->ndo_stop)
1248			ops->ndo_stop(dev);
1249
1250		dev->flags &= ~IFF_UP;
1251		net_dmaengine_put();
1252	}
1253
1254	return 0;
1255}
1256
1257static int __dev_close(struct net_device *dev)
1258{
1259	int retval;
1260	LIST_HEAD(single);
1261
1262	list_add(&dev->unreg_list, &single);
1263	retval = __dev_close_many(&single);
1264	list_del(&single);
1265	return retval;
1266}
1267
1268static int dev_close_many(struct list_head *head)
1269{
1270	struct net_device *dev, *tmp;
1271	LIST_HEAD(tmp_list);
1272
1273	list_for_each_entry_safe(dev, tmp, head, unreg_list)
 
1274		if (!(dev->flags & IFF_UP))
1275			list_move(&dev->unreg_list, &tmp_list);
1276
1277	__dev_close_many(head);
1278
1279	list_for_each_entry(dev, head, unreg_list) {
1280		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281		call_netdevice_notifiers(NETDEV_DOWN, dev);
 
 
1282	}
1283
1284	/* rollback_registered_many needs the complete original list */
1285	list_splice(&tmp_list, head);
1286	return 0;
1287}
 
1288
1289/**
1290 *	dev_close - shutdown an interface.
1291 *	@dev: device to shutdown
1292 *
1293 *	This function moves an active device into down state. A
1294 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296 *	chain.
1297 */
1298int dev_close(struct net_device *dev)
1299{
1300	if (dev->flags & IFF_UP) {
1301		LIST_HEAD(single);
1302
1303		list_add(&dev->unreg_list, &single);
1304		dev_close_many(&single);
1305		list_del(&single);
1306	}
1307	return 0;
1308}
1309EXPORT_SYMBOL(dev_close);
1310
1311
1312/**
1313 *	dev_disable_lro - disable Large Receive Offload on a device
1314 *	@dev: device
1315 *
1316 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1317 *	called under RTNL.  This is needed if received packets may be
1318 *	forwarded to another interface.
1319 */
1320void dev_disable_lro(struct net_device *dev)
1321{
1322	/*
1323	 * If we're trying to disable lro on a vlan device
1324	 * use the underlying physical device instead
1325	 */
1326	if (is_vlan_dev(dev))
1327		dev = vlan_dev_real_dev(dev);
1328
1329	dev->wanted_features &= ~NETIF_F_LRO;
1330	netdev_update_features(dev);
1331
1332	if (unlikely(dev->features & NETIF_F_LRO))
1333		netdev_WARN(dev, "failed to disable LRO!\n");
 
 
 
1334}
1335EXPORT_SYMBOL(dev_disable_lro);
1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337
1338static int dev_boot_phase = 1;
1339
1340/**
1341 *	register_netdevice_notifier - register a network notifier block
1342 *	@nb: notifier
1343 *
1344 *	Register a notifier to be called when network device events occur.
1345 *	The notifier passed is linked into the kernel structures and must
1346 *	not be reused until it has been unregistered. A negative errno code
1347 *	is returned on a failure.
1348 *
1349 * 	When registered all registration and up events are replayed
1350 *	to the new notifier to allow device to have a race free
1351 *	view of the network device list.
1352 */
1353
1354int register_netdevice_notifier(struct notifier_block *nb)
1355{
1356	struct net_device *dev;
1357	struct net_device *last;
1358	struct net *net;
1359	int err;
1360
 
 
1361	rtnl_lock();
1362	err = raw_notifier_chain_register(&netdev_chain, nb);
1363	if (err)
1364		goto unlock;
1365	if (dev_boot_phase)
1366		goto unlock;
1367	for_each_net(net) {
1368		for_each_netdev(net, dev) {
1369			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370			err = notifier_to_errno(err);
1371			if (err)
1372				goto rollback;
1373
1374			if (!(dev->flags & IFF_UP))
1375				continue;
1376
1377			nb->notifier_call(nb, NETDEV_UP, dev);
1378		}
1379	}
1380
1381unlock:
1382	rtnl_unlock();
 
1383	return err;
1384
1385rollback:
1386	last = dev;
1387	for_each_net(net) {
1388		for_each_netdev(net, dev) {
1389			if (dev == last)
1390				goto outroll;
1391
1392			if (dev->flags & IFF_UP) {
1393				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394				nb->notifier_call(nb, NETDEV_DOWN, dev);
1395			}
1396			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398		}
1399	}
1400
1401outroll:
1402	raw_notifier_chain_unregister(&netdev_chain, nb);
1403	goto unlock;
1404}
1405EXPORT_SYMBOL(register_netdevice_notifier);
1406
1407/**
1408 *	unregister_netdevice_notifier - unregister a network notifier block
1409 *	@nb: notifier
1410 *
1411 *	Unregister a notifier previously registered by
1412 *	register_netdevice_notifier(). The notifier is unlinked into the
1413 *	kernel structures and may then be reused. A negative errno code
1414 *	is returned on a failure.
1415 *
1416 * 	After unregistering unregister and down device events are synthesized
1417 *	for all devices on the device list to the removed notifier to remove
1418 *	the need for special case cleanup code.
1419 */
1420
1421int unregister_netdevice_notifier(struct notifier_block *nb)
1422{
1423	struct net_device *dev;
1424	struct net *net;
1425	int err;
1426
 
 
1427	rtnl_lock();
1428	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429	if (err)
1430		goto unlock;
1431
1432	for_each_net(net) {
1433		for_each_netdev(net, dev) {
1434			if (dev->flags & IFF_UP) {
1435				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436				nb->notifier_call(nb, NETDEV_DOWN, dev);
1437			}
1438			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440		}
1441	}
1442unlock:
1443	rtnl_unlock();
 
1444	return err;
1445}
1446EXPORT_SYMBOL(unregister_netdevice_notifier);
1447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448/**
1449 *	call_netdevice_notifiers - call all network notifier blocks
1450 *      @val: value passed unmodified to notifier function
1451 *      @dev: net_device pointer passed unmodified to notifier function
1452 *
1453 *	Call all network notifier blocks.  Parameters and return value
1454 *	are as for raw_notifier_call_chain().
1455 */
1456
1457int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458{
1459	ASSERT_RTNL();
1460	return raw_notifier_call_chain(&netdev_chain, val, dev);
1461}
1462EXPORT_SYMBOL(call_netdevice_notifiers);
1463
1464static struct static_key netstamp_needed __read_mostly;
1465#ifdef HAVE_JUMP_LABEL
1466/* We are not allowed to call static_key_slow_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * static_key_slow_dec() calls.
 
 
 
1469 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470static atomic_t netstamp_needed_deferred;
 
 
 
 
 
 
 
 
 
 
 
 
 
1471#endif
1472
1473void net_enable_timestamp(void)
1474{
1475#ifdef HAVE_JUMP_LABEL
1476	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477
1478	if (deferred) {
1479		while (--deferred)
1480			static_key_slow_dec(&netstamp_needed);
1481		return;
1482	}
 
 
 
 
1483#endif
1484	WARN_ON(in_interrupt());
1485	static_key_slow_inc(&netstamp_needed);
1486}
1487EXPORT_SYMBOL(net_enable_timestamp);
1488
1489void net_disable_timestamp(void)
1490{
1491#ifdef HAVE_JUMP_LABEL
1492	if (in_interrupt()) {
1493		atomic_inc(&netstamp_needed_deferred);
1494		return;
 
 
1495	}
 
 
 
 
1496#endif
1497	static_key_slow_dec(&netstamp_needed);
1498}
1499EXPORT_SYMBOL(net_disable_timestamp);
1500
1501static inline void net_timestamp_set(struct sk_buff *skb)
1502{
1503	skb->tstamp.tv64 = 0;
1504	if (static_key_false(&netstamp_needed))
1505		__net_timestamp(skb);
 
1506}
1507
1508#define net_timestamp_check(COND, SKB)			\
1509	if (static_key_false(&netstamp_needed)) {		\
1510		if ((COND) && !(SKB)->tstamp.tv64)	\
1511			__net_timestamp(SKB);		\
1512	}						\
1513
1514static int net_hwtstamp_validate(struct ifreq *ifr)
1515{
1516	struct hwtstamp_config cfg;
1517	enum hwtstamp_tx_types tx_type;
1518	enum hwtstamp_rx_filters rx_filter;
1519	int tx_type_valid = 0;
1520	int rx_filter_valid = 0;
1521
1522	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523		return -EFAULT;
1524
1525	if (cfg.flags) /* reserved for future extensions */
1526		return -EINVAL;
1527
1528	tx_type = cfg.tx_type;
1529	rx_filter = cfg.rx_filter;
1530
1531	switch (tx_type) {
1532	case HWTSTAMP_TX_OFF:
1533	case HWTSTAMP_TX_ON:
1534	case HWTSTAMP_TX_ONESTEP_SYNC:
1535		tx_type_valid = 1;
1536		break;
1537	}
1538
1539	switch (rx_filter) {
1540	case HWTSTAMP_FILTER_NONE:
1541	case HWTSTAMP_FILTER_ALL:
1542	case HWTSTAMP_FILTER_SOME:
1543	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555		rx_filter_valid = 1;
1556		break;
1557	}
1558
1559	if (!tx_type_valid || !rx_filter_valid)
1560		return -ERANGE;
1561
1562	return 0;
1563}
1564
1565static inline bool is_skb_forwardable(struct net_device *dev,
1566				      struct sk_buff *skb)
1567{
1568	unsigned int len;
1569
1570	if (!(dev->flags & IFF_UP))
1571		return false;
1572
1573	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574	if (skb->len <= len)
1575		return true;
1576
1577	/* if TSO is enabled, we don't care about the length as the packet
1578	 * could be forwarded without being segmented before
1579	 */
1580	if (skb_is_gso(skb))
1581		return true;
1582
1583	return false;
1584}
 
1585
1586/**
1587 * dev_forward_skb - loopback an skb to another netif
1588 *
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1591 *
1592 * return values:
1593 *	NET_RX_SUCCESS	(no congestion)
1594 *	NET_RX_DROP     (packet was dropped, but freed)
1595 *
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1599 *
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1603 */
1604int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605{
1606	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608			atomic_long_inc(&dev->rx_dropped);
1609			kfree_skb(skb);
1610			return NET_RX_DROP;
1611		}
1612	}
1613
1614	skb_orphan(skb);
1615	nf_reset(skb);
1616
1617	if (unlikely(!is_skb_forwardable(dev, skb))) {
1618		atomic_long_inc(&dev->rx_dropped);
1619		kfree_skb(skb);
1620		return NET_RX_DROP;
1621	}
1622	skb->skb_iif = 0;
1623	skb->dev = dev;
1624	skb_dst_drop(skb);
1625	skb->tstamp.tv64 = 0;
1626	skb->pkt_type = PACKET_HOST;
1627	skb->protocol = eth_type_trans(skb, dev);
1628	skb->mark = 0;
1629	secpath_reset(skb);
1630	nf_reset(skb);
1631	return netif_rx(skb);
1632}
1633EXPORT_SYMBOL_GPL(dev_forward_skb);
1634
 
 
 
 
 
1635static inline int deliver_skb(struct sk_buff *skb,
1636			      struct packet_type *pt_prev,
1637			      struct net_device *orig_dev)
1638{
1639	atomic_inc(&skb->users);
 
 
1640	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1641}
1642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1644{
1645	if (ptype->af_packet_priv == NULL)
1646		return false;
1647
1648	if (ptype->id_match)
1649		return ptype->id_match(ptype, skb->sk);
1650	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1651		return true;
1652
1653	return false;
1654}
1655
 
 
 
 
 
 
 
 
 
 
 
1656/*
1657 *	Support routine. Sends outgoing frames to any network
1658 *	taps currently in use.
1659 */
1660
1661static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1662{
1663	struct packet_type *ptype;
1664	struct sk_buff *skb2 = NULL;
1665	struct packet_type *pt_prev = NULL;
 
1666
1667	rcu_read_lock();
1668	list_for_each_entry_rcu(ptype, &ptype_all, list) {
 
 
 
 
1669		/* Never send packets back to the socket
1670		 * they originated from - MvS (miquels@drinkel.ow.org)
1671		 */
1672		if ((ptype->dev == dev || !ptype->dev) &&
1673		    (!skb_loop_sk(ptype, skb))) {
1674			if (pt_prev) {
1675				deliver_skb(skb2, pt_prev, skb->dev);
1676				pt_prev = ptype;
1677				continue;
1678			}
1679
1680			skb2 = skb_clone(skb, GFP_ATOMIC);
1681			if (!skb2)
1682				break;
 
 
1683
1684			net_timestamp_set(skb2);
 
 
 
 
 
 
 
 
 
 
 
1685
1686			/* skb->nh should be correctly
1687			   set by sender, so that the second statement is
1688			   just protection against buggy protocols.
1689			 */
1690			skb_reset_mac_header(skb2);
 
 
1691
1692			if (skb_network_header(skb2) < skb2->data ||
1693			    skb2->network_header > skb2->tail) {
1694				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1695						     ntohs(skb2->protocol),
1696						     dev->name);
1697				skb_reset_network_header(skb2);
1698			}
1699
1700			skb2->transport_header = skb2->network_header;
1701			skb2->pkt_type = PACKET_OUTGOING;
1702			pt_prev = ptype;
1703		}
 
 
 
 
 
 
1704	}
1705	if (pt_prev)
1706		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1707	rcu_read_unlock();
1708}
 
1709
1710/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
 
1711 * @dev: Network device
1712 * @txq: number of queues available
1713 *
1714 * If real_num_tx_queues is changed the tc mappings may no longer be
1715 * valid. To resolve this verify the tc mapping remains valid and if
1716 * not NULL the mapping. With no priorities mapping to this
1717 * offset/count pair it will no longer be used. In the worst case TC0
1718 * is invalid nothing can be done so disable priority mappings. If is
1719 * expected that drivers will fix this mapping if they can before
1720 * calling netif_set_real_num_tx_queues.
1721 */
1722static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1723{
1724	int i;
1725	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1726
1727	/* If TC0 is invalidated disable TC mapping */
1728	if (tc->offset + tc->count > txq) {
1729		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1730		dev->num_tc = 0;
1731		return;
1732	}
1733
1734	/* Invalidated prio to tc mappings set to TC0 */
1735	for (i = 1; i < TC_BITMASK + 1; i++) {
1736		int q = netdev_get_prio_tc_map(dev, i);
1737
1738		tc = &dev->tc_to_txq[q];
1739		if (tc->offset + tc->count > txq) {
1740			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1741				i, q);
1742			netdev_set_prio_tc_map(dev, i, 0);
1743		}
1744	}
1745}
1746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747/*
1748 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1749 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1750 */
1751int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1752{
 
1753	int rc;
1754
 
 
1755	if (txq < 1 || txq > dev->num_tx_queues)
1756		return -EINVAL;
1757
1758	if (dev->reg_state == NETREG_REGISTERED ||
1759	    dev->reg_state == NETREG_UNREGISTERING) {
1760		ASSERT_RTNL();
1761
1762		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1763						  txq);
1764		if (rc)
1765			return rc;
1766
1767		if (dev->num_tc)
1768			netif_setup_tc(dev, txq);
1769
1770		if (txq < dev->real_num_tx_queues)
 
 
 
 
 
1771			qdisc_reset_all_tx_gt(dev, txq);
 
 
 
 
 
 
1772	}
1773
1774	dev->real_num_tx_queues = txq;
1775	return 0;
1776}
1777EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1778
1779#ifdef CONFIG_RPS
1780/**
1781 *	netif_set_real_num_rx_queues - set actual number of RX queues used
1782 *	@dev: Network device
1783 *	@rxq: Actual number of RX queues
1784 *
1785 *	This must be called either with the rtnl_lock held or before
1786 *	registration of the net device.  Returns 0 on success, or a
1787 *	negative error code.  If called before registration, it always
1788 *	succeeds.
1789 */
1790int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1791{
1792	int rc;
1793
1794	if (rxq < 1 || rxq > dev->num_rx_queues)
1795		return -EINVAL;
1796
1797	if (dev->reg_state == NETREG_REGISTERED) {
1798		ASSERT_RTNL();
1799
1800		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1801						  rxq);
1802		if (rc)
1803			return rc;
1804	}
1805
1806	dev->real_num_rx_queues = rxq;
1807	return 0;
1808}
1809EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1810#endif
1811
1812static inline void __netif_reschedule(struct Qdisc *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813{
1814	struct softnet_data *sd;
1815	unsigned long flags;
1816
1817	local_irq_save(flags);
1818	sd = &__get_cpu_var(softnet_data);
1819	q->next_sched = NULL;
1820	*sd->output_queue_tailp = q;
1821	sd->output_queue_tailp = &q->next_sched;
1822	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1823	local_irq_restore(flags);
1824}
1825
1826void __netif_schedule(struct Qdisc *q)
1827{
1828	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1829		__netif_reschedule(q);
1830}
1831EXPORT_SYMBOL(__netif_schedule);
1832
1833void dev_kfree_skb_irq(struct sk_buff *skb)
 
 
 
 
1834{
1835	if (atomic_dec_and_test(&skb->users)) {
1836		struct softnet_data *sd;
1837		unsigned long flags;
1838
1839		local_irq_save(flags);
1840		sd = &__get_cpu_var(softnet_data);
1841		skb->next = sd->completion_queue;
1842		sd->completion_queue = skb;
1843		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1844		local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845	}
 
 
 
 
 
 
1846}
1847EXPORT_SYMBOL(dev_kfree_skb_irq);
1848
1849void dev_kfree_skb_any(struct sk_buff *skb)
1850{
1851	if (in_irq() || irqs_disabled())
1852		dev_kfree_skb_irq(skb);
1853	else
1854		dev_kfree_skb(skb);
1855}
1856EXPORT_SYMBOL(dev_kfree_skb_any);
1857
1858
1859/**
1860 * netif_device_detach - mark device as removed
1861 * @dev: network device
1862 *
1863 * Mark device as removed from system and therefore no longer available.
1864 */
1865void netif_device_detach(struct net_device *dev)
1866{
1867	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1868	    netif_running(dev)) {
1869		netif_tx_stop_all_queues(dev);
1870	}
1871}
1872EXPORT_SYMBOL(netif_device_detach);
1873
1874/**
1875 * netif_device_attach - mark device as attached
1876 * @dev: network device
1877 *
1878 * Mark device as attached from system and restart if needed.
1879 */
1880void netif_device_attach(struct net_device *dev)
1881{
1882	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883	    netif_running(dev)) {
1884		netif_tx_wake_all_queues(dev);
1885		__netdev_watchdog_up(dev);
1886	}
1887}
1888EXPORT_SYMBOL(netif_device_attach);
1889
1890static void skb_warn_bad_offload(const struct sk_buff *skb)
 
 
 
 
 
 
1891{
1892	static const netdev_features_t null_features = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	struct net_device *dev = skb->dev;
1894	const char *driver = "";
1895
1896	if (dev && dev->dev.parent)
1897		driver = dev_driver_string(dev->dev.parent);
1898
1899	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1900	     "gso_type=%d ip_summed=%d\n",
1901	     driver, dev ? &dev->features : &null_features,
1902	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1903	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1904	     skb_shinfo(skb)->gso_type, skb->ip_summed);
 
 
 
 
1905}
1906
1907/*
1908 * Invalidate hardware checksum when packet is to be mangled, and
1909 * complete checksum manually on outgoing path.
1910 */
1911int skb_checksum_help(struct sk_buff *skb)
1912{
1913	__wsum csum;
1914	int ret = 0, offset;
1915
1916	if (skb->ip_summed == CHECKSUM_COMPLETE)
1917		goto out_set_summed;
1918
1919	if (unlikely(skb_shinfo(skb)->gso_size)) {
1920		skb_warn_bad_offload(skb);
1921		return -EINVAL;
1922	}
1923
 
 
 
 
 
 
 
 
 
1924	offset = skb_checksum_start_offset(skb);
1925	BUG_ON(offset >= skb_headlen(skb));
 
 
 
 
 
 
1926	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1927
1928	offset += skb->csum_offset;
1929	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1930
1931	if (skb_cloned(skb) &&
1932	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1933		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1934		if (ret)
1935			goto out;
1936	}
 
 
 
1937
1938	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1939out_set_summed:
1940	skb->ip_summed = CHECKSUM_NONE;
1941out:
1942	return ret;
1943}
1944EXPORT_SYMBOL(skb_checksum_help);
1945
1946/**
1947 *	skb_gso_segment - Perform segmentation on skb.
1948 *	@skb: buffer to segment
1949 *	@features: features for the output path (see dev->features)
1950 *
1951 *	This function segments the given skb and returns a list of segments.
1952 *
1953 *	It may return NULL if the skb requires no segmentation.  This is
1954 *	only possible when GSO is used for verifying header integrity.
1955 */
1956struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1957	netdev_features_t features)
1958{
1959	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1960	struct packet_type *ptype;
1961	__be16 type = skb->protocol;
1962	int vlan_depth = ETH_HLEN;
1963	int err;
1964
1965	while (type == htons(ETH_P_8021Q)) {
1966		struct vlan_hdr *vh;
1967
1968		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1969			return ERR_PTR(-EINVAL);
1970
1971		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1972		type = vh->h_vlan_encapsulated_proto;
1973		vlan_depth += VLAN_HLEN;
 
 
 
 
 
 
 
 
 
 
1974	}
1975
1976	skb_reset_mac_header(skb);
1977	skb->mac_len = skb->network_header - skb->mac_header;
1978	__skb_pull(skb, skb->mac_len);
1979
1980	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1981		skb_warn_bad_offload(skb);
 
 
 
 
 
 
1982
1983		if (skb_header_cloned(skb) &&
1984		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1985			return ERR_PTR(err);
1986	}
1987
1988	rcu_read_lock();
1989	list_for_each_entry_rcu(ptype,
1990			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1991		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1992			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1993				err = ptype->gso_send_check(skb);
1994				segs = ERR_PTR(err);
1995				if (err || skb_gso_ok(skb, features))
1996					break;
1997				__skb_push(skb, (skb->data -
1998						 skb_network_header(skb)));
1999			}
2000			segs = ptype->gso_segment(skb, features);
2001			break;
2002		}
2003	}
2004	rcu_read_unlock();
2005
2006	__skb_push(skb, skb->data - skb_mac_header(skb));
 
2007
2008	return segs;
 
 
 
 
2009}
2010EXPORT_SYMBOL(skb_gso_segment);
2011
2012/* Take action when hardware reception checksum errors are detected. */
2013#ifdef CONFIG_BUG
2014void netdev_rx_csum_fault(struct net_device *dev)
2015{
2016	if (net_ratelimit()) {
2017		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2018		dump_stack();
2019	}
 
 
 
 
2020}
2021EXPORT_SYMBOL(netdev_rx_csum_fault);
2022#endif
2023
2024/* Actually, we should eliminate this check as soon as we know, that:
2025 * 1. IOMMU is present and allows to map all the memory.
2026 * 2. No high memory really exists on this machine.
2027 */
2028
2029static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2030{
2031#ifdef CONFIG_HIGHMEM
2032	int i;
 
2033	if (!(dev->features & NETIF_F_HIGHDMA)) {
2034		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2035			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2036			if (PageHighMem(skb_frag_page(frag)))
2037				return 1;
2038		}
2039	}
2040
2041	if (PCI_DMA_BUS_IS_PHYS) {
2042		struct device *pdev = dev->dev.parent;
2043
2044		if (!pdev)
2045			return 0;
2046		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2049			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2050				return 1;
2051		}
2052	}
2053#endif
2054	return 0;
2055}
2056
2057struct dev_gso_cb {
2058	void (*destructor)(struct sk_buff *skb);
2059};
 
 
 
 
 
 
 
2060
2061#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
 
 
 
 
 
 
 
 
 
2062
2063static void dev_gso_skb_destructor(struct sk_buff *skb)
 
2064{
2065	struct dev_gso_cb *cb;
2066
2067	do {
2068		struct sk_buff *nskb = skb->next;
2069
2070		skb->next = nskb->next;
2071		nskb->next = NULL;
2072		kfree_skb(nskb);
2073	} while (skb->next);
 
 
2074
2075	cb = DEV_GSO_CB(skb);
2076	if (cb->destructor)
2077		cb->destructor(skb);
2078}
2079
2080/**
2081 *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2082 *	@skb: buffer to segment
2083 *	@features: device features as applicable to this skb
2084 *
2085 *	This function segments the given skb and stores the list of segments
2086 *	in skb->next.
2087 */
2088static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2089{
2090	struct sk_buff *segs;
 
 
2091
2092	segs = skb_gso_segment(skb, features);
 
 
 
 
 
2093
2094	/* Verifying header integrity only. */
2095	if (!segs)
2096		return 0;
 
 
2097
2098	if (IS_ERR(segs))
2099		return PTR_ERR(segs);
2100
2101	skb->next = segs;
2102	DEV_GSO_CB(skb)->destructor = skb->destructor;
2103	skb->destructor = dev_gso_skb_destructor;
2104
2105	return 0;
2106}
 
 
2107
2108static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2109{
2110	return ((features & NETIF_F_GEN_CSUM) ||
2111		((features & NETIF_F_V4_CSUM) &&
2112		 protocol == htons(ETH_P_IP)) ||
2113		((features & NETIF_F_V6_CSUM) &&
2114		 protocol == htons(ETH_P_IPV6)) ||
2115		((features & NETIF_F_FCOE_CRC) &&
2116		 protocol == htons(ETH_P_FCOE)));
2117}
2118
2119static netdev_features_t harmonize_features(struct sk_buff *skb,
2120	__be16 protocol, netdev_features_t features)
2121{
2122	if (!can_checksum_protocol(features, protocol)) {
2123		features &= ~NETIF_F_ALL_CSUM;
2124		features &= ~NETIF_F_SG;
2125	} else if (illegal_highdma(skb->dev, skb)) {
2126		features &= ~NETIF_F_SG;
 
2127	}
2128
2129	return features;
2130}
2131
2132netdev_features_t netif_skb_features(struct sk_buff *skb)
2133{
2134	__be16 protocol = skb->protocol;
2135	netdev_features_t features = skb->dev->features;
2136
2137	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2138		features &= ~NETIF_F_GSO_MASK;
2139
2140	if (protocol == htons(ETH_P_8021Q)) {
2141		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2142		protocol = veh->h_vlan_encapsulated_proto;
2143	} else if (!vlan_tx_tag_present(skb)) {
2144		return harmonize_features(skb, protocol, features);
2145	}
2146
2147	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148
2149	if (protocol != htons(ETH_P_8021Q)) {
2150		return harmonize_features(skb, protocol, features);
2151	} else {
2152		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2153				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2154		return harmonize_features(skb, protocol, features);
2155	}
2156}
2157EXPORT_SYMBOL(netif_skb_features);
2158
2159/*
2160 * Returns true if either:
2161 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2162 *	2. skb is fragmented and the device does not support SG, or if
2163 *	   at least one of fragments is in highmem and device does not
2164 *	   support DMA from it.
2165 */
2166static inline int skb_needs_linearize(struct sk_buff *skb,
2167				      int features)
2168{
2169	return skb_is_nonlinear(skb) &&
2170			((skb_has_frag_list(skb) &&
2171				!(features & NETIF_F_FRAGLIST)) ||
2172			(skb_shinfo(skb)->nr_frags &&
2173				!(features & NETIF_F_SG)));
2174}
2175
2176int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2177			struct netdev_queue *txq)
2178{
2179	const struct net_device_ops *ops = dev->netdev_ops;
2180	int rc = NETDEV_TX_OK;
2181	unsigned int skb_len;
2182
2183	if (likely(!skb->next)) {
2184		netdev_features_t features;
2185
2186		/*
2187		 * If device doesn't need skb->dst, release it right now while
2188		 * its hot in this cpu cache
2189		 */
2190		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2191			skb_dst_drop(skb);
2192
2193		if (!list_empty(&ptype_all))
2194			dev_queue_xmit_nit(skb, dev);
2195
2196		features = netif_skb_features(skb);
 
 
 
 
2197
2198		if (vlan_tx_tag_present(skb) &&
2199		    !(features & NETIF_F_HW_VLAN_TX)) {
2200			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2201			if (unlikely(!skb))
2202				goto out;
2203
2204			skb->vlan_tci = 0;
 
 
 
 
2205		}
2206
2207		if (netif_needs_gso(skb, features)) {
2208			if (unlikely(dev_gso_segment(skb, features)))
2209				goto out_kfree_skb;
2210			if (skb->next)
2211				goto gso;
2212		} else {
2213			if (skb_needs_linearize(skb, features) &&
2214			    __skb_linearize(skb))
2215				goto out_kfree_skb;
2216
2217			/* If packet is not checksummed and device does not
2218			 * support checksumming for this protocol, complete
2219			 * checksumming here.
2220			 */
2221			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2222				skb_set_transport_header(skb,
2223					skb_checksum_start_offset(skb));
2224				if (!(features & NETIF_F_ALL_CSUM) &&
2225				     skb_checksum_help(skb))
2226					goto out_kfree_skb;
2227			}
2228		}
2229
2230		skb_len = skb->len;
2231		rc = ops->ndo_start_xmit(skb, dev);
2232		trace_net_dev_xmit(skb, rc, dev, skb_len);
2233		if (rc == NETDEV_TX_OK)
2234			txq_trans_update(txq);
2235		return rc;
2236	}
2237
2238gso:
2239	do {
2240		struct sk_buff *nskb = skb->next;
2241
2242		skb->next = nskb->next;
2243		nskb->next = NULL;
2244
2245		/*
2246		 * If device doesn't need nskb->dst, release it right now while
2247		 * its hot in this cpu cache
2248		 */
2249		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2250			skb_dst_drop(nskb);
2251
2252		skb_len = nskb->len;
2253		rc = ops->ndo_start_xmit(nskb, dev);
2254		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2255		if (unlikely(rc != NETDEV_TX_OK)) {
2256			if (rc & ~NETDEV_TX_MASK)
2257				goto out_kfree_gso_skb;
2258			nskb->next = skb->next;
2259			skb->next = nskb;
2260			return rc;
2261		}
2262		txq_trans_update(txq);
2263		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2264			return NETDEV_TX_BUSY;
2265	} while (skb->next);
2266
2267out_kfree_gso_skb:
2268	if (likely(skb->next == NULL))
2269		skb->destructor = DEV_GSO_CB(skb)->destructor;
2270out_kfree_skb:
2271	kfree_skb(skb);
2272out:
2273	return rc;
 
2274}
2275
2276static u32 hashrnd __read_mostly;
 
 
 
 
 
 
 
2277
2278/*
2279 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2280 * to be used as a distribution range.
2281 */
2282u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2283		  unsigned int num_tx_queues)
2284{
2285	u32 hash;
2286	u16 qoffset = 0;
2287	u16 qcount = num_tx_queues;
2288
2289	if (skb_rx_queue_recorded(skb)) {
2290		hash = skb_get_rx_queue(skb);
2291		while (unlikely(hash >= num_tx_queues))
2292			hash -= num_tx_queues;
2293		return hash;
2294	}
2295
2296	if (dev->num_tc) {
2297		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2298		qoffset = dev->tc_to_txq[tc].offset;
2299		qcount = dev->tc_to_txq[tc].count;
 
 
2300	}
2301
2302	if (skb->sk && skb->sk->sk_hash)
2303		hash = skb->sk->sk_hash;
2304	else
2305		hash = (__force u16) skb->protocol;
2306	hash = jhash_1word(hash, hashrnd);
2307
2308	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2309}
2310EXPORT_SYMBOL(__skb_tx_hash);
2311
2312static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2313{
2314	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2315		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2316				     dev->name, queue_index,
2317				     dev->real_num_tx_queues);
2318		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319	}
2320	return queue_index;
 
 
 
 
 
 
 
 
 
2321}
2322
2323static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2324{
2325#ifdef CONFIG_XPS
2326	struct xps_dev_maps *dev_maps;
2327	struct xps_map *map;
2328	int queue_index = -1;
2329
2330	rcu_read_lock();
2331	dev_maps = rcu_dereference(dev->xps_maps);
2332	if (dev_maps) {
2333		map = rcu_dereference(
2334		    dev_maps->cpu_map[raw_smp_processor_id()]);
2335		if (map) {
2336			if (map->len == 1)
2337				queue_index = map->queues[0];
2338			else {
2339				u32 hash;
2340				if (skb->sk && skb->sk->sk_hash)
2341					hash = skb->sk->sk_hash;
2342				else
2343					hash = (__force u16) skb->protocol ^
2344					    skb->rxhash;
2345				hash = jhash_1word(hash, hashrnd);
2346				queue_index = map->queues[
2347				    ((u64)hash * map->len) >> 32];
2348			}
2349			if (unlikely(queue_index >= dev->real_num_tx_queues))
2350				queue_index = -1;
2351		}
2352	}
2353	rcu_read_unlock();
2354
2355	return queue_index;
2356#else
2357	return -1;
2358#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
2359}
 
2360
2361static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2362					struct sk_buff *skb)
2363{
2364	int queue_index;
2365	const struct net_device_ops *ops = dev->netdev_ops;
2366
2367	if (dev->real_num_tx_queues == 1)
2368		queue_index = 0;
2369	else if (ops->ndo_select_queue) {
2370		queue_index = ops->ndo_select_queue(dev, skb);
2371		queue_index = dev_cap_txqueue(dev, queue_index);
2372	} else {
2373		struct sock *sk = skb->sk;
2374		queue_index = sk_tx_queue_get(sk);
2375
2376		if (queue_index < 0 || skb->ooo_okay ||
2377		    queue_index >= dev->real_num_tx_queues) {
2378			int old_index = queue_index;
2379
2380			queue_index = get_xps_queue(dev, skb);
2381			if (queue_index < 0)
2382				queue_index = skb_tx_hash(dev, skb);
2383
2384			if (queue_index != old_index && sk) {
2385				struct dst_entry *dst =
2386				    rcu_dereference_check(sk->sk_dst_cache, 1);
 
 
 
 
 
 
 
 
 
 
2387
2388				if (dst && skb_dst(skb) == dst)
2389					sk_tx_queue_set(sk, queue_index);
2390			}
2391		}
 
 
 
 
 
 
2392	}
 
2393
2394	skb_set_queue_mapping(skb, queue_index);
2395	return netdev_get_tx_queue(dev, queue_index);
 
 
 
 
 
 
 
 
2396}
2397
2398static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2399				 struct net_device *dev,
2400				 struct netdev_queue *txq)
2401{
2402	spinlock_t *root_lock = qdisc_lock(q);
 
2403	bool contended;
2404	int rc;
2405
2406	qdisc_skb_cb(skb)->pkt_len = skb->len;
2407	qdisc_calculate_pkt_len(skb, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408	/*
2409	 * Heuristic to force contended enqueues to serialize on a
2410	 * separate lock before trying to get qdisc main lock.
2411	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2412	 * and dequeue packets faster.
 
 
 
 
2413	 */
2414	contended = qdisc_is_running(q);
2415	if (unlikely(contended))
2416		spin_lock(&q->busylock);
2417
2418	spin_lock(root_lock);
2419	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2420		kfree_skb(skb);
2421		rc = NET_XMIT_DROP;
2422	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2423		   qdisc_run_begin(q)) {
2424		/*
2425		 * This is a work-conserving queue; there are no old skbs
2426		 * waiting to be sent out; and the qdisc is not running -
2427		 * xmit the skb directly.
2428		 */
2429		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2430			skb_dst_force(skb);
2431
2432		qdisc_bstats_update(q, skb);
2433
2434		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2435			if (unlikely(contended)) {
2436				spin_unlock(&q->busylock);
2437				contended = false;
2438			}
2439			__qdisc_run(q);
2440		} else
2441			qdisc_run_end(q);
2442
 
2443		rc = NET_XMIT_SUCCESS;
2444	} else {
2445		skb_dst_force(skb);
2446		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2447		if (qdisc_run_begin(q)) {
2448			if (unlikely(contended)) {
2449				spin_unlock(&q->busylock);
2450				contended = false;
2451			}
2452			__qdisc_run(q);
 
2453		}
2454	}
2455	spin_unlock(root_lock);
 
 
 
2456	if (unlikely(contended))
2457		spin_unlock(&q->busylock);
2458	return rc;
2459}
2460
2461#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2462static void skb_update_prio(struct sk_buff *skb)
2463{
2464	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
 
 
2465
2466	if (!skb->priority && skb->sk && map) {
2467		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
 
 
 
 
 
 
2468
2469		if (prioidx < map->priomap_len)
2470			skb->priority = map->priomap[prioidx];
2471	}
 
2472}
2473#else
2474#define skb_update_prio(skb)
2475#endif
2476
2477static DEFINE_PER_CPU(int, xmit_recursion);
2478#define RECURSION_LIMIT 10
2479
2480/**
2481 *	dev_queue_xmit - transmit a buffer
 
 
2482 *	@skb: buffer to transmit
2483 *
2484 *	Queue a buffer for transmission to a network device. The caller must
2485 *	have set the device and priority and built the buffer before calling
2486 *	this function. The function can be called from an interrupt.
2487 *
2488 *	A negative errno code is returned on a failure. A success does not
2489 *	guarantee the frame will be transmitted as it may be dropped due
2490 *	to congestion or traffic shaping.
2491 *
2492 * -----------------------------------------------------------------------------------
2493 *      I notice this method can also return errors from the queue disciplines,
2494 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2495 *      be positive.
2496 *
2497 *      Regardless of the return value, the skb is consumed, so it is currently
2498 *      difficult to retry a send to this method.  (You can bump the ref count
2499 *      before sending to hold a reference for retry if you are careful.)
2500 *
2501 *      When calling this method, interrupts MUST be enabled.  This is because
2502 *      the BH enable code must have IRQs enabled so that it will not deadlock.
2503 *          --BLG
2504 */
2505int dev_queue_xmit(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506{
2507	struct net_device *dev = skb->dev;
2508	struct netdev_queue *txq;
2509	struct Qdisc *q;
2510	int rc = -ENOMEM;
 
 
 
 
 
 
 
2511
2512	/* Disable soft irqs for various locks below. Also
2513	 * stops preemption for RCU.
2514	 */
2515	rcu_read_lock_bh();
2516
2517	skb_update_prio(skb);
2518
2519	txq = dev_pick_tx(dev, skb);
2520	q = rcu_dereference_bh(txq->qdisc);
 
 
 
 
 
 
 
2521
2522#ifdef CONFIG_NET_CLS_ACT
2523	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
 
 
 
 
 
 
 
 
 
2524#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
2525	trace_net_dev_queue(skb);
2526	if (q->enqueue) {
2527		rc = __dev_xmit_skb(skb, q, dev, txq);
2528		goto out;
2529	}
2530
2531	/* The device has no queue. Common case for software devices:
2532	   loopback, all the sorts of tunnels...
2533
2534	   Really, it is unlikely that netif_tx_lock protection is necessary
2535	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2536	   counters.)
2537	   However, it is possible, that they rely on protection
2538	   made by us here.
2539
2540	   Check this and shot the lock. It is not prone from deadlocks.
2541	   Either shot noqueue qdisc, it is even simpler 8)
2542	 */
2543	if (dev->flags & IFF_UP) {
2544		int cpu = smp_processor_id(); /* ok because BHs are off */
2545
2546		if (txq->xmit_lock_owner != cpu) {
2547
2548			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
 
 
2549				goto recursion_alert;
2550
 
 
 
 
2551			HARD_TX_LOCK(dev, txq, cpu);
2552
2553			if (!netif_xmit_stopped(txq)) {
2554				__this_cpu_inc(xmit_recursion);
2555				rc = dev_hard_start_xmit(skb, dev, txq);
2556				__this_cpu_dec(xmit_recursion);
2557				if (dev_xmit_complete(rc)) {
2558					HARD_TX_UNLOCK(dev, txq);
2559					goto out;
2560				}
2561			}
2562			HARD_TX_UNLOCK(dev, txq);
2563			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2564					     dev->name);
2565		} else {
2566			/* Recursion is detected! It is possible,
2567			 * unfortunately
2568			 */
2569recursion_alert:
2570			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2571					     dev->name);
2572		}
2573	}
2574
2575	rc = -ENETDOWN;
2576	rcu_read_unlock_bh();
2577
2578	kfree_skb(skb);
 
2579	return rc;
2580out:
2581	rcu_read_unlock_bh();
2582	return rc;
2583}
2584EXPORT_SYMBOL(dev_queue_xmit);
 
 
 
 
 
 
 
 
2585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586
2587/*=======================================================================
2588			Receiver routines
2589  =======================================================================*/
 
 
 
 
 
 
 
 
 
2590
2591int netdev_max_backlog __read_mostly = 1000;
 
 
2592int netdev_tstamp_prequeue __read_mostly = 1;
 
2593int netdev_budget __read_mostly = 300;
2594int weight_p __read_mostly = 64;            /* old backlog weight */
 
 
 
 
 
 
2595
2596/* Called with irq disabled */
2597static inline void ____napi_schedule(struct softnet_data *sd,
2598				     struct napi_struct *napi)
2599{
2600	list_add_tail(&napi->poll_list, &sd->poll_list);
2601	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2602}
2603
2604/*
2605 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2606 * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2607 * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2608 * if hash is a canonical 4-tuple hash over transport ports.
2609 */
2610void __skb_get_rxhash(struct sk_buff *skb)
2611{
2612	struct flow_keys keys;
2613	u32 hash;
2614
2615	if (!skb_flow_dissect(skb, &keys))
2616		return;
2617
2618	if (keys.ports) {
2619		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2620			swap(keys.port16[0], keys.port16[1]);
2621		skb->l4_rxhash = 1;
 
 
 
 
 
 
 
 
 
 
 
 
2622	}
2623
2624	/* get a consistent hash (same value on both flow directions) */
2625	if ((__force u32)keys.dst < (__force u32)keys.src)
2626		swap(keys.dst, keys.src);
2627
2628	hash = jhash_3words((__force u32)keys.dst,
2629			    (__force u32)keys.src,
2630			    (__force u32)keys.ports, hashrnd);
2631	if (!hash)
2632		hash = 1;
2633
2634	skb->rxhash = hash;
2635}
2636EXPORT_SYMBOL(__skb_get_rxhash);
2637
2638#ifdef CONFIG_RPS
2639
2640/* One global table that all flow-based protocols share. */
2641struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2642EXPORT_SYMBOL(rps_sock_flow_table);
 
 
2643
2644struct static_key rps_needed __read_mostly;
 
 
 
2645
2646static struct rps_dev_flow *
2647set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2648	    struct rps_dev_flow *rflow, u16 next_cpu)
2649{
2650	if (next_cpu != RPS_NO_CPU) {
2651#ifdef CONFIG_RFS_ACCEL
2652		struct netdev_rx_queue *rxqueue;
2653		struct rps_dev_flow_table *flow_table;
2654		struct rps_dev_flow *old_rflow;
2655		u32 flow_id;
2656		u16 rxq_index;
2657		int rc;
2658
2659		/* Should we steer this flow to a different hardware queue? */
2660		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2661		    !(dev->features & NETIF_F_NTUPLE))
2662			goto out;
2663		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2664		if (rxq_index == skb_get_rx_queue(skb))
2665			goto out;
2666
2667		rxqueue = dev->_rx + rxq_index;
2668		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2669		if (!flow_table)
2670			goto out;
2671		flow_id = skb->rxhash & flow_table->mask;
2672		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2673							rxq_index, flow_id);
2674		if (rc < 0)
2675			goto out;
2676		old_rflow = rflow;
2677		rflow = &flow_table->flows[flow_id];
2678		rflow->filter = rc;
2679		if (old_rflow->filter == rflow->filter)
2680			old_rflow->filter = RPS_NO_FILTER;
2681	out:
2682#endif
2683		rflow->last_qtail =
2684			per_cpu(softnet_data, next_cpu).input_queue_head;
2685	}
2686
2687	rflow->cpu = next_cpu;
2688	return rflow;
2689}
2690
2691/*
2692 * get_rps_cpu is called from netif_receive_skb and returns the target
2693 * CPU from the RPS map of the receiving queue for a given skb.
2694 * rcu_read_lock must be held on entry.
2695 */
2696static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2697		       struct rps_dev_flow **rflowp)
2698{
2699	struct netdev_rx_queue *rxqueue;
2700	struct rps_map *map;
2701	struct rps_dev_flow_table *flow_table;
2702	struct rps_sock_flow_table *sock_flow_table;
2703	int cpu = -1;
2704	u16 tcpu;
 
2705
2706	if (skb_rx_queue_recorded(skb)) {
2707		u16 index = skb_get_rx_queue(skb);
 
2708		if (unlikely(index >= dev->real_num_rx_queues)) {
2709			WARN_ONCE(dev->real_num_rx_queues > 1,
2710				  "%s received packet on queue %u, but number "
2711				  "of RX queues is %u\n",
2712				  dev->name, index, dev->real_num_rx_queues);
2713			goto done;
2714		}
2715		rxqueue = dev->_rx + index;
2716	} else
2717		rxqueue = dev->_rx;
 
2718
 
2719	map = rcu_dereference(rxqueue->rps_map);
2720	if (map) {
2721		if (map->len == 1 &&
2722		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2723			tcpu = map->cpus[0];
2724			if (cpu_online(tcpu))
2725				cpu = tcpu;
2726			goto done;
2727		}
2728	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2729		goto done;
2730	}
2731
2732	skb_reset_network_header(skb);
2733	if (!skb_get_rxhash(skb))
 
2734		goto done;
2735
2736	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2737	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2738	if (flow_table && sock_flow_table) {
2739		u16 next_cpu;
2740		struct rps_dev_flow *rflow;
 
 
2741
2742		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2743		tcpu = rflow->cpu;
 
 
 
 
 
 
2744
2745		next_cpu = sock_flow_table->ents[skb->rxhash &
2746		    sock_flow_table->mask];
 
 
 
2747
2748		/*
2749		 * If the desired CPU (where last recvmsg was done) is
2750		 * different from current CPU (one in the rx-queue flow
2751		 * table entry), switch if one of the following holds:
2752		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2753		 *   - Current CPU is offline.
2754		 *   - The current CPU's queue tail has advanced beyond the
2755		 *     last packet that was enqueued using this table entry.
2756		 *     This guarantees that all previous packets for the flow
2757		 *     have been dequeued, thus preserving in order delivery.
2758		 */
2759		if (unlikely(tcpu != next_cpu) &&
2760		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2761		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2762		      rflow->last_qtail)) >= 0))
 
2763			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
 
2764
2765		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2766			*rflowp = rflow;
2767			cpu = tcpu;
2768			goto done;
2769		}
2770	}
2771
2772	if (map) {
2773		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2774
 
 
2775		if (cpu_online(tcpu)) {
2776			cpu = tcpu;
2777			goto done;
2778		}
2779	}
2780
2781done:
2782	return cpu;
2783}
2784
2785#ifdef CONFIG_RFS_ACCEL
2786
2787/**
2788 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2789 * @dev: Device on which the filter was set
2790 * @rxq_index: RX queue index
2791 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2792 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2793 *
2794 * Drivers that implement ndo_rx_flow_steer() should periodically call
2795 * this function for each installed filter and remove the filters for
2796 * which it returns %true.
2797 */
2798bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2799			 u32 flow_id, u16 filter_id)
2800{
2801	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2802	struct rps_dev_flow_table *flow_table;
2803	struct rps_dev_flow *rflow;
2804	bool expire = true;
2805	int cpu;
2806
2807	rcu_read_lock();
2808	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2809	if (flow_table && flow_id <= flow_table->mask) {
2810		rflow = &flow_table->flows[flow_id];
2811		cpu = ACCESS_ONCE(rflow->cpu);
2812		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2813		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2814			   rflow->last_qtail) <
2815		     (int)(10 * flow_table->mask)))
2816			expire = false;
2817	}
2818	rcu_read_unlock();
2819	return expire;
2820}
2821EXPORT_SYMBOL(rps_may_expire_flow);
2822
2823#endif /* CONFIG_RFS_ACCEL */
2824
2825/* Called from hardirq (IPI) context */
2826static void rps_trigger_softirq(void *data)
2827{
2828	struct softnet_data *sd = data;
2829
2830	____napi_schedule(sd, &sd->backlog);
2831	sd->received_rps++;
2832}
2833
2834#endif /* CONFIG_RPS */
2835
 
 
 
 
 
 
 
 
 
2836/*
2837 * Check if this softnet_data structure is another cpu one
2838 * If yes, queue it to our IPI list and return 1
2839 * If no, return 0
 
 
 
 
 
2840 */
2841static int rps_ipi_queued(struct softnet_data *sd)
2842{
2843#ifdef CONFIG_RPS
2844	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2845
 
2846	if (sd != mysd) {
2847		sd->rps_ipi_next = mysd->rps_ipi_list;
2848		mysd->rps_ipi_list = sd;
2849
2850		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2851		return 1;
 
 
 
 
2852	}
2853#endif /* CONFIG_RPS */
2854	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855}
2856
2857/*
2858 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2859 * queue (may be a remote CPU queue).
2860 */
2861static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2862			      unsigned int *qtail)
2863{
 
2864	struct softnet_data *sd;
2865	unsigned long flags;
 
2866
 
2867	sd = &per_cpu(softnet_data, cpu);
2868
2869	local_irq_save(flags);
2870
2871	rps_lock(sd);
2872	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2873		if (skb_queue_len(&sd->input_pkt_queue)) {
 
2874enqueue:
2875			__skb_queue_tail(&sd->input_pkt_queue, skb);
2876			input_queue_tail_incr_save(sd, qtail);
2877			rps_unlock(sd);
2878			local_irq_restore(flags);
2879			return NET_RX_SUCCESS;
2880		}
2881
2882		/* Schedule NAPI for backlog device
2883		 * We can use non atomic operation since we own the queue lock
2884		 */
2885		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2886			if (!rps_ipi_queued(sd))
2887				____napi_schedule(sd, &sd->backlog);
2888		}
2889		goto enqueue;
2890	}
 
2891
 
2892	sd->dropped++;
2893	rps_unlock(sd);
2894
2895	local_irq_restore(flags);
2896
2897	atomic_long_inc(&skb->dev->rx_dropped);
2898	kfree_skb(skb);
2899	return NET_RX_DROP;
2900}
2901
2902/**
2903 *	netif_rx	-	post buffer to the network code
2904 *	@skb: buffer to post
2905 *
2906 *	This function receives a packet from a device driver and queues it for
2907 *	the upper (protocol) levels to process.  It always succeeds. The buffer
2908 *	may be dropped during processing for congestion control or by the
2909 *	protocol layers.
2910 *
2911 *	return values:
2912 *	NET_RX_SUCCESS	(no congestion)
2913 *	NET_RX_DROP     (packet was dropped)
2914 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915 */
 
 
 
 
 
 
2916
2917int netif_rx(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2918{
2919	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2920
2921	/* if netpoll wants it, pretend we never saw it */
2922	if (netpoll_rx(skb))
2923		return NET_RX_DROP;
2924
2925	net_timestamp_check(netdev_tstamp_prequeue, skb);
2926
2927	trace_netif_rx(skb);
 
2928#ifdef CONFIG_RPS
2929	if (static_key_false(&rps_needed)) {
2930		struct rps_dev_flow voidflow, *rflow = &voidflow;
2931		int cpu;
2932
2933		preempt_disable();
2934		rcu_read_lock();
2935
2936		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2937		if (cpu < 0)
2938			cpu = smp_processor_id();
2939
2940		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2941
2942		rcu_read_unlock();
2943		preempt_enable();
2944	} else
2945#endif
2946	{
2947		unsigned int qtail;
2948		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2949		put_cpu();
2950	}
2951	return ret;
2952}
2953EXPORT_SYMBOL(netif_rx);
2954
2955int netif_rx_ni(struct sk_buff *skb)
 
 
 
 
 
 
 
 
2956{
2957	int err;
2958
2959	preempt_disable();
2960	err = netif_rx(skb);
2961	if (local_softirq_pending())
2962		do_softirq();
2963	preempt_enable();
2964
2965	return err;
 
 
 
2966}
2967EXPORT_SYMBOL(netif_rx_ni);
2968
2969static void net_tx_action(struct softirq_action *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2970{
2971	struct softnet_data *sd = &__get_cpu_var(softnet_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2972
2973	if (sd->completion_queue) {
2974		struct sk_buff *clist;
2975
2976		local_irq_disable();
2977		clist = sd->completion_queue;
2978		sd->completion_queue = NULL;
2979		local_irq_enable();
2980
2981		while (clist) {
2982			struct sk_buff *skb = clist;
 
2983			clist = clist->next;
2984
2985			WARN_ON(atomic_read(&skb->users));
2986			trace_kfree_skb(skb, net_tx_action);
2987			__kfree_skb(skb);
 
 
 
 
 
 
 
 
 
2988		}
2989	}
2990
2991	if (sd->output_queue) {
2992		struct Qdisc *head;
2993
2994		local_irq_disable();
2995		head = sd->output_queue;
2996		sd->output_queue = NULL;
2997		sd->output_queue_tailp = &sd->output_queue;
2998		local_irq_enable();
2999
 
 
3000		while (head) {
3001			struct Qdisc *q = head;
3002			spinlock_t *root_lock;
3003
3004			head = head->next_sched;
3005
3006			root_lock = qdisc_lock(q);
3007			if (spin_trylock(root_lock)) {
3008				smp_mb__before_clear_bit();
3009				clear_bit(__QDISC_STATE_SCHED,
3010					  &q->state);
3011				qdisc_run(q);
3012				spin_unlock(root_lock);
3013			} else {
3014				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3015					      &q->state)) {
3016					__netif_reschedule(q);
3017				} else {
3018					smp_mb__before_clear_bit();
3019					clear_bit(__QDISC_STATE_SCHED,
3020						  &q->state);
3021				}
 
 
 
 
3022			}
 
 
 
 
 
3023		}
 
 
3024	}
 
 
3025}
3026
3027#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3028    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3029/* This hook is defined here for ATM LANE */
3030int (*br_fdb_test_addr_hook)(struct net_device *dev,
3031			     unsigned char *addr) __read_mostly;
3032EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3033#endif
3034
3035#ifdef CONFIG_NET_CLS_ACT
3036/* TODO: Maybe we should just force sch_ingress to be compiled in
3037 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3038 * a compare and 2 stores extra right now if we dont have it on
3039 * but have CONFIG_NET_CLS_ACT
3040 * NOTE: This doesn't stop any functionality; if you dont have
3041 * the ingress scheduler, you just can't add policies on ingress.
3042 *
 
3043 */
3044static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3045{
3046	struct net_device *dev = skb->dev;
3047	u32 ttl = G_TC_RTTL(skb->tc_verd);
3048	int result = TC_ACT_OK;
3049	struct Qdisc *q;
3050
3051	if (unlikely(MAX_RED_LOOP < ttl++)) {
3052		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3053				     skb->skb_iif, dev->ifindex);
3054		return TC_ACT_SHOT;
3055	}
3056
3057	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3058	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3059
3060	q = rxq->qdisc;
3061	if (q != &noop_qdisc) {
3062		spin_lock(qdisc_lock(q));
3063		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3064			result = qdisc_enqueue_root(skb, q);
3065		spin_unlock(qdisc_lock(q));
3066	}
3067
3068	return result;
3069}
3070
3071static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3072					 struct packet_type **pt_prev,
3073					 int *ret, struct net_device *orig_dev)
3074{
3075	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3076
3077	if (!rxq || rxq->qdisc == &noop_qdisc)
3078		goto out;
3079
3080	if (*pt_prev) {
3081		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3082		*pt_prev = NULL;
3083	}
3084
3085	switch (ing_filter(skb, rxq)) {
3086	case TC_ACT_SHOT:
3087	case TC_ACT_STOLEN:
3088		kfree_skb(skb);
3089		return NULL;
3090	}
3091
3092out:
3093	skb->tc_verd = 0;
3094	return skb;
3095}
3096#endif
3097
3098/**
3099 *	netdev_rx_handler_register - register receive handler
3100 *	@dev: device to register a handler for
3101 *	@rx_handler: receive handler to register
3102 *	@rx_handler_data: data pointer that is used by rx handler
3103 *
3104 *	Register a receive hander for a device. This handler will then be
3105 *	called from __netif_receive_skb. A negative errno code is returned
3106 *	on a failure.
3107 *
3108 *	The caller must hold the rtnl_mutex.
3109 *
3110 *	For a general description of rx_handler, see enum rx_handler_result.
3111 */
3112int netdev_rx_handler_register(struct net_device *dev,
3113			       rx_handler_func_t *rx_handler,
3114			       void *rx_handler_data)
3115{
3116	ASSERT_RTNL();
3117
3118	if (dev->rx_handler)
3119		return -EBUSY;
3120
 
 
 
 
3121	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3122	rcu_assign_pointer(dev->rx_handler, rx_handler);
3123
3124	return 0;
3125}
3126EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3127
3128/**
3129 *	netdev_rx_handler_unregister - unregister receive handler
3130 *	@dev: device to unregister a handler from
3131 *
3132 *	Unregister a receive hander from a device.
3133 *
3134 *	The caller must hold the rtnl_mutex.
3135 */
3136void netdev_rx_handler_unregister(struct net_device *dev)
3137{
3138
3139	ASSERT_RTNL();
3140	RCU_INIT_POINTER(dev->rx_handler, NULL);
 
 
 
 
 
3141	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3142}
3143EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3144
3145static int __netif_receive_skb(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146{
3147	struct packet_type *ptype, *pt_prev;
3148	rx_handler_func_t *rx_handler;
 
3149	struct net_device *orig_dev;
3150	struct net_device *null_or_dev;
3151	bool deliver_exact = false;
3152	int ret = NET_RX_DROP;
3153	__be16 type;
3154
3155	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3156
3157	trace_netif_receive_skb(skb);
3158
3159	/* if we've gotten here through NAPI, check netpoll */
3160	if (netpoll_receive_skb(skb))
3161		return NET_RX_DROP;
3162
3163	if (!skb->skb_iif)
3164		skb->skb_iif = skb->dev->ifindex;
3165	orig_dev = skb->dev;
3166
3167	skb_reset_network_header(skb);
3168	skb_reset_transport_header(skb);
 
3169	skb_reset_mac_len(skb);
3170
3171	pt_prev = NULL;
3172
3173	rcu_read_lock();
3174
3175another_round:
 
3176
3177	__this_cpu_inc(softnet_data.processed);
3178
3179	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3180		skb = vlan_untag(skb);
3181		if (unlikely(!skb))
 
 
 
 
 
 
3182			goto out;
 
3183	}
3184
3185#ifdef CONFIG_NET_CLS_ACT
3186	if (skb->tc_verd & TC_NCLS) {
3187		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3188		goto ncls;
3189	}
3190#endif
 
 
 
 
 
3191
3192	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3193		if (!ptype->dev || ptype->dev == skb->dev) {
3194			if (pt_prev)
3195				ret = deliver_skb(skb, pt_prev, orig_dev);
3196			pt_prev = ptype;
3197		}
3198	}
3199
3200#ifdef CONFIG_NET_CLS_ACT
3201	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3202	if (!skb)
3203		goto out;
3204ncls:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3205#endif
 
 
 
 
3206
3207	rx_handler = rcu_dereference(skb->dev->rx_handler);
3208	if (vlan_tx_tag_present(skb)) {
3209		if (pt_prev) {
3210			ret = deliver_skb(skb, pt_prev, orig_dev);
3211			pt_prev = NULL;
3212		}
3213		if (vlan_do_receive(&skb, !rx_handler))
3214			goto another_round;
3215		else if (unlikely(!skb))
3216			goto out;
3217	}
3218
 
3219	if (rx_handler) {
3220		if (pt_prev) {
3221			ret = deliver_skb(skb, pt_prev, orig_dev);
3222			pt_prev = NULL;
3223		}
3224		switch (rx_handler(&skb)) {
3225		case RX_HANDLER_CONSUMED:
 
3226			goto out;
3227		case RX_HANDLER_ANOTHER:
3228			goto another_round;
3229		case RX_HANDLER_EXACT:
3230			deliver_exact = true;
 
3231		case RX_HANDLER_PASS:
3232			break;
3233		default:
3234			BUG();
3235		}
3236	}
3237
3238	/* deliver only exact match when indicated */
3239	null_or_dev = deliver_exact ? skb->dev : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240
3241	type = skb->protocol;
3242	list_for_each_entry_rcu(ptype,
3243			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3244		if (ptype->type == type &&
3245		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3246		     ptype->dev == orig_dev)) {
3247			if (pt_prev)
3248				ret = deliver_skb(skb, pt_prev, orig_dev);
3249			pt_prev = ptype;
3250		}
 
 
 
 
 
3251	}
3252
3253	if (pt_prev) {
3254		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 
 
3255	} else {
3256		atomic_long_inc(&skb->dev->rx_dropped);
3257		kfree_skb(skb);
 
 
 
 
3258		/* Jamal, now you will not able to escape explaining
3259		 * me how you were going to use this. :-)
3260		 */
3261		ret = NET_RX_DROP;
3262	}
3263
3264out:
3265	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3266	return ret;
3267}
3268
3269/**
3270 *	netif_receive_skb - process receive buffer from network
3271 *	@skb: buffer to process
3272 *
3273 *	netif_receive_skb() is the main receive data processing function.
3274 *	It always succeeds. The buffer may be dropped during processing
3275 *	for congestion control or by the protocol layers.
3276 *
3277 *	This function may only be called from softirq context and interrupts
3278 *	should be enabled.
3279 *
3280 *	Return values (usually ignored):
3281 *	NET_RX_SUCCESS: no congestion
3282 *	NET_RX_DROP: packet was dropped
3283 */
3284int netif_receive_skb(struct sk_buff *skb)
3285{
3286	net_timestamp_check(netdev_tstamp_prequeue, skb);
3287
3288	if (skb_defer_rx_timestamp(skb))
3289		return NET_RX_SUCCESS;
3290
3291#ifdef CONFIG_RPS
3292	if (static_key_false(&rps_needed)) {
3293		struct rps_dev_flow voidflow, *rflow = &voidflow;
3294		int cpu, ret;
3295
3296		rcu_read_lock();
 
 
3297
3298		cpu = get_rps_cpu(skb->dev, skb, &rflow);
 
 
 
 
3299
3300		if (cpu >= 0) {
3301			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3302			rcu_read_unlock();
3303			return ret;
 
 
 
 
 
 
 
3304		}
3305		rcu_read_unlock();
3306	}
3307#endif
3308	return __netif_receive_skb(skb);
3309}
3310EXPORT_SYMBOL(netif_receive_skb);
3311
3312/* Network device is going away, flush any packets still pending
3313 * Called with irqs disabled.
3314 */
3315static void flush_backlog(void *arg)
3316{
3317	struct net_device *dev = arg;
3318	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3319	struct sk_buff *skb, *tmp;
 
 
 
 
 
 
 
 
 
3320
3321	rps_lock(sd);
3322	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3323		if (skb->dev == dev) {
3324			__skb_unlink(skb, &sd->input_pkt_queue);
3325			kfree_skb(skb);
3326			input_queue_head_incr(sd);
 
 
 
 
 
 
 
 
 
 
3327		}
 
3328	}
3329	rps_unlock(sd);
3330
3331	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3332		if (skb->dev == dev) {
3333			__skb_unlink(skb, &sd->process_queue);
3334			kfree_skb(skb);
3335			input_queue_head_incr(sd);
3336		}
3337	}
3338}
3339
3340static int napi_gro_complete(struct sk_buff *skb)
3341{
3342	struct packet_type *ptype;
3343	__be16 type = skb->protocol;
3344	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3345	int err = -ENOENT;
3346
3347	if (NAPI_GRO_CB(skb)->count == 1) {
3348		skb_shinfo(skb)->gso_size = 0;
3349		goto out;
3350	}
3351
3352	rcu_read_lock();
3353	list_for_each_entry_rcu(ptype, head, list) {
3354		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3355			continue;
3356
3357		err = ptype->gro_complete(skb);
3358		break;
3359	}
3360	rcu_read_unlock();
3361
3362	if (err) {
3363		WARN_ON(&ptype->list == head);
3364		kfree_skb(skb);
3365		return NET_RX_SUCCESS;
3366	}
 
 
 
 
 
 
 
 
 
3367
3368out:
3369	return netif_receive_skb(skb);
3370}
3371
3372inline void napi_gro_flush(struct napi_struct *napi)
3373{
 
3374	struct sk_buff *skb, *next;
 
3375
3376	for (skb = napi->gro_list; skb; skb = next) {
3377		next = skb->next;
3378		skb->next = NULL;
3379		napi_gro_complete(skb);
 
 
 
 
 
 
 
 
 
 
 
3380	}
3381
3382	napi->gro_count = 0;
3383	napi->gro_list = NULL;
 
 
 
3384}
3385EXPORT_SYMBOL(napi_gro_flush);
3386
3387enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3388{
3389	struct sk_buff **pp = NULL;
3390	struct packet_type *ptype;
3391	__be16 type = skb->protocol;
3392	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3393	int same_flow;
3394	int mac_len;
3395	enum gro_result ret;
3396
3397	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3398		goto normal;
3399
3400	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3401		goto normal;
3402
3403	rcu_read_lock();
3404	list_for_each_entry_rcu(ptype, head, list) {
3405		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3406			continue;
3407
3408		skb_set_network_header(skb, skb_gro_offset(skb));
3409		mac_len = skb->network_header - skb->mac_header;
3410		skb->mac_len = mac_len;
3411		NAPI_GRO_CB(skb)->same_flow = 0;
3412		NAPI_GRO_CB(skb)->flush = 0;
3413		NAPI_GRO_CB(skb)->free = 0;
3414
3415		pp = ptype->gro_receive(&napi->gro_list, skb);
 
 
 
 
 
 
3416		break;
3417	}
3418	rcu_read_unlock();
3419
3420	if (&ptype->list == head)
3421		goto normal;
3422
3423	same_flow = NAPI_GRO_CB(skb)->same_flow;
3424	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3425
3426	if (pp) {
3427		struct sk_buff *nskb = *pp;
3428
3429		*pp = nskb->next;
3430		nskb->next = NULL;
3431		napi_gro_complete(nskb);
3432		napi->gro_count--;
3433	}
3434
3435	if (same_flow)
3436		goto ok;
3437
3438	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3439		goto normal;
3440
3441	napi->gro_count++;
3442	NAPI_GRO_CB(skb)->count = 1;
3443	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3444	skb->next = napi->gro_list;
3445	napi->gro_list = skb;
3446	ret = GRO_HELD;
3447
3448pull:
3449	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3450		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3451
3452		BUG_ON(skb->end - skb->tail < grow);
 
 
3453
3454		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3455
3456		skb->tail += grow;
3457		skb->data_len -= grow;
3458
3459		skb_shinfo(skb)->frags[0].page_offset += grow;
3460		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
 
 
 
3461
3462		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3463			skb_frag_unref(skb, 0);
3464			memmove(skb_shinfo(skb)->frags,
3465				skb_shinfo(skb)->frags + 1,
3466				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3467		}
3468	}
3469
3470ok:
 
3471	return ret;
3472
3473normal:
3474	ret = GRO_NORMAL;
3475	goto pull;
3476}
3477EXPORT_SYMBOL(dev_gro_receive);
3478
3479static inline gro_result_t
3480__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3481{
3482	struct sk_buff *p;
3483	unsigned int maclen = skb->dev->hard_header_len;
3484
3485	for (p = napi->gro_list; p; p = p->next) {
3486		unsigned long diffs;
3487
3488		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3489		diffs |= p->vlan_tci ^ skb->vlan_tci;
3490		if (maclen == ETH_HLEN)
3491			diffs |= compare_ether_header(skb_mac_header(p),
3492						      skb_gro_mac_header(skb));
3493		else if (!diffs)
3494			diffs = memcmp(skb_mac_header(p),
3495				       skb_gro_mac_header(skb),
3496				       maclen);
3497		NAPI_GRO_CB(p)->same_flow = !diffs;
3498		NAPI_GRO_CB(p)->flush = 0;
3499	}
 
3500
3501	return dev_gro_receive(napi, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502}
3503
3504gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3505{
3506	switch (ret) {
3507	case GRO_NORMAL:
3508		if (netif_receive_skb(skb))
3509			ret = GRO_DROP;
3510		break;
3511
3512	case GRO_DROP:
3513		kfree_skb(skb);
3514		break;
3515
3516	case GRO_MERGED_FREE:
3517		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3518			kmem_cache_free(skbuff_head_cache, skb);
3519		else
3520			__kfree_skb(skb);
3521		break;
3522
3523	case GRO_HELD:
3524	case GRO_MERGED:
3525		break;
3526	}
3527
3528	return ret;
3529}
3530EXPORT_SYMBOL(napi_skb_finish);
3531
3532void skb_gro_reset_offset(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
3533{
3534	NAPI_GRO_CB(skb)->data_offset = 0;
3535	NAPI_GRO_CB(skb)->frag0 = NULL;
3536	NAPI_GRO_CB(skb)->frag0_len = 0;
3537
3538	if (skb->mac_header == skb->tail &&
3539	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3540		NAPI_GRO_CB(skb)->frag0 =
3541			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3542		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3543	}
 
 
3544}
3545EXPORT_SYMBOL(skb_gro_reset_offset);
3546
3547gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3548{
3549	skb_gro_reset_offset(skb);
3550
3551	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3552}
3553EXPORT_SYMBOL(napi_gro_receive);
3554
3555static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
 
3556{
3557	__skb_pull(skb, skb_headlen(skb));
3558	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3559	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3560	skb->vlan_tci = 0;
3561	skb->dev = napi->dev;
3562	skb->skb_iif = 0;
3563
3564	napi->skb = skb;
3565}
3566
3567struct sk_buff *napi_get_frags(struct napi_struct *napi)
3568{
3569	struct sk_buff *skb = napi->skb;
 
 
 
 
 
 
3570
3571	if (!skb) {
3572		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3573		if (skb)
3574			napi->skb = skb;
 
 
3575	}
3576	return skb;
3577}
3578EXPORT_SYMBOL(napi_get_frags);
3579
3580gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3581			       gro_result_t ret)
3582{
3583	switch (ret) {
3584	case GRO_NORMAL:
3585	case GRO_HELD:
3586		skb->protocol = eth_type_trans(skb, skb->dev);
3587
3588		if (ret == GRO_HELD)
3589			skb_gro_pull(skb, -ETH_HLEN);
3590		else if (netif_receive_skb(skb))
3591			ret = GRO_DROP;
3592		break;
3593
3594	case GRO_DROP:
3595	case GRO_MERGED_FREE:
3596		napi_reuse_skb(napi, skb);
3597		break;
3598
3599	case GRO_MERGED:
3600		break;
3601	}
 
 
 
3602
3603	return ret;
 
 
 
 
 
 
 
3604}
3605EXPORT_SYMBOL(napi_frags_finish);
3606
3607static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3608{
3609	struct sk_buff *skb = napi->skb;
3610	struct ethhdr *eth;
3611	unsigned int hlen;
3612	unsigned int off;
3613
3614	napi->skb = NULL;
 
 
 
 
3615
3616	skb_reset_mac_header(skb);
3617	skb_gro_reset_offset(skb);
3618
3619	off = skb_gro_offset(skb);
3620	hlen = off + sizeof(*eth);
3621	eth = skb_gro_header_fast(skb, off);
3622	if (skb_gro_header_hard(skb, hlen)) {
3623		eth = skb_gro_header_slow(skb, hlen, off);
3624		if (unlikely(!eth)) {
3625			napi_reuse_skb(napi, skb);
3626			skb = NULL;
3627			goto out;
3628		}
3629	}
3630
3631	skb_gro_pull(skb, sizeof(*eth));
3632
3633	/*
3634	 * This works because the only protocols we care about don't require
3635	 * special handling.  We'll fix it up properly at the end.
3636	 */
3637	skb->protocol = eth->h_proto;
 
3638
3639out:
3640	return skb;
3641}
3642
3643gro_result_t napi_gro_frags(struct napi_struct *napi)
3644{
3645	struct sk_buff *skb = napi_frags_skb(napi);
3646
3647	if (!skb)
3648		return GRO_DROP;
3649
3650	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
 
 
 
 
3651}
3652EXPORT_SYMBOL(napi_gro_frags);
3653
3654/*
3655 * net_rps_action sends any pending IPI's for rps.
3656 * Note: called with local irq disabled, but exits with local irq enabled.
3657 */
3658static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3659{
3660#ifdef CONFIG_RPS
3661	struct softnet_data *remsd = sd->rps_ipi_list;
3662
3663	if (remsd) {
3664		sd->rps_ipi_list = NULL;
3665
3666		local_irq_enable();
3667
3668		/* Send pending IPI's to kick RPS processing on remote cpus. */
3669		while (remsd) {
3670			struct softnet_data *next = remsd->rps_ipi_next;
3671
3672			if (cpu_online(remsd->cpu))
3673				__smp_call_function_single(remsd->cpu,
3674							   &remsd->csd, 0);
3675			remsd = next;
3676		}
3677	} else
3678#endif
3679		local_irq_enable();
3680}
3681
 
 
 
 
 
 
 
 
 
3682static int process_backlog(struct napi_struct *napi, int quota)
3683{
3684	int work = 0;
3685	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
 
 
3686
3687#ifdef CONFIG_RPS
3688	/* Check if we have pending ipi, its better to send them now,
3689	 * not waiting net_rx_action() end.
3690	 */
3691	if (sd->rps_ipi_list) {
3692		local_irq_disable();
3693		net_rps_action_and_irq_enable(sd);
3694	}
3695#endif
3696	napi->weight = weight_p;
3697	local_irq_disable();
3698	while (work < quota) {
3699		struct sk_buff *skb;
3700		unsigned int qlen;
3701
3702		while ((skb = __skb_dequeue(&sd->process_queue))) {
3703			local_irq_enable();
3704			__netif_receive_skb(skb);
3705			local_irq_disable();
3706			input_queue_head_incr(sd);
3707			if (++work >= quota) {
3708				local_irq_enable();
3709				return work;
3710			}
3711		}
3712
3713		rps_lock(sd);
3714		qlen = skb_queue_len(&sd->input_pkt_queue);
3715		if (qlen)
3716			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3717						   &sd->process_queue);
3718
3719		if (qlen < quota - work) {
 
3720			/*
3721			 * Inline a custom version of __napi_complete().
3722			 * only current cpu owns and manipulates this napi,
3723			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3724			 * we can use a plain write instead of clear_bit(),
 
3725			 * and we dont need an smp_mb() memory barrier.
3726			 */
3727			list_del(&napi->poll_list);
3728			napi->state = 0;
3729
3730			quota = work + qlen;
 
 
3731		}
3732		rps_unlock(sd);
3733	}
3734	local_irq_enable();
3735
3736	return work;
3737}
3738
3739/**
3740 * __napi_schedule - schedule for receive
3741 * @n: entry to schedule
3742 *
3743 * The entry's receive function will be scheduled to run
 
3744 */
3745void __napi_schedule(struct napi_struct *n)
3746{
3747	unsigned long flags;
3748
3749	local_irq_save(flags);
3750	____napi_schedule(&__get_cpu_var(softnet_data), n);
3751	local_irq_restore(flags);
3752}
3753EXPORT_SYMBOL(__napi_schedule);
3754
3755void __napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
3756{
3757	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3758	BUG_ON(n->gro_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3759
3760	list_del(&n->poll_list);
3761	smp_mb__before_clear_bit();
3762	clear_bit(NAPI_STATE_SCHED, &n->state);
3763}
3764EXPORT_SYMBOL(__napi_complete);
3765
3766void napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
 
3767{
3768	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
3769
3770	/*
3771	 * don't let napi dequeue from the cpu poll list
3772	 * just in case its running on a different cpu
 
 
3773	 */
3774	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3775		return;
 
3776
3777	napi_gro_flush(n);
3778	local_irq_save(flags);
3779	__napi_complete(n);
3780	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3781}
3782EXPORT_SYMBOL(napi_complete);
3783
3784void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3785		    int (*poll)(struct napi_struct *, int), int weight)
 
 
 
 
 
 
 
 
 
 
 
3786{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3787	INIT_LIST_HEAD(&napi->poll_list);
3788	napi->gro_count = 0;
3789	napi->gro_list = NULL;
 
 
3790	napi->skb = NULL;
 
 
3791	napi->poll = poll;
 
 
 
3792	napi->weight = weight;
3793	list_add(&napi->dev_list, &dev->napi_list);
3794	napi->dev = dev;
3795#ifdef CONFIG_NETPOLL
3796	spin_lock_init(&napi->poll_lock);
3797	napi->poll_owner = -1;
3798#endif
 
3799	set_bit(NAPI_STATE_SCHED, &napi->state);
 
 
 
 
 
 
 
 
 
 
 
3800}
3801EXPORT_SYMBOL(netif_napi_add);
3802
3803void netif_napi_del(struct napi_struct *napi)
3804{
3805	struct sk_buff *skb, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3806
3807	list_del_init(&napi->dev_list);
 
3808	napi_free_frags(napi);
3809
3810	for (skb = napi->gro_list; skb; skb = next) {
3811		next = skb->next;
3812		skb->next = NULL;
3813		kfree_skb(skb);
 
 
3814	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3815
3816	napi->gro_list = NULL;
3817	napi->gro_count = 0;
3818}
3819EXPORT_SYMBOL(netif_napi_del);
3820
3821static void net_rx_action(struct softirq_action *h)
3822{
3823	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3824	unsigned long time_limit = jiffies + 2;
3825	int budget = netdev_budget;
3826	void *have;
 
3827
3828	local_irq_disable();
3829
3830	while (!list_empty(&sd->poll_list)) {
3831		struct napi_struct *n;
3832		int work, weight;
3833
3834		/* If softirq window is exhuasted then punt.
3835		 * Allow this to run for 2 jiffies since which will allow
3836		 * an average latency of 1.5/HZ.
3837		 */
3838		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3839			goto softnet_break;
3840
3841		local_irq_enable();
 
3842
3843		/* Even though interrupts have been re-enabled, this
3844		 * access is safe because interrupts can only add new
3845		 * entries to the tail of this list, and only ->poll()
3846		 * calls can remove this head entry from the list.
3847		 */
3848		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3849
3850		have = netpoll_poll_lock(n);
 
3851
3852		weight = n->weight;
 
 
3853
3854		/* This NAPI_STATE_SCHED test is for avoiding a race
3855		 * with netpoll's poll_napi().  Only the entity which
3856		 * obtains the lock and sees NAPI_STATE_SCHED set will
3857		 * actually make the ->poll() call.  Therefore we avoid
3858		 * accidentally calling ->poll() when NAPI is not scheduled.
 
 
3859		 */
3860		work = 0;
3861		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3862			work = n->poll(n, weight);
3863			trace_napi_poll(n);
3864		}
3865
3866		WARN_ON_ONCE(work > weight);
 
 
 
 
 
 
 
 
3867
3868		budget -= work;
 
 
3869
3870		local_irq_disable();
 
 
3871
3872		/* Drivers must not modify the NAPI state if they
3873		 * consume the entire weight.  In such cases this code
3874		 * still "owns" the NAPI instance and therefore can
3875		 * move the instance around on the list at-will.
3876		 */
3877		if (unlikely(work == weight)) {
3878			if (unlikely(napi_disable_pending(n))) {
3879				local_irq_enable();
3880				napi_complete(n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881				local_irq_disable();
3882			} else
3883				list_move_tail(&n->poll_list, &sd->poll_list);
 
 
 
 
 
 
 
3884		}
 
 
 
3885
3886		netpoll_poll_unlock(have);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887	}
3888out:
 
 
 
 
 
 
 
 
 
 
3889	net_rps_action_and_irq_enable(sd);
 
 
3890
3891#ifdef CONFIG_NET_DMA
3892	/*
3893	 * There may not be any more sk_buffs coming right now, so push
3894	 * any pending DMA copies to hardware
3895	 */
3896	dma_issue_pending_all();
3897#endif
3898
3899	return;
 
3900
3901softnet_break:
3902	sd->time_squeeze++;
3903	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3904	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3905}
3906
3907static gifconf_func_t *gifconf_list[NPROTO];
 
 
 
 
 
 
3908
3909/**
3910 *	register_gifconf	-	register a SIOCGIF handler
3911 *	@family: Address family
3912 *	@gifconf: Function handler
3913 *
3914 *	Register protocol dependent address dumping routines. The handler
3915 *	that is passed must not be freed or reused until it has been replaced
3916 *	by another handler.
3917 */
3918int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
 
3919{
3920	if (family >= NPROTO)
3921		return -EINVAL;
3922	gifconf_list[family] = gifconf;
3923	return 0;
 
 
 
 
3924}
3925EXPORT_SYMBOL(register_gifconf);
3926
 
 
 
 
 
 
 
 
 
3927
3928/*
3929 *	Map an interface index to its name (SIOCGIFNAME)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3930 */
 
 
 
3931
3932/*
3933 *	We need this ioctl for efficient implementation of the
3934 *	if_indextoname() function required by the IPv6 API.  Without
3935 *	it, we would have to search all the interfaces to find a
3936 *	match.  --pb
 
 
 
 
 
3937 */
 
 
 
 
 
 
 
 
3938
3939static int dev_ifname(struct net *net, struct ifreq __user *arg)
 
 
 
 
 
 
 
 
3940{
3941	struct net_device *dev;
3942	struct ifreq ifr;
3943
3944	/*
3945	 *	Fetch the caller's info block.
3946	 */
3947
3948	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3949		return -EFAULT;
3950
3951	rcu_read_lock();
3952	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3953	if (!dev) {
3954		rcu_read_unlock();
3955		return -ENODEV;
3956	}
3957
3958	strcpy(ifr.ifr_name, dev->name);
3959	rcu_read_unlock();
 
 
 
 
 
 
 
 
3960
3961	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3962		return -EFAULT;
3963	return 0;
3964}
3965
3966/*
3967 *	Perform a SIOCGIFCONF call. This structure will change
3968 *	size eventually, and there is nothing I can do about it.
3969 *	Thus we will need a 'compatibility mode'.
 
 
 
 
 
 
 
 
 
 
 
 
 
3970 */
 
 
 
 
 
 
 
 
 
 
 
 
 
3971
3972static int dev_ifconf(struct net *net, char __user *arg)
 
 
 
 
 
 
3973{
3974	struct ifconf ifc;
3975	struct net_device *dev;
3976	char __user *pos;
3977	int len;
3978	int total;
3979	int i;
3980
3981	/*
3982	 *	Fetch the caller's info block.
3983	 */
3984
3985	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3986		return -EFAULT;
3987
3988	pos = ifc.ifc_buf;
3989	len = ifc.ifc_len;
3990
3991	/*
3992	 *	Loop over the interfaces, and write an info block for each.
3993	 */
3994
3995	total = 0;
3996	for_each_netdev(net, dev) {
3997		for (i = 0; i < NPROTO; i++) {
3998			if (gifconf_list[i]) {
3999				int done;
4000				if (!pos)
4001					done = gifconf_list[i](dev, NULL, 0);
4002				else
4003					done = gifconf_list[i](dev, pos + total,
4004							       len - total);
4005				if (done < 0)
4006					return -EFAULT;
4007				total += done;
4008			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4009		}
 
 
 
4010	}
4011
4012	/*
4013	 *	All done.  Write the updated control block back to the caller.
4014	 */
4015	ifc.ifc_len = total;
4016
4017	/*
4018	 * 	Both BSD and Solaris return 0 here, so we do too.
4019	 */
4020	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021}
 
4022
4023#ifdef CONFIG_PROC_FS
 
 
 
 
 
 
4024
4025#define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4026
4027#define get_bucket(x) ((x) >> BUCKET_SPACE)
4028#define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4029#define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4030
4031static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
 
 
 
 
 
 
 
 
 
 
 
 
4032{
4033	struct net *net = seq_file_net(seq);
4034	struct net_device *dev;
4035	struct hlist_node *p;
4036	struct hlist_head *h;
4037	unsigned int count = 0, offset = get_offset(*pos);
4038
4039	h = &net->dev_name_head[get_bucket(*pos)];
4040	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4041		if (++count == offset)
4042			return dev;
4043	}
4044
4045	return NULL;
 
 
 
 
 
 
 
4046}
 
4047
4048static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
 
 
 
 
 
 
 
 
 
 
 
4049{
4050	struct net_device *dev;
4051	unsigned int bucket;
4052
4053	do {
4054		dev = dev_from_same_bucket(seq, pos);
4055		if (dev)
4056			return dev;
4057
4058		bucket = get_bucket(*pos) + 1;
4059		*pos = set_bucket_offset(bucket, 1);
4060	} while (bucket < NETDEV_HASHENTRIES);
4061
4062	return NULL;
 
 
 
 
 
4063}
 
4064
4065/*
4066 *	This is invoked by the /proc filesystem handler to display a device
4067 *	in detail.
 
 
 
 
 
 
 
4068 */
4069void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4070	__acquires(RCU)
4071{
4072	rcu_read_lock();
4073	if (!*pos)
4074		return SEQ_START_TOKEN;
4075
4076	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4077		return NULL;
4078
4079	return dev_from_bucket(seq, pos);
 
 
4080}
 
4081
4082void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
4083{
4084	++*pos;
4085	return dev_from_bucket(seq, pos);
 
 
 
 
 
 
 
 
4086}
4087
4088void dev_seq_stop(struct seq_file *seq, void *v)
4089	__releases(RCU)
 
4090{
4091	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
4092}
4093
4094static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
 
 
 
4095{
4096	struct rtnl_link_stats64 temp;
4097	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4098
4099	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4100		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4101		   dev->name, stats->rx_bytes, stats->rx_packets,
4102		   stats->rx_errors,
4103		   stats->rx_dropped + stats->rx_missed_errors,
4104		   stats->rx_fifo_errors,
4105		   stats->rx_length_errors + stats->rx_over_errors +
4106		    stats->rx_crc_errors + stats->rx_frame_errors,
4107		   stats->rx_compressed, stats->multicast,
4108		   stats->tx_bytes, stats->tx_packets,
4109		   stats->tx_errors, stats->tx_dropped,
4110		   stats->tx_fifo_errors, stats->collisions,
4111		   stats->tx_carrier_errors +
4112		    stats->tx_aborted_errors +
4113		    stats->tx_window_errors +
4114		    stats->tx_heartbeat_errors,
4115		   stats->tx_compressed);
4116}
 
4117
4118/*
4119 *	Called from the PROCfs module. This now uses the new arbitrary sized
4120 *	/proc/net interface to create /proc/net/dev
4121 */
4122static int dev_seq_show(struct seq_file *seq, void *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4123{
4124	if (v == SEQ_START_TOKEN)
4125		seq_puts(seq, "Inter-|   Receive                            "
4126			      "                    |  Transmit\n"
4127			      " face |bytes    packets errs drop fifo frame "
4128			      "compressed multicast|bytes    packets errs "
4129			      "drop fifo colls carrier compressed\n");
4130	else
4131		dev_seq_printf_stats(seq, v);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4132	return 0;
4133}
4134
4135static struct softnet_data *softnet_get_online(loff_t *pos)
 
 
 
 
 
 
 
 
 
 
 
4136{
4137	struct softnet_data *sd = NULL;
 
 
 
 
4138
4139	while (*pos < nr_cpu_ids)
4140		if (cpu_online(*pos)) {
4141			sd = &per_cpu(softnet_data, *pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4142			break;
4143		} else
4144			++*pos;
4145	return sd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4146}
 
4147
4148static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
 
 
 
 
 
 
 
4149{
4150	return softnet_get_online(pos);
 
 
 
 
 
 
4151}
 
4152
4153static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
 
4154{
4155	++*pos;
4156	return softnet_get_online(pos);
 
 
 
 
4157}
 
 
 
 
 
4158
4159static void softnet_seq_stop(struct seq_file *seq, void *v)
 
 
 
 
 
 
 
4160{
 
 
 
4161}
4162
4163static int softnet_seq_show(struct seq_file *seq, void *v)
 
 
 
4164{
4165	struct softnet_data *sd = v;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4166
4167	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4168		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4169		   0, 0, 0, 0, /* was fastroute */
4170		   sd->cpu_collision, sd->received_rps);
4171	return 0;
 
 
 
 
 
 
 
 
 
4172}
4173
4174static const struct seq_operations dev_seq_ops = {
4175	.start = dev_seq_start,
4176	.next  = dev_seq_next,
4177	.stop  = dev_seq_stop,
4178	.show  = dev_seq_show,
4179};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4180
4181static int dev_seq_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4182{
4183	return seq_open_net(inode, file, &dev_seq_ops,
4184			    sizeof(struct seq_net_private));
 
 
 
 
4185}
 
4186
4187static const struct file_operations dev_seq_fops = {
4188	.owner	 = THIS_MODULE,
4189	.open    = dev_seq_open,
4190	.read    = seq_read,
4191	.llseek  = seq_lseek,
4192	.release = seq_release_net,
4193};
4194
4195static const struct seq_operations softnet_seq_ops = {
4196	.start = softnet_seq_start,
4197	.next  = softnet_seq_next,
4198	.stop  = softnet_seq_stop,
4199	.show  = softnet_seq_show,
4200};
 
 
4201
4202static int softnet_seq_open(struct inode *inode, struct file *file)
 
4203{
4204	return seq_open(file, &softnet_seq_ops);
4205}
4206
4207static const struct file_operations softnet_seq_fops = {
4208	.owner	 = THIS_MODULE,
4209	.open    = softnet_seq_open,
4210	.read    = seq_read,
4211	.llseek  = seq_lseek,
4212	.release = seq_release,
4213};
4214
4215static void *ptype_get_idx(loff_t pos)
 
 
 
4216{
4217	struct packet_type *pt = NULL;
4218	loff_t i = 0;
4219	int t;
4220
4221	list_for_each_entry_rcu(pt, &ptype_all, list) {
4222		if (i == pos)
4223			return pt;
4224		++i;
4225	}
4226
4227	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4228		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4229			if (i == pos)
4230				return pt;
4231			++i;
4232		}
 
4233	}
4234	return NULL;
 
4235}
 
 
 
 
 
 
 
 
 
 
4236
4237static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4238	__acquires(RCU)
 
 
 
 
 
 
 
 
 
 
 
 
4239{
4240	rcu_read_lock();
4241	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
 
 
 
 
 
 
 
 
 
 
4242}
 
4243
4244static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
 
 
 
 
 
 
 
 
4245{
4246	struct packet_type *pt;
4247	struct list_head *nxt;
4248	int hash;
4249
4250	++*pos;
4251	if (v == SEQ_START_TOKEN)
4252		return ptype_get_idx(0);
4253
4254	pt = v;
4255	nxt = pt->list.next;
4256	if (pt->type == htons(ETH_P_ALL)) {
4257		if (nxt != &ptype_all)
4258			goto found;
4259		hash = 0;
4260		nxt = ptype_base[0].next;
4261	} else
4262		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4263
4264	while (nxt == &ptype_base[hash]) {
4265		if (++hash >= PTYPE_HASH_SIZE)
4266			return NULL;
4267		nxt = ptype_base[hash].next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4268	}
4269found:
4270	return list_entry(nxt, struct packet_type, list);
 
4271}
 
4272
4273static void ptype_seq_stop(struct seq_file *seq, void *v)
4274	__releases(RCU)
4275{
4276	rcu_read_unlock();
 
 
 
 
 
 
 
 
4277}
4278
4279static int ptype_seq_show(struct seq_file *seq, void *v)
 
4280{
4281	struct packet_type *pt = v;
4282
4283	if (v == SEQ_START_TOKEN)
4284		seq_puts(seq, "Type Device      Function\n");
4285	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4286		if (pt->type == htons(ETH_P_ALL))
4287			seq_puts(seq, "ALL ");
4288		else
4289			seq_printf(seq, "%04x", ntohs(pt->type));
4290
4291		seq_printf(seq, " %-8s %pF\n",
4292			   pt->dev ? pt->dev->name : "", pt->func);
 
 
4293	}
4294
4295	return 0;
 
4296}
 
4297
4298static const struct seq_operations ptype_seq_ops = {
4299	.start = ptype_seq_start,
4300	.next  = ptype_seq_next,
4301	.stop  = ptype_seq_stop,
4302	.show  = ptype_seq_show,
4303};
4304
4305static int ptype_seq_open(struct inode *inode, struct file *file)
 
 
4306{
4307	return seq_open_net(inode, file, &ptype_seq_ops,
4308			sizeof(struct seq_net_private));
 
 
 
 
 
4309}
4310
4311static const struct file_operations ptype_seq_fops = {
4312	.owner	 = THIS_MODULE,
4313	.open    = ptype_seq_open,
4314	.read    = seq_read,
4315	.llseek  = seq_lseek,
4316	.release = seq_release_net,
 
 
 
 
 
4317};
4318
 
 
 
 
4319
4320static int __net_init dev_proc_net_init(struct net *net)
 
4321{
4322	int rc = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323
4324	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4325		goto out;
4326	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4327		goto out_dev;
4328	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4329		goto out_softnet;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4330
4331	if (wext_proc_init(net))
4332		goto out_ptype;
4333	rc = 0;
4334out:
4335	return rc;
4336out_ptype:
4337	proc_net_remove(net, "ptype");
4338out_softnet:
4339	proc_net_remove(net, "softnet_stat");
4340out_dev:
4341	proc_net_remove(net, "dev");
4342	goto out;
 
 
 
 
 
4343}
4344
4345static void __net_exit dev_proc_net_exit(struct net *net)
 
 
 
4346{
4347	wext_proc_exit(net);
4348
4349	proc_net_remove(net, "ptype");
4350	proc_net_remove(net, "softnet_stat");
4351	proc_net_remove(net, "dev");
 
 
 
4352}
 
4353
4354static struct pernet_operations __net_initdata dev_proc_ops = {
4355	.init = dev_proc_net_init,
4356	.exit = dev_proc_net_exit,
4357};
 
 
 
 
4358
4359static int __init dev_proc_init(void)
 
4360{
4361	return register_pernet_subsys(&dev_proc_ops);
4362}
4363#else
4364#define dev_proc_init() 0
4365#endif	/* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
4366
 
 
 
4367
4368/**
4369 *	netdev_set_master	-	set up master pointer
4370 *	@slave: slave device
4371 *	@master: new master device
 
4372 *
4373 *	Changes the master device of the slave. Pass %NULL to break the
4374 *	bonding. The caller must hold the RTNL semaphore. On a failure
4375 *	a negative errno code is returned. On success the reference counts
4376 *	are adjusted and the function returns zero.
4377 */
4378int netdev_set_master(struct net_device *slave, struct net_device *master)
 
 
 
4379{
4380	struct net_device *old = slave->master;
4381
4382	ASSERT_RTNL();
 
 
 
 
4383
4384	if (master) {
4385		if (old)
4386			return -EBUSY;
4387		dev_hold(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4388	}
4389
4390	slave->master = master;
 
 
4391
4392	if (old)
4393		dev_put(old);
4394	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4395}
4396EXPORT_SYMBOL(netdev_set_master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4397
4398/**
4399 *	netdev_set_bond_master	-	set up bonding master/slave pair
4400 *	@slave: slave device
4401 *	@master: new master device
4402 *
4403 *	Changes the master device of the slave. Pass %NULL to break the
4404 *	bonding. The caller must hold the RTNL semaphore. On a failure
4405 *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4406 *	to the routing socket and the function returns zero.
4407 */
4408int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
 
4409{
4410	int err;
 
 
4411
4412	ASSERT_RTNL();
4413
4414	err = netdev_set_master(slave, master);
4415	if (err)
4416		return err;
4417	if (master)
4418		slave->flags |= IFF_SLAVE;
4419	else
4420		slave->flags &= ~IFF_SLAVE;
4421
4422	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4423	return 0;
4424}
4425EXPORT_SYMBOL(netdev_set_bond_master);
4426
4427static void dev_change_rx_flags(struct net_device *dev, int flags)
4428{
4429	const struct net_device_ops *ops = dev->netdev_ops;
4430
4431	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4432		ops->ndo_change_rx_flags(dev, flags);
4433}
4434
4435static int __dev_set_promiscuity(struct net_device *dev, int inc)
4436{
4437	unsigned int old_flags = dev->flags;
4438	uid_t uid;
4439	gid_t gid;
4440
4441	ASSERT_RTNL();
4442
4443	dev->flags |= IFF_PROMISC;
4444	dev->promiscuity += inc;
4445	if (dev->promiscuity == 0) {
4446		/*
4447		 * Avoid overflow.
4448		 * If inc causes overflow, untouch promisc and return error.
4449		 */
4450		if (inc < 0)
4451			dev->flags &= ~IFF_PROMISC;
4452		else {
4453			dev->promiscuity -= inc;
4454			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4455				dev->name);
4456			return -EOVERFLOW;
4457		}
4458	}
4459	if (dev->flags != old_flags) {
4460		pr_info("device %s %s promiscuous mode\n",
4461			dev->name,
4462			dev->flags & IFF_PROMISC ? "entered" : "left");
4463		if (audit_enabled) {
4464			current_uid_gid(&uid, &gid);
4465			audit_log(current->audit_context, GFP_ATOMIC,
4466				AUDIT_ANOM_PROMISCUOUS,
4467				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4468				dev->name, (dev->flags & IFF_PROMISC),
4469				(old_flags & IFF_PROMISC),
4470				audit_get_loginuid(current),
4471				uid, gid,
4472				audit_get_sessionid(current));
 
4473		}
4474
4475		dev_change_rx_flags(dev, IFF_PROMISC);
4476	}
 
 
4477	return 0;
4478}
4479
4480/**
4481 *	dev_set_promiscuity	- update promiscuity count on a device
4482 *	@dev: device
4483 *	@inc: modifier
4484 *
4485 *	Add or remove promiscuity from a device. While the count in the device
4486 *	remains above zero the interface remains promiscuous. Once it hits zero
4487 *	the device reverts back to normal filtering operation. A negative inc
4488 *	value is used to drop promiscuity on the device.
4489 *	Return 0 if successful or a negative errno code on error.
4490 */
4491int dev_set_promiscuity(struct net_device *dev, int inc)
4492{
4493	unsigned int old_flags = dev->flags;
4494	int err;
4495
4496	err = __dev_set_promiscuity(dev, inc);
4497	if (err < 0)
4498		return err;
4499	if (dev->flags != old_flags)
4500		dev_set_rx_mode(dev);
4501	return err;
4502}
4503EXPORT_SYMBOL(dev_set_promiscuity);
4504
4505/**
4506 *	dev_set_allmulti	- update allmulti count on a device
4507 *	@dev: device
4508 *	@inc: modifier
4509 *
4510 *	Add or remove reception of all multicast frames to a device. While the
4511 *	count in the device remains above zero the interface remains listening
4512 *	to all interfaces. Once it hits zero the device reverts back to normal
4513 *	filtering operation. A negative @inc value is used to drop the counter
4514 *	when releasing a resource needing all multicasts.
4515 *	Return 0 if successful or a negative errno code on error.
4516 */
4517
4518int dev_set_allmulti(struct net_device *dev, int inc)
4519{
4520	unsigned int old_flags = dev->flags;
4521
4522	ASSERT_RTNL();
4523
4524	dev->flags |= IFF_ALLMULTI;
4525	dev->allmulti += inc;
4526	if (dev->allmulti == 0) {
4527		/*
4528		 * Avoid overflow.
4529		 * If inc causes overflow, untouch allmulti and return error.
4530		 */
4531		if (inc < 0)
4532			dev->flags &= ~IFF_ALLMULTI;
4533		else {
4534			dev->allmulti -= inc;
4535			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4536				dev->name);
4537			return -EOVERFLOW;
4538		}
4539	}
4540	if (dev->flags ^ old_flags) {
 
 
4541		dev_change_rx_flags(dev, IFF_ALLMULTI);
4542		dev_set_rx_mode(dev);
 
 
 
4543	}
4544	return 0;
4545}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4546EXPORT_SYMBOL(dev_set_allmulti);
4547
4548/*
4549 *	Upload unicast and multicast address lists to device and
4550 *	configure RX filtering. When the device doesn't support unicast
4551 *	filtering it is put in promiscuous mode while unicast addresses
4552 *	are present.
4553 */
4554void __dev_set_rx_mode(struct net_device *dev)
4555{
4556	const struct net_device_ops *ops = dev->netdev_ops;
4557
4558	/* dev_open will call this function so the list will stay sane. */
4559	if (!(dev->flags&IFF_UP))
4560		return;
4561
4562	if (!netif_device_present(dev))
4563		return;
4564
4565	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4566		/* Unicast addresses changes may only happen under the rtnl,
4567		 * therefore calling __dev_set_promiscuity here is safe.
4568		 */
4569		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4570			__dev_set_promiscuity(dev, 1);
4571			dev->uc_promisc = true;
4572		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4573			__dev_set_promiscuity(dev, -1);
4574			dev->uc_promisc = false;
4575		}
4576	}
4577
4578	if (ops->ndo_set_rx_mode)
4579		ops->ndo_set_rx_mode(dev);
4580}
4581
4582void dev_set_rx_mode(struct net_device *dev)
4583{
4584	netif_addr_lock_bh(dev);
4585	__dev_set_rx_mode(dev);
4586	netif_addr_unlock_bh(dev);
4587}
4588
4589/**
4590 *	dev_get_flags - get flags reported to userspace
4591 *	@dev: device
4592 *
4593 *	Get the combination of flag bits exported through APIs to userspace.
4594 */
4595unsigned int dev_get_flags(const struct net_device *dev)
4596{
4597	unsigned int flags;
4598
4599	flags = (dev->flags & ~(IFF_PROMISC |
4600				IFF_ALLMULTI |
4601				IFF_RUNNING |
4602				IFF_LOWER_UP |
4603				IFF_DORMANT)) |
4604		(dev->gflags & (IFF_PROMISC |
4605				IFF_ALLMULTI));
4606
4607	if (netif_running(dev)) {
4608		if (netif_oper_up(dev))
4609			flags |= IFF_RUNNING;
4610		if (netif_carrier_ok(dev))
4611			flags |= IFF_LOWER_UP;
4612		if (netif_dormant(dev))
4613			flags |= IFF_DORMANT;
4614	}
4615
4616	return flags;
4617}
4618EXPORT_SYMBOL(dev_get_flags);
4619
4620int __dev_change_flags(struct net_device *dev, unsigned int flags)
 
4621{
4622	unsigned int old_flags = dev->flags;
4623	int ret;
4624
4625	ASSERT_RTNL();
4626
4627	/*
4628	 *	Set the flags on our device.
4629	 */
4630
4631	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4632			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4633			       IFF_AUTOMEDIA)) |
4634		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4635				    IFF_ALLMULTI));
4636
4637	/*
4638	 *	Load in the correct multicast list now the flags have changed.
4639	 */
4640
4641	if ((old_flags ^ flags) & IFF_MULTICAST)
4642		dev_change_rx_flags(dev, IFF_MULTICAST);
4643
4644	dev_set_rx_mode(dev);
4645
4646	/*
4647	 *	Have we downed the interface. We handle IFF_UP ourselves
4648	 *	according to user attempts to set it, rather than blindly
4649	 *	setting it.
4650	 */
4651
4652	ret = 0;
4653	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4654		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4655
4656		if (!ret)
4657			dev_set_rx_mode(dev);
4658	}
4659
4660	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4661		int inc = (flags & IFF_PROMISC) ? 1 : -1;
 
4662
4663		dev->gflags ^= IFF_PROMISC;
4664		dev_set_promiscuity(dev, inc);
 
 
 
4665	}
4666
4667	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4668	   is important. Some (broken) drivers set IFF_PROMISC, when
4669	   IFF_ALLMULTI is requested not asking us and not reporting.
4670	 */
4671	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4672		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4673
4674		dev->gflags ^= IFF_ALLMULTI;
4675		dev_set_allmulti(dev, inc);
4676	}
4677
4678	return ret;
4679}
4680
4681void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
 
 
4682{
4683	unsigned int changes = dev->flags ^ old_flags;
4684
 
 
 
4685	if (changes & IFF_UP) {
4686		if (dev->flags & IFF_UP)
4687			call_netdevice_notifiers(NETDEV_UP, dev);
4688		else
4689			call_netdevice_notifiers(NETDEV_DOWN, dev);
4690	}
4691
4692	if (dev->flags & IFF_UP &&
4693	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4694		call_netdevice_notifiers(NETDEV_CHANGE, dev);
 
 
 
 
 
 
 
 
4695}
4696
4697/**
4698 *	dev_change_flags - change device settings
4699 *	@dev: device
4700 *	@flags: device state flags
 
4701 *
4702 *	Change settings on device based state flags. The flags are
4703 *	in the userspace exported format.
4704 */
4705int dev_change_flags(struct net_device *dev, unsigned int flags)
 
4706{
4707	int ret;
4708	unsigned int changes, old_flags = dev->flags;
4709
4710	ret = __dev_change_flags(dev, flags);
4711	if (ret < 0)
4712		return ret;
4713
4714	changes = old_flags ^ dev->flags;
4715	if (changes)
4716		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4717
4718	__dev_notify_flags(dev, old_flags);
4719	return ret;
4720}
4721EXPORT_SYMBOL(dev_change_flags);
4722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4723/**
4724 *	dev_set_mtu - Change maximum transfer unit
4725 *	@dev: device
4726 *	@new_mtu: new transfer unit
 
4727 *
4728 *	Change the maximum transfer size of the network device.
4729 */
4730int dev_set_mtu(struct net_device *dev, int new_mtu)
 
4731{
4732	const struct net_device_ops *ops = dev->netdev_ops;
4733	int err;
4734
4735	if (new_mtu == dev->mtu)
4736		return 0;
4737
4738	/*	MTU must be positive.	 */
4739	if (new_mtu < 0)
4740		return -EINVAL;
4741
4742	if (!netif_device_present(dev))
4743		return -ENODEV;
4744
4745	err = 0;
4746	if (ops->ndo_change_mtu)
4747		err = ops->ndo_change_mtu(dev, new_mtu);
4748	else
4749		dev->mtu = new_mtu;
4750
4751	if (!err && dev->flags & IFF_UP)
4752		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4753	return err;
4754}
4755EXPORT_SYMBOL(dev_set_mtu);
4756
4757/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4758 *	dev_set_group - Change group this device belongs to
4759 *	@dev: device
4760 *	@new_group: group this device should belong to
4761 */
4762void dev_set_group(struct net_device *dev, int new_group)
4763{
4764	dev->group = new_group;
4765}
4766EXPORT_SYMBOL(dev_set_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4767
4768/**
4769 *	dev_set_mac_address - Change Media Access Control Address
4770 *	@dev: device
4771 *	@sa: new address
 
4772 *
4773 *	Change the hardware (MAC) address of the device
4774 */
4775int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
 
4776{
4777	const struct net_device_ops *ops = dev->netdev_ops;
4778	int err;
4779
4780	if (!ops->ndo_set_mac_address)
4781		return -EOPNOTSUPP;
4782	if (sa->sa_family != dev->type)
4783		return -EINVAL;
4784	if (!netif_device_present(dev))
4785		return -ENODEV;
4786	err = ops->ndo_set_mac_address(dev, sa);
4787	if (!err)
4788		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
 
 
 
 
 
 
 
4789	add_device_randomness(dev->dev_addr, dev->addr_len);
4790	return err;
4791}
4792EXPORT_SYMBOL(dev_set_mac_address);
4793
4794/*
4795 *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4796 */
4797static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4798{
4799	int err;
4800	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4801
4802	if (!dev)
4803		return -ENODEV;
 
 
 
 
4804
4805	switch (cmd) {
4806	case SIOCGIFFLAGS:	/* Get interface flags */
4807		ifr->ifr_flags = (short) dev_get_flags(dev);
4808		return 0;
 
4809
4810	case SIOCGIFMETRIC:	/* Get the metric on the interface
4811				   (currently unused) */
4812		ifr->ifr_metric = 0;
4813		return 0;
4814
4815	case SIOCGIFMTU:	/* Get the MTU of a device */
4816		ifr->ifr_mtu = dev->mtu;
4817		return 0;
 
 
 
 
 
 
 
 
4818
4819	case SIOCGIFHWADDR:
4820		if (!dev->addr_len)
4821			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4822		else
4823			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4824			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4825		ifr->ifr_hwaddr.sa_family = dev->type;
4826		return 0;
4827
4828	case SIOCGIFSLAVE:
4829		err = -EINVAL;
4830		break;
 
 
 
 
 
 
 
4831
4832	case SIOCGIFMAP:
4833		ifr->ifr_map.mem_start = dev->mem_start;
4834		ifr->ifr_map.mem_end   = dev->mem_end;
4835		ifr->ifr_map.base_addr = dev->base_addr;
4836		ifr->ifr_map.irq       = dev->irq;
4837		ifr->ifr_map.dma       = dev->dma;
4838		ifr->ifr_map.port      = dev->if_port;
4839		return 0;
4840
4841	case SIOCGIFINDEX:
4842		ifr->ifr_ifindex = dev->ifindex;
4843		return 0;
 
 
 
 
 
 
 
 
4844
4845	case SIOCGIFTXQLEN:
4846		ifr->ifr_qlen = dev->tx_queue_len;
4847		return 0;
 
4848
4849	default:
4850		/* dev_ioctl() should ensure this case
4851		 * is never reached
4852		 */
4853		WARN_ON(1);
4854		err = -ENOTTY;
4855		break;
 
 
 
 
 
 
4856
 
 
 
 
4857	}
4858	return err;
4859}
4860
4861/*
4862 *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
 
 
 
 
 
4863 */
4864static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
 
 
4865{
 
 
 
 
4866	int err;
4867	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4868	const struct net_device_ops *ops;
4869
4870	if (!dev)
4871		return -ENODEV;
 
 
 
4872
4873	ops = dev->netdev_ops;
 
 
4874
4875	switch (cmd) {
4876	case SIOCSIFFLAGS:	/* Set interface flags */
4877		return dev_change_flags(dev, ifr->ifr_flags);
 
 
 
 
 
 
4878
4879	case SIOCSIFMETRIC:	/* Set the metric on the interface
4880				   (currently unused) */
4881		return -EOPNOTSUPP;
4882
4883	case SIOCSIFMTU:	/* Set the MTU of a device */
4884		return dev_set_mtu(dev, ifr->ifr_mtu);
 
 
 
 
 
 
 
 
4885
4886	case SIOCSIFHWADDR:
4887		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
 
4888
4889	case SIOCSIFHWBROADCAST:
4890		if (ifr->ifr_hwaddr.sa_family != dev->type)
4891			return -EINVAL;
4892		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4893		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4894		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4895		return 0;
4896
4897	case SIOCSIFMAP:
4898		if (ops->ndo_set_config) {
4899			if (!netif_device_present(dev))
4900				return -ENODEV;
4901			return ops->ndo_set_config(dev, &ifr->ifr_map);
4902		}
 
 
 
4903		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
4904
4905	case SIOCADDMULTI:
4906		if (!ops->ndo_set_rx_mode ||
4907		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4908			return -EINVAL;
4909		if (!netif_device_present(dev))
4910			return -ENODEV;
4911		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
 
 
 
 
4912
4913	case SIOCDELMULTI:
4914		if (!ops->ndo_set_rx_mode ||
4915		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4916			return -EINVAL;
4917		if (!netif_device_present(dev))
4918			return -ENODEV;
4919		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
 
 
 
 
4920
4921	case SIOCSIFTXQLEN:
4922		if (ifr->ifr_qlen < 0)
4923			return -EINVAL;
4924		dev->tx_queue_len = ifr->ifr_qlen;
4925		return 0;
4926
4927	case SIOCSIFNAME:
4928		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4929		return dev_change_name(dev, ifr->ifr_newname);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4930
4931	case SIOCSHWTSTAMP:
4932		err = net_hwtstamp_validate(ifr);
4933		if (err)
4934			return err;
4935		/* fall through */
4936
4937	/*
4938	 *	Unknown or private ioctl
4939	 */
4940	default:
4941		if ((cmd >= SIOCDEVPRIVATE &&
4942		    cmd <= SIOCDEVPRIVATE + 15) ||
4943		    cmd == SIOCBONDENSLAVE ||
4944		    cmd == SIOCBONDRELEASE ||
4945		    cmd == SIOCBONDSETHWADDR ||
4946		    cmd == SIOCBONDSLAVEINFOQUERY ||
4947		    cmd == SIOCBONDINFOQUERY ||
4948		    cmd == SIOCBONDCHANGEACTIVE ||
4949		    cmd == SIOCGMIIPHY ||
4950		    cmd == SIOCGMIIREG ||
4951		    cmd == SIOCSMIIREG ||
4952		    cmd == SIOCBRADDIF ||
4953		    cmd == SIOCBRDELIF ||
4954		    cmd == SIOCSHWTSTAMP ||
4955		    cmd == SIOCWANDEV) {
4956			err = -EOPNOTSUPP;
4957			if (ops->ndo_do_ioctl) {
4958				if (netif_device_present(dev))
4959					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4960				else
4961					err = -ENODEV;
4962			}
4963		} else
4964			err = -EINVAL;
4965
4966	}
4967	return err;
 
4968}
4969
4970/*
4971 *	This function handles all "interface"-type I/O control requests. The actual
4972 *	'doing' part of this is dev_ifsioc above.
4973 */
4974
4975/**
4976 *	dev_ioctl	-	network device ioctl
4977 *	@net: the applicable net namespace
4978 *	@cmd: command to issue
4979 *	@arg: pointer to a struct ifreq in user space
4980 *
4981 *	Issue ioctl functions to devices. This is normally called by the
4982 *	user space syscall interfaces but can sometimes be useful for
4983 *	other purposes. The return value is the return from the syscall if
4984 *	positive or a negative errno code on error.
4985 */
4986
4987int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4988{
4989	struct ifreq ifr;
4990	int ret;
4991	char *colon;
4992
4993	/* One special case: SIOCGIFCONF takes ifconf argument
4994	   and requires shared lock, because it sleeps writing
4995	   to user space.
4996	 */
4997
4998	if (cmd == SIOCGIFCONF) {
4999		rtnl_lock();
5000		ret = dev_ifconf(net, (char __user *) arg);
5001		rtnl_unlock();
5002		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5003	}
5004	if (cmd == SIOCGIFNAME)
5005		return dev_ifname(net, (struct ifreq __user *)arg);
5006
5007	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5008		return -EFAULT;
5009
5010	ifr.ifr_name[IFNAMSIZ-1] = 0;
 
5011
5012	colon = strchr(ifr.ifr_name, ':');
5013	if (colon)
5014		*colon = 0;
 
 
 
5015
5016	/*
5017	 *	See which interface the caller is talking about.
5018	 */
5019
5020	switch (cmd) {
5021	/*
5022	 *	These ioctl calls:
5023	 *	- can be done by all.
5024	 *	- atomic and do not require locking.
5025	 *	- return a value
5026	 */
5027	case SIOCGIFFLAGS:
5028	case SIOCGIFMETRIC:
5029	case SIOCGIFMTU:
5030	case SIOCGIFHWADDR:
5031	case SIOCGIFSLAVE:
5032	case SIOCGIFMAP:
5033	case SIOCGIFINDEX:
5034	case SIOCGIFTXQLEN:
5035		dev_load(net, ifr.ifr_name);
5036		rcu_read_lock();
5037		ret = dev_ifsioc_locked(net, &ifr, cmd);
5038		rcu_read_unlock();
5039		if (!ret) {
5040			if (colon)
5041				*colon = ':';
5042			if (copy_to_user(arg, &ifr,
5043					 sizeof(struct ifreq)))
5044				ret = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5045		}
5046		return ret;
5047
5048	case SIOCETHTOOL:
5049		dev_load(net, ifr.ifr_name);
5050		rtnl_lock();
5051		ret = dev_ethtool(net, &ifr);
5052		rtnl_unlock();
5053		if (!ret) {
5054			if (colon)
5055				*colon = ':';
5056			if (copy_to_user(arg, &ifr,
5057					 sizeof(struct ifreq)))
5058				ret = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
5059		}
5060		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5061
5062	/*
5063	 *	These ioctl calls:
5064	 *	- require superuser power.
5065	 *	- require strict serialization.
5066	 *	- return a value
5067	 */
5068	case SIOCGMIIPHY:
5069	case SIOCGMIIREG:
5070	case SIOCSIFNAME:
5071		if (!capable(CAP_NET_ADMIN))
5072			return -EPERM;
5073		dev_load(net, ifr.ifr_name);
5074		rtnl_lock();
5075		ret = dev_ifsioc(net, &ifr, cmd);
5076		rtnl_unlock();
5077		if (!ret) {
5078			if (colon)
5079				*colon = ':';
5080			if (copy_to_user(arg, &ifr,
5081					 sizeof(struct ifreq)))
5082				ret = -EFAULT;
5083		}
5084		return ret;
5085
5086	/*
5087	 *	These ioctl calls:
5088	 *	- require superuser power.
5089	 *	- require strict serialization.
5090	 *	- do not return a value
5091	 */
5092	case SIOCSIFFLAGS:
5093	case SIOCSIFMETRIC:
5094	case SIOCSIFMTU:
5095	case SIOCSIFMAP:
5096	case SIOCSIFHWADDR:
5097	case SIOCSIFSLAVE:
5098	case SIOCADDMULTI:
5099	case SIOCDELMULTI:
5100	case SIOCSIFHWBROADCAST:
5101	case SIOCSIFTXQLEN:
5102	case SIOCSMIIREG:
5103	case SIOCBONDENSLAVE:
5104	case SIOCBONDRELEASE:
5105	case SIOCBONDSETHWADDR:
5106	case SIOCBONDCHANGEACTIVE:
5107	case SIOCBRADDIF:
5108	case SIOCBRDELIF:
5109	case SIOCSHWTSTAMP:
5110		if (!capable(CAP_NET_ADMIN))
5111			return -EPERM;
5112		/* fall through */
5113	case SIOCBONDSLAVEINFOQUERY:
5114	case SIOCBONDINFOQUERY:
5115		dev_load(net, ifr.ifr_name);
5116		rtnl_lock();
5117		ret = dev_ifsioc(net, &ifr, cmd);
5118		rtnl_unlock();
5119		return ret;
5120
5121	case SIOCGIFMEM:
5122		/* Get the per device memory space. We can add this but
5123		 * currently do not support it */
5124	case SIOCSIFMEM:
5125		/* Set the per device memory buffer space.
5126		 * Not applicable in our case */
5127	case SIOCSIFLINK:
5128		return -ENOTTY;
5129
5130	/*
5131	 *	Unknown or private ioctl.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5132	 */
5133	default:
5134		if (cmd == SIOCWANDEV ||
5135		    (cmd >= SIOCDEVPRIVATE &&
5136		     cmd <= SIOCDEVPRIVATE + 15)) {
5137			dev_load(net, ifr.ifr_name);
5138			rtnl_lock();
5139			ret = dev_ifsioc(net, &ifr, cmd);
5140			rtnl_unlock();
5141			if (!ret && copy_to_user(arg, &ifr,
5142						 sizeof(struct ifreq)))
5143				ret = -EFAULT;
5144			return ret;
5145		}
5146		/* Take care of Wireless Extensions */
5147		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5148			return wext_handle_ioctl(net, &ifr, cmd, arg);
5149		return -ENOTTY;
5150	}
 
 
5151}
5152
 
 
 
 
 
5153
5154/**
5155 *	dev_new_index	-	allocate an ifindex
5156 *	@net: the applicable net namespace
5157 *
5158 *	Returns a suitable unique value for a new device interface
5159 *	number.  The caller must hold the rtnl semaphore or the
5160 *	dev_base_lock to be sure it remains unique.
5161 */
5162static int dev_new_index(struct net *net)
5163{
5164	static int ifindex;
5165	for (;;) {
5166		if (++ifindex <= 0)
5167			ifindex = 1;
5168		if (!__dev_get_by_index(net, ifindex))
5169			return ifindex;
5170	}
5171}
5172
5173/* Delayed registration/unregisteration */
5174static LIST_HEAD(net_todo_list);
 
 
 
5175
5176static void net_set_todo(struct net_device *dev)
 
 
 
 
 
 
 
 
 
5177{
5178	list_add_tail(&dev->todo_list, &net_todo_list);
 
 
 
 
 
 
 
 
 
5179}
5180
5181static void rollback_registered_many(struct list_head *head)
 
5182{
5183	struct net_device *dev, *tmp;
 
 
 
5184
5185	BUG_ON(dev_boot_phase);
5186	ASSERT_RTNL();
5187
5188	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5189		/* Some devices call without registering
5190		 * for initialization unwind. Remove those
5191		 * devices and proceed with the remaining.
5192		 */
5193		if (dev->reg_state == NETREG_UNINITIALIZED) {
5194			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5195				 dev->name, dev);
5196
5197			WARN_ON(1);
5198			list_del(&dev->unreg_list);
5199			continue;
5200		}
5201		dev->dismantle = true;
5202		BUG_ON(dev->reg_state != NETREG_REGISTERED);
 
 
 
5203	}
5204
5205	/* If device is running, close it first. */
5206	dev_close_many(head);
 
 
 
5207
5208	list_for_each_entry(dev, head, unreg_list) {
5209		/* And unlink it from device chain. */
5210		unlist_netdevice(dev);
 
 
 
5211
5212		dev->reg_state = NETREG_UNREGISTERING;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5213	}
5214
5215	synchronize_net();
 
 
 
 
5216
5217	list_for_each_entry(dev, head, unreg_list) {
5218		/* Shutdown queueing discipline. */
5219		dev_shutdown(dev);
5220
 
 
 
 
 
5221
5222		/* Notify protocols, that we are about to destroy
5223		   this device. They should clean all the things.
5224		*/
5225		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5226
5227		if (!dev->rtnl_link_ops ||
5228		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5229			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
 
 
 
5230
5231		/*
5232		 *	Flush the unicast and multicast chains
5233		 */
5234		dev_uc_flush(dev);
5235		dev_mc_flush(dev);
5236
5237		if (dev->netdev_ops->ndo_uninit)
5238			dev->netdev_ops->ndo_uninit(dev);
5239
5240		/* Notifier chain MUST detach us from master device. */
5241		WARN_ON(dev->master);
 
 
5242
5243		/* Remove entries from kobject tree */
5244		netdev_unregister_kobject(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5245	}
5246
5247	/* Process any work delayed until the end of the batch */
5248	dev = list_first_entry(head, struct net_device, unreg_list);
5249	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
 
 
 
 
 
 
5250
5251	synchronize_net();
 
 
 
 
 
 
 
 
 
 
 
 
 
5252
5253	list_for_each_entry(dev, head, unreg_list)
5254		dev_put(dev);
 
 
 
 
 
 
 
 
 
 
 
 
5255}
5256
5257static void rollback_registered(struct net_device *dev)
5258{
5259	LIST_HEAD(single);
 
 
5260
5261	list_add(&dev->unreg_list, &single);
5262	rollback_registered_many(&single);
5263	list_del(&single);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5264}
5265
5266static netdev_features_t netdev_fix_features(struct net_device *dev,
5267	netdev_features_t features)
5268{
5269	/* Fix illegal checksum combinations */
5270	if ((features & NETIF_F_HW_CSUM) &&
5271	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5272		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5273		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5274	}
5275
5276	/* Fix illegal SG+CSUM combinations. */
5277	if ((features & NETIF_F_SG) &&
5278	    !(features & NETIF_F_ALL_CSUM)) {
5279		netdev_dbg(dev,
5280			"Dropping NETIF_F_SG since no checksum feature.\n");
5281		features &= ~NETIF_F_SG;
5282	}
5283
5284	/* TSO requires that SG is present as well. */
5285	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5286		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5287		features &= ~NETIF_F_ALL_TSO;
5288	}
5289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5290	/* TSO ECN requires that TSO is present as well. */
5291	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5292		features &= ~NETIF_F_TSO_ECN;
5293
5294	/* Software GSO depends on SG. */
5295	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5296		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5297		features &= ~NETIF_F_GSO;
5298	}
5299
5300	/* UFO needs SG and checksumming */
5301	if (features & NETIF_F_UFO) {
5302		/* maybe split UFO into V4 and V6? */
5303		if (!((features & NETIF_F_GEN_CSUM) ||
5304		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5305			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5306			netdev_dbg(dev,
5307				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5308			features &= ~NETIF_F_UFO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5309		}
 
 
 
 
 
 
5310
5311		if (!(features & NETIF_F_SG)) {
5312			netdev_dbg(dev,
5313				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5314			features &= ~NETIF_F_UFO;
 
 
 
 
5315		}
5316	}
5317
 
 
 
 
 
5318	return features;
5319}
5320
5321int __netdev_update_features(struct net_device *dev)
5322{
 
5323	netdev_features_t features;
5324	int err = 0;
 
5325
5326	ASSERT_RTNL();
5327
5328	features = netdev_get_wanted_features(dev);
5329
5330	if (dev->netdev_ops->ndo_fix_features)
5331		features = dev->netdev_ops->ndo_fix_features(dev, features);
5332
5333	/* driver might be less strict about feature dependencies */
5334	features = netdev_fix_features(dev, features);
5335
 
 
 
 
5336	if (dev->features == features)
5337		return 0;
5338
5339	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5340		&dev->features, &features);
5341
5342	if (dev->netdev_ops->ndo_set_features)
5343		err = dev->netdev_ops->ndo_set_features(dev, features);
 
 
5344
5345	if (unlikely(err < 0)) {
5346		netdev_err(dev,
5347			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5348			err, &features, &dev->features);
 
 
 
5349		return -1;
5350	}
5351
5352	if (!err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5353		dev->features = features;
 
5354
5355	return 1;
5356}
5357
5358/**
5359 *	netdev_update_features - recalculate device features
5360 *	@dev: the device to check
5361 *
5362 *	Recalculate dev->features set and send notifications if it
5363 *	has changed. Should be called after driver or hardware dependent
5364 *	conditions might have changed that influence the features.
5365 */
5366void netdev_update_features(struct net_device *dev)
5367{
5368	if (__netdev_update_features(dev))
5369		netdev_features_change(dev);
5370}
5371EXPORT_SYMBOL(netdev_update_features);
5372
5373/**
5374 *	netdev_change_features - recalculate device features
5375 *	@dev: the device to check
5376 *
5377 *	Recalculate dev->features set and send notifications even
5378 *	if they have not changed. Should be called instead of
5379 *	netdev_update_features() if also dev->vlan_features might
5380 *	have changed to allow the changes to be propagated to stacked
5381 *	VLAN devices.
5382 */
5383void netdev_change_features(struct net_device *dev)
5384{
5385	__netdev_update_features(dev);
5386	netdev_features_change(dev);
5387}
5388EXPORT_SYMBOL(netdev_change_features);
5389
5390/**
5391 *	netif_stacked_transfer_operstate -	transfer operstate
5392 *	@rootdev: the root or lower level device to transfer state from
5393 *	@dev: the device to transfer operstate to
5394 *
5395 *	Transfer operational state from root to device. This is normally
5396 *	called when a stacking relationship exists between the root
5397 *	device and the device(a leaf device).
5398 */
5399void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5400					struct net_device *dev)
5401{
5402	if (rootdev->operstate == IF_OPER_DORMANT)
5403		netif_dormant_on(dev);
5404	else
5405		netif_dormant_off(dev);
5406
5407	if (netif_carrier_ok(rootdev)) {
5408		if (!netif_carrier_ok(dev))
5409			netif_carrier_on(dev);
5410	} else {
5411		if (netif_carrier_ok(dev))
5412			netif_carrier_off(dev);
5413	}
 
 
5414}
5415EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5416
5417#ifdef CONFIG_RPS
5418static int netif_alloc_rx_queues(struct net_device *dev)
5419{
5420	unsigned int i, count = dev->num_rx_queues;
5421	struct netdev_rx_queue *rx;
 
 
5422
5423	BUG_ON(count < 1);
5424
5425	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5426	if (!rx) {
5427		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5428		return -ENOMEM;
5429	}
5430	dev->_rx = rx;
5431
5432	for (i = 0; i < count; i++)
5433		rx[i].dev = dev;
 
 
 
 
 
 
5434	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5435}
5436#endif
5437
5438static void netdev_init_one_queue(struct net_device *dev,
5439				  struct netdev_queue *queue, void *_unused)
5440{
5441	/* Initialize queue lock */
5442	spin_lock_init(&queue->_xmit_lock);
5443	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5444	queue->xmit_lock_owner = -1;
5445	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5446	queue->dev = dev;
5447#ifdef CONFIG_BQL
5448	dql_init(&queue->dql, HZ);
5449#endif
5450}
5451
 
 
 
 
 
5452static int netif_alloc_netdev_queues(struct net_device *dev)
5453{
5454	unsigned int count = dev->num_tx_queues;
5455	struct netdev_queue *tx;
 
5456
5457	BUG_ON(count < 1);
 
5458
5459	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5460	if (!tx) {
5461		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5462		return -ENOMEM;
5463	}
5464	dev->_tx = tx;
5465
5466	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5467	spin_lock_init(&dev->tx_global_lock);
5468
5469	return 0;
5470}
5471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5472/**
5473 *	register_netdevice	- register a network device
5474 *	@dev: device to register
5475 *
5476 *	Take a completed network device structure and add it to the kernel
5477 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5478 *	chain. 0 is returned on success. A negative errno code is returned
5479 *	on a failure to set up the device, or if the name is a duplicate.
5480 *
5481 *	Callers must hold the rtnl semaphore. You may want
5482 *	register_netdev() instead of this.
5483 *
5484 *	BUGS:
5485 *	The locking appears insufficient to guarantee two parallel registers
5486 *	will not get the same name.
5487 */
5488
5489int register_netdevice(struct net_device *dev)
5490{
5491	int ret;
5492	struct net *net = dev_net(dev);
5493
 
 
5494	BUG_ON(dev_boot_phase);
5495	ASSERT_RTNL();
5496
5497	might_sleep();
5498
5499	/* When net_device's are persistent, this will be fatal. */
5500	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5501	BUG_ON(!net);
5502
 
 
 
 
5503	spin_lock_init(&dev->addr_list_lock);
5504	netdev_set_addr_lockdep_class(dev);
5505
5506	dev->iflink = -1;
5507
5508	ret = dev_get_valid_name(dev, dev->name);
5509	if (ret < 0)
5510		goto out;
5511
 
 
 
 
 
5512	/* Init, if this function is available */
5513	if (dev->netdev_ops->ndo_init) {
5514		ret = dev->netdev_ops->ndo_init(dev);
5515		if (ret) {
5516			if (ret > 0)
5517				ret = -EIO;
5518			goto out;
5519		}
5520	}
5521
5522	dev->ifindex = dev_new_index(net);
5523	if (dev->iflink == -1)
5524		dev->iflink = dev->ifindex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5525
5526	/* Transfer changeable features to wanted_features and enable
5527	 * software offloads (GSO and GRO).
5528	 */
5529	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5530	dev->features |= NETIF_F_SOFT_FEATURES;
 
 
 
 
 
 
5531	dev->wanted_features = dev->features & dev->hw_features;
5532
5533	/* Turn on no cache copy if HW is doing checksum */
5534	if (!(dev->flags & IFF_LOOPBACK)) {
5535		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5536		if (dev->features & NETIF_F_ALL_CSUM) {
5537			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5538			dev->features |= NETIF_F_NOCACHE_COPY;
5539		}
5540	}
 
 
 
 
 
 
 
 
 
5541
5542	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5543	 */
5544	dev->vlan_features |= NETIF_F_HIGHDMA;
5545
 
 
 
 
 
 
 
 
5546	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5547	ret = notifier_to_errno(ret);
5548	if (ret)
5549		goto err_uninit;
5550
5551	ret = netdev_register_kobject(dev);
 
 
 
5552	if (ret)
5553		goto err_uninit;
5554	dev->reg_state = NETREG_REGISTERED;
5555
5556	__netdev_update_features(dev);
5557
5558	/*
5559	 *	Default initial state at registry is that the
5560	 *	device is present.
5561	 */
5562
5563	set_bit(__LINK_STATE_PRESENT, &dev->state);
5564
 
 
5565	dev_init_scheduler(dev);
5566	dev_hold(dev);
 
5567	list_netdevice(dev);
 
5568	add_device_randomness(dev->dev_addr, dev->addr_len);
5569
 
 
 
 
 
 
 
5570	/* Notify protocols, that a new device appeared. */
5571	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5572	ret = notifier_to_errno(ret);
5573	if (ret) {
5574		rollback_registered(dev);
5575		dev->reg_state = NETREG_UNREGISTERED;
 
 
5576	}
5577	/*
5578	 *	Prevent userspace races by waiting until the network
5579	 *	device is fully setup before sending notifications.
5580	 */
5581	if (!dev->rtnl_link_ops ||
5582	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5583		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5584
5585out:
5586	return ret;
5587
 
 
 
 
 
 
5588err_uninit:
5589	if (dev->netdev_ops->ndo_uninit)
5590		dev->netdev_ops->ndo_uninit(dev);
 
 
 
 
5591	goto out;
5592}
5593EXPORT_SYMBOL(register_netdevice);
5594
5595/**
5596 *	init_dummy_netdev	- init a dummy network device for NAPI
5597 *	@dev: device to init
5598 *
5599 *	This takes a network device structure and initialize the minimum
5600 *	amount of fields so it can be used to schedule NAPI polls without
5601 *	registering a full blown interface. This is to be used by drivers
5602 *	that need to tie several hardware interfaces to a single NAPI
5603 *	poll scheduler due to HW limitations.
5604 */
5605int init_dummy_netdev(struct net_device *dev)
5606{
5607	/* Clear everything. Note we don't initialize spinlocks
5608	 * are they aren't supposed to be taken by any of the
5609	 * NAPI code and this dummy netdev is supposed to be
5610	 * only ever used for NAPI polls
5611	 */
5612	memset(dev, 0, sizeof(struct net_device));
5613
5614	/* make sure we BUG if trying to hit standard
5615	 * register/unregister code path
5616	 */
5617	dev->reg_state = NETREG_DUMMY;
5618
5619	/* NAPI wants this */
5620	INIT_LIST_HEAD(&dev->napi_list);
5621
5622	/* a dummy interface is started by default */
5623	set_bit(__LINK_STATE_PRESENT, &dev->state);
5624	set_bit(__LINK_STATE_START, &dev->state);
5625
 
 
 
5626	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5627	 * because users of this 'device' dont need to change
5628	 * its refcount.
5629	 */
5630
5631	return 0;
5632}
5633EXPORT_SYMBOL_GPL(init_dummy_netdev);
5634
5635
5636/**
5637 *	register_netdev	- register a network device
5638 *	@dev: device to register
5639 *
5640 *	Take a completed network device structure and add it to the kernel
5641 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5642 *	chain. 0 is returned on success. A negative errno code is returned
5643 *	on a failure to set up the device, or if the name is a duplicate.
5644 *
5645 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5646 *	and expands the device name if you passed a format string to
5647 *	alloc_netdev.
5648 */
5649int register_netdev(struct net_device *dev)
5650{
5651	int err;
5652
5653	rtnl_lock();
 
5654	err = register_netdevice(dev);
5655	rtnl_unlock();
5656	return err;
5657}
5658EXPORT_SYMBOL(register_netdev);
5659
5660int netdev_refcnt_read(const struct net_device *dev)
5661{
 
5662	int i, refcnt = 0;
5663
5664	for_each_possible_cpu(i)
5665		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5666	return refcnt;
 
 
 
5667}
5668EXPORT_SYMBOL(netdev_refcnt_read);
5669
5670/*
5671 * netdev_wait_allrefs - wait until all references are gone.
 
 
 
 
 
5672 *
5673 * This is called when unregistering network devices.
5674 *
5675 * Any protocol or device that holds a reference should register
5676 * for netdevice notification, and cleanup and put back the
5677 * reference if they receive an UNREGISTER event.
5678 * We can get stuck here if buggy protocols don't correctly
5679 * call dev_put.
5680 */
5681static void netdev_wait_allrefs(struct net_device *dev)
5682{
5683	unsigned long rebroadcast_time, warning_time;
5684	int refcnt;
5685
5686	linkwatch_forget_dev(dev);
5687
5688	rebroadcast_time = warning_time = jiffies;
5689	refcnt = netdev_refcnt_read(dev);
5690
5691	while (refcnt != 0) {
 
 
 
 
5692		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5693			rtnl_lock();
5694
5695			/* Rebroadcast unregister notification */
5696			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5697			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5698			 * should have already handle it the first time */
5699
5700			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5701				     &dev->state)) {
5702				/* We must not have linkwatch events
5703				 * pending on unregister. If this
5704				 * happens, we simply run the queue
5705				 * unscheduled, resulting in a noop
5706				 * for this device.
5707				 */
5708				linkwatch_run_queue();
5709			}
 
 
 
 
 
5710
5711			__rtnl_unlock();
5712
5713			rebroadcast_time = jiffies;
5714		}
5715
5716		msleep(250);
 
 
 
 
 
 
5717
5718		refcnt = netdev_refcnt_read(dev);
 
 
 
 
 
 
 
 
 
 
5719
5720		if (time_after(jiffies, warning_time + 10 * HZ)) {
5721			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5722				 dev->name, refcnt);
5723			warning_time = jiffies;
5724		}
5725	}
5726}
5727
5728/* The sequence is:
5729 *
5730 *	rtnl_lock();
5731 *	...
5732 *	register_netdevice(x1);
5733 *	register_netdevice(x2);
5734 *	...
5735 *	unregister_netdevice(y1);
5736 *	unregister_netdevice(y2);
5737 *      ...
5738 *	rtnl_unlock();
5739 *	free_netdev(y1);
5740 *	free_netdev(y2);
5741 *
5742 * We are invoked by rtnl_unlock().
5743 * This allows us to deal with problems:
5744 * 1) We can delete sysfs objects which invoke hotplug
5745 *    without deadlocking with linkwatch via keventd.
5746 * 2) Since we run with the RTNL semaphore not held, we can sleep
5747 *    safely in order to wait for the netdev refcnt to drop to zero.
5748 *
5749 * We must not return until all unregister events added during
5750 * the interval the lock was held have been completed.
5751 */
5752void netdev_run_todo(void)
5753{
 
5754	struct list_head list;
 
 
 
 
 
 
 
 
 
 
 
 
 
5755
5756	/* Snapshot list, allow later requests */
5757	list_replace_init(&net_todo_list, &list);
5758
5759	__rtnl_unlock();
5760
5761	/* Wait for rcu callbacks to finish before attempting to drain
5762	 * the device list.  This usually avoids a 250ms wait.
5763	 */
5764	if (!list_empty(&list))
5765		rcu_barrier();
5766
5767	while (!list_empty(&list)) {
5768		struct net_device *dev
5769			= list_first_entry(&list, struct net_device, todo_list);
5770		list_del(&dev->todo_list);
5771
5772		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5773			pr_err("network todo '%s' but state %d\n",
5774			       dev->name, dev->reg_state);
5775			dump_stack();
5776			continue;
5777		}
5778
 
5779		dev->reg_state = NETREG_UNREGISTERED;
 
 
 
5780
5781		on_each_cpu(flush_backlog, dev, 1);
5782
5783		netdev_wait_allrefs(dev);
5784
5785		/* paranoia */
5786		BUG_ON(netdev_refcnt_read(dev));
 
 
5787		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5788		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5789		WARN_ON(dev->dn_ptr);
5790
5791		if (dev->destructor)
5792			dev->destructor(dev);
 
 
 
 
 
 
5793
5794		/* Free network device */
5795		kobject_put(&dev->dev.kobj);
5796	}
5797}
5798
5799/* Convert net_device_stats to rtnl_link_stats64.  They have the same
5800 * fields in the same order, with only the type differing.
 
 
5801 */
5802void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5803			     const struct net_device_stats *netdev_stats)
5804{
5805#if BITS_PER_LONG == 64
5806	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5807	memcpy(stats64, netdev_stats, sizeof(*stats64));
5808#else
5809	size_t i, n = sizeof(*stats64) / sizeof(u64);
5810	const unsigned long *src = (const unsigned long *)netdev_stats;
5811	u64 *dst = (u64 *)stats64;
5812
5813	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5814		     sizeof(*stats64) / sizeof(u64));
5815	for (i = 0; i < n; i++)
5816		dst[i] = src[i];
5817#endif
 
 
5818}
5819EXPORT_SYMBOL(netdev_stats_to_stats64);
5820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5821/**
5822 *	dev_get_stats	- get network device statistics
5823 *	@dev: device to get statistics from
5824 *	@storage: place to store stats
5825 *
5826 *	Get network statistics from device. Return @storage.
5827 *	The device driver may provide its own method by setting
5828 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5829 *	otherwise the internal statistics structure is used.
5830 */
5831struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5832					struct rtnl_link_stats64 *storage)
5833{
5834	const struct net_device_ops *ops = dev->netdev_ops;
 
5835
5836	if (ops->ndo_get_stats64) {
5837		memset(storage, 0, sizeof(*storage));
5838		ops->ndo_get_stats64(dev, storage);
5839	} else if (ops->ndo_get_stats) {
5840		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5841	} else {
5842		netdev_stats_to_stats64(storage, &dev->stats);
5843	}
5844	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5845	return storage;
5846}
5847EXPORT_SYMBOL(dev_get_stats);
5848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5849struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5850{
5851	struct netdev_queue *queue = dev_ingress_queue(dev);
5852
5853#ifdef CONFIG_NET_CLS_ACT
5854	if (queue)
5855		return queue;
5856	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5857	if (!queue)
5858		return NULL;
5859	netdev_init_one_queue(dev, queue, NULL);
5860	queue->qdisc = &noop_qdisc;
5861	queue->qdisc_sleeping = &noop_qdisc;
5862	rcu_assign_pointer(dev->ingress_queue, queue);
5863#endif
5864	return queue;
5865}
5866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5867/**
5868 *	alloc_netdev_mqs - allocate network device
5869 *	@sizeof_priv:	size of private data to allocate space for
5870 *	@name:		device name format string
5871 *	@setup:		callback to initialize device
5872 *	@txqs:		the number of TX subqueues to allocate
5873 *	@rxqs:		the number of RX subqueues to allocate
5874 *
5875 *	Allocates a struct net_device with private data area for driver use
5876 *	and performs basic initialization.  Also allocates subquue structs
5877 *	for each queue on the device.
 
5878 */
5879struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
 
5880		void (*setup)(struct net_device *),
5881		unsigned int txqs, unsigned int rxqs)
5882{
5883	struct net_device *dev;
5884	size_t alloc_size;
5885	struct net_device *p;
5886
5887	BUG_ON(strlen(name) >= sizeof(dev->name));
5888
5889	if (txqs < 1) {
5890		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5891		return NULL;
5892	}
5893
5894#ifdef CONFIG_RPS
5895	if (rxqs < 1) {
5896		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5897		return NULL;
5898	}
5899#endif
5900
5901	alloc_size = sizeof(struct net_device);
5902	if (sizeof_priv) {
5903		/* ensure 32-byte alignment of private area */
5904		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5905		alloc_size += sizeof_priv;
5906	}
5907	/* ensure 32-byte alignment of whole construct */
5908	alloc_size += NETDEV_ALIGN - 1;
5909
5910	p = kzalloc(alloc_size, GFP_KERNEL);
5911	if (!p) {
5912		pr_err("alloc_netdev: Unable to allocate device\n");
5913		return NULL;
5914	}
5915
5916	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5917	dev->padded = (char *)dev - (char *)p;
5918
 
 
5919	dev->pcpu_refcnt = alloc_percpu(int);
5920	if (!dev->pcpu_refcnt)
5921		goto free_p;
 
 
 
 
5922
5923	if (dev_addr_init(dev))
5924		goto free_pcpu;
5925
5926	dev_mc_init(dev);
5927	dev_uc_init(dev);
5928
5929	dev_net_set(dev, &init_net);
5930
5931	dev->gso_max_size = GSO_MAX_SIZE;
 
5932	dev->gso_max_segs = GSO_MAX_SEGS;
 
 
 
 
 
 
 
 
 
 
 
5933
5934	INIT_LIST_HEAD(&dev->napi_list);
5935	INIT_LIST_HEAD(&dev->unreg_list);
 
5936	INIT_LIST_HEAD(&dev->link_watch_list);
5937	dev->priv_flags = IFF_XMIT_DST_RELEASE;
 
 
 
 
 
 
 
 
5938	setup(dev);
5939
 
 
 
 
 
5940	dev->num_tx_queues = txqs;
5941	dev->real_num_tx_queues = txqs;
5942	if (netif_alloc_netdev_queues(dev))
5943		goto free_all;
5944
5945#ifdef CONFIG_RPS
5946	dev->num_rx_queues = rxqs;
5947	dev->real_num_rx_queues = rxqs;
5948	if (netif_alloc_rx_queues(dev))
5949		goto free_all;
5950#endif
5951
5952	strcpy(dev->name, name);
 
5953	dev->group = INIT_NETDEV_GROUP;
 
 
 
 
 
5954	return dev;
5955
5956free_all:
5957	free_netdev(dev);
5958	return NULL;
5959
5960free_pcpu:
 
5961	free_percpu(dev->pcpu_refcnt);
5962	kfree(dev->_tx);
5963#ifdef CONFIG_RPS
5964	kfree(dev->_rx);
5965#endif
5966
5967free_p:
5968	kfree(p);
5969	return NULL;
5970}
5971EXPORT_SYMBOL(alloc_netdev_mqs);
5972
5973/**
5974 *	free_netdev - free network device
5975 *	@dev: device
5976 *
5977 *	This function does the last stage of destroying an allocated device
5978 * 	interface. The reference to the device object is released.
5979 *	If this is the last reference then it will be freed.
 
5980 */
5981void free_netdev(struct net_device *dev)
5982{
5983	struct napi_struct *p, *n;
5984
5985	release_net(dev_net(dev));
5986
5987	kfree(dev->_tx);
5988#ifdef CONFIG_RPS
5989	kfree(dev->_rx);
5990#endif
 
 
 
 
 
 
 
 
5991
5992	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5993
5994	/* Flush device addresses */
5995	dev_addr_flush(dev);
5996
5997	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5998		netif_napi_del(p);
5999
 
 
6000	free_percpu(dev->pcpu_refcnt);
6001	dev->pcpu_refcnt = NULL;
 
 
 
 
 
6002
6003	/*  Compatibility with error handling in drivers */
6004	if (dev->reg_state == NETREG_UNINITIALIZED) {
6005		kfree((char *)dev - dev->padded);
6006		return;
6007	}
6008
6009	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6010	dev->reg_state = NETREG_RELEASED;
6011
6012	/* will free via device release */
6013	put_device(&dev->dev);
6014}
6015EXPORT_SYMBOL(free_netdev);
6016
6017/**
6018 *	synchronize_net -  Synchronize with packet receive processing
6019 *
6020 *	Wait for packets currently being received to be done.
6021 *	Does not block later packets from starting.
6022 */
6023void synchronize_net(void)
6024{
6025	might_sleep();
6026	if (rtnl_is_locked())
6027		synchronize_rcu_expedited();
6028	else
6029		synchronize_rcu();
6030}
6031EXPORT_SYMBOL(synchronize_net);
6032
6033/**
6034 *	unregister_netdevice_queue - remove device from the kernel
6035 *	@dev: device
6036 *	@head: list
6037 *
6038 *	This function shuts down a device interface and removes it
6039 *	from the kernel tables.
6040 *	If head not NULL, device is queued to be unregistered later.
6041 *
6042 *	Callers must hold the rtnl semaphore.  You may want
6043 *	unregister_netdev() instead of this.
6044 */
6045
6046void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6047{
6048	ASSERT_RTNL();
6049
6050	if (head) {
6051		list_move_tail(&dev->unreg_list, head);
6052	} else {
6053		rollback_registered(dev);
6054		/* Finish processing unregister after unlock */
6055		net_set_todo(dev);
 
6056	}
6057}
6058EXPORT_SYMBOL(unregister_netdevice_queue);
6059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6060/**
6061 *	unregister_netdevice_many - unregister many devices
6062 *	@head: list of devices
 
 
 
6063 */
6064void unregister_netdevice_many(struct list_head *head)
6065{
6066	struct net_device *dev;
6067
6068	if (!list_empty(head)) {
6069		rollback_registered_many(head);
6070		list_for_each_entry(dev, head, unreg_list)
6071			net_set_todo(dev);
6072	}
6073}
6074EXPORT_SYMBOL(unregister_netdevice_many);
6075
6076/**
6077 *	unregister_netdev - remove device from the kernel
6078 *	@dev: device
6079 *
6080 *	This function shuts down a device interface and removes it
6081 *	from the kernel tables.
6082 *
6083 *	This is just a wrapper for unregister_netdevice that takes
6084 *	the rtnl semaphore.  In general you want to use this and not
6085 *	unregister_netdevice.
6086 */
6087void unregister_netdev(struct net_device *dev)
6088{
6089	rtnl_lock();
6090	unregister_netdevice(dev);
6091	rtnl_unlock();
6092}
6093EXPORT_SYMBOL(unregister_netdev);
6094
6095/**
6096 *	dev_change_net_namespace - move device to different nethost namespace
6097 *	@dev: device
6098 *	@net: network namespace
6099 *	@pat: If not NULL name pattern to try if the current device name
6100 *	      is already taken in the destination network namespace.
 
 
6101 *
6102 *	This function shuts down a device interface and moves it
6103 *	to a new network namespace. On success 0 is returned, on
6104 *	a failure a netagive errno code is returned.
6105 *
6106 *	Callers must hold the rtnl semaphore.
6107 */
6108
6109int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
 
6110{
6111	int err;
 
 
 
6112
6113	ASSERT_RTNL();
6114
6115	/* Don't allow namespace local devices to be moved. */
6116	err = -EINVAL;
6117	if (dev->features & NETIF_F_NETNS_LOCAL)
6118		goto out;
6119
6120	/* Ensure the device has been registrered */
6121	err = -EINVAL;
6122	if (dev->reg_state != NETREG_REGISTERED)
6123		goto out;
6124
6125	/* Get out if there is nothing todo */
6126	err = 0;
6127	if (net_eq(dev_net(dev), net))
6128		goto out;
6129
6130	/* Pick the destination device name, and ensure
6131	 * we can use it in the destination network namespace.
6132	 */
6133	err = -EEXIST;
6134	if (__dev_get_by_name(net, dev->name)) {
6135		/* We get here if we can't use the current device name */
6136		if (!pat)
6137			goto out;
6138		if (dev_get_valid_name(dev, pat) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
6139			goto out;
 
 
 
 
 
 
 
 
6140	}
6141
6142	/*
6143	 * And now a mini version of register_netdevice unregister_netdevice.
6144	 */
6145
6146	/* If device is running close it first. */
6147	dev_close(dev);
6148
6149	/* And unlink it from device chain */
6150	err = -ENODEV;
6151	unlist_netdevice(dev);
6152
6153	synchronize_net();
6154
6155	/* Shutdown queueing discipline. */
6156	dev_shutdown(dev);
6157
6158	/* Notify protocols, that we are about to destroy
6159	   this device. They should clean all the things.
6160
6161	   Note that dev->reg_state stays at NETREG_REGISTERED.
6162	   This is wanted because this way 8021q and macvlan know
6163	   the device is just moving and can keep their slaves up.
6164	*/
6165	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6166	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6167	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
 
 
 
 
6168
6169	/*
6170	 *	Flush the unicast and multicast chains
6171	 */
6172	dev_uc_flush(dev);
6173	dev_mc_flush(dev);
6174
 
 
 
 
 
 
 
6175	/* Actually switch the network namespace */
6176	dev_net_set(dev, net);
 
6177
6178	/* If there is an ifindex conflict assign a new one */
6179	if (__dev_get_by_index(net, dev->ifindex)) {
6180		int iflink = (dev->iflink == dev->ifindex);
6181		dev->ifindex = dev_new_index(net);
6182		if (iflink)
6183			dev->iflink = dev->ifindex;
6184	}
6185
6186	/* Fixup kobjects */
 
6187	err = device_rename(&dev->dev, dev->name);
 
 
 
 
 
 
 
 
 
 
 
6188	WARN_ON(err);
6189
6190	/* Add the device back in the hashes */
6191	list_netdevice(dev);
6192
6193	/* Notify protocols, that a new device appeared. */
6194	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6195
6196	/*
6197	 *	Prevent userspace races by waiting until the network
6198	 *	device is fully setup before sending notifications.
6199	 */
6200	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6201
6202	synchronize_net();
6203	err = 0;
6204out:
6205	return err;
6206}
6207EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6208
6209static int dev_cpu_callback(struct notifier_block *nfb,
6210			    unsigned long action,
6211			    void *ocpu)
6212{
6213	struct sk_buff **list_skb;
6214	struct sk_buff *skb;
6215	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6216	struct softnet_data *sd, *oldsd;
6217
6218	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6219		return NOTIFY_OK;
6220
6221	local_irq_disable();
6222	cpu = smp_processor_id();
6223	sd = &per_cpu(softnet_data, cpu);
6224	oldsd = &per_cpu(softnet_data, oldcpu);
6225
6226	/* Find end of our completion_queue. */
6227	list_skb = &sd->completion_queue;
6228	while (*list_skb)
6229		list_skb = &(*list_skb)->next;
6230	/* Append completion queue from offline CPU. */
6231	*list_skb = oldsd->completion_queue;
6232	oldsd->completion_queue = NULL;
6233
6234	/* Append output queue from offline CPU. */
6235	if (oldsd->output_queue) {
6236		*sd->output_queue_tailp = oldsd->output_queue;
6237		sd->output_queue_tailp = oldsd->output_queue_tailp;
6238		oldsd->output_queue = NULL;
6239		oldsd->output_queue_tailp = &oldsd->output_queue;
6240	}
6241	/* Append NAPI poll list from offline CPU. */
6242	if (!list_empty(&oldsd->poll_list)) {
6243		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6244		raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 
 
 
 
 
 
 
6245	}
6246
6247	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6248	local_irq_enable();
6249
 
 
 
 
 
 
 
6250	/* Process offline CPU's input_pkt_queue */
6251	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6252		netif_rx(skb);
6253		input_queue_head_incr(oldsd);
6254	}
6255	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6256		netif_rx(skb);
6257		input_queue_head_incr(oldsd);
6258	}
6259
6260	return NOTIFY_OK;
6261}
6262
6263
6264/**
6265 *	netdev_increment_features - increment feature set by one
6266 *	@all: current feature set
6267 *	@one: new feature set
6268 *	@mask: mask feature set
6269 *
6270 *	Computes a new feature set after adding a device with feature set
6271 *	@one to the master device with current feature set @all.  Will not
6272 *	enable anything that is off in @mask. Returns the new feature set.
6273 */
6274netdev_features_t netdev_increment_features(netdev_features_t all,
6275	netdev_features_t one, netdev_features_t mask)
6276{
6277	if (mask & NETIF_F_GEN_CSUM)
6278		mask |= NETIF_F_ALL_CSUM;
6279	mask |= NETIF_F_VLAN_CHALLENGED;
6280
6281	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6282	all &= one | ~NETIF_F_ALL_FOR_ALL;
6283
6284	/* If one device supports hw checksumming, set for all. */
6285	if (all & NETIF_F_GEN_CSUM)
6286		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6287
6288	return all;
6289}
6290EXPORT_SYMBOL(netdev_increment_features);
6291
6292static struct hlist_head *netdev_create_hash(void)
6293{
6294	int i;
6295	struct hlist_head *hash;
6296
6297	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6298	if (hash != NULL)
6299		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6300			INIT_HLIST_HEAD(&hash[i]);
6301
6302	return hash;
6303}
6304
6305/* Initialize per network namespace state */
6306static int __net_init netdev_init(struct net *net)
6307{
6308	if (net != &init_net)
6309		INIT_LIST_HEAD(&net->dev_base_head);
 
 
6310
6311	net->dev_name_head = netdev_create_hash();
6312	if (net->dev_name_head == NULL)
6313		goto err_name;
6314
6315	net->dev_index_head = netdev_create_hash();
6316	if (net->dev_index_head == NULL)
6317		goto err_idx;
6318
 
 
 
 
6319	return 0;
6320
6321err_idx:
6322	kfree(net->dev_name_head);
6323err_name:
6324	return -ENOMEM;
6325}
6326
6327/**
6328 *	netdev_drivername - network driver for the device
6329 *	@dev: network device
6330 *
6331 *	Determine network driver for device.
6332 */
6333const char *netdev_drivername(const struct net_device *dev)
6334{
6335	const struct device_driver *driver;
6336	const struct device *parent;
6337	const char *empty = "";
6338
6339	parent = dev->dev.parent;
6340	if (!parent)
6341		return empty;
6342
6343	driver = parent->driver;
6344	if (driver && driver->name)
6345		return driver->name;
6346	return empty;
6347}
6348
6349int __netdev_printk(const char *level, const struct net_device *dev,
6350			   struct va_format *vaf)
6351{
6352	int r;
6353
6354	if (dev && dev->dev.parent)
6355		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6356			       netdev_name(dev), vaf);
6357	else if (dev)
6358		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6359	else
6360		r = printk("%s(NULL net_device): %pV", level, vaf);
6361
6362	return r;
 
 
 
6363}
6364EXPORT_SYMBOL(__netdev_printk);
6365
6366int netdev_printk(const char *level, const struct net_device *dev,
6367		  const char *format, ...)
6368{
6369	struct va_format vaf;
6370	va_list args;
6371	int r;
6372
6373	va_start(args, format);
6374
6375	vaf.fmt = format;
6376	vaf.va = &args;
6377
6378	r = __netdev_printk(level, dev, &vaf);
6379	va_end(args);
6380
6381	return r;
6382}
6383EXPORT_SYMBOL(netdev_printk);
6384
6385#define define_netdev_printk_level(func, level)			\
6386int func(const struct net_device *dev, const char *fmt, ...)	\
6387{								\
6388	int r;							\
6389	struct va_format vaf;					\
6390	va_list args;						\
6391								\
6392	va_start(args, fmt);					\
6393								\
6394	vaf.fmt = fmt;						\
6395	vaf.va = &args;						\
6396								\
6397	r = __netdev_printk(level, dev, &vaf);			\
6398	va_end(args);						\
6399								\
6400	return r;						\
6401}								\
6402EXPORT_SYMBOL(func);
6403
6404define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6405define_netdev_printk_level(netdev_alert, KERN_ALERT);
6406define_netdev_printk_level(netdev_crit, KERN_CRIT);
6407define_netdev_printk_level(netdev_err, KERN_ERR);
6408define_netdev_printk_level(netdev_warn, KERN_WARNING);
6409define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6410define_netdev_printk_level(netdev_info, KERN_INFO);
6411
6412static void __net_exit netdev_exit(struct net *net)
6413{
6414	kfree(net->dev_name_head);
6415	kfree(net->dev_index_head);
 
 
 
6416}
6417
6418static struct pernet_operations __net_initdata netdev_net_ops = {
6419	.init = netdev_init,
6420	.exit = netdev_exit,
6421};
6422
6423static void __net_exit default_device_exit(struct net *net)
6424{
 
6425	struct net_device *dev, *aux;
6426	/*
6427	 * Push all migratable network devices back to the
6428	 * initial network namespace
6429	 */
6430	rtnl_lock();
6431	for_each_netdev_safe(net, dev, aux) {
6432		int err;
6433		char fb_name[IFNAMSIZ];
6434
6435		/* Ignore unmoveable devices (i.e. loopback) */
6436		if (dev->features & NETIF_F_NETNS_LOCAL)
6437			continue;
6438
6439		/* Leave virtual devices for the generic cleanup */
6440		if (dev->rtnl_link_ops)
6441			continue;
6442
6443		/* Push remaining network devices to init_net */
6444		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
 
 
 
 
 
 
 
 
 
 
6445		err = dev_change_net_namespace(dev, &init_net, fb_name);
6446		if (err) {
6447			pr_emerg("%s: failed to move %s to init_net: %d\n",
6448				 __func__, dev->name, err);
6449			BUG();
6450		}
6451	}
6452	rtnl_unlock();
6453}
6454
6455static void __net_exit default_device_exit_batch(struct list_head *net_list)
6456{
6457	/* At exit all network devices most be removed from a network
6458	 * namespace.  Do this in the reverse order of registration.
6459	 * Do this across as many network namespaces as possible to
6460	 * improve batching efficiency.
6461	 */
6462	struct net_device *dev;
6463	struct net *net;
6464	LIST_HEAD(dev_kill_list);
6465
6466	rtnl_lock();
6467	list_for_each_entry(net, net_list, exit_list) {
 
 
 
 
 
6468		for_each_netdev_reverse(net, dev) {
6469			if (dev->rtnl_link_ops)
6470				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6471			else
6472				unregister_netdevice_queue(dev, &dev_kill_list);
6473		}
6474	}
6475	unregister_netdevice_many(&dev_kill_list);
6476	list_del(&dev_kill_list);
6477	rtnl_unlock();
6478}
6479
6480static struct pernet_operations __net_initdata default_device_ops = {
6481	.exit = default_device_exit,
6482	.exit_batch = default_device_exit_batch,
6483};
6484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6485/*
6486 *	Initialize the DEV module. At boot time this walks the device list and
6487 *	unhooks any devices that fail to initialise (normally hardware not
6488 *	present) and leaves us with a valid list of present and active devices.
6489 *
6490 */
6491
6492/*
6493 *       This is called single threaded during boot, so no need
6494 *       to take the rtnl semaphore.
6495 */
6496static int __init net_dev_init(void)
6497{
6498	int i, rc = -ENOMEM;
6499
6500	BUG_ON(!dev_boot_phase);
6501
 
 
6502	if (dev_proc_init())
6503		goto out;
6504
6505	if (netdev_kobject_init())
6506		goto out;
6507
6508	INIT_LIST_HEAD(&ptype_all);
6509	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6510		INIT_LIST_HEAD(&ptype_base[i]);
6511
6512	if (register_pernet_subsys(&netdev_net_ops))
6513		goto out;
6514
6515	/*
6516	 *	Initialise the packet receive queues.
6517	 */
6518
6519	for_each_possible_cpu(i) {
 
6520		struct softnet_data *sd = &per_cpu(softnet_data, i);
6521
6522		memset(sd, 0, sizeof(*sd));
 
6523		skb_queue_head_init(&sd->input_pkt_queue);
6524		skb_queue_head_init(&sd->process_queue);
6525		sd->completion_queue = NULL;
 
 
6526		INIT_LIST_HEAD(&sd->poll_list);
6527		sd->output_queue = NULL;
6528		sd->output_queue_tailp = &sd->output_queue;
6529#ifdef CONFIG_RPS
6530		sd->csd.func = rps_trigger_softirq;
6531		sd->csd.info = sd;
6532		sd->csd.flags = 0;
6533		sd->cpu = i;
6534#endif
 
 
6535
 
6536		sd->backlog.poll = process_backlog;
6537		sd->backlog.weight = weight_p;
6538		sd->backlog.gro_list = NULL;
6539		sd->backlog.gro_count = 0;
6540	}
6541
6542	dev_boot_phase = 0;
6543
6544	/* The loopback device is special if any other network devices
6545	 * is present in a network namespace the loopback device must
6546	 * be present. Since we now dynamically allocate and free the
6547	 * loopback device ensure this invariant is maintained by
6548	 * keeping the loopback device as the first device on the
6549	 * list of network devices.  Ensuring the loopback devices
6550	 * is the first device that appears and the last network device
6551	 * that disappears.
6552	 */
6553	if (register_pernet_device(&loopback_net_ops))
6554		goto out;
6555
6556	if (register_pernet_device(&default_device_ops))
6557		goto out;
6558
6559	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6560	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6561
6562	hotcpu_notifier(dev_cpu_callback, 0);
6563	dst_init();
6564	dev_mcast_init();
6565	rc = 0;
6566out:
6567	return rc;
6568}
6569
6570subsys_initcall(net_dev_init);
6571
6572static int __init initialize_hashrnd(void)
6573{
6574	get_random_bytes(&hashrnd, sizeof(hashrnd));
6575	return 0;
6576}
6577
6578late_initcall_sync(initialize_hashrnd);
6579
v6.8
    1// SPDX-License-Identifier: GPL-2.0-or-later
    2/*
    3 *      NET3    Protocol independent device support routines.
 
 
 
 
 
    4 *
    5 *	Derived from the non IP parts of dev.c 1.0.19
    6 *              Authors:	Ross Biro
    7 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
    8 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
    9 *
   10 *	Additional Authors:
   11 *		Florian la Roche <rzsfl@rz.uni-sb.de>
   12 *		Alan Cox <gw4pts@gw4pts.ampr.org>
   13 *		David Hinds <dahinds@users.sourceforge.net>
   14 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
   15 *		Adam Sulmicki <adam@cfar.umd.edu>
   16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
   17 *
   18 *	Changes:
   19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
   20 *                                      to 2 if register_netdev gets called
   21 *                                      before net_dev_init & also removed a
   22 *                                      few lines of code in the process.
   23 *		Alan Cox	:	device private ioctl copies fields back.
   24 *		Alan Cox	:	Transmit queue code does relevant
   25 *					stunts to keep the queue safe.
   26 *		Alan Cox	:	Fixed double lock.
   27 *		Alan Cox	:	Fixed promisc NULL pointer trap
   28 *		????????	:	Support the full private ioctl range
   29 *		Alan Cox	:	Moved ioctl permission check into
   30 *					drivers
   31 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
   32 *		Alan Cox	:	100 backlog just doesn't cut it when
   33 *					you start doing multicast video 8)
   34 *		Alan Cox	:	Rewrote net_bh and list manager.
   35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
   36 *		Alan Cox	:	Took out transmit every packet pass
   37 *					Saved a few bytes in the ioctl handler
   38 *		Alan Cox	:	Network driver sets packet type before
   39 *					calling netif_rx. Saves a function
   40 *					call a packet.
   41 *		Alan Cox	:	Hashed net_bh()
   42 *		Richard Kooijman:	Timestamp fixes.
   43 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
   44 *		Alan Cox	:	Device lock protection.
   45 *              Alan Cox        :       Fixed nasty side effect of device close
   46 *					changes.
   47 *		Rudi Cilibrasi	:	Pass the right thing to
   48 *					set_mac_address()
   49 *		Dave Miller	:	32bit quantity for the device lock to
   50 *					make it work out on a Sparc.
   51 *		Bjorn Ekwall	:	Added KERNELD hack.
   52 *		Alan Cox	:	Cleaned up the backlog initialise.
   53 *		Craig Metz	:	SIOCGIFCONF fix if space for under
   54 *					1 device.
   55 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
   56 *					is no device open function.
   57 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
   58 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
   59 *		Cyrus Durgin	:	Cleaned for KMOD
   60 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
   61 *					A network device unload needs to purge
   62 *					the backlog queue.
   63 *	Paul Rusty Russell	:	SIOCSIFNAME
   64 *              Pekka Riikonen  :	Netdev boot-time settings code
   65 *              Andrew Morton   :       Make unregister_netdevice wait
   66 *                                      indefinitely on dev->refcnt
   67 *              J Hadi Salim    :       - Backlog queue sampling
   68 *				        - netif_rx() feedback
   69 */
   70
   71#include <linux/uaccess.h>
   72#include <linux/bitmap.h>
   73#include <linux/capability.h>
   74#include <linux/cpu.h>
   75#include <linux/types.h>
   76#include <linux/kernel.h>
   77#include <linux/hash.h>
   78#include <linux/slab.h>
   79#include <linux/sched.h>
   80#include <linux/sched/mm.h>
   81#include <linux/mutex.h>
   82#include <linux/rwsem.h>
   83#include <linux/string.h>
   84#include <linux/mm.h>
   85#include <linux/socket.h>
   86#include <linux/sockios.h>
   87#include <linux/errno.h>
   88#include <linux/interrupt.h>
   89#include <linux/if_ether.h>
   90#include <linux/netdevice.h>
   91#include <linux/etherdevice.h>
   92#include <linux/ethtool.h>
 
   93#include <linux/skbuff.h>
   94#include <linux/kthread.h>
   95#include <linux/bpf.h>
   96#include <linux/bpf_trace.h>
   97#include <net/net_namespace.h>
   98#include <net/sock.h>
   99#include <net/busy_poll.h>
  100#include <linux/rtnetlink.h>
 
 
  101#include <linux/stat.h>
  102#include <net/dsa.h>
  103#include <net/dst.h>
  104#include <net/dst_metadata.h>
  105#include <net/gro.h>
  106#include <net/pkt_sched.h>
  107#include <net/pkt_cls.h>
  108#include <net/checksum.h>
  109#include <net/xfrm.h>
  110#include <net/tcx.h>
  111#include <linux/highmem.h>
  112#include <linux/init.h>
 
  113#include <linux/module.h>
  114#include <linux/netpoll.h>
  115#include <linux/rcupdate.h>
  116#include <linux/delay.h>
 
  117#include <net/iw_handler.h>
  118#include <asm/current.h>
  119#include <linux/audit.h>
  120#include <linux/dmaengine.h>
  121#include <linux/err.h>
  122#include <linux/ctype.h>
  123#include <linux/if_arp.h>
  124#include <linux/if_vlan.h>
  125#include <linux/ip.h>
  126#include <net/ip.h>
  127#include <net/mpls.h>
  128#include <linux/ipv6.h>
  129#include <linux/in.h>
  130#include <linux/jhash.h>
  131#include <linux/random.h>
  132#include <trace/events/napi.h>
  133#include <trace/events/net.h>
  134#include <trace/events/skb.h>
  135#include <trace/events/qdisc.h>
  136#include <trace/events/xdp.h>
  137#include <linux/inetdevice.h>
  138#include <linux/cpu_rmap.h>
 
  139#include <linux/static_key.h>
  140#include <linux/hashtable.h>
  141#include <linux/vmalloc.h>
  142#include <linux/if_macvlan.h>
  143#include <linux/errqueue.h>
  144#include <linux/hrtimer.h>
  145#include <linux/netfilter_netdev.h>
  146#include <linux/crash_dump.h>
  147#include <linux/sctp.h>
  148#include <net/udp_tunnel.h>
  149#include <linux/net_namespace.h>
  150#include <linux/indirect_call_wrapper.h>
  151#include <net/devlink.h>
  152#include <linux/pm_runtime.h>
  153#include <linux/prandom.h>
  154#include <linux/once_lite.h>
  155#include <net/netdev_rx_queue.h>
  156
  157#include "dev.h"
  158#include "net-sysfs.h"
  159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  160static DEFINE_SPINLOCK(ptype_lock);
  161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
  162struct list_head ptype_all __read_mostly;	/* Taps */
  163
  164static int netif_rx_internal(struct sk_buff *skb);
  165static int call_netdevice_notifiers_extack(unsigned long val,
  166					   struct net_device *dev,
  167					   struct netlink_ext_ack *extack);
  168
  169/*
  170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
  171 * semaphore.
  172 *
  173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
  174 *
  175 * Writers must hold the rtnl semaphore while they loop through the
  176 * dev_base_head list, and hold dev_base_lock for writing when they do the
  177 * actual updates.  This allows pure readers to access the list even
  178 * while a writer is preparing to update it.
  179 *
  180 * To put it another way, dev_base_lock is held for writing only to
  181 * protect against pure readers; the rtnl semaphore provides the
  182 * protection against other writers.
  183 *
  184 * See, for example usages, register_netdevice() and
  185 * unregister_netdevice(), which must be called with the rtnl
  186 * semaphore held.
  187 */
  188DEFINE_RWLOCK(dev_base_lock);
  189EXPORT_SYMBOL(dev_base_lock);
  190
  191static DEFINE_MUTEX(ifalias_mutex);
  192
  193/* protects napi_hash addition/deletion and napi_gen_id */
  194static DEFINE_SPINLOCK(napi_hash_lock);
  195
  196static unsigned int napi_gen_id = NR_CPUS;
  197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
  198
  199static DECLARE_RWSEM(devnet_rename_sem);
  200
  201static inline void dev_base_seq_inc(struct net *net)
  202{
  203	while (++net->dev_base_seq == 0)
  204		;
  205}
  206
  207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
  208{
  209	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
  210
  211	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
  212}
  213
  214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
  215{
  216	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
  217}
  218
  219static inline void rps_lock_irqsave(struct softnet_data *sd,
  220				    unsigned long *flags)
  221{
  222	if (IS_ENABLED(CONFIG_RPS))
  223		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
  224	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  225		local_irq_save(*flags);
  226}
  227
  228static inline void rps_lock_irq_disable(struct softnet_data *sd)
  229{
  230	if (IS_ENABLED(CONFIG_RPS))
  231		spin_lock_irq(&sd->input_pkt_queue.lock);
  232	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  233		local_irq_disable();
  234}
  235
  236static inline void rps_unlock_irq_restore(struct softnet_data *sd,
  237					  unsigned long *flags)
  238{
  239	if (IS_ENABLED(CONFIG_RPS))
  240		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
  241	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  242		local_irq_restore(*flags);
  243}
  244
  245static inline void rps_unlock_irq_enable(struct softnet_data *sd)
  246{
  247	if (IS_ENABLED(CONFIG_RPS))
  248		spin_unlock_irq(&sd->input_pkt_queue.lock);
  249	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  250		local_irq_enable();
  251}
  252
  253static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
  254						       const char *name)
  255{
  256	struct netdev_name_node *name_node;
  257
  258	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
  259	if (!name_node)
  260		return NULL;
  261	INIT_HLIST_NODE(&name_node->hlist);
  262	name_node->dev = dev;
  263	name_node->name = name;
  264	return name_node;
  265}
  266
  267static struct netdev_name_node *
  268netdev_name_node_head_alloc(struct net_device *dev)
  269{
  270	struct netdev_name_node *name_node;
  271
  272	name_node = netdev_name_node_alloc(dev, dev->name);
  273	if (!name_node)
  274		return NULL;
  275	INIT_LIST_HEAD(&name_node->list);
  276	return name_node;
  277}
  278
  279static void netdev_name_node_free(struct netdev_name_node *name_node)
  280{
  281	kfree(name_node);
  282}
  283
  284static void netdev_name_node_add(struct net *net,
  285				 struct netdev_name_node *name_node)
  286{
  287	hlist_add_head_rcu(&name_node->hlist,
  288			   dev_name_hash(net, name_node->name));
  289}
  290
  291static void netdev_name_node_del(struct netdev_name_node *name_node)
  292{
  293	hlist_del_rcu(&name_node->hlist);
  294}
  295
  296static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
  297							const char *name)
  298{
  299	struct hlist_head *head = dev_name_hash(net, name);
  300	struct netdev_name_node *name_node;
  301
  302	hlist_for_each_entry(name_node, head, hlist)
  303		if (!strcmp(name_node->name, name))
  304			return name_node;
  305	return NULL;
  306}
  307
  308static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
  309							    const char *name)
  310{
  311	struct hlist_head *head = dev_name_hash(net, name);
  312	struct netdev_name_node *name_node;
  313
  314	hlist_for_each_entry_rcu(name_node, head, hlist)
  315		if (!strcmp(name_node->name, name))
  316			return name_node;
  317	return NULL;
  318}
  319
  320bool netdev_name_in_use(struct net *net, const char *name)
  321{
  322	return netdev_name_node_lookup(net, name);
  323}
  324EXPORT_SYMBOL(netdev_name_in_use);
  325
  326int netdev_name_node_alt_create(struct net_device *dev, const char *name)
  327{
  328	struct netdev_name_node *name_node;
  329	struct net *net = dev_net(dev);
  330
  331	name_node = netdev_name_node_lookup(net, name);
  332	if (name_node)
  333		return -EEXIST;
  334	name_node = netdev_name_node_alloc(dev, name);
  335	if (!name_node)
  336		return -ENOMEM;
  337	netdev_name_node_add(net, name_node);
  338	/* The node that holds dev->name acts as a head of per-device list. */
  339	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
  340
  341	return 0;
  342}
  343
  344static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
  345{
  346	list_del(&name_node->list);
  347	kfree(name_node->name);
  348	netdev_name_node_free(name_node);
  349}
  350
  351int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
  352{
  353	struct netdev_name_node *name_node;
  354	struct net *net = dev_net(dev);
  355
  356	name_node = netdev_name_node_lookup(net, name);
  357	if (!name_node)
  358		return -ENOENT;
  359	/* lookup might have found our primary name or a name belonging
  360	 * to another device.
  361	 */
  362	if (name_node == dev->name_node || name_node->dev != dev)
  363		return -EINVAL;
  364
  365	netdev_name_node_del(name_node);
  366	synchronize_rcu();
  367	__netdev_name_node_alt_destroy(name_node);
  368
  369	return 0;
  370}
  371
  372static void netdev_name_node_alt_flush(struct net_device *dev)
  373{
  374	struct netdev_name_node *name_node, *tmp;
  375
  376	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
  377		__netdev_name_node_alt_destroy(name_node);
  378}
  379
  380/* Device list insertion */
  381static void list_netdevice(struct net_device *dev)
  382{
  383	struct netdev_name_node *name_node;
  384	struct net *net = dev_net(dev);
  385
  386	ASSERT_RTNL();
  387
  388	write_lock(&dev_base_lock);
  389	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
  390	netdev_name_node_add(net, dev->name_node);
  391	hlist_add_head_rcu(&dev->index_hlist,
  392			   dev_index_hash(net, dev->ifindex));
  393	write_unlock(&dev_base_lock);
  394
  395	netdev_for_each_altname(dev, name_node)
  396		netdev_name_node_add(net, name_node);
  397
  398	/* We reserved the ifindex, this can't fail */
  399	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
  400
  401	dev_base_seq_inc(net);
  402}
  403
  404/* Device list removal
  405 * caller must respect a RCU grace period before freeing/reusing dev
  406 */
  407static void unlist_netdevice(struct net_device *dev, bool lock)
  408{
  409	struct netdev_name_node *name_node;
  410	struct net *net = dev_net(dev);
  411
  412	ASSERT_RTNL();
  413
  414	xa_erase(&net->dev_by_index, dev->ifindex);
  415
  416	netdev_for_each_altname(dev, name_node)
  417		netdev_name_node_del(name_node);
  418
  419	/* Unlink dev from the device chain */
  420	if (lock)
  421		write_lock(&dev_base_lock);
  422	list_del_rcu(&dev->dev_list);
  423	netdev_name_node_del(dev->name_node);
  424	hlist_del_rcu(&dev->index_hlist);
  425	if (lock)
  426		write_unlock(&dev_base_lock);
  427
  428	dev_base_seq_inc(dev_net(dev));
  429}
  430
  431/*
  432 *	Our notifier list
  433 */
  434
  435static RAW_NOTIFIER_HEAD(netdev_chain);
  436
  437/*
  438 *	Device drivers call our routines to queue packets here. We empty the
  439 *	queue in the local softnet handler.
  440 */
  441
  442DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
  443EXPORT_PER_CPU_SYMBOL(softnet_data);
  444
  445#ifdef CONFIG_LOCKDEP
  446/*
  447 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
  448 * according to dev->type
  449 */
  450static const unsigned short netdev_lock_type[] = {
  451	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
  452	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
  453	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
  454	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
  455	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
  456	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
  457	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
  458	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
  459	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
  460	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
  461	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
  462	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
  463	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
  464	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
  465	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
  466
  467static const char *const netdev_lock_name[] = {
  468	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
  469	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
  470	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
  471	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
  472	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
  473	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
  474	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
  475	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
  476	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
  477	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
  478	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
  479	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
  480	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
  481	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
  482	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
  483
  484static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
  485static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
  486
  487static inline unsigned short netdev_lock_pos(unsigned short dev_type)
  488{
  489	int i;
  490
  491	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
  492		if (netdev_lock_type[i] == dev_type)
  493			return i;
  494	/* the last key is used by default */
  495	return ARRAY_SIZE(netdev_lock_type) - 1;
  496}
  497
  498static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  499						 unsigned short dev_type)
  500{
  501	int i;
  502
  503	i = netdev_lock_pos(dev_type);
  504	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
  505				   netdev_lock_name[i]);
  506}
  507
  508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  509{
  510	int i;
  511
  512	i = netdev_lock_pos(dev->type);
  513	lockdep_set_class_and_name(&dev->addr_list_lock,
  514				   &netdev_addr_lock_key[i],
  515				   netdev_lock_name[i]);
  516}
  517#else
  518static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  519						 unsigned short dev_type)
  520{
  521}
  522
  523static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  524{
  525}
  526#endif
  527
  528/*******************************************************************************
  529 *
  530 *		Protocol management and registration routines
  531 *
  532 *******************************************************************************/
  533
 
 
 
  534
  535/*
  536 *	Add a protocol ID to the list. Now that the input handler is
  537 *	smarter we can dispense with all the messy stuff that used to be
  538 *	here.
  539 *
  540 *	BEWARE!!! Protocol handlers, mangling input packets,
  541 *	MUST BE last in hash buckets and checking protocol handlers
  542 *	MUST start from promiscuous ptype_all chain in net_bh.
  543 *	It is true now, do not change it.
  544 *	Explanation follows: if protocol handler, mangling packet, will
  545 *	be the first on list, it is not able to sense, that packet
  546 *	is cloned and should be copied-on-write, so that it will
  547 *	change it and subsequent readers will get broken packet.
  548 *							--ANK (980803)
  549 */
  550
  551static inline struct list_head *ptype_head(const struct packet_type *pt)
  552{
  553	if (pt->type == htons(ETH_P_ALL))
  554		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
  555	else
  556		return pt->dev ? &pt->dev->ptype_specific :
  557				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
  558}
  559
  560/**
  561 *	dev_add_pack - add packet handler
  562 *	@pt: packet type declaration
  563 *
  564 *	Add a protocol handler to the networking stack. The passed &packet_type
  565 *	is linked into kernel lists and may not be freed until it has been
  566 *	removed from the kernel lists.
  567 *
  568 *	This call does not sleep therefore it can not
  569 *	guarantee all CPU's that are in middle of receiving packets
  570 *	will see the new packet type (until the next received packet).
  571 */
  572
  573void dev_add_pack(struct packet_type *pt)
  574{
  575	struct list_head *head = ptype_head(pt);
  576
  577	spin_lock(&ptype_lock);
  578	list_add_rcu(&pt->list, head);
  579	spin_unlock(&ptype_lock);
  580}
  581EXPORT_SYMBOL(dev_add_pack);
  582
  583/**
  584 *	__dev_remove_pack	 - remove packet handler
  585 *	@pt: packet type declaration
  586 *
  587 *	Remove a protocol handler that was previously added to the kernel
  588 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  589 *	from the kernel lists and can be freed or reused once this function
  590 *	returns.
  591 *
  592 *      The packet type might still be in use by receivers
  593 *	and must not be freed until after all the CPU's have gone
  594 *	through a quiescent state.
  595 */
  596void __dev_remove_pack(struct packet_type *pt)
  597{
  598	struct list_head *head = ptype_head(pt);
  599	struct packet_type *pt1;
  600
  601	spin_lock(&ptype_lock);
  602
  603	list_for_each_entry(pt1, head, list) {
  604		if (pt == pt1) {
  605			list_del_rcu(&pt->list);
  606			goto out;
  607		}
  608	}
  609
  610	pr_warn("dev_remove_pack: %p not found\n", pt);
  611out:
  612	spin_unlock(&ptype_lock);
  613}
  614EXPORT_SYMBOL(__dev_remove_pack);
  615
  616/**
  617 *	dev_remove_pack	 - remove packet handler
  618 *	@pt: packet type declaration
  619 *
  620 *	Remove a protocol handler that was previously added to the kernel
  621 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  622 *	from the kernel lists and can be freed or reused once this function
  623 *	returns.
  624 *
  625 *	This call sleeps to guarantee that no CPU is looking at the packet
  626 *	type after return.
  627 */
  628void dev_remove_pack(struct packet_type *pt)
  629{
  630	__dev_remove_pack(pt);
  631
  632	synchronize_net();
  633}
  634EXPORT_SYMBOL(dev_remove_pack);
  635
 
 
 
  636
  637/*******************************************************************************
  638 *
  639 *			    Device Interface Subroutines
  640 *
  641 *******************************************************************************/
  642
  643/**
  644 *	dev_get_iflink	- get 'iflink' value of a interface
  645 *	@dev: targeted interface
 
  646 *
  647 *	Indicates the ifindex the interface is linked to.
  648 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
 
  649 */
 
 
 
 
  650
  651int dev_get_iflink(const struct net_device *dev)
  652{
  653	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
  654		return dev->netdev_ops->ndo_get_iflink(dev);
 
 
 
 
 
  655
  656	return dev->ifindex;
  657}
  658EXPORT_SYMBOL(dev_get_iflink);
  659
  660/**
  661 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
  662 *	@dev: targeted interface
  663 *	@skb: The packet.
  664 *
  665 *	For better visibility of tunnel traffic OVS needs to retrieve
  666 *	egress tunnel information for a packet. Following API allows
  667 *	user to get this info.
 
  668 */
  669int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
  670{
  671	struct ip_tunnel_info *info;
 
  672
  673	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
  674		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
  675
  676	info = skb_tunnel_info_unclone(skb);
  677	if (!info)
  678		return -ENOMEM;
  679	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
  680		return -EINVAL;
  681
  682	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
  683}
  684EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 
 
 
 
 
 
 
 
 
 
 
 
  685
  686static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
  687{
  688	int k = stack->num_paths++;
  689
  690	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
  691		return NULL;
 
 
 
 
  692
  693	return &stack->path[k];
 
 
 
  694}
  695
  696int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
  697			  struct net_device_path_stack *stack)
 
 
  698{
  699	const struct net_device *last_dev;
  700	struct net_device_path_ctx ctx = {
  701		.dev	= dev,
  702	};
  703	struct net_device_path *path;
  704	int ret = 0;
  705
  706	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
  707	stack->num_paths = 0;
  708	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
  709		last_dev = ctx.dev;
  710		path = dev_fwd_path(stack);
  711		if (!path)
  712			return -1;
  713
  714		memset(path, 0, sizeof(struct net_device_path));
  715		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
  716		if (ret < 0)
  717			return -1;
 
 
 
 
 
 
  718
  719		if (WARN_ON_ONCE(last_dev == ctx.dev))
  720			return -1;
  721	}
 
 
  722
  723	if (!ctx.dev)
  724		return ret;
  725
  726	path = dev_fwd_path(stack);
  727	if (!path)
  728		return -1;
  729	path->type = DEV_PATH_ETHERNET;
  730	path->dev = ctx.dev;
  731
  732	return ret;
  733}
  734EXPORT_SYMBOL_GPL(dev_fill_forward_path);
  735
  736/**
  737 *	__dev_get_by_name	- find a device by its name
  738 *	@net: the applicable net namespace
  739 *	@name: name to find
  740 *
  741 *	Find an interface by name. Must be called under RTNL semaphore
  742 *	or @dev_base_lock. If the name is found a pointer to the device
  743 *	is returned. If the name is not found then %NULL is returned. The
  744 *	reference counters are not incremented so the caller must be
  745 *	careful with locks.
  746 */
  747
  748struct net_device *__dev_get_by_name(struct net *net, const char *name)
  749{
  750	struct netdev_name_node *node_name;
 
 
  751
  752	node_name = netdev_name_node_lookup(net, name);
  753	return node_name ? node_name->dev : NULL;
 
 
 
  754}
  755EXPORT_SYMBOL(__dev_get_by_name);
  756
  757/**
  758 * dev_get_by_name_rcu	- find a device by its name
  759 * @net: the applicable net namespace
  760 * @name: name to find
  761 *
  762 * Find an interface by name.
  763 * If the name is found a pointer to the device is returned.
  764 * If the name is not found then %NULL is returned.
  765 * The reference counters are not incremented so the caller must be
  766 * careful with locks. The caller must hold RCU lock.
  767 */
  768
  769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
  770{
  771	struct netdev_name_node *node_name;
 
 
 
 
 
 
  772
  773	node_name = netdev_name_node_lookup_rcu(net, name);
  774	return node_name ? node_name->dev : NULL;
  775}
  776EXPORT_SYMBOL(dev_get_by_name_rcu);
  777
  778/* Deprecated for new users, call netdev_get_by_name() instead */
  779struct net_device *dev_get_by_name(struct net *net, const char *name)
  780{
  781	struct net_device *dev;
  782
  783	rcu_read_lock();
  784	dev = dev_get_by_name_rcu(net, name);
  785	dev_hold(dev);
  786	rcu_read_unlock();
  787	return dev;
  788}
  789EXPORT_SYMBOL(dev_get_by_name);
  790
  791/**
  792 *	netdev_get_by_name() - find a device by its name
  793 *	@net: the applicable net namespace
  794 *	@name: name to find
  795 *	@tracker: tracking object for the acquired reference
  796 *	@gfp: allocation flags for the tracker
  797 *
  798 *	Find an interface by name. This can be called from any
  799 *	context and does its own locking. The returned handle has
  800 *	the usage count incremented and the caller must use netdev_put() to
  801 *	release it when it is no longer needed. %NULL is returned if no
  802 *	matching device is found.
  803 */
  804struct net_device *netdev_get_by_name(struct net *net, const char *name,
  805				      netdevice_tracker *tracker, gfp_t gfp)
  806{
  807	struct net_device *dev;
  808
  809	dev = dev_get_by_name(net, name);
 
  810	if (dev)
  811		netdev_tracker_alloc(dev, tracker, gfp);
 
  812	return dev;
  813}
  814EXPORT_SYMBOL(netdev_get_by_name);
  815
  816/**
  817 *	__dev_get_by_index - find a device by its ifindex
  818 *	@net: the applicable net namespace
  819 *	@ifindex: index of device
  820 *
  821 *	Search for an interface by index. Returns %NULL if the device
  822 *	is not found or a pointer to the device. The device has not
  823 *	had its reference counter increased so the caller must be careful
  824 *	about locking. The caller must hold either the RTNL semaphore
  825 *	or @dev_base_lock.
  826 */
  827
  828struct net_device *__dev_get_by_index(struct net *net, int ifindex)
  829{
 
  830	struct net_device *dev;
  831	struct hlist_head *head = dev_index_hash(net, ifindex);
  832
  833	hlist_for_each_entry(dev, head, index_hlist)
  834		if (dev->ifindex == ifindex)
  835			return dev;
  836
  837	return NULL;
  838}
  839EXPORT_SYMBOL(__dev_get_by_index);
  840
  841/**
  842 *	dev_get_by_index_rcu - find a device by its ifindex
  843 *	@net: the applicable net namespace
  844 *	@ifindex: index of device
  845 *
  846 *	Search for an interface by index. Returns %NULL if the device
  847 *	is not found or a pointer to the device. The device has not
  848 *	had its reference counter increased so the caller must be careful
  849 *	about locking. The caller must hold RCU lock.
  850 */
  851
  852struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
  853{
 
  854	struct net_device *dev;
  855	struct hlist_head *head = dev_index_hash(net, ifindex);
  856
  857	hlist_for_each_entry_rcu(dev, head, index_hlist)
  858		if (dev->ifindex == ifindex)
  859			return dev;
  860
  861	return NULL;
  862}
  863EXPORT_SYMBOL(dev_get_by_index_rcu);
  864
  865/* Deprecated for new users, call netdev_get_by_index() instead */
  866struct net_device *dev_get_by_index(struct net *net, int ifindex)
  867{
  868	struct net_device *dev;
  869
  870	rcu_read_lock();
  871	dev = dev_get_by_index_rcu(net, ifindex);
  872	dev_hold(dev);
  873	rcu_read_unlock();
  874	return dev;
  875}
  876EXPORT_SYMBOL(dev_get_by_index);
  877
  878/**
  879 *	netdev_get_by_index() - find a device by its ifindex
  880 *	@net: the applicable net namespace
  881 *	@ifindex: index of device
  882 *	@tracker: tracking object for the acquired reference
  883 *	@gfp: allocation flags for the tracker
  884 *
  885 *	Search for an interface by index. Returns NULL if the device
  886 *	is not found or a pointer to the device. The device returned has
  887 *	had a reference added and the pointer is safe until the user calls
  888 *	netdev_put() to indicate they have finished with it.
  889 */
  890struct net_device *netdev_get_by_index(struct net *net, int ifindex,
  891				       netdevice_tracker *tracker, gfp_t gfp)
  892{
  893	struct net_device *dev;
  894
  895	dev = dev_get_by_index(net, ifindex);
  896	if (dev)
  897		netdev_tracker_alloc(dev, tracker, gfp);
  898	return dev;
  899}
  900EXPORT_SYMBOL(netdev_get_by_index);
  901
  902/**
  903 *	dev_get_by_napi_id - find a device by napi_id
  904 *	@napi_id: ID of the NAPI struct
  905 *
  906 *	Search for an interface by NAPI ID. Returns %NULL if the device
  907 *	is not found or a pointer to the device. The device has not had
  908 *	its reference counter increased so the caller must be careful
  909 *	about locking. The caller must hold RCU lock.
  910 */
  911
  912struct net_device *dev_get_by_napi_id(unsigned int napi_id)
  913{
  914	struct napi_struct *napi;
  915
  916	WARN_ON_ONCE(!rcu_read_lock_held());
  917
  918	if (napi_id < MIN_NAPI_ID)
  919		return NULL;
  920
  921	napi = napi_by_id(napi_id);
  922
  923	return napi ? napi->dev : NULL;
  924}
  925EXPORT_SYMBOL(dev_get_by_napi_id);
  926
  927/**
  928 *	netdev_get_name - get a netdevice name, knowing its ifindex.
  929 *	@net: network namespace
  930 *	@name: a pointer to the buffer where the name will be stored.
  931 *	@ifindex: the ifindex of the interface to get the name from.
  932 */
  933int netdev_get_name(struct net *net, char *name, int ifindex)
  934{
  935	struct net_device *dev;
  936	int ret;
  937
  938	down_read(&devnet_rename_sem);
  939	rcu_read_lock();
  940
  941	dev = dev_get_by_index_rcu(net, ifindex);
  942	if (!dev) {
  943		ret = -ENODEV;
  944		goto out;
  945	}
  946
  947	strcpy(name, dev->name);
  948
  949	ret = 0;
  950out:
  951	rcu_read_unlock();
  952	up_read(&devnet_rename_sem);
  953	return ret;
  954}
 
  955
  956/**
  957 *	dev_getbyhwaddr_rcu - find a device by its hardware address
  958 *	@net: the applicable net namespace
  959 *	@type: media type of device
  960 *	@ha: hardware address
  961 *
  962 *	Search for an interface by MAC address. Returns NULL if the device
  963 *	is not found or a pointer to the device.
  964 *	The caller must hold RCU or RTNL.
  965 *	The returned device has not had its ref count increased
  966 *	and the caller must therefore be careful about locking
  967 *
  968 */
  969
  970struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
  971				       const char *ha)
  972{
  973	struct net_device *dev;
  974
  975	for_each_netdev_rcu(net, dev)
  976		if (dev->type == type &&
  977		    !memcmp(dev->dev_addr, ha, dev->addr_len))
  978			return dev;
  979
  980	return NULL;
  981}
  982EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
  983
 
 
 
 
 
 
 
 
 
 
 
 
 
  984struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
  985{
  986	struct net_device *dev, *ret = NULL;
  987
  988	rcu_read_lock();
  989	for_each_netdev_rcu(net, dev)
  990		if (dev->type == type) {
  991			dev_hold(dev);
  992			ret = dev;
  993			break;
  994		}
  995	rcu_read_unlock();
  996	return ret;
  997}
  998EXPORT_SYMBOL(dev_getfirstbyhwtype);
  999
 1000/**
 1001 *	__dev_get_by_flags - find any device with given flags
 1002 *	@net: the applicable net namespace
 1003 *	@if_flags: IFF_* values
 1004 *	@mask: bitmask of bits in if_flags to check
 1005 *
 1006 *	Search for any interface with the given flags. Returns NULL if a device
 1007 *	is not found or a pointer to the device. Must be called inside
 1008 *	rtnl_lock(), and result refcount is unchanged.
 1009 */
 1010
 1011struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 1012				      unsigned short mask)
 1013{
 1014	struct net_device *dev, *ret;
 1015
 1016	ASSERT_RTNL();
 1017
 1018	ret = NULL;
 1019	for_each_netdev(net, dev) {
 1020		if (((dev->flags ^ if_flags) & mask) == 0) {
 1021			ret = dev;
 1022			break;
 1023		}
 1024	}
 1025	return ret;
 1026}
 1027EXPORT_SYMBOL(__dev_get_by_flags);
 1028
 1029/**
 1030 *	dev_valid_name - check if name is okay for network device
 1031 *	@name: name string
 1032 *
 1033 *	Network device names need to be valid file names to
 1034 *	allow sysfs to work.  We also disallow any kind of
 1035 *	whitespace.
 1036 */
 1037bool dev_valid_name(const char *name)
 1038{
 1039	if (*name == '\0')
 1040		return false;
 1041	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
 1042		return false;
 1043	if (!strcmp(name, ".") || !strcmp(name, ".."))
 1044		return false;
 1045
 1046	while (*name) {
 1047		if (*name == '/' || *name == ':' || isspace(*name))
 1048			return false;
 1049		name++;
 1050	}
 1051	return true;
 1052}
 1053EXPORT_SYMBOL(dev_valid_name);
 1054
 1055/**
 1056 *	__dev_alloc_name - allocate a name for a device
 1057 *	@net: network namespace to allocate the device name in
 1058 *	@name: name format string
 1059 *	@res: result name string
 1060 *
 1061 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1062 *	id. It scans list of devices to build up a free map, then chooses
 1063 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1064 *	while allocating the name and adding the device in order to avoid
 1065 *	duplicates.
 1066 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1067 *	Returns the number of the unit assigned or a negative errno code.
 1068 */
 1069
 1070static int __dev_alloc_name(struct net *net, const char *name, char *res)
 1071{
 1072	int i = 0;
 1073	const char *p;
 1074	const int max_netdevices = 8*PAGE_SIZE;
 1075	unsigned long *inuse;
 1076	struct net_device *d;
 1077	char buf[IFNAMSIZ];
 1078
 1079	/* Verify the string as this thing may have come from the user.
 1080	 * There must be one "%d" and no other "%" characters.
 1081	 */
 1082	p = strchr(name, '%');
 1083	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
 1084		return -EINVAL;
 
 
 
 1085
 1086	/* Use one page as a bit array of possible slots */
 1087	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
 1088	if (!inuse)
 1089		return -ENOMEM;
 1090
 1091	for_each_netdev(net, d) {
 1092		struct netdev_name_node *name_node;
 1093
 1094		netdev_for_each_altname(d, name_node) {
 1095			if (!sscanf(name_node->name, name, &i))
 1096				continue;
 1097			if (i < 0 || i >= max_netdevices)
 1098				continue;
 1099
 1100			/* avoid cases where sscanf is not exact inverse of printf */
 1101			snprintf(buf, IFNAMSIZ, name, i);
 1102			if (!strncmp(buf, name_node->name, IFNAMSIZ))
 1103				__set_bit(i, inuse);
 1104		}
 1105		if (!sscanf(d->name, name, &i))
 1106			continue;
 1107		if (i < 0 || i >= max_netdevices)
 1108			continue;
 1109
 1110		/* avoid cases where sscanf is not exact inverse of printf */
 1111		snprintf(buf, IFNAMSIZ, name, i);
 1112		if (!strncmp(buf, d->name, IFNAMSIZ))
 1113			__set_bit(i, inuse);
 1114	}
 1115
 1116	i = find_first_zero_bit(inuse, max_netdevices);
 1117	bitmap_free(inuse);
 1118	if (i == max_netdevices)
 1119		return -ENFILE;
 1120
 1121	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
 1122	strscpy(buf, name, IFNAMSIZ);
 1123	snprintf(res, IFNAMSIZ, buf, i);
 1124	return i;
 1125}
 1126
 1127/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
 1128static int dev_prep_valid_name(struct net *net, struct net_device *dev,
 1129			       const char *want_name, char *out_name,
 1130			       int dup_errno)
 1131{
 1132	if (!dev_valid_name(want_name))
 1133		return -EINVAL;
 1134
 1135	if (strchr(want_name, '%'))
 1136		return __dev_alloc_name(net, want_name, out_name);
 1137
 1138	if (netdev_name_in_use(net, want_name))
 1139		return -dup_errno;
 1140	if (out_name != want_name)
 1141		strscpy(out_name, want_name, IFNAMSIZ);
 1142	return 0;
 1143}
 1144
 1145/**
 1146 *	dev_alloc_name - allocate a name for a device
 1147 *	@dev: device
 1148 *	@name: name format string
 1149 *
 1150 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1151 *	id. It scans list of devices to build up a free map, then chooses
 1152 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1153 *	while allocating the name and adding the device in order to avoid
 1154 *	duplicates.
 1155 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1156 *	Returns the number of the unit assigned or a negative errno code.
 1157 */
 1158
 1159int dev_alloc_name(struct net_device *dev, const char *name)
 1160{
 1161	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
 
 
 
 
 
 
 
 
 
 1162}
 1163EXPORT_SYMBOL(dev_alloc_name);
 1164
 1165static int dev_get_valid_name(struct net *net, struct net_device *dev,
 1166			      const char *name)
 1167{
 1168	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 1169
 1170	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
 1171	return ret < 0 ? ret : 0;
 1172}
 1173
 1174/**
 1175 *	dev_change_name - change name of a device
 1176 *	@dev: device
 1177 *	@newname: name (or format string) must be at least IFNAMSIZ
 1178 *
 1179 *	Change name of a device, can pass format strings "eth%d".
 1180 *	for wildcarding.
 1181 */
 1182int dev_change_name(struct net_device *dev, const char *newname)
 1183{
 1184	unsigned char old_assign_type;
 1185	char oldname[IFNAMSIZ];
 1186	int err = 0;
 1187	int ret;
 1188	struct net *net;
 1189
 1190	ASSERT_RTNL();
 1191	BUG_ON(!dev_net(dev));
 1192
 1193	net = dev_net(dev);
 
 
 1194
 1195	down_write(&devnet_rename_sem);
 1196
 1197	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
 1198		up_write(&devnet_rename_sem);
 1199		return 0;
 1200	}
 1201
 1202	memcpy(oldname, dev->name, IFNAMSIZ);
 1203
 1204	err = dev_get_valid_name(net, dev, newname);
 1205	if (err < 0) {
 1206		up_write(&devnet_rename_sem);
 1207		return err;
 1208	}
 1209
 1210	if (oldname[0] && !strchr(oldname, '%'))
 1211		netdev_info(dev, "renamed from %s%s\n", oldname,
 1212			    dev->flags & IFF_UP ? " (while UP)" : "");
 1213
 1214	old_assign_type = dev->name_assign_type;
 1215	dev->name_assign_type = NET_NAME_RENAMED;
 1216
 1217rollback:
 1218	ret = device_rename(&dev->dev, dev->name);
 1219	if (ret) {
 1220		memcpy(dev->name, oldname, IFNAMSIZ);
 1221		dev->name_assign_type = old_assign_type;
 1222		up_write(&devnet_rename_sem);
 1223		return ret;
 1224	}
 1225
 1226	up_write(&devnet_rename_sem);
 1227
 1228	netdev_adjacent_rename_links(dev, oldname);
 1229
 1230	write_lock(&dev_base_lock);
 1231	netdev_name_node_del(dev->name_node);
 1232	write_unlock(&dev_base_lock);
 1233
 1234	synchronize_rcu();
 1235
 1236	write_lock(&dev_base_lock);
 1237	netdev_name_node_add(net, dev->name_node);
 1238	write_unlock(&dev_base_lock);
 1239
 1240	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
 1241	ret = notifier_to_errno(ret);
 1242
 1243	if (ret) {
 1244		/* err >= 0 after dev_alloc_name() or stores the first errno */
 1245		if (err >= 0) {
 1246			err = ret;
 1247			down_write(&devnet_rename_sem);
 1248			memcpy(dev->name, oldname, IFNAMSIZ);
 1249			memcpy(oldname, newname, IFNAMSIZ);
 1250			dev->name_assign_type = old_assign_type;
 1251			old_assign_type = NET_NAME_RENAMED;
 1252			goto rollback;
 1253		} else {
 1254			netdev_err(dev, "name change rollback failed: %d\n",
 1255				   ret);
 1256		}
 1257	}
 1258
 1259	return err;
 1260}
 1261
 1262/**
 1263 *	dev_set_alias - change ifalias of a device
 1264 *	@dev: device
 1265 *	@alias: name up to IFALIASZ
 1266 *	@len: limit of bytes to copy from info
 1267 *
 1268 *	Set ifalias for a device,
 1269 */
 1270int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
 1271{
 1272	struct dev_ifalias *new_alias = NULL;
 
 
 1273
 1274	if (len >= IFALIASZ)
 1275		return -EINVAL;
 1276
 1277	if (len) {
 1278		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
 1279		if (!new_alias)
 1280			return -ENOMEM;
 1281
 1282		memcpy(new_alias->ifalias, alias, len);
 1283		new_alias->ifalias[len] = 0;
 1284	}
 1285
 1286	mutex_lock(&ifalias_mutex);
 1287	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
 1288					mutex_is_locked(&ifalias_mutex));
 1289	mutex_unlock(&ifalias_mutex);
 1290
 1291	if (new_alias)
 1292		kfree_rcu(new_alias, rcuhead);
 1293
 
 1294	return len;
 1295}
 1296EXPORT_SYMBOL(dev_set_alias);
 1297
 1298/**
 1299 *	dev_get_alias - get ifalias of a device
 1300 *	@dev: device
 1301 *	@name: buffer to store name of ifalias
 1302 *	@len: size of buffer
 1303 *
 1304 *	get ifalias for a device.  Caller must make sure dev cannot go
 1305 *	away,  e.g. rcu read lock or own a reference count to device.
 1306 */
 1307int dev_get_alias(const struct net_device *dev, char *name, size_t len)
 1308{
 1309	const struct dev_ifalias *alias;
 1310	int ret = 0;
 1311
 1312	rcu_read_lock();
 1313	alias = rcu_dereference(dev->ifalias);
 1314	if (alias)
 1315		ret = snprintf(name, len, "%s", alias->ifalias);
 1316	rcu_read_unlock();
 1317
 1318	return ret;
 1319}
 1320
 1321/**
 1322 *	netdev_features_change - device changes features
 1323 *	@dev: device to cause notification
 1324 *
 1325 *	Called to indicate a device has changed features.
 1326 */
 1327void netdev_features_change(struct net_device *dev)
 1328{
 1329	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
 1330}
 1331EXPORT_SYMBOL(netdev_features_change);
 1332
 1333/**
 1334 *	netdev_state_change - device changes state
 1335 *	@dev: device to cause notification
 1336 *
 1337 *	Called to indicate a device has changed state. This function calls
 1338 *	the notifier chains for netdev_chain and sends a NEWLINK message
 1339 *	to the routing socket.
 1340 */
 1341void netdev_state_change(struct net_device *dev)
 1342{
 1343	if (dev->flags & IFF_UP) {
 1344		struct netdev_notifier_change_info change_info = {
 1345			.info.dev = dev,
 1346		};
 1347
 1348		call_netdevice_notifiers_info(NETDEV_CHANGE,
 1349					      &change_info.info);
 1350		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
 1351	}
 1352}
 1353EXPORT_SYMBOL(netdev_state_change);
 1354
 1355/**
 1356 * __netdev_notify_peers - notify network peers about existence of @dev,
 1357 * to be called when rtnl lock is already held.
 1358 * @dev: network device
 1359 *
 1360 * Generate traffic such that interested network peers are aware of
 1361 * @dev, such as by generating a gratuitous ARP. This may be used when
 1362 * a device wants to inform the rest of the network about some sort of
 1363 * reconfiguration such as a failover event or virtual machine
 1364 * migration.
 1365 */
 1366void __netdev_notify_peers(struct net_device *dev)
 1367{
 1368	ASSERT_RTNL();
 1369	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
 1370	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
 1371}
 1372EXPORT_SYMBOL(__netdev_notify_peers);
 1373
 1374/**
 1375 * netdev_notify_peers - notify network peers about existence of @dev
 1376 * @dev: network device
 
 1377 *
 1378 * Generate traffic such that interested network peers are aware of
 1379 * @dev, such as by generating a gratuitous ARP. This may be used when
 1380 * a device wants to inform the rest of the network about some sort of
 1381 * reconfiguration such as a failover event or virtual machine
 1382 * migration.
 1383 */
 1384void netdev_notify_peers(struct net_device *dev)
 
 1385{
 1386	rtnl_lock();
 1387	__netdev_notify_peers(dev);
 1388	rtnl_unlock();
 1389}
 1390EXPORT_SYMBOL(netdev_notify_peers);
 1391
 1392static int napi_threaded_poll(void *data);
 1393
 1394static int napi_kthread_create(struct napi_struct *n)
 1395{
 1396	int err = 0;
 1397
 1398	/* Create and wake up the kthread once to put it in
 1399	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
 1400	 * warning and work with loadavg.
 1401	 */
 1402	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
 1403				n->dev->name, n->napi_id);
 1404	if (IS_ERR(n->thread)) {
 1405		err = PTR_ERR(n->thread);
 1406		pr_err("kthread_run failed with err %d\n", err);
 1407		n->thread = NULL;
 1408	}
 1409
 1410	return err;
 1411}
 
 1412
 1413static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1414{
 1415	const struct net_device_ops *ops = dev->netdev_ops;
 1416	int ret;
 1417
 1418	ASSERT_RTNL();
 1419	dev_addr_check(dev);
 1420
 1421	if (!netif_device_present(dev)) {
 1422		/* may be detached because parent is runtime-suspended */
 1423		if (dev->dev.parent)
 1424			pm_runtime_resume(dev->dev.parent);
 1425		if (!netif_device_present(dev))
 1426			return -ENODEV;
 1427	}
 1428
 1429	/* Block netpoll from trying to do any rx path servicing.
 1430	 * If we don't do this there is a chance ndo_poll_controller
 1431	 * or ndo_poll may be running while we open the device
 1432	 */
 1433	netpoll_poll_disable(dev);
 1434
 1435	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
 1436	ret = notifier_to_errno(ret);
 1437	if (ret)
 1438		return ret;
 1439
 1440	set_bit(__LINK_STATE_START, &dev->state);
 1441
 1442	if (ops->ndo_validate_addr)
 1443		ret = ops->ndo_validate_addr(dev);
 1444
 1445	if (!ret && ops->ndo_open)
 1446		ret = ops->ndo_open(dev);
 1447
 1448	netpoll_poll_enable(dev);
 1449
 1450	if (ret)
 1451		clear_bit(__LINK_STATE_START, &dev->state);
 1452	else {
 1453		dev->flags |= IFF_UP;
 
 1454		dev_set_rx_mode(dev);
 1455		dev_activate(dev);
 1456		add_device_randomness(dev->dev_addr, dev->addr_len);
 1457	}
 1458
 1459	return ret;
 1460}
 1461
 1462/**
 1463 *	dev_open	- prepare an interface for use.
 1464 *	@dev: device to open
 1465 *	@extack: netlink extended ack
 1466 *
 1467 *	Takes a device from down to up state. The device's private open
 1468 *	function is invoked and then the multicast lists are loaded. Finally
 1469 *	the device is moved into the up state and a %NETDEV_UP message is
 1470 *	sent to the netdev notifier chain.
 1471 *
 1472 *	Calling this function on an active interface is a nop. On a failure
 1473 *	a negative errno code is returned.
 1474 */
 1475int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1476{
 1477	int ret;
 1478
 1479	if (dev->flags & IFF_UP)
 1480		return 0;
 1481
 1482	ret = __dev_open(dev, extack);
 1483	if (ret < 0)
 1484		return ret;
 1485
 1486	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1487	call_netdevice_notifiers(NETDEV_UP, dev);
 1488
 1489	return ret;
 1490}
 1491EXPORT_SYMBOL(dev_open);
 1492
 1493static void __dev_close_many(struct list_head *head)
 1494{
 1495	struct net_device *dev;
 1496
 1497	ASSERT_RTNL();
 1498	might_sleep();
 1499
 1500	list_for_each_entry(dev, head, close_list) {
 1501		/* Temporarily disable netpoll until the interface is down */
 1502		netpoll_poll_disable(dev);
 1503
 1504		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
 1505
 1506		clear_bit(__LINK_STATE_START, &dev->state);
 1507
 1508		/* Synchronize to scheduled poll. We cannot touch poll list, it
 1509		 * can be even on different cpu. So just clear netif_running().
 1510		 *
 1511		 * dev->stop() will invoke napi_disable() on all of it's
 1512		 * napi_struct instances on this device.
 1513		 */
 1514		smp_mb__after_atomic(); /* Commit netif_running(). */
 1515	}
 1516
 1517	dev_deactivate_many(head);
 1518
 1519	list_for_each_entry(dev, head, close_list) {
 1520		const struct net_device_ops *ops = dev->netdev_ops;
 1521
 1522		/*
 1523		 *	Call the device specific close. This cannot fail.
 1524		 *	Only if device is UP
 1525		 *
 1526		 *	We allow it to be called even after a DETACH hot-plug
 1527		 *	event.
 1528		 */
 1529		if (ops->ndo_stop)
 1530			ops->ndo_stop(dev);
 1531
 1532		dev->flags &= ~IFF_UP;
 1533		netpoll_poll_enable(dev);
 1534	}
 
 
 1535}
 1536
 1537static void __dev_close(struct net_device *dev)
 1538{
 
 1539	LIST_HEAD(single);
 1540
 1541	list_add(&dev->close_list, &single);
 1542	__dev_close_many(&single);
 1543	list_del(&single);
 
 1544}
 1545
 1546void dev_close_many(struct list_head *head, bool unlink)
 1547{
 1548	struct net_device *dev, *tmp;
 
 1549
 1550	/* Remove the devices that don't need to be closed */
 1551	list_for_each_entry_safe(dev, tmp, head, close_list)
 1552		if (!(dev->flags & IFF_UP))
 1553			list_del_init(&dev->close_list);
 1554
 1555	__dev_close_many(head);
 1556
 1557	list_for_each_entry_safe(dev, tmp, head, close_list) {
 1558		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1559		call_netdevice_notifiers(NETDEV_DOWN, dev);
 1560		if (unlink)
 1561			list_del_init(&dev->close_list);
 1562	}
 
 
 
 
 1563}
 1564EXPORT_SYMBOL(dev_close_many);
 1565
 1566/**
 1567 *	dev_close - shutdown an interface.
 1568 *	@dev: device to shutdown
 1569 *
 1570 *	This function moves an active device into down state. A
 1571 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
 1572 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
 1573 *	chain.
 1574 */
 1575void dev_close(struct net_device *dev)
 1576{
 1577	if (dev->flags & IFF_UP) {
 1578		LIST_HEAD(single);
 1579
 1580		list_add(&dev->close_list, &single);
 1581		dev_close_many(&single, true);
 1582		list_del(&single);
 1583	}
 
 1584}
 1585EXPORT_SYMBOL(dev_close);
 1586
 1587
 1588/**
 1589 *	dev_disable_lro - disable Large Receive Offload on a device
 1590 *	@dev: device
 1591 *
 1592 *	Disable Large Receive Offload (LRO) on a net device.  Must be
 1593 *	called under RTNL.  This is needed if received packets may be
 1594 *	forwarded to another interface.
 1595 */
 1596void dev_disable_lro(struct net_device *dev)
 1597{
 1598	struct net_device *lower_dev;
 1599	struct list_head *iter;
 
 
 
 
 1600
 1601	dev->wanted_features &= ~NETIF_F_LRO;
 1602	netdev_update_features(dev);
 1603
 1604	if (unlikely(dev->features & NETIF_F_LRO))
 1605		netdev_WARN(dev, "failed to disable LRO!\n");
 1606
 1607	netdev_for_each_lower_dev(dev, lower_dev, iter)
 1608		dev_disable_lro(lower_dev);
 1609}
 1610EXPORT_SYMBOL(dev_disable_lro);
 1611
 1612/**
 1613 *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
 1614 *	@dev: device
 1615 *
 1616 *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
 1617 *	called under RTNL.  This is needed if Generic XDP is installed on
 1618 *	the device.
 1619 */
 1620static void dev_disable_gro_hw(struct net_device *dev)
 1621{
 1622	dev->wanted_features &= ~NETIF_F_GRO_HW;
 1623	netdev_update_features(dev);
 1624
 1625	if (unlikely(dev->features & NETIF_F_GRO_HW))
 1626		netdev_WARN(dev, "failed to disable GRO_HW!\n");
 1627}
 1628
 1629const char *netdev_cmd_to_name(enum netdev_cmd cmd)
 1630{
 1631#define N(val) 						\
 1632	case NETDEV_##val:				\
 1633		return "NETDEV_" __stringify(val);
 1634	switch (cmd) {
 1635	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
 1636	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
 1637	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
 1638	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
 1639	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
 1640	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
 1641	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
 1642	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
 1643	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
 1644	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
 1645	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
 1646	N(XDP_FEAT_CHANGE)
 1647	}
 1648#undef N
 1649	return "UNKNOWN_NETDEV_EVENT";
 1650}
 1651EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
 1652
 1653static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
 1654				   struct net_device *dev)
 1655{
 1656	struct netdev_notifier_info info = {
 1657		.dev = dev,
 1658	};
 1659
 1660	return nb->notifier_call(nb, val, &info);
 1661}
 1662
 1663static int call_netdevice_register_notifiers(struct notifier_block *nb,
 1664					     struct net_device *dev)
 1665{
 1666	int err;
 1667
 1668	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
 1669	err = notifier_to_errno(err);
 1670	if (err)
 1671		return err;
 1672
 1673	if (!(dev->flags & IFF_UP))
 1674		return 0;
 1675
 1676	call_netdevice_notifier(nb, NETDEV_UP, dev);
 1677	return 0;
 1678}
 1679
 1680static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
 1681						struct net_device *dev)
 1682{
 1683	if (dev->flags & IFF_UP) {
 1684		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
 1685					dev);
 1686		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
 1687	}
 1688	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
 1689}
 1690
 1691static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
 1692						 struct net *net)
 1693{
 1694	struct net_device *dev;
 1695	int err;
 1696
 1697	for_each_netdev(net, dev) {
 1698		err = call_netdevice_register_notifiers(nb, dev);
 1699		if (err)
 1700			goto rollback;
 1701	}
 1702	return 0;
 1703
 1704rollback:
 1705	for_each_netdev_continue_reverse(net, dev)
 1706		call_netdevice_unregister_notifiers(nb, dev);
 1707	return err;
 1708}
 1709
 1710static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
 1711						    struct net *net)
 1712{
 1713	struct net_device *dev;
 1714
 1715	for_each_netdev(net, dev)
 1716		call_netdevice_unregister_notifiers(nb, dev);
 1717}
 1718
 1719static int dev_boot_phase = 1;
 1720
 1721/**
 1722 * register_netdevice_notifier - register a network notifier block
 1723 * @nb: notifier
 1724 *
 1725 * Register a notifier to be called when network device events occur.
 1726 * The notifier passed is linked into the kernel structures and must
 1727 * not be reused until it has been unregistered. A negative errno code
 1728 * is returned on a failure.
 1729 *
 1730 * When registered all registration and up events are replayed
 1731 * to the new notifier to allow device to have a race free
 1732 * view of the network device list.
 1733 */
 1734
 1735int register_netdevice_notifier(struct notifier_block *nb)
 1736{
 
 
 1737	struct net *net;
 1738	int err;
 1739
 1740	/* Close race with setup_net() and cleanup_net() */
 1741	down_write(&pernet_ops_rwsem);
 1742	rtnl_lock();
 1743	err = raw_notifier_chain_register(&netdev_chain, nb);
 1744	if (err)
 1745		goto unlock;
 1746	if (dev_boot_phase)
 1747		goto unlock;
 1748	for_each_net(net) {
 1749		err = call_netdevice_register_net_notifiers(nb, net);
 1750		if (err)
 1751			goto rollback;
 
 
 
 
 
 
 
 
 1752	}
 1753
 1754unlock:
 1755	rtnl_unlock();
 1756	up_write(&pernet_ops_rwsem);
 1757	return err;
 1758
 1759rollback:
 1760	for_each_net_continue_reverse(net)
 1761		call_netdevice_unregister_net_notifiers(nb, net);
 
 
 
 
 
 
 
 
 
 
 
 
 1762
 
 1763	raw_notifier_chain_unregister(&netdev_chain, nb);
 1764	goto unlock;
 1765}
 1766EXPORT_SYMBOL(register_netdevice_notifier);
 1767
 1768/**
 1769 * unregister_netdevice_notifier - unregister a network notifier block
 1770 * @nb: notifier
 1771 *
 1772 * Unregister a notifier previously registered by
 1773 * register_netdevice_notifier(). The notifier is unlinked into the
 1774 * kernel structures and may then be reused. A negative errno code
 1775 * is returned on a failure.
 1776 *
 1777 * After unregistering unregister and down device events are synthesized
 1778 * for all devices on the device list to the removed notifier to remove
 1779 * the need for special case cleanup code.
 1780 */
 1781
 1782int unregister_netdevice_notifier(struct notifier_block *nb)
 1783{
 
 1784	struct net *net;
 1785	int err;
 1786
 1787	/* Close race with setup_net() and cleanup_net() */
 1788	down_write(&pernet_ops_rwsem);
 1789	rtnl_lock();
 1790	err = raw_notifier_chain_unregister(&netdev_chain, nb);
 1791	if (err)
 1792		goto unlock;
 1793
 1794	for_each_net(net)
 1795		call_netdevice_unregister_net_notifiers(nb, net);
 1796
 
 
 
 
 
 
 
 1797unlock:
 1798	rtnl_unlock();
 1799	up_write(&pernet_ops_rwsem);
 1800	return err;
 1801}
 1802EXPORT_SYMBOL(unregister_netdevice_notifier);
 1803
 1804static int __register_netdevice_notifier_net(struct net *net,
 1805					     struct notifier_block *nb,
 1806					     bool ignore_call_fail)
 1807{
 1808	int err;
 1809
 1810	err = raw_notifier_chain_register(&net->netdev_chain, nb);
 1811	if (err)
 1812		return err;
 1813	if (dev_boot_phase)
 1814		return 0;
 1815
 1816	err = call_netdevice_register_net_notifiers(nb, net);
 1817	if (err && !ignore_call_fail)
 1818		goto chain_unregister;
 1819
 1820	return 0;
 1821
 1822chain_unregister:
 1823	raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1824	return err;
 1825}
 1826
 1827static int __unregister_netdevice_notifier_net(struct net *net,
 1828					       struct notifier_block *nb)
 1829{
 1830	int err;
 1831
 1832	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1833	if (err)
 1834		return err;
 1835
 1836	call_netdevice_unregister_net_notifiers(nb, net);
 1837	return 0;
 1838}
 1839
 1840/**
 1841 * register_netdevice_notifier_net - register a per-netns network notifier block
 1842 * @net: network namespace
 1843 * @nb: notifier
 1844 *
 1845 * Register a notifier to be called when network device events occur.
 1846 * The notifier passed is linked into the kernel structures and must
 1847 * not be reused until it has been unregistered. A negative errno code
 1848 * is returned on a failure.
 1849 *
 1850 * When registered all registration and up events are replayed
 1851 * to the new notifier to allow device to have a race free
 1852 * view of the network device list.
 1853 */
 1854
 1855int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
 1856{
 1857	int err;
 1858
 1859	rtnl_lock();
 1860	err = __register_netdevice_notifier_net(net, nb, false);
 1861	rtnl_unlock();
 1862	return err;
 1863}
 1864EXPORT_SYMBOL(register_netdevice_notifier_net);
 1865
 1866/**
 1867 * unregister_netdevice_notifier_net - unregister a per-netns
 1868 *                                     network notifier block
 1869 * @net: network namespace
 1870 * @nb: notifier
 1871 *
 1872 * Unregister a notifier previously registered by
 1873 * register_netdevice_notifier_net(). The notifier is unlinked from the
 1874 * kernel structures and may then be reused. A negative errno code
 1875 * is returned on a failure.
 1876 *
 1877 * After unregistering unregister and down device events are synthesized
 1878 * for all devices on the device list to the removed notifier to remove
 1879 * the need for special case cleanup code.
 1880 */
 1881
 1882int unregister_netdevice_notifier_net(struct net *net,
 1883				      struct notifier_block *nb)
 1884{
 1885	int err;
 1886
 1887	rtnl_lock();
 1888	err = __unregister_netdevice_notifier_net(net, nb);
 1889	rtnl_unlock();
 1890	return err;
 1891}
 1892EXPORT_SYMBOL(unregister_netdevice_notifier_net);
 1893
 1894static void __move_netdevice_notifier_net(struct net *src_net,
 1895					  struct net *dst_net,
 1896					  struct notifier_block *nb)
 1897{
 1898	__unregister_netdevice_notifier_net(src_net, nb);
 1899	__register_netdevice_notifier_net(dst_net, nb, true);
 1900}
 1901
 1902int register_netdevice_notifier_dev_net(struct net_device *dev,
 1903					struct notifier_block *nb,
 1904					struct netdev_net_notifier *nn)
 1905{
 1906	int err;
 1907
 1908	rtnl_lock();
 1909	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
 1910	if (!err) {
 1911		nn->nb = nb;
 1912		list_add(&nn->list, &dev->net_notifier_list);
 1913	}
 1914	rtnl_unlock();
 1915	return err;
 1916}
 1917EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
 1918
 1919int unregister_netdevice_notifier_dev_net(struct net_device *dev,
 1920					  struct notifier_block *nb,
 1921					  struct netdev_net_notifier *nn)
 1922{
 1923	int err;
 1924
 1925	rtnl_lock();
 1926	list_del(&nn->list);
 1927	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
 1928	rtnl_unlock();
 1929	return err;
 1930}
 1931EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
 1932
 1933static void move_netdevice_notifiers_dev_net(struct net_device *dev,
 1934					     struct net *net)
 1935{
 1936	struct netdev_net_notifier *nn;
 1937
 1938	list_for_each_entry(nn, &dev->net_notifier_list, list)
 1939		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
 1940}
 1941
 1942/**
 1943 *	call_netdevice_notifiers_info - call all network notifier blocks
 1944 *	@val: value passed unmodified to notifier function
 1945 *	@info: notifier information data
 1946 *
 1947 *	Call all network notifier blocks.  Parameters and return value
 1948 *	are as for raw_notifier_call_chain().
 1949 */
 1950
 1951int call_netdevice_notifiers_info(unsigned long val,
 1952				  struct netdev_notifier_info *info)
 1953{
 1954	struct net *net = dev_net(info->dev);
 1955	int ret;
 1956
 1957	ASSERT_RTNL();
 1958
 1959	/* Run per-netns notifier block chain first, then run the global one.
 1960	 * Hopefully, one day, the global one is going to be removed after
 1961	 * all notifier block registrators get converted to be per-netns.
 1962	 */
 1963	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
 1964	if (ret & NOTIFY_STOP_MASK)
 1965		return ret;
 1966	return raw_notifier_call_chain(&netdev_chain, val, info);
 1967}
 1968
 1969/**
 1970 *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
 1971 *	                                       for and rollback on error
 1972 *	@val_up: value passed unmodified to notifier function
 1973 *	@val_down: value passed unmodified to the notifier function when
 1974 *	           recovering from an error on @val_up
 1975 *	@info: notifier information data
 1976 *
 1977 *	Call all per-netns network notifier blocks, but not notifier blocks on
 1978 *	the global notifier chain. Parameters and return value are as for
 1979 *	raw_notifier_call_chain_robust().
 1980 */
 1981
 1982static int
 1983call_netdevice_notifiers_info_robust(unsigned long val_up,
 1984				     unsigned long val_down,
 1985				     struct netdev_notifier_info *info)
 1986{
 1987	struct net *net = dev_net(info->dev);
 1988
 1989	ASSERT_RTNL();
 1990
 1991	return raw_notifier_call_chain_robust(&net->netdev_chain,
 1992					      val_up, val_down, info);
 1993}
 1994
 1995static int call_netdevice_notifiers_extack(unsigned long val,
 1996					   struct net_device *dev,
 1997					   struct netlink_ext_ack *extack)
 1998{
 1999	struct netdev_notifier_info info = {
 2000		.dev = dev,
 2001		.extack = extack,
 2002	};
 2003
 2004	return call_netdevice_notifiers_info(val, &info);
 2005}
 2006
 2007/**
 2008 *	call_netdevice_notifiers - call all network notifier blocks
 2009 *      @val: value passed unmodified to notifier function
 2010 *      @dev: net_device pointer passed unmodified to notifier function
 2011 *
 2012 *	Call all network notifier blocks.  Parameters and return value
 2013 *	are as for raw_notifier_call_chain().
 2014 */
 2015
 2016int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
 2017{
 2018	return call_netdevice_notifiers_extack(val, dev, NULL);
 
 2019}
 2020EXPORT_SYMBOL(call_netdevice_notifiers);
 2021
 2022/**
 2023 *	call_netdevice_notifiers_mtu - call all network notifier blocks
 2024 *	@val: value passed unmodified to notifier function
 2025 *	@dev: net_device pointer passed unmodified to notifier function
 2026 *	@arg: additional u32 argument passed to the notifier function
 2027 *
 2028 *	Call all network notifier blocks.  Parameters and return value
 2029 *	are as for raw_notifier_call_chain().
 2030 */
 2031static int call_netdevice_notifiers_mtu(unsigned long val,
 2032					struct net_device *dev, u32 arg)
 2033{
 2034	struct netdev_notifier_info_ext info = {
 2035		.info.dev = dev,
 2036		.ext.mtu = arg,
 2037	};
 2038
 2039	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
 2040
 2041	return call_netdevice_notifiers_info(val, &info.info);
 2042}
 2043
 2044#ifdef CONFIG_NET_INGRESS
 2045static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
 2046
 2047void net_inc_ingress_queue(void)
 2048{
 2049	static_branch_inc(&ingress_needed_key);
 2050}
 2051EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
 2052
 2053void net_dec_ingress_queue(void)
 2054{
 2055	static_branch_dec(&ingress_needed_key);
 2056}
 2057EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
 2058#endif
 2059
 2060#ifdef CONFIG_NET_EGRESS
 2061static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
 2062
 2063void net_inc_egress_queue(void)
 2064{
 2065	static_branch_inc(&egress_needed_key);
 2066}
 2067EXPORT_SYMBOL_GPL(net_inc_egress_queue);
 2068
 2069void net_dec_egress_queue(void)
 2070{
 2071	static_branch_dec(&egress_needed_key);
 2072}
 2073EXPORT_SYMBOL_GPL(net_dec_egress_queue);
 2074#endif
 2075
 2076DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
 2077EXPORT_SYMBOL(netstamp_needed_key);
 2078#ifdef CONFIG_JUMP_LABEL
 2079static atomic_t netstamp_needed_deferred;
 2080static atomic_t netstamp_wanted;
 2081static void netstamp_clear(struct work_struct *work)
 2082{
 2083	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
 2084	int wanted;
 2085
 2086	wanted = atomic_add_return(deferred, &netstamp_wanted);
 2087	if (wanted > 0)
 2088		static_branch_enable(&netstamp_needed_key);
 2089	else
 2090		static_branch_disable(&netstamp_needed_key);
 2091}
 2092static DECLARE_WORK(netstamp_work, netstamp_clear);
 2093#endif
 2094
 2095void net_enable_timestamp(void)
 2096{
 2097#ifdef CONFIG_JUMP_LABEL
 2098	int wanted = atomic_read(&netstamp_wanted);
 2099
 2100	while (wanted > 0) {
 2101		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
 2102			return;
 
 2103	}
 2104	atomic_inc(&netstamp_needed_deferred);
 2105	schedule_work(&netstamp_work);
 2106#else
 2107	static_branch_inc(&netstamp_needed_key);
 2108#endif
 
 
 2109}
 2110EXPORT_SYMBOL(net_enable_timestamp);
 2111
 2112void net_disable_timestamp(void)
 2113{
 2114#ifdef CONFIG_JUMP_LABEL
 2115	int wanted = atomic_read(&netstamp_wanted);
 2116
 2117	while (wanted > 1) {
 2118		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
 2119			return;
 2120	}
 2121	atomic_dec(&netstamp_needed_deferred);
 2122	schedule_work(&netstamp_work);
 2123#else
 2124	static_branch_dec(&netstamp_needed_key);
 2125#endif
 
 2126}
 2127EXPORT_SYMBOL(net_disable_timestamp);
 2128
 2129static inline void net_timestamp_set(struct sk_buff *skb)
 2130{
 2131	skb->tstamp = 0;
 2132	skb->mono_delivery_time = 0;
 2133	if (static_branch_unlikely(&netstamp_needed_key))
 2134		skb->tstamp = ktime_get_real();
 2135}
 2136
 2137#define net_timestamp_check(COND, SKB)				\
 2138	if (static_branch_unlikely(&netstamp_needed_key)) {	\
 2139		if ((COND) && !(SKB)->tstamp)			\
 2140			(SKB)->tstamp = ktime_get_real();	\
 2141	}							\
 2142
 2143bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
 2144{
 2145	return __is_skb_forwardable(dev, skb, true);
 2146}
 2147EXPORT_SYMBOL_GPL(is_skb_forwardable);
 
 
 
 
 
 
 
 
 
 
 
 2148
 2149static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
 2150			      bool check_mtu)
 2151{
 2152	int ret = ____dev_forward_skb(dev, skb, check_mtu);
 
 
 
 2153
 2154	if (likely(!ret)) {
 2155		skb->protocol = eth_type_trans(skb, dev);
 2156		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2157	}
 2158
 2159	return ret;
 
 
 
 2160}
 2161
 2162int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 
 2163{
 2164	return __dev_forward_skb2(dev, skb, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2165}
 2166EXPORT_SYMBOL_GPL(__dev_forward_skb);
 2167
 2168/**
 2169 * dev_forward_skb - loopback an skb to another netif
 2170 *
 2171 * @dev: destination network device
 2172 * @skb: buffer to forward
 2173 *
 2174 * return values:
 2175 *	NET_RX_SUCCESS	(no congestion)
 2176 *	NET_RX_DROP     (packet was dropped, but freed)
 2177 *
 2178 * dev_forward_skb can be used for injecting an skb from the
 2179 * start_xmit function of one device into the receive queue
 2180 * of another device.
 2181 *
 2182 * The receiving device may be in another namespace, so
 2183 * we have to clear all information in the skb that could
 2184 * impact namespace isolation.
 2185 */
 2186int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 2187{
 2188	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2189}
 2190EXPORT_SYMBOL_GPL(dev_forward_skb);
 2191
 2192int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
 2193{
 2194	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
 2195}
 2196
 2197static inline int deliver_skb(struct sk_buff *skb,
 2198			      struct packet_type *pt_prev,
 2199			      struct net_device *orig_dev)
 2200{
 2201	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 2202		return -ENOMEM;
 2203	refcount_inc(&skb->users);
 2204	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 2205}
 2206
 2207static inline void deliver_ptype_list_skb(struct sk_buff *skb,
 2208					  struct packet_type **pt,
 2209					  struct net_device *orig_dev,
 2210					  __be16 type,
 2211					  struct list_head *ptype_list)
 2212{
 2213	struct packet_type *ptype, *pt_prev = *pt;
 2214
 2215	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2216		if (ptype->type != type)
 2217			continue;
 2218		if (pt_prev)
 2219			deliver_skb(skb, pt_prev, orig_dev);
 2220		pt_prev = ptype;
 2221	}
 2222	*pt = pt_prev;
 2223}
 2224
 2225static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
 2226{
 2227	if (!ptype->af_packet_priv || !skb->sk)
 2228		return false;
 2229
 2230	if (ptype->id_match)
 2231		return ptype->id_match(ptype, skb->sk);
 2232	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
 2233		return true;
 2234
 2235	return false;
 2236}
 2237
 2238/**
 2239 * dev_nit_active - return true if any network interface taps are in use
 2240 *
 2241 * @dev: network device to check for the presence of taps
 2242 */
 2243bool dev_nit_active(struct net_device *dev)
 2244{
 2245	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
 2246}
 2247EXPORT_SYMBOL_GPL(dev_nit_active);
 2248
 2249/*
 2250 *	Support routine. Sends outgoing frames to any network
 2251 *	taps currently in use.
 2252 */
 2253
 2254void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
 2255{
 2256	struct packet_type *ptype;
 2257	struct sk_buff *skb2 = NULL;
 2258	struct packet_type *pt_prev = NULL;
 2259	struct list_head *ptype_list = &ptype_all;
 2260
 2261	rcu_read_lock();
 2262again:
 2263	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2264		if (ptype->ignore_outgoing)
 2265			continue;
 2266
 2267		/* Never send packets back to the socket
 2268		 * they originated from - MvS (miquels@drinkel.ow.org)
 2269		 */
 2270		if (skb_loop_sk(ptype, skb))
 2271			continue;
 
 
 
 
 
 2272
 2273		if (pt_prev) {
 2274			deliver_skb(skb2, pt_prev, skb->dev);
 2275			pt_prev = ptype;
 2276			continue;
 2277		}
 2278
 2279		/* need to clone skb, done only once */
 2280		skb2 = skb_clone(skb, GFP_ATOMIC);
 2281		if (!skb2)
 2282			goto out_unlock;
 2283
 2284		net_timestamp_set(skb2);
 2285
 2286		/* skb->nh should be correctly
 2287		 * set by sender, so that the second statement is
 2288		 * just protection against buggy protocols.
 2289		 */
 2290		skb_reset_mac_header(skb2);
 2291
 2292		if (skb_network_header(skb2) < skb2->data ||
 2293		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
 2294			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
 2295					     ntohs(skb2->protocol),
 2296					     dev->name);
 2297			skb_reset_network_header(skb2);
 2298		}
 2299
 2300		skb2->transport_header = skb2->network_header;
 2301		skb2->pkt_type = PACKET_OUTGOING;
 2302		pt_prev = ptype;
 2303	}
 
 
 
 2304
 2305	if (ptype_list == &ptype_all) {
 2306		ptype_list = &dev->ptype_all;
 2307		goto again;
 2308	}
 2309out_unlock:
 2310	if (pt_prev) {
 2311		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
 2312			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
 2313		else
 2314			kfree_skb(skb2);
 2315	}
 
 
 2316	rcu_read_unlock();
 2317}
 2318EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
 2319
 2320/**
 2321 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
 2322 * @dev: Network device
 2323 * @txq: number of queues available
 2324 *
 2325 * If real_num_tx_queues is changed the tc mappings may no longer be
 2326 * valid. To resolve this verify the tc mapping remains valid and if
 2327 * not NULL the mapping. With no priorities mapping to this
 2328 * offset/count pair it will no longer be used. In the worst case TC0
 2329 * is invalid nothing can be done so disable priority mappings. If is
 2330 * expected that drivers will fix this mapping if they can before
 2331 * calling netif_set_real_num_tx_queues.
 2332 */
 2333static void netif_setup_tc(struct net_device *dev, unsigned int txq)
 2334{
 2335	int i;
 2336	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2337
 2338	/* If TC0 is invalidated disable TC mapping */
 2339	if (tc->offset + tc->count > txq) {
 2340		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
 2341		dev->num_tc = 0;
 2342		return;
 2343	}
 2344
 2345	/* Invalidated prio to tc mappings set to TC0 */
 2346	for (i = 1; i < TC_BITMASK + 1; i++) {
 2347		int q = netdev_get_prio_tc_map(dev, i);
 2348
 2349		tc = &dev->tc_to_txq[q];
 2350		if (tc->offset + tc->count > txq) {
 2351			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
 2352				    i, q);
 2353			netdev_set_prio_tc_map(dev, i, 0);
 2354		}
 2355	}
 2356}
 2357
 2358int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
 2359{
 2360	if (dev->num_tc) {
 2361		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2362		int i;
 2363
 2364		/* walk through the TCs and see if it falls into any of them */
 2365		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
 2366			if ((txq - tc->offset) < tc->count)
 2367				return i;
 2368		}
 2369
 2370		/* didn't find it, just return -1 to indicate no match */
 2371		return -1;
 2372	}
 2373
 2374	return 0;
 2375}
 2376EXPORT_SYMBOL(netdev_txq_to_tc);
 2377
 2378#ifdef CONFIG_XPS
 2379static struct static_key xps_needed __read_mostly;
 2380static struct static_key xps_rxqs_needed __read_mostly;
 2381static DEFINE_MUTEX(xps_map_mutex);
 2382#define xmap_dereference(P)		\
 2383	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
 2384
 2385static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
 2386			     struct xps_dev_maps *old_maps, int tci, u16 index)
 2387{
 2388	struct xps_map *map = NULL;
 2389	int pos;
 2390
 2391	map = xmap_dereference(dev_maps->attr_map[tci]);
 2392	if (!map)
 2393		return false;
 2394
 2395	for (pos = map->len; pos--;) {
 2396		if (map->queues[pos] != index)
 2397			continue;
 2398
 2399		if (map->len > 1) {
 2400			map->queues[pos] = map->queues[--map->len];
 2401			break;
 2402		}
 2403
 2404		if (old_maps)
 2405			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
 2406		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2407		kfree_rcu(map, rcu);
 2408		return false;
 2409	}
 2410
 2411	return true;
 2412}
 2413
 2414static bool remove_xps_queue_cpu(struct net_device *dev,
 2415				 struct xps_dev_maps *dev_maps,
 2416				 int cpu, u16 offset, u16 count)
 2417{
 2418	int num_tc = dev_maps->num_tc;
 2419	bool active = false;
 2420	int tci;
 2421
 2422	for (tci = cpu * num_tc; num_tc--; tci++) {
 2423		int i, j;
 2424
 2425		for (i = count, j = offset; i--; j++) {
 2426			if (!remove_xps_queue(dev_maps, NULL, tci, j))
 2427				break;
 2428		}
 2429
 2430		active |= i < 0;
 2431	}
 2432
 2433	return active;
 2434}
 2435
 2436static void reset_xps_maps(struct net_device *dev,
 2437			   struct xps_dev_maps *dev_maps,
 2438			   enum xps_map_type type)
 2439{
 2440	static_key_slow_dec_cpuslocked(&xps_needed);
 2441	if (type == XPS_RXQS)
 2442		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
 2443
 2444	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
 2445
 2446	kfree_rcu(dev_maps, rcu);
 2447}
 2448
 2449static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
 2450			   u16 offset, u16 count)
 2451{
 2452	struct xps_dev_maps *dev_maps;
 2453	bool active = false;
 2454	int i, j;
 2455
 2456	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2457	if (!dev_maps)
 2458		return;
 2459
 2460	for (j = 0; j < dev_maps->nr_ids; j++)
 2461		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
 2462	if (!active)
 2463		reset_xps_maps(dev, dev_maps, type);
 2464
 2465	if (type == XPS_CPUS) {
 2466		for (i = offset + (count - 1); count--; i--)
 2467			netdev_queue_numa_node_write(
 2468				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
 2469	}
 2470}
 2471
 2472static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
 2473				   u16 count)
 2474{
 2475	if (!static_key_false(&xps_needed))
 2476		return;
 2477
 2478	cpus_read_lock();
 2479	mutex_lock(&xps_map_mutex);
 2480
 2481	if (static_key_false(&xps_rxqs_needed))
 2482		clean_xps_maps(dev, XPS_RXQS, offset, count);
 2483
 2484	clean_xps_maps(dev, XPS_CPUS, offset, count);
 2485
 2486	mutex_unlock(&xps_map_mutex);
 2487	cpus_read_unlock();
 2488}
 2489
 2490static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
 2491{
 2492	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
 2493}
 2494
 2495static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
 2496				      u16 index, bool is_rxqs_map)
 2497{
 2498	struct xps_map *new_map;
 2499	int alloc_len = XPS_MIN_MAP_ALLOC;
 2500	int i, pos;
 2501
 2502	for (pos = 0; map && pos < map->len; pos++) {
 2503		if (map->queues[pos] != index)
 2504			continue;
 2505		return map;
 2506	}
 2507
 2508	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
 2509	if (map) {
 2510		if (pos < map->alloc_len)
 2511			return map;
 2512
 2513		alloc_len = map->alloc_len * 2;
 2514	}
 2515
 2516	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
 2517	 *  map
 2518	 */
 2519	if (is_rxqs_map)
 2520		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
 2521	else
 2522		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
 2523				       cpu_to_node(attr_index));
 2524	if (!new_map)
 2525		return NULL;
 2526
 2527	for (i = 0; i < pos; i++)
 2528		new_map->queues[i] = map->queues[i];
 2529	new_map->alloc_len = alloc_len;
 2530	new_map->len = pos;
 2531
 2532	return new_map;
 2533}
 2534
 2535/* Copy xps maps at a given index */
 2536static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
 2537			      struct xps_dev_maps *new_dev_maps, int index,
 2538			      int tc, bool skip_tc)
 2539{
 2540	int i, tci = index * dev_maps->num_tc;
 2541	struct xps_map *map;
 2542
 2543	/* copy maps belonging to foreign traffic classes */
 2544	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2545		if (i == tc && skip_tc)
 2546			continue;
 2547
 2548		/* fill in the new device map from the old device map */
 2549		map = xmap_dereference(dev_maps->attr_map[tci]);
 2550		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2551	}
 2552}
 2553
 2554/* Must be called under cpus_read_lock */
 2555int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
 2556			  u16 index, enum xps_map_type type)
 2557{
 2558	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
 2559	const unsigned long *online_mask = NULL;
 2560	bool active = false, copy = false;
 2561	int i, j, tci, numa_node_id = -2;
 2562	int maps_sz, num_tc = 1, tc = 0;
 2563	struct xps_map *map, *new_map;
 2564	unsigned int nr_ids;
 2565
 2566	WARN_ON_ONCE(index >= dev->num_tx_queues);
 2567
 2568	if (dev->num_tc) {
 2569		/* Do not allow XPS on subordinate device directly */
 2570		num_tc = dev->num_tc;
 2571		if (num_tc < 0)
 2572			return -EINVAL;
 2573
 2574		/* If queue belongs to subordinate dev use its map */
 2575		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
 2576
 2577		tc = netdev_txq_to_tc(dev, index);
 2578		if (tc < 0)
 2579			return -EINVAL;
 2580	}
 2581
 2582	mutex_lock(&xps_map_mutex);
 2583
 2584	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2585	if (type == XPS_RXQS) {
 2586		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
 2587		nr_ids = dev->num_rx_queues;
 2588	} else {
 2589		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
 2590		if (num_possible_cpus() > 1)
 2591			online_mask = cpumask_bits(cpu_online_mask);
 2592		nr_ids = nr_cpu_ids;
 2593	}
 2594
 2595	if (maps_sz < L1_CACHE_BYTES)
 2596		maps_sz = L1_CACHE_BYTES;
 2597
 2598	/* The old dev_maps could be larger or smaller than the one we're
 2599	 * setting up now, as dev->num_tc or nr_ids could have been updated in
 2600	 * between. We could try to be smart, but let's be safe instead and only
 2601	 * copy foreign traffic classes if the two map sizes match.
 2602	 */
 2603	if (dev_maps &&
 2604	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
 2605		copy = true;
 2606
 2607	/* allocate memory for queue storage */
 2608	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
 2609	     j < nr_ids;) {
 2610		if (!new_dev_maps) {
 2611			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
 2612			if (!new_dev_maps) {
 2613				mutex_unlock(&xps_map_mutex);
 2614				return -ENOMEM;
 2615			}
 2616
 2617			new_dev_maps->nr_ids = nr_ids;
 2618			new_dev_maps->num_tc = num_tc;
 2619		}
 2620
 2621		tci = j * num_tc + tc;
 2622		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
 2623
 2624		map = expand_xps_map(map, j, index, type == XPS_RXQS);
 2625		if (!map)
 2626			goto error;
 2627
 2628		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2629	}
 2630
 2631	if (!new_dev_maps)
 2632		goto out_no_new_maps;
 2633
 2634	if (!dev_maps) {
 2635		/* Increment static keys at most once per type */
 2636		static_key_slow_inc_cpuslocked(&xps_needed);
 2637		if (type == XPS_RXQS)
 2638			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
 2639	}
 2640
 2641	for (j = 0; j < nr_ids; j++) {
 2642		bool skip_tc = false;
 2643
 2644		tci = j * num_tc + tc;
 2645		if (netif_attr_test_mask(j, mask, nr_ids) &&
 2646		    netif_attr_test_online(j, online_mask, nr_ids)) {
 2647			/* add tx-queue to CPU/rx-queue maps */
 2648			int pos = 0;
 2649
 2650			skip_tc = true;
 2651
 2652			map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2653			while ((pos < map->len) && (map->queues[pos] != index))
 2654				pos++;
 2655
 2656			if (pos == map->len)
 2657				map->queues[map->len++] = index;
 2658#ifdef CONFIG_NUMA
 2659			if (type == XPS_CPUS) {
 2660				if (numa_node_id == -2)
 2661					numa_node_id = cpu_to_node(j);
 2662				else if (numa_node_id != cpu_to_node(j))
 2663					numa_node_id = -1;
 2664			}
 2665#endif
 2666		}
 2667
 2668		if (copy)
 2669			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
 2670					  skip_tc);
 2671	}
 2672
 2673	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
 2674
 2675	/* Cleanup old maps */
 2676	if (!dev_maps)
 2677		goto out_no_old_maps;
 2678
 2679	for (j = 0; j < dev_maps->nr_ids; j++) {
 2680		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
 2681			map = xmap_dereference(dev_maps->attr_map[tci]);
 2682			if (!map)
 2683				continue;
 2684
 2685			if (copy) {
 2686				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2687				if (map == new_map)
 2688					continue;
 2689			}
 2690
 2691			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2692			kfree_rcu(map, rcu);
 2693		}
 2694	}
 2695
 2696	old_dev_maps = dev_maps;
 2697
 2698out_no_old_maps:
 2699	dev_maps = new_dev_maps;
 2700	active = true;
 2701
 2702out_no_new_maps:
 2703	if (type == XPS_CPUS)
 2704		/* update Tx queue numa node */
 2705		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
 2706					     (numa_node_id >= 0) ?
 2707					     numa_node_id : NUMA_NO_NODE);
 2708
 2709	if (!dev_maps)
 2710		goto out_no_maps;
 2711
 2712	/* removes tx-queue from unused CPUs/rx-queues */
 2713	for (j = 0; j < dev_maps->nr_ids; j++) {
 2714		tci = j * dev_maps->num_tc;
 2715
 2716		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2717			if (i == tc &&
 2718			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
 2719			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
 2720				continue;
 2721
 2722			active |= remove_xps_queue(dev_maps,
 2723						   copy ? old_dev_maps : NULL,
 2724						   tci, index);
 2725		}
 2726	}
 2727
 2728	if (old_dev_maps)
 2729		kfree_rcu(old_dev_maps, rcu);
 2730
 2731	/* free map if not active */
 2732	if (!active)
 2733		reset_xps_maps(dev, dev_maps, type);
 2734
 2735out_no_maps:
 2736	mutex_unlock(&xps_map_mutex);
 2737
 2738	return 0;
 2739error:
 2740	/* remove any maps that we added */
 2741	for (j = 0; j < nr_ids; j++) {
 2742		for (i = num_tc, tci = j * num_tc; i--; tci++) {
 2743			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2744			map = copy ?
 2745			      xmap_dereference(dev_maps->attr_map[tci]) :
 2746			      NULL;
 2747			if (new_map && new_map != map)
 2748				kfree(new_map);
 2749		}
 2750	}
 2751
 2752	mutex_unlock(&xps_map_mutex);
 2753
 2754	kfree(new_dev_maps);
 2755	return -ENOMEM;
 2756}
 2757EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
 2758
 2759int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
 2760			u16 index)
 2761{
 2762	int ret;
 2763
 2764	cpus_read_lock();
 2765	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
 2766	cpus_read_unlock();
 2767
 2768	return ret;
 2769}
 2770EXPORT_SYMBOL(netif_set_xps_queue);
 2771
 2772#endif
 2773static void netdev_unbind_all_sb_channels(struct net_device *dev)
 2774{
 2775	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2776
 2777	/* Unbind any subordinate channels */
 2778	while (txq-- != &dev->_tx[0]) {
 2779		if (txq->sb_dev)
 2780			netdev_unbind_sb_channel(dev, txq->sb_dev);
 2781	}
 2782}
 2783
 2784void netdev_reset_tc(struct net_device *dev)
 2785{
 2786#ifdef CONFIG_XPS
 2787	netif_reset_xps_queues_gt(dev, 0);
 2788#endif
 2789	netdev_unbind_all_sb_channels(dev);
 2790
 2791	/* Reset TC configuration of device */
 2792	dev->num_tc = 0;
 2793	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
 2794	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
 2795}
 2796EXPORT_SYMBOL(netdev_reset_tc);
 2797
 2798int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
 2799{
 2800	if (tc >= dev->num_tc)
 2801		return -EINVAL;
 2802
 2803#ifdef CONFIG_XPS
 2804	netif_reset_xps_queues(dev, offset, count);
 2805#endif
 2806	dev->tc_to_txq[tc].count = count;
 2807	dev->tc_to_txq[tc].offset = offset;
 2808	return 0;
 2809}
 2810EXPORT_SYMBOL(netdev_set_tc_queue);
 2811
 2812int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
 2813{
 2814	if (num_tc > TC_MAX_QUEUE)
 2815		return -EINVAL;
 2816
 2817#ifdef CONFIG_XPS
 2818	netif_reset_xps_queues_gt(dev, 0);
 2819#endif
 2820	netdev_unbind_all_sb_channels(dev);
 2821
 2822	dev->num_tc = num_tc;
 2823	return 0;
 2824}
 2825EXPORT_SYMBOL(netdev_set_num_tc);
 2826
 2827void netdev_unbind_sb_channel(struct net_device *dev,
 2828			      struct net_device *sb_dev)
 2829{
 2830	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2831
 2832#ifdef CONFIG_XPS
 2833	netif_reset_xps_queues_gt(sb_dev, 0);
 2834#endif
 2835	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
 2836	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
 2837
 2838	while (txq-- != &dev->_tx[0]) {
 2839		if (txq->sb_dev == sb_dev)
 2840			txq->sb_dev = NULL;
 2841	}
 2842}
 2843EXPORT_SYMBOL(netdev_unbind_sb_channel);
 2844
 2845int netdev_bind_sb_channel_queue(struct net_device *dev,
 2846				 struct net_device *sb_dev,
 2847				 u8 tc, u16 count, u16 offset)
 2848{
 2849	/* Make certain the sb_dev and dev are already configured */
 2850	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
 2851		return -EINVAL;
 2852
 2853	/* We cannot hand out queues we don't have */
 2854	if ((offset + count) > dev->real_num_tx_queues)
 2855		return -EINVAL;
 2856
 2857	/* Record the mapping */
 2858	sb_dev->tc_to_txq[tc].count = count;
 2859	sb_dev->tc_to_txq[tc].offset = offset;
 2860
 2861	/* Provide a way for Tx queue to find the tc_to_txq map or
 2862	 * XPS map for itself.
 2863	 */
 2864	while (count--)
 2865		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
 2866
 2867	return 0;
 2868}
 2869EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
 2870
 2871int netdev_set_sb_channel(struct net_device *dev, u16 channel)
 2872{
 2873	/* Do not use a multiqueue device to represent a subordinate channel */
 2874	if (netif_is_multiqueue(dev))
 2875		return -ENODEV;
 2876
 2877	/* We allow channels 1 - 32767 to be used for subordinate channels.
 2878	 * Channel 0 is meant to be "native" mode and used only to represent
 2879	 * the main root device. We allow writing 0 to reset the device back
 2880	 * to normal mode after being used as a subordinate channel.
 2881	 */
 2882	if (channel > S16_MAX)
 2883		return -EINVAL;
 2884
 2885	dev->num_tc = -channel;
 2886
 2887	return 0;
 2888}
 2889EXPORT_SYMBOL(netdev_set_sb_channel);
 2890
 2891/*
 2892 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
 2893 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
 2894 */
 2895int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
 2896{
 2897	bool disabling;
 2898	int rc;
 2899
 2900	disabling = txq < dev->real_num_tx_queues;
 2901
 2902	if (txq < 1 || txq > dev->num_tx_queues)
 2903		return -EINVAL;
 2904
 2905	if (dev->reg_state == NETREG_REGISTERED ||
 2906	    dev->reg_state == NETREG_UNREGISTERING) {
 2907		ASSERT_RTNL();
 2908
 2909		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
 2910						  txq);
 2911		if (rc)
 2912			return rc;
 2913
 2914		if (dev->num_tc)
 2915			netif_setup_tc(dev, txq);
 2916
 2917		dev_qdisc_change_real_num_tx(dev, txq);
 2918
 2919		dev->real_num_tx_queues = txq;
 2920
 2921		if (disabling) {
 2922			synchronize_net();
 2923			qdisc_reset_all_tx_gt(dev, txq);
 2924#ifdef CONFIG_XPS
 2925			netif_reset_xps_queues_gt(dev, txq);
 2926#endif
 2927		}
 2928	} else {
 2929		dev->real_num_tx_queues = txq;
 2930	}
 2931
 
 2932	return 0;
 2933}
 2934EXPORT_SYMBOL(netif_set_real_num_tx_queues);
 2935
 2936#ifdef CONFIG_SYSFS
 2937/**
 2938 *	netif_set_real_num_rx_queues - set actual number of RX queues used
 2939 *	@dev: Network device
 2940 *	@rxq: Actual number of RX queues
 2941 *
 2942 *	This must be called either with the rtnl_lock held or before
 2943 *	registration of the net device.  Returns 0 on success, or a
 2944 *	negative error code.  If called before registration, it always
 2945 *	succeeds.
 2946 */
 2947int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
 2948{
 2949	int rc;
 2950
 2951	if (rxq < 1 || rxq > dev->num_rx_queues)
 2952		return -EINVAL;
 2953
 2954	if (dev->reg_state == NETREG_REGISTERED) {
 2955		ASSERT_RTNL();
 2956
 2957		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
 2958						  rxq);
 2959		if (rc)
 2960			return rc;
 2961	}
 2962
 2963	dev->real_num_rx_queues = rxq;
 2964	return 0;
 2965}
 2966EXPORT_SYMBOL(netif_set_real_num_rx_queues);
 2967#endif
 2968
 2969/**
 2970 *	netif_set_real_num_queues - set actual number of RX and TX queues used
 2971 *	@dev: Network device
 2972 *	@txq: Actual number of TX queues
 2973 *	@rxq: Actual number of RX queues
 2974 *
 2975 *	Set the real number of both TX and RX queues.
 2976 *	Does nothing if the number of queues is already correct.
 2977 */
 2978int netif_set_real_num_queues(struct net_device *dev,
 2979			      unsigned int txq, unsigned int rxq)
 2980{
 2981	unsigned int old_rxq = dev->real_num_rx_queues;
 2982	int err;
 2983
 2984	if (txq < 1 || txq > dev->num_tx_queues ||
 2985	    rxq < 1 || rxq > dev->num_rx_queues)
 2986		return -EINVAL;
 2987
 2988	/* Start from increases, so the error path only does decreases -
 2989	 * decreases can't fail.
 2990	 */
 2991	if (rxq > dev->real_num_rx_queues) {
 2992		err = netif_set_real_num_rx_queues(dev, rxq);
 2993		if (err)
 2994			return err;
 2995	}
 2996	if (txq > dev->real_num_tx_queues) {
 2997		err = netif_set_real_num_tx_queues(dev, txq);
 2998		if (err)
 2999			goto undo_rx;
 3000	}
 3001	if (rxq < dev->real_num_rx_queues)
 3002		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
 3003	if (txq < dev->real_num_tx_queues)
 3004		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
 3005
 3006	return 0;
 3007undo_rx:
 3008	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
 3009	return err;
 3010}
 3011EXPORT_SYMBOL(netif_set_real_num_queues);
 3012
 3013/**
 3014 * netif_set_tso_max_size() - set the max size of TSO frames supported
 3015 * @dev:	netdev to update
 3016 * @size:	max skb->len of a TSO frame
 3017 *
 3018 * Set the limit on the size of TSO super-frames the device can handle.
 3019 * Unless explicitly set the stack will assume the value of
 3020 * %GSO_LEGACY_MAX_SIZE.
 3021 */
 3022void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
 3023{
 3024	dev->tso_max_size = min(GSO_MAX_SIZE, size);
 3025	if (size < READ_ONCE(dev->gso_max_size))
 3026		netif_set_gso_max_size(dev, size);
 3027	if (size < READ_ONCE(dev->gso_ipv4_max_size))
 3028		netif_set_gso_ipv4_max_size(dev, size);
 3029}
 3030EXPORT_SYMBOL(netif_set_tso_max_size);
 3031
 3032/**
 3033 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
 3034 * @dev:	netdev to update
 3035 * @segs:	max number of TCP segments
 3036 *
 3037 * Set the limit on the number of TCP segments the device can generate from
 3038 * a single TSO super-frame.
 3039 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
 3040 */
 3041void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
 3042{
 3043	dev->tso_max_segs = segs;
 3044	if (segs < READ_ONCE(dev->gso_max_segs))
 3045		netif_set_gso_max_segs(dev, segs);
 3046}
 3047EXPORT_SYMBOL(netif_set_tso_max_segs);
 3048
 3049/**
 3050 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
 3051 * @to:		netdev to update
 3052 * @from:	netdev from which to copy the limits
 3053 */
 3054void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
 3055{
 3056	netif_set_tso_max_size(to, from->tso_max_size);
 3057	netif_set_tso_max_segs(to, from->tso_max_segs);
 3058}
 3059EXPORT_SYMBOL(netif_inherit_tso_max);
 3060
 3061/**
 3062 * netif_get_num_default_rss_queues - default number of RSS queues
 3063 *
 3064 * Default value is the number of physical cores if there are only 1 or 2, or
 3065 * divided by 2 if there are more.
 3066 */
 3067int netif_get_num_default_rss_queues(void)
 3068{
 3069	cpumask_var_t cpus;
 3070	int cpu, count = 0;
 3071
 3072	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
 3073		return 1;
 3074
 3075	cpumask_copy(cpus, cpu_online_mask);
 3076	for_each_cpu(cpu, cpus) {
 3077		++count;
 3078		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
 3079	}
 3080	free_cpumask_var(cpus);
 3081
 3082	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
 3083}
 3084EXPORT_SYMBOL(netif_get_num_default_rss_queues);
 3085
 3086static void __netif_reschedule(struct Qdisc *q)
 3087{
 3088	struct softnet_data *sd;
 3089	unsigned long flags;
 3090
 3091	local_irq_save(flags);
 3092	sd = this_cpu_ptr(&softnet_data);
 3093	q->next_sched = NULL;
 3094	*sd->output_queue_tailp = q;
 3095	sd->output_queue_tailp = &q->next_sched;
 3096	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3097	local_irq_restore(flags);
 3098}
 3099
 3100void __netif_schedule(struct Qdisc *q)
 3101{
 3102	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
 3103		__netif_reschedule(q);
 3104}
 3105EXPORT_SYMBOL(__netif_schedule);
 3106
 3107struct dev_kfree_skb_cb {
 3108	enum skb_drop_reason reason;
 3109};
 3110
 3111static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
 3112{
 3113	return (struct dev_kfree_skb_cb *)skb->cb;
 3114}
 
 3115
 3116void netif_schedule_queue(struct netdev_queue *txq)
 3117{
 3118	rcu_read_lock();
 3119	if (!netif_xmit_stopped(txq)) {
 3120		struct Qdisc *q = rcu_dereference(txq->qdisc);
 3121
 3122		__netif_schedule(q);
 3123	}
 3124	rcu_read_unlock();
 3125}
 3126EXPORT_SYMBOL(netif_schedule_queue);
 3127
 3128void netif_tx_wake_queue(struct netdev_queue *dev_queue)
 3129{
 3130	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
 3131		struct Qdisc *q;
 3132
 3133		rcu_read_lock();
 3134		q = rcu_dereference(dev_queue->qdisc);
 3135		__netif_schedule(q);
 3136		rcu_read_unlock();
 3137	}
 3138}
 3139EXPORT_SYMBOL(netif_tx_wake_queue);
 3140
 3141void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3142{
 3143	unsigned long flags;
 3144
 3145	if (unlikely(!skb))
 3146		return;
 3147
 3148	if (likely(refcount_read(&skb->users) == 1)) {
 3149		smp_rmb();
 3150		refcount_set(&skb->users, 0);
 3151	} else if (likely(!refcount_dec_and_test(&skb->users))) {
 3152		return;
 3153	}
 3154	get_kfree_skb_cb(skb)->reason = reason;
 3155	local_irq_save(flags);
 3156	skb->next = __this_cpu_read(softnet_data.completion_queue);
 3157	__this_cpu_write(softnet_data.completion_queue, skb);
 3158	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3159	local_irq_restore(flags);
 3160}
 3161EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
 3162
 3163void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3164{
 3165	if (in_hardirq() || irqs_disabled())
 3166		dev_kfree_skb_irq_reason(skb, reason);
 3167	else
 3168		kfree_skb_reason(skb, reason);
 3169}
 3170EXPORT_SYMBOL(dev_kfree_skb_any_reason);
 3171
 3172
 3173/**
 3174 * netif_device_detach - mark device as removed
 3175 * @dev: network device
 3176 *
 3177 * Mark device as removed from system and therefore no longer available.
 3178 */
 3179void netif_device_detach(struct net_device *dev)
 3180{
 3181	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3182	    netif_running(dev)) {
 3183		netif_tx_stop_all_queues(dev);
 3184	}
 3185}
 3186EXPORT_SYMBOL(netif_device_detach);
 3187
 3188/**
 3189 * netif_device_attach - mark device as attached
 3190 * @dev: network device
 3191 *
 3192 * Mark device as attached from system and restart if needed.
 3193 */
 3194void netif_device_attach(struct net_device *dev)
 3195{
 3196	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3197	    netif_running(dev)) {
 3198		netif_tx_wake_all_queues(dev);
 3199		__netdev_watchdog_up(dev);
 3200	}
 3201}
 3202EXPORT_SYMBOL(netif_device_attach);
 3203
 3204/*
 3205 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
 3206 * to be used as a distribution range.
 3207 */
 3208static u16 skb_tx_hash(const struct net_device *dev,
 3209		       const struct net_device *sb_dev,
 3210		       struct sk_buff *skb)
 3211{
 3212	u32 hash;
 3213	u16 qoffset = 0;
 3214	u16 qcount = dev->real_num_tx_queues;
 3215
 3216	if (dev->num_tc) {
 3217		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
 3218
 3219		qoffset = sb_dev->tc_to_txq[tc].offset;
 3220		qcount = sb_dev->tc_to_txq[tc].count;
 3221		if (unlikely(!qcount)) {
 3222			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
 3223					     sb_dev->name, qoffset, tc);
 3224			qoffset = 0;
 3225			qcount = dev->real_num_tx_queues;
 3226		}
 3227	}
 3228
 3229	if (skb_rx_queue_recorded(skb)) {
 3230		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
 3231		hash = skb_get_rx_queue(skb);
 3232		if (hash >= qoffset)
 3233			hash -= qoffset;
 3234		while (unlikely(hash >= qcount))
 3235			hash -= qcount;
 3236		return hash + qoffset;
 3237	}
 3238
 3239	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
 3240}
 3241
 3242void skb_warn_bad_offload(const struct sk_buff *skb)
 3243{
 3244	static const netdev_features_t null_features;
 3245	struct net_device *dev = skb->dev;
 3246	const char *name = "";
 3247
 3248	if (!net_ratelimit())
 3249		return;
 3250
 3251	if (dev) {
 3252		if (dev->dev.parent)
 3253			name = dev_driver_string(dev->dev.parent);
 3254		else
 3255			name = netdev_name(dev);
 3256	}
 3257	skb_dump(KERN_WARNING, skb, false);
 3258	WARN(1, "%s: caps=(%pNF, %pNF)\n",
 3259	     name, dev ? &dev->features : &null_features,
 3260	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
 3261}
 3262
 3263/*
 3264 * Invalidate hardware checksum when packet is to be mangled, and
 3265 * complete checksum manually on outgoing path.
 3266 */
 3267int skb_checksum_help(struct sk_buff *skb)
 3268{
 3269	__wsum csum;
 3270	int ret = 0, offset;
 3271
 3272	if (skb->ip_summed == CHECKSUM_COMPLETE)
 3273		goto out_set_summed;
 3274
 3275	if (unlikely(skb_is_gso(skb))) {
 3276		skb_warn_bad_offload(skb);
 3277		return -EINVAL;
 3278	}
 3279
 3280	/* Before computing a checksum, we should make sure no frag could
 3281	 * be modified by an external entity : checksum could be wrong.
 3282	 */
 3283	if (skb_has_shared_frag(skb)) {
 3284		ret = __skb_linearize(skb);
 3285		if (ret)
 3286			goto out;
 3287	}
 3288
 3289	offset = skb_checksum_start_offset(skb);
 3290	ret = -EINVAL;
 3291	if (unlikely(offset >= skb_headlen(skb))) {
 3292		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3293		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
 3294			  offset, skb_headlen(skb));
 3295		goto out;
 3296	}
 3297	csum = skb_checksum(skb, offset, skb->len - offset, 0);
 3298
 3299	offset += skb->csum_offset;
 3300	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
 3301		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3302		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
 3303			  offset + sizeof(__sum16), skb_headlen(skb));
 3304		goto out;
 
 
 3305	}
 3306	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
 3307	if (ret)
 3308		goto out;
 3309
 3310	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
 3311out_set_summed:
 3312	skb->ip_summed = CHECKSUM_NONE;
 3313out:
 3314	return ret;
 3315}
 3316EXPORT_SYMBOL(skb_checksum_help);
 3317
 3318int skb_crc32c_csum_help(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 3319{
 3320	__le32 crc32c_csum;
 3321	int ret = 0, offset, start;
 
 
 
 3322
 3323	if (skb->ip_summed != CHECKSUM_PARTIAL)
 3324		goto out;
 3325
 3326	if (unlikely(skb_is_gso(skb)))
 3327		goto out;
 3328
 3329	/* Before computing a checksum, we should make sure no frag could
 3330	 * be modified by an external entity : checksum could be wrong.
 3331	 */
 3332	if (unlikely(skb_has_shared_frag(skb))) {
 3333		ret = __skb_linearize(skb);
 3334		if (ret)
 3335			goto out;
 3336	}
 3337	start = skb_checksum_start_offset(skb);
 3338	offset = start + offsetof(struct sctphdr, checksum);
 3339	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
 3340		ret = -EINVAL;
 3341		goto out;
 3342	}
 3343
 3344	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
 3345	if (ret)
 3346		goto out;
 3347
 3348	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
 3349						  skb->len - start, ~(__u32)0,
 3350						  crc32c_csum_stub));
 3351	*(__le32 *)(skb->data + offset) = crc32c_csum;
 3352	skb_reset_csum_not_inet(skb);
 3353out:
 3354	return ret;
 3355}
 3356
 3357__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
 3358{
 3359	__be16 type = skb->protocol;
 
 3360
 3361	/* Tunnel gso handlers can set protocol to ethernet. */
 3362	if (type == htons(ETH_P_TEB)) {
 3363		struct ethhdr *eth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3364
 3365		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
 3366			return 0;
 3367
 3368		eth = (struct ethhdr *)skb->data;
 3369		type = eth->h_proto;
 3370	}
 3371
 3372	return vlan_get_protocol_and_depth(skb, type, depth);
 3373}
 3374
 3375
 3376/* Take action when hardware reception checksum errors are detected. */
 3377#ifdef CONFIG_BUG
 3378static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 3379{
 3380	netdev_err(dev, "hw csum failure\n");
 3381	skb_dump(KERN_ERR, skb, true);
 3382	dump_stack();
 3383}
 3384
 3385void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 3386{
 3387	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
 3388}
 3389EXPORT_SYMBOL(netdev_rx_csum_fault);
 3390#endif
 3391
 3392/* XXX: check that highmem exists at all on the given machine. */
 
 
 
 
 3393static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
 3394{
 3395#ifdef CONFIG_HIGHMEM
 3396	int i;
 3397
 3398	if (!(dev->features & NETIF_F_HIGHDMA)) {
 3399		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 3400			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
 
 
 
 
 
 
 3401
 3402			if (PageHighMem(skb_frag_page(frag)))
 
 
 
 
 
 3403				return 1;
 3404		}
 3405	}
 3406#endif
 3407	return 0;
 3408}
 3409
 3410/* If MPLS offload request, verify we are testing hardware MPLS features
 3411 * instead of standard features for the netdev.
 3412 */
 3413#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
 3414static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3415					   netdev_features_t features,
 3416					   __be16 type)
 3417{
 3418	if (eth_p_mpls(type))
 3419		features &= skb->dev->mpls_features;
 3420
 3421	return features;
 3422}
 3423#else
 3424static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3425					   netdev_features_t features,
 3426					   __be16 type)
 3427{
 3428	return features;
 3429}
 3430#endif
 3431
 3432static netdev_features_t harmonize_features(struct sk_buff *skb,
 3433	netdev_features_t features)
 3434{
 3435	__be16 type;
 3436
 3437	type = skb_network_protocol(skb, NULL);
 3438	features = net_mpls_features(skb, features, type);
 3439
 3440	if (skb->ip_summed != CHECKSUM_NONE &&
 3441	    !can_checksum_protocol(features, type)) {
 3442		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
 3443	}
 3444	if (illegal_highdma(skb->dev, skb))
 3445		features &= ~NETIF_F_SG;
 3446
 3447	return features;
 
 
 3448}
 3449
 3450netdev_features_t passthru_features_check(struct sk_buff *skb,
 3451					  struct net_device *dev,
 3452					  netdev_features_t features)
 
 
 
 
 
 
 3453{
 3454	return features;
 3455}
 3456EXPORT_SYMBOL(passthru_features_check);
 3457
 3458static netdev_features_t dflt_features_check(struct sk_buff *skb,
 3459					     struct net_device *dev,
 3460					     netdev_features_t features)
 3461{
 3462	return vlan_features_check(skb, features);
 3463}
 3464
 3465static netdev_features_t gso_features_check(const struct sk_buff *skb,
 3466					    struct net_device *dev,
 3467					    netdev_features_t features)
 3468{
 3469	u16 gso_segs = skb_shinfo(skb)->gso_segs;
 3470
 3471	if (gso_segs > READ_ONCE(dev->gso_max_segs))
 3472		return features & ~NETIF_F_GSO_MASK;
 3473
 3474	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
 3475		return features & ~NETIF_F_GSO_MASK;
 
 3476
 3477	if (!skb_shinfo(skb)->gso_type) {
 3478		skb_warn_bad_offload(skb);
 3479		return features & ~NETIF_F_GSO_MASK;
 3480	}
 3481
 3482	/* Support for GSO partial features requires software
 3483	 * intervention before we can actually process the packets
 3484	 * so we need to strip support for any partial features now
 3485	 * and we can pull them back in after we have partially
 3486	 * segmented the frame.
 3487	 */
 3488	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
 3489		features &= ~dev->gso_partial_features;
 
 
 3490
 3491	/* Make sure to clear the IPv4 ID mangling feature if the
 3492	 * IPv4 header has the potential to be fragmented.
 3493	 */
 3494	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
 3495		struct iphdr *iph = skb->encapsulation ?
 3496				    inner_ip_hdr(skb) : ip_hdr(skb);
 3497
 3498		if (!(iph->frag_off & htons(IP_DF)))
 3499			features &= ~NETIF_F_TSO_MANGLEID;
 3500	}
 3501
 3502	return features;
 3503}
 3504
 3505netdev_features_t netif_skb_features(struct sk_buff *skb)
 3506{
 3507	struct net_device *dev = skb->dev;
 3508	netdev_features_t features = dev->features;
 
 
 
 3509
 3510	if (skb_is_gso(skb))
 3511		features = gso_features_check(skb, dev, features);
 
 
 
 
 3512
 3513	/* If encapsulation offload request, verify we are testing
 3514	 * hardware encapsulation features instead of standard
 3515	 * features for the netdev
 3516	 */
 3517	if (skb->encapsulation)
 3518		features &= dev->hw_enc_features;
 3519
 3520	if (skb_vlan_tagged(skb))
 3521		features = netdev_intersect_features(features,
 3522						     dev->vlan_features |
 3523						     NETIF_F_HW_VLAN_CTAG_TX |
 3524						     NETIF_F_HW_VLAN_STAG_TX);
 3525
 3526	if (dev->netdev_ops->ndo_features_check)
 3527		features &= dev->netdev_ops->ndo_features_check(skb, dev,
 3528								features);
 3529	else
 3530		features &= dflt_features_check(skb, dev, features);
 3531
 3532	return harmonize_features(skb, features);
 
 
 
 
 
 
 3533}
 3534EXPORT_SYMBOL(netif_skb_features);
 3535
 3536static int xmit_one(struct sk_buff *skb, struct net_device *dev,
 3537		    struct netdev_queue *txq, bool more)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3538{
 3539	unsigned int len;
 3540	int rc;
 
 3541
 3542	if (dev_nit_active(dev))
 3543		dev_queue_xmit_nit(skb, dev);
 3544
 3545	len = skb->len;
 3546	trace_net_dev_start_xmit(skb, dev);
 3547	rc = netdev_start_xmit(skb, dev, txq, more);
 3548	trace_net_dev_xmit(skb, rc, dev, len);
 
 
 3549
 3550	return rc;
 3551}
 3552
 3553struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
 3554				    struct netdev_queue *txq, int *ret)
 3555{
 3556	struct sk_buff *skb = first;
 3557	int rc = NETDEV_TX_OK;
 3558
 3559	while (skb) {
 3560		struct sk_buff *next = skb->next;
 
 
 
 3561
 3562		skb_mark_not_on_list(skb);
 3563		rc = xmit_one(skb, dev, txq, next != NULL);
 3564		if (unlikely(!dev_xmit_complete(rc))) {
 3565			skb->next = next;
 3566			goto out;
 3567		}
 3568
 3569		skb = next;
 3570		if (netif_tx_queue_stopped(txq) && skb) {
 3571			rc = NETDEV_TX_BUSY;
 3572			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3573		}
 
 
 
 
 
 
 
 3574	}
 3575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3576out:
 3577	*ret = rc;
 3578	return skb;
 3579}
 3580
 3581static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
 3582					  netdev_features_t features)
 3583{
 3584	if (skb_vlan_tag_present(skb) &&
 3585	    !vlan_hw_offload_capable(features, skb->vlan_proto))
 3586		skb = __vlan_hwaccel_push_inside(skb);
 3587	return skb;
 3588}
 3589
 3590int skb_csum_hwoffload_help(struct sk_buff *skb,
 3591			    const netdev_features_t features)
 
 
 
 
 3592{
 3593	if (unlikely(skb_csum_is_sctp(skb)))
 3594		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
 3595			skb_crc32c_csum_help(skb);
 3596
 3597	if (features & NETIF_F_HW_CSUM)
 3598		return 0;
 
 
 
 
 3599
 3600	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
 3601		switch (skb->csum_offset) {
 3602		case offsetof(struct tcphdr, check):
 3603		case offsetof(struct udphdr, check):
 3604			return 0;
 3605		}
 3606	}
 3607
 3608	return skb_checksum_help(skb);
 
 
 
 
 
 
 3609}
 3610EXPORT_SYMBOL(skb_csum_hwoffload_help);
 3611
 3612static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
 3613{
 3614	netdev_features_t features;
 3615
 3616	features = netif_skb_features(skb);
 3617	skb = validate_xmit_vlan(skb, features);
 3618	if (unlikely(!skb))
 3619		goto out_null;
 3620
 3621	skb = sk_validate_xmit_skb(skb, dev);
 3622	if (unlikely(!skb))
 3623		goto out_null;
 3624
 3625	if (netif_needs_gso(skb, features)) {
 3626		struct sk_buff *segs;
 3627
 3628		segs = skb_gso_segment(skb, features);
 3629		if (IS_ERR(segs)) {
 3630			goto out_kfree_skb;
 3631		} else if (segs) {
 3632			consume_skb(skb);
 3633			skb = segs;
 3634		}
 3635	} else {
 3636		if (skb_needs_linearize(skb, features) &&
 3637		    __skb_linearize(skb))
 3638			goto out_kfree_skb;
 3639
 3640		/* If packet is not checksummed and device does not
 3641		 * support checksumming for this protocol, complete
 3642		 * checksumming here.
 3643		 */
 3644		if (skb->ip_summed == CHECKSUM_PARTIAL) {
 3645			if (skb->encapsulation)
 3646				skb_set_inner_transport_header(skb,
 3647							       skb_checksum_start_offset(skb));
 3648			else
 3649				skb_set_transport_header(skb,
 3650							 skb_checksum_start_offset(skb));
 3651			if (skb_csum_hwoffload_help(skb, features))
 3652				goto out_kfree_skb;
 3653		}
 3654	}
 3655
 3656	skb = validate_xmit_xfrm(skb, features, again);
 3657
 3658	return skb;
 3659
 3660out_kfree_skb:
 3661	kfree_skb(skb);
 3662out_null:
 3663	dev_core_stats_tx_dropped_inc(dev);
 3664	return NULL;
 3665}
 3666
 3667struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
 3668{
 3669	struct sk_buff *next, *head = NULL, *tail;
 
 
 
 3670
 3671	for (; skb != NULL; skb = next) {
 3672		next = skb->next;
 3673		skb_mark_not_on_list(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3674
 3675		/* in case skb wont be segmented, point to itself */
 3676		skb->prev = skb;
 3677
 3678		skb = validate_xmit_skb(skb, dev, again);
 3679		if (!skb)
 3680			continue;
 3681
 3682		if (!head)
 3683			head = skb;
 3684		else
 3685			tail->next = skb;
 3686		/* If skb was segmented, skb->prev points to
 3687		 * the last segment. If not, it still contains skb.
 3688		 */
 3689		tail = skb->prev;
 3690	}
 3691	return head;
 3692}
 3693EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
 3694
 3695static void qdisc_pkt_len_init(struct sk_buff *skb)
 
 3696{
 3697	const struct skb_shared_info *shinfo = skb_shinfo(skb);
 
 3698
 3699	qdisc_skb_cb(skb)->pkt_len = skb->len;
 
 
 
 
 
 
 
 3700
 3701	/* To get more precise estimation of bytes sent on wire,
 3702	 * we add to pkt_len the headers size of all segments
 3703	 */
 3704	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
 3705		u16 gso_segs = shinfo->gso_segs;
 3706		unsigned int hdr_len;
 3707
 3708		/* mac layer + network layer */
 3709		hdr_len = skb_transport_offset(skb);
 3710
 3711		/* + transport layer */
 3712		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
 3713			const struct tcphdr *th;
 3714			struct tcphdr _tcphdr;
 3715
 3716			th = skb_header_pointer(skb, hdr_len,
 3717						sizeof(_tcphdr), &_tcphdr);
 3718			if (likely(th))
 3719				hdr_len += __tcp_hdrlen(th);
 3720		} else {
 3721			struct udphdr _udphdr;
 3722
 3723			if (skb_header_pointer(skb, hdr_len,
 3724					       sizeof(_udphdr), &_udphdr))
 3725				hdr_len += sizeof(struct udphdr);
 3726		}
 3727
 3728		if (shinfo->gso_type & SKB_GSO_DODGY)
 3729			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
 3730						shinfo->gso_size);
 3731
 3732		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
 3733	}
 3734}
 3735
 3736static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
 3737			     struct sk_buff **to_free,
 3738			     struct netdev_queue *txq)
 3739{
 3740	int rc;
 3741
 3742	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
 3743	if (rc == NET_XMIT_SUCCESS)
 3744		trace_qdisc_enqueue(q, txq, skb);
 3745	return rc;
 3746}
 3747
 3748static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
 3749				 struct net_device *dev,
 3750				 struct netdev_queue *txq)
 3751{
 3752	spinlock_t *root_lock = qdisc_lock(q);
 3753	struct sk_buff *to_free = NULL;
 3754	bool contended;
 3755	int rc;
 3756
 
 3757	qdisc_calculate_pkt_len(skb, q);
 3758
 3759	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
 3760
 3761	if (q->flags & TCQ_F_NOLOCK) {
 3762		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
 3763		    qdisc_run_begin(q)) {
 3764			/* Retest nolock_qdisc_is_empty() within the protection
 3765			 * of q->seqlock to protect from racing with requeuing.
 3766			 */
 3767			if (unlikely(!nolock_qdisc_is_empty(q))) {
 3768				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3769				__qdisc_run(q);
 3770				qdisc_run_end(q);
 3771
 3772				goto no_lock_out;
 3773			}
 3774
 3775			qdisc_bstats_cpu_update(q, skb);
 3776			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
 3777			    !nolock_qdisc_is_empty(q))
 3778				__qdisc_run(q);
 3779
 3780			qdisc_run_end(q);
 3781			return NET_XMIT_SUCCESS;
 3782		}
 3783
 3784		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3785		qdisc_run(q);
 3786
 3787no_lock_out:
 3788		if (unlikely(to_free))
 3789			kfree_skb_list_reason(to_free,
 3790					      tcf_get_drop_reason(to_free));
 3791		return rc;
 3792	}
 3793
 3794	/*
 3795	 * Heuristic to force contended enqueues to serialize on a
 3796	 * separate lock before trying to get qdisc main lock.
 3797	 * This permits qdisc->running owner to get the lock more
 3798	 * often and dequeue packets faster.
 3799	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
 3800	 * and then other tasks will only enqueue packets. The packets will be
 3801	 * sent after the qdisc owner is scheduled again. To prevent this
 3802	 * scenario the task always serialize on the lock.
 3803	 */
 3804	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
 3805	if (unlikely(contended))
 3806		spin_lock(&q->busylock);
 3807
 3808	spin_lock(root_lock);
 3809	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
 3810		__qdisc_drop(skb, &to_free);
 3811		rc = NET_XMIT_DROP;
 3812	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
 3813		   qdisc_run_begin(q)) {
 3814		/*
 3815		 * This is a work-conserving queue; there are no old skbs
 3816		 * waiting to be sent out; and the qdisc is not running -
 3817		 * xmit the skb directly.
 3818		 */
 
 
 3819
 3820		qdisc_bstats_update(q, skb);
 3821
 3822		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
 3823			if (unlikely(contended)) {
 3824				spin_unlock(&q->busylock);
 3825				contended = false;
 3826			}
 3827			__qdisc_run(q);
 3828		}
 
 3829
 3830		qdisc_run_end(q);
 3831		rc = NET_XMIT_SUCCESS;
 3832	} else {
 3833		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 
 3834		if (qdisc_run_begin(q)) {
 3835			if (unlikely(contended)) {
 3836				spin_unlock(&q->busylock);
 3837				contended = false;
 3838			}
 3839			__qdisc_run(q);
 3840			qdisc_run_end(q);
 3841		}
 3842	}
 3843	spin_unlock(root_lock);
 3844	if (unlikely(to_free))
 3845		kfree_skb_list_reason(to_free,
 3846				      tcf_get_drop_reason(to_free));
 3847	if (unlikely(contended))
 3848		spin_unlock(&q->busylock);
 3849	return rc;
 3850}
 3851
 3852#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 3853static void skb_update_prio(struct sk_buff *skb)
 3854{
 3855	const struct netprio_map *map;
 3856	const struct sock *sk;
 3857	unsigned int prioidx;
 3858
 3859	if (skb->priority)
 3860		return;
 3861	map = rcu_dereference_bh(skb->dev->priomap);
 3862	if (!map)
 3863		return;
 3864	sk = skb_to_full_sk(skb);
 3865	if (!sk)
 3866		return;
 3867
 3868	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
 3869
 3870	if (prioidx < map->priomap_len)
 3871		skb->priority = map->priomap[prioidx];
 3872}
 3873#else
 3874#define skb_update_prio(skb)
 3875#endif
 3876
 
 
 
 3877/**
 3878 *	dev_loopback_xmit - loop back @skb
 3879 *	@net: network namespace this loopback is happening in
 3880 *	@sk:  sk needed to be a netfilter okfn
 3881 *	@skb: buffer to transmit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3882 */
 3883int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
 3884{
 3885	skb_reset_mac_header(skb);
 3886	__skb_pull(skb, skb_network_offset(skb));
 3887	skb->pkt_type = PACKET_LOOPBACK;
 3888	if (skb->ip_summed == CHECKSUM_NONE)
 3889		skb->ip_summed = CHECKSUM_UNNECESSARY;
 3890	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
 3891	skb_dst_force(skb);
 3892	netif_rx(skb);
 3893	return 0;
 3894}
 3895EXPORT_SYMBOL(dev_loopback_xmit);
 3896
 3897#ifdef CONFIG_NET_EGRESS
 3898static struct netdev_queue *
 3899netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
 3900{
 3901	int qm = skb_get_queue_mapping(skb);
 3902
 3903	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
 3904}
 3905
 3906static bool netdev_xmit_txqueue_skipped(void)
 3907{
 3908	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
 3909}
 3910
 3911void netdev_xmit_skip_txqueue(bool skip)
 3912{
 3913	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
 3914}
 3915EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
 3916#endif /* CONFIG_NET_EGRESS */
 3917
 3918#ifdef CONFIG_NET_XGRESS
 3919static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
 3920		  enum skb_drop_reason *drop_reason)
 3921{
 3922	int ret = TC_ACT_UNSPEC;
 3923#ifdef CONFIG_NET_CLS_ACT
 3924	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
 3925	struct tcf_result res;
 3926
 3927	if (!miniq)
 3928		return ret;
 3929
 3930	tc_skb_cb(skb)->mru = 0;
 3931	tc_skb_cb(skb)->post_ct = false;
 3932	tcf_set_drop_reason(skb, *drop_reason);
 3933
 3934	mini_qdisc_bstats_cpu_update(miniq, skb);
 3935	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
 3936	/* Only tcf related quirks below. */
 3937	switch (ret) {
 3938	case TC_ACT_SHOT:
 3939		*drop_reason = tcf_get_drop_reason(skb);
 3940		mini_qdisc_qstats_cpu_drop(miniq);
 3941		break;
 3942	case TC_ACT_OK:
 3943	case TC_ACT_RECLASSIFY:
 3944		skb->tc_index = TC_H_MIN(res.classid);
 3945		break;
 3946	}
 3947#endif /* CONFIG_NET_CLS_ACT */
 3948	return ret;
 3949}
 3950
 3951static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
 3952
 3953void tcx_inc(void)
 3954{
 3955	static_branch_inc(&tcx_needed_key);
 3956}
 3957
 3958void tcx_dec(void)
 3959{
 3960	static_branch_dec(&tcx_needed_key);
 3961}
 3962
 3963static __always_inline enum tcx_action_base
 3964tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
 3965	const bool needs_mac)
 3966{
 3967	const struct bpf_mprog_fp *fp;
 3968	const struct bpf_prog *prog;
 3969	int ret = TCX_NEXT;
 3970
 3971	if (needs_mac)
 3972		__skb_push(skb, skb->mac_len);
 3973	bpf_mprog_foreach_prog(entry, fp, prog) {
 3974		bpf_compute_data_pointers(skb);
 3975		ret = bpf_prog_run(prog, skb);
 3976		if (ret != TCX_NEXT)
 3977			break;
 3978	}
 3979	if (needs_mac)
 3980		__skb_pull(skb, skb->mac_len);
 3981	return tcx_action_code(skb, ret);
 3982}
 3983
 3984static __always_inline struct sk_buff *
 3985sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 3986		   struct net_device *orig_dev, bool *another)
 3987{
 3988	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
 3989	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
 3990	int sch_ret;
 3991
 3992	if (!entry)
 3993		return skb;
 3994	if (*pt_prev) {
 3995		*ret = deliver_skb(skb, *pt_prev, orig_dev);
 3996		*pt_prev = NULL;
 3997	}
 3998
 3999	qdisc_skb_cb(skb)->pkt_len = skb->len;
 4000	tcx_set_ingress(skb, true);
 4001
 4002	if (static_branch_unlikely(&tcx_needed_key)) {
 4003		sch_ret = tcx_run(entry, skb, true);
 4004		if (sch_ret != TC_ACT_UNSPEC)
 4005			goto ingress_verdict;
 4006	}
 4007	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 4008ingress_verdict:
 4009	switch (sch_ret) {
 4010	case TC_ACT_REDIRECT:
 4011		/* skb_mac_header check was done by BPF, so we can safely
 4012		 * push the L2 header back before redirecting to another
 4013		 * netdev.
 4014		 */
 4015		__skb_push(skb, skb->mac_len);
 4016		if (skb_do_redirect(skb) == -EAGAIN) {
 4017			__skb_pull(skb, skb->mac_len);
 4018			*another = true;
 4019			break;
 4020		}
 4021		*ret = NET_RX_SUCCESS;
 4022		return NULL;
 4023	case TC_ACT_SHOT:
 4024		kfree_skb_reason(skb, drop_reason);
 4025		*ret = NET_RX_DROP;
 4026		return NULL;
 4027	/* used by tc_run */
 4028	case TC_ACT_STOLEN:
 4029	case TC_ACT_QUEUED:
 4030	case TC_ACT_TRAP:
 4031		consume_skb(skb);
 4032		fallthrough;
 4033	case TC_ACT_CONSUMED:
 4034		*ret = NET_RX_SUCCESS;
 4035		return NULL;
 4036	}
 4037
 4038	return skb;
 4039}
 4040
 4041static __always_inline struct sk_buff *
 4042sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4043{
 4044	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
 4045	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
 4046	int sch_ret;
 4047
 4048	if (!entry)
 4049		return skb;
 4050
 4051	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
 4052	 * already set by the caller.
 4053	 */
 4054	if (static_branch_unlikely(&tcx_needed_key)) {
 4055		sch_ret = tcx_run(entry, skb, false);
 4056		if (sch_ret != TC_ACT_UNSPEC)
 4057			goto egress_verdict;
 4058	}
 4059	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 4060egress_verdict:
 4061	switch (sch_ret) {
 4062	case TC_ACT_REDIRECT:
 4063		/* No need to push/pop skb's mac_header here on egress! */
 4064		skb_do_redirect(skb);
 4065		*ret = NET_XMIT_SUCCESS;
 4066		return NULL;
 4067	case TC_ACT_SHOT:
 4068		kfree_skb_reason(skb, drop_reason);
 4069		*ret = NET_XMIT_DROP;
 4070		return NULL;
 4071	/* used by tc_run */
 4072	case TC_ACT_STOLEN:
 4073	case TC_ACT_QUEUED:
 4074	case TC_ACT_TRAP:
 4075		consume_skb(skb);
 4076		fallthrough;
 4077	case TC_ACT_CONSUMED:
 4078		*ret = NET_XMIT_SUCCESS;
 4079		return NULL;
 4080	}
 4081
 4082	return skb;
 4083}
 4084#else
 4085static __always_inline struct sk_buff *
 4086sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 4087		   struct net_device *orig_dev, bool *another)
 4088{
 4089	return skb;
 4090}
 4091
 4092static __always_inline struct sk_buff *
 4093sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4094{
 4095	return skb;
 4096}
 4097#endif /* CONFIG_NET_XGRESS */
 4098
 4099#ifdef CONFIG_XPS
 4100static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
 4101			       struct xps_dev_maps *dev_maps, unsigned int tci)
 4102{
 4103	int tc = netdev_get_prio_tc_map(dev, skb->priority);
 4104	struct xps_map *map;
 4105	int queue_index = -1;
 4106
 4107	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
 4108		return queue_index;
 4109
 4110	tci *= dev_maps->num_tc;
 4111	tci += tc;
 4112
 4113	map = rcu_dereference(dev_maps->attr_map[tci]);
 4114	if (map) {
 4115		if (map->len == 1)
 4116			queue_index = map->queues[0];
 4117		else
 4118			queue_index = map->queues[reciprocal_scale(
 4119						skb_get_hash(skb), map->len)];
 4120		if (unlikely(queue_index >= dev->real_num_tx_queues))
 4121			queue_index = -1;
 4122	}
 4123	return queue_index;
 4124}
 4125#endif
 4126
 4127static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
 4128			 struct sk_buff *skb)
 4129{
 4130#ifdef CONFIG_XPS
 4131	struct xps_dev_maps *dev_maps;
 4132	struct sock *sk = skb->sk;
 4133	int queue_index = -1;
 4134
 4135	if (!static_key_false(&xps_needed))
 4136		return -1;
 4137
 4138	rcu_read_lock();
 4139	if (!static_key_false(&xps_rxqs_needed))
 4140		goto get_cpus_map;
 4141
 4142	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
 4143	if (dev_maps) {
 4144		int tci = sk_rx_queue_get(sk);
 4145
 4146		if (tci >= 0)
 4147			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4148							  tci);
 4149	}
 4150
 4151get_cpus_map:
 4152	if (queue_index < 0) {
 4153		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
 4154		if (dev_maps) {
 4155			unsigned int tci = skb->sender_cpu - 1;
 4156
 4157			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4158							  tci);
 4159		}
 4160	}
 4161	rcu_read_unlock();
 4162
 4163	return queue_index;
 4164#else
 4165	return -1;
 4166#endif
 4167}
 4168
 4169u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
 4170		     struct net_device *sb_dev)
 4171{
 4172	return 0;
 4173}
 4174EXPORT_SYMBOL(dev_pick_tx_zero);
 4175
 4176u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
 4177		       struct net_device *sb_dev)
 4178{
 4179	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
 4180}
 4181EXPORT_SYMBOL(dev_pick_tx_cpu_id);
 4182
 4183u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
 4184		     struct net_device *sb_dev)
 4185{
 4186	struct sock *sk = skb->sk;
 4187	int queue_index = sk_tx_queue_get(sk);
 4188
 4189	sb_dev = sb_dev ? : dev;
 4190
 4191	if (queue_index < 0 || skb->ooo_okay ||
 4192	    queue_index >= dev->real_num_tx_queues) {
 4193		int new_index = get_xps_queue(dev, sb_dev, skb);
 4194
 4195		if (new_index < 0)
 4196			new_index = skb_tx_hash(dev, sb_dev, skb);
 4197
 4198		if (queue_index != new_index && sk &&
 4199		    sk_fullsock(sk) &&
 4200		    rcu_access_pointer(sk->sk_dst_cache))
 4201			sk_tx_queue_set(sk, new_index);
 4202
 4203		queue_index = new_index;
 4204	}
 4205
 4206	return queue_index;
 4207}
 4208EXPORT_SYMBOL(netdev_pick_tx);
 4209
 4210struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
 4211					 struct sk_buff *skb,
 4212					 struct net_device *sb_dev)
 4213{
 4214	int queue_index = 0;
 4215
 4216#ifdef CONFIG_XPS
 4217	u32 sender_cpu = skb->sender_cpu - 1;
 4218
 4219	if (sender_cpu >= (u32)NR_CPUS)
 4220		skb->sender_cpu = raw_smp_processor_id() + 1;
 4221#endif
 4222
 4223	if (dev->real_num_tx_queues != 1) {
 4224		const struct net_device_ops *ops = dev->netdev_ops;
 4225
 4226		if (ops->ndo_select_queue)
 4227			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
 4228		else
 4229			queue_index = netdev_pick_tx(dev, skb, sb_dev);
 4230
 4231		queue_index = netdev_cap_txqueue(dev, queue_index);
 4232	}
 4233
 4234	skb_set_queue_mapping(skb, queue_index);
 4235	return netdev_get_tx_queue(dev, queue_index);
 4236}
 4237
 4238/**
 4239 * __dev_queue_xmit() - transmit a buffer
 4240 * @skb:	buffer to transmit
 4241 * @sb_dev:	suboordinate device used for L2 forwarding offload
 4242 *
 4243 * Queue a buffer for transmission to a network device. The caller must
 4244 * have set the device and priority and built the buffer before calling
 4245 * this function. The function can be called from an interrupt.
 4246 *
 4247 * When calling this method, interrupts MUST be enabled. This is because
 4248 * the BH enable code must have IRQs enabled so that it will not deadlock.
 4249 *
 4250 * Regardless of the return value, the skb is consumed, so it is currently
 4251 * difficult to retry a send to this method. (You can bump the ref count
 4252 * before sending to hold a reference for retry if you are careful.)
 4253 *
 4254 * Return:
 4255 * * 0				- buffer successfully transmitted
 4256 * * positive qdisc return code	- NET_XMIT_DROP etc.
 4257 * * negative errno		- other errors
 4258 */
 4259int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
 4260{
 4261	struct net_device *dev = skb->dev;
 4262	struct netdev_queue *txq = NULL;
 4263	struct Qdisc *q;
 4264	int rc = -ENOMEM;
 4265	bool again = false;
 4266
 4267	skb_reset_mac_header(skb);
 4268	skb_assert_len(skb);
 4269
 4270	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
 4271		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
 4272
 4273	/* Disable soft irqs for various locks below. Also
 4274	 * stops preemption for RCU.
 4275	 */
 4276	rcu_read_lock_bh();
 4277
 4278	skb_update_prio(skb);
 4279
 4280	qdisc_pkt_len_init(skb);
 4281	tcx_set_ingress(skb, false);
 4282#ifdef CONFIG_NET_EGRESS
 4283	if (static_branch_unlikely(&egress_needed_key)) {
 4284		if (nf_hook_egress_active()) {
 4285			skb = nf_hook_egress(skb, &rc, dev);
 4286			if (!skb)
 4287				goto out;
 4288		}
 4289
 4290		netdev_xmit_skip_txqueue(false);
 4291
 4292		nf_skip_egress(skb, true);
 4293		skb = sch_handle_egress(skb, &rc, dev);
 4294		if (!skb)
 4295			goto out;
 4296		nf_skip_egress(skb, false);
 4297
 4298		if (netdev_xmit_txqueue_skipped())
 4299			txq = netdev_tx_queue_mapping(dev, skb);
 4300	}
 4301#endif
 4302	/* If device/qdisc don't need skb->dst, release it right now while
 4303	 * its hot in this cpu cache.
 4304	 */
 4305	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
 4306		skb_dst_drop(skb);
 4307	else
 4308		skb_dst_force(skb);
 4309
 4310	if (!txq)
 4311		txq = netdev_core_pick_tx(dev, skb, sb_dev);
 4312
 4313	q = rcu_dereference_bh(txq->qdisc);
 4314
 4315	trace_net_dev_queue(skb);
 4316	if (q->enqueue) {
 4317		rc = __dev_xmit_skb(skb, q, dev, txq);
 4318		goto out;
 4319	}
 4320
 4321	/* The device has no queue. Common case for software devices:
 4322	 * loopback, all the sorts of tunnels...
 4323
 4324	 * Really, it is unlikely that netif_tx_lock protection is necessary
 4325	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
 4326	 * counters.)
 4327	 * However, it is possible, that they rely on protection
 4328	 * made by us here.
 4329
 4330	 * Check this and shot the lock. It is not prone from deadlocks.
 4331	 *Either shot noqueue qdisc, it is even simpler 8)
 4332	 */
 4333	if (dev->flags & IFF_UP) {
 4334		int cpu = smp_processor_id(); /* ok because BHs are off */
 4335
 4336		/* Other cpus might concurrently change txq->xmit_lock_owner
 4337		 * to -1 or to their cpu id, but not to our id.
 4338		 */
 4339		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
 4340			if (dev_xmit_recursion())
 4341				goto recursion_alert;
 4342
 4343			skb = validate_xmit_skb(skb, dev, &again);
 4344			if (!skb)
 4345				goto out;
 4346
 4347			HARD_TX_LOCK(dev, txq, cpu);
 4348
 4349			if (!netif_xmit_stopped(txq)) {
 4350				dev_xmit_recursion_inc();
 4351				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
 4352				dev_xmit_recursion_dec();
 4353				if (dev_xmit_complete(rc)) {
 4354					HARD_TX_UNLOCK(dev, txq);
 4355					goto out;
 4356				}
 4357			}
 4358			HARD_TX_UNLOCK(dev, txq);
 4359			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
 4360					     dev->name);
 4361		} else {
 4362			/* Recursion is detected! It is possible,
 4363			 * unfortunately
 4364			 */
 4365recursion_alert:
 4366			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
 4367					     dev->name);
 4368		}
 4369	}
 4370
 4371	rc = -ENETDOWN;
 4372	rcu_read_unlock_bh();
 4373
 4374	dev_core_stats_tx_dropped_inc(dev);
 4375	kfree_skb_list(skb);
 4376	return rc;
 4377out:
 4378	rcu_read_unlock_bh();
 4379	return rc;
 4380}
 4381EXPORT_SYMBOL(__dev_queue_xmit);
 4382
 4383int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
 4384{
 4385	struct net_device *dev = skb->dev;
 4386	struct sk_buff *orig_skb = skb;
 4387	struct netdev_queue *txq;
 4388	int ret = NETDEV_TX_BUSY;
 4389	bool again = false;
 4390
 4391	if (unlikely(!netif_running(dev) ||
 4392		     !netif_carrier_ok(dev)))
 4393		goto drop;
 4394
 4395	skb = validate_xmit_skb_list(skb, dev, &again);
 4396	if (skb != orig_skb)
 4397		goto drop;
 4398
 4399	skb_set_queue_mapping(skb, queue_id);
 4400	txq = skb_get_tx_queue(dev, skb);
 4401
 4402	local_bh_disable();
 4403
 4404	dev_xmit_recursion_inc();
 4405	HARD_TX_LOCK(dev, txq, smp_processor_id());
 4406	if (!netif_xmit_frozen_or_drv_stopped(txq))
 4407		ret = netdev_start_xmit(skb, dev, txq, false);
 4408	HARD_TX_UNLOCK(dev, txq);
 4409	dev_xmit_recursion_dec();
 4410
 4411	local_bh_enable();
 4412	return ret;
 4413drop:
 4414	dev_core_stats_tx_dropped_inc(dev);
 4415	kfree_skb_list(skb);
 4416	return NET_XMIT_DROP;
 4417}
 4418EXPORT_SYMBOL(__dev_direct_xmit);
 4419
 4420/*************************************************************************
 4421 *			Receiver routines
 4422 *************************************************************************/
 4423
 4424int netdev_max_backlog __read_mostly = 1000;
 4425EXPORT_SYMBOL(netdev_max_backlog);
 4426
 4427int netdev_tstamp_prequeue __read_mostly = 1;
 4428unsigned int sysctl_skb_defer_max __read_mostly = 64;
 4429int netdev_budget __read_mostly = 300;
 4430/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
 4431unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
 4432int weight_p __read_mostly = 64;           /* old backlog weight */
 4433int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
 4434int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
 4435int dev_rx_weight __read_mostly = 64;
 4436int dev_tx_weight __read_mostly = 64;
 4437
 4438/* Called with irq disabled */
 4439static inline void ____napi_schedule(struct softnet_data *sd,
 4440				     struct napi_struct *napi)
 4441{
 4442	struct task_struct *thread;
 
 
 4443
 4444	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
 
 
 
 4445
 4446	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
 4447		/* Paired with smp_mb__before_atomic() in
 4448		 * napi_enable()/dev_set_threaded().
 4449		 * Use READ_ONCE() to guarantee a complete
 4450		 * read on napi->thread. Only call
 4451		 * wake_up_process() when it's not NULL.
 4452		 */
 4453		thread = READ_ONCE(napi->thread);
 4454		if (thread) {
 4455			/* Avoid doing set_bit() if the thread is in
 4456			 * INTERRUPTIBLE state, cause napi_thread_wait()
 4457			 * makes sure to proceed with napi polling
 4458			 * if the thread is explicitly woken from here.
 4459			 */
 4460			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
 4461				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
 4462			wake_up_process(thread);
 4463			return;
 4464		}
 4465	}
 4466
 4467	list_add_tail(&napi->poll_list, &sd->poll_list);
 4468	WRITE_ONCE(napi->list_owner, smp_processor_id());
 4469	/* If not called from net_rx_action()
 4470	 * we have to raise NET_RX_SOFTIRQ.
 4471	 */
 4472	if (!sd->in_net_rx_action)
 4473		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 
 4474}
 
 4475
 4476#ifdef CONFIG_RPS
 4477
 4478/* One global table that all flow-based protocols share. */
 4479struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
 4480EXPORT_SYMBOL(rps_sock_flow_table);
 4481u32 rps_cpu_mask __read_mostly;
 4482EXPORT_SYMBOL(rps_cpu_mask);
 4483
 4484struct static_key_false rps_needed __read_mostly;
 4485EXPORT_SYMBOL(rps_needed);
 4486struct static_key_false rfs_needed __read_mostly;
 4487EXPORT_SYMBOL(rfs_needed);
 4488
 4489static struct rps_dev_flow *
 4490set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4491	    struct rps_dev_flow *rflow, u16 next_cpu)
 4492{
 4493	if (next_cpu < nr_cpu_ids) {
 4494#ifdef CONFIG_RFS_ACCEL
 4495		struct netdev_rx_queue *rxqueue;
 4496		struct rps_dev_flow_table *flow_table;
 4497		struct rps_dev_flow *old_rflow;
 4498		u32 flow_id;
 4499		u16 rxq_index;
 4500		int rc;
 4501
 4502		/* Should we steer this flow to a different hardware queue? */
 4503		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
 4504		    !(dev->features & NETIF_F_NTUPLE))
 4505			goto out;
 4506		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
 4507		if (rxq_index == skb_get_rx_queue(skb))
 4508			goto out;
 4509
 4510		rxqueue = dev->_rx + rxq_index;
 4511		flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4512		if (!flow_table)
 4513			goto out;
 4514		flow_id = skb_get_hash(skb) & flow_table->mask;
 4515		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
 4516							rxq_index, flow_id);
 4517		if (rc < 0)
 4518			goto out;
 4519		old_rflow = rflow;
 4520		rflow = &flow_table->flows[flow_id];
 4521		rflow->filter = rc;
 4522		if (old_rflow->filter == rflow->filter)
 4523			old_rflow->filter = RPS_NO_FILTER;
 4524	out:
 4525#endif
 4526		rflow->last_qtail =
 4527			per_cpu(softnet_data, next_cpu).input_queue_head;
 4528	}
 4529
 4530	rflow->cpu = next_cpu;
 4531	return rflow;
 4532}
 4533
 4534/*
 4535 * get_rps_cpu is called from netif_receive_skb and returns the target
 4536 * CPU from the RPS map of the receiving queue for a given skb.
 4537 * rcu_read_lock must be held on entry.
 4538 */
 4539static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4540		       struct rps_dev_flow **rflowp)
 4541{
 4542	const struct rps_sock_flow_table *sock_flow_table;
 4543	struct netdev_rx_queue *rxqueue = dev->_rx;
 4544	struct rps_dev_flow_table *flow_table;
 4545	struct rps_map *map;
 4546	int cpu = -1;
 4547	u32 tcpu;
 4548	u32 hash;
 4549
 4550	if (skb_rx_queue_recorded(skb)) {
 4551		u16 index = skb_get_rx_queue(skb);
 4552
 4553		if (unlikely(index >= dev->real_num_rx_queues)) {
 4554			WARN_ONCE(dev->real_num_rx_queues > 1,
 4555				  "%s received packet on queue %u, but number "
 4556				  "of RX queues is %u\n",
 4557				  dev->name, index, dev->real_num_rx_queues);
 4558			goto done;
 4559		}
 4560		rxqueue += index;
 4561	}
 4562
 4563	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
 4564
 4565	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4566	map = rcu_dereference(rxqueue->rps_map);
 4567	if (!flow_table && !map)
 
 
 
 
 
 
 
 
 4568		goto done;
 
 4569
 4570	skb_reset_network_header(skb);
 4571	hash = skb_get_hash(skb);
 4572	if (!hash)
 4573		goto done;
 4574
 
 4575	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 4576	if (flow_table && sock_flow_table) {
 
 4577		struct rps_dev_flow *rflow;
 4578		u32 next_cpu;
 4579		u32 ident;
 4580
 4581		/* First check into global flow table if there is a match.
 4582		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
 4583		 */
 4584		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
 4585		if ((ident ^ hash) & ~rps_cpu_mask)
 4586			goto try_rps;
 4587
 4588		next_cpu = ident & rps_cpu_mask;
 4589
 4590		/* OK, now we know there is a match,
 4591		 * we can look at the local (per receive queue) flow table
 4592		 */
 4593		rflow = &flow_table->flows[hash & flow_table->mask];
 4594		tcpu = rflow->cpu;
 4595
 4596		/*
 4597		 * If the desired CPU (where last recvmsg was done) is
 4598		 * different from current CPU (one in the rx-queue flow
 4599		 * table entry), switch if one of the following holds:
 4600		 *   - Current CPU is unset (>= nr_cpu_ids).
 4601		 *   - Current CPU is offline.
 4602		 *   - The current CPU's queue tail has advanced beyond the
 4603		 *     last packet that was enqueued using this table entry.
 4604		 *     This guarantees that all previous packets for the flow
 4605		 *     have been dequeued, thus preserving in order delivery.
 4606		 */
 4607		if (unlikely(tcpu != next_cpu) &&
 4608		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
 4609		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
 4610		      rflow->last_qtail)) >= 0)) {
 4611			tcpu = next_cpu;
 4612			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
 4613		}
 4614
 4615		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
 4616			*rflowp = rflow;
 4617			cpu = tcpu;
 4618			goto done;
 4619		}
 4620	}
 4621
 4622try_rps:
 
 4623
 4624	if (map) {
 4625		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
 4626		if (cpu_online(tcpu)) {
 4627			cpu = tcpu;
 4628			goto done;
 4629		}
 4630	}
 4631
 4632done:
 4633	return cpu;
 4634}
 4635
 4636#ifdef CONFIG_RFS_ACCEL
 4637
 4638/**
 4639 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
 4640 * @dev: Device on which the filter was set
 4641 * @rxq_index: RX queue index
 4642 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
 4643 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
 4644 *
 4645 * Drivers that implement ndo_rx_flow_steer() should periodically call
 4646 * this function for each installed filter and remove the filters for
 4647 * which it returns %true.
 4648 */
 4649bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
 4650			 u32 flow_id, u16 filter_id)
 4651{
 4652	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
 4653	struct rps_dev_flow_table *flow_table;
 4654	struct rps_dev_flow *rflow;
 4655	bool expire = true;
 4656	unsigned int cpu;
 4657
 4658	rcu_read_lock();
 4659	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4660	if (flow_table && flow_id <= flow_table->mask) {
 4661		rflow = &flow_table->flows[flow_id];
 4662		cpu = READ_ONCE(rflow->cpu);
 4663		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
 4664		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
 4665			   rflow->last_qtail) <
 4666		     (int)(10 * flow_table->mask)))
 4667			expire = false;
 4668	}
 4669	rcu_read_unlock();
 4670	return expire;
 4671}
 4672EXPORT_SYMBOL(rps_may_expire_flow);
 4673
 4674#endif /* CONFIG_RFS_ACCEL */
 4675
 4676/* Called from hardirq (IPI) context */
 4677static void rps_trigger_softirq(void *data)
 4678{
 4679	struct softnet_data *sd = data;
 4680
 4681	____napi_schedule(sd, &sd->backlog);
 4682	sd->received_rps++;
 4683}
 4684
 4685#endif /* CONFIG_RPS */
 4686
 4687/* Called from hardirq (IPI) context */
 4688static void trigger_rx_softirq(void *data)
 4689{
 4690	struct softnet_data *sd = data;
 4691
 4692	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4693	smp_store_release(&sd->defer_ipi_scheduled, 0);
 4694}
 4695
 4696/*
 4697 * After we queued a packet into sd->input_pkt_queue,
 4698 * we need to make sure this queue is serviced soon.
 4699 *
 4700 * - If this is another cpu queue, link it to our rps_ipi_list,
 4701 *   and make sure we will process rps_ipi_list from net_rx_action().
 4702 *
 4703 * - If this is our own queue, NAPI schedule our backlog.
 4704 *   Note that this also raises NET_RX_SOFTIRQ.
 4705 */
 4706static void napi_schedule_rps(struct softnet_data *sd)
 4707{
 4708	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
 
 4709
 4710#ifdef CONFIG_RPS
 4711	if (sd != mysd) {
 4712		sd->rps_ipi_next = mysd->rps_ipi_list;
 4713		mysd->rps_ipi_list = sd;
 4714
 4715		/* If not called from net_rx_action() or napi_threaded_poll()
 4716		 * we have to raise NET_RX_SOFTIRQ.
 4717		 */
 4718		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
 4719			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4720		return;
 4721	}
 4722#endif /* CONFIG_RPS */
 4723	__napi_schedule_irqoff(&mysd->backlog);
 4724}
 4725
 4726#ifdef CONFIG_NET_FLOW_LIMIT
 4727int netdev_flow_limit_table_len __read_mostly = (1 << 12);
 4728#endif
 4729
 4730static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
 4731{
 4732#ifdef CONFIG_NET_FLOW_LIMIT
 4733	struct sd_flow_limit *fl;
 4734	struct softnet_data *sd;
 4735	unsigned int old_flow, new_flow;
 4736
 4737	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
 4738		return false;
 4739
 4740	sd = this_cpu_ptr(&softnet_data);
 4741
 4742	rcu_read_lock();
 4743	fl = rcu_dereference(sd->flow_limit);
 4744	if (fl) {
 4745		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
 4746		old_flow = fl->history[fl->history_head];
 4747		fl->history[fl->history_head] = new_flow;
 4748
 4749		fl->history_head++;
 4750		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
 4751
 4752		if (likely(fl->buckets[old_flow]))
 4753			fl->buckets[old_flow]--;
 4754
 4755		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
 4756			fl->count++;
 4757			rcu_read_unlock();
 4758			return true;
 4759		}
 4760	}
 4761	rcu_read_unlock();
 4762#endif
 4763	return false;
 4764}
 4765
 4766/*
 4767 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
 4768 * queue (may be a remote CPU queue).
 4769 */
 4770static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
 4771			      unsigned int *qtail)
 4772{
 4773	enum skb_drop_reason reason;
 4774	struct softnet_data *sd;
 4775	unsigned long flags;
 4776	unsigned int qlen;
 4777
 4778	reason = SKB_DROP_REASON_NOT_SPECIFIED;
 4779	sd = &per_cpu(softnet_data, cpu);
 4780
 4781	rps_lock_irqsave(sd, &flags);
 4782	if (!netif_running(skb->dev))
 4783		goto drop;
 4784	qlen = skb_queue_len(&sd->input_pkt_queue);
 4785	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
 4786		if (qlen) {
 4787enqueue:
 4788			__skb_queue_tail(&sd->input_pkt_queue, skb);
 4789			input_queue_tail_incr_save(sd, qtail);
 4790			rps_unlock_irq_restore(sd, &flags);
 
 4791			return NET_RX_SUCCESS;
 4792		}
 4793
 4794		/* Schedule NAPI for backlog device
 4795		 * We can use non atomic operation since we own the queue lock
 4796		 */
 4797		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
 4798			napi_schedule_rps(sd);
 
 
 4799		goto enqueue;
 4800	}
 4801	reason = SKB_DROP_REASON_CPU_BACKLOG;
 4802
 4803drop:
 4804	sd->dropped++;
 4805	rps_unlock_irq_restore(sd, &flags);
 
 
 4806
 4807	dev_core_stats_rx_dropped_inc(skb->dev);
 4808	kfree_skb_reason(skb, reason);
 4809	return NET_RX_DROP;
 4810}
 4811
 4812static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
 4813{
 4814	struct net_device *dev = skb->dev;
 4815	struct netdev_rx_queue *rxqueue;
 4816
 4817	rxqueue = dev->_rx;
 4818
 4819	if (skb_rx_queue_recorded(skb)) {
 4820		u16 index = skb_get_rx_queue(skb);
 4821
 4822		if (unlikely(index >= dev->real_num_rx_queues)) {
 4823			WARN_ONCE(dev->real_num_rx_queues > 1,
 4824				  "%s received packet on queue %u, but number "
 4825				  "of RX queues is %u\n",
 4826				  dev->name, index, dev->real_num_rx_queues);
 4827
 4828			return rxqueue; /* Return first rxqueue */
 4829		}
 4830		rxqueue += index;
 4831	}
 4832	return rxqueue;
 4833}
 4834
 4835u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
 4836			     struct bpf_prog *xdp_prog)
 4837{
 4838	void *orig_data, *orig_data_end, *hard_start;
 4839	struct netdev_rx_queue *rxqueue;
 4840	bool orig_bcast, orig_host;
 4841	u32 mac_len, frame_sz;
 4842	__be16 orig_eth_type;
 4843	struct ethhdr *eth;
 4844	u32 metalen, act;
 4845	int off;
 4846
 4847	/* The XDP program wants to see the packet starting at the MAC
 4848	 * header.
 4849	 */
 4850	mac_len = skb->data - skb_mac_header(skb);
 4851	hard_start = skb->data - skb_headroom(skb);
 4852
 4853	/* SKB "head" area always have tailroom for skb_shared_info */
 4854	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
 4855	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 4856
 4857	rxqueue = netif_get_rxqueue(skb);
 4858	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
 4859	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
 4860			 skb_headlen(skb) + mac_len, true);
 4861
 4862	orig_data_end = xdp->data_end;
 4863	orig_data = xdp->data;
 4864	eth = (struct ethhdr *)xdp->data;
 4865	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
 4866	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
 4867	orig_eth_type = eth->h_proto;
 4868
 4869	act = bpf_prog_run_xdp(xdp_prog, xdp);
 4870
 4871	/* check if bpf_xdp_adjust_head was used */
 4872	off = xdp->data - orig_data;
 4873	if (off) {
 4874		if (off > 0)
 4875			__skb_pull(skb, off);
 4876		else if (off < 0)
 4877			__skb_push(skb, -off);
 4878
 4879		skb->mac_header += off;
 4880		skb_reset_network_header(skb);
 4881	}
 4882
 4883	/* check if bpf_xdp_adjust_tail was used */
 4884	off = xdp->data_end - orig_data_end;
 4885	if (off != 0) {
 4886		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
 4887		skb->len += off; /* positive on grow, negative on shrink */
 4888	}
 4889
 4890	/* check if XDP changed eth hdr such SKB needs update */
 4891	eth = (struct ethhdr *)xdp->data;
 4892	if ((orig_eth_type != eth->h_proto) ||
 4893	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
 4894						  skb->dev->dev_addr)) ||
 4895	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
 4896		__skb_push(skb, ETH_HLEN);
 4897		skb->pkt_type = PACKET_HOST;
 4898		skb->protocol = eth_type_trans(skb, skb->dev);
 4899	}
 4900
 4901	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
 4902	 * before calling us again on redirect path. We do not call do_redirect
 4903	 * as we leave that up to the caller.
 4904	 *
 4905	 * Caller is responsible for managing lifetime of skb (i.e. calling
 4906	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
 4907	 */
 4908	switch (act) {
 4909	case XDP_REDIRECT:
 4910	case XDP_TX:
 4911		__skb_push(skb, mac_len);
 4912		break;
 4913	case XDP_PASS:
 4914		metalen = xdp->data - xdp->data_meta;
 4915		if (metalen)
 4916			skb_metadata_set(skb, metalen);
 4917		break;
 4918	}
 4919
 4920	return act;
 4921}
 4922
 4923static u32 netif_receive_generic_xdp(struct sk_buff *skb,
 4924				     struct xdp_buff *xdp,
 4925				     struct bpf_prog *xdp_prog)
 4926{
 4927	u32 act = XDP_DROP;
 4928
 4929	/* Reinjected packets coming from act_mirred or similar should
 4930	 * not get XDP generic processing.
 4931	 */
 4932	if (skb_is_redirected(skb))
 4933		return XDP_PASS;
 4934
 4935	/* XDP packets must be linear and must have sufficient headroom
 4936	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
 4937	 * native XDP provides, thus we need to do it here as well.
 4938	 */
 4939	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
 4940	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
 4941		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
 4942		int troom = skb->tail + skb->data_len - skb->end;
 4943
 4944		/* In case we have to go down the path and also linearize,
 4945		 * then lets do the pskb_expand_head() work just once here.
 4946		 */
 4947		if (pskb_expand_head(skb,
 4948				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
 4949				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
 4950			goto do_drop;
 4951		if (skb_linearize(skb))
 4952			goto do_drop;
 4953	}
 4954
 4955	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
 4956	switch (act) {
 4957	case XDP_REDIRECT:
 4958	case XDP_TX:
 4959	case XDP_PASS:
 4960		break;
 4961	default:
 4962		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
 4963		fallthrough;
 4964	case XDP_ABORTED:
 4965		trace_xdp_exception(skb->dev, xdp_prog, act);
 4966		fallthrough;
 4967	case XDP_DROP:
 4968	do_drop:
 4969		kfree_skb(skb);
 4970		break;
 4971	}
 4972
 4973	return act;
 4974}
 4975
 4976/* When doing generic XDP we have to bypass the qdisc layer and the
 4977 * network taps in order to match in-driver-XDP behavior. This also means
 4978 * that XDP packets are able to starve other packets going through a qdisc,
 4979 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
 4980 * queues, so they do not have this starvation issue.
 4981 */
 4982void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
 4983{
 4984	struct net_device *dev = skb->dev;
 4985	struct netdev_queue *txq;
 4986	bool free_skb = true;
 4987	int cpu, rc;
 4988
 4989	txq = netdev_core_pick_tx(dev, skb, NULL);
 4990	cpu = smp_processor_id();
 4991	HARD_TX_LOCK(dev, txq, cpu);
 4992	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
 4993		rc = netdev_start_xmit(skb, dev, txq, 0);
 4994		if (dev_xmit_complete(rc))
 4995			free_skb = false;
 4996	}
 4997	HARD_TX_UNLOCK(dev, txq);
 4998	if (free_skb) {
 4999		trace_xdp_exception(dev, xdp_prog, XDP_TX);
 5000		dev_core_stats_tx_dropped_inc(dev);
 5001		kfree_skb(skb);
 5002	}
 5003}
 5004
 5005static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
 5006
 5007int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
 5008{
 5009	if (xdp_prog) {
 5010		struct xdp_buff xdp;
 5011		u32 act;
 5012		int err;
 5013
 5014		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
 5015		if (act != XDP_PASS) {
 5016			switch (act) {
 5017			case XDP_REDIRECT:
 5018				err = xdp_do_generic_redirect(skb->dev, skb,
 5019							      &xdp, xdp_prog);
 5020				if (err)
 5021					goto out_redir;
 5022				break;
 5023			case XDP_TX:
 5024				generic_xdp_tx(skb, xdp_prog);
 5025				break;
 5026			}
 5027			return XDP_DROP;
 5028		}
 5029	}
 5030	return XDP_PASS;
 5031out_redir:
 5032	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
 5033	return XDP_DROP;
 5034}
 5035EXPORT_SYMBOL_GPL(do_xdp_generic);
 5036
 5037static int netif_rx_internal(struct sk_buff *skb)
 5038{
 5039	int ret;
 5040
 5041	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
 5042
 5043	trace_netif_rx(skb);
 5044
 5045#ifdef CONFIG_RPS
 5046	if (static_branch_unlikely(&rps_needed)) {
 5047		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5048		int cpu;
 5049
 
 5050		rcu_read_lock();
 5051
 5052		cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5053		if (cpu < 0)
 5054			cpu = smp_processor_id();
 5055
 5056		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5057
 5058		rcu_read_unlock();
 
 5059	} else
 5060#endif
 5061	{
 5062		unsigned int qtail;
 5063
 5064		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
 5065	}
 5066	return ret;
 5067}
 
 5068
 5069/**
 5070 *	__netif_rx	-	Slightly optimized version of netif_rx
 5071 *	@skb: buffer to post
 5072 *
 5073 *	This behaves as netif_rx except that it does not disable bottom halves.
 5074 *	As a result this function may only be invoked from the interrupt context
 5075 *	(either hard or soft interrupt).
 5076 */
 5077int __netif_rx(struct sk_buff *skb)
 5078{
 5079	int ret;
 5080
 5081	lockdep_assert_once(hardirq_count() | softirq_count());
 
 
 
 
 5082
 5083	trace_netif_rx_entry(skb);
 5084	ret = netif_rx_internal(skb);
 5085	trace_netif_rx_exit(ret);
 5086	return ret;
 5087}
 5088EXPORT_SYMBOL(__netif_rx);
 5089
 5090/**
 5091 *	netif_rx	-	post buffer to the network code
 5092 *	@skb: buffer to post
 5093 *
 5094 *	This function receives a packet from a device driver and queues it for
 5095 *	the upper (protocol) levels to process via the backlog NAPI device. It
 5096 *	always succeeds. The buffer may be dropped during processing for
 5097 *	congestion control or by the protocol layers.
 5098 *	The network buffer is passed via the backlog NAPI device. Modern NIC
 5099 *	driver should use NAPI and GRO.
 5100 *	This function can used from interrupt and from process context. The
 5101 *	caller from process context must not disable interrupts before invoking
 5102 *	this function.
 5103 *
 5104 *	return values:
 5105 *	NET_RX_SUCCESS	(no congestion)
 5106 *	NET_RX_DROP     (packet was dropped)
 5107 *
 5108 */
 5109int netif_rx(struct sk_buff *skb)
 5110{
 5111	bool need_bh_off = !(hardirq_count() | softirq_count());
 5112	int ret;
 5113
 5114	if (need_bh_off)
 5115		local_bh_disable();
 5116	trace_netif_rx_entry(skb);
 5117	ret = netif_rx_internal(skb);
 5118	trace_netif_rx_exit(ret);
 5119	if (need_bh_off)
 5120		local_bh_enable();
 5121	return ret;
 5122}
 5123EXPORT_SYMBOL(netif_rx);
 5124
 5125static __latent_entropy void net_tx_action(struct softirq_action *h)
 5126{
 5127	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 5128
 5129	if (sd->completion_queue) {
 5130		struct sk_buff *clist;
 5131
 5132		local_irq_disable();
 5133		clist = sd->completion_queue;
 5134		sd->completion_queue = NULL;
 5135		local_irq_enable();
 5136
 5137		while (clist) {
 5138			struct sk_buff *skb = clist;
 5139
 5140			clist = clist->next;
 5141
 5142			WARN_ON(refcount_read(&skb->users));
 5143			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
 5144				trace_consume_skb(skb, net_tx_action);
 5145			else
 5146				trace_kfree_skb(skb, net_tx_action,
 5147						get_kfree_skb_cb(skb)->reason);
 5148
 5149			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
 5150				__kfree_skb(skb);
 5151			else
 5152				__napi_kfree_skb(skb,
 5153						 get_kfree_skb_cb(skb)->reason);
 5154		}
 5155	}
 5156
 5157	if (sd->output_queue) {
 5158		struct Qdisc *head;
 5159
 5160		local_irq_disable();
 5161		head = sd->output_queue;
 5162		sd->output_queue = NULL;
 5163		sd->output_queue_tailp = &sd->output_queue;
 5164		local_irq_enable();
 5165
 5166		rcu_read_lock();
 5167
 5168		while (head) {
 5169			struct Qdisc *q = head;
 5170			spinlock_t *root_lock = NULL;
 5171
 5172			head = head->next_sched;
 5173
 5174			/* We need to make sure head->next_sched is read
 5175			 * before clearing __QDISC_STATE_SCHED
 5176			 */
 5177			smp_mb__before_atomic();
 5178
 5179			if (!(q->flags & TCQ_F_NOLOCK)) {
 5180				root_lock = qdisc_lock(q);
 5181				spin_lock(root_lock);
 5182			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
 5183						     &q->state))) {
 5184				/* There is a synchronize_net() between
 5185				 * STATE_DEACTIVATED flag being set and
 5186				 * qdisc_reset()/some_qdisc_is_busy() in
 5187				 * dev_deactivate(), so we can safely bail out
 5188				 * early here to avoid data race between
 5189				 * qdisc_deactivate() and some_qdisc_is_busy()
 5190				 * for lockless qdisc.
 5191				 */
 5192				clear_bit(__QDISC_STATE_SCHED, &q->state);
 5193				continue;
 5194			}
 5195
 5196			clear_bit(__QDISC_STATE_SCHED, &q->state);
 5197			qdisc_run(q);
 5198			if (root_lock)
 5199				spin_unlock(root_lock);
 5200		}
 5201
 5202		rcu_read_unlock();
 5203	}
 5204
 5205	xfrm_dev_backlog(sd);
 5206}
 5207
 5208#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
 
 5209/* This hook is defined here for ATM LANE */
 5210int (*br_fdb_test_addr_hook)(struct net_device *dev,
 5211			     unsigned char *addr) __read_mostly;
 5212EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
 5213#endif
 5214
 5215/**
 5216 *	netdev_is_rx_handler_busy - check if receive handler is registered
 5217 *	@dev: device to check
 5218 *
 5219 *	Check if a receive handler is already registered for a given device.
 5220 *	Return true if there one.
 
 5221 *
 5222 *	The caller must hold the rtnl_mutex.
 5223 */
 5224bool netdev_is_rx_handler_busy(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5225{
 5226	ASSERT_RTNL();
 5227	return dev && rtnl_dereference(dev->rx_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5228}
 5229EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
 5230
 5231/**
 5232 *	netdev_rx_handler_register - register receive handler
 5233 *	@dev: device to register a handler for
 5234 *	@rx_handler: receive handler to register
 5235 *	@rx_handler_data: data pointer that is used by rx handler
 5236 *
 5237 *	Register a receive handler for a device. This handler will then be
 5238 *	called from __netif_receive_skb. A negative errno code is returned
 5239 *	on a failure.
 5240 *
 5241 *	The caller must hold the rtnl_mutex.
 5242 *
 5243 *	For a general description of rx_handler, see enum rx_handler_result.
 5244 */
 5245int netdev_rx_handler_register(struct net_device *dev,
 5246			       rx_handler_func_t *rx_handler,
 5247			       void *rx_handler_data)
 5248{
 5249	if (netdev_is_rx_handler_busy(dev))
 
 
 5250		return -EBUSY;
 5251
 5252	if (dev->priv_flags & IFF_NO_RX_HANDLER)
 5253		return -EINVAL;
 5254
 5255	/* Note: rx_handler_data must be set before rx_handler */
 5256	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
 5257	rcu_assign_pointer(dev->rx_handler, rx_handler);
 5258
 5259	return 0;
 5260}
 5261EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
 5262
 5263/**
 5264 *	netdev_rx_handler_unregister - unregister receive handler
 5265 *	@dev: device to unregister a handler from
 5266 *
 5267 *	Unregister a receive handler from a device.
 5268 *
 5269 *	The caller must hold the rtnl_mutex.
 5270 */
 5271void netdev_rx_handler_unregister(struct net_device *dev)
 5272{
 5273
 5274	ASSERT_RTNL();
 5275	RCU_INIT_POINTER(dev->rx_handler, NULL);
 5276	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
 5277	 * section has a guarantee to see a non NULL rx_handler_data
 5278	 * as well.
 5279	 */
 5280	synchronize_net();
 5281	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
 5282}
 5283EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
 5284
 5285/*
 5286 * Limit the use of PFMEMALLOC reserves to those protocols that implement
 5287 * the special handling of PFMEMALLOC skbs.
 5288 */
 5289static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
 5290{
 5291	switch (skb->protocol) {
 5292	case htons(ETH_P_ARP):
 5293	case htons(ETH_P_IP):
 5294	case htons(ETH_P_IPV6):
 5295	case htons(ETH_P_8021Q):
 5296	case htons(ETH_P_8021AD):
 5297		return true;
 5298	default:
 5299		return false;
 5300	}
 5301}
 5302
 5303static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
 5304			     int *ret, struct net_device *orig_dev)
 5305{
 5306	if (nf_hook_ingress_active(skb)) {
 5307		int ingress_retval;
 5308
 5309		if (*pt_prev) {
 5310			*ret = deliver_skb(skb, *pt_prev, orig_dev);
 5311			*pt_prev = NULL;
 5312		}
 5313
 5314		rcu_read_lock();
 5315		ingress_retval = nf_hook_ingress(skb);
 5316		rcu_read_unlock();
 5317		return ingress_retval;
 5318	}
 5319	return 0;
 5320}
 5321
 5322static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
 5323				    struct packet_type **ppt_prev)
 5324{
 5325	struct packet_type *ptype, *pt_prev;
 5326	rx_handler_func_t *rx_handler;
 5327	struct sk_buff *skb = *pskb;
 5328	struct net_device *orig_dev;
 
 5329	bool deliver_exact = false;
 5330	int ret = NET_RX_DROP;
 5331	__be16 type;
 5332
 5333	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
 5334
 5335	trace_netif_receive_skb(skb);
 5336
 
 
 
 
 
 
 5337	orig_dev = skb->dev;
 5338
 5339	skb_reset_network_header(skb);
 5340	if (!skb_transport_header_was_set(skb))
 5341		skb_reset_transport_header(skb);
 5342	skb_reset_mac_len(skb);
 5343
 5344	pt_prev = NULL;
 5345
 
 
 5346another_round:
 5347	skb->skb_iif = skb->dev->ifindex;
 5348
 5349	__this_cpu_inc(softnet_data.processed);
 5350
 5351	if (static_branch_unlikely(&generic_xdp_needed_key)) {
 5352		int ret2;
 5353
 5354		migrate_disable();
 5355		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
 5356		migrate_enable();
 5357
 5358		if (ret2 != XDP_PASS) {
 5359			ret = NET_RX_DROP;
 5360			goto out;
 5361		}
 5362	}
 5363
 5364	if (eth_type_vlan(skb->protocol)) {
 5365		skb = skb_vlan_untag(skb);
 5366		if (unlikely(!skb))
 5367			goto out;
 5368	}
 5369
 5370	if (skb_skip_tc_classify(skb))
 5371		goto skip_classify;
 5372
 5373	if (pfmemalloc)
 5374		goto skip_taps;
 5375
 5376	list_for_each_entry_rcu(ptype, &ptype_all, list) {
 5377		if (pt_prev)
 5378			ret = deliver_skb(skb, pt_prev, orig_dev);
 5379		pt_prev = ptype;
 
 
 5380	}
 5381
 5382	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
 5383		if (pt_prev)
 5384			ret = deliver_skb(skb, pt_prev, orig_dev);
 5385		pt_prev = ptype;
 5386	}
 5387
 5388skip_taps:
 5389#ifdef CONFIG_NET_INGRESS
 5390	if (static_branch_unlikely(&ingress_needed_key)) {
 5391		bool another = false;
 5392
 5393		nf_skip_egress(skb, true);
 5394		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
 5395					 &another);
 5396		if (another)
 5397			goto another_round;
 5398		if (!skb)
 5399			goto out;
 5400
 5401		nf_skip_egress(skb, false);
 5402		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
 5403			goto out;
 5404	}
 5405#endif
 5406	skb_reset_redirect(skb);
 5407skip_classify:
 5408	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
 5409		goto drop;
 5410
 5411	if (skb_vlan_tag_present(skb)) {
 
 5412		if (pt_prev) {
 5413			ret = deliver_skb(skb, pt_prev, orig_dev);
 5414			pt_prev = NULL;
 5415		}
 5416		if (vlan_do_receive(&skb))
 5417			goto another_round;
 5418		else if (unlikely(!skb))
 5419			goto out;
 5420	}
 5421
 5422	rx_handler = rcu_dereference(skb->dev->rx_handler);
 5423	if (rx_handler) {
 5424		if (pt_prev) {
 5425			ret = deliver_skb(skb, pt_prev, orig_dev);
 5426			pt_prev = NULL;
 5427		}
 5428		switch (rx_handler(&skb)) {
 5429		case RX_HANDLER_CONSUMED:
 5430			ret = NET_RX_SUCCESS;
 5431			goto out;
 5432		case RX_HANDLER_ANOTHER:
 5433			goto another_round;
 5434		case RX_HANDLER_EXACT:
 5435			deliver_exact = true;
 5436			break;
 5437		case RX_HANDLER_PASS:
 5438			break;
 5439		default:
 5440			BUG();
 5441		}
 5442	}
 5443
 5444	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
 5445check_vlan_id:
 5446		if (skb_vlan_tag_get_id(skb)) {
 5447			/* Vlan id is non 0 and vlan_do_receive() above couldn't
 5448			 * find vlan device.
 5449			 */
 5450			skb->pkt_type = PACKET_OTHERHOST;
 5451		} else if (eth_type_vlan(skb->protocol)) {
 5452			/* Outer header is 802.1P with vlan 0, inner header is
 5453			 * 802.1Q or 802.1AD and vlan_do_receive() above could
 5454			 * not find vlan dev for vlan id 0.
 5455			 */
 5456			__vlan_hwaccel_clear_tag(skb);
 5457			skb = skb_vlan_untag(skb);
 5458			if (unlikely(!skb))
 5459				goto out;
 5460			if (vlan_do_receive(&skb))
 5461				/* After stripping off 802.1P header with vlan 0
 5462				 * vlan dev is found for inner header.
 5463				 */
 5464				goto another_round;
 5465			else if (unlikely(!skb))
 5466				goto out;
 5467			else
 5468				/* We have stripped outer 802.1P vlan 0 header.
 5469				 * But could not find vlan dev.
 5470				 * check again for vlan id to set OTHERHOST.
 5471				 */
 5472				goto check_vlan_id;
 5473		}
 5474		/* Note: we might in the future use prio bits
 5475		 * and set skb->priority like in vlan_do_receive()
 5476		 * For the time being, just ignore Priority Code Point
 5477		 */
 5478		__vlan_hwaccel_clear_tag(skb);
 5479	}
 5480
 5481	type = skb->protocol;
 5482
 5483	/* deliver only exact match when indicated */
 5484	if (likely(!deliver_exact)) {
 5485		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5486				       &ptype_base[ntohs(type) &
 5487						   PTYPE_HASH_MASK]);
 5488	}
 5489
 5490	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5491			       &orig_dev->ptype_specific);
 5492
 5493	if (unlikely(skb->dev != orig_dev)) {
 5494		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5495				       &skb->dev->ptype_specific);
 5496	}
 5497
 5498	if (pt_prev) {
 5499		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 5500			goto drop;
 5501		*ppt_prev = pt_prev;
 5502	} else {
 5503drop:
 5504		if (!deliver_exact)
 5505			dev_core_stats_rx_dropped_inc(skb->dev);
 5506		else
 5507			dev_core_stats_rx_nohandler_inc(skb->dev);
 5508		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
 5509		/* Jamal, now you will not able to escape explaining
 5510		 * me how you were going to use this. :-)
 5511		 */
 5512		ret = NET_RX_DROP;
 5513	}
 5514
 5515out:
 5516	/* The invariant here is that if *ppt_prev is not NULL
 5517	 * then skb should also be non-NULL.
 5518	 *
 5519	 * Apparently *ppt_prev assignment above holds this invariant due to
 5520	 * skb dereferencing near it.
 5521	 */
 5522	*pskb = skb;
 5523	return ret;
 5524}
 5525
 5526static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
 5527{
 5528	struct net_device *orig_dev = skb->dev;
 5529	struct packet_type *pt_prev = NULL;
 5530	int ret;
 5531
 5532	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5533	if (pt_prev)
 5534		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
 5535					 skb->dev, pt_prev, orig_dev);
 5536	return ret;
 5537}
 5538
 5539/**
 5540 *	netif_receive_skb_core - special purpose version of netif_receive_skb
 5541 *	@skb: buffer to process
 5542 *
 5543 *	More direct receive version of netif_receive_skb().  It should
 5544 *	only be used by callers that have a need to skip RPS and Generic XDP.
 5545 *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
 5546 *
 5547 *	This function may only be called from softirq context and interrupts
 5548 *	should be enabled.
 5549 *
 5550 *	Return values (usually ignored):
 5551 *	NET_RX_SUCCESS: no congestion
 5552 *	NET_RX_DROP: packet was dropped
 5553 */
 5554int netif_receive_skb_core(struct sk_buff *skb)
 5555{
 5556	int ret;
 
 
 
 5557
 5558	rcu_read_lock();
 5559	ret = __netif_receive_skb_one_core(skb, false);
 5560	rcu_read_unlock();
 
 5561
 5562	return ret;
 5563}
 5564EXPORT_SYMBOL(netif_receive_skb_core);
 5565
 5566static inline void __netif_receive_skb_list_ptype(struct list_head *head,
 5567						  struct packet_type *pt_prev,
 5568						  struct net_device *orig_dev)
 5569{
 5570	struct sk_buff *skb, *next;
 5571
 5572	if (!pt_prev)
 5573		return;
 5574	if (list_empty(head))
 5575		return;
 5576	if (pt_prev->list_func != NULL)
 5577		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
 5578				   ip_list_rcv, head, pt_prev, orig_dev);
 5579	else
 5580		list_for_each_entry_safe(skb, next, head, list) {
 5581			skb_list_del_init(skb);
 5582			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 5583		}
 
 
 
 
 5584}
 
 5585
 5586static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
 5587{
 5588	/* Fast-path assumptions:
 5589	 * - There is no RX handler.
 5590	 * - Only one packet_type matches.
 5591	 * If either of these fails, we will end up doing some per-packet
 5592	 * processing in-line, then handling the 'last ptype' for the whole
 5593	 * sublist.  This can't cause out-of-order delivery to any single ptype,
 5594	 * because the 'last ptype' must be constant across the sublist, and all
 5595	 * other ptypes are handled per-packet.
 5596	 */
 5597	/* Current (common) ptype of sublist */
 5598	struct packet_type *pt_curr = NULL;
 5599	/* Current (common) orig_dev of sublist */
 5600	struct net_device *od_curr = NULL;
 5601	struct list_head sublist;
 5602	struct sk_buff *skb, *next;
 5603
 5604	INIT_LIST_HEAD(&sublist);
 5605	list_for_each_entry_safe(skb, next, head, list) {
 5606		struct net_device *orig_dev = skb->dev;
 5607		struct packet_type *pt_prev = NULL;
 5608
 5609		skb_list_del_init(skb);
 5610		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5611		if (!pt_prev)
 5612			continue;
 5613		if (pt_curr != pt_prev || od_curr != orig_dev) {
 5614			/* dispatch old sublist */
 5615			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 5616			/* start new sublist */
 5617			INIT_LIST_HEAD(&sublist);
 5618			pt_curr = pt_prev;
 5619			od_curr = orig_dev;
 5620		}
 5621		list_add_tail(&skb->list, &sublist);
 5622	}
 
 5623
 5624	/* dispatch final sublist */
 5625	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 
 
 
 
 
 5626}
 5627
 5628static int __netif_receive_skb(struct sk_buff *skb)
 5629{
 5630	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 5631
 5632	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
 5633		unsigned int noreclaim_flag;
 
 
 5634
 5635		/*
 5636		 * PFMEMALLOC skbs are special, they should
 5637		 * - be delivered to SOCK_MEMALLOC sockets only
 5638		 * - stay away from userspace
 5639		 * - have bounded memory usage
 5640		 *
 5641		 * Use PF_MEMALLOC as this saves us from propagating the allocation
 5642		 * context down to all allocation sites.
 5643		 */
 5644		noreclaim_flag = memalloc_noreclaim_save();
 5645		ret = __netif_receive_skb_one_core(skb, true);
 5646		memalloc_noreclaim_restore(noreclaim_flag);
 5647	} else
 5648		ret = __netif_receive_skb_one_core(skb, false);
 5649
 5650	return ret;
 
 5651}
 5652
 5653static void __netif_receive_skb_list(struct list_head *head)
 5654{
 5655	unsigned long noreclaim_flag = 0;
 5656	struct sk_buff *skb, *next;
 5657	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
 5658
 5659	list_for_each_entry_safe(skb, next, head, list) {
 5660		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
 5661			struct list_head sublist;
 5662
 5663			/* Handle the previous sublist */
 5664			list_cut_before(&sublist, head, &skb->list);
 5665			if (!list_empty(&sublist))
 5666				__netif_receive_skb_list_core(&sublist, pfmemalloc);
 5667			pfmemalloc = !pfmemalloc;
 5668			/* See comments in __netif_receive_skb */
 5669			if (pfmemalloc)
 5670				noreclaim_flag = memalloc_noreclaim_save();
 5671			else
 5672				memalloc_noreclaim_restore(noreclaim_flag);
 5673		}
 5674	}
 5675	/* Handle the remaining sublist */
 5676	if (!list_empty(head))
 5677		__netif_receive_skb_list_core(head, pfmemalloc);
 5678	/* Restore pflags */
 5679	if (pfmemalloc)
 5680		memalloc_noreclaim_restore(noreclaim_flag);
 5681}
 
 5682
 5683static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
 5684{
 5685	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
 5686	struct bpf_prog *new = xdp->prog;
 5687	int ret = 0;
 
 
 
 
 5688
 5689	switch (xdp->command) {
 5690	case XDP_SETUP_PROG:
 5691		rcu_assign_pointer(dev->xdp_prog, new);
 5692		if (old)
 5693			bpf_prog_put(old);
 
 
 
 
 
 
 
 
 
 
 
 
 5694
 5695		if (old && !new) {
 5696			static_branch_dec(&generic_xdp_needed_key);
 5697		} else if (new && !old) {
 5698			static_branch_inc(&generic_xdp_needed_key);
 5699			dev_disable_lro(dev);
 5700			dev_disable_gro_hw(dev);
 5701		}
 5702		break;
 
 
 
 
 
 
 
 
 5703
 5704	default:
 5705		ret = -EINVAL;
 5706		break;
 
 
 
 
 5707	}
 5708
 5709	return ret;
 5710}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5711
 5712static int netif_receive_skb_internal(struct sk_buff *skb)
 5713{
 5714	int ret;
 5715
 5716	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
 5717
 5718	if (skb_defer_rx_timestamp(skb))
 5719		return NET_RX_SUCCESS;
 5720
 5721	rcu_read_lock();
 5722#ifdef CONFIG_RPS
 5723	if (static_branch_unlikely(&rps_needed)) {
 5724		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5725		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5726
 5727		if (cpu >= 0) {
 5728			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5729			rcu_read_unlock();
 5730			return ret;
 
 5731		}
 5732	}
 5733#endif
 5734	ret = __netif_receive_skb(skb);
 5735	rcu_read_unlock();
 5736	return ret;
 
 
 
 
 5737}
 
 5738
 5739void netif_receive_skb_list_internal(struct list_head *head)
 
 5740{
 5741	struct sk_buff *skb, *next;
 5742	struct list_head sublist;
 
 
 
 5743
 5744	INIT_LIST_HEAD(&sublist);
 5745	list_for_each_entry_safe(skb, next, head, list) {
 5746		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
 5747		skb_list_del_init(skb);
 5748		if (!skb_defer_rx_timestamp(skb))
 5749			list_add_tail(&skb->list, &sublist);
 
 
 
 
 
 5750	}
 5751	list_splice_init(&sublist, head);
 5752
 5753	rcu_read_lock();
 5754#ifdef CONFIG_RPS
 5755	if (static_branch_unlikely(&rps_needed)) {
 5756		list_for_each_entry_safe(skb, next, head, list) {
 5757			struct rps_dev_flow voidflow, *rflow = &voidflow;
 5758			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5759
 5760			if (cpu >= 0) {
 5761				/* Will be handled, remove from list */
 5762				skb_list_del_init(skb);
 5763				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5764			}
 5765		}
 5766	}
 5767#endif
 5768	__netif_receive_skb_list(head);
 5769	rcu_read_unlock();
 5770}
 5771
 5772/**
 5773 *	netif_receive_skb - process receive buffer from network
 5774 *	@skb: buffer to process
 5775 *
 5776 *	netif_receive_skb() is the main receive data processing function.
 5777 *	It always succeeds. The buffer may be dropped during processing
 5778 *	for congestion control or by the protocol layers.
 5779 *
 5780 *	This function may only be called from softirq context and interrupts
 5781 *	should be enabled.
 5782 *
 5783 *	Return values (usually ignored):
 5784 *	NET_RX_SUCCESS: no congestion
 5785 *	NET_RX_DROP: packet was dropped
 5786 */
 5787int netif_receive_skb(struct sk_buff *skb)
 5788{
 5789	int ret;
 
 
 
 
 
 
 
 
 5790
 5791	trace_netif_receive_skb_entry(skb);
 
 
 
 
 
 5792
 5793	ret = netif_receive_skb_internal(skb);
 5794	trace_netif_receive_skb_exit(ret);
 
 
 5795
 5796	return ret;
 5797}
 5798EXPORT_SYMBOL(netif_receive_skb);
 5799
 5800/**
 5801 *	netif_receive_skb_list - process many receive buffers from network
 5802 *	@head: list of skbs to process.
 5803 *
 5804 *	Since return value of netif_receive_skb() is normally ignored, and
 5805 *	wouldn't be meaningful for a list, this function returns void.
 5806 *
 5807 *	This function may only be called from softirq context and interrupts
 5808 *	should be enabled.
 5809 */
 5810void netif_receive_skb_list(struct list_head *head)
 5811{
 5812	struct sk_buff *skb;
 
 
 5813
 5814	if (list_empty(head))
 5815		return;
 5816	if (trace_netif_receive_skb_list_entry_enabled()) {
 5817		list_for_each_entry(skb, head, list)
 5818			trace_netif_receive_skb_list_entry(skb);
 5819	}
 5820	netif_receive_skb_list_internal(head);
 5821	trace_netif_receive_skb_list_exit(0);
 5822}
 5823EXPORT_SYMBOL(netif_receive_skb_list);
 5824
 5825static DEFINE_PER_CPU(struct work_struct, flush_works);
 
 
 
 
 
 
 5826
 5827/* Network device is going away, flush any packets still pending */
 5828static void flush_backlog(struct work_struct *work)
 5829{
 5830	struct sk_buff *skb, *tmp;
 5831	struct softnet_data *sd;
 
 
 
 
 5832
 5833	local_bh_disable();
 5834	sd = this_cpu_ptr(&softnet_data);
 5835
 5836	rps_lock_irq_disable(sd);
 5837	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
 5838		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5839			__skb_unlink(skb, &sd->input_pkt_queue);
 5840			dev_kfree_skb_irq(skb);
 5841			input_queue_head_incr(sd);
 5842		}
 5843	}
 5844	rps_unlock_irq_enable(sd);
 5845
 5846	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
 5847		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5848			__skb_unlink(skb, &sd->process_queue);
 5849			kfree_skb(skb);
 5850			input_queue_head_incr(sd);
 5851		}
 5852	}
 5853	local_bh_enable();
 5854}
 
 5855
 5856static bool flush_required(int cpu)
 
 5857{
 5858#if IS_ENABLED(CONFIG_RPS)
 5859	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
 5860	bool do_flush;
 
 5861
 5862	rps_lock_irq_disable(sd);
 
 
 
 
 
 
 
 
 
 5863
 5864	/* as insertion into process_queue happens with the rps lock held,
 5865	 * process_queue access may race only with dequeue
 5866	 */
 5867	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
 5868		   !skb_queue_empty_lockless(&sd->process_queue);
 5869	rps_unlock_irq_enable(sd);
 5870
 5871	return do_flush;
 5872#endif
 5873	/* without RPS we can't safely check input_pkt_queue: during a
 5874	 * concurrent remote skb_queue_splice() we can detect as empty both
 5875	 * input_pkt_queue and process_queue even if the latter could end-up
 5876	 * containing a lot of packets.
 5877	 */
 5878	return true;
 5879}
 
 5880
 5881static void flush_all_backlogs(void)
 5882{
 5883	static cpumask_t flush_cpus;
 5884	unsigned int cpu;
 
 
 5885
 5886	/* since we are under rtnl lock protection we can use static data
 5887	 * for the cpumask and avoid allocating on stack the possibly
 5888	 * large mask
 5889	 */
 5890	ASSERT_RTNL();
 5891
 5892	cpus_read_lock();
 
 5893
 5894	cpumask_clear(&flush_cpus);
 5895	for_each_online_cpu(cpu) {
 5896		if (flush_required(cpu)) {
 5897			queue_work_on(cpu, system_highpri_wq,
 5898				      per_cpu_ptr(&flush_works, cpu));
 5899			cpumask_set_cpu(cpu, &flush_cpus);
 
 
 
 5900		}
 5901	}
 5902
 5903	/* we can have in flight packet[s] on the cpus we are not flushing,
 5904	 * synchronize_net() in unregister_netdevice_many() will take care of
 5905	 * them
 
 
 5906	 */
 5907	for_each_cpu(cpu, &flush_cpus)
 5908		flush_work(per_cpu_ptr(&flush_works, cpu));
 5909
 5910	cpus_read_unlock();
 
 5911}
 5912
 5913static void net_rps_send_ipi(struct softnet_data *remsd)
 5914{
 5915#ifdef CONFIG_RPS
 5916	while (remsd) {
 5917		struct softnet_data *next = remsd->rps_ipi_next;
 
 5918
 5919		if (cpu_online(remsd->cpu))
 5920			smp_call_function_single_async(remsd->cpu, &remsd->csd);
 5921		remsd = next;
 5922	}
 5923#endif
 5924}
 
 5925
 5926/*
 5927 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
 5928 * Note: called with local irq disabled, but exits with local irq enabled.
 5929 */
 5930static void net_rps_action_and_irq_enable(struct softnet_data *sd)
 5931{
 5932#ifdef CONFIG_RPS
 5933	struct softnet_data *remsd = sd->rps_ipi_list;
 5934
 5935	if (remsd) {
 5936		sd->rps_ipi_list = NULL;
 5937
 5938		local_irq_enable();
 5939
 5940		/* Send pending IPI's to kick RPS processing on remote cpus. */
 5941		net_rps_send_ipi(remsd);
 
 
 
 
 
 
 
 5942	} else
 5943#endif
 5944		local_irq_enable();
 5945}
 5946
 5947static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
 5948{
 5949#ifdef CONFIG_RPS
 5950	return sd->rps_ipi_list != NULL;
 5951#else
 5952	return false;
 5953#endif
 5954}
 5955
 5956static int process_backlog(struct napi_struct *napi, int quota)
 5957{
 
 5958	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
 5959	bool again = true;
 5960	int work = 0;
 5961
 
 5962	/* Check if we have pending ipi, its better to send them now,
 5963	 * not waiting net_rx_action() end.
 5964	 */
 5965	if (sd_has_rps_ipi_waiting(sd)) {
 5966		local_irq_disable();
 5967		net_rps_action_and_irq_enable(sd);
 5968	}
 5969
 5970	napi->weight = READ_ONCE(dev_rx_weight);
 5971	while (again) {
 
 5972		struct sk_buff *skb;
 
 5973
 5974		while ((skb = __skb_dequeue(&sd->process_queue))) {
 5975			rcu_read_lock();
 5976			__netif_receive_skb(skb);
 5977			rcu_read_unlock();
 5978			input_queue_head_incr(sd);
 5979			if (++work >= quota)
 
 5980				return work;
 
 
 5981
 5982		}
 
 
 
 
 5983
 5984		rps_lock_irq_disable(sd);
 5985		if (skb_queue_empty(&sd->input_pkt_queue)) {
 5986			/*
 5987			 * Inline a custom version of __napi_complete().
 5988			 * only current cpu owns and manipulates this napi,
 5989			 * and NAPI_STATE_SCHED is the only possible flag set
 5990			 * on backlog.
 5991			 * We can use a plain write instead of clear_bit(),
 5992			 * and we dont need an smp_mb() memory barrier.
 5993			 */
 
 5994			napi->state = 0;
 5995			again = false;
 5996		} else {
 5997			skb_queue_splice_tail_init(&sd->input_pkt_queue,
 5998						   &sd->process_queue);
 5999		}
 6000		rps_unlock_irq_enable(sd);
 6001	}
 
 6002
 6003	return work;
 6004}
 6005
 6006/**
 6007 * __napi_schedule - schedule for receive
 6008 * @n: entry to schedule
 6009 *
 6010 * The entry's receive function will be scheduled to run.
 6011 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
 6012 */
 6013void __napi_schedule(struct napi_struct *n)
 6014{
 6015	unsigned long flags;
 6016
 6017	local_irq_save(flags);
 6018	____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6019	local_irq_restore(flags);
 6020}
 6021EXPORT_SYMBOL(__napi_schedule);
 6022
 6023/**
 6024 *	napi_schedule_prep - check if napi can be scheduled
 6025 *	@n: napi context
 6026 *
 6027 * Test if NAPI routine is already running, and if not mark
 6028 * it as running.  This is used as a condition variable to
 6029 * insure only one NAPI poll instance runs.  We also make
 6030 * sure there is no pending NAPI disable.
 6031 */
 6032bool napi_schedule_prep(struct napi_struct *n)
 6033{
 6034	unsigned long new, val = READ_ONCE(n->state);
 6035
 6036	do {
 6037		if (unlikely(val & NAPIF_STATE_DISABLE))
 6038			return false;
 6039		new = val | NAPIF_STATE_SCHED;
 6040
 6041		/* Sets STATE_MISSED bit if STATE_SCHED was already set
 6042		 * This was suggested by Alexander Duyck, as compiler
 6043		 * emits better code than :
 6044		 * if (val & NAPIF_STATE_SCHED)
 6045		 *     new |= NAPIF_STATE_MISSED;
 6046		 */
 6047		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
 6048						   NAPIF_STATE_MISSED;
 6049	} while (!try_cmpxchg(&n->state, &val, new));
 6050
 6051	return !(val & NAPIF_STATE_SCHED);
 
 
 6052}
 6053EXPORT_SYMBOL(napi_schedule_prep);
 6054
 6055/**
 6056 * __napi_schedule_irqoff - schedule for receive
 6057 * @n: entry to schedule
 6058 *
 6059 * Variant of __napi_schedule() assuming hard irqs are masked.
 6060 *
 6061 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
 6062 * because the interrupt disabled assumption might not be true
 6063 * due to force-threaded interrupts and spinlock substitution.
 6064 */
 6065void __napi_schedule_irqoff(struct napi_struct *n)
 6066{
 6067	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6068		____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6069	else
 6070		__napi_schedule(n);
 6071}
 6072EXPORT_SYMBOL(__napi_schedule_irqoff);
 6073
 6074bool napi_complete_done(struct napi_struct *n, int work_done)
 6075{
 6076	unsigned long flags, val, new, timeout = 0;
 6077	bool ret = true;
 6078
 6079	/*
 6080	 * 1) Don't let napi dequeue from the cpu poll list
 6081	 *    just in case its running on a different cpu.
 6082	 * 2) If we are busy polling, do nothing here, we have
 6083	 *    the guarantee we will be called later.
 6084	 */
 6085	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
 6086				 NAPIF_STATE_IN_BUSY_POLL)))
 6087		return false;
 6088
 6089	if (work_done) {
 6090		if (n->gro_bitmask)
 6091			timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6092		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
 6093	}
 6094	if (n->defer_hard_irqs_count > 0) {
 6095		n->defer_hard_irqs_count--;
 6096		timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6097		if (timeout)
 6098			ret = false;
 6099	}
 6100	if (n->gro_bitmask) {
 6101		/* When the NAPI instance uses a timeout and keeps postponing
 6102		 * it, we need to bound somehow the time packets are kept in
 6103		 * the GRO layer
 6104		 */
 6105		napi_gro_flush(n, !!timeout);
 6106	}
 6107
 6108	gro_normal_list(n);
 6109
 6110	if (unlikely(!list_empty(&n->poll_list))) {
 6111		/* If n->poll_list is not empty, we need to mask irqs */
 6112		local_irq_save(flags);
 6113		list_del_init(&n->poll_list);
 6114		local_irq_restore(flags);
 6115	}
 6116	WRITE_ONCE(n->list_owner, -1);
 6117
 6118	val = READ_ONCE(n->state);
 6119	do {
 6120		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
 6121
 6122		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
 6123			      NAPIF_STATE_SCHED_THREADED |
 6124			      NAPIF_STATE_PREFER_BUSY_POLL);
 6125
 6126		/* If STATE_MISSED was set, leave STATE_SCHED set,
 6127		 * because we will call napi->poll() one more time.
 6128		 * This C code was suggested by Alexander Duyck to help gcc.
 6129		 */
 6130		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
 6131						    NAPIF_STATE_SCHED;
 6132	} while (!try_cmpxchg(&n->state, &val, new));
 6133
 6134	if (unlikely(val & NAPIF_STATE_MISSED)) {
 6135		__napi_schedule(n);
 6136		return false;
 6137	}
 6138
 6139	if (timeout)
 6140		hrtimer_start(&n->timer, ns_to_ktime(timeout),
 6141			      HRTIMER_MODE_REL_PINNED);
 6142	return ret;
 6143}
 6144EXPORT_SYMBOL(napi_complete_done);
 6145
 6146/* must be called under rcu_read_lock(), as we dont take a reference */
 6147struct napi_struct *napi_by_id(unsigned int napi_id)
 6148{
 6149	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
 6150	struct napi_struct *napi;
 6151
 6152	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
 6153		if (napi->napi_id == napi_id)
 6154			return napi;
 6155
 6156	return NULL;
 6157}
 6158
 6159#if defined(CONFIG_NET_RX_BUSY_POLL)
 6160
 6161static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
 6162{
 6163	if (!skip_schedule) {
 6164		gro_normal_list(napi);
 6165		__napi_schedule(napi);
 6166		return;
 6167	}
 6168
 6169	if (napi->gro_bitmask) {
 6170		/* flush too old packets
 6171		 * If HZ < 1000, flush all packets.
 6172		 */
 6173		napi_gro_flush(napi, HZ >= 1000);
 6174	}
 6175
 6176	gro_normal_list(napi);
 6177	clear_bit(NAPI_STATE_SCHED, &napi->state);
 6178}
 6179
 6180static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
 6181			   u16 budget)
 6182{
 6183	bool skip_schedule = false;
 6184	unsigned long timeout;
 6185	int rc;
 6186
 6187	/* Busy polling means there is a high chance device driver hard irq
 6188	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
 6189	 * set in napi_schedule_prep().
 6190	 * Since we are about to call napi->poll() once more, we can safely
 6191	 * clear NAPI_STATE_MISSED.
 6192	 *
 6193	 * Note: x86 could use a single "lock and ..." instruction
 6194	 * to perform these two clear_bit()
 6195	 */
 6196	clear_bit(NAPI_STATE_MISSED, &napi->state);
 6197	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
 6198
 6199	local_bh_disable();
 6200
 6201	if (prefer_busy_poll) {
 6202		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
 6203		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
 6204		if (napi->defer_hard_irqs_count && timeout) {
 6205			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
 6206			skip_schedule = true;
 6207		}
 6208	}
 6209
 6210	/* All we really want here is to re-enable device interrupts.
 6211	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
 6212	 */
 6213	rc = napi->poll(napi, budget);
 6214	/* We can't gro_normal_list() here, because napi->poll() might have
 6215	 * rearmed the napi (napi_complete_done()) in which case it could
 6216	 * already be running on another CPU.
 6217	 */
 6218	trace_napi_poll(napi, rc, budget);
 6219	netpoll_poll_unlock(have_poll_lock);
 6220	if (rc == budget)
 6221		__busy_poll_stop(napi, skip_schedule);
 6222	local_bh_enable();
 6223}
 6224
 6225void napi_busy_loop(unsigned int napi_id,
 6226		    bool (*loop_end)(void *, unsigned long),
 6227		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
 6228{
 6229	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
 6230	int (*napi_poll)(struct napi_struct *napi, int budget);
 6231	void *have_poll_lock = NULL;
 6232	struct napi_struct *napi;
 6233
 6234restart:
 6235	napi_poll = NULL;
 6236
 6237	rcu_read_lock();
 6238
 6239	napi = napi_by_id(napi_id);
 6240	if (!napi)
 6241		goto out;
 6242
 6243	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6244		preempt_disable();
 6245	for (;;) {
 6246		int work = 0;
 6247
 6248		local_bh_disable();
 6249		if (!napi_poll) {
 6250			unsigned long val = READ_ONCE(napi->state);
 6251
 6252			/* If multiple threads are competing for this napi,
 6253			 * we avoid dirtying napi->state as much as we can.
 6254			 */
 6255			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
 6256				   NAPIF_STATE_IN_BUSY_POLL)) {
 6257				if (prefer_busy_poll)
 6258					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6259				goto count;
 6260			}
 6261			if (cmpxchg(&napi->state, val,
 6262				    val | NAPIF_STATE_IN_BUSY_POLL |
 6263					  NAPIF_STATE_SCHED) != val) {
 6264				if (prefer_busy_poll)
 6265					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6266				goto count;
 6267			}
 6268			have_poll_lock = netpoll_poll_lock(napi);
 6269			napi_poll = napi->poll;
 6270		}
 6271		work = napi_poll(napi, budget);
 6272		trace_napi_poll(napi, work, budget);
 6273		gro_normal_list(napi);
 6274count:
 6275		if (work > 0)
 6276			__NET_ADD_STATS(dev_net(napi->dev),
 6277					LINUX_MIB_BUSYPOLLRXPACKETS, work);
 6278		local_bh_enable();
 6279
 6280		if (!loop_end || loop_end(loop_end_arg, start_time))
 6281			break;
 6282
 6283		if (unlikely(need_resched())) {
 6284			if (napi_poll)
 6285				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
 6286			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6287				preempt_enable();
 6288			rcu_read_unlock();
 6289			cond_resched();
 6290			if (loop_end(loop_end_arg, start_time))
 6291				return;
 6292			goto restart;
 6293		}
 6294		cpu_relax();
 6295	}
 6296	if (napi_poll)
 6297		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
 6298	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6299		preempt_enable();
 6300out:
 6301	rcu_read_unlock();
 6302}
 6303EXPORT_SYMBOL(napi_busy_loop);
 6304
 6305#endif /* CONFIG_NET_RX_BUSY_POLL */
 6306
 6307static void napi_hash_add(struct napi_struct *napi)
 6308{
 6309	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
 6310		return;
 6311
 6312	spin_lock(&napi_hash_lock);
 6313
 6314	/* 0..NR_CPUS range is reserved for sender_cpu use */
 6315	do {
 6316		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
 6317			napi_gen_id = MIN_NAPI_ID;
 6318	} while (napi_by_id(napi_gen_id));
 6319	napi->napi_id = napi_gen_id;
 6320
 6321	hlist_add_head_rcu(&napi->napi_hash_node,
 6322			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
 6323
 6324	spin_unlock(&napi_hash_lock);
 6325}
 6326
 6327/* Warning : caller is responsible to make sure rcu grace period
 6328 * is respected before freeing memory containing @napi
 6329 */
 6330static void napi_hash_del(struct napi_struct *napi)
 6331{
 6332	spin_lock(&napi_hash_lock);
 6333
 6334	hlist_del_init_rcu(&napi->napi_hash_node);
 6335
 6336	spin_unlock(&napi_hash_lock);
 6337}
 6338
 6339static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
 6340{
 6341	struct napi_struct *napi;
 6342
 6343	napi = container_of(timer, struct napi_struct, timer);
 6344
 6345	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
 6346	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
 6347	 */
 6348	if (!napi_disable_pending(napi) &&
 6349	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
 6350		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6351		__napi_schedule_irqoff(napi);
 6352	}
 6353
 6354	return HRTIMER_NORESTART;
 6355}
 6356
 6357static void init_gro_hash(struct napi_struct *napi)
 6358{
 6359	int i;
 6360
 6361	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6362		INIT_LIST_HEAD(&napi->gro_hash[i].list);
 6363		napi->gro_hash[i].count = 0;
 6364	}
 6365	napi->gro_bitmask = 0;
 6366}
 6367
 6368int dev_set_threaded(struct net_device *dev, bool threaded)
 6369{
 6370	struct napi_struct *napi;
 6371	int err = 0;
 6372
 6373	if (dev->threaded == threaded)
 6374		return 0;
 6375
 6376	if (threaded) {
 6377		list_for_each_entry(napi, &dev->napi_list, dev_list) {
 6378			if (!napi->thread) {
 6379				err = napi_kthread_create(napi);
 6380				if (err) {
 6381					threaded = false;
 6382					break;
 6383				}
 6384			}
 6385		}
 6386	}
 6387
 6388	dev->threaded = threaded;
 6389
 6390	/* Make sure kthread is created before THREADED bit
 6391	 * is set.
 6392	 */
 6393	smp_mb__before_atomic();
 6394
 6395	/* Setting/unsetting threaded mode on a napi might not immediately
 6396	 * take effect, if the current napi instance is actively being
 6397	 * polled. In this case, the switch between threaded mode and
 6398	 * softirq mode will happen in the next round of napi_schedule().
 6399	 * This should not cause hiccups/stalls to the live traffic.
 6400	 */
 6401	list_for_each_entry(napi, &dev->napi_list, dev_list)
 6402		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
 6403
 6404	return err;
 6405}
 6406EXPORT_SYMBOL(dev_set_threaded);
 6407
 6408/**
 6409 * netif_queue_set_napi - Associate queue with the napi
 6410 * @dev: device to which NAPI and queue belong
 6411 * @queue_index: Index of queue
 6412 * @type: queue type as RX or TX
 6413 * @napi: NAPI context, pass NULL to clear previously set NAPI
 6414 *
 6415 * Set queue with its corresponding napi context. This should be done after
 6416 * registering the NAPI handler for the queue-vector and the queues have been
 6417 * mapped to the corresponding interrupt vector.
 6418 */
 6419void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
 6420			  enum netdev_queue_type type, struct napi_struct *napi)
 6421{
 6422	struct netdev_rx_queue *rxq;
 6423	struct netdev_queue *txq;
 6424
 6425	if (WARN_ON_ONCE(napi && !napi->dev))
 6426		return;
 6427	if (dev->reg_state >= NETREG_REGISTERED)
 6428		ASSERT_RTNL();
 6429
 6430	switch (type) {
 6431	case NETDEV_QUEUE_TYPE_RX:
 6432		rxq = __netif_get_rx_queue(dev, queue_index);
 6433		rxq->napi = napi;
 6434		return;
 6435	case NETDEV_QUEUE_TYPE_TX:
 6436		txq = netdev_get_tx_queue(dev, queue_index);
 6437		txq->napi = napi;
 6438		return;
 6439	default:
 6440		return;
 6441	}
 6442}
 6443EXPORT_SYMBOL(netif_queue_set_napi);
 6444
 6445void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
 6446			   int (*poll)(struct napi_struct *, int), int weight)
 6447{
 6448	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
 6449		return;
 6450
 6451	INIT_LIST_HEAD(&napi->poll_list);
 6452	INIT_HLIST_NODE(&napi->napi_hash_node);
 6453	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 6454	napi->timer.function = napi_watchdog;
 6455	init_gro_hash(napi);
 6456	napi->skb = NULL;
 6457	INIT_LIST_HEAD(&napi->rx_list);
 6458	napi->rx_count = 0;
 6459	napi->poll = poll;
 6460	if (weight > NAPI_POLL_WEIGHT)
 6461		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
 6462				weight);
 6463	napi->weight = weight;
 
 6464	napi->dev = dev;
 6465#ifdef CONFIG_NETPOLL
 
 6466	napi->poll_owner = -1;
 6467#endif
 6468	napi->list_owner = -1;
 6469	set_bit(NAPI_STATE_SCHED, &napi->state);
 6470	set_bit(NAPI_STATE_NPSVC, &napi->state);
 6471	list_add_rcu(&napi->dev_list, &dev->napi_list);
 6472	napi_hash_add(napi);
 6473	napi_get_frags_check(napi);
 6474	/* Create kthread for this napi if dev->threaded is set.
 6475	 * Clear dev->threaded if kthread creation failed so that
 6476	 * threaded mode will not be enabled in napi_enable().
 6477	 */
 6478	if (dev->threaded && napi_kthread_create(napi))
 6479		dev->threaded = 0;
 6480	netif_napi_set_irq(napi, -1);
 6481}
 6482EXPORT_SYMBOL(netif_napi_add_weight);
 6483
 6484void napi_disable(struct napi_struct *n)
 6485{
 6486	unsigned long val, new;
 6487
 6488	might_sleep();
 6489	set_bit(NAPI_STATE_DISABLE, &n->state);
 6490
 6491	val = READ_ONCE(n->state);
 6492	do {
 6493		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
 6494			usleep_range(20, 200);
 6495			val = READ_ONCE(n->state);
 6496		}
 6497
 6498		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
 6499		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
 6500	} while (!try_cmpxchg(&n->state, &val, new));
 6501
 6502	hrtimer_cancel(&n->timer);
 6503
 6504	clear_bit(NAPI_STATE_DISABLE, &n->state);
 6505}
 6506EXPORT_SYMBOL(napi_disable);
 6507
 6508/**
 6509 *	napi_enable - enable NAPI scheduling
 6510 *	@n: NAPI context
 6511 *
 6512 * Resume NAPI from being scheduled on this context.
 6513 * Must be paired with napi_disable.
 6514 */
 6515void napi_enable(struct napi_struct *n)
 6516{
 6517	unsigned long new, val = READ_ONCE(n->state);
 6518
 6519	do {
 6520		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
 6521
 6522		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
 6523		if (n->dev->threaded && n->thread)
 6524			new |= NAPIF_STATE_THREADED;
 6525	} while (!try_cmpxchg(&n->state, &val, new));
 6526}
 6527EXPORT_SYMBOL(napi_enable);
 6528
 6529static void flush_gro_hash(struct napi_struct *napi)
 6530{
 6531	int i;
 6532
 6533	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6534		struct sk_buff *skb, *n;
 6535
 6536		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
 6537			kfree_skb(skb);
 6538		napi->gro_hash[i].count = 0;
 6539	}
 6540}
 6541
 6542/* Must be called in process context */
 6543void __netif_napi_del(struct napi_struct *napi)
 6544{
 6545	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
 6546		return;
 6547
 6548	napi_hash_del(napi);
 6549	list_del_rcu(&napi->dev_list);
 6550	napi_free_frags(napi);
 6551
 6552	flush_gro_hash(napi);
 6553	napi->gro_bitmask = 0;
 6554
 6555	if (napi->thread) {
 6556		kthread_stop(napi->thread);
 6557		napi->thread = NULL;
 6558	}
 6559}
 6560EXPORT_SYMBOL(__netif_napi_del);
 6561
 6562static int __napi_poll(struct napi_struct *n, bool *repoll)
 6563{
 6564	int work, weight;
 6565
 6566	weight = n->weight;
 6567
 6568	/* This NAPI_STATE_SCHED test is for avoiding a race
 6569	 * with netpoll's poll_napi().  Only the entity which
 6570	 * obtains the lock and sees NAPI_STATE_SCHED set will
 6571	 * actually make the ->poll() call.  Therefore we avoid
 6572	 * accidentally calling ->poll() when NAPI is not scheduled.
 6573	 */
 6574	work = 0;
 6575	if (napi_is_scheduled(n)) {
 6576		work = n->poll(n, weight);
 6577		trace_napi_poll(n, work, weight);
 6578
 6579		xdp_do_check_flushed(n);
 6580	}
 6581
 6582	if (unlikely(work > weight))
 6583		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
 6584				n->poll, work, weight);
 6585
 6586	if (likely(work < weight))
 6587		return work;
 6588
 6589	/* Drivers must not modify the NAPI state if they
 6590	 * consume the entire weight.  In such cases this code
 6591	 * still "owns" the NAPI instance and therefore can
 6592	 * move the instance around on the list at-will.
 6593	 */
 6594	if (unlikely(napi_disable_pending(n))) {
 6595		napi_complete(n);
 6596		return work;
 6597	}
 6598
 6599	/* The NAPI context has more processing work, but busy-polling
 6600	 * is preferred. Exit early.
 6601	 */
 6602	if (napi_prefer_busy_poll(n)) {
 6603		if (napi_complete_done(n, work)) {
 6604			/* If timeout is not set, we need to make sure
 6605			 * that the NAPI is re-scheduled.
 6606			 */
 6607			napi_schedule(n);
 6608		}
 6609		return work;
 6610	}
 6611
 6612	if (n->gro_bitmask) {
 6613		/* flush too old packets
 6614		 * If HZ < 1000, flush all packets.
 6615		 */
 6616		napi_gro_flush(n, HZ >= 1000);
 6617	}
 6618
 6619	gro_normal_list(n);
 6620
 6621	/* Some drivers may have called napi_schedule
 6622	 * prior to exhausting their budget.
 6623	 */
 6624	if (unlikely(!list_empty(&n->poll_list))) {
 6625		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
 6626			     n->dev ? n->dev->name : "backlog");
 6627		return work;
 6628	}
 6629
 6630	*repoll = true;
 6631
 6632	return work;
 
 6633}
 
 6634
 6635static int napi_poll(struct napi_struct *n, struct list_head *repoll)
 6636{
 6637	bool do_repoll = false;
 
 
 6638	void *have;
 6639	int work;
 6640
 6641	list_del_init(&n->poll_list);
 6642
 6643	have = netpoll_poll_lock(n);
 
 
 6644
 6645	work = __napi_poll(n, &do_repoll);
 
 
 
 
 
 6646
 6647	if (do_repoll)
 6648		list_add_tail(&n->poll_list, repoll);
 6649
 6650	netpoll_poll_unlock(have);
 
 
 
 
 
 6651
 6652	return work;
 6653}
 6654
 6655static int napi_thread_wait(struct napi_struct *napi)
 6656{
 6657	bool woken = false;
 6658
 6659	set_current_state(TASK_INTERRUPTIBLE);
 6660
 6661	while (!kthread_should_stop()) {
 6662		/* Testing SCHED_THREADED bit here to make sure the current
 6663		 * kthread owns this napi and could poll on this napi.
 6664		 * Testing SCHED bit is not enough because SCHED bit might be
 6665		 * set by some other busy poll thread or by napi_disable().
 6666		 */
 6667		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
 6668			WARN_ON(!list_empty(&napi->poll_list));
 6669			__set_current_state(TASK_RUNNING);
 6670			return 0;
 6671		}
 6672
 6673		schedule();
 6674		/* woken being true indicates this thread owns this napi. */
 6675		woken = true;
 6676		set_current_state(TASK_INTERRUPTIBLE);
 6677	}
 6678	__set_current_state(TASK_RUNNING);
 6679
 6680	return -1;
 6681}
 6682
 6683static void skb_defer_free_flush(struct softnet_data *sd)
 6684{
 6685	struct sk_buff *skb, *next;
 6686
 6687	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
 6688	if (!READ_ONCE(sd->defer_list))
 6689		return;
 6690
 6691	spin_lock(&sd->defer_lock);
 6692	skb = sd->defer_list;
 6693	sd->defer_list = NULL;
 6694	sd->defer_count = 0;
 6695	spin_unlock(&sd->defer_lock);
 6696
 6697	while (skb != NULL) {
 6698		next = skb->next;
 6699		napi_consume_skb(skb, 1);
 6700		skb = next;
 6701	}
 6702}
 6703
 6704static int napi_threaded_poll(void *data)
 6705{
 6706	struct napi_struct *napi = data;
 6707	struct softnet_data *sd;
 6708	void *have;
 6709
 6710	while (!napi_thread_wait(napi)) {
 6711		for (;;) {
 6712			bool repoll = false;
 6713
 6714			local_bh_disable();
 6715			sd = this_cpu_ptr(&softnet_data);
 6716			sd->in_napi_threaded_poll = true;
 6717
 6718			have = netpoll_poll_lock(napi);
 6719			__napi_poll(napi, &repoll);
 6720			netpoll_poll_unlock(have);
 6721
 6722			sd->in_napi_threaded_poll = false;
 6723			barrier();
 6724
 6725			if (sd_has_rps_ipi_waiting(sd)) {
 6726				local_irq_disable();
 6727				net_rps_action_and_irq_enable(sd);
 6728			}
 6729			skb_defer_free_flush(sd);
 6730			local_bh_enable();
 6731
 6732			if (!repoll)
 6733				break;
 6734
 6735			cond_resched();
 6736		}
 6737	}
 6738	return 0;
 6739}
 6740
 6741static __latent_entropy void net_rx_action(struct softirq_action *h)
 6742{
 6743	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 6744	unsigned long time_limit = jiffies +
 6745		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
 6746	int budget = READ_ONCE(netdev_budget);
 6747	LIST_HEAD(list);
 6748	LIST_HEAD(repoll);
 6749
 6750start:
 6751	sd->in_net_rx_action = true;
 6752	local_irq_disable();
 6753	list_splice_init(&sd->poll_list, &list);
 6754	local_irq_enable();
 6755
 6756	for (;;) {
 6757		struct napi_struct *n;
 6758
 6759		skb_defer_free_flush(sd);
 6760
 6761		if (list_empty(&list)) {
 6762			if (list_empty(&repoll)) {
 6763				sd->in_net_rx_action = false;
 6764				barrier();
 6765				/* We need to check if ____napi_schedule()
 6766				 * had refilled poll_list while
 6767				 * sd->in_net_rx_action was true.
 6768				 */
 6769				if (!list_empty(&sd->poll_list))
 6770					goto start;
 6771				if (!sd_has_rps_ipi_waiting(sd))
 6772					goto end;
 6773			}
 6774			break;
 6775		}
 6776
 6777		n = list_first_entry(&list, struct napi_struct, poll_list);
 6778		budget -= napi_poll(n, &repoll);
 6779
 6780		/* If softirq window is exhausted then punt.
 6781		 * Allow this to run for 2 jiffies since which will allow
 6782		 * an average latency of 1.5/HZ.
 6783		 */
 6784		if (unlikely(budget <= 0 ||
 6785			     time_after_eq(jiffies, time_limit))) {
 6786			sd->time_squeeze++;
 6787			break;
 6788		}
 6789	}
 6790
 6791	local_irq_disable();
 6792
 6793	list_splice_tail_init(&sd->poll_list, &list);
 6794	list_splice_tail(&repoll, &list);
 6795	list_splice(&list, &sd->poll_list);
 6796	if (!list_empty(&sd->poll_list))
 6797		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 6798	else
 6799		sd->in_net_rx_action = false;
 6800
 6801	net_rps_action_and_irq_enable(sd);
 6802end:;
 6803}
 6804
 6805struct netdev_adjacent {
 6806	struct net_device *dev;
 6807	netdevice_tracker dev_tracker;
 
 
 
 
 6808
 6809	/* upper master flag, there can only be one master device per list */
 6810	bool master;
 6811
 6812	/* lookup ignore flag */
 6813	bool ignore;
 6814
 6815	/* counter for the number of times this device was added to us */
 6816	u16 ref_nr;
 6817
 6818	/* private field for the users */
 6819	void *private;
 6820
 6821	struct list_head list;
 6822	struct rcu_head rcu;
 6823};
 6824
 6825static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
 6826						 struct list_head *adj_list)
 6827{
 6828	struct netdev_adjacent *adj;
 6829
 6830	list_for_each_entry(adj, adj_list, list) {
 6831		if (adj->dev == adj_dev)
 6832			return adj;
 6833	}
 6834	return NULL;
 6835}
 6836
 6837static int ____netdev_has_upper_dev(struct net_device *upper_dev,
 6838				    struct netdev_nested_priv *priv)
 6839{
 6840	struct net_device *dev = (struct net_device *)priv->data;
 6841
 6842	return upper_dev == dev;
 6843}
 6844
 6845/**
 6846 * netdev_has_upper_dev - Check if device is linked to an upper device
 6847 * @dev: device
 6848 * @upper_dev: upper device to check
 6849 *
 6850 * Find out if a device is linked to specified upper device and return true
 6851 * in case it is. Note that this checks only immediate upper device,
 6852 * not through a complete stack of devices. The caller must hold the RTNL lock.
 6853 */
 6854bool netdev_has_upper_dev(struct net_device *dev,
 6855			  struct net_device *upper_dev)
 6856{
 6857	struct netdev_nested_priv priv = {
 6858		.data = (void *)upper_dev,
 6859	};
 6860
 6861	ASSERT_RTNL();
 6862
 6863	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6864					     &priv);
 6865}
 6866EXPORT_SYMBOL(netdev_has_upper_dev);
 6867
 6868/**
 6869 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
 6870 * @dev: device
 6871 * @upper_dev: upper device to check
 6872 *
 6873 * Find out if a device is linked to specified upper device and return true
 6874 * in case it is. Note that this checks the entire upper device chain.
 6875 * The caller must hold rcu lock.
 6876 */
 6877
 6878bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
 6879				  struct net_device *upper_dev)
 6880{
 6881	struct netdev_nested_priv priv = {
 6882		.data = (void *)upper_dev,
 6883	};
 6884
 6885	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6886					       &priv);
 6887}
 6888EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
 6889
 6890/**
 6891 * netdev_has_any_upper_dev - Check if device is linked to some device
 6892 * @dev: device
 6893 *
 6894 * Find out if a device is linked to an upper device and return true in case
 6895 * it is. The caller must hold the RTNL lock.
 6896 */
 6897bool netdev_has_any_upper_dev(struct net_device *dev)
 6898{
 6899	ASSERT_RTNL();
 6900
 6901	return !list_empty(&dev->adj_list.upper);
 6902}
 6903EXPORT_SYMBOL(netdev_has_any_upper_dev);
 6904
 6905/**
 6906 * netdev_master_upper_dev_get - Get master upper device
 6907 * @dev: device
 6908 *
 6909 * Find a master upper device and return pointer to it or NULL in case
 6910 * it's not there. The caller must hold the RTNL lock.
 6911 */
 6912struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
 6913{
 6914	struct netdev_adjacent *upper;
 6915
 6916	ASSERT_RTNL();
 6917
 6918	if (list_empty(&dev->adj_list.upper))
 6919		return NULL;
 6920
 6921	upper = list_first_entry(&dev->adj_list.upper,
 6922				 struct netdev_adjacent, list);
 6923	if (likely(upper->master))
 6924		return upper->dev;
 6925	return NULL;
 6926}
 6927EXPORT_SYMBOL(netdev_master_upper_dev_get);
 6928
 6929static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
 6930{
 6931	struct netdev_adjacent *upper;
 
 6932
 6933	ASSERT_RTNL();
 
 
 6934
 6935	if (list_empty(&dev->adj_list.upper))
 6936		return NULL;
 6937
 6938	upper = list_first_entry(&dev->adj_list.upper,
 6939				 struct netdev_adjacent, list);
 6940	if (likely(upper->master) && !upper->ignore)
 6941		return upper->dev;
 6942	return NULL;
 6943}
 6944
 6945/**
 6946 * netdev_has_any_lower_dev - Check if device is linked to some device
 6947 * @dev: device
 6948 *
 6949 * Find out if a device is linked to a lower device and return true in case
 6950 * it is. The caller must hold the RTNL lock.
 6951 */
 6952static bool netdev_has_any_lower_dev(struct net_device *dev)
 6953{
 6954	ASSERT_RTNL();
 6955
 6956	return !list_empty(&dev->adj_list.lower);
 
 
 6957}
 6958
 6959void *netdev_adjacent_get_private(struct list_head *adj_list)
 6960{
 6961	struct netdev_adjacent *adj;
 6962
 6963	adj = list_entry(adj_list, struct netdev_adjacent, list);
 6964
 6965	return adj->private;
 6966}
 6967EXPORT_SYMBOL(netdev_adjacent_get_private);
 6968
 6969/**
 6970 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
 6971 * @dev: device
 6972 * @iter: list_head ** of the current position
 6973 *
 6974 * Gets the next device from the dev's upper list, starting from iter
 6975 * position. The caller must hold RCU read lock.
 6976 */
 6977struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
 6978						 struct list_head **iter)
 6979{
 6980	struct netdev_adjacent *upper;
 6981
 6982	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 6983
 6984	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 6985
 6986	if (&upper->list == &dev->adj_list.upper)
 6987		return NULL;
 6988
 6989	*iter = &upper->list;
 6990
 6991	return upper->dev;
 6992}
 6993EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
 6994
 6995static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
 6996						  struct list_head **iter,
 6997						  bool *ignore)
 6998{
 6999	struct netdev_adjacent *upper;
 
 
 
 
 
 7000
 7001	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
 
 
 7002
 7003	if (&upper->list == &dev->adj_list.upper)
 7004		return NULL;
 7005
 7006	*iter = &upper->list;
 7007	*ignore = upper->ignore;
 7008
 7009	return upper->dev;
 7010}
 
 7011
 7012static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
 7013						    struct list_head **iter)
 7014{
 7015	struct netdev_adjacent *upper;
 7016
 7017	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 7018
 7019	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7020
 7021	if (&upper->list == &dev->adj_list.upper)
 7022		return NULL;
 7023
 7024	*iter = &upper->list;
 7025
 7026	return upper->dev;
 7027}
 7028
 7029static int __netdev_walk_all_upper_dev(struct net_device *dev,
 7030				       int (*fn)(struct net_device *dev,
 7031					 struct netdev_nested_priv *priv),
 7032				       struct netdev_nested_priv *priv)
 7033{
 7034	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7035	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7036	int ret, cur = 0;
 7037	bool ignore;
 7038
 7039	now = dev;
 7040	iter = &dev->adj_list.upper;
 7041
 7042	while (1) {
 7043		if (now != dev) {
 7044			ret = fn(now, priv);
 7045			if (ret)
 7046				return ret;
 7047		}
 7048
 7049		next = NULL;
 7050		while (1) {
 7051			udev = __netdev_next_upper_dev(now, &iter, &ignore);
 7052			if (!udev)
 7053				break;
 7054			if (ignore)
 7055				continue;
 7056
 7057			next = udev;
 7058			niter = &udev->adj_list.upper;
 7059			dev_stack[cur] = now;
 7060			iter_stack[cur++] = iter;
 7061			break;
 7062		}
 7063
 7064		if (!next) {
 7065			if (!cur)
 7066				return 0;
 7067			next = dev_stack[--cur];
 7068			niter = iter_stack[cur];
 7069		}
 7070
 7071		now = next;
 7072		iter = niter;
 7073	}
 7074
 7075	return 0;
 7076}
 
 
 7077
 7078int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
 7079				  int (*fn)(struct net_device *dev,
 7080					    struct netdev_nested_priv *priv),
 7081				  struct netdev_nested_priv *priv)
 7082{
 7083	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7084	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7085	int ret, cur = 0;
 7086
 7087	now = dev;
 7088	iter = &dev->adj_list.upper;
 7089
 7090	while (1) {
 7091		if (now != dev) {
 7092			ret = fn(now, priv);
 7093			if (ret)
 7094				return ret;
 7095		}
 7096
 7097		next = NULL;
 7098		while (1) {
 7099			udev = netdev_next_upper_dev_rcu(now, &iter);
 7100			if (!udev)
 7101				break;
 7102
 7103			next = udev;
 7104			niter = &udev->adj_list.upper;
 7105			dev_stack[cur] = now;
 7106			iter_stack[cur++] = iter;
 7107			break;
 7108		}
 7109
 7110		if (!next) {
 7111			if (!cur)
 7112				return 0;
 7113			next = dev_stack[--cur];
 7114			niter = iter_stack[cur];
 7115		}
 7116
 7117		now = next;
 7118		iter = niter;
 7119	}
 7120
 7121	return 0;
 7122}
 7123EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
 7124
 7125static bool __netdev_has_upper_dev(struct net_device *dev,
 7126				   struct net_device *upper_dev)
 7127{
 7128	struct netdev_nested_priv priv = {
 7129		.flags = 0,
 7130		.data = (void *)upper_dev,
 7131	};
 7132
 7133	ASSERT_RTNL();
 7134
 7135	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
 7136					   &priv);
 7137}
 7138
 7139/**
 7140 * netdev_lower_get_next_private - Get the next ->private from the
 7141 *				   lower neighbour list
 7142 * @dev: device
 7143 * @iter: list_head ** of the current position
 7144 *
 7145 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7146 * list, starting from iter position. The caller must hold either hold the
 7147 * RTNL lock or its own locking that guarantees that the neighbour lower
 7148 * list will remain unchanged.
 7149 */
 7150void *netdev_lower_get_next_private(struct net_device *dev,
 7151				    struct list_head **iter)
 7152{
 7153	struct netdev_adjacent *lower;
 
 
 
 
 
 
 
 
 
 
 7154
 7155	lower = list_entry(*iter, struct netdev_adjacent, list);
 7156
 7157	if (&lower->list == &dev->adj_list.lower)
 7158		return NULL;
 7159
 7160	*iter = lower->list.next;
 7161
 7162	return lower->private;
 7163}
 7164EXPORT_SYMBOL(netdev_lower_get_next_private);
 7165
 7166/**
 7167 * netdev_lower_get_next_private_rcu - Get the next ->private from the
 7168 *				       lower neighbour list, RCU
 7169 *				       variant
 7170 * @dev: device
 7171 * @iter: list_head ** of the current position
 7172 *
 7173 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7174 * list, starting from iter position. The caller must hold RCU read lock.
 7175 */
 7176void *netdev_lower_get_next_private_rcu(struct net_device *dev,
 7177					struct list_head **iter)
 7178{
 7179	struct netdev_adjacent *lower;
 
 7180
 7181	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 
 
 
 7182
 7183	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 
 
 7184
 7185	if (&lower->list == &dev->adj_list.lower)
 7186		return NULL;
 7187
 7188	*iter = &lower->list;
 7189
 7190	return lower->private;
 7191}
 7192EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
 7193
 7194/**
 7195 * netdev_lower_get_next - Get the next device from the lower neighbour
 7196 *                         list
 7197 * @dev: device
 7198 * @iter: list_head ** of the current position
 7199 *
 7200 * Gets the next netdev_adjacent from the dev's lower neighbour
 7201 * list, starting from iter position. The caller must hold RTNL lock or
 7202 * its own locking that guarantees that the neighbour lower
 7203 * list will remain unchanged.
 7204 */
 7205void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
 
 7206{
 7207	struct netdev_adjacent *lower;
 7208
 7209	lower = list_entry(*iter, struct netdev_adjacent, list);
 7210
 7211	if (&lower->list == &dev->adj_list.lower)
 7212		return NULL;
 7213
 7214	*iter = lower->list.next;
 7215
 7216	return lower->dev;
 7217}
 7218EXPORT_SYMBOL(netdev_lower_get_next);
 7219
 7220static struct net_device *netdev_next_lower_dev(struct net_device *dev,
 7221						struct list_head **iter)
 7222{
 7223	struct netdev_adjacent *lower;
 7224
 7225	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7226
 7227	if (&lower->list == &dev->adj_list.lower)
 7228		return NULL;
 7229
 7230	*iter = &lower->list;
 7231
 7232	return lower->dev;
 7233}
 7234
 7235static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
 7236						  struct list_head **iter,
 7237						  bool *ignore)
 7238{
 7239	struct netdev_adjacent *lower;
 7240
 7241	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7242
 7243	if (&lower->list == &dev->adj_list.lower)
 7244		return NULL;
 7245
 7246	*iter = &lower->list;
 7247	*ignore = lower->ignore;
 7248
 7249	return lower->dev;
 7250}
 7251
 7252int netdev_walk_all_lower_dev(struct net_device *dev,
 7253			      int (*fn)(struct net_device *dev,
 7254					struct netdev_nested_priv *priv),
 7255			      struct netdev_nested_priv *priv)
 7256{
 7257	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7258	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7259	int ret, cur = 0;
 7260
 7261	now = dev;
 7262	iter = &dev->adj_list.lower;
 7263
 7264	while (1) {
 7265		if (now != dev) {
 7266			ret = fn(now, priv);
 7267			if (ret)
 7268				return ret;
 7269		}
 7270
 7271		next = NULL;
 7272		while (1) {
 7273			ldev = netdev_next_lower_dev(now, &iter);
 7274			if (!ldev)
 7275				break;
 7276
 7277			next = ldev;
 7278			niter = &ldev->adj_list.lower;
 7279			dev_stack[cur] = now;
 7280			iter_stack[cur++] = iter;
 7281			break;
 7282		}
 7283
 7284		if (!next) {
 7285			if (!cur)
 7286				return 0;
 7287			next = dev_stack[--cur];
 7288			niter = iter_stack[cur];
 7289		}
 7290
 7291		now = next;
 7292		iter = niter;
 7293	}
 7294
 7295	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7296}
 7297EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
 7298
 7299static int __netdev_walk_all_lower_dev(struct net_device *dev,
 7300				       int (*fn)(struct net_device *dev,
 7301					 struct netdev_nested_priv *priv),
 7302				       struct netdev_nested_priv *priv)
 7303{
 7304	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7305	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7306	int ret, cur = 0;
 7307	bool ignore;
 7308
 7309	now = dev;
 7310	iter = &dev->adj_list.lower;
 7311
 7312	while (1) {
 7313		if (now != dev) {
 7314			ret = fn(now, priv);
 7315			if (ret)
 7316				return ret;
 7317		}
 7318
 7319		next = NULL;
 7320		while (1) {
 7321			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
 7322			if (!ldev)
 7323				break;
 7324			if (ignore)
 7325				continue;
 7326
 7327			next = ldev;
 7328			niter = &ldev->adj_list.lower;
 7329			dev_stack[cur] = now;
 7330			iter_stack[cur++] = iter;
 7331			break;
 7332		}
 7333
 7334		if (!next) {
 7335			if (!cur)
 7336				return 0;
 7337			next = dev_stack[--cur];
 7338			niter = iter_stack[cur];
 7339		}
 7340
 7341		now = next;
 7342		iter = niter;
 7343	}
 7344
 7345	return 0;
 7346}
 7347
 7348struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
 7349					     struct list_head **iter)
 7350{
 7351	struct netdev_adjacent *lower;
 7352
 7353	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7354	if (&lower->list == &dev->adj_list.lower)
 7355		return NULL;
 7356
 7357	*iter = &lower->list;
 7358
 7359	return lower->dev;
 7360}
 7361EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
 7362
 7363static u8 __netdev_upper_depth(struct net_device *dev)
 7364{
 7365	struct net_device *udev;
 7366	struct list_head *iter;
 7367	u8 max_depth = 0;
 7368	bool ignore;
 7369
 7370	for (iter = &dev->adj_list.upper,
 7371	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
 7372	     udev;
 7373	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
 7374		if (ignore)
 7375			continue;
 7376		if (max_depth < udev->upper_level)
 7377			max_depth = udev->upper_level;
 7378	}
 7379
 7380	return max_depth;
 7381}
 7382
 7383static u8 __netdev_lower_depth(struct net_device *dev)
 7384{
 7385	struct net_device *ldev;
 7386	struct list_head *iter;
 7387	u8 max_depth = 0;
 7388	bool ignore;
 7389
 7390	for (iter = &dev->adj_list.lower,
 7391	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
 7392	     ldev;
 7393	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
 7394		if (ignore)
 7395			continue;
 7396		if (max_depth < ldev->lower_level)
 7397			max_depth = ldev->lower_level;
 7398	}
 7399
 7400	return max_depth;
 7401}
 7402
 7403static int __netdev_update_upper_level(struct net_device *dev,
 7404				       struct netdev_nested_priv *__unused)
 7405{
 7406	dev->upper_level = __netdev_upper_depth(dev) + 1;
 7407	return 0;
 7408}
 7409
 7410#ifdef CONFIG_LOCKDEP
 7411static LIST_HEAD(net_unlink_list);
 7412
 7413static void net_unlink_todo(struct net_device *dev)
 7414{
 7415	if (list_empty(&dev->unlink_list))
 7416		list_add_tail(&dev->unlink_list, &net_unlink_list);
 7417}
 7418#endif
 7419
 7420static int __netdev_update_lower_level(struct net_device *dev,
 7421				       struct netdev_nested_priv *priv)
 7422{
 7423	dev->lower_level = __netdev_lower_depth(dev) + 1;
 7424
 7425#ifdef CONFIG_LOCKDEP
 7426	if (!priv)
 7427		return 0;
 7428
 7429	if (priv->flags & NESTED_SYNC_IMM)
 7430		dev->nested_level = dev->lower_level - 1;
 7431	if (priv->flags & NESTED_SYNC_TODO)
 7432		net_unlink_todo(dev);
 7433#endif
 7434	return 0;
 7435}
 7436
 7437int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
 7438				  int (*fn)(struct net_device *dev,
 7439					    struct netdev_nested_priv *priv),
 7440				  struct netdev_nested_priv *priv)
 7441{
 7442	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7443	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7444	int ret, cur = 0;
 7445
 7446	now = dev;
 7447	iter = &dev->adj_list.lower;
 7448
 7449	while (1) {
 7450		if (now != dev) {
 7451			ret = fn(now, priv);
 7452			if (ret)
 7453				return ret;
 7454		}
 7455
 7456		next = NULL;
 7457		while (1) {
 7458			ldev = netdev_next_lower_dev_rcu(now, &iter);
 7459			if (!ldev)
 7460				break;
 7461
 7462			next = ldev;
 7463			niter = &ldev->adj_list.lower;
 7464			dev_stack[cur] = now;
 7465			iter_stack[cur++] = iter;
 7466			break;
 7467		}
 7468
 7469		if (!next) {
 7470			if (!cur)
 7471				return 0;
 7472			next = dev_stack[--cur];
 7473			niter = iter_stack[cur];
 7474		}
 7475
 7476		now = next;
 7477		iter = niter;
 7478	}
 7479
 7480	return 0;
 7481}
 7482EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
 7483
 7484/**
 7485 * netdev_lower_get_first_private_rcu - Get the first ->private from the
 7486 *				       lower neighbour list, RCU
 7487 *				       variant
 7488 * @dev: device
 7489 *
 7490 * Gets the first netdev_adjacent->private from the dev's lower neighbour
 7491 * list. The caller must hold RCU read lock.
 7492 */
 7493void *netdev_lower_get_first_private_rcu(struct net_device *dev)
 7494{
 7495	struct netdev_adjacent *lower;
 7496
 7497	lower = list_first_or_null_rcu(&dev->adj_list.lower,
 7498			struct netdev_adjacent, list);
 7499	if (lower)
 7500		return lower->private;
 7501	return NULL;
 7502}
 7503EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
 7504
 7505/**
 7506 * netdev_master_upper_dev_get_rcu - Get master upper device
 7507 * @dev: device
 7508 *
 7509 * Find a master upper device and return pointer to it or NULL in case
 7510 * it's not there. The caller must hold the RCU read lock.
 7511 */
 7512struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
 7513{
 7514	struct netdev_adjacent *upper;
 7515
 7516	upper = list_first_or_null_rcu(&dev->adj_list.upper,
 7517				       struct netdev_adjacent, list);
 7518	if (upper && likely(upper->master))
 7519		return upper->dev;
 7520	return NULL;
 7521}
 7522EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
 7523
 7524static int netdev_adjacent_sysfs_add(struct net_device *dev,
 7525			      struct net_device *adj_dev,
 7526			      struct list_head *dev_list)
 7527{
 7528	char linkname[IFNAMSIZ+7];
 7529
 7530	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7531		"upper_%s" : "lower_%s", adj_dev->name);
 7532	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
 7533				 linkname);
 7534}
 7535static void netdev_adjacent_sysfs_del(struct net_device *dev,
 7536			       char *name,
 7537			       struct list_head *dev_list)
 7538{
 7539	char linkname[IFNAMSIZ+7];
 7540
 7541	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7542		"upper_%s" : "lower_%s", name);
 7543	sysfs_remove_link(&(dev->dev.kobj), linkname);
 7544}
 7545
 7546static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
 7547						 struct net_device *adj_dev,
 7548						 struct list_head *dev_list)
 7549{
 7550	return (dev_list == &dev->adj_list.upper ||
 7551		dev_list == &dev->adj_list.lower) &&
 7552		net_eq(dev_net(dev), dev_net(adj_dev));
 7553}
 7554
 7555static int __netdev_adjacent_dev_insert(struct net_device *dev,
 7556					struct net_device *adj_dev,
 7557					struct list_head *dev_list,
 7558					void *private, bool master)
 7559{
 7560	struct netdev_adjacent *adj;
 7561	int ret;
 7562
 7563	adj = __netdev_find_adj(adj_dev, dev_list);
 7564
 7565	if (adj) {
 7566		adj->ref_nr += 1;
 7567		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
 7568			 dev->name, adj_dev->name, adj->ref_nr);
 7569
 7570		return 0;
 7571	}
 7572
 7573	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
 7574	if (!adj)
 7575		return -ENOMEM;
 7576
 7577	adj->dev = adj_dev;
 7578	adj->master = master;
 7579	adj->ref_nr = 1;
 7580	adj->private = private;
 7581	adj->ignore = false;
 7582	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
 7583
 7584	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
 7585		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
 7586
 7587	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
 7588		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
 7589		if (ret)
 7590			goto free_adj;
 7591	}
 7592
 7593	/* Ensure that master link is always the first item in list. */
 7594	if (master) {
 7595		ret = sysfs_create_link(&(dev->dev.kobj),
 7596					&(adj_dev->dev.kobj), "master");
 7597		if (ret)
 7598			goto remove_symlinks;
 7599
 7600		list_add_rcu(&adj->list, dev_list);
 7601	} else {
 7602		list_add_tail_rcu(&adj->list, dev_list);
 7603	}
 7604
 
 
 
 
 7605	return 0;
 7606
 7607remove_symlinks:
 7608	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7609		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7610free_adj:
 7611	netdev_put(adj_dev, &adj->dev_tracker);
 7612	kfree(adj);
 7613
 7614	return ret;
 7615}
 7616
 7617static void __netdev_adjacent_dev_remove(struct net_device *dev,
 7618					 struct net_device *adj_dev,
 7619					 u16 ref_nr,
 7620					 struct list_head *dev_list)
 7621{
 7622	struct netdev_adjacent *adj;
 7623
 7624	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
 7625		 dev->name, adj_dev->name, ref_nr);
 7626
 7627	adj = __netdev_find_adj(adj_dev, dev_list);
 7628
 7629	if (!adj) {
 7630		pr_err("Adjacency does not exist for device %s from %s\n",
 7631		       dev->name, adj_dev->name);
 7632		WARN_ON(1);
 7633		return;
 7634	}
 7635
 7636	if (adj->ref_nr > ref_nr) {
 7637		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
 7638			 dev->name, adj_dev->name, ref_nr,
 7639			 adj->ref_nr - ref_nr);
 7640		adj->ref_nr -= ref_nr;
 7641		return;
 7642	}
 7643
 7644	if (adj->master)
 7645		sysfs_remove_link(&(dev->dev.kobj), "master");
 7646
 7647	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7648		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7649
 7650	list_del_rcu(&adj->list);
 7651	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
 7652		 adj_dev->name, dev->name, adj_dev->name);
 7653	netdev_put(adj_dev, &adj->dev_tracker);
 7654	kfree_rcu(adj, rcu);
 7655}
 7656
 7657static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
 7658					    struct net_device *upper_dev,
 7659					    struct list_head *up_list,
 7660					    struct list_head *down_list,
 7661					    void *private, bool master)
 7662{
 7663	int ret;
 7664
 7665	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
 7666					   private, master);
 7667	if (ret)
 7668		return ret;
 7669
 7670	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
 7671					   private, false);
 7672	if (ret) {
 7673		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
 7674		return ret;
 7675	}
 7676
 7677	return 0;
 7678}
 7679
 7680static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
 7681					       struct net_device *upper_dev,
 7682					       u16 ref_nr,
 7683					       struct list_head *up_list,
 7684					       struct list_head *down_list)
 7685{
 7686	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
 7687	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
 7688}
 7689
 7690static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
 7691						struct net_device *upper_dev,
 7692						void *private, bool master)
 7693{
 7694	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
 7695						&dev->adj_list.upper,
 7696						&upper_dev->adj_list.lower,
 7697						private, master);
 7698}
 7699
 7700static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
 7701						   struct net_device *upper_dev)
 7702{
 7703	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
 7704					   &dev->adj_list.upper,
 7705					   &upper_dev->adj_list.lower);
 7706}
 7707
 7708static int __netdev_upper_dev_link(struct net_device *dev,
 7709				   struct net_device *upper_dev, bool master,
 7710				   void *upper_priv, void *upper_info,
 7711				   struct netdev_nested_priv *priv,
 7712				   struct netlink_ext_ack *extack)
 7713{
 7714	struct netdev_notifier_changeupper_info changeupper_info = {
 7715		.info = {
 7716			.dev = dev,
 7717			.extack = extack,
 7718		},
 7719		.upper_dev = upper_dev,
 7720		.master = master,
 7721		.linking = true,
 7722		.upper_info = upper_info,
 7723	};
 7724	struct net_device *master_dev;
 7725	int ret = 0;
 7726
 7727	ASSERT_RTNL();
 7728
 7729	if (dev == upper_dev)
 7730		return -EBUSY;
 7731
 7732	/* To prevent loops, check if dev is not upper device to upper_dev. */
 7733	if (__netdev_has_upper_dev(upper_dev, dev))
 7734		return -EBUSY;
 7735
 7736	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
 7737		return -EMLINK;
 7738
 7739	if (!master) {
 7740		if (__netdev_has_upper_dev(dev, upper_dev))
 7741			return -EEXIST;
 7742	} else {
 7743		master_dev = __netdev_master_upper_dev_get(dev);
 7744		if (master_dev)
 7745			return master_dev == upper_dev ? -EEXIST : -EBUSY;
 7746	}
 7747
 7748	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7749					    &changeupper_info.info);
 7750	ret = notifier_to_errno(ret);
 7751	if (ret)
 7752		return ret;
 7753
 7754	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
 7755						   master);
 7756	if (ret)
 7757		return ret;
 7758
 7759	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 7760					    &changeupper_info.info);
 7761	ret = notifier_to_errno(ret);
 7762	if (ret)
 7763		goto rollback;
 7764
 7765	__netdev_update_upper_level(dev, NULL);
 7766	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7767
 7768	__netdev_update_lower_level(upper_dev, priv);
 7769	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7770				    priv);
 7771
 7772	return 0;
 7773
 7774rollback:
 7775	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7776
 7777	return ret;
 7778}
 7779
 7780/**
 7781 * netdev_upper_dev_link - Add a link to the upper device
 7782 * @dev: device
 7783 * @upper_dev: new upper device
 7784 * @extack: netlink extended ack
 7785 *
 7786 * Adds a link to device which is upper to this one. The caller must hold
 7787 * the RTNL lock. On a failure a negative errno code is returned.
 7788 * On success the reference counts are adjusted and the function
 7789 * returns zero.
 7790 */
 7791int netdev_upper_dev_link(struct net_device *dev,
 7792			  struct net_device *upper_dev,
 7793			  struct netlink_ext_ack *extack)
 7794{
 7795	struct netdev_nested_priv priv = {
 7796		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7797		.data = NULL,
 7798	};
 7799
 7800	return __netdev_upper_dev_link(dev, upper_dev, false,
 7801				       NULL, NULL, &priv, extack);
 7802}
 7803EXPORT_SYMBOL(netdev_upper_dev_link);
 7804
 7805/**
 7806 * netdev_master_upper_dev_link - Add a master link to the upper device
 7807 * @dev: device
 7808 * @upper_dev: new upper device
 7809 * @upper_priv: upper device private
 7810 * @upper_info: upper info to be passed down via notifier
 7811 * @extack: netlink extended ack
 7812 *
 7813 * Adds a link to device which is upper to this one. In this case, only
 7814 * one master upper device can be linked, although other non-master devices
 7815 * might be linked as well. The caller must hold the RTNL lock.
 7816 * On a failure a negative errno code is returned. On success the reference
 7817 * counts are adjusted and the function returns zero.
 7818 */
 7819int netdev_master_upper_dev_link(struct net_device *dev,
 7820				 struct net_device *upper_dev,
 7821				 void *upper_priv, void *upper_info,
 7822				 struct netlink_ext_ack *extack)
 7823{
 7824	struct netdev_nested_priv priv = {
 7825		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7826		.data = NULL,
 7827	};
 7828
 7829	return __netdev_upper_dev_link(dev, upper_dev, true,
 7830				       upper_priv, upper_info, &priv, extack);
 7831}
 7832EXPORT_SYMBOL(netdev_master_upper_dev_link);
 7833
 7834static void __netdev_upper_dev_unlink(struct net_device *dev,
 7835				      struct net_device *upper_dev,
 7836				      struct netdev_nested_priv *priv)
 7837{
 7838	struct netdev_notifier_changeupper_info changeupper_info = {
 7839		.info = {
 7840			.dev = dev,
 7841		},
 7842		.upper_dev = upper_dev,
 7843		.linking = false,
 7844	};
 7845
 7846	ASSERT_RTNL();
 7847
 7848	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
 7849
 7850	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7851				      &changeupper_info.info);
 7852
 7853	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7854
 7855	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 7856				      &changeupper_info.info);
 7857
 7858	__netdev_update_upper_level(dev, NULL);
 7859	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7860
 7861	__netdev_update_lower_level(upper_dev, priv);
 7862	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7863				    priv);
 7864}
 7865
 7866/**
 7867 * netdev_upper_dev_unlink - Removes a link to upper device
 7868 * @dev: device
 7869 * @upper_dev: new upper device
 7870 *
 7871 * Removes a link to device which is upper to this one. The caller must hold
 7872 * the RTNL lock.
 7873 */
 7874void netdev_upper_dev_unlink(struct net_device *dev,
 7875			     struct net_device *upper_dev)
 7876{
 7877	struct netdev_nested_priv priv = {
 7878		.flags = NESTED_SYNC_TODO,
 7879		.data = NULL,
 7880	};
 7881
 7882	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
 7883}
 7884EXPORT_SYMBOL(netdev_upper_dev_unlink);
 7885
 7886static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
 7887				      struct net_device *lower_dev,
 7888				      bool val)
 7889{
 7890	struct netdev_adjacent *adj;
 
 
 7891
 7892	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
 7893	if (adj)
 7894		adj->ignore = val;
 7895
 7896	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
 7897	if (adj)
 7898		adj->ignore = val;
 7899}
 7900
 7901static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
 7902					struct net_device *lower_dev)
 7903{
 7904	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
 7905}
 7906
 7907static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
 7908				       struct net_device *lower_dev)
 7909{
 7910	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
 7911}
 
 
 7912
 7913int netdev_adjacent_change_prepare(struct net_device *old_dev,
 7914				   struct net_device *new_dev,
 7915				   struct net_device *dev,
 7916				   struct netlink_ext_ack *extack)
 7917{
 7918	struct netdev_nested_priv priv = {
 7919		.flags = 0,
 7920		.data = NULL,
 7921	};
 7922	int err;
 7923
 7924	if (!new_dev)
 7925		return 0;
 7926
 7927	if (old_dev && new_dev != old_dev)
 7928		netdev_adjacent_dev_disable(dev, old_dev);
 7929	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
 7930				      extack);
 7931	if (err) {
 7932		if (old_dev && new_dev != old_dev)
 7933			netdev_adjacent_dev_enable(dev, old_dev);
 7934		return err;
 7935	}
 7936
 7937	return 0;
 7938}
 7939EXPORT_SYMBOL(netdev_adjacent_change_prepare);
 7940
 7941void netdev_adjacent_change_commit(struct net_device *old_dev,
 7942				   struct net_device *new_dev,
 7943				   struct net_device *dev)
 7944{
 7945	struct netdev_nested_priv priv = {
 7946		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7947		.data = NULL,
 7948	};
 7949
 7950	if (!new_dev || !old_dev)
 7951		return;
 7952
 7953	if (new_dev == old_dev)
 7954		return;
 7955
 7956	netdev_adjacent_dev_enable(dev, old_dev);
 7957	__netdev_upper_dev_unlink(old_dev, dev, &priv);
 7958}
 7959EXPORT_SYMBOL(netdev_adjacent_change_commit);
 7960
 7961void netdev_adjacent_change_abort(struct net_device *old_dev,
 7962				  struct net_device *new_dev,
 7963				  struct net_device *dev)
 7964{
 7965	struct netdev_nested_priv priv = {
 7966		.flags = 0,
 7967		.data = NULL,
 7968	};
 7969
 7970	if (!new_dev)
 7971		return;
 7972
 7973	if (old_dev && new_dev != old_dev)
 7974		netdev_adjacent_dev_enable(dev, old_dev);
 7975
 7976	__netdev_upper_dev_unlink(new_dev, dev, &priv);
 7977}
 7978EXPORT_SYMBOL(netdev_adjacent_change_abort);
 7979
 7980/**
 7981 * netdev_bonding_info_change - Dispatch event about slave change
 7982 * @dev: device
 7983 * @bonding_info: info to dispatch
 7984 *
 7985 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
 7986 * The caller must hold the RTNL lock.
 7987 */
 7988void netdev_bonding_info_change(struct net_device *dev,
 7989				struct netdev_bonding_info *bonding_info)
 7990{
 7991	struct netdev_notifier_bonding_info info = {
 7992		.info.dev = dev,
 7993	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7994
 7995	memcpy(&info.bonding_info, bonding_info,
 7996	       sizeof(struct netdev_bonding_info));
 7997	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
 7998				      &info.info);
 7999}
 8000EXPORT_SYMBOL(netdev_bonding_info_change);
 8001
 8002static int netdev_offload_xstats_enable_l3(struct net_device *dev,
 8003					   struct netlink_ext_ack *extack)
 8004{
 8005	struct netdev_notifier_offload_xstats_info info = {
 8006		.info.dev = dev,
 8007		.info.extack = extack,
 8008		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8009	};
 8010	int err;
 8011	int rc;
 8012
 8013	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
 8014					 GFP_KERNEL);
 8015	if (!dev->offload_xstats_l3)
 8016		return -ENOMEM;
 8017
 8018	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
 8019						  NETDEV_OFFLOAD_XSTATS_DISABLE,
 8020						  &info.info);
 8021	err = notifier_to_errno(rc);
 8022	if (err)
 8023		goto free_stats;
 8024
 8025	return 0;
 8026
 8027free_stats:
 8028	kfree(dev->offload_xstats_l3);
 8029	dev->offload_xstats_l3 = NULL;
 8030	return err;
 8031}
 8032
 8033int netdev_offload_xstats_enable(struct net_device *dev,
 8034				 enum netdev_offload_xstats_type type,
 8035				 struct netlink_ext_ack *extack)
 8036{
 8037	ASSERT_RTNL();
 8038
 8039	if (netdev_offload_xstats_enabled(dev, type))
 8040		return -EALREADY;
 8041
 8042	switch (type) {
 8043	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8044		return netdev_offload_xstats_enable_l3(dev, extack);
 8045	}
 8046
 8047	WARN_ON(1);
 8048	return -EINVAL;
 8049}
 8050EXPORT_SYMBOL(netdev_offload_xstats_enable);
 8051
 8052static void netdev_offload_xstats_disable_l3(struct net_device *dev)
 
 8053{
 8054	struct netdev_notifier_offload_xstats_info info = {
 8055		.info.dev = dev,
 8056		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8057	};
 8058
 8059	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
 8060				      &info.info);
 8061	kfree(dev->offload_xstats_l3);
 8062	dev->offload_xstats_l3 = NULL;
 8063}
 8064
 8065int netdev_offload_xstats_disable(struct net_device *dev,
 8066				  enum netdev_offload_xstats_type type)
 8067{
 8068	ASSERT_RTNL();
 8069
 8070	if (!netdev_offload_xstats_enabled(dev, type))
 8071		return -EALREADY;
 
 
 
 
 
 8072
 8073	switch (type) {
 8074	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8075		netdev_offload_xstats_disable_l3(dev);
 8076		return 0;
 8077	}
 8078
 8079	WARN_ON(1);
 8080	return -EINVAL;
 8081}
 8082EXPORT_SYMBOL(netdev_offload_xstats_disable);
 8083
 8084static void netdev_offload_xstats_disable_all(struct net_device *dev)
 8085{
 8086	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
 8087}
 
 
 8088
 8089static struct rtnl_hw_stats64 *
 8090netdev_offload_xstats_get_ptr(const struct net_device *dev,
 8091			      enum netdev_offload_xstats_type type)
 8092{
 8093	switch (type) {
 8094	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8095		return dev->offload_xstats_l3;
 8096	}
 8097
 8098	WARN_ON(1);
 8099	return NULL;
 8100}
 8101
 8102bool netdev_offload_xstats_enabled(const struct net_device *dev,
 8103				   enum netdev_offload_xstats_type type)
 8104{
 8105	ASSERT_RTNL();
 8106
 8107	return netdev_offload_xstats_get_ptr(dev, type);
 8108}
 8109EXPORT_SYMBOL(netdev_offload_xstats_enabled);
 8110
 8111struct netdev_notifier_offload_xstats_ru {
 8112	bool used;
 8113};
 8114
 8115struct netdev_notifier_offload_xstats_rd {
 8116	struct rtnl_hw_stats64 stats;
 8117	bool used;
 8118};
 8119
 8120static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
 8121				  const struct rtnl_hw_stats64 *src)
 8122{
 8123	dest->rx_packets	  += src->rx_packets;
 8124	dest->tx_packets	  += src->tx_packets;
 8125	dest->rx_bytes		  += src->rx_bytes;
 8126	dest->tx_bytes		  += src->tx_bytes;
 8127	dest->rx_errors		  += src->rx_errors;
 8128	dest->tx_errors		  += src->tx_errors;
 8129	dest->rx_dropped	  += src->rx_dropped;
 8130	dest->tx_dropped	  += src->tx_dropped;
 8131	dest->multicast		  += src->multicast;
 8132}
 8133
 8134static int netdev_offload_xstats_get_used(struct net_device *dev,
 8135					  enum netdev_offload_xstats_type type,
 8136					  bool *p_used,
 8137					  struct netlink_ext_ack *extack)
 8138{
 8139	struct netdev_notifier_offload_xstats_ru report_used = {};
 8140	struct netdev_notifier_offload_xstats_info info = {
 8141		.info.dev = dev,
 8142		.info.extack = extack,
 8143		.type = type,
 8144		.report_used = &report_used,
 8145	};
 8146	int rc;
 8147
 8148	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
 8149	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
 8150					   &info.info);
 8151	*p_used = report_used.used;
 8152	return notifier_to_errno(rc);
 8153}
 8154
 8155static int netdev_offload_xstats_get_stats(struct net_device *dev,
 8156					   enum netdev_offload_xstats_type type,
 8157					   struct rtnl_hw_stats64 *p_stats,
 8158					   bool *p_used,
 8159					   struct netlink_ext_ack *extack)
 8160{
 8161	struct netdev_notifier_offload_xstats_rd report_delta = {};
 8162	struct netdev_notifier_offload_xstats_info info = {
 8163		.info.dev = dev,
 8164		.info.extack = extack,
 8165		.type = type,
 8166		.report_delta = &report_delta,
 8167	};
 8168	struct rtnl_hw_stats64 *stats;
 8169	int rc;
 8170
 8171	stats = netdev_offload_xstats_get_ptr(dev, type);
 8172	if (WARN_ON(!stats))
 8173		return -EINVAL;
 8174
 8175	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
 8176					   &info.info);
 8177
 8178	/* Cache whatever we got, even if there was an error, otherwise the
 8179	 * successful stats retrievals would get lost.
 8180	 */
 8181	netdev_hw_stats64_add(stats, &report_delta.stats);
 8182
 8183	if (p_stats)
 8184		*p_stats = *stats;
 8185	*p_used = report_delta.used;
 8186
 8187	return notifier_to_errno(rc);
 8188}
 8189
 8190int netdev_offload_xstats_get(struct net_device *dev,
 8191			      enum netdev_offload_xstats_type type,
 8192			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
 8193			      struct netlink_ext_ack *extack)
 8194{
 8195	ASSERT_RTNL();
 8196
 8197	if (p_stats)
 8198		return netdev_offload_xstats_get_stats(dev, type, p_stats,
 8199						       p_used, extack);
 8200	else
 8201		return netdev_offload_xstats_get_used(dev, type, p_used,
 8202						      extack);
 8203}
 8204EXPORT_SYMBOL(netdev_offload_xstats_get);
 8205
 8206void
 8207netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
 8208				   const struct rtnl_hw_stats64 *stats)
 8209{
 8210	report_delta->used = true;
 8211	netdev_hw_stats64_add(&report_delta->stats, stats);
 8212}
 8213EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
 8214
 8215void
 8216netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
 8217{
 8218	report_used->used = true;
 8219}
 8220EXPORT_SYMBOL(netdev_offload_xstats_report_used);
 8221
 8222void netdev_offload_xstats_push_delta(struct net_device *dev,
 8223				      enum netdev_offload_xstats_type type,
 8224				      const struct rtnl_hw_stats64 *p_stats)
 8225{
 8226	struct rtnl_hw_stats64 *stats;
 8227
 8228	ASSERT_RTNL();
 8229
 8230	stats = netdev_offload_xstats_get_ptr(dev, type);
 8231	if (WARN_ON(!stats))
 8232		return;
 8233
 8234	netdev_hw_stats64_add(stats, p_stats);
 8235}
 8236EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
 8237
 8238/**
 8239 * netdev_get_xmit_slave - Get the xmit slave of master device
 8240 * @dev: device
 8241 * @skb: The packet
 8242 * @all_slaves: assume all the slaves are active
 8243 *
 8244 * The reference counters are not incremented so the caller must be
 8245 * careful with locks. The caller must hold RCU lock.
 8246 * %NULL is returned if no slave is found.
 
 8247 */
 8248
 8249struct net_device *netdev_get_xmit_slave(struct net_device *dev,
 8250					 struct sk_buff *skb,
 8251					 bool all_slaves)
 8252{
 8253	const struct net_device_ops *ops = dev->netdev_ops;
 8254
 8255	if (!ops->ndo_get_xmit_slave)
 8256		return NULL;
 8257	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
 8258}
 8259EXPORT_SYMBOL(netdev_get_xmit_slave);
 8260
 8261static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
 8262						  struct sock *sk)
 8263{
 8264	const struct net_device_ops *ops = dev->netdev_ops;
 8265
 8266	if (!ops->ndo_sk_get_lower_dev)
 8267		return NULL;
 8268	return ops->ndo_sk_get_lower_dev(dev, sk);
 8269}
 8270
 8271/**
 8272 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
 8273 * @dev: device
 8274 * @sk: the socket
 8275 *
 8276 * %NULL is returned if no lower device is found.
 8277 */
 8278
 8279struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
 8280					    struct sock *sk)
 8281{
 8282	struct net_device *lower;
 8283
 8284	lower = netdev_sk_get_lower_dev(dev, sk);
 8285	while (lower) {
 8286		dev = lower;
 8287		lower = netdev_sk_get_lower_dev(dev, sk);
 8288	}
 8289
 8290	return dev;
 8291}
 8292EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
 8293
 8294static void netdev_adjacent_add_links(struct net_device *dev)
 8295{
 8296	struct netdev_adjacent *iter;
 8297
 8298	struct net *net = dev_net(dev);
 8299
 8300	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8301		if (!net_eq(net, dev_net(iter->dev)))
 8302			continue;
 8303		netdev_adjacent_sysfs_add(iter->dev, dev,
 8304					  &iter->dev->adj_list.lower);
 8305		netdev_adjacent_sysfs_add(dev, iter->dev,
 8306					  &dev->adj_list.upper);
 8307	}
 8308
 8309	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8310		if (!net_eq(net, dev_net(iter->dev)))
 8311			continue;
 8312		netdev_adjacent_sysfs_add(iter->dev, dev,
 8313					  &iter->dev->adj_list.upper);
 8314		netdev_adjacent_sysfs_add(dev, iter->dev,
 8315					  &dev->adj_list.lower);
 8316	}
 8317}
 8318
 8319static void netdev_adjacent_del_links(struct net_device *dev)
 8320{
 8321	struct netdev_adjacent *iter;
 8322
 8323	struct net *net = dev_net(dev);
 8324
 8325	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8326		if (!net_eq(net, dev_net(iter->dev)))
 8327			continue;
 8328		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8329					  &iter->dev->adj_list.lower);
 8330		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8331					  &dev->adj_list.upper);
 8332	}
 8333
 8334	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8335		if (!net_eq(net, dev_net(iter->dev)))
 8336			continue;
 8337		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8338					  &iter->dev->adj_list.upper);
 8339		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8340					  &dev->adj_list.lower);
 8341	}
 8342}
 8343
 8344void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
 8345{
 8346	struct netdev_adjacent *iter;
 8347
 8348	struct net *net = dev_net(dev);
 8349
 8350	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8351		if (!net_eq(net, dev_net(iter->dev)))
 8352			continue;
 8353		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8354					  &iter->dev->adj_list.lower);
 8355		netdev_adjacent_sysfs_add(iter->dev, dev,
 8356					  &iter->dev->adj_list.lower);
 8357	}
 8358
 8359	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8360		if (!net_eq(net, dev_net(iter->dev)))
 8361			continue;
 8362		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8363					  &iter->dev->adj_list.upper);
 8364		netdev_adjacent_sysfs_add(iter->dev, dev,
 8365					  &iter->dev->adj_list.upper);
 8366	}
 8367}
 8368
 8369void *netdev_lower_dev_get_private(struct net_device *dev,
 8370				   struct net_device *lower_dev)
 8371{
 8372	struct netdev_adjacent *lower;
 8373
 8374	if (!lower_dev)
 8375		return NULL;
 8376	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
 8377	if (!lower)
 8378		return NULL;
 8379
 8380	return lower->private;
 8381}
 8382EXPORT_SYMBOL(netdev_lower_dev_get_private);
 8383
 8384
 8385/**
 8386 * netdev_lower_state_changed - Dispatch event about lower device state change
 8387 * @lower_dev: device
 8388 * @lower_state_info: state to dispatch
 8389 *
 8390 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
 8391 * The caller must hold the RTNL lock.
 
 
 8392 */
 8393void netdev_lower_state_changed(struct net_device *lower_dev,
 8394				void *lower_state_info)
 8395{
 8396	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
 8397		.info.dev = lower_dev,
 8398	};
 8399
 8400	ASSERT_RTNL();
 8401	changelowerstate_info.lower_state_info = lower_state_info;
 8402	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
 8403				      &changelowerstate_info.info);
 
 
 
 
 
 
 
 
 8404}
 8405EXPORT_SYMBOL(netdev_lower_state_changed);
 8406
 8407static void dev_change_rx_flags(struct net_device *dev, int flags)
 8408{
 8409	const struct net_device_ops *ops = dev->netdev_ops;
 8410
 8411	if (ops->ndo_change_rx_flags)
 8412		ops->ndo_change_rx_flags(dev, flags);
 8413}
 8414
 8415static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
 8416{
 8417	unsigned int old_flags = dev->flags;
 8418	kuid_t uid;
 8419	kgid_t gid;
 8420
 8421	ASSERT_RTNL();
 8422
 8423	dev->flags |= IFF_PROMISC;
 8424	dev->promiscuity += inc;
 8425	if (dev->promiscuity == 0) {
 8426		/*
 8427		 * Avoid overflow.
 8428		 * If inc causes overflow, untouch promisc and return error.
 8429		 */
 8430		if (inc < 0)
 8431			dev->flags &= ~IFF_PROMISC;
 8432		else {
 8433			dev->promiscuity -= inc;
 8434			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
 
 8435			return -EOVERFLOW;
 8436		}
 8437	}
 8438	if (dev->flags != old_flags) {
 8439		netdev_info(dev, "%s promiscuous mode\n",
 8440			    dev->flags & IFF_PROMISC ? "entered" : "left");
 
 8441		if (audit_enabled) {
 8442			current_uid_gid(&uid, &gid);
 8443			audit_log(audit_context(), GFP_ATOMIC,
 8444				  AUDIT_ANOM_PROMISCUOUS,
 8445				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
 8446				  dev->name, (dev->flags & IFF_PROMISC),
 8447				  (old_flags & IFF_PROMISC),
 8448				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
 8449				  from_kuid(&init_user_ns, uid),
 8450				  from_kgid(&init_user_ns, gid),
 8451				  audit_get_sessionid(current));
 8452		}
 8453
 8454		dev_change_rx_flags(dev, IFF_PROMISC);
 8455	}
 8456	if (notify)
 8457		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
 8458	return 0;
 8459}
 8460
 8461/**
 8462 *	dev_set_promiscuity	- update promiscuity count on a device
 8463 *	@dev: device
 8464 *	@inc: modifier
 8465 *
 8466 *	Add or remove promiscuity from a device. While the count in the device
 8467 *	remains above zero the interface remains promiscuous. Once it hits zero
 8468 *	the device reverts back to normal filtering operation. A negative inc
 8469 *	value is used to drop promiscuity on the device.
 8470 *	Return 0 if successful or a negative errno code on error.
 8471 */
 8472int dev_set_promiscuity(struct net_device *dev, int inc)
 8473{
 8474	unsigned int old_flags = dev->flags;
 8475	int err;
 8476
 8477	err = __dev_set_promiscuity(dev, inc, true);
 8478	if (err < 0)
 8479		return err;
 8480	if (dev->flags != old_flags)
 8481		dev_set_rx_mode(dev);
 8482	return err;
 8483}
 8484EXPORT_SYMBOL(dev_set_promiscuity);
 8485
 8486static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
 
 
 
 
 
 
 
 
 
 
 
 
 
 8487{
 8488	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
 8489
 8490	ASSERT_RTNL();
 8491
 8492	dev->flags |= IFF_ALLMULTI;
 8493	dev->allmulti += inc;
 8494	if (dev->allmulti == 0) {
 8495		/*
 8496		 * Avoid overflow.
 8497		 * If inc causes overflow, untouch allmulti and return error.
 8498		 */
 8499		if (inc < 0)
 8500			dev->flags &= ~IFF_ALLMULTI;
 8501		else {
 8502			dev->allmulti -= inc;
 8503			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
 
 8504			return -EOVERFLOW;
 8505		}
 8506	}
 8507	if (dev->flags ^ old_flags) {
 8508		netdev_info(dev, "%s allmulticast mode\n",
 8509			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
 8510		dev_change_rx_flags(dev, IFF_ALLMULTI);
 8511		dev_set_rx_mode(dev);
 8512		if (notify)
 8513			__dev_notify_flags(dev, old_flags,
 8514					   dev->gflags ^ old_gflags, 0, NULL);
 8515	}
 8516	return 0;
 8517}
 8518
 8519/**
 8520 *	dev_set_allmulti	- update allmulti count on a device
 8521 *	@dev: device
 8522 *	@inc: modifier
 8523 *
 8524 *	Add or remove reception of all multicast frames to a device. While the
 8525 *	count in the device remains above zero the interface remains listening
 8526 *	to all interfaces. Once it hits zero the device reverts back to normal
 8527 *	filtering operation. A negative @inc value is used to drop the counter
 8528 *	when releasing a resource needing all multicasts.
 8529 *	Return 0 if successful or a negative errno code on error.
 8530 */
 8531
 8532int dev_set_allmulti(struct net_device *dev, int inc)
 8533{
 8534	return __dev_set_allmulti(dev, inc, true);
 8535}
 8536EXPORT_SYMBOL(dev_set_allmulti);
 8537
 8538/*
 8539 *	Upload unicast and multicast address lists to device and
 8540 *	configure RX filtering. When the device doesn't support unicast
 8541 *	filtering it is put in promiscuous mode while unicast addresses
 8542 *	are present.
 8543 */
 8544void __dev_set_rx_mode(struct net_device *dev)
 8545{
 8546	const struct net_device_ops *ops = dev->netdev_ops;
 8547
 8548	/* dev_open will call this function so the list will stay sane. */
 8549	if (!(dev->flags&IFF_UP))
 8550		return;
 8551
 8552	if (!netif_device_present(dev))
 8553		return;
 8554
 8555	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
 8556		/* Unicast addresses changes may only happen under the rtnl,
 8557		 * therefore calling __dev_set_promiscuity here is safe.
 8558		 */
 8559		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
 8560			__dev_set_promiscuity(dev, 1, false);
 8561			dev->uc_promisc = true;
 8562		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
 8563			__dev_set_promiscuity(dev, -1, false);
 8564			dev->uc_promisc = false;
 8565		}
 8566	}
 8567
 8568	if (ops->ndo_set_rx_mode)
 8569		ops->ndo_set_rx_mode(dev);
 8570}
 8571
 8572void dev_set_rx_mode(struct net_device *dev)
 8573{
 8574	netif_addr_lock_bh(dev);
 8575	__dev_set_rx_mode(dev);
 8576	netif_addr_unlock_bh(dev);
 8577}
 8578
 8579/**
 8580 *	dev_get_flags - get flags reported to userspace
 8581 *	@dev: device
 8582 *
 8583 *	Get the combination of flag bits exported through APIs to userspace.
 8584 */
 8585unsigned int dev_get_flags(const struct net_device *dev)
 8586{
 8587	unsigned int flags;
 8588
 8589	flags = (dev->flags & ~(IFF_PROMISC |
 8590				IFF_ALLMULTI |
 8591				IFF_RUNNING |
 8592				IFF_LOWER_UP |
 8593				IFF_DORMANT)) |
 8594		(dev->gflags & (IFF_PROMISC |
 8595				IFF_ALLMULTI));
 8596
 8597	if (netif_running(dev)) {
 8598		if (netif_oper_up(dev))
 8599			flags |= IFF_RUNNING;
 8600		if (netif_carrier_ok(dev))
 8601			flags |= IFF_LOWER_UP;
 8602		if (netif_dormant(dev))
 8603			flags |= IFF_DORMANT;
 8604	}
 8605
 8606	return flags;
 8607}
 8608EXPORT_SYMBOL(dev_get_flags);
 8609
 8610int __dev_change_flags(struct net_device *dev, unsigned int flags,
 8611		       struct netlink_ext_ack *extack)
 8612{
 8613	unsigned int old_flags = dev->flags;
 8614	int ret;
 8615
 8616	ASSERT_RTNL();
 8617
 8618	/*
 8619	 *	Set the flags on our device.
 8620	 */
 8621
 8622	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
 8623			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
 8624			       IFF_AUTOMEDIA)) |
 8625		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
 8626				    IFF_ALLMULTI));
 8627
 8628	/*
 8629	 *	Load in the correct multicast list now the flags have changed.
 8630	 */
 8631
 8632	if ((old_flags ^ flags) & IFF_MULTICAST)
 8633		dev_change_rx_flags(dev, IFF_MULTICAST);
 8634
 8635	dev_set_rx_mode(dev);
 8636
 8637	/*
 8638	 *	Have we downed the interface. We handle IFF_UP ourselves
 8639	 *	according to user attempts to set it, rather than blindly
 8640	 *	setting it.
 8641	 */
 8642
 8643	ret = 0;
 8644	if ((old_flags ^ flags) & IFF_UP) {
 8645		if (old_flags & IFF_UP)
 8646			__dev_close(dev);
 8647		else
 8648			ret = __dev_open(dev, extack);
 8649	}
 8650
 8651	if ((flags ^ dev->gflags) & IFF_PROMISC) {
 8652		int inc = (flags & IFF_PROMISC) ? 1 : -1;
 8653		unsigned int old_flags = dev->flags;
 8654
 8655		dev->gflags ^= IFF_PROMISC;
 8656
 8657		if (__dev_set_promiscuity(dev, inc, false) >= 0)
 8658			if (dev->flags != old_flags)
 8659				dev_set_rx_mode(dev);
 8660	}
 8661
 8662	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
 8663	 * is important. Some (broken) drivers set IFF_PROMISC, when
 8664	 * IFF_ALLMULTI is requested not asking us and not reporting.
 8665	 */
 8666	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
 8667		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
 8668
 8669		dev->gflags ^= IFF_ALLMULTI;
 8670		__dev_set_allmulti(dev, inc, false);
 8671	}
 8672
 8673	return ret;
 8674}
 8675
 8676void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
 8677			unsigned int gchanges, u32 portid,
 8678			const struct nlmsghdr *nlh)
 8679{
 8680	unsigned int changes = dev->flags ^ old_flags;
 8681
 8682	if (gchanges)
 8683		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
 8684
 8685	if (changes & IFF_UP) {
 8686		if (dev->flags & IFF_UP)
 8687			call_netdevice_notifiers(NETDEV_UP, dev);
 8688		else
 8689			call_netdevice_notifiers(NETDEV_DOWN, dev);
 8690	}
 8691
 8692	if (dev->flags & IFF_UP &&
 8693	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
 8694		struct netdev_notifier_change_info change_info = {
 8695			.info = {
 8696				.dev = dev,
 8697			},
 8698			.flags_changed = changes,
 8699		};
 8700
 8701		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
 8702	}
 8703}
 8704
 8705/**
 8706 *	dev_change_flags - change device settings
 8707 *	@dev: device
 8708 *	@flags: device state flags
 8709 *	@extack: netlink extended ack
 8710 *
 8711 *	Change settings on device based state flags. The flags are
 8712 *	in the userspace exported format.
 8713 */
 8714int dev_change_flags(struct net_device *dev, unsigned int flags,
 8715		     struct netlink_ext_ack *extack)
 8716{
 8717	int ret;
 8718	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
 8719
 8720	ret = __dev_change_flags(dev, flags, extack);
 8721	if (ret < 0)
 8722		return ret;
 8723
 8724	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
 8725	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
 
 
 
 8726	return ret;
 8727}
 8728EXPORT_SYMBOL(dev_change_flags);
 8729
 8730int __dev_set_mtu(struct net_device *dev, int new_mtu)
 8731{
 8732	const struct net_device_ops *ops = dev->netdev_ops;
 8733
 8734	if (ops->ndo_change_mtu)
 8735		return ops->ndo_change_mtu(dev, new_mtu);
 8736
 8737	/* Pairs with all the lockless reads of dev->mtu in the stack */
 8738	WRITE_ONCE(dev->mtu, new_mtu);
 8739	return 0;
 8740}
 8741EXPORT_SYMBOL(__dev_set_mtu);
 8742
 8743int dev_validate_mtu(struct net_device *dev, int new_mtu,
 8744		     struct netlink_ext_ack *extack)
 8745{
 8746	/* MTU must be positive, and in range */
 8747	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
 8748		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
 8749		return -EINVAL;
 8750	}
 8751
 8752	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
 8753		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
 8754		return -EINVAL;
 8755	}
 8756	return 0;
 8757}
 8758
 8759/**
 8760 *	dev_set_mtu_ext - Change maximum transfer unit
 8761 *	@dev: device
 8762 *	@new_mtu: new transfer unit
 8763 *	@extack: netlink extended ack
 8764 *
 8765 *	Change the maximum transfer size of the network device.
 8766 */
 8767int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
 8768		    struct netlink_ext_ack *extack)
 8769{
 8770	int err, orig_mtu;
 
 8771
 8772	if (new_mtu == dev->mtu)
 8773		return 0;
 8774
 8775	err = dev_validate_mtu(dev, new_mtu, extack);
 8776	if (err)
 8777		return err;
 8778
 8779	if (!netif_device_present(dev))
 8780		return -ENODEV;
 8781
 8782	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
 8783	err = notifier_to_errno(err);
 8784	if (err)
 8785		return err;
 
 8786
 8787	orig_mtu = dev->mtu;
 8788	err = __dev_set_mtu(dev, new_mtu);
 8789
 8790	if (!err) {
 8791		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8792						   orig_mtu);
 8793		err = notifier_to_errno(err);
 8794		if (err) {
 8795			/* setting mtu back and notifying everyone again,
 8796			 * so that they have a chance to revert changes.
 8797			 */
 8798			__dev_set_mtu(dev, orig_mtu);
 8799			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8800						     new_mtu);
 8801		}
 8802	}
 8803	return err;
 8804}
 8805
 8806int dev_set_mtu(struct net_device *dev, int new_mtu)
 8807{
 8808	struct netlink_ext_ack extack;
 8809	int err;
 8810
 8811	memset(&extack, 0, sizeof(extack));
 8812	err = dev_set_mtu_ext(dev, new_mtu, &extack);
 8813	if (err && extack._msg)
 8814		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
 8815	return err;
 8816}
 8817EXPORT_SYMBOL(dev_set_mtu);
 8818
 8819/**
 8820 *	dev_change_tx_queue_len - Change TX queue length of a netdevice
 8821 *	@dev: device
 8822 *	@new_len: new tx queue length
 8823 */
 8824int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
 8825{
 8826	unsigned int orig_len = dev->tx_queue_len;
 8827	int res;
 8828
 8829	if (new_len != (unsigned int)new_len)
 8830		return -ERANGE;
 8831
 8832	if (new_len != orig_len) {
 8833		dev->tx_queue_len = new_len;
 8834		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
 8835		res = notifier_to_errno(res);
 8836		if (res)
 8837			goto err_rollback;
 8838		res = dev_qdisc_change_tx_queue_len(dev);
 8839		if (res)
 8840			goto err_rollback;
 8841	}
 8842
 8843	return 0;
 8844
 8845err_rollback:
 8846	netdev_err(dev, "refused to change device tx_queue_len\n");
 8847	dev->tx_queue_len = orig_len;
 8848	return res;
 8849}
 8850
 8851/**
 8852 *	dev_set_group - Change group this device belongs to
 8853 *	@dev: device
 8854 *	@new_group: group this device should belong to
 8855 */
 8856void dev_set_group(struct net_device *dev, int new_group)
 8857{
 8858	dev->group = new_group;
 8859}
 8860
 8861/**
 8862 *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
 8863 *	@dev: device
 8864 *	@addr: new address
 8865 *	@extack: netlink extended ack
 8866 */
 8867int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
 8868			      struct netlink_ext_ack *extack)
 8869{
 8870	struct netdev_notifier_pre_changeaddr_info info = {
 8871		.info.dev = dev,
 8872		.info.extack = extack,
 8873		.dev_addr = addr,
 8874	};
 8875	int rc;
 8876
 8877	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
 8878	return notifier_to_errno(rc);
 8879}
 8880EXPORT_SYMBOL(dev_pre_changeaddr_notify);
 8881
 8882/**
 8883 *	dev_set_mac_address - Change Media Access Control Address
 8884 *	@dev: device
 8885 *	@sa: new address
 8886 *	@extack: netlink extended ack
 8887 *
 8888 *	Change the hardware (MAC) address of the device
 8889 */
 8890int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
 8891			struct netlink_ext_ack *extack)
 8892{
 8893	const struct net_device_ops *ops = dev->netdev_ops;
 8894	int err;
 8895
 8896	if (!ops->ndo_set_mac_address)
 8897		return -EOPNOTSUPP;
 8898	if (sa->sa_family != dev->type)
 8899		return -EINVAL;
 8900	if (!netif_device_present(dev))
 8901		return -ENODEV;
 8902	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
 8903	if (err)
 8904		return err;
 8905	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
 8906		err = ops->ndo_set_mac_address(dev, sa);
 8907		if (err)
 8908			return err;
 8909	}
 8910	dev->addr_assign_type = NET_ADDR_SET;
 8911	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
 8912	add_device_randomness(dev->dev_addr, dev->addr_len);
 8913	return 0;
 8914}
 8915EXPORT_SYMBOL(dev_set_mac_address);
 8916
 8917static DECLARE_RWSEM(dev_addr_sem);
 8918
 8919int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
 8920			     struct netlink_ext_ack *extack)
 8921{
 8922	int ret;
 
 8923
 8924	down_write(&dev_addr_sem);
 8925	ret = dev_set_mac_address(dev, sa, extack);
 8926	up_write(&dev_addr_sem);
 8927	return ret;
 8928}
 8929EXPORT_SYMBOL(dev_set_mac_address_user);
 8930
 8931int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
 8932{
 8933	size_t size = sizeof(sa->sa_data_min);
 8934	struct net_device *dev;
 8935	int ret = 0;
 8936
 8937	down_read(&dev_addr_sem);
 8938	rcu_read_lock();
 
 
 8939
 8940	dev = dev_get_by_name_rcu(net, dev_name);
 8941	if (!dev) {
 8942		ret = -ENODEV;
 8943		goto unlock;
 8944	}
 8945	if (!dev->addr_len)
 8946		memset(sa->sa_data, 0, size);
 8947	else
 8948		memcpy(sa->sa_data, dev->dev_addr,
 8949		       min_t(size_t, size, dev->addr_len));
 8950	sa->sa_family = dev->type;
 8951
 8952unlock:
 8953	rcu_read_unlock();
 8954	up_read(&dev_addr_sem);
 8955	return ret;
 8956}
 8957EXPORT_SYMBOL(dev_get_mac_address);
 
 
 8958
 8959/**
 8960 *	dev_change_carrier - Change device carrier
 8961 *	@dev: device
 8962 *	@new_carrier: new value
 8963 *
 8964 *	Change device carrier
 8965 */
 8966int dev_change_carrier(struct net_device *dev, bool new_carrier)
 8967{
 8968	const struct net_device_ops *ops = dev->netdev_ops;
 8969
 8970	if (!ops->ndo_change_carrier)
 8971		return -EOPNOTSUPP;
 8972	if (!netif_device_present(dev))
 8973		return -ENODEV;
 8974	return ops->ndo_change_carrier(dev, new_carrier);
 8975}
 
 
 8976
 8977/**
 8978 *	dev_get_phys_port_id - Get device physical port ID
 8979 *	@dev: device
 8980 *	@ppid: port ID
 8981 *
 8982 *	Get device physical port ID
 8983 */
 8984int dev_get_phys_port_id(struct net_device *dev,
 8985			 struct netdev_phys_item_id *ppid)
 8986{
 8987	const struct net_device_ops *ops = dev->netdev_ops;
 8988
 8989	if (!ops->ndo_get_phys_port_id)
 8990		return -EOPNOTSUPP;
 8991	return ops->ndo_get_phys_port_id(dev, ppid);
 8992}
 8993
 8994/**
 8995 *	dev_get_phys_port_name - Get device physical port name
 8996 *	@dev: device
 8997 *	@name: port name
 8998 *	@len: limit of bytes to copy to name
 8999 *
 9000 *	Get device physical port name
 9001 */
 9002int dev_get_phys_port_name(struct net_device *dev,
 9003			   char *name, size_t len)
 9004{
 9005	const struct net_device_ops *ops = dev->netdev_ops;
 9006	int err;
 9007
 9008	if (ops->ndo_get_phys_port_name) {
 9009		err = ops->ndo_get_phys_port_name(dev, name, len);
 9010		if (err != -EOPNOTSUPP)
 9011			return err;
 9012	}
 9013	return devlink_compat_phys_port_name_get(dev, name, len);
 9014}
 9015
 9016/**
 9017 *	dev_get_port_parent_id - Get the device's port parent identifier
 9018 *	@dev: network device
 9019 *	@ppid: pointer to a storage for the port's parent identifier
 9020 *	@recurse: allow/disallow recursion to lower devices
 9021 *
 9022 *	Get the devices's port parent identifier
 9023 */
 9024int dev_get_port_parent_id(struct net_device *dev,
 9025			   struct netdev_phys_item_id *ppid,
 9026			   bool recurse)
 9027{
 9028	const struct net_device_ops *ops = dev->netdev_ops;
 9029	struct netdev_phys_item_id first = { };
 9030	struct net_device *lower_dev;
 9031	struct list_head *iter;
 9032	int err;
 
 
 9033
 9034	if (ops->ndo_get_port_parent_id) {
 9035		err = ops->ndo_get_port_parent_id(dev, ppid);
 9036		if (err != -EOPNOTSUPP)
 9037			return err;
 9038	}
 9039
 9040	err = devlink_compat_switch_id_get(dev, ppid);
 9041	if (!recurse || err != -EOPNOTSUPP)
 9042		return err;
 9043
 9044	netdev_for_each_lower_dev(dev, lower_dev, iter) {
 9045		err = dev_get_port_parent_id(lower_dev, ppid, true);
 9046		if (err)
 9047			break;
 9048		if (!first.id_len)
 9049			first = *ppid;
 9050		else if (memcmp(&first, ppid, sizeof(*ppid)))
 9051			return -EOPNOTSUPP;
 9052	}
 9053
 9054	return err;
 9055}
 9056EXPORT_SYMBOL(dev_get_port_parent_id);
 9057
 9058/**
 9059 *	netdev_port_same_parent_id - Indicate if two network devices have
 9060 *	the same port parent identifier
 9061 *	@a: first network device
 9062 *	@b: second network device
 9063 */
 9064bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
 9065{
 9066	struct netdev_phys_item_id a_id = { };
 9067	struct netdev_phys_item_id b_id = { };
 9068
 9069	if (dev_get_port_parent_id(a, &a_id, true) ||
 9070	    dev_get_port_parent_id(b, &b_id, true))
 9071		return false;
 9072
 9073	return netdev_phys_item_id_same(&a_id, &b_id);
 9074}
 9075EXPORT_SYMBOL(netdev_port_same_parent_id);
 
 
 
 
 9076
 9077/**
 9078 *	dev_change_proto_down - set carrier according to proto_down.
 9079 *
 9080 *	@dev: device
 9081 *	@proto_down: new value
 9082 */
 9083int dev_change_proto_down(struct net_device *dev, bool proto_down)
 9084{
 9085	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
 9086		return -EOPNOTSUPP;
 9087	if (!netif_device_present(dev))
 9088		return -ENODEV;
 9089	if (proto_down)
 9090		netif_carrier_off(dev);
 9091	else
 9092		netif_carrier_on(dev);
 9093	dev->proto_down = proto_down;
 9094	return 0;
 9095}
 9096
 9097/**
 9098 *	dev_change_proto_down_reason - proto down reason
 9099 *
 9100 *	@dev: device
 9101 *	@mask: proto down mask
 9102 *	@value: proto down value
 9103 */
 9104void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
 9105				  u32 value)
 9106{
 9107	int b;
 9108
 9109	if (!mask) {
 9110		dev->proto_down_reason = value;
 9111	} else {
 9112		for_each_set_bit(b, &mask, 32) {
 9113			if (value & (1 << b))
 9114				dev->proto_down_reason |= BIT(b);
 9115			else
 9116				dev->proto_down_reason &= ~BIT(b);
 9117		}
 9118	}
 9119}
 9120
 9121struct bpf_xdp_link {
 9122	struct bpf_link link;
 9123	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
 9124	int flags;
 9125};
 9126
 9127static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
 9128{
 9129	if (flags & XDP_FLAGS_HW_MODE)
 9130		return XDP_MODE_HW;
 9131	if (flags & XDP_FLAGS_DRV_MODE)
 9132		return XDP_MODE_DRV;
 9133	if (flags & XDP_FLAGS_SKB_MODE)
 9134		return XDP_MODE_SKB;
 9135	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
 9136}
 9137
 9138static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
 9139{
 9140	switch (mode) {
 9141	case XDP_MODE_SKB:
 9142		return generic_xdp_install;
 9143	case XDP_MODE_DRV:
 9144	case XDP_MODE_HW:
 9145		return dev->netdev_ops->ndo_bpf;
 9146	default:
 9147		return NULL;
 9148	}
 9149}
 9150
 9151static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
 9152					 enum bpf_xdp_mode mode)
 9153{
 9154	return dev->xdp_state[mode].link;
 9155}
 9156
 9157static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
 9158				     enum bpf_xdp_mode mode)
 9159{
 9160	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9161
 9162	if (link)
 9163		return link->link.prog;
 9164	return dev->xdp_state[mode].prog;
 9165}
 9166
 9167u8 dev_xdp_prog_count(struct net_device *dev)
 9168{
 9169	u8 count = 0;
 9170	int i;
 9171
 9172	for (i = 0; i < __MAX_XDP_MODE; i++)
 9173		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
 9174			count++;
 9175	return count;
 9176}
 9177EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
 
 
 
 
 
 9178
 9179u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
 9180{
 9181	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
 
 
 9182
 9183	return prog ? prog->aux->id : 0;
 9184}
 
 
 9185
 9186static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
 9187			     struct bpf_xdp_link *link)
 9188{
 9189	dev->xdp_state[mode].link = link;
 9190	dev->xdp_state[mode].prog = NULL;
 9191}
 9192
 9193static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
 9194			     struct bpf_prog *prog)
 9195{
 9196	dev->xdp_state[mode].link = NULL;
 9197	dev->xdp_state[mode].prog = prog;
 9198}
 9199
 9200static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
 9201			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
 9202			   u32 flags, struct bpf_prog *prog)
 9203{
 9204	struct netdev_bpf xdp;
 9205	int err;
 9206
 9207	memset(&xdp, 0, sizeof(xdp));
 9208	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
 9209	xdp.extack = extack;
 9210	xdp.flags = flags;
 9211	xdp.prog = prog;
 9212
 9213	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
 9214	 * "moved" into driver), so they don't increment it on their own, but
 9215	 * they do decrement refcnt when program is detached or replaced.
 9216	 * Given net_device also owns link/prog, we need to bump refcnt here
 9217	 * to prevent drivers from underflowing it.
 9218	 */
 9219	if (prog)
 9220		bpf_prog_inc(prog);
 9221	err = bpf_op(dev, &xdp);
 9222	if (err) {
 9223		if (prog)
 9224			bpf_prog_put(prog);
 9225		return err;
 9226	}
 
 
 9227
 9228	if (mode != XDP_MODE_HW)
 9229		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
 9230
 9231	return 0;
 9232}
 9233
 9234static void dev_xdp_uninstall(struct net_device *dev)
 9235{
 9236	struct bpf_xdp_link *link;
 9237	struct bpf_prog *prog;
 9238	enum bpf_xdp_mode mode;
 9239	bpf_op_t bpf_op;
 9240
 9241	ASSERT_RTNL();
 
 
 9242
 9243	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
 9244		prog = dev_xdp_prog(dev, mode);
 9245		if (!prog)
 9246			continue;
 9247
 9248		bpf_op = dev_xdp_bpf_op(dev, mode);
 9249		if (!bpf_op)
 9250			continue;
 9251
 9252		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9253
 9254		/* auto-detach link from net device */
 9255		link = dev_xdp_link(dev, mode);
 9256		if (link)
 9257			link->dev = NULL;
 9258		else
 9259			bpf_prog_put(prog);
 9260
 9261		dev_xdp_set_link(dev, mode, NULL);
 9262	}
 9263}
 9264
 9265static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
 9266			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
 9267			  struct bpf_prog *old_prog, u32 flags)
 9268{
 9269	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
 9270	struct bpf_prog *cur_prog;
 9271	struct net_device *upper;
 9272	struct list_head *iter;
 9273	enum bpf_xdp_mode mode;
 9274	bpf_op_t bpf_op;
 9275	int err;
 9276
 9277	ASSERT_RTNL();
 9278
 9279	/* either link or prog attachment, never both */
 9280	if (link && (new_prog || old_prog))
 9281		return -EINVAL;
 9282	/* link supports only XDP mode flags */
 9283	if (link && (flags & ~XDP_FLAGS_MODES)) {
 9284		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
 9285		return -EINVAL;
 9286	}
 9287	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
 9288	if (num_modes > 1) {
 9289		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
 9290		return -EINVAL;
 9291	}
 9292	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
 9293	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
 9294		NL_SET_ERR_MSG(extack,
 9295			       "More than one program loaded, unset mode is ambiguous");
 9296		return -EINVAL;
 9297	}
 9298	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
 9299	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
 9300		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
 9301		return -EINVAL;
 9302	}
 9303
 9304	mode = dev_xdp_mode(dev, flags);
 9305	/* can't replace attached link */
 9306	if (dev_xdp_link(dev, mode)) {
 9307		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
 9308		return -EBUSY;
 9309	}
 9310
 9311	/* don't allow if an upper device already has a program */
 9312	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
 9313		if (dev_xdp_prog_count(upper) > 0) {
 9314			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
 9315			return -EEXIST;
 9316		}
 9317	}
 9318
 9319	cur_prog = dev_xdp_prog(dev, mode);
 9320	/* can't replace attached prog with link */
 9321	if (link && cur_prog) {
 9322		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
 9323		return -EBUSY;
 9324	}
 9325	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
 9326		NL_SET_ERR_MSG(extack, "Active program does not match expected");
 9327		return -EEXIST;
 9328	}
 9329
 9330	/* put effective new program into new_prog */
 9331	if (link)
 9332		new_prog = link->link.prog;
 9333
 9334	if (new_prog) {
 9335		bool offload = mode == XDP_MODE_HW;
 9336		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
 9337					       ? XDP_MODE_DRV : XDP_MODE_SKB;
 9338
 9339		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
 9340			NL_SET_ERR_MSG(extack, "XDP program already attached");
 9341			return -EBUSY;
 9342		}
 9343		if (!offload && dev_xdp_prog(dev, other_mode)) {
 9344			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
 9345			return -EEXIST;
 9346		}
 9347		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
 9348			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
 9349			return -EINVAL;
 9350		}
 9351		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
 9352			NL_SET_ERR_MSG(extack, "Program bound to different device");
 9353			return -EINVAL;
 9354		}
 9355		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
 9356			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
 9357			return -EINVAL;
 9358		}
 9359		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
 9360			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
 9361			return -EINVAL;
 9362		}
 9363	}
 9364
 9365	/* don't call drivers if the effective program didn't change */
 9366	if (new_prog != cur_prog) {
 9367		bpf_op = dev_xdp_bpf_op(dev, mode);
 9368		if (!bpf_op) {
 9369			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
 9370			return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9371		}
 
 9372
 9373		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
 9374		if (err)
 9375			return err;
 9376	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9377
 9378	if (link)
 9379		dev_xdp_set_link(dev, mode, link);
 9380	else
 9381		dev_xdp_set_prog(dev, mode, new_prog);
 9382	if (cur_prog)
 9383		bpf_prog_put(cur_prog);
 
 
 9384
 9385	return 0;
 9386}
 9387
 9388static int dev_xdp_attach_link(struct net_device *dev,
 9389			       struct netlink_ext_ack *extack,
 9390			       struct bpf_xdp_link *link)
 9391{
 9392	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
 9393}
 9394
 9395static int dev_xdp_detach_link(struct net_device *dev,
 9396			       struct netlink_ext_ack *extack,
 9397			       struct bpf_xdp_link *link)
 9398{
 9399	enum bpf_xdp_mode mode;
 9400	bpf_op_t bpf_op;
 9401
 9402	ASSERT_RTNL();
 9403
 9404	mode = dev_xdp_mode(dev, link->flags);
 9405	if (dev_xdp_link(dev, mode) != link)
 9406		return -EINVAL;
 9407
 9408	bpf_op = dev_xdp_bpf_op(dev, mode);
 9409	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9410	dev_xdp_set_link(dev, mode, NULL);
 9411	return 0;
 9412}
 9413
 9414static void bpf_xdp_link_release(struct bpf_link *link)
 9415{
 9416	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9417
 9418	rtnl_lock();
 9419
 9420	/* if racing with net_device's tear down, xdp_link->dev might be
 9421	 * already NULL, in which case link was already auto-detached
 9422	 */
 9423	if (xdp_link->dev) {
 9424		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
 9425		xdp_link->dev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9426	}
 9427
 9428	rtnl_unlock();
 9429}
 9430
 9431static int bpf_xdp_link_detach(struct bpf_link *link)
 9432{
 9433	bpf_xdp_link_release(link);
 9434	return 0;
 9435}
 9436
 9437static void bpf_xdp_link_dealloc(struct bpf_link *link)
 
 
 
 
 
 
 
 
 9438{
 9439	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9440
 9441	kfree(xdp_link);
 
 
 
 
 9442}
 9443
 9444static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
 9445				     struct seq_file *seq)
 9446{
 9447	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9448	u32 ifindex = 0;
 9449
 9450	rtnl_lock();
 9451	if (xdp_link->dev)
 9452		ifindex = xdp_link->dev->ifindex;
 9453	rtnl_unlock();
 9454
 9455	seq_printf(seq, "ifindex:\t%u\n", ifindex);
 9456}
 9457
 9458static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
 9459				       struct bpf_link_info *info)
 9460{
 9461	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9462	u32 ifindex = 0;
 9463
 9464	rtnl_lock();
 9465	if (xdp_link->dev)
 9466		ifindex = xdp_link->dev->ifindex;
 9467	rtnl_unlock();
 9468
 9469	info->xdp.ifindex = ifindex;
 9470	return 0;
 9471}
 9472
 9473static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
 9474			       struct bpf_prog *old_prog)
 9475{
 9476	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9477	enum bpf_xdp_mode mode;
 9478	bpf_op_t bpf_op;
 9479	int err = 0;
 9480
 9481	rtnl_lock();
 
 9482
 9483	/* link might have been auto-released already, so fail */
 9484	if (!xdp_link->dev) {
 9485		err = -ENOLINK;
 9486		goto out_unlock;
 9487	}
 
 
 
 9488
 9489	if (old_prog && link->prog != old_prog) {
 9490		err = -EPERM;
 9491		goto out_unlock;
 9492	}
 9493	old_prog = link->prog;
 9494	if (old_prog->type != new_prog->type ||
 9495	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
 9496		err = -EINVAL;
 9497		goto out_unlock;
 9498	}
 9499
 9500	if (old_prog == new_prog) {
 9501		/* no-op, don't disturb drivers */
 9502		bpf_prog_put(new_prog);
 9503		goto out_unlock;
 9504	}
 9505
 9506	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
 9507	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
 9508	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
 9509			      xdp_link->flags, new_prog);
 9510	if (err)
 9511		goto out_unlock;
 9512
 9513	old_prog = xchg(&link->prog, new_prog);
 9514	bpf_prog_put(old_prog);
 9515
 9516out_unlock:
 9517	rtnl_unlock();
 9518	return err;
 9519}
 9520
 9521static const struct bpf_link_ops bpf_xdp_link_lops = {
 9522	.release = bpf_xdp_link_release,
 9523	.dealloc = bpf_xdp_link_dealloc,
 9524	.detach = bpf_xdp_link_detach,
 9525	.show_fdinfo = bpf_xdp_link_show_fdinfo,
 9526	.fill_link_info = bpf_xdp_link_fill_link_info,
 9527	.update_prog = bpf_xdp_link_update,
 9528};
 9529
 9530int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
 9531{
 9532	struct net *net = current->nsproxy->net_ns;
 9533	struct bpf_link_primer link_primer;
 9534	struct netlink_ext_ack extack = {};
 9535	struct bpf_xdp_link *link;
 9536	struct net_device *dev;
 9537	int err, fd;
 9538
 9539	rtnl_lock();
 9540	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
 9541	if (!dev) {
 9542		rtnl_unlock();
 9543		return -EINVAL;
 9544	}
 9545
 9546	link = kzalloc(sizeof(*link), GFP_USER);
 9547	if (!link) {
 9548		err = -ENOMEM;
 9549		goto unlock;
 9550	}
 9551
 9552	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
 9553	link->dev = dev;
 9554	link->flags = attr->link_create.flags;
 9555
 9556	err = bpf_link_prime(&link->link, &link_primer);
 9557	if (err) {
 9558		kfree(link);
 9559		goto unlock;
 9560	}
 9561
 9562	err = dev_xdp_attach_link(dev, &extack, link);
 9563	rtnl_unlock();
 
 
 9564
 9565	if (err) {
 9566		link->dev = NULL;
 9567		bpf_link_cleanup(&link_primer);
 9568		trace_bpf_xdp_link_attach_failed(extack._msg);
 9569		goto out_put_dev;
 9570	}
 9571
 9572	fd = bpf_link_settle(&link_primer);
 9573	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
 9574	dev_put(dev);
 9575	return fd;
 
 9576
 9577unlock:
 9578	rtnl_unlock();
 9579
 9580out_put_dev:
 9581	dev_put(dev);
 9582	return err;
 9583}
 9584
 9585/**
 9586 *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
 9587 *	@dev: device
 9588 *	@extack: netlink extended ack
 9589 *	@fd: new program fd or negative value to clear
 9590 *	@expected_fd: old program fd that userspace expects to replace or clear
 9591 *	@flags: xdp-related flags
 9592 *
 9593 *	Set or clear a bpf program for a device
 9594 */
 9595int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
 9596		      int fd, int expected_fd, u32 flags)
 9597{
 9598	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
 9599	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
 9600	int err;
 9601
 9602	ASSERT_RTNL();
 9603
 9604	if (fd >= 0) {
 9605		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
 9606						 mode != XDP_MODE_SKB);
 9607		if (IS_ERR(new_prog))
 9608			return PTR_ERR(new_prog);
 9609	}
 9610
 9611	if (expected_fd >= 0) {
 9612		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
 9613						 mode != XDP_MODE_SKB);
 9614		if (IS_ERR(old_prog)) {
 9615			err = PTR_ERR(old_prog);
 9616			old_prog = NULL;
 9617			goto err_out;
 9618		}
 9619	}
 9620
 9621	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
 9622
 9623err_out:
 9624	if (err && new_prog)
 9625		bpf_prog_put(new_prog);
 9626	if (old_prog)
 9627		bpf_prog_put(old_prog);
 9628	return err;
 9629}
 9630
 9631/**
 9632 * dev_index_reserve() - allocate an ifindex in a namespace
 9633 * @net: the applicable net namespace
 9634 * @ifindex: requested ifindex, pass %0 to get one allocated
 9635 *
 9636 * Allocate a ifindex for a new device. Caller must either use the ifindex
 9637 * to store the device (via list_netdevice()) or call dev_index_release()
 9638 * to give the index up.
 9639 *
 9640 * Return: a suitable unique value for a new device interface number or -errno.
 9641 */
 9642static int dev_index_reserve(struct net *net, u32 ifindex)
 9643{
 9644	int err;
 9645
 9646	if (ifindex > INT_MAX) {
 9647		DEBUG_NET_WARN_ON_ONCE(1);
 9648		return -EINVAL;
 9649	}
 9650
 9651	if (!ifindex)
 9652		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
 9653				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
 9654	else
 9655		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
 9656	if (err < 0)
 9657		return err;
 9658
 9659	return ifindex;
 9660}
 9661
 9662static void dev_index_release(struct net *net, int ifindex)
 9663{
 9664	/* Expect only unused indexes, unlist_netdevice() removes the used */
 9665	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
 9666}
 9667
 9668/* Delayed registration/unregisteration */
 9669LIST_HEAD(net_todo_list);
 9670DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
 9671
 9672static void net_set_todo(struct net_device *dev)
 9673{
 9674	list_add_tail(&dev->todo_list, &net_todo_list);
 9675	atomic_inc(&dev_net(dev)->dev_unreg_count);
 9676}
 9677
 9678static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
 9679	struct net_device *upper, netdev_features_t features)
 9680{
 9681	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9682	netdev_features_t feature;
 9683	int feature_bit;
 9684
 9685	for_each_netdev_feature(upper_disables, feature_bit) {
 9686		feature = __NETIF_F_BIT(feature_bit);
 9687		if (!(upper->wanted_features & feature)
 9688		    && (features & feature)) {
 9689			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
 9690				   &feature, upper->name);
 9691			features &= ~feature;
 9692		}
 9693	}
 9694
 9695	return features;
 9696}
 9697
 9698static void netdev_sync_lower_features(struct net_device *upper,
 9699	struct net_device *lower, netdev_features_t features)
 9700{
 9701	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9702	netdev_features_t feature;
 9703	int feature_bit;
 9704
 9705	for_each_netdev_feature(upper_disables, feature_bit) {
 9706		feature = __NETIF_F_BIT(feature_bit);
 9707		if (!(features & feature) && (lower->features & feature)) {
 9708			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
 9709				   &feature, lower->name);
 9710			lower->wanted_features &= ~feature;
 9711			__netdev_update_features(lower);
 9712
 9713			if (unlikely(lower->features & feature))
 9714				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
 9715					    &feature, lower->name);
 9716			else
 9717				netdev_features_change(lower);
 9718		}
 9719	}
 9720}
 9721
 9722static netdev_features_t netdev_fix_features(struct net_device *dev,
 9723	netdev_features_t features)
 9724{
 9725	/* Fix illegal checksum combinations */
 9726	if ((features & NETIF_F_HW_CSUM) &&
 9727	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
 9728		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
 9729		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
 9730	}
 9731
 
 
 
 
 
 
 
 
 9732	/* TSO requires that SG is present as well. */
 9733	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
 9734		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
 9735		features &= ~NETIF_F_ALL_TSO;
 9736	}
 9737
 9738	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
 9739					!(features & NETIF_F_IP_CSUM)) {
 9740		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
 9741		features &= ~NETIF_F_TSO;
 9742		features &= ~NETIF_F_TSO_ECN;
 9743	}
 9744
 9745	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
 9746					 !(features & NETIF_F_IPV6_CSUM)) {
 9747		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
 9748		features &= ~NETIF_F_TSO6;
 9749	}
 9750
 9751	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
 9752	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
 9753		features &= ~NETIF_F_TSO_MANGLEID;
 9754
 9755	/* TSO ECN requires that TSO is present as well. */
 9756	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
 9757		features &= ~NETIF_F_TSO_ECN;
 9758
 9759	/* Software GSO depends on SG. */
 9760	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
 9761		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
 9762		features &= ~NETIF_F_GSO;
 9763	}
 9764
 9765	/* GSO partial features require GSO partial be set */
 9766	if ((features & dev->gso_partial_features) &&
 9767	    !(features & NETIF_F_GSO_PARTIAL)) {
 9768		netdev_dbg(dev,
 9769			   "Dropping partially supported GSO features since no GSO partial.\n");
 9770		features &= ~dev->gso_partial_features;
 9771	}
 9772
 9773	if (!(features & NETIF_F_RXCSUM)) {
 9774		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
 9775		 * successfully merged by hardware must also have the
 9776		 * checksum verified by hardware.  If the user does not
 9777		 * want to enable RXCSUM, logically, we should disable GRO_HW.
 9778		 */
 9779		if (features & NETIF_F_GRO_HW) {
 9780			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
 9781			features &= ~NETIF_F_GRO_HW;
 9782		}
 9783	}
 9784
 9785	/* LRO/HW-GRO features cannot be combined with RX-FCS */
 9786	if (features & NETIF_F_RXFCS) {
 9787		if (features & NETIF_F_LRO) {
 9788			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
 9789			features &= ~NETIF_F_LRO;
 9790		}
 9791
 9792		if (features & NETIF_F_GRO_HW) {
 9793			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
 9794			features &= ~NETIF_F_GRO_HW;
 9795		}
 9796	}
 9797
 9798	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
 9799		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
 9800		features &= ~NETIF_F_LRO;
 9801	}
 9802
 9803	if (features & NETIF_F_HW_TLS_TX) {
 9804		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
 9805			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
 9806		bool hw_csum = features & NETIF_F_HW_CSUM;
 9807
 9808		if (!ip_csum && !hw_csum) {
 9809			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
 9810			features &= ~NETIF_F_HW_TLS_TX;
 9811		}
 9812	}
 9813
 9814	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
 9815		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
 9816		features &= ~NETIF_F_HW_TLS_RX;
 9817	}
 9818
 9819	return features;
 9820}
 9821
 9822int __netdev_update_features(struct net_device *dev)
 9823{
 9824	struct net_device *upper, *lower;
 9825	netdev_features_t features;
 9826	struct list_head *iter;
 9827	int err = -1;
 9828
 9829	ASSERT_RTNL();
 9830
 9831	features = netdev_get_wanted_features(dev);
 9832
 9833	if (dev->netdev_ops->ndo_fix_features)
 9834		features = dev->netdev_ops->ndo_fix_features(dev, features);
 9835
 9836	/* driver might be less strict about feature dependencies */
 9837	features = netdev_fix_features(dev, features);
 9838
 9839	/* some features can't be enabled if they're off on an upper device */
 9840	netdev_for_each_upper_dev_rcu(dev, upper, iter)
 9841		features = netdev_sync_upper_features(dev, upper, features);
 9842
 9843	if (dev->features == features)
 9844		goto sync_lower;
 9845
 9846	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
 9847		&dev->features, &features);
 9848
 9849	if (dev->netdev_ops->ndo_set_features)
 9850		err = dev->netdev_ops->ndo_set_features(dev, features);
 9851	else
 9852		err = 0;
 9853
 9854	if (unlikely(err < 0)) {
 9855		netdev_err(dev,
 9856			"set_features() failed (%d); wanted %pNF, left %pNF\n",
 9857			err, &features, &dev->features);
 9858		/* return non-0 since some features might have changed and
 9859		 * it's better to fire a spurious notification than miss it
 9860		 */
 9861		return -1;
 9862	}
 9863
 9864sync_lower:
 9865	/* some features must be disabled on lower devices when disabled
 9866	 * on an upper device (think: bonding master or bridge)
 9867	 */
 9868	netdev_for_each_lower_dev(dev, lower, iter)
 9869		netdev_sync_lower_features(dev, lower, features);
 9870
 9871	if (!err) {
 9872		netdev_features_t diff = features ^ dev->features;
 9873
 9874		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9875			/* udp_tunnel_{get,drop}_rx_info both need
 9876			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
 9877			 * device, or they won't do anything.
 9878			 * Thus we need to update dev->features
 9879			 * *before* calling udp_tunnel_get_rx_info,
 9880			 * but *after* calling udp_tunnel_drop_rx_info.
 9881			 */
 9882			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9883				dev->features = features;
 9884				udp_tunnel_get_rx_info(dev);
 9885			} else {
 9886				udp_tunnel_drop_rx_info(dev);
 9887			}
 9888		}
 9889
 9890		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9891			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9892				dev->features = features;
 9893				err |= vlan_get_rx_ctag_filter_info(dev);
 9894			} else {
 9895				vlan_drop_rx_ctag_filter_info(dev);
 9896			}
 9897		}
 9898
 9899		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
 9900			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
 9901				dev->features = features;
 9902				err |= vlan_get_rx_stag_filter_info(dev);
 9903			} else {
 9904				vlan_drop_rx_stag_filter_info(dev);
 9905			}
 9906		}
 9907
 9908		dev->features = features;
 9909	}
 9910
 9911	return err < 0 ? 0 : 1;
 9912}
 9913
 9914/**
 9915 *	netdev_update_features - recalculate device features
 9916 *	@dev: the device to check
 9917 *
 9918 *	Recalculate dev->features set and send notifications if it
 9919 *	has changed. Should be called after driver or hardware dependent
 9920 *	conditions might have changed that influence the features.
 9921 */
 9922void netdev_update_features(struct net_device *dev)
 9923{
 9924	if (__netdev_update_features(dev))
 9925		netdev_features_change(dev);
 9926}
 9927EXPORT_SYMBOL(netdev_update_features);
 9928
 9929/**
 9930 *	netdev_change_features - recalculate device features
 9931 *	@dev: the device to check
 9932 *
 9933 *	Recalculate dev->features set and send notifications even
 9934 *	if they have not changed. Should be called instead of
 9935 *	netdev_update_features() if also dev->vlan_features might
 9936 *	have changed to allow the changes to be propagated to stacked
 9937 *	VLAN devices.
 9938 */
 9939void netdev_change_features(struct net_device *dev)
 9940{
 9941	__netdev_update_features(dev);
 9942	netdev_features_change(dev);
 9943}
 9944EXPORT_SYMBOL(netdev_change_features);
 9945
 9946/**
 9947 *	netif_stacked_transfer_operstate -	transfer operstate
 9948 *	@rootdev: the root or lower level device to transfer state from
 9949 *	@dev: the device to transfer operstate to
 9950 *
 9951 *	Transfer operational state from root to device. This is normally
 9952 *	called when a stacking relationship exists between the root
 9953 *	device and the device(a leaf device).
 9954 */
 9955void netif_stacked_transfer_operstate(const struct net_device *rootdev,
 9956					struct net_device *dev)
 9957{
 9958	if (rootdev->operstate == IF_OPER_DORMANT)
 9959		netif_dormant_on(dev);
 9960	else
 9961		netif_dormant_off(dev);
 9962
 9963	if (rootdev->operstate == IF_OPER_TESTING)
 9964		netif_testing_on(dev);
 9965	else
 9966		netif_testing_off(dev);
 9967
 9968	if (netif_carrier_ok(rootdev))
 9969		netif_carrier_on(dev);
 9970	else
 9971		netif_carrier_off(dev);
 9972}
 9973EXPORT_SYMBOL(netif_stacked_transfer_operstate);
 9974
 
 9975static int netif_alloc_rx_queues(struct net_device *dev)
 9976{
 9977	unsigned int i, count = dev->num_rx_queues;
 9978	struct netdev_rx_queue *rx;
 9979	size_t sz = count * sizeof(*rx);
 9980	int err = 0;
 9981
 9982	BUG_ON(count < 1);
 9983
 9984	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
 9985	if (!rx)
 
 9986		return -ENOMEM;
 9987
 9988	dev->_rx = rx;
 9989
 9990	for (i = 0; i < count; i++) {
 9991		rx[i].dev = dev;
 9992
 9993		/* XDP RX-queue setup */
 9994		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
 9995		if (err < 0)
 9996			goto err_rxq_info;
 9997	}
 9998	return 0;
 9999
10000err_rxq_info:
10001	/* Rollback successful reg's and free other resources */
10002	while (i--)
10003		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10004	kvfree(dev->_rx);
10005	dev->_rx = NULL;
10006	return err;
10007}
10008
10009static void netif_free_rx_queues(struct net_device *dev)
10010{
10011	unsigned int i, count = dev->num_rx_queues;
10012
10013	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10014	if (!dev->_rx)
10015		return;
10016
10017	for (i = 0; i < count; i++)
10018		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10019
10020	kvfree(dev->_rx);
10021}
 
10022
10023static void netdev_init_one_queue(struct net_device *dev,
10024				  struct netdev_queue *queue, void *_unused)
10025{
10026	/* Initialize queue lock */
10027	spin_lock_init(&queue->_xmit_lock);
10028	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10029	queue->xmit_lock_owner = -1;
10030	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10031	queue->dev = dev;
10032#ifdef CONFIG_BQL
10033	dql_init(&queue->dql, HZ);
10034#endif
10035}
10036
10037static void netif_free_tx_queues(struct net_device *dev)
10038{
10039	kvfree(dev->_tx);
10040}
10041
10042static int netif_alloc_netdev_queues(struct net_device *dev)
10043{
10044	unsigned int count = dev->num_tx_queues;
10045	struct netdev_queue *tx;
10046	size_t sz = count * sizeof(*tx);
10047
10048	if (count < 1 || count > 0xffff)
10049		return -EINVAL;
10050
10051	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10052	if (!tx)
 
10053		return -ENOMEM;
10054
10055	dev->_tx = tx;
10056
10057	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10058	spin_lock_init(&dev->tx_global_lock);
10059
10060	return 0;
10061}
10062
10063void netif_tx_stop_all_queues(struct net_device *dev)
10064{
10065	unsigned int i;
10066
10067	for (i = 0; i < dev->num_tx_queues; i++) {
10068		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10069
10070		netif_tx_stop_queue(txq);
10071	}
10072}
10073EXPORT_SYMBOL(netif_tx_stop_all_queues);
10074
10075static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10076{
10077	void __percpu *v;
10078
10079	/* Drivers implementing ndo_get_peer_dev must support tstat
10080	 * accounting, so that skb_do_redirect() can bump the dev's
10081	 * RX stats upon network namespace switch.
10082	 */
10083	if (dev->netdev_ops->ndo_get_peer_dev &&
10084	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10085		return -EOPNOTSUPP;
10086
10087	switch (dev->pcpu_stat_type) {
10088	case NETDEV_PCPU_STAT_NONE:
10089		return 0;
10090	case NETDEV_PCPU_STAT_LSTATS:
10091		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10092		break;
10093	case NETDEV_PCPU_STAT_TSTATS:
10094		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10095		break;
10096	case NETDEV_PCPU_STAT_DSTATS:
10097		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10098		break;
10099	default:
10100		return -EINVAL;
10101	}
10102
10103	return v ? 0 : -ENOMEM;
10104}
10105
10106static void netdev_do_free_pcpu_stats(struct net_device *dev)
10107{
10108	switch (dev->pcpu_stat_type) {
10109	case NETDEV_PCPU_STAT_NONE:
10110		return;
10111	case NETDEV_PCPU_STAT_LSTATS:
10112		free_percpu(dev->lstats);
10113		break;
10114	case NETDEV_PCPU_STAT_TSTATS:
10115		free_percpu(dev->tstats);
10116		break;
10117	case NETDEV_PCPU_STAT_DSTATS:
10118		free_percpu(dev->dstats);
10119		break;
10120	}
10121}
10122
10123/**
10124 * register_netdevice() - register a network device
10125 * @dev: device to register
10126 *
10127 * Take a prepared network device structure and make it externally accessible.
10128 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10129 * Callers must hold the rtnl lock - you may want register_netdev()
10130 * instead of this.
 
 
 
 
 
 
 
10131 */
 
10132int register_netdevice(struct net_device *dev)
10133{
10134	int ret;
10135	struct net *net = dev_net(dev);
10136
10137	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10138		     NETDEV_FEATURE_COUNT);
10139	BUG_ON(dev_boot_phase);
10140	ASSERT_RTNL();
10141
10142	might_sleep();
10143
10144	/* When net_device's are persistent, this will be fatal. */
10145	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10146	BUG_ON(!net);
10147
10148	ret = ethtool_check_ops(dev->ethtool_ops);
10149	if (ret)
10150		return ret;
10151
10152	spin_lock_init(&dev->addr_list_lock);
10153	netdev_set_addr_lockdep_class(dev);
10154
10155	ret = dev_get_valid_name(net, dev, dev->name);
 
 
10156	if (ret < 0)
10157		goto out;
10158
10159	ret = -ENOMEM;
10160	dev->name_node = netdev_name_node_head_alloc(dev);
10161	if (!dev->name_node)
10162		goto out;
10163
10164	/* Init, if this function is available */
10165	if (dev->netdev_ops->ndo_init) {
10166		ret = dev->netdev_ops->ndo_init(dev);
10167		if (ret) {
10168			if (ret > 0)
10169				ret = -EIO;
10170			goto err_free_name;
10171		}
10172	}
10173
10174	if (((dev->hw_features | dev->features) &
10175	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10176	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10177	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10178		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10179		ret = -EINVAL;
10180		goto err_uninit;
10181	}
10182
10183	ret = netdev_do_alloc_pcpu_stats(dev);
10184	if (ret)
10185		goto err_uninit;
10186
10187	ret = dev_index_reserve(net, dev->ifindex);
10188	if (ret < 0)
10189		goto err_free_pcpu;
10190	dev->ifindex = ret;
10191
10192	/* Transfer changeable features to wanted_features and enable
10193	 * software offloads (GSO and GRO).
10194	 */
10195	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10196	dev->features |= NETIF_F_SOFT_FEATURES;
10197
10198	if (dev->udp_tunnel_nic_info) {
10199		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10200		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10201	}
10202
10203	dev->wanted_features = dev->features & dev->hw_features;
10204
10205	if (!(dev->flags & IFF_LOOPBACK))
 
10206		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10207
10208	/* If IPv4 TCP segmentation offload is supported we should also
10209	 * allow the device to enable segmenting the frame with the option
10210	 * of ignoring a static IP ID value.  This doesn't enable the
10211	 * feature itself but allows the user to enable it later.
10212	 */
10213	if (dev->hw_features & NETIF_F_TSO)
10214		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10215	if (dev->vlan_features & NETIF_F_TSO)
10216		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10217	if (dev->mpls_features & NETIF_F_TSO)
10218		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10219	if (dev->hw_enc_features & NETIF_F_TSO)
10220		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10221
10222	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10223	 */
10224	dev->vlan_features |= NETIF_F_HIGHDMA;
10225
10226	/* Make NETIF_F_SG inheritable to tunnel devices.
10227	 */
10228	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10229
10230	/* Make NETIF_F_SG inheritable to MPLS.
10231	 */
10232	dev->mpls_features |= NETIF_F_SG;
10233
10234	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10235	ret = notifier_to_errno(ret);
10236	if (ret)
10237		goto err_ifindex_release;
10238
10239	ret = netdev_register_kobject(dev);
10240	write_lock(&dev_base_lock);
10241	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10242	write_unlock(&dev_base_lock);
10243	if (ret)
10244		goto err_uninit_notify;
 
10245
10246	__netdev_update_features(dev);
10247
10248	/*
10249	 *	Default initial state at registry is that the
10250	 *	device is present.
10251	 */
10252
10253	set_bit(__LINK_STATE_PRESENT, &dev->state);
10254
10255	linkwatch_init_dev(dev);
10256
10257	dev_init_scheduler(dev);
10258
10259	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10260	list_netdevice(dev);
10261
10262	add_device_randomness(dev->dev_addr, dev->addr_len);
10263
10264	/* If the device has permanent device address, driver should
10265	 * set dev_addr and also addr_assign_type should be set to
10266	 * NET_ADDR_PERM (default value).
10267	 */
10268	if (dev->addr_assign_type == NET_ADDR_PERM)
10269		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10270
10271	/* Notify protocols, that a new device appeared. */
10272	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10273	ret = notifier_to_errno(ret);
10274	if (ret) {
10275		/* Expect explicit free_netdev() on failure */
10276		dev->needs_free_netdev = false;
10277		unregister_netdevice_queue(dev, NULL);
10278		goto out;
10279	}
10280	/*
10281	 *	Prevent userspace races by waiting until the network
10282	 *	device is fully setup before sending notifications.
10283	 */
10284	if (!dev->rtnl_link_ops ||
10285	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10286		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10287
10288out:
10289	return ret;
10290
10291err_uninit_notify:
10292	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10293err_ifindex_release:
10294	dev_index_release(net, dev->ifindex);
10295err_free_pcpu:
10296	netdev_do_free_pcpu_stats(dev);
10297err_uninit:
10298	if (dev->netdev_ops->ndo_uninit)
10299		dev->netdev_ops->ndo_uninit(dev);
10300	if (dev->priv_destructor)
10301		dev->priv_destructor(dev);
10302err_free_name:
10303	netdev_name_node_free(dev->name_node);
10304	goto out;
10305}
10306EXPORT_SYMBOL(register_netdevice);
10307
10308/**
10309 *	init_dummy_netdev	- init a dummy network device for NAPI
10310 *	@dev: device to init
10311 *
10312 *	This takes a network device structure and initialize the minimum
10313 *	amount of fields so it can be used to schedule NAPI polls without
10314 *	registering a full blown interface. This is to be used by drivers
10315 *	that need to tie several hardware interfaces to a single NAPI
10316 *	poll scheduler due to HW limitations.
10317 */
10318int init_dummy_netdev(struct net_device *dev)
10319{
10320	/* Clear everything. Note we don't initialize spinlocks
10321	 * are they aren't supposed to be taken by any of the
10322	 * NAPI code and this dummy netdev is supposed to be
10323	 * only ever used for NAPI polls
10324	 */
10325	memset(dev, 0, sizeof(struct net_device));
10326
10327	/* make sure we BUG if trying to hit standard
10328	 * register/unregister code path
10329	 */
10330	dev->reg_state = NETREG_DUMMY;
10331
10332	/* NAPI wants this */
10333	INIT_LIST_HEAD(&dev->napi_list);
10334
10335	/* a dummy interface is started by default */
10336	set_bit(__LINK_STATE_PRESENT, &dev->state);
10337	set_bit(__LINK_STATE_START, &dev->state);
10338
10339	/* napi_busy_loop stats accounting wants this */
10340	dev_net_set(dev, &init_net);
10341
10342	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10343	 * because users of this 'device' dont need to change
10344	 * its refcount.
10345	 */
10346
10347	return 0;
10348}
10349EXPORT_SYMBOL_GPL(init_dummy_netdev);
10350
10351
10352/**
10353 *	register_netdev	- register a network device
10354 *	@dev: device to register
10355 *
10356 *	Take a completed network device structure and add it to the kernel
10357 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10358 *	chain. 0 is returned on success. A negative errno code is returned
10359 *	on a failure to set up the device, or if the name is a duplicate.
10360 *
10361 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10362 *	and expands the device name if you passed a format string to
10363 *	alloc_netdev.
10364 */
10365int register_netdev(struct net_device *dev)
10366{
10367	int err;
10368
10369	if (rtnl_lock_killable())
10370		return -EINTR;
10371	err = register_netdevice(dev);
10372	rtnl_unlock();
10373	return err;
10374}
10375EXPORT_SYMBOL(register_netdev);
10376
10377int netdev_refcnt_read(const struct net_device *dev)
10378{
10379#ifdef CONFIG_PCPU_DEV_REFCNT
10380	int i, refcnt = 0;
10381
10382	for_each_possible_cpu(i)
10383		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10384	return refcnt;
10385#else
10386	return refcount_read(&dev->dev_refcnt);
10387#endif
10388}
10389EXPORT_SYMBOL(netdev_refcnt_read);
10390
10391int netdev_unregister_timeout_secs __read_mostly = 10;
10392
10393#define WAIT_REFS_MIN_MSECS 1
10394#define WAIT_REFS_MAX_MSECS 250
10395/**
10396 * netdev_wait_allrefs_any - wait until all references are gone.
10397 * @list: list of net_devices to wait on
10398 *
10399 * This is called when unregistering network devices.
10400 *
10401 * Any protocol or device that holds a reference should register
10402 * for netdevice notification, and cleanup and put back the
10403 * reference if they receive an UNREGISTER event.
10404 * We can get stuck here if buggy protocols don't correctly
10405 * call dev_put.
10406 */
10407static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10408{
10409	unsigned long rebroadcast_time, warning_time;
10410	struct net_device *dev;
10411	int wait = 0;
 
10412
10413	rebroadcast_time = warning_time = jiffies;
 
10414
10415	list_for_each_entry(dev, list, todo_list)
10416		if (netdev_refcnt_read(dev) == 1)
10417			return dev;
10418
10419	while (true) {
10420		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10421			rtnl_lock();
10422
10423			/* Rebroadcast unregister notification */
10424			list_for_each_entry(dev, list, todo_list)
10425				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10426
10427			__rtnl_unlock();
10428			rcu_barrier();
10429			rtnl_lock();
10430
10431			list_for_each_entry(dev, list, todo_list)
10432				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10433					     &dev->state)) {
10434					/* We must not have linkwatch events
10435					 * pending on unregister. If this
10436					 * happens, we simply run the queue
10437					 * unscheduled, resulting in a noop
10438					 * for this device.
10439					 */
10440					linkwatch_run_queue();
10441					break;
10442				}
10443
10444			__rtnl_unlock();
10445
10446			rebroadcast_time = jiffies;
10447		}
10448
10449		if (!wait) {
10450			rcu_barrier();
10451			wait = WAIT_REFS_MIN_MSECS;
10452		} else {
10453			msleep(wait);
10454			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10455		}
10456
10457		list_for_each_entry(dev, list, todo_list)
10458			if (netdev_refcnt_read(dev) == 1)
10459				return dev;
10460
10461		if (time_after(jiffies, warning_time +
10462			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10463			list_for_each_entry(dev, list, todo_list) {
10464				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10465					 dev->name, netdev_refcnt_read(dev));
10466				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10467			}
10468
 
 
 
10469			warning_time = jiffies;
10470		}
10471	}
10472}
10473
10474/* The sequence is:
10475 *
10476 *	rtnl_lock();
10477 *	...
10478 *	register_netdevice(x1);
10479 *	register_netdevice(x2);
10480 *	...
10481 *	unregister_netdevice(y1);
10482 *	unregister_netdevice(y2);
10483 *      ...
10484 *	rtnl_unlock();
10485 *	free_netdev(y1);
10486 *	free_netdev(y2);
10487 *
10488 * We are invoked by rtnl_unlock().
10489 * This allows us to deal with problems:
10490 * 1) We can delete sysfs objects which invoke hotplug
10491 *    without deadlocking with linkwatch via keventd.
10492 * 2) Since we run with the RTNL semaphore not held, we can sleep
10493 *    safely in order to wait for the netdev refcnt to drop to zero.
10494 *
10495 * We must not return until all unregister events added during
10496 * the interval the lock was held have been completed.
10497 */
10498void netdev_run_todo(void)
10499{
10500	struct net_device *dev, *tmp;
10501	struct list_head list;
10502#ifdef CONFIG_LOCKDEP
10503	struct list_head unlink_list;
10504
10505	list_replace_init(&net_unlink_list, &unlink_list);
10506
10507	while (!list_empty(&unlink_list)) {
10508		struct net_device *dev = list_first_entry(&unlink_list,
10509							  struct net_device,
10510							  unlink_list);
10511		list_del_init(&dev->unlink_list);
10512		dev->nested_level = dev->lower_level - 1;
10513	}
10514#endif
10515
10516	/* Snapshot list, allow later requests */
10517	list_replace_init(&net_todo_list, &list);
10518
10519	__rtnl_unlock();
10520
10521	/* Wait for rcu callbacks to finish before next phase */
 
 
10522	if (!list_empty(&list))
10523		rcu_barrier();
10524
10525	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
 
 
 
 
10526		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10527			netdev_WARN(dev, "run_todo but not unregistering\n");
10528			list_del(&dev->todo_list);
 
10529			continue;
10530		}
10531
10532		write_lock(&dev_base_lock);
10533		dev->reg_state = NETREG_UNREGISTERED;
10534		write_unlock(&dev_base_lock);
10535		linkwatch_sync_dev(dev);
10536	}
10537
10538	while (!list_empty(&list)) {
10539		dev = netdev_wait_allrefs_any(&list);
10540		list_del(&dev->todo_list);
10541
10542		/* paranoia */
10543		BUG_ON(netdev_refcnt_read(dev) != 1);
10544		BUG_ON(!list_empty(&dev->ptype_all));
10545		BUG_ON(!list_empty(&dev->ptype_specific));
10546		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10547		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
 
10548
10549		netdev_do_free_pcpu_stats(dev);
10550		if (dev->priv_destructor)
10551			dev->priv_destructor(dev);
10552		if (dev->needs_free_netdev)
10553			free_netdev(dev);
10554
10555		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10556			wake_up(&netdev_unregistering_wq);
10557
10558		/* Free network device */
10559		kobject_put(&dev->dev.kobj);
10560	}
10561}
10562
10563/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10564 * all the same fields in the same order as net_device_stats, with only
10565 * the type differing, but rtnl_link_stats64 may have additional fields
10566 * at the end for newer counters.
10567 */
10568void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10569			     const struct net_device_stats *netdev_stats)
10570{
10571	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10572	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
 
 
 
 
10573	u64 *dst = (u64 *)stats64;
10574
10575	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
 
10576	for (i = 0; i < n; i++)
10577		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10578	/* zero out counters that only exist in rtnl_link_stats64 */
10579	memset((char *)stats64 + n * sizeof(u64), 0,
10580	       sizeof(*stats64) - n * sizeof(u64));
10581}
10582EXPORT_SYMBOL(netdev_stats_to_stats64);
10583
10584static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10585		struct net_device *dev)
10586{
10587	struct net_device_core_stats __percpu *p;
10588
10589	p = alloc_percpu_gfp(struct net_device_core_stats,
10590			     GFP_ATOMIC | __GFP_NOWARN);
10591
10592	if (p && cmpxchg(&dev->core_stats, NULL, p))
10593		free_percpu(p);
10594
10595	/* This READ_ONCE() pairs with the cmpxchg() above */
10596	return READ_ONCE(dev->core_stats);
10597}
10598
10599noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10600{
10601	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10602	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10603	unsigned long __percpu *field;
10604
10605	if (unlikely(!p)) {
10606		p = netdev_core_stats_alloc(dev);
10607		if (!p)
10608			return;
10609	}
10610
10611	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10612	this_cpu_inc(*field);
10613}
10614EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10615
10616/**
10617 *	dev_get_stats	- get network device statistics
10618 *	@dev: device to get statistics from
10619 *	@storage: place to store stats
10620 *
10621 *	Get network statistics from device. Return @storage.
10622 *	The device driver may provide its own method by setting
10623 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10624 *	otherwise the internal statistics structure is used.
10625 */
10626struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10627					struct rtnl_link_stats64 *storage)
10628{
10629	const struct net_device_ops *ops = dev->netdev_ops;
10630	const struct net_device_core_stats __percpu *p;
10631
10632	if (ops->ndo_get_stats64) {
10633		memset(storage, 0, sizeof(*storage));
10634		ops->ndo_get_stats64(dev, storage);
10635	} else if (ops->ndo_get_stats) {
10636		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10637	} else {
10638		netdev_stats_to_stats64(storage, &dev->stats);
10639	}
10640
10641	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10642	p = READ_ONCE(dev->core_stats);
10643	if (p) {
10644		const struct net_device_core_stats *core_stats;
10645		int i;
10646
10647		for_each_possible_cpu(i) {
10648			core_stats = per_cpu_ptr(p, i);
10649			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10650			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10651			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10652			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10653		}
10654	}
10655	return storage;
10656}
10657EXPORT_SYMBOL(dev_get_stats);
10658
10659/**
10660 *	dev_fetch_sw_netstats - get per-cpu network device statistics
10661 *	@s: place to store stats
10662 *	@netstats: per-cpu network stats to read from
10663 *
10664 *	Read per-cpu network statistics and populate the related fields in @s.
10665 */
10666void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10667			   const struct pcpu_sw_netstats __percpu *netstats)
10668{
10669	int cpu;
10670
10671	for_each_possible_cpu(cpu) {
10672		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10673		const struct pcpu_sw_netstats *stats;
10674		unsigned int start;
10675
10676		stats = per_cpu_ptr(netstats, cpu);
10677		do {
10678			start = u64_stats_fetch_begin(&stats->syncp);
10679			rx_packets = u64_stats_read(&stats->rx_packets);
10680			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10681			tx_packets = u64_stats_read(&stats->tx_packets);
10682			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10683		} while (u64_stats_fetch_retry(&stats->syncp, start));
10684
10685		s->rx_packets += rx_packets;
10686		s->rx_bytes   += rx_bytes;
10687		s->tx_packets += tx_packets;
10688		s->tx_bytes   += tx_bytes;
10689	}
10690}
10691EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10692
10693/**
10694 *	dev_get_tstats64 - ndo_get_stats64 implementation
10695 *	@dev: device to get statistics from
10696 *	@s: place to store stats
10697 *
10698 *	Populate @s from dev->stats and dev->tstats. Can be used as
10699 *	ndo_get_stats64() callback.
10700 */
10701void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10702{
10703	netdev_stats_to_stats64(s, &dev->stats);
10704	dev_fetch_sw_netstats(s, dev->tstats);
10705}
10706EXPORT_SYMBOL_GPL(dev_get_tstats64);
10707
10708struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10709{
10710	struct netdev_queue *queue = dev_ingress_queue(dev);
10711
10712#ifdef CONFIG_NET_CLS_ACT
10713	if (queue)
10714		return queue;
10715	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10716	if (!queue)
10717		return NULL;
10718	netdev_init_one_queue(dev, queue, NULL);
10719	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10720	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10721	rcu_assign_pointer(dev->ingress_queue, queue);
10722#endif
10723	return queue;
10724}
10725
10726static const struct ethtool_ops default_ethtool_ops;
10727
10728void netdev_set_default_ethtool_ops(struct net_device *dev,
10729				    const struct ethtool_ops *ops)
10730{
10731	if (dev->ethtool_ops == &default_ethtool_ops)
10732		dev->ethtool_ops = ops;
10733}
10734EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10735
10736/**
10737 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10738 * @dev: netdev to enable the IRQ coalescing on
10739 *
10740 * Sets a conservative default for SW IRQ coalescing. Users can use
10741 * sysfs attributes to override the default values.
10742 */
10743void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10744{
10745	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10746
10747	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10748		dev->gro_flush_timeout = 20000;
10749		dev->napi_defer_hard_irqs = 1;
10750	}
10751}
10752EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10753
10754void netdev_freemem(struct net_device *dev)
10755{
10756	char *addr = (char *)dev - dev->padded;
10757
10758	kvfree(addr);
10759}
10760
10761/**
10762 * alloc_netdev_mqs - allocate network device
10763 * @sizeof_priv: size of private data to allocate space for
10764 * @name: device name format string
10765 * @name_assign_type: origin of device name
10766 * @setup: callback to initialize device
10767 * @txqs: the number of TX subqueues to allocate
10768 * @rxqs: the number of RX subqueues to allocate
10769 *
10770 * Allocates a struct net_device with private data area for driver use
10771 * and performs basic initialization.  Also allocates subqueue structs
10772 * for each queue on the device.
10773 */
10774struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10775		unsigned char name_assign_type,
10776		void (*setup)(struct net_device *),
10777		unsigned int txqs, unsigned int rxqs)
10778{
10779	struct net_device *dev;
10780	unsigned int alloc_size;
10781	struct net_device *p;
10782
10783	BUG_ON(strlen(name) >= sizeof(dev->name));
10784
10785	if (txqs < 1) {
10786		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10787		return NULL;
10788	}
10789
 
10790	if (rxqs < 1) {
10791		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10792		return NULL;
10793	}
 
10794
10795	alloc_size = sizeof(struct net_device);
10796	if (sizeof_priv) {
10797		/* ensure 32-byte alignment of private area */
10798		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10799		alloc_size += sizeof_priv;
10800	}
10801	/* ensure 32-byte alignment of whole construct */
10802	alloc_size += NETDEV_ALIGN - 1;
10803
10804	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10805	if (!p)
 
10806		return NULL;
 
10807
10808	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10809	dev->padded = (char *)dev - (char *)p;
10810
10811	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10812#ifdef CONFIG_PCPU_DEV_REFCNT
10813	dev->pcpu_refcnt = alloc_percpu(int);
10814	if (!dev->pcpu_refcnt)
10815		goto free_dev;
10816	__dev_hold(dev);
10817#else
10818	refcount_set(&dev->dev_refcnt, 1);
10819#endif
10820
10821	if (dev_addr_init(dev))
10822		goto free_pcpu;
10823
10824	dev_mc_init(dev);
10825	dev_uc_init(dev);
10826
10827	dev_net_set(dev, &init_net);
10828
10829	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10830	dev->xdp_zc_max_segs = 1;
10831	dev->gso_max_segs = GSO_MAX_SEGS;
10832	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10833	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10834	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10835	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10836	dev->tso_max_segs = TSO_MAX_SEGS;
10837	dev->upper_level = 1;
10838	dev->lower_level = 1;
10839#ifdef CONFIG_LOCKDEP
10840	dev->nested_level = 0;
10841	INIT_LIST_HEAD(&dev->unlink_list);
10842#endif
10843
10844	INIT_LIST_HEAD(&dev->napi_list);
10845	INIT_LIST_HEAD(&dev->unreg_list);
10846	INIT_LIST_HEAD(&dev->close_list);
10847	INIT_LIST_HEAD(&dev->link_watch_list);
10848	INIT_LIST_HEAD(&dev->adj_list.upper);
10849	INIT_LIST_HEAD(&dev->adj_list.lower);
10850	INIT_LIST_HEAD(&dev->ptype_all);
10851	INIT_LIST_HEAD(&dev->ptype_specific);
10852	INIT_LIST_HEAD(&dev->net_notifier_list);
10853#ifdef CONFIG_NET_SCHED
10854	hash_init(dev->qdisc_hash);
10855#endif
10856	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10857	setup(dev);
10858
10859	if (!dev->tx_queue_len) {
10860		dev->priv_flags |= IFF_NO_QUEUE;
10861		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10862	}
10863
10864	dev->num_tx_queues = txqs;
10865	dev->real_num_tx_queues = txqs;
10866	if (netif_alloc_netdev_queues(dev))
10867		goto free_all;
10868
 
10869	dev->num_rx_queues = rxqs;
10870	dev->real_num_rx_queues = rxqs;
10871	if (netif_alloc_rx_queues(dev))
10872		goto free_all;
 
10873
10874	strcpy(dev->name, name);
10875	dev->name_assign_type = name_assign_type;
10876	dev->group = INIT_NETDEV_GROUP;
10877	if (!dev->ethtool_ops)
10878		dev->ethtool_ops = &default_ethtool_ops;
10879
10880	nf_hook_netdev_init(dev);
10881
10882	return dev;
10883
10884free_all:
10885	free_netdev(dev);
10886	return NULL;
10887
10888free_pcpu:
10889#ifdef CONFIG_PCPU_DEV_REFCNT
10890	free_percpu(dev->pcpu_refcnt);
10891free_dev:
 
 
10892#endif
10893	netdev_freemem(dev);
 
 
10894	return NULL;
10895}
10896EXPORT_SYMBOL(alloc_netdev_mqs);
10897
10898/**
10899 * free_netdev - free network device
10900 * @dev: device
10901 *
10902 * This function does the last stage of destroying an allocated device
10903 * interface. The reference to the device object is released. If this
10904 * is the last reference then it will be freed.Must be called in process
10905 * context.
10906 */
10907void free_netdev(struct net_device *dev)
10908{
10909	struct napi_struct *p, *n;
10910
10911	might_sleep();
10912
10913	/* When called immediately after register_netdevice() failed the unwind
10914	 * handling may still be dismantling the device. Handle that case by
10915	 * deferring the free.
10916	 */
10917	if (dev->reg_state == NETREG_UNREGISTERING) {
10918		ASSERT_RTNL();
10919		dev->needs_free_netdev = true;
10920		return;
10921	}
10922
10923	netif_free_tx_queues(dev);
10924	netif_free_rx_queues(dev);
10925
10926	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10927
10928	/* Flush device addresses */
10929	dev_addr_flush(dev);
10930
10931	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10932		netif_napi_del(p);
10933
10934	ref_tracker_dir_exit(&dev->refcnt_tracker);
10935#ifdef CONFIG_PCPU_DEV_REFCNT
10936	free_percpu(dev->pcpu_refcnt);
10937	dev->pcpu_refcnt = NULL;
10938#endif
10939	free_percpu(dev->core_stats);
10940	dev->core_stats = NULL;
10941	free_percpu(dev->xdp_bulkq);
10942	dev->xdp_bulkq = NULL;
10943
10944	/*  Compatibility with error handling in drivers */
10945	if (dev->reg_state == NETREG_UNINITIALIZED) {
10946		netdev_freemem(dev);
10947		return;
10948	}
10949
10950	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10951	dev->reg_state = NETREG_RELEASED;
10952
10953	/* will free via device release */
10954	put_device(&dev->dev);
10955}
10956EXPORT_SYMBOL(free_netdev);
10957
10958/**
10959 *	synchronize_net -  Synchronize with packet receive processing
10960 *
10961 *	Wait for packets currently being received to be done.
10962 *	Does not block later packets from starting.
10963 */
10964void synchronize_net(void)
10965{
10966	might_sleep();
10967	if (rtnl_is_locked())
10968		synchronize_rcu_expedited();
10969	else
10970		synchronize_rcu();
10971}
10972EXPORT_SYMBOL(synchronize_net);
10973
10974/**
10975 *	unregister_netdevice_queue - remove device from the kernel
10976 *	@dev: device
10977 *	@head: list
10978 *
10979 *	This function shuts down a device interface and removes it
10980 *	from the kernel tables.
10981 *	If head not NULL, device is queued to be unregistered later.
10982 *
10983 *	Callers must hold the rtnl semaphore.  You may want
10984 *	unregister_netdev() instead of this.
10985 */
10986
10987void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10988{
10989	ASSERT_RTNL();
10990
10991	if (head) {
10992		list_move_tail(&dev->unreg_list, head);
10993	} else {
10994		LIST_HEAD(single);
10995
10996		list_add(&dev->unreg_list, &single);
10997		unregister_netdevice_many(&single);
10998	}
10999}
11000EXPORT_SYMBOL(unregister_netdevice_queue);
11001
11002void unregister_netdevice_many_notify(struct list_head *head,
11003				      u32 portid, const struct nlmsghdr *nlh)
11004{
11005	struct net_device *dev, *tmp;
11006	LIST_HEAD(close_head);
11007
11008	BUG_ON(dev_boot_phase);
11009	ASSERT_RTNL();
11010
11011	if (list_empty(head))
11012		return;
11013
11014	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11015		/* Some devices call without registering
11016		 * for initialization unwind. Remove those
11017		 * devices and proceed with the remaining.
11018		 */
11019		if (dev->reg_state == NETREG_UNINITIALIZED) {
11020			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11021				 dev->name, dev);
11022
11023			WARN_ON(1);
11024			list_del(&dev->unreg_list);
11025			continue;
11026		}
11027		dev->dismantle = true;
11028		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11029	}
11030
11031	/* If device is running, close it first. */
11032	list_for_each_entry(dev, head, unreg_list)
11033		list_add_tail(&dev->close_list, &close_head);
11034	dev_close_many(&close_head, true);
11035
11036	list_for_each_entry(dev, head, unreg_list) {
11037		/* And unlink it from device chain. */
11038		write_lock(&dev_base_lock);
11039		unlist_netdevice(dev, false);
11040		dev->reg_state = NETREG_UNREGISTERING;
11041		write_unlock(&dev_base_lock);
11042	}
11043	flush_all_backlogs();
11044
11045	synchronize_net();
11046
11047	list_for_each_entry(dev, head, unreg_list) {
11048		struct sk_buff *skb = NULL;
11049
11050		/* Shutdown queueing discipline. */
11051		dev_shutdown(dev);
11052		dev_tcx_uninstall(dev);
11053		dev_xdp_uninstall(dev);
11054		bpf_dev_bound_netdev_unregister(dev);
11055
11056		netdev_offload_xstats_disable_all(dev);
11057
11058		/* Notify protocols, that we are about to destroy
11059		 * this device. They should clean all the things.
11060		 */
11061		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11062
11063		if (!dev->rtnl_link_ops ||
11064		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11065			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11066						     GFP_KERNEL, NULL, 0,
11067						     portid, nlh);
11068
11069		/*
11070		 *	Flush the unicast and multicast chains
11071		 */
11072		dev_uc_flush(dev);
11073		dev_mc_flush(dev);
11074
11075		netdev_name_node_alt_flush(dev);
11076		netdev_name_node_free(dev->name_node);
11077
11078		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11079
11080		if (dev->netdev_ops->ndo_uninit)
11081			dev->netdev_ops->ndo_uninit(dev);
11082
11083		if (skb)
11084			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11085
11086		/* Notifier chain MUST detach us all upper devices. */
11087		WARN_ON(netdev_has_any_upper_dev(dev));
11088		WARN_ON(netdev_has_any_lower_dev(dev));
11089
11090		/* Remove entries from kobject tree */
11091		netdev_unregister_kobject(dev);
11092#ifdef CONFIG_XPS
11093		/* Remove XPS queueing entries */
11094		netif_reset_xps_queues_gt(dev, 0);
11095#endif
11096	}
11097
11098	synchronize_net();
11099
11100	list_for_each_entry(dev, head, unreg_list) {
11101		netdev_put(dev, &dev->dev_registered_tracker);
11102		net_set_todo(dev);
11103	}
11104
11105	list_del(head);
11106}
11107
11108/**
11109 *	unregister_netdevice_many - unregister many devices
11110 *	@head: list of devices
11111 *
11112 *  Note: As most callers use a stack allocated list_head,
11113 *  we force a list_del() to make sure stack wont be corrupted later.
11114 */
11115void unregister_netdevice_many(struct list_head *head)
11116{
11117	unregister_netdevice_many_notify(head, 0, NULL);
 
 
 
 
 
 
11118}
11119EXPORT_SYMBOL(unregister_netdevice_many);
11120
11121/**
11122 *	unregister_netdev - remove device from the kernel
11123 *	@dev: device
11124 *
11125 *	This function shuts down a device interface and removes it
11126 *	from the kernel tables.
11127 *
11128 *	This is just a wrapper for unregister_netdevice that takes
11129 *	the rtnl semaphore.  In general you want to use this and not
11130 *	unregister_netdevice.
11131 */
11132void unregister_netdev(struct net_device *dev)
11133{
11134	rtnl_lock();
11135	unregister_netdevice(dev);
11136	rtnl_unlock();
11137}
11138EXPORT_SYMBOL(unregister_netdev);
11139
11140/**
11141 *	__dev_change_net_namespace - move device to different nethost namespace
11142 *	@dev: device
11143 *	@net: network namespace
11144 *	@pat: If not NULL name pattern to try if the current device name
11145 *	      is already taken in the destination network namespace.
11146 *	@new_ifindex: If not zero, specifies device index in the target
11147 *	              namespace.
11148 *
11149 *	This function shuts down a device interface and moves it
11150 *	to a new network namespace. On success 0 is returned, on
11151 *	a failure a netagive errno code is returned.
11152 *
11153 *	Callers must hold the rtnl semaphore.
11154 */
11155
11156int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11157			       const char *pat, int new_ifindex)
11158{
11159	struct netdev_name_node *name_node;
11160	struct net *net_old = dev_net(dev);
11161	char new_name[IFNAMSIZ] = {};
11162	int err, new_nsid;
11163
11164	ASSERT_RTNL();
11165
11166	/* Don't allow namespace local devices to be moved. */
11167	err = -EINVAL;
11168	if (dev->features & NETIF_F_NETNS_LOCAL)
11169		goto out;
11170
11171	/* Ensure the device has been registrered */
 
11172	if (dev->reg_state != NETREG_REGISTERED)
11173		goto out;
11174
11175	/* Get out if there is nothing todo */
11176	err = 0;
11177	if (net_eq(net_old, net))
11178		goto out;
11179
11180	/* Pick the destination device name, and ensure
11181	 * we can use it in the destination network namespace.
11182	 */
11183	err = -EEXIST;
11184	if (netdev_name_in_use(net, dev->name)) {
11185		/* We get here if we can't use the current device name */
11186		if (!pat)
11187			goto out;
11188		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11189		if (err < 0)
11190			goto out;
11191	}
11192	/* Check that none of the altnames conflicts. */
11193	err = -EEXIST;
11194	netdev_for_each_altname(dev, name_node)
11195		if (netdev_name_in_use(net, name_node->name))
11196			goto out;
11197
11198	/* Check that new_ifindex isn't used yet. */
11199	if (new_ifindex) {
11200		err = dev_index_reserve(net, new_ifindex);
11201		if (err < 0)
11202			goto out;
11203	} else {
11204		/* If there is an ifindex conflict assign a new one */
11205		err = dev_index_reserve(net, dev->ifindex);
11206		if (err == -EBUSY)
11207			err = dev_index_reserve(net, 0);
11208		if (err < 0)
11209			goto out;
11210		new_ifindex = err;
11211	}
11212
11213	/*
11214	 * And now a mini version of register_netdevice unregister_netdevice.
11215	 */
11216
11217	/* If device is running close it first. */
11218	dev_close(dev);
11219
11220	/* And unlink it from device chain */
11221	unlist_netdevice(dev, true);
 
11222
11223	synchronize_net();
11224
11225	/* Shutdown queueing discipline. */
11226	dev_shutdown(dev);
11227
11228	/* Notify protocols, that we are about to destroy
11229	 * this device. They should clean all the things.
11230	 *
11231	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11232	 * This is wanted because this way 8021q and macvlan know
11233	 * the device is just moving and can keep their slaves up.
11234	 */
11235	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11236	rcu_barrier();
11237
11238	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11239
11240	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11241			    new_ifindex);
11242
11243	/*
11244	 *	Flush the unicast and multicast chains
11245	 */
11246	dev_uc_flush(dev);
11247	dev_mc_flush(dev);
11248
11249	/* Send a netdev-removed uevent to the old namespace */
11250	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11251	netdev_adjacent_del_links(dev);
11252
11253	/* Move per-net netdevice notifiers that are following the netdevice */
11254	move_netdevice_notifiers_dev_net(dev, net);
11255
11256	/* Actually switch the network namespace */
11257	dev_net_set(dev, net);
11258	dev->ifindex = new_ifindex;
11259
11260	if (new_name[0]) /* Rename the netdev to prepared name */
11261		strscpy(dev->name, new_name, IFNAMSIZ);
 
 
 
 
 
11262
11263	/* Fixup kobjects */
11264	dev_set_uevent_suppress(&dev->dev, 1);
11265	err = device_rename(&dev->dev, dev->name);
11266	dev_set_uevent_suppress(&dev->dev, 0);
11267	WARN_ON(err);
11268
11269	/* Send a netdev-add uevent to the new namespace */
11270	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11271	netdev_adjacent_add_links(dev);
11272
11273	/* Adapt owner in case owning user namespace of target network
11274	 * namespace is different from the original one.
11275	 */
11276	err = netdev_change_owner(dev, net_old, net);
11277	WARN_ON(err);
11278
11279	/* Add the device back in the hashes */
11280	list_netdevice(dev);
11281
11282	/* Notify protocols, that a new device appeared. */
11283	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11284
11285	/*
11286	 *	Prevent userspace races by waiting until the network
11287	 *	device is fully setup before sending notifications.
11288	 */
11289	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11290
11291	synchronize_net();
11292	err = 0;
11293out:
11294	return err;
11295}
11296EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11297
11298static int dev_cpu_dead(unsigned int oldcpu)
 
 
11299{
11300	struct sk_buff **list_skb;
11301	struct sk_buff *skb;
11302	unsigned int cpu;
11303	struct softnet_data *sd, *oldsd, *remsd = NULL;
 
 
 
11304
11305	local_irq_disable();
11306	cpu = smp_processor_id();
11307	sd = &per_cpu(softnet_data, cpu);
11308	oldsd = &per_cpu(softnet_data, oldcpu);
11309
11310	/* Find end of our completion_queue. */
11311	list_skb = &sd->completion_queue;
11312	while (*list_skb)
11313		list_skb = &(*list_skb)->next;
11314	/* Append completion queue from offline CPU. */
11315	*list_skb = oldsd->completion_queue;
11316	oldsd->completion_queue = NULL;
11317
11318	/* Append output queue from offline CPU. */
11319	if (oldsd->output_queue) {
11320		*sd->output_queue_tailp = oldsd->output_queue;
11321		sd->output_queue_tailp = oldsd->output_queue_tailp;
11322		oldsd->output_queue = NULL;
11323		oldsd->output_queue_tailp = &oldsd->output_queue;
11324	}
11325	/* Append NAPI poll list from offline CPU, with one exception :
11326	 * process_backlog() must be called by cpu owning percpu backlog.
11327	 * We properly handle process_queue & input_pkt_queue later.
11328	 */
11329	while (!list_empty(&oldsd->poll_list)) {
11330		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11331							    struct napi_struct,
11332							    poll_list);
11333
11334		list_del_init(&napi->poll_list);
11335		if (napi->poll == process_backlog)
11336			napi->state = 0;
11337		else
11338			____napi_schedule(sd, napi);
11339	}
11340
11341	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11342	local_irq_enable();
11343
11344#ifdef CONFIG_RPS
11345	remsd = oldsd->rps_ipi_list;
11346	oldsd->rps_ipi_list = NULL;
11347#endif
11348	/* send out pending IPI's on offline CPU */
11349	net_rps_send_ipi(remsd);
11350
11351	/* Process offline CPU's input_pkt_queue */
11352	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11353		netif_rx(skb);
11354		input_queue_head_incr(oldsd);
11355	}
11356	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11357		netif_rx(skb);
11358		input_queue_head_incr(oldsd);
11359	}
11360
11361	return 0;
11362}
11363
 
11364/**
11365 *	netdev_increment_features - increment feature set by one
11366 *	@all: current feature set
11367 *	@one: new feature set
11368 *	@mask: mask feature set
11369 *
11370 *	Computes a new feature set after adding a device with feature set
11371 *	@one to the master device with current feature set @all.  Will not
11372 *	enable anything that is off in @mask. Returns the new feature set.
11373 */
11374netdev_features_t netdev_increment_features(netdev_features_t all,
11375	netdev_features_t one, netdev_features_t mask)
11376{
11377	if (mask & NETIF_F_HW_CSUM)
11378		mask |= NETIF_F_CSUM_MASK;
11379	mask |= NETIF_F_VLAN_CHALLENGED;
11380
11381	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11382	all &= one | ~NETIF_F_ALL_FOR_ALL;
11383
11384	/* If one device supports hw checksumming, set for all. */
11385	if (all & NETIF_F_HW_CSUM)
11386		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11387
11388	return all;
11389}
11390EXPORT_SYMBOL(netdev_increment_features);
11391
11392static struct hlist_head * __net_init netdev_create_hash(void)
11393{
11394	int i;
11395	struct hlist_head *hash;
11396
11397	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11398	if (hash != NULL)
11399		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11400			INIT_HLIST_HEAD(&hash[i]);
11401
11402	return hash;
11403}
11404
11405/* Initialize per network namespace state */
11406static int __net_init netdev_init(struct net *net)
11407{
11408	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11409		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11410
11411	INIT_LIST_HEAD(&net->dev_base_head);
11412
11413	net->dev_name_head = netdev_create_hash();
11414	if (net->dev_name_head == NULL)
11415		goto err_name;
11416
11417	net->dev_index_head = netdev_create_hash();
11418	if (net->dev_index_head == NULL)
11419		goto err_idx;
11420
11421	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11422
11423	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11424
11425	return 0;
11426
11427err_idx:
11428	kfree(net->dev_name_head);
11429err_name:
11430	return -ENOMEM;
11431}
11432
11433/**
11434 *	netdev_drivername - network driver for the device
11435 *	@dev: network device
11436 *
11437 *	Determine network driver for device.
11438 */
11439const char *netdev_drivername(const struct net_device *dev)
11440{
11441	const struct device_driver *driver;
11442	const struct device *parent;
11443	const char *empty = "";
11444
11445	parent = dev->dev.parent;
11446	if (!parent)
11447		return empty;
11448
11449	driver = parent->driver;
11450	if (driver && driver->name)
11451		return driver->name;
11452	return empty;
11453}
11454
11455static void __netdev_printk(const char *level, const struct net_device *dev,
11456			    struct va_format *vaf)
11457{
11458	if (dev && dev->dev.parent) {
11459		dev_printk_emit(level[1] - '0',
11460				dev->dev.parent,
11461				"%s %s %s%s: %pV",
11462				dev_driver_string(dev->dev.parent),
11463				dev_name(dev->dev.parent),
11464				netdev_name(dev), netdev_reg_state(dev),
11465				vaf);
11466	} else if (dev) {
11467		printk("%s%s%s: %pV",
11468		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11469	} else {
11470		printk("%s(NULL net_device): %pV", level, vaf);
11471	}
11472}
 
11473
11474void netdev_printk(const char *level, const struct net_device *dev,
11475		   const char *format, ...)
11476{
11477	struct va_format vaf;
11478	va_list args;
 
11479
11480	va_start(args, format);
11481
11482	vaf.fmt = format;
11483	vaf.va = &args;
11484
11485	__netdev_printk(level, dev, &vaf);
 
11486
11487	va_end(args);
11488}
11489EXPORT_SYMBOL(netdev_printk);
11490
11491#define define_netdev_printk_level(func, level)			\
11492void func(const struct net_device *dev, const char *fmt, ...)	\
11493{								\
 
11494	struct va_format vaf;					\
11495	va_list args;						\
11496								\
11497	va_start(args, fmt);					\
11498								\
11499	vaf.fmt = fmt;						\
11500	vaf.va = &args;						\
11501								\
11502	__netdev_printk(level, dev, &vaf);			\
 
11503								\
11504	va_end(args);						\
11505}								\
11506EXPORT_SYMBOL(func);
11507
11508define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11509define_netdev_printk_level(netdev_alert, KERN_ALERT);
11510define_netdev_printk_level(netdev_crit, KERN_CRIT);
11511define_netdev_printk_level(netdev_err, KERN_ERR);
11512define_netdev_printk_level(netdev_warn, KERN_WARNING);
11513define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11514define_netdev_printk_level(netdev_info, KERN_INFO);
11515
11516static void __net_exit netdev_exit(struct net *net)
11517{
11518	kfree(net->dev_name_head);
11519	kfree(net->dev_index_head);
11520	xa_destroy(&net->dev_by_index);
11521	if (net != &init_net)
11522		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11523}
11524
11525static struct pernet_operations __net_initdata netdev_net_ops = {
11526	.init = netdev_init,
11527	.exit = netdev_exit,
11528};
11529
11530static void __net_exit default_device_exit_net(struct net *net)
11531{
11532	struct netdev_name_node *name_node, *tmp;
11533	struct net_device *dev, *aux;
11534	/*
11535	 * Push all migratable network devices back to the
11536	 * initial network namespace
11537	 */
11538	ASSERT_RTNL();
11539	for_each_netdev_safe(net, dev, aux) {
11540		int err;
11541		char fb_name[IFNAMSIZ];
11542
11543		/* Ignore unmoveable devices (i.e. loopback) */
11544		if (dev->features & NETIF_F_NETNS_LOCAL)
11545			continue;
11546
11547		/* Leave virtual devices for the generic cleanup */
11548		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11549			continue;
11550
11551		/* Push remaining network devices to init_net */
11552		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11553		if (netdev_name_in_use(&init_net, fb_name))
11554			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11555
11556		netdev_for_each_altname_safe(dev, name_node, tmp)
11557			if (netdev_name_in_use(&init_net, name_node->name)) {
11558				netdev_name_node_del(name_node);
11559				synchronize_rcu();
11560				__netdev_name_node_alt_destroy(name_node);
11561			}
11562
11563		err = dev_change_net_namespace(dev, &init_net, fb_name);
11564		if (err) {
11565			pr_emerg("%s: failed to move %s to init_net: %d\n",
11566				 __func__, dev->name, err);
11567			BUG();
11568		}
11569	}
 
11570}
11571
11572static void __net_exit default_device_exit_batch(struct list_head *net_list)
11573{
11574	/* At exit all network devices most be removed from a network
11575	 * namespace.  Do this in the reverse order of registration.
11576	 * Do this across as many network namespaces as possible to
11577	 * improve batching efficiency.
11578	 */
11579	struct net_device *dev;
11580	struct net *net;
11581	LIST_HEAD(dev_kill_list);
11582
11583	rtnl_lock();
11584	list_for_each_entry(net, net_list, exit_list) {
11585		default_device_exit_net(net);
11586		cond_resched();
11587	}
11588
11589	list_for_each_entry(net, net_list, exit_list) {
11590		for_each_netdev_reverse(net, dev) {
11591			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11592				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11593			else
11594				unregister_netdevice_queue(dev, &dev_kill_list);
11595		}
11596	}
11597	unregister_netdevice_many(&dev_kill_list);
 
11598	rtnl_unlock();
11599}
11600
11601static struct pernet_operations __net_initdata default_device_ops = {
 
11602	.exit_batch = default_device_exit_batch,
11603};
11604
11605static void __init net_dev_struct_check(void)
11606{
11607	/* TX read-mostly hotpath */
11608	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11609	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11610	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11611	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11612	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11613	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11614	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11615	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11616	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11617	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11618	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11619	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11620	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11621#ifdef CONFIG_XPS
11622	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11623#endif
11624#ifdef CONFIG_NETFILTER_EGRESS
11625	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11626#endif
11627#ifdef CONFIG_NET_XGRESS
11628	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11629#endif
11630	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11631
11632	/* TXRX read-mostly hotpath */
11633	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11634	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11635	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11636	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11637	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11638	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38);
11639
11640	/* RX read-mostly hotpath */
11641	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11642	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11643	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11644	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11645	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11646	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11647	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11648	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11649	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11650	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11651	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11652#ifdef CONFIG_NETPOLL
11653	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11654#endif
11655#ifdef CONFIG_NET_XGRESS
11656	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11657#endif
11658	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11659}
11660
11661/*
11662 *	Initialize the DEV module. At boot time this walks the device list and
11663 *	unhooks any devices that fail to initialise (normally hardware not
11664 *	present) and leaves us with a valid list of present and active devices.
11665 *
11666 */
11667
11668/*
11669 *       This is called single threaded during boot, so no need
11670 *       to take the rtnl semaphore.
11671 */
11672static int __init net_dev_init(void)
11673{
11674	int i, rc = -ENOMEM;
11675
11676	BUG_ON(!dev_boot_phase);
11677
11678	net_dev_struct_check();
11679
11680	if (dev_proc_init())
11681		goto out;
11682
11683	if (netdev_kobject_init())
11684		goto out;
11685
11686	INIT_LIST_HEAD(&ptype_all);
11687	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11688		INIT_LIST_HEAD(&ptype_base[i]);
11689
11690	if (register_pernet_subsys(&netdev_net_ops))
11691		goto out;
11692
11693	/*
11694	 *	Initialise the packet receive queues.
11695	 */
11696
11697	for_each_possible_cpu(i) {
11698		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11699		struct softnet_data *sd = &per_cpu(softnet_data, i);
11700
11701		INIT_WORK(flush, flush_backlog);
11702
11703		skb_queue_head_init(&sd->input_pkt_queue);
11704		skb_queue_head_init(&sd->process_queue);
11705#ifdef CONFIG_XFRM_OFFLOAD
11706		skb_queue_head_init(&sd->xfrm_backlog);
11707#endif
11708		INIT_LIST_HEAD(&sd->poll_list);
 
11709		sd->output_queue_tailp = &sd->output_queue;
11710#ifdef CONFIG_RPS
11711		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
 
 
11712		sd->cpu = i;
11713#endif
11714		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11715		spin_lock_init(&sd->defer_lock);
11716
11717		init_gro_hash(&sd->backlog);
11718		sd->backlog.poll = process_backlog;
11719		sd->backlog.weight = weight_p;
 
 
11720	}
11721
11722	dev_boot_phase = 0;
11723
11724	/* The loopback device is special if any other network devices
11725	 * is present in a network namespace the loopback device must
11726	 * be present. Since we now dynamically allocate and free the
11727	 * loopback device ensure this invariant is maintained by
11728	 * keeping the loopback device as the first device on the
11729	 * list of network devices.  Ensuring the loopback devices
11730	 * is the first device that appears and the last network device
11731	 * that disappears.
11732	 */
11733	if (register_pernet_device(&loopback_net_ops))
11734		goto out;
11735
11736	if (register_pernet_device(&default_device_ops))
11737		goto out;
11738
11739	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11740	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11741
11742	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11743				       NULL, dev_cpu_dead);
11744	WARN_ON(rc < 0);
11745	rc = 0;
11746out:
11747	return rc;
11748}
11749
11750subsys_initcall(net_dev_init);