Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   5 * Copyright (c) 2001,2002 Richard Russon
   6 *
   7 * This program/include file is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as published
   9 * by the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program/include file is distributed in the hope that it will be
  13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program (in the main directory of the Linux-NTFS
  19 * distribution in the file COPYING); if not, write to the Free Software
  20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
 
  22
  23#include <linux/stddef.h>
  24#include <linux/init.h>
  25#include <linux/slab.h>
  26#include <linux/string.h>
  27#include <linux/spinlock.h>
  28#include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
  29#include <linux/backing-dev.h>
  30#include <linux/buffer_head.h>
  31#include <linux/vfs.h>
  32#include <linux/moduleparam.h>
  33#include <linux/bitmap.h>
  34
  35#include "sysctl.h"
  36#include "logfile.h"
  37#include "quota.h"
  38#include "usnjrnl.h"
  39#include "dir.h"
  40#include "debug.h"
  41#include "index.h"
  42#include "inode.h"
  43#include "aops.h"
  44#include "layout.h"
  45#include "malloc.h"
  46#include "ntfs.h"
  47
  48/* Number of mounted filesystems which have compression enabled. */
  49static unsigned long ntfs_nr_compression_users;
  50
  51/* A global default upcase table and a corresponding reference count. */
  52static ntfschar *default_upcase = NULL;
  53static unsigned long ntfs_nr_upcase_users = 0;
  54
  55/* Error constants/strings used in inode.c::ntfs_show_options(). */
  56typedef enum {
  57	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
  58	ON_ERRORS_PANIC			= 0x01,
  59	ON_ERRORS_REMOUNT_RO		= 0x02,
  60	ON_ERRORS_CONTINUE		= 0x04,
  61	/* Optional, can be combined with any of the above. */
  62	ON_ERRORS_RECOVER		= 0x10,
  63} ON_ERRORS_ACTIONS;
  64
  65const option_t on_errors_arr[] = {
  66	{ ON_ERRORS_PANIC,	"panic" },
  67	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
  68	{ ON_ERRORS_CONTINUE,	"continue", },
  69	{ ON_ERRORS_RECOVER,	"recover" },
  70	{ 0,			NULL }
  71};
  72
  73/**
  74 * simple_getbool -
 
 
  75 *
  76 * Copied from old ntfs driver (which copied from vfat driver).
 
 
 
 
 
 
  77 */
  78static int simple_getbool(char *s, bool *setval)
  79{
  80	if (s) {
  81		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
  82			*setval = true;
  83		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
  84							!strcmp(s, "false"))
  85			*setval = false;
  86		else
  87			return 0;
  88	} else
  89		*setval = true;
  90	return 1;
  91}
  92
  93/**
  94 * parse_options - parse the (re)mount options
  95 * @vol:	ntfs volume
  96 * @opt:	string containing the (re)mount options
  97 *
  98 * Parse the recognized options in @opt for the ntfs volume described by @vol.
  99 */
 100static bool parse_options(ntfs_volume *vol, char *opt)
 101{
 102	char *p, *v, *ov;
 103	static char *utf8 = "utf8";
 104	int errors = 0, sloppy = 0;
 105	uid_t uid = (uid_t)-1;
 106	gid_t gid = (gid_t)-1;
 107	umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
 108	int mft_zone_multiplier = -1, on_errors = -1;
 109	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
 110	struct nls_table *nls_map = NULL, *old_nls;
 111
 112	/* I am lazy... (-8 */
 113#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
 114	if (!strcmp(p, option)) {					\
 115		if (!v || !*v)						\
 116			variable = default_value;			\
 117		else {							\
 118			variable = simple_strtoul(ov = v, &v, 0);	\
 119			if (*v)						\
 120				goto needs_val;				\
 121		}							\
 122	}
 123#define NTFS_GETOPT(option, variable)					\
 124	if (!strcmp(p, option)) {					\
 125		if (!v || !*v)						\
 126			goto needs_arg;					\
 127		variable = simple_strtoul(ov = v, &v, 0);		\
 128		if (*v)							\
 129			goto needs_val;					\
 130	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131#define NTFS_GETOPT_OCTAL(option, variable)				\
 132	if (!strcmp(p, option)) {					\
 133		if (!v || !*v)						\
 134			goto needs_arg;					\
 135		variable = simple_strtoul(ov = v, &v, 8);		\
 136		if (*v)							\
 137			goto needs_val;					\
 138	}
 139#define NTFS_GETOPT_BOOL(option, variable)				\
 140	if (!strcmp(p, option)) {					\
 141		bool val;						\
 142		if (!simple_getbool(v, &val))				\
 143			goto needs_bool;				\
 144		variable = val;						\
 145	}
 146#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
 147	if (!strcmp(p, option)) {					\
 148		int _i;							\
 149		if (!v || !*v)						\
 150			goto needs_arg;					\
 151		ov = v;							\
 152		if (variable == -1)					\
 153			variable = 0;					\
 154		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
 155			if (!strcmp(opt_array[_i].str, v)) {		\
 156				variable |= opt_array[_i].val;		\
 157				break;					\
 158			}						\
 159		if (!opt_array[_i].str || !*opt_array[_i].str)		\
 160			goto needs_val;					\
 161	}
 162	if (!opt || !*opt)
 163		goto no_mount_options;
 164	ntfs_debug("Entering with mount options string: %s", opt);
 165	while ((p = strsep(&opt, ","))) {
 166		if ((v = strchr(p, '=')))
 167			*v++ = 0;
 168		NTFS_GETOPT("uid", uid)
 169		else NTFS_GETOPT("gid", gid)
 170		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
 171		else NTFS_GETOPT_OCTAL("fmask", fmask)
 172		else NTFS_GETOPT_OCTAL("dmask", dmask)
 173		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
 174		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
 175		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
 176		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
 177		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
 178		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
 179				on_errors_arr)
 180		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
 181			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
 182					p);
 183		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
 184			if (!strcmp(p, "iocharset"))
 185				ntfs_warning(vol->sb, "Option iocharset is "
 186						"deprecated. Please use "
 187						"option nls=<charsetname> in "
 188						"the future.");
 189			if (!v || !*v)
 190				goto needs_arg;
 191use_utf8:
 192			old_nls = nls_map;
 193			nls_map = load_nls(v);
 194			if (!nls_map) {
 195				if (!old_nls) {
 196					ntfs_error(vol->sb, "NLS character set "
 197							"%s not found.", v);
 198					return false;
 199				}
 200				ntfs_error(vol->sb, "NLS character set %s not "
 201						"found. Using previous one %s.",
 202						v, old_nls->charset);
 203				nls_map = old_nls;
 204			} else /* nls_map */ {
 205				unload_nls(old_nls);
 206			}
 207		} else if (!strcmp(p, "utf8")) {
 208			bool val = false;
 209			ntfs_warning(vol->sb, "Option utf8 is no longer "
 210				   "supported, using option nls=utf8. Please "
 211				   "use option nls=utf8 in the future and "
 212				   "make sure utf8 is compiled either as a "
 213				   "module or into the kernel.");
 214			if (!v || !*v)
 215				val = true;
 216			else if (!simple_getbool(v, &val))
 217				goto needs_bool;
 218			if (val) {
 219				v = utf8;
 220				goto use_utf8;
 221			}
 222		} else {
 223			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
 224			if (errors < INT_MAX)
 225				errors++;
 226		}
 227#undef NTFS_GETOPT_OPTIONS_ARRAY
 228#undef NTFS_GETOPT_BOOL
 229#undef NTFS_GETOPT
 230#undef NTFS_GETOPT_WITH_DEFAULT
 231	}
 232no_mount_options:
 233	if (errors && !sloppy)
 234		return false;
 235	if (sloppy)
 236		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
 237				"unrecognized mount option(s) and continuing.");
 238	/* Keep this first! */
 239	if (on_errors != -1) {
 240		if (!on_errors) {
 241			ntfs_error(vol->sb, "Invalid errors option argument "
 242					"or bug in options parser.");
 243			return false;
 244		}
 245	}
 246	if (nls_map) {
 247		if (vol->nls_map && vol->nls_map != nls_map) {
 248			ntfs_error(vol->sb, "Cannot change NLS character set "
 249					"on remount.");
 250			return false;
 251		} /* else (!vol->nls_map) */
 252		ntfs_debug("Using NLS character set %s.", nls_map->charset);
 253		vol->nls_map = nls_map;
 254	} else /* (!nls_map) */ {
 255		if (!vol->nls_map) {
 256			vol->nls_map = load_nls_default();
 257			if (!vol->nls_map) {
 258				ntfs_error(vol->sb, "Failed to load default "
 259						"NLS character set.");
 260				return false;
 261			}
 262			ntfs_debug("Using default NLS character set (%s).",
 263					vol->nls_map->charset);
 264		}
 265	}
 266	if (mft_zone_multiplier != -1) {
 267		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
 268				mft_zone_multiplier) {
 269			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
 270					"on remount.");
 271			return false;
 272		}
 273		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
 274			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
 275					"Using default value, i.e. 1.");
 276			mft_zone_multiplier = 1;
 277		}
 278		vol->mft_zone_multiplier = mft_zone_multiplier;
 279	}
 280	if (!vol->mft_zone_multiplier)
 281		vol->mft_zone_multiplier = 1;
 282	if (on_errors != -1)
 283		vol->on_errors = on_errors;
 284	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
 285		vol->on_errors |= ON_ERRORS_CONTINUE;
 286	if (uid != (uid_t)-1)
 287		vol->uid = uid;
 288	if (gid != (gid_t)-1)
 289		vol->gid = gid;
 290	if (fmask != (umode_t)-1)
 291		vol->fmask = fmask;
 292	if (dmask != (umode_t)-1)
 293		vol->dmask = dmask;
 294	if (show_sys_files != -1) {
 295		if (show_sys_files)
 296			NVolSetShowSystemFiles(vol);
 297		else
 298			NVolClearShowSystemFiles(vol);
 299	}
 300	if (case_sensitive != -1) {
 301		if (case_sensitive)
 302			NVolSetCaseSensitive(vol);
 303		else
 304			NVolClearCaseSensitive(vol);
 305	}
 306	if (disable_sparse != -1) {
 307		if (disable_sparse)
 308			NVolClearSparseEnabled(vol);
 309		else {
 310			if (!NVolSparseEnabled(vol) &&
 311					vol->major_ver && vol->major_ver < 3)
 312				ntfs_warning(vol->sb, "Not enabling sparse "
 313						"support due to NTFS volume "
 314						"version %i.%i (need at least "
 315						"version 3.0).", vol->major_ver,
 316						vol->minor_ver);
 317			else
 318				NVolSetSparseEnabled(vol);
 319		}
 320	}
 321	return true;
 322needs_arg:
 323	ntfs_error(vol->sb, "The %s option requires an argument.", p);
 324	return false;
 325needs_bool:
 326	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
 327	return false;
 328needs_val:
 329	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
 330	return false;
 331}
 332
 333#ifdef NTFS_RW
 334
 335/**
 336 * ntfs_write_volume_flags - write new flags to the volume information flags
 337 * @vol:	ntfs volume on which to modify the flags
 338 * @flags:	new flags value for the volume information flags
 339 *
 340 * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
 341 * instead (see below).
 342 *
 343 * Replace the volume information flags on the volume @vol with the value
 344 * supplied in @flags.  Note, this overwrites the volume information flags, so
 345 * make sure to combine the flags you want to modify with the old flags and use
 346 * the result when calling ntfs_write_volume_flags().
 347 *
 348 * Return 0 on success and -errno on error.
 349 */
 350static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
 351{
 352	ntfs_inode *ni = NTFS_I(vol->vol_ino);
 353	MFT_RECORD *m;
 354	VOLUME_INFORMATION *vi;
 355	ntfs_attr_search_ctx *ctx;
 356	int err;
 357
 358	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
 359			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
 360	if (vol->vol_flags == flags)
 361		goto done;
 362	BUG_ON(!ni);
 363	m = map_mft_record(ni);
 364	if (IS_ERR(m)) {
 365		err = PTR_ERR(m);
 366		goto err_out;
 367	}
 368	ctx = ntfs_attr_get_search_ctx(ni, m);
 369	if (!ctx) {
 370		err = -ENOMEM;
 371		goto put_unm_err_out;
 372	}
 373	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
 374			ctx);
 375	if (err)
 376		goto put_unm_err_out;
 377	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
 378			le16_to_cpu(ctx->attr->data.resident.value_offset));
 379	vol->vol_flags = vi->flags = flags;
 380	flush_dcache_mft_record_page(ctx->ntfs_ino);
 381	mark_mft_record_dirty(ctx->ntfs_ino);
 382	ntfs_attr_put_search_ctx(ctx);
 383	unmap_mft_record(ni);
 384done:
 385	ntfs_debug("Done.");
 386	return 0;
 387put_unm_err_out:
 388	if (ctx)
 389		ntfs_attr_put_search_ctx(ctx);
 390	unmap_mft_record(ni);
 391err_out:
 392	ntfs_error(vol->sb, "Failed with error code %i.", -err);
 393	return err;
 394}
 395
 396/**
 397 * ntfs_set_volume_flags - set bits in the volume information flags
 398 * @vol:	ntfs volume on which to modify the flags
 399 * @flags:	flags to set on the volume
 400 *
 401 * Set the bits in @flags in the volume information flags on the volume @vol.
 402 *
 403 * Return 0 on success and -errno on error.
 404 */
 405static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 406{
 407	flags &= VOLUME_FLAGS_MASK;
 408	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
 409}
 410
 411/**
 412 * ntfs_clear_volume_flags - clear bits in the volume information flags
 413 * @vol:	ntfs volume on which to modify the flags
 414 * @flags:	flags to clear on the volume
 415 *
 416 * Clear the bits in @flags in the volume information flags on the volume @vol.
 417 *
 418 * Return 0 on success and -errno on error.
 419 */
 420static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 421{
 422	flags &= VOLUME_FLAGS_MASK;
 423	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
 424	return ntfs_write_volume_flags(vol, flags);
 425}
 426
 427#endif /* NTFS_RW */
 428
 429/**
 430 * ntfs_remount - change the mount options of a mounted ntfs filesystem
 431 * @sb:		superblock of mounted ntfs filesystem
 432 * @flags:	remount flags
 433 * @opt:	remount options string
 434 *
 435 * Change the mount options of an already mounted ntfs filesystem.
 436 *
 437 * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
 438 * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
 439 * @sb->s_flags are not changed.
 440 */
 441static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
 442{
 443	ntfs_volume *vol = NTFS_SB(sb);
 444
 445	ntfs_debug("Entering with remount options string: %s", opt);
 446
 
 
 447#ifndef NTFS_RW
 448	/* For read-only compiled driver, enforce read-only flag. */
 449	*flags |= MS_RDONLY;
 450#else /* NTFS_RW */
 451	/*
 452	 * For the read-write compiled driver, if we are remounting read-write,
 453	 * make sure there are no volume errors and that no unsupported volume
 454	 * flags are set.  Also, empty the logfile journal as it would become
 455	 * stale as soon as something is written to the volume and mark the
 456	 * volume dirty so that chkdsk is run if the volume is not umounted
 457	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
 458	 * the volume on boot and updates them.
 459	 *
 460	 * When remounting read-only, mark the volume clean if no volume errors
 461	 * have occurred.
 462	 */
 463	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
 464		static const char *es = ".  Cannot remount read-write.";
 465
 466		/* Remounting read-write. */
 467		if (NVolErrors(vol)) {
 468			ntfs_error(sb, "Volume has errors and is read-only%s",
 469					es);
 470			return -EROFS;
 471		}
 472		if (vol->vol_flags & VOLUME_IS_DIRTY) {
 473			ntfs_error(sb, "Volume is dirty and read-only%s", es);
 474			return -EROFS;
 475		}
 476		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
 477			ntfs_error(sb, "Volume has been modified by chkdsk "
 478					"and is read-only%s", es);
 479			return -EROFS;
 480		}
 481		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
 482			ntfs_error(sb, "Volume has unsupported flags set "
 483					"(0x%x) and is read-only%s",
 484					(unsigned)le16_to_cpu(vol->vol_flags),
 485					es);
 486			return -EROFS;
 487		}
 488		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
 489			ntfs_error(sb, "Failed to set dirty bit in volume "
 490					"information flags%s", es);
 491			return -EROFS;
 492		}
 493#if 0
 494		// TODO: Enable this code once we start modifying anything that
 495		//	 is different between NTFS 1.2 and 3.x...
 496		/* Set NT4 compatibility flag on newer NTFS version volumes. */
 497		if ((vol->major_ver > 1)) {
 498			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
 499				ntfs_error(sb, "Failed to set NT4 "
 500						"compatibility flag%s", es);
 501				NVolSetErrors(vol);
 502				return -EROFS;
 503			}
 504		}
 505#endif
 506		if (!ntfs_empty_logfile(vol->logfile_ino)) {
 507			ntfs_error(sb, "Failed to empty journal $LogFile%s",
 508					es);
 509			NVolSetErrors(vol);
 510			return -EROFS;
 511		}
 512		if (!ntfs_mark_quotas_out_of_date(vol)) {
 513			ntfs_error(sb, "Failed to mark quotas out of date%s",
 514					es);
 515			NVolSetErrors(vol);
 516			return -EROFS;
 517		}
 518		if (!ntfs_stamp_usnjrnl(vol)) {
 519			ntfs_error(sb, "Failed to stamp transation log "
 520					"($UsnJrnl)%s", es);
 521			NVolSetErrors(vol);
 522			return -EROFS;
 523		}
 524	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
 525		/* Remounting read-only. */
 526		if (!NVolErrors(vol)) {
 527			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
 528				ntfs_warning(sb, "Failed to clear dirty bit "
 529						"in volume information "
 530						"flags.  Run chkdsk.");
 531		}
 532	}
 533#endif /* NTFS_RW */
 534
 535	// TODO: Deal with *flags.
 536
 537	if (!parse_options(vol, opt))
 538		return -EINVAL;
 539
 540	ntfs_debug("Done.");
 541	return 0;
 542}
 543
 544/**
 545 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
 546 * @sb:		Super block of the device to which @b belongs.
 547 * @b:		Boot sector of device @sb to check.
 548 * @silent:	If 'true', all output will be silenced.
 549 *
 550 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
 551 * sector. Returns 'true' if it is valid and 'false' if not.
 552 *
 553 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
 554 * is 'true'.
 555 */
 556static bool is_boot_sector_ntfs(const struct super_block *sb,
 557		const NTFS_BOOT_SECTOR *b, const bool silent)
 558{
 559	/*
 560	 * Check that checksum == sum of u32 values from b to the checksum
 561	 * field.  If checksum is zero, no checking is done.  We will work when
 562	 * the checksum test fails, since some utilities update the boot sector
 563	 * ignoring the checksum which leaves the checksum out-of-date.  We
 564	 * report a warning if this is the case.
 565	 */
 566	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
 567		le32 *u;
 568		u32 i;
 569
 570		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
 571			i += le32_to_cpup(u);
 572		if (le32_to_cpu(b->checksum) != i)
 573			ntfs_warning(sb, "Invalid boot sector checksum.");
 574	}
 575	/* Check OEMidentifier is "NTFS    " */
 576	if (b->oem_id != magicNTFS)
 577		goto not_ntfs;
 578	/* Check bytes per sector value is between 256 and 4096. */
 579	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
 580			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
 581		goto not_ntfs;
 582	/* Check sectors per cluster value is valid. */
 583	switch (b->bpb.sectors_per_cluster) {
 584	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
 585		break;
 586	default:
 587		goto not_ntfs;
 588	}
 589	/* Check the cluster size is not above the maximum (64kiB). */
 590	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
 591			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
 592		goto not_ntfs;
 593	/* Check reserved/unused fields are really zero. */
 594	if (le16_to_cpu(b->bpb.reserved_sectors) ||
 595			le16_to_cpu(b->bpb.root_entries) ||
 596			le16_to_cpu(b->bpb.sectors) ||
 597			le16_to_cpu(b->bpb.sectors_per_fat) ||
 598			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
 599		goto not_ntfs;
 600	/* Check clusters per file mft record value is valid. */
 601	if ((u8)b->clusters_per_mft_record < 0xe1 ||
 602			(u8)b->clusters_per_mft_record > 0xf7)
 603		switch (b->clusters_per_mft_record) {
 604		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 605			break;
 606		default:
 607			goto not_ntfs;
 608		}
 609	/* Check clusters per index block value is valid. */
 610	if ((u8)b->clusters_per_index_record < 0xe1 ||
 611			(u8)b->clusters_per_index_record > 0xf7)
 612		switch (b->clusters_per_index_record) {
 613		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 614			break;
 615		default:
 616			goto not_ntfs;
 617		}
 618	/*
 619	 * Check for valid end of sector marker. We will work without it, but
 620	 * many BIOSes will refuse to boot from a bootsector if the magic is
 621	 * incorrect, so we emit a warning.
 622	 */
 623	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
 624		ntfs_warning(sb, "Invalid end of sector marker.");
 625	return true;
 626not_ntfs:
 627	return false;
 628}
 629
 630/**
 631 * read_ntfs_boot_sector - read the NTFS boot sector of a device
 632 * @sb:		super block of device to read the boot sector from
 633 * @silent:	if true, suppress all output
 634 *
 635 * Reads the boot sector from the device and validates it. If that fails, tries
 636 * to read the backup boot sector, first from the end of the device a-la NT4 and
 637 * later and then from the middle of the device a-la NT3.51 and before.
 638 *
 639 * If a valid boot sector is found but it is not the primary boot sector, we
 640 * repair the primary boot sector silently (unless the device is read-only or
 641 * the primary boot sector is not accessible).
 642 *
 643 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
 644 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
 645 * to their respective values.
 646 *
 647 * Return the unlocked buffer head containing the boot sector or NULL on error.
 648 */
 649static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
 650		const int silent)
 651{
 652	const char *read_err_str = "Unable to read %s boot sector.";
 653	struct buffer_head *bh_primary, *bh_backup;
 654	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
 655
 656	/* Try to read primary boot sector. */
 657	if ((bh_primary = sb_bread(sb, 0))) {
 658		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 659				bh_primary->b_data, silent))
 660			return bh_primary;
 661		if (!silent)
 662			ntfs_error(sb, "Primary boot sector is invalid.");
 663	} else if (!silent)
 664		ntfs_error(sb, read_err_str, "primary");
 665	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
 666		if (bh_primary)
 667			brelse(bh_primary);
 668		if (!silent)
 669			ntfs_error(sb, "Mount option errors=recover not used. "
 670					"Aborting without trying to recover.");
 671		return NULL;
 672	}
 673	/* Try to read NT4+ backup boot sector. */
 674	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
 675		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 676				bh_backup->b_data, silent))
 677			goto hotfix_primary_boot_sector;
 678		brelse(bh_backup);
 679	} else if (!silent)
 680		ntfs_error(sb, read_err_str, "backup");
 681	/* Try to read NT3.51- backup boot sector. */
 682	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
 683		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 684				bh_backup->b_data, silent))
 685			goto hotfix_primary_boot_sector;
 686		if (!silent)
 687			ntfs_error(sb, "Could not find a valid backup boot "
 688					"sector.");
 689		brelse(bh_backup);
 690	} else if (!silent)
 691		ntfs_error(sb, read_err_str, "backup");
 692	/* We failed. Cleanup and return. */
 693	if (bh_primary)
 694		brelse(bh_primary);
 695	return NULL;
 696hotfix_primary_boot_sector:
 697	if (bh_primary) {
 698		/*
 699		 * If we managed to read sector zero and the volume is not
 700		 * read-only, copy the found, valid backup boot sector to the
 701		 * primary boot sector.  Note we only copy the actual boot
 702		 * sector structure, not the actual whole device sector as that
 703		 * may be bigger and would potentially damage the $Boot system
 704		 * file (FIXME: Would be nice to know if the backup boot sector
 705		 * on a large sector device contains the whole boot loader or
 706		 * just the first 512 bytes).
 707		 */
 708		if (!(sb->s_flags & MS_RDONLY)) {
 709			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
 710					"boot sector from backup copy.");
 711			memcpy(bh_primary->b_data, bh_backup->b_data,
 712					NTFS_BLOCK_SIZE);
 713			mark_buffer_dirty(bh_primary);
 714			sync_dirty_buffer(bh_primary);
 715			if (buffer_uptodate(bh_primary)) {
 716				brelse(bh_backup);
 717				return bh_primary;
 718			}
 719			ntfs_error(sb, "Hot-fix: Device write error while "
 720					"recovering primary boot sector.");
 721		} else {
 722			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
 723					"sector failed: Read-only mount.");
 724		}
 725		brelse(bh_primary);
 726	}
 727	ntfs_warning(sb, "Using backup boot sector.");
 728	return bh_backup;
 729}
 730
 731/**
 732 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
 733 * @vol:	volume structure to initialise with data from boot sector
 734 * @b:		boot sector to parse
 735 *
 736 * Parse the ntfs boot sector @b and store all imporant information therein in
 737 * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
 738 */
 739static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
 740{
 741	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
 742	int clusters_per_mft_record, clusters_per_index_record;
 743	s64 ll;
 744
 745	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
 746	vol->sector_size_bits = ffs(vol->sector_size) - 1;
 747	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
 748			vol->sector_size);
 749	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
 750			vol->sector_size_bits);
 751	if (vol->sector_size < vol->sb->s_blocksize) {
 752		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
 753				"device block size (%lu).  This is not "
 754				"supported.  Sorry.", vol->sector_size,
 755				vol->sb->s_blocksize);
 756		return false;
 757	}
 758	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
 759	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
 760	ntfs_debug("sectors_per_cluster_bits = 0x%x",
 761			sectors_per_cluster_bits);
 762	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
 763	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
 764	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
 765	vol->cluster_size_mask = vol->cluster_size - 1;
 766	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
 767	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
 768			vol->cluster_size);
 769	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
 770	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
 771	if (vol->cluster_size < vol->sector_size) {
 772		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
 773				"sector size (%i).  This is not supported.  "
 774				"Sorry.", vol->cluster_size, vol->sector_size);
 775		return false;
 776	}
 777	clusters_per_mft_record = b->clusters_per_mft_record;
 778	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
 779			clusters_per_mft_record, clusters_per_mft_record);
 780	if (clusters_per_mft_record > 0)
 781		vol->mft_record_size = vol->cluster_size <<
 782				(ffs(clusters_per_mft_record) - 1);
 783	else
 784		/*
 785		 * When mft_record_size < cluster_size, clusters_per_mft_record
 786		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
 787		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
 788		 */
 789		vol->mft_record_size = 1 << -clusters_per_mft_record;
 790	vol->mft_record_size_mask = vol->mft_record_size - 1;
 791	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
 792	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
 793			vol->mft_record_size);
 794	ntfs_debug("vol->mft_record_size_mask = 0x%x",
 795			vol->mft_record_size_mask);
 796	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
 797			vol->mft_record_size_bits, vol->mft_record_size_bits);
 798	/*
 799	 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
 800	 * we store $MFT/$DATA, the table of mft records in the page cache.
 801	 */
 802	if (vol->mft_record_size > PAGE_CACHE_SIZE) {
 803		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
 804				"PAGE_CACHE_SIZE on your system (%lu).  "
 805				"This is not supported.  Sorry.",
 806				vol->mft_record_size, PAGE_CACHE_SIZE);
 807		return false;
 808	}
 809	/* We cannot support mft record sizes below the sector size. */
 810	if (vol->mft_record_size < vol->sector_size) {
 811		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
 812				"sector size (%i).  This is not supported.  "
 813				"Sorry.", vol->mft_record_size,
 814				vol->sector_size);
 815		return false;
 816	}
 817	clusters_per_index_record = b->clusters_per_index_record;
 818	ntfs_debug("clusters_per_index_record = %i (0x%x)",
 819			clusters_per_index_record, clusters_per_index_record);
 820	if (clusters_per_index_record > 0)
 821		vol->index_record_size = vol->cluster_size <<
 822				(ffs(clusters_per_index_record) - 1);
 823	else
 824		/*
 825		 * When index_record_size < cluster_size,
 826		 * clusters_per_index_record = -log2(index_record_size) bytes.
 827		 * index_record_size normaly equals 4096 bytes, which is
 828		 * encoded as 0xF4 (-12 in decimal).
 829		 */
 830		vol->index_record_size = 1 << -clusters_per_index_record;
 831	vol->index_record_size_mask = vol->index_record_size - 1;
 832	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
 833	ntfs_debug("vol->index_record_size = %i (0x%x)",
 834			vol->index_record_size, vol->index_record_size);
 835	ntfs_debug("vol->index_record_size_mask = 0x%x",
 836			vol->index_record_size_mask);
 837	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
 838			vol->index_record_size_bits,
 839			vol->index_record_size_bits);
 840	/* We cannot support index record sizes below the sector size. */
 841	if (vol->index_record_size < vol->sector_size) {
 842		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
 843				"the sector size (%i).  This is not "
 844				"supported.  Sorry.", vol->index_record_size,
 845				vol->sector_size);
 846		return false;
 847	}
 848	/*
 849	 * Get the size of the volume in clusters and check for 64-bit-ness.
 850	 * Windows currently only uses 32 bits to save the clusters so we do
 851	 * the same as it is much faster on 32-bit CPUs.
 852	 */
 853	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
 854	if ((u64)ll >= 1ULL << 32) {
 855		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
 856		return false;
 857	}
 858	vol->nr_clusters = ll;
 859	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
 860	/*
 861	 * On an architecture where unsigned long is 32-bits, we restrict the
 862	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
 863	 * will hopefully optimize the whole check away.
 864	 */
 865	if (sizeof(unsigned long) < 8) {
 866		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
 867			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
 868					"large for this architecture.  "
 869					"Maximum supported is 2TiB.  Sorry.",
 870					(unsigned long long)ll >> (40 -
 871					vol->cluster_size_bits));
 872			return false;
 873		}
 874	}
 875	ll = sle64_to_cpu(b->mft_lcn);
 876	if (ll >= vol->nr_clusters) {
 877		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
 878				"volume.  Weird.", (unsigned long long)ll,
 879				(unsigned long long)ll);
 880		return false;
 881	}
 882	vol->mft_lcn = ll;
 883	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
 884	ll = sle64_to_cpu(b->mftmirr_lcn);
 885	if (ll >= vol->nr_clusters) {
 886		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
 887				"of volume.  Weird.", (unsigned long long)ll,
 888				(unsigned long long)ll);
 889		return false;
 890	}
 891	vol->mftmirr_lcn = ll;
 892	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
 893#ifdef NTFS_RW
 894	/*
 895	 * Work out the size of the mft mirror in number of mft records. If the
 896	 * cluster size is less than or equal to the size taken by four mft
 897	 * records, the mft mirror stores the first four mft records. If the
 898	 * cluster size is bigger than the size taken by four mft records, the
 899	 * mft mirror contains as many mft records as will fit into one
 900	 * cluster.
 901	 */
 902	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
 903		vol->mftmirr_size = 4;
 904	else
 905		vol->mftmirr_size = vol->cluster_size >>
 906				vol->mft_record_size_bits;
 907	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
 908#endif /* NTFS_RW */
 909	vol->serial_no = le64_to_cpu(b->volume_serial_number);
 910	ntfs_debug("vol->serial_no = 0x%llx",
 911			(unsigned long long)vol->serial_no);
 912	return true;
 913}
 914
 915/**
 916 * ntfs_setup_allocators - initialize the cluster and mft allocators
 917 * @vol:	volume structure for which to setup the allocators
 918 *
 919 * Setup the cluster (lcn) and mft allocators to the starting values.
 920 */
 921static void ntfs_setup_allocators(ntfs_volume *vol)
 922{
 923#ifdef NTFS_RW
 924	LCN mft_zone_size, mft_lcn;
 925#endif /* NTFS_RW */
 926
 927	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
 928			vol->mft_zone_multiplier);
 929#ifdef NTFS_RW
 930	/* Determine the size of the MFT zone. */
 931	mft_zone_size = vol->nr_clusters;
 932	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
 933	case 4:
 934		mft_zone_size >>= 1;			/* 50%   */
 935		break;
 936	case 3:
 937		mft_zone_size = (mft_zone_size +
 938				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
 939		break;
 940	case 2:
 941		mft_zone_size >>= 2;			/* 25%   */
 942		break;
 943	/* case 1: */
 944	default:
 945		mft_zone_size >>= 3;			/* 12.5% */
 946		break;
 947	}
 948	/* Setup the mft zone. */
 949	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
 950	ntfs_debug("vol->mft_zone_pos = 0x%llx",
 951			(unsigned long long)vol->mft_zone_pos);
 952	/*
 953	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
 954	 * source) and if the actual mft_lcn is in the expected place or even
 955	 * further to the front of the volume, extend the mft_zone to cover the
 956	 * beginning of the volume as well.  This is in order to protect the
 957	 * area reserved for the mft bitmap as well within the mft_zone itself.
 958	 * On non-standard volumes we do not protect it as the overhead would
 959	 * be higher than the speed increase we would get by doing it.
 960	 */
 961	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
 962	if (mft_lcn * vol->cluster_size < 16 * 1024)
 963		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
 964				vol->cluster_size;
 965	if (vol->mft_zone_start <= mft_lcn)
 966		vol->mft_zone_start = 0;
 967	ntfs_debug("vol->mft_zone_start = 0x%llx",
 968			(unsigned long long)vol->mft_zone_start);
 969	/*
 970	 * Need to cap the mft zone on non-standard volumes so that it does
 971	 * not point outside the boundaries of the volume.  We do this by
 972	 * halving the zone size until we are inside the volume.
 973	 */
 974	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
 975	while (vol->mft_zone_end >= vol->nr_clusters) {
 976		mft_zone_size >>= 1;
 977		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
 978	}
 979	ntfs_debug("vol->mft_zone_end = 0x%llx",
 980			(unsigned long long)vol->mft_zone_end);
 981	/*
 982	 * Set the current position within each data zone to the start of the
 983	 * respective zone.
 984	 */
 985	vol->data1_zone_pos = vol->mft_zone_end;
 986	ntfs_debug("vol->data1_zone_pos = 0x%llx",
 987			(unsigned long long)vol->data1_zone_pos);
 988	vol->data2_zone_pos = 0;
 989	ntfs_debug("vol->data2_zone_pos = 0x%llx",
 990			(unsigned long long)vol->data2_zone_pos);
 991
 992	/* Set the mft data allocation position to mft record 24. */
 993	vol->mft_data_pos = 24;
 994	ntfs_debug("vol->mft_data_pos = 0x%llx",
 995			(unsigned long long)vol->mft_data_pos);
 996#endif /* NTFS_RW */
 997}
 998
 999#ifdef NTFS_RW
1000
1001/**
1002 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1003 * @vol:	ntfs super block describing device whose mft mirror to load
1004 *
1005 * Return 'true' on success or 'false' on error.
1006 */
1007static bool load_and_init_mft_mirror(ntfs_volume *vol)
1008{
1009	struct inode *tmp_ino;
1010	ntfs_inode *tmp_ni;
1011
1012	ntfs_debug("Entering.");
1013	/* Get mft mirror inode. */
1014	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1015	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1016		if (!IS_ERR(tmp_ino))
1017			iput(tmp_ino);
1018		/* Caller will display error message. */
1019		return false;
1020	}
1021	/*
1022	 * Re-initialize some specifics about $MFTMirr's inode as
1023	 * ntfs_read_inode() will have set up the default ones.
1024	 */
1025	/* Set uid and gid to root. */
1026	tmp_ino->i_uid = tmp_ino->i_gid = 0;
 
1027	/* Regular file.  No access for anyone. */
1028	tmp_ino->i_mode = S_IFREG;
1029	/* No VFS initiated operations allowed for $MFTMirr. */
1030	tmp_ino->i_op = &ntfs_empty_inode_ops;
1031	tmp_ino->i_fop = &ntfs_empty_file_ops;
1032	/* Put in our special address space operations. */
1033	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1034	tmp_ni = NTFS_I(tmp_ino);
1035	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1036	NInoSetMstProtected(tmp_ni);
1037	NInoSetSparseDisabled(tmp_ni);
1038	/*
1039	 * Set up our little cheat allowing us to reuse the async read io
1040	 * completion handler for directories.
1041	 */
1042	tmp_ni->itype.index.block_size = vol->mft_record_size;
1043	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1044	vol->mftmirr_ino = tmp_ino;
1045	ntfs_debug("Done.");
1046	return true;
1047}
1048
1049/**
1050 * check_mft_mirror - compare contents of the mft mirror with the mft
1051 * @vol:	ntfs super block describing device whose mft mirror to check
1052 *
1053 * Return 'true' on success or 'false' on error.
1054 *
1055 * Note, this function also results in the mft mirror runlist being completely
1056 * mapped into memory.  The mft mirror write code requires this and will BUG()
1057 * should it find an unmapped runlist element.
1058 */
1059static bool check_mft_mirror(ntfs_volume *vol)
1060{
1061	struct super_block *sb = vol->sb;
1062	ntfs_inode *mirr_ni;
1063	struct page *mft_page, *mirr_page;
1064	u8 *kmft, *kmirr;
1065	runlist_element *rl, rl2[2];
1066	pgoff_t index;
1067	int mrecs_per_page, i;
1068
1069	ntfs_debug("Entering.");
1070	/* Compare contents of $MFT and $MFTMirr. */
1071	mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1072	BUG_ON(!mrecs_per_page);
1073	BUG_ON(!vol->mftmirr_size);
1074	mft_page = mirr_page = NULL;
1075	kmft = kmirr = NULL;
1076	index = i = 0;
1077	do {
1078		u32 bytes;
1079
1080		/* Switch pages if necessary. */
1081		if (!(i % mrecs_per_page)) {
1082			if (index) {
1083				ntfs_unmap_page(mft_page);
1084				ntfs_unmap_page(mirr_page);
1085			}
1086			/* Get the $MFT page. */
1087			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1088					index);
1089			if (IS_ERR(mft_page)) {
1090				ntfs_error(sb, "Failed to read $MFT.");
1091				return false;
1092			}
1093			kmft = page_address(mft_page);
1094			/* Get the $MFTMirr page. */
1095			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1096					index);
1097			if (IS_ERR(mirr_page)) {
1098				ntfs_error(sb, "Failed to read $MFTMirr.");
1099				goto mft_unmap_out;
1100			}
1101			kmirr = page_address(mirr_page);
1102			++index;
1103		}
1104		/* Do not check the record if it is not in use. */
1105		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1106			/* Make sure the record is ok. */
1107			if (ntfs_is_baad_recordp((le32*)kmft)) {
1108				ntfs_error(sb, "Incomplete multi sector "
1109						"transfer detected in mft "
1110						"record %i.", i);
1111mm_unmap_out:
1112				ntfs_unmap_page(mirr_page);
1113mft_unmap_out:
1114				ntfs_unmap_page(mft_page);
1115				return false;
1116			}
1117		}
1118		/* Do not check the mirror record if it is not in use. */
1119		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1120			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1121				ntfs_error(sb, "Incomplete multi sector "
1122						"transfer detected in mft "
1123						"mirror record %i.", i);
1124				goto mm_unmap_out;
1125			}
1126		}
1127		/* Get the amount of data in the current record. */
1128		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1129		if (bytes < sizeof(MFT_RECORD_OLD) ||
1130				bytes > vol->mft_record_size ||
1131				ntfs_is_baad_recordp((le32*)kmft)) {
1132			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1133			if (bytes < sizeof(MFT_RECORD_OLD) ||
1134					bytes > vol->mft_record_size ||
1135					ntfs_is_baad_recordp((le32*)kmirr))
1136				bytes = vol->mft_record_size;
1137		}
1138		/* Compare the two records. */
1139		if (memcmp(kmft, kmirr, bytes)) {
1140			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1141					"match.  Run ntfsfix or chkdsk.", i);
1142			goto mm_unmap_out;
1143		}
1144		kmft += vol->mft_record_size;
1145		kmirr += vol->mft_record_size;
1146	} while (++i < vol->mftmirr_size);
1147	/* Release the last pages. */
1148	ntfs_unmap_page(mft_page);
1149	ntfs_unmap_page(mirr_page);
1150
1151	/* Construct the mft mirror runlist by hand. */
1152	rl2[0].vcn = 0;
1153	rl2[0].lcn = vol->mftmirr_lcn;
1154	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1155			vol->cluster_size - 1) / vol->cluster_size;
1156	rl2[1].vcn = rl2[0].length;
1157	rl2[1].lcn = LCN_ENOENT;
1158	rl2[1].length = 0;
1159	/*
1160	 * Because we have just read all of the mft mirror, we know we have
1161	 * mapped the full runlist for it.
1162	 */
1163	mirr_ni = NTFS_I(vol->mftmirr_ino);
1164	down_read(&mirr_ni->runlist.lock);
1165	rl = mirr_ni->runlist.rl;
1166	/* Compare the two runlists.  They must be identical. */
1167	i = 0;
1168	do {
1169		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1170				rl2[i].length != rl[i].length) {
1171			ntfs_error(sb, "$MFTMirr location mismatch.  "
1172					"Run chkdsk.");
1173			up_read(&mirr_ni->runlist.lock);
1174			return false;
1175		}
1176	} while (rl2[i++].length);
1177	up_read(&mirr_ni->runlist.lock);
1178	ntfs_debug("Done.");
1179	return true;
1180}
1181
1182/**
1183 * load_and_check_logfile - load and check the logfile inode for a volume
1184 * @vol:	ntfs super block describing device whose logfile to load
1185 *
1186 * Return 'true' on success or 'false' on error.
1187 */
1188static bool load_and_check_logfile(ntfs_volume *vol,
1189		RESTART_PAGE_HEADER **rp)
1190{
1191	struct inode *tmp_ino;
1192
1193	ntfs_debug("Entering.");
1194	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1195	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1196		if (!IS_ERR(tmp_ino))
1197			iput(tmp_ino);
1198		/* Caller will display error message. */
1199		return false;
1200	}
1201	if (!ntfs_check_logfile(tmp_ino, rp)) {
1202		iput(tmp_ino);
1203		/* ntfs_check_logfile() will have displayed error output. */
1204		return false;
1205	}
1206	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1207	vol->logfile_ino = tmp_ino;
1208	ntfs_debug("Done.");
1209	return true;
1210}
1211
1212#define NTFS_HIBERFIL_HEADER_SIZE	4096
1213
1214/**
1215 * check_windows_hibernation_status - check if Windows is suspended on a volume
1216 * @vol:	ntfs super block of device to check
1217 *
1218 * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1219 * looking for the file hiberfil.sys in the root directory of the volume.  If
1220 * the file is not present Windows is definitely not suspended.
1221 *
1222 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1223 * definitely suspended (this volume is not the system volume).  Caveat:  on a
1224 * system with many volumes it is possible that the < 4kiB check is bogus but
1225 * for now this should do fine.
1226 *
1227 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1228 * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1229 * Windows is definitely suspended.  If it is completely full of zeroes,
1230 * Windows is definitely not hibernated.  Any other case is treated as if
1231 * Windows is suspended.  This caters for the above mentioned caveat of a
1232 * system with many volumes where no "hibr" magic would be present and there is
1233 * no zero header.
1234 *
1235 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1236 * hibernated on the volume, and -errno on error.
1237 */
1238static int check_windows_hibernation_status(ntfs_volume *vol)
1239{
1240	MFT_REF mref;
1241	struct inode *vi;
1242	struct page *page;
1243	u32 *kaddr, *kend;
1244	ntfs_name *name = NULL;
1245	int ret = 1;
1246	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1247			cpu_to_le16('i'), cpu_to_le16('b'),
1248			cpu_to_le16('e'), cpu_to_le16('r'),
1249			cpu_to_le16('f'), cpu_to_le16('i'),
1250			cpu_to_le16('l'), cpu_to_le16('.'),
1251			cpu_to_le16('s'), cpu_to_le16('y'),
1252			cpu_to_le16('s'), 0 };
1253
1254	ntfs_debug("Entering.");
1255	/*
1256	 * Find the inode number for the hibernation file by looking up the
1257	 * filename hiberfil.sys in the root directory.
1258	 */
1259	mutex_lock(&vol->root_ino->i_mutex);
1260	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1261			&name);
1262	mutex_unlock(&vol->root_ino->i_mutex);
1263	if (IS_ERR_MREF(mref)) {
1264		ret = MREF_ERR(mref);
1265		/* If the file does not exist, Windows is not hibernated. */
1266		if (ret == -ENOENT) {
1267			ntfs_debug("hiberfil.sys not present.  Windows is not "
1268					"hibernated on the volume.");
1269			return 0;
1270		}
1271		/* A real error occurred. */
1272		ntfs_error(vol->sb, "Failed to find inode number for "
1273				"hiberfil.sys.");
1274		return ret;
1275	}
1276	/* We do not care for the type of match that was found. */
1277	kfree(name);
1278	/* Get the inode. */
1279	vi = ntfs_iget(vol->sb, MREF(mref));
1280	if (IS_ERR(vi) || is_bad_inode(vi)) {
1281		if (!IS_ERR(vi))
1282			iput(vi);
1283		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1284		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1285	}
1286	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1287		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1288				"Windows is hibernated on the volume.  This "
1289				"is not the system volume.", i_size_read(vi));
1290		goto iput_out;
1291	}
1292	page = ntfs_map_page(vi->i_mapping, 0);
1293	if (IS_ERR(page)) {
1294		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1295		ret = PTR_ERR(page);
1296		goto iput_out;
1297	}
1298	kaddr = (u32*)page_address(page);
1299	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1300		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1301				"hibernated on the volume.  This is the "
1302				"system volume.");
1303		goto unm_iput_out;
1304	}
1305	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1306	do {
1307		if (unlikely(*kaddr)) {
1308			ntfs_debug("hiberfil.sys is larger than 4kiB "
1309					"(0x%llx), does not contain the "
1310					"\"hibr\" magic, and does not have a "
1311					"zero header.  Windows is hibernated "
1312					"on the volume.  This is not the "
1313					"system volume.", i_size_read(vi));
1314			goto unm_iput_out;
1315		}
1316	} while (++kaddr < kend);
1317	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1318			"hibernated on the volume.  This is the system "
1319			"volume.");
1320	ret = 0;
1321unm_iput_out:
1322	ntfs_unmap_page(page);
1323iput_out:
1324	iput(vi);
1325	return ret;
1326}
1327
1328/**
1329 * load_and_init_quota - load and setup the quota file for a volume if present
1330 * @vol:	ntfs super block describing device whose quota file to load
1331 *
1332 * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1333 * leave vol->quota_ino as NULL and return success.
1334 */
1335static bool load_and_init_quota(ntfs_volume *vol)
1336{
1337	MFT_REF mref;
1338	struct inode *tmp_ino;
1339	ntfs_name *name = NULL;
1340	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1341			cpu_to_le16('Q'), cpu_to_le16('u'),
1342			cpu_to_le16('o'), cpu_to_le16('t'),
1343			cpu_to_le16('a'), 0 };
1344	static ntfschar Q[3] = { cpu_to_le16('$'),
1345			cpu_to_le16('Q'), 0 };
1346
1347	ntfs_debug("Entering.");
1348	/*
1349	 * Find the inode number for the quota file by looking up the filename
1350	 * $Quota in the extended system files directory $Extend.
1351	 */
1352	mutex_lock(&vol->extend_ino->i_mutex);
1353	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1354			&name);
1355	mutex_unlock(&vol->extend_ino->i_mutex);
1356	if (IS_ERR_MREF(mref)) {
1357		/*
1358		 * If the file does not exist, quotas are disabled and have
1359		 * never been enabled on this volume, just return success.
1360		 */
1361		if (MREF_ERR(mref) == -ENOENT) {
1362			ntfs_debug("$Quota not present.  Volume does not have "
1363					"quotas enabled.");
1364			/*
1365			 * No need to try to set quotas out of date if they are
1366			 * not enabled.
1367			 */
1368			NVolSetQuotaOutOfDate(vol);
1369			return true;
1370		}
1371		/* A real error occurred. */
1372		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1373		return false;
1374	}
1375	/* We do not care for the type of match that was found. */
1376	kfree(name);
1377	/* Get the inode. */
1378	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1379	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1380		if (!IS_ERR(tmp_ino))
1381			iput(tmp_ino);
1382		ntfs_error(vol->sb, "Failed to load $Quota.");
1383		return false;
1384	}
1385	vol->quota_ino = tmp_ino;
1386	/* Get the $Q index allocation attribute. */
1387	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1388	if (IS_ERR(tmp_ino)) {
1389		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1390		return false;
1391	}
1392	vol->quota_q_ino = tmp_ino;
1393	ntfs_debug("Done.");
1394	return true;
1395}
1396
1397/**
1398 * load_and_init_usnjrnl - load and setup the transaction log if present
1399 * @vol:	ntfs super block describing device whose usnjrnl file to load
1400 *
1401 * Return 'true' on success or 'false' on error.
1402 *
1403 * If $UsnJrnl is not present or in the process of being disabled, we set
1404 * NVolUsnJrnlStamped() and return success.
1405 *
1406 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1407 * i.e. transaction logging has only just been enabled or the journal has been
1408 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1409 * and return success.
1410 */
1411static bool load_and_init_usnjrnl(ntfs_volume *vol)
1412{
1413	MFT_REF mref;
1414	struct inode *tmp_ino;
1415	ntfs_inode *tmp_ni;
1416	struct page *page;
1417	ntfs_name *name = NULL;
1418	USN_HEADER *uh;
1419	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1420			cpu_to_le16('U'), cpu_to_le16('s'),
1421			cpu_to_le16('n'), cpu_to_le16('J'),
1422			cpu_to_le16('r'), cpu_to_le16('n'),
1423			cpu_to_le16('l'), 0 };
1424	static ntfschar Max[5] = { cpu_to_le16('$'),
1425			cpu_to_le16('M'), cpu_to_le16('a'),
1426			cpu_to_le16('x'), 0 };
1427	static ntfschar J[3] = { cpu_to_le16('$'),
1428			cpu_to_le16('J'), 0 };
1429
1430	ntfs_debug("Entering.");
1431	/*
1432	 * Find the inode number for the transaction log file by looking up the
1433	 * filename $UsnJrnl in the extended system files directory $Extend.
1434	 */
1435	mutex_lock(&vol->extend_ino->i_mutex);
1436	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1437			&name);
1438	mutex_unlock(&vol->extend_ino->i_mutex);
1439	if (IS_ERR_MREF(mref)) {
1440		/*
1441		 * If the file does not exist, transaction logging is disabled,
1442		 * just return success.
1443		 */
1444		if (MREF_ERR(mref) == -ENOENT) {
1445			ntfs_debug("$UsnJrnl not present.  Volume does not "
1446					"have transaction logging enabled.");
1447not_enabled:
1448			/*
1449			 * No need to try to stamp the transaction log if
1450			 * transaction logging is not enabled.
1451			 */
1452			NVolSetUsnJrnlStamped(vol);
1453			return true;
1454		}
1455		/* A real error occurred. */
1456		ntfs_error(vol->sb, "Failed to find inode number for "
1457				"$UsnJrnl.");
1458		return false;
1459	}
1460	/* We do not care for the type of match that was found. */
1461	kfree(name);
1462	/* Get the inode. */
1463	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1464	if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1465		if (!IS_ERR(tmp_ino))
1466			iput(tmp_ino);
1467		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1468		return false;
1469	}
1470	vol->usnjrnl_ino = tmp_ino;
1471	/*
1472	 * If the transaction log is in the process of being deleted, we can
1473	 * ignore it.
1474	 */
1475	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1476		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1477				"Volume does not have transaction logging "
1478				"enabled.");
1479		goto not_enabled;
1480	}
1481	/* Get the $DATA/$Max attribute. */
1482	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1483	if (IS_ERR(tmp_ino)) {
1484		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1485				"attribute.");
1486		return false;
1487	}
1488	vol->usnjrnl_max_ino = tmp_ino;
1489	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1490		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1491				"attribute (size is 0x%llx but should be at "
1492				"least 0x%zx bytes).", i_size_read(tmp_ino),
1493				sizeof(USN_HEADER));
1494		return false;
1495	}
1496	/* Get the $DATA/$J attribute. */
1497	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1498	if (IS_ERR(tmp_ino)) {
1499		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1500				"attribute.");
1501		return false;
1502	}
1503	vol->usnjrnl_j_ino = tmp_ino;
1504	/* Verify $J is non-resident and sparse. */
1505	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1506	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1507		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1508				"and/or not sparse.");
1509		return false;
1510	}
1511	/* Read the USN_HEADER from $DATA/$Max. */
1512	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1513	if (IS_ERR(page)) {
1514		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1515				"attribute.");
1516		return false;
1517	}
1518	uh = (USN_HEADER*)page_address(page);
1519	/* Sanity check the $Max. */
1520	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1521			sle64_to_cpu(uh->maximum_size))) {
1522		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1523				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1524				(long long)sle64_to_cpu(uh->allocation_delta),
1525				(long long)sle64_to_cpu(uh->maximum_size));
1526		ntfs_unmap_page(page);
1527		return false;
1528	}
1529	/*
1530	 * If the transaction log has been stamped and nothing has been written
1531	 * to it since, we do not need to stamp it.
1532	 */
1533	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1534			i_size_read(vol->usnjrnl_j_ino))) {
1535		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1536				i_size_read(vol->usnjrnl_j_ino))) {
1537			ntfs_unmap_page(page);
1538			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1539					"logged since it was last stamped.  "
1540					"Treating this as if the volume does "
1541					"not have transaction logging "
1542					"enabled.");
1543			goto not_enabled;
1544		}
1545		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1546				"which is out of bounds (0x%llx).  $UsnJrnl "
1547				"is corrupt.",
1548				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1549				i_size_read(vol->usnjrnl_j_ino));
1550		ntfs_unmap_page(page);
1551		return false;
1552	}
1553	ntfs_unmap_page(page);
1554	ntfs_debug("Done.");
1555	return true;
1556}
1557
1558/**
1559 * load_and_init_attrdef - load the attribute definitions table for a volume
1560 * @vol:	ntfs super block describing device whose attrdef to load
1561 *
1562 * Return 'true' on success or 'false' on error.
1563 */
1564static bool load_and_init_attrdef(ntfs_volume *vol)
1565{
1566	loff_t i_size;
1567	struct super_block *sb = vol->sb;
1568	struct inode *ino;
1569	struct page *page;
1570	pgoff_t index, max_index;
1571	unsigned int size;
1572
1573	ntfs_debug("Entering.");
1574	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1575	ino = ntfs_iget(sb, FILE_AttrDef);
1576	if (IS_ERR(ino) || is_bad_inode(ino)) {
1577		if (!IS_ERR(ino))
1578			iput(ino);
1579		goto failed;
1580	}
1581	NInoSetSparseDisabled(NTFS_I(ino));
1582	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1583	i_size = i_size_read(ino);
1584	if (i_size <= 0 || i_size > 0x7fffffff)
1585		goto iput_failed;
1586	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1587	if (!vol->attrdef)
1588		goto iput_failed;
1589	index = 0;
1590	max_index = i_size >> PAGE_CACHE_SHIFT;
1591	size = PAGE_CACHE_SIZE;
1592	while (index < max_index) {
1593		/* Read the attrdef table and copy it into the linear buffer. */
1594read_partial_attrdef_page:
1595		page = ntfs_map_page(ino->i_mapping, index);
1596		if (IS_ERR(page))
1597			goto free_iput_failed;
1598		memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1599				page_address(page), size);
1600		ntfs_unmap_page(page);
1601	};
1602	if (size == PAGE_CACHE_SIZE) {
1603		size = i_size & ~PAGE_CACHE_MASK;
1604		if (size)
1605			goto read_partial_attrdef_page;
1606	}
1607	vol->attrdef_size = i_size;
1608	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1609	iput(ino);
1610	return true;
1611free_iput_failed:
1612	ntfs_free(vol->attrdef);
1613	vol->attrdef = NULL;
1614iput_failed:
1615	iput(ino);
1616failed:
1617	ntfs_error(sb, "Failed to initialize attribute definition table.");
1618	return false;
1619}
1620
1621#endif /* NTFS_RW */
1622
1623/**
1624 * load_and_init_upcase - load the upcase table for an ntfs volume
1625 * @vol:	ntfs super block describing device whose upcase to load
1626 *
1627 * Return 'true' on success or 'false' on error.
1628 */
1629static bool load_and_init_upcase(ntfs_volume *vol)
1630{
1631	loff_t i_size;
1632	struct super_block *sb = vol->sb;
1633	struct inode *ino;
1634	struct page *page;
1635	pgoff_t index, max_index;
1636	unsigned int size;
1637	int i, max;
1638
1639	ntfs_debug("Entering.");
1640	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1641	ino = ntfs_iget(sb, FILE_UpCase);
1642	if (IS_ERR(ino) || is_bad_inode(ino)) {
1643		if (!IS_ERR(ino))
1644			iput(ino);
1645		goto upcase_failed;
1646	}
1647	/*
1648	 * The upcase size must not be above 64k Unicode characters, must not
1649	 * be zero and must be a multiple of sizeof(ntfschar).
1650	 */
1651	i_size = i_size_read(ino);
1652	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1653			i_size > 64ULL * 1024 * sizeof(ntfschar))
1654		goto iput_upcase_failed;
1655	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1656	if (!vol->upcase)
1657		goto iput_upcase_failed;
1658	index = 0;
1659	max_index = i_size >> PAGE_CACHE_SHIFT;
1660	size = PAGE_CACHE_SIZE;
1661	while (index < max_index) {
1662		/* Read the upcase table and copy it into the linear buffer. */
1663read_partial_upcase_page:
1664		page = ntfs_map_page(ino->i_mapping, index);
1665		if (IS_ERR(page))
1666			goto iput_upcase_failed;
1667		memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1668				page_address(page), size);
1669		ntfs_unmap_page(page);
1670	};
1671	if (size == PAGE_CACHE_SIZE) {
1672		size = i_size & ~PAGE_CACHE_MASK;
1673		if (size)
1674			goto read_partial_upcase_page;
1675	}
1676	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1677	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1678			i_size, 64 * 1024 * sizeof(ntfschar));
1679	iput(ino);
1680	mutex_lock(&ntfs_lock);
1681	if (!default_upcase) {
1682		ntfs_debug("Using volume specified $UpCase since default is "
1683				"not present.");
1684		mutex_unlock(&ntfs_lock);
1685		return true;
1686	}
1687	max = default_upcase_len;
1688	if (max > vol->upcase_len)
1689		max = vol->upcase_len;
1690	for (i = 0; i < max; i++)
1691		if (vol->upcase[i] != default_upcase[i])
1692			break;
1693	if (i == max) {
1694		ntfs_free(vol->upcase);
1695		vol->upcase = default_upcase;
1696		vol->upcase_len = max;
1697		ntfs_nr_upcase_users++;
1698		mutex_unlock(&ntfs_lock);
1699		ntfs_debug("Volume specified $UpCase matches default. Using "
1700				"default.");
1701		return true;
1702	}
1703	mutex_unlock(&ntfs_lock);
1704	ntfs_debug("Using volume specified $UpCase since it does not match "
1705			"the default.");
1706	return true;
1707iput_upcase_failed:
1708	iput(ino);
1709	ntfs_free(vol->upcase);
1710	vol->upcase = NULL;
1711upcase_failed:
1712	mutex_lock(&ntfs_lock);
1713	if (default_upcase) {
1714		vol->upcase = default_upcase;
1715		vol->upcase_len = default_upcase_len;
1716		ntfs_nr_upcase_users++;
1717		mutex_unlock(&ntfs_lock);
1718		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1719				"default.");
1720		return true;
1721	}
1722	mutex_unlock(&ntfs_lock);
1723	ntfs_error(sb, "Failed to initialize upcase table.");
1724	return false;
1725}
1726
1727/*
1728 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1729 * their own special locking rules:
1730 */
1731static struct lock_class_key
1732	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1733	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1734
1735/**
1736 * load_system_files - open the system files using normal functions
1737 * @vol:	ntfs super block describing device whose system files to load
1738 *
1739 * Open the system files with normal access functions and complete setting up
1740 * the ntfs super block @vol.
1741 *
1742 * Return 'true' on success or 'false' on error.
1743 */
1744static bool load_system_files(ntfs_volume *vol)
1745{
1746	struct super_block *sb = vol->sb;
1747	MFT_RECORD *m;
1748	VOLUME_INFORMATION *vi;
1749	ntfs_attr_search_ctx *ctx;
1750#ifdef NTFS_RW
1751	RESTART_PAGE_HEADER *rp;
1752	int err;
1753#endif /* NTFS_RW */
1754
1755	ntfs_debug("Entering.");
1756#ifdef NTFS_RW
1757	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1758	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1759		static const char *es1 = "Failed to load $MFTMirr";
1760		static const char *es2 = "$MFTMirr does not match $MFT";
1761		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1762
1763		/* If a read-write mount, convert it to a read-only mount. */
1764		if (!(sb->s_flags & MS_RDONLY)) {
1765			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1766					ON_ERRORS_CONTINUE))) {
1767				ntfs_error(sb, "%s and neither on_errors="
1768						"continue nor on_errors="
1769						"remount-ro was specified%s",
1770						!vol->mftmirr_ino ? es1 : es2,
1771						es3);
1772				goto iput_mirr_err_out;
1773			}
1774			sb->s_flags |= MS_RDONLY;
1775			ntfs_error(sb, "%s.  Mounting read-only%s",
1776					!vol->mftmirr_ino ? es1 : es2, es3);
1777		} else
1778			ntfs_warning(sb, "%s.  Will not be able to remount "
1779					"read-write%s",
1780					!vol->mftmirr_ino ? es1 : es2, es3);
1781		/* This will prevent a read-write remount. */
1782		NVolSetErrors(vol);
1783	}
1784#endif /* NTFS_RW */
1785	/* Get mft bitmap attribute inode. */
1786	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1787	if (IS_ERR(vol->mftbmp_ino)) {
1788		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1789		goto iput_mirr_err_out;
1790	}
1791	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1792			   &mftbmp_runlist_lock_key);
1793	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1794			   &mftbmp_mrec_lock_key);
1795	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1796	if (!load_and_init_upcase(vol))
1797		goto iput_mftbmp_err_out;
1798#ifdef NTFS_RW
1799	/*
1800	 * Read attribute definitions table and setup @vol->attrdef and
1801	 * @vol->attrdef_size.
1802	 */
1803	if (!load_and_init_attrdef(vol))
1804		goto iput_upcase_err_out;
1805#endif /* NTFS_RW */
1806	/*
1807	 * Get the cluster allocation bitmap inode and verify the size, no
1808	 * need for any locking at this stage as we are already running
1809	 * exclusively as we are mount in progress task.
1810	 */
1811	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1812	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1813		if (!IS_ERR(vol->lcnbmp_ino))
1814			iput(vol->lcnbmp_ino);
1815		goto bitmap_failed;
1816	}
1817	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1818			   &lcnbmp_runlist_lock_key);
1819	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1820			   &lcnbmp_mrec_lock_key);
1821
1822	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1823	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1824		iput(vol->lcnbmp_ino);
1825bitmap_failed:
1826		ntfs_error(sb, "Failed to load $Bitmap.");
1827		goto iput_attrdef_err_out;
1828	}
1829	/*
1830	 * Get the volume inode and setup our cache of the volume flags and
1831	 * version.
1832	 */
1833	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1834	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1835		if (!IS_ERR(vol->vol_ino))
1836			iput(vol->vol_ino);
1837volume_failed:
1838		ntfs_error(sb, "Failed to load $Volume.");
1839		goto iput_lcnbmp_err_out;
1840	}
1841	m = map_mft_record(NTFS_I(vol->vol_ino));
1842	if (IS_ERR(m)) {
1843iput_volume_failed:
1844		iput(vol->vol_ino);
1845		goto volume_failed;
1846	}
1847	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1848		ntfs_error(sb, "Failed to get attribute search context.");
1849		goto get_ctx_vol_failed;
1850	}
1851	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1852			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1853err_put_vol:
1854		ntfs_attr_put_search_ctx(ctx);
1855get_ctx_vol_failed:
1856		unmap_mft_record(NTFS_I(vol->vol_ino));
1857		goto iput_volume_failed;
1858	}
1859	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1860			le16_to_cpu(ctx->attr->data.resident.value_offset));
1861	/* Some bounds checks. */
1862	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1863			le32_to_cpu(ctx->attr->data.resident.value_length) >
1864			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1865		goto err_put_vol;
1866	/* Copy the volume flags and version to the ntfs_volume structure. */
1867	vol->vol_flags = vi->flags;
1868	vol->major_ver = vi->major_ver;
1869	vol->minor_ver = vi->minor_ver;
1870	ntfs_attr_put_search_ctx(ctx);
1871	unmap_mft_record(NTFS_I(vol->vol_ino));
1872	printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1873			vol->minor_ver);
1874	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1875		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1876				"volume version %i.%i (need at least version "
1877				"3.0).", vol->major_ver, vol->minor_ver);
1878		NVolClearSparseEnabled(vol);
1879	}
1880#ifdef NTFS_RW
1881	/* Make sure that no unsupported volume flags are set. */
1882	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1883		static const char *es1a = "Volume is dirty";
1884		static const char *es1b = "Volume has been modified by chkdsk";
1885		static const char *es1c = "Volume has unsupported flags set";
1886		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1887		static const char *es2b = ".  Mount in Windows.";
1888		const char *es1, *es2;
1889
1890		es2 = es2a;
1891		if (vol->vol_flags & VOLUME_IS_DIRTY)
1892			es1 = es1a;
1893		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1894			es1 = es1b;
1895			es2 = es2b;
1896		} else {
1897			es1 = es1c;
1898			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1899					"encountered.",
1900					(unsigned)le16_to_cpu(vol->vol_flags));
1901		}
1902		/* If a read-write mount, convert it to a read-only mount. */
1903		if (!(sb->s_flags & MS_RDONLY)) {
1904			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1905					ON_ERRORS_CONTINUE))) {
1906				ntfs_error(sb, "%s and neither on_errors="
1907						"continue nor on_errors="
1908						"remount-ro was specified%s",
1909						es1, es2);
1910				goto iput_vol_err_out;
1911			}
1912			sb->s_flags |= MS_RDONLY;
1913			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1914		} else
1915			ntfs_warning(sb, "%s.  Will not be able to remount "
1916					"read-write%s", es1, es2);
1917		/*
1918		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1919		 * flags which we need to do in case any flags have changed.
1920		 */
1921	}
1922	/*
1923	 * Get the inode for the logfile, check it and determine if the volume
1924	 * was shutdown cleanly.
1925	 */
1926	rp = NULL;
1927	if (!load_and_check_logfile(vol, &rp) ||
1928			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1929		static const char *es1a = "Failed to load $LogFile";
1930		static const char *es1b = "$LogFile is not clean";
1931		static const char *es2 = ".  Mount in Windows.";
1932		const char *es1;
1933
1934		es1 = !vol->logfile_ino ? es1a : es1b;
1935		/* If a read-write mount, convert it to a read-only mount. */
1936		if (!(sb->s_flags & MS_RDONLY)) {
1937			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1938					ON_ERRORS_CONTINUE))) {
1939				ntfs_error(sb, "%s and neither on_errors="
1940						"continue nor on_errors="
1941						"remount-ro was specified%s",
1942						es1, es2);
1943				if (vol->logfile_ino) {
1944					BUG_ON(!rp);
1945					ntfs_free(rp);
1946				}
1947				goto iput_logfile_err_out;
1948			}
1949			sb->s_flags |= MS_RDONLY;
1950			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1951		} else
1952			ntfs_warning(sb, "%s.  Will not be able to remount "
1953					"read-write%s", es1, es2);
1954		/* This will prevent a read-write remount. */
1955		NVolSetErrors(vol);
1956	}
1957	ntfs_free(rp);
1958#endif /* NTFS_RW */
1959	/* Get the root directory inode so we can do path lookups. */
1960	vol->root_ino = ntfs_iget(sb, FILE_root);
1961	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1962		if (!IS_ERR(vol->root_ino))
1963			iput(vol->root_ino);
1964		ntfs_error(sb, "Failed to load root directory.");
1965		goto iput_logfile_err_out;
1966	}
1967#ifdef NTFS_RW
1968	/*
1969	 * Check if Windows is suspended to disk on the target volume.  If it
1970	 * is hibernated, we must not write *anything* to the disk so set
1971	 * NVolErrors() without setting the dirty volume flag and mount
1972	 * read-only.  This will prevent read-write remounting and it will also
1973	 * prevent all writes.
1974	 */
1975	err = check_windows_hibernation_status(vol);
1976	if (unlikely(err)) {
1977		static const char *es1a = "Failed to determine if Windows is "
1978				"hibernated";
1979		static const char *es1b = "Windows is hibernated";
1980		static const char *es2 = ".  Run chkdsk.";
1981		const char *es1;
1982
1983		es1 = err < 0 ? es1a : es1b;
1984		/* If a read-write mount, convert it to a read-only mount. */
1985		if (!(sb->s_flags & MS_RDONLY)) {
1986			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1987					ON_ERRORS_CONTINUE))) {
1988				ntfs_error(sb, "%s and neither on_errors="
1989						"continue nor on_errors="
1990						"remount-ro was specified%s",
1991						es1, es2);
1992				goto iput_root_err_out;
1993			}
1994			sb->s_flags |= MS_RDONLY;
1995			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1996		} else
1997			ntfs_warning(sb, "%s.  Will not be able to remount "
1998					"read-write%s", es1, es2);
1999		/* This will prevent a read-write remount. */
2000		NVolSetErrors(vol);
2001	}
2002	/* If (still) a read-write mount, mark the volume dirty. */
2003	if (!(sb->s_flags & MS_RDONLY) &&
2004			ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2005		static const char *es1 = "Failed to set dirty bit in volume "
2006				"information flags";
2007		static const char *es2 = ".  Run chkdsk.";
2008
2009		/* Convert to a read-only mount. */
2010		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2011				ON_ERRORS_CONTINUE))) {
2012			ntfs_error(sb, "%s and neither on_errors=continue nor "
2013					"on_errors=remount-ro was specified%s",
2014					es1, es2);
2015			goto iput_root_err_out;
2016		}
2017		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2018		sb->s_flags |= MS_RDONLY;
2019		/*
2020		 * Do not set NVolErrors() because ntfs_remount() might manage
2021		 * to set the dirty flag in which case all would be well.
2022		 */
2023	}
2024#if 0
2025	// TODO: Enable this code once we start modifying anything that is
2026	//	 different between NTFS 1.2 and 3.x...
2027	/*
2028	 * If (still) a read-write mount, set the NT4 compatibility flag on
2029	 * newer NTFS version volumes.
2030	 */
2031	if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2032			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2033		static const char *es1 = "Failed to set NT4 compatibility flag";
2034		static const char *es2 = ".  Run chkdsk.";
2035
2036		/* Convert to a read-only mount. */
2037		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2038				ON_ERRORS_CONTINUE))) {
2039			ntfs_error(sb, "%s and neither on_errors=continue nor "
2040					"on_errors=remount-ro was specified%s",
2041					es1, es2);
2042			goto iput_root_err_out;
2043		}
2044		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2045		sb->s_flags |= MS_RDONLY;
2046		NVolSetErrors(vol);
2047	}
2048#endif
2049	/* If (still) a read-write mount, empty the logfile. */
2050	if (!(sb->s_flags & MS_RDONLY) &&
2051			!ntfs_empty_logfile(vol->logfile_ino)) {
2052		static const char *es1 = "Failed to empty $LogFile";
2053		static const char *es2 = ".  Mount in Windows.";
2054
2055		/* Convert to a read-only mount. */
2056		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2057				ON_ERRORS_CONTINUE))) {
2058			ntfs_error(sb, "%s and neither on_errors=continue nor "
2059					"on_errors=remount-ro was specified%s",
2060					es1, es2);
2061			goto iput_root_err_out;
2062		}
2063		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2064		sb->s_flags |= MS_RDONLY;
2065		NVolSetErrors(vol);
2066	}
2067#endif /* NTFS_RW */
2068	/* If on NTFS versions before 3.0, we are done. */
2069	if (unlikely(vol->major_ver < 3))
2070		return true;
2071	/* NTFS 3.0+ specific initialization. */
2072	/* Get the security descriptors inode. */
2073	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2074	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2075		if (!IS_ERR(vol->secure_ino))
2076			iput(vol->secure_ino);
2077		ntfs_error(sb, "Failed to load $Secure.");
2078		goto iput_root_err_out;
2079	}
2080	// TODO: Initialize security.
2081	/* Get the extended system files' directory inode. */
2082	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2083	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
 
2084		if (!IS_ERR(vol->extend_ino))
2085			iput(vol->extend_ino);
2086		ntfs_error(sb, "Failed to load $Extend.");
2087		goto iput_sec_err_out;
2088	}
2089#ifdef NTFS_RW
2090	/* Find the quota file, load it if present, and set it up. */
2091	if (!load_and_init_quota(vol)) {
2092		static const char *es1 = "Failed to load $Quota";
2093		static const char *es2 = ".  Run chkdsk.";
2094
2095		/* If a read-write mount, convert it to a read-only mount. */
2096		if (!(sb->s_flags & MS_RDONLY)) {
2097			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2098					ON_ERRORS_CONTINUE))) {
2099				ntfs_error(sb, "%s and neither on_errors="
2100						"continue nor on_errors="
2101						"remount-ro was specified%s",
2102						es1, es2);
2103				goto iput_quota_err_out;
2104			}
2105			sb->s_flags |= MS_RDONLY;
2106			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2107		} else
2108			ntfs_warning(sb, "%s.  Will not be able to remount "
2109					"read-write%s", es1, es2);
2110		/* This will prevent a read-write remount. */
2111		NVolSetErrors(vol);
2112	}
2113	/* If (still) a read-write mount, mark the quotas out of date. */
2114	if (!(sb->s_flags & MS_RDONLY) &&
2115			!ntfs_mark_quotas_out_of_date(vol)) {
2116		static const char *es1 = "Failed to mark quotas out of date";
2117		static const char *es2 = ".  Run chkdsk.";
2118
2119		/* Convert to a read-only mount. */
2120		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2121				ON_ERRORS_CONTINUE))) {
2122			ntfs_error(sb, "%s and neither on_errors=continue nor "
2123					"on_errors=remount-ro was specified%s",
2124					es1, es2);
2125			goto iput_quota_err_out;
2126		}
2127		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2128		sb->s_flags |= MS_RDONLY;
2129		NVolSetErrors(vol);
2130	}
2131	/*
2132	 * Find the transaction log file ($UsnJrnl), load it if present, check
2133	 * it, and set it up.
2134	 */
2135	if (!load_and_init_usnjrnl(vol)) {
2136		static const char *es1 = "Failed to load $UsnJrnl";
2137		static const char *es2 = ".  Run chkdsk.";
2138
2139		/* If a read-write mount, convert it to a read-only mount. */
2140		if (!(sb->s_flags & MS_RDONLY)) {
2141			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2142					ON_ERRORS_CONTINUE))) {
2143				ntfs_error(sb, "%s and neither on_errors="
2144						"continue nor on_errors="
2145						"remount-ro was specified%s",
2146						es1, es2);
2147				goto iput_usnjrnl_err_out;
2148			}
2149			sb->s_flags |= MS_RDONLY;
2150			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2151		} else
2152			ntfs_warning(sb, "%s.  Will not be able to remount "
2153					"read-write%s", es1, es2);
2154		/* This will prevent a read-write remount. */
2155		NVolSetErrors(vol);
2156	}
2157	/* If (still) a read-write mount, stamp the transaction log. */
2158	if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2159		static const char *es1 = "Failed to stamp transaction log "
2160				"($UsnJrnl)";
2161		static const char *es2 = ".  Run chkdsk.";
2162
2163		/* Convert to a read-only mount. */
2164		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2165				ON_ERRORS_CONTINUE))) {
2166			ntfs_error(sb, "%s and neither on_errors=continue nor "
2167					"on_errors=remount-ro was specified%s",
2168					es1, es2);
2169			goto iput_usnjrnl_err_out;
2170		}
2171		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2172		sb->s_flags |= MS_RDONLY;
2173		NVolSetErrors(vol);
2174	}
2175#endif /* NTFS_RW */
2176	return true;
2177#ifdef NTFS_RW
2178iput_usnjrnl_err_out:
2179	if (vol->usnjrnl_j_ino)
2180		iput(vol->usnjrnl_j_ino);
2181	if (vol->usnjrnl_max_ino)
2182		iput(vol->usnjrnl_max_ino);
2183	if (vol->usnjrnl_ino)
2184		iput(vol->usnjrnl_ino);
2185iput_quota_err_out:
2186	if (vol->quota_q_ino)
2187		iput(vol->quota_q_ino);
2188	if (vol->quota_ino)
2189		iput(vol->quota_ino);
2190	iput(vol->extend_ino);
2191#endif /* NTFS_RW */
2192iput_sec_err_out:
2193	iput(vol->secure_ino);
2194iput_root_err_out:
2195	iput(vol->root_ino);
2196iput_logfile_err_out:
2197#ifdef NTFS_RW
2198	if (vol->logfile_ino)
2199		iput(vol->logfile_ino);
2200iput_vol_err_out:
2201#endif /* NTFS_RW */
2202	iput(vol->vol_ino);
2203iput_lcnbmp_err_out:
2204	iput(vol->lcnbmp_ino);
2205iput_attrdef_err_out:
2206	vol->attrdef_size = 0;
2207	if (vol->attrdef) {
2208		ntfs_free(vol->attrdef);
2209		vol->attrdef = NULL;
2210	}
2211#ifdef NTFS_RW
2212iput_upcase_err_out:
2213#endif /* NTFS_RW */
2214	vol->upcase_len = 0;
2215	mutex_lock(&ntfs_lock);
2216	if (vol->upcase == default_upcase) {
2217		ntfs_nr_upcase_users--;
2218		vol->upcase = NULL;
2219	}
2220	mutex_unlock(&ntfs_lock);
2221	if (vol->upcase) {
2222		ntfs_free(vol->upcase);
2223		vol->upcase = NULL;
2224	}
2225iput_mftbmp_err_out:
2226	iput(vol->mftbmp_ino);
2227iput_mirr_err_out:
2228#ifdef NTFS_RW
2229	if (vol->mftmirr_ino)
2230		iput(vol->mftmirr_ino);
2231#endif /* NTFS_RW */
2232	return false;
2233}
2234
2235/**
2236 * ntfs_put_super - called by the vfs to unmount a volume
2237 * @sb:		vfs superblock of volume to unmount
2238 *
2239 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2240 * the volume is being unmounted (umount system call has been invoked) and it
2241 * releases all inodes and memory belonging to the NTFS specific part of the
2242 * super block.
2243 */
2244static void ntfs_put_super(struct super_block *sb)
2245{
2246	ntfs_volume *vol = NTFS_SB(sb);
2247
2248	ntfs_debug("Entering.");
2249
2250#ifdef NTFS_RW
2251	/*
2252	 * Commit all inodes while they are still open in case some of them
2253	 * cause others to be dirtied.
2254	 */
2255	ntfs_commit_inode(vol->vol_ino);
2256
2257	/* NTFS 3.0+ specific. */
2258	if (vol->major_ver >= 3) {
2259		if (vol->usnjrnl_j_ino)
2260			ntfs_commit_inode(vol->usnjrnl_j_ino);
2261		if (vol->usnjrnl_max_ino)
2262			ntfs_commit_inode(vol->usnjrnl_max_ino);
2263		if (vol->usnjrnl_ino)
2264			ntfs_commit_inode(vol->usnjrnl_ino);
2265		if (vol->quota_q_ino)
2266			ntfs_commit_inode(vol->quota_q_ino);
2267		if (vol->quota_ino)
2268			ntfs_commit_inode(vol->quota_ino);
2269		if (vol->extend_ino)
2270			ntfs_commit_inode(vol->extend_ino);
2271		if (vol->secure_ino)
2272			ntfs_commit_inode(vol->secure_ino);
2273	}
2274
2275	ntfs_commit_inode(vol->root_ino);
2276
2277	down_write(&vol->lcnbmp_lock);
2278	ntfs_commit_inode(vol->lcnbmp_ino);
2279	up_write(&vol->lcnbmp_lock);
2280
2281	down_write(&vol->mftbmp_lock);
2282	ntfs_commit_inode(vol->mftbmp_ino);
2283	up_write(&vol->mftbmp_lock);
2284
2285	if (vol->logfile_ino)
2286		ntfs_commit_inode(vol->logfile_ino);
2287
2288	if (vol->mftmirr_ino)
2289		ntfs_commit_inode(vol->mftmirr_ino);
2290	ntfs_commit_inode(vol->mft_ino);
2291
2292	/*
2293	 * If a read-write mount and no volume errors have occurred, mark the
2294	 * volume clean.  Also, re-commit all affected inodes.
2295	 */
2296	if (!(sb->s_flags & MS_RDONLY)) {
2297		if (!NVolErrors(vol)) {
2298			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2299				ntfs_warning(sb, "Failed to clear dirty bit "
2300						"in volume information "
2301						"flags.  Run chkdsk.");
2302			ntfs_commit_inode(vol->vol_ino);
2303			ntfs_commit_inode(vol->root_ino);
2304			if (vol->mftmirr_ino)
2305				ntfs_commit_inode(vol->mftmirr_ino);
2306			ntfs_commit_inode(vol->mft_ino);
2307		} else {
2308			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2309					"marked dirty.  Run chkdsk.");
2310		}
2311	}
2312#endif /* NTFS_RW */
2313
2314	iput(vol->vol_ino);
2315	vol->vol_ino = NULL;
2316
2317	/* NTFS 3.0+ specific clean up. */
2318	if (vol->major_ver >= 3) {
2319#ifdef NTFS_RW
2320		if (vol->usnjrnl_j_ino) {
2321			iput(vol->usnjrnl_j_ino);
2322			vol->usnjrnl_j_ino = NULL;
2323		}
2324		if (vol->usnjrnl_max_ino) {
2325			iput(vol->usnjrnl_max_ino);
2326			vol->usnjrnl_max_ino = NULL;
2327		}
2328		if (vol->usnjrnl_ino) {
2329			iput(vol->usnjrnl_ino);
2330			vol->usnjrnl_ino = NULL;
2331		}
2332		if (vol->quota_q_ino) {
2333			iput(vol->quota_q_ino);
2334			vol->quota_q_ino = NULL;
2335		}
2336		if (vol->quota_ino) {
2337			iput(vol->quota_ino);
2338			vol->quota_ino = NULL;
2339		}
2340#endif /* NTFS_RW */
2341		if (vol->extend_ino) {
2342			iput(vol->extend_ino);
2343			vol->extend_ino = NULL;
2344		}
2345		if (vol->secure_ino) {
2346			iput(vol->secure_ino);
2347			vol->secure_ino = NULL;
2348		}
2349	}
2350
2351	iput(vol->root_ino);
2352	vol->root_ino = NULL;
2353
2354	down_write(&vol->lcnbmp_lock);
2355	iput(vol->lcnbmp_ino);
2356	vol->lcnbmp_ino = NULL;
2357	up_write(&vol->lcnbmp_lock);
2358
2359	down_write(&vol->mftbmp_lock);
2360	iput(vol->mftbmp_ino);
2361	vol->mftbmp_ino = NULL;
2362	up_write(&vol->mftbmp_lock);
2363
2364#ifdef NTFS_RW
2365	if (vol->logfile_ino) {
2366		iput(vol->logfile_ino);
2367		vol->logfile_ino = NULL;
2368	}
2369	if (vol->mftmirr_ino) {
2370		/* Re-commit the mft mirror and mft just in case. */
2371		ntfs_commit_inode(vol->mftmirr_ino);
2372		ntfs_commit_inode(vol->mft_ino);
2373		iput(vol->mftmirr_ino);
2374		vol->mftmirr_ino = NULL;
2375	}
2376	/*
2377	 * We should have no dirty inodes left, due to
2378	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2379	 * the underlying mft records are written out and cleaned.
2380	 */
2381	ntfs_commit_inode(vol->mft_ino);
2382	write_inode_now(vol->mft_ino, 1);
2383#endif /* NTFS_RW */
2384
2385	iput(vol->mft_ino);
2386	vol->mft_ino = NULL;
2387
2388	/* Throw away the table of attribute definitions. */
2389	vol->attrdef_size = 0;
2390	if (vol->attrdef) {
2391		ntfs_free(vol->attrdef);
2392		vol->attrdef = NULL;
2393	}
2394	vol->upcase_len = 0;
2395	/*
2396	 * Destroy the global default upcase table if necessary.  Also decrease
2397	 * the number of upcase users if we are a user.
2398	 */
2399	mutex_lock(&ntfs_lock);
2400	if (vol->upcase == default_upcase) {
2401		ntfs_nr_upcase_users--;
2402		vol->upcase = NULL;
2403	}
2404	if (!ntfs_nr_upcase_users && default_upcase) {
2405		ntfs_free(default_upcase);
2406		default_upcase = NULL;
2407	}
2408	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2409		free_compression_buffers();
2410	mutex_unlock(&ntfs_lock);
2411	if (vol->upcase) {
2412		ntfs_free(vol->upcase);
2413		vol->upcase = NULL;
2414	}
2415
2416	unload_nls(vol->nls_map);
2417
2418	sb->s_fs_info = NULL;
2419	kfree(vol);
2420}
2421
2422/**
2423 * get_nr_free_clusters - return the number of free clusters on a volume
2424 * @vol:	ntfs volume for which to obtain free cluster count
2425 *
2426 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2427 * actually calculate the number of clusters in use instead because this
2428 * allows us to not care about partial pages as these will be just zero filled
2429 * and hence not be counted as allocated clusters.
2430 *
2431 * The only particularity is that clusters beyond the end of the logical ntfs
2432 * volume will be marked as allocated to prevent errors which means we have to
2433 * discount those at the end. This is important as the cluster bitmap always
2434 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2435 * the logical volume and marked in use when they are not as they do not exist.
2436 *
2437 * If any pages cannot be read we assume all clusters in the erroring pages are
2438 * in use. This means we return an underestimate on errors which is better than
2439 * an overestimate.
2440 */
2441static s64 get_nr_free_clusters(ntfs_volume *vol)
2442{
2443	s64 nr_free = vol->nr_clusters;
2444	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2445	struct page *page;
2446	pgoff_t index, max_index;
2447
2448	ntfs_debug("Entering.");
2449	/* Serialize accesses to the cluster bitmap. */
2450	down_read(&vol->lcnbmp_lock);
2451	/*
2452	 * Convert the number of bits into bytes rounded up, then convert into
2453	 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2454	 * full and one partial page max_index = 2.
2455	 */
2456	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2457			PAGE_CACHE_SHIFT;
2458	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2459	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2460			max_index, PAGE_CACHE_SIZE / 4);
2461	for (index = 0; index < max_index; index++) {
2462		unsigned long *kaddr;
2463
2464		/*
2465		 * Read the page from page cache, getting it from backing store
2466		 * if necessary, and increment the use count.
2467		 */
2468		page = read_mapping_page(mapping, index, NULL);
2469		/* Ignore pages which errored synchronously. */
2470		if (IS_ERR(page)) {
2471			ntfs_debug("read_mapping_page() error. Skipping "
2472					"page (index 0x%lx).", index);
2473			nr_free -= PAGE_CACHE_SIZE * 8;
2474			continue;
2475		}
2476		kaddr = kmap_atomic(page);
2477		/*
2478		 * Subtract the number of set bits. If this
2479		 * is the last page and it is partial we don't really care as
2480		 * it just means we do a little extra work but it won't affect
2481		 * the result as all out of range bytes are set to zero by
2482		 * ntfs_readpage().
2483		 */
2484		nr_free -= bitmap_weight(kaddr,
2485					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2486		kunmap_atomic(kaddr);
2487		page_cache_release(page);
2488	}
2489	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2490	/*
2491	 * Fixup for eventual bits outside logical ntfs volume (see function
2492	 * description above).
2493	 */
2494	if (vol->nr_clusters & 63)
2495		nr_free += 64 - (vol->nr_clusters & 63);
2496	up_read(&vol->lcnbmp_lock);
2497	/* If errors occurred we may well have gone below zero, fix this. */
2498	if (nr_free < 0)
2499		nr_free = 0;
2500	ntfs_debug("Exiting.");
2501	return nr_free;
2502}
2503
2504/**
2505 * __get_nr_free_mft_records - return the number of free inodes on a volume
2506 * @vol:	ntfs volume for which to obtain free inode count
2507 * @nr_free:	number of mft records in filesystem
2508 * @max_index:	maximum number of pages containing set bits
2509 *
2510 * Calculate the number of free mft records (inodes) on the mounted NTFS
2511 * volume @vol. We actually calculate the number of mft records in use instead
2512 * because this allows us to not care about partial pages as these will be just
2513 * zero filled and hence not be counted as allocated mft record.
2514 *
2515 * If any pages cannot be read we assume all mft records in the erroring pages
2516 * are in use. This means we return an underestimate on errors which is better
2517 * than an overestimate.
2518 *
2519 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2520 */
2521static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2522		s64 nr_free, const pgoff_t max_index)
2523{
2524	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2525	struct page *page;
2526	pgoff_t index;
2527
2528	ntfs_debug("Entering.");
2529	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2530	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2531			"0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2532	for (index = 0; index < max_index; index++) {
2533		unsigned long *kaddr;
2534
2535		/*
2536		 * Read the page from page cache, getting it from backing store
2537		 * if necessary, and increment the use count.
2538		 */
2539		page = read_mapping_page(mapping, index, NULL);
2540		/* Ignore pages which errored synchronously. */
2541		if (IS_ERR(page)) {
2542			ntfs_debug("read_mapping_page() error. Skipping "
2543					"page (index 0x%lx).", index);
2544			nr_free -= PAGE_CACHE_SIZE * 8;
2545			continue;
2546		}
2547		kaddr = kmap_atomic(page);
2548		/*
2549		 * Subtract the number of set bits. If this
2550		 * is the last page and it is partial we don't really care as
2551		 * it just means we do a little extra work but it won't affect
2552		 * the result as all out of range bytes are set to zero by
2553		 * ntfs_readpage().
2554		 */
2555		nr_free -= bitmap_weight(kaddr,
2556					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2557		kunmap_atomic(kaddr);
2558		page_cache_release(page);
2559	}
2560	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2561			index - 1);
2562	/* If errors occurred we may well have gone below zero, fix this. */
2563	if (nr_free < 0)
2564		nr_free = 0;
2565	ntfs_debug("Exiting.");
2566	return nr_free;
2567}
2568
2569/**
2570 * ntfs_statfs - return information about mounted NTFS volume
2571 * @dentry:	dentry from mounted volume
2572 * @sfs:	statfs structure in which to return the information
2573 *
2574 * Return information about the mounted NTFS volume @dentry in the statfs structure
2575 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2576 * called). We interpret the values to be correct of the moment in time at
2577 * which we are called. Most values are variable otherwise and this isn't just
2578 * the free values but the totals as well. For example we can increase the
2579 * total number of file nodes if we run out and we can keep doing this until
2580 * there is no more space on the volume left at all.
2581 *
2582 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2583 * ustat system calls.
2584 *
2585 * Return 0 on success or -errno on error.
2586 */
2587static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2588{
2589	struct super_block *sb = dentry->d_sb;
2590	s64 size;
2591	ntfs_volume *vol = NTFS_SB(sb);
2592	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2593	pgoff_t max_index;
2594	unsigned long flags;
2595
2596	ntfs_debug("Entering.");
2597	/* Type of filesystem. */
2598	sfs->f_type   = NTFS_SB_MAGIC;
2599	/* Optimal transfer block size. */
2600	sfs->f_bsize  = PAGE_CACHE_SIZE;
2601	/*
2602	 * Total data blocks in filesystem in units of f_bsize and since
2603	 * inodes are also stored in data blocs ($MFT is a file) this is just
2604	 * the total clusters.
2605	 */
2606	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2607				PAGE_CACHE_SHIFT;
2608	/* Free data blocks in filesystem in units of f_bsize. */
2609	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2610				PAGE_CACHE_SHIFT;
2611	if (size < 0LL)
2612		size = 0LL;
2613	/* Free blocks avail to non-superuser, same as above on NTFS. */
2614	sfs->f_bavail = sfs->f_bfree = size;
2615	/* Serialize accesses to the inode bitmap. */
2616	down_read(&vol->mftbmp_lock);
2617	read_lock_irqsave(&mft_ni->size_lock, flags);
2618	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2619	/*
2620	 * Convert the maximum number of set bits into bytes rounded up, then
2621	 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2622	 * have one full and one partial page max_index = 2.
2623	 */
2624	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2625			+ 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2626	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2627	/* Number of inodes in filesystem (at this point in time). */
2628	sfs->f_files = size;
2629	/* Free inodes in fs (based on current total count). */
2630	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2631	up_read(&vol->mftbmp_lock);
2632	/*
2633	 * File system id. This is extremely *nix flavour dependent and even
2634	 * within Linux itself all fs do their own thing. I interpret this to
2635	 * mean a unique id associated with the mounted fs and not the id
2636	 * associated with the filesystem driver, the latter is already given
2637	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2638	 * volume serial number splitting it into two 32-bit parts. We enter
2639	 * the least significant 32-bits in f_fsid[0] and the most significant
2640	 * 32-bits in f_fsid[1].
2641	 */
2642	sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2643	sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2644	/* Maximum length of filenames. */
2645	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2646	return 0;
2647}
2648
2649#ifdef NTFS_RW
2650static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2651{
2652	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2653}
2654#endif
2655
2656/**
2657 * The complete super operations.
2658 */
2659static const struct super_operations ntfs_sops = {
2660	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2661	.destroy_inode	= ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2662#ifdef NTFS_RW
2663	//.dirty_inode	= NULL,			/* VFS: Called from
2664	//					   __mark_inode_dirty(). */
2665	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2666						   disk. */
2667	//.drop_inode	= NULL,			/* VFS: Called just after the
2668	//					   inode reference count has
2669	//					   been decreased to zero.
2670	//					   NOTE: The inode lock is
2671	//					   held. See fs/inode.c::
2672	//					   generic_drop_inode(). */
2673	//.delete_inode	= NULL,			/* VFS: Delete inode from disk.
2674	//					   Called when i_count becomes
2675	//					   0 and i_nlink is also 0. */
2676	//.write_super	= NULL,			/* Flush dirty super block to
2677	//					   disk. */
2678	//.sync_fs	= NULL,			/* ? */
2679	//.write_super_lockfs	= NULL,		/* ? */
2680	//.unlockfs	= NULL,			/* ? */
2681#endif /* NTFS_RW */
2682	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2683	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2684	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2685	.evict_inode	= ntfs_evict_big_inode,	/* VFS: Called when an inode is
2686						   removed from memory. */
2687	//.umount_begin	= NULL,			/* Forced umount. */
2688	.show_options	= ntfs_show_options,	/* Show mount options in
2689						   proc. */
2690};
2691
2692/**
2693 * ntfs_fill_super - mount an ntfs filesystem
2694 * @sb:		super block of ntfs filesystem to mount
2695 * @opt:	string containing the mount options
2696 * @silent:	silence error output
2697 *
2698 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2699 * with the mount otions in @data with the NTFS filesystem.
2700 *
2701 * If @silent is true, remain silent even if errors are detected. This is used
2702 * during bootup, when the kernel tries to mount the root filesystem with all
2703 * registered filesystems one after the other until one succeeds. This implies
2704 * that all filesystems except the correct one will quite correctly and
2705 * expectedly return an error, but nobody wants to see error messages when in
2706 * fact this is what is supposed to happen.
2707 *
2708 * NOTE: @sb->s_flags contains the mount options flags.
2709 */
2710static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2711{
2712	ntfs_volume *vol;
2713	struct buffer_head *bh;
2714	struct inode *tmp_ino;
2715	int blocksize, result;
2716
2717	/*
2718	 * We do a pretty difficult piece of bootstrap by reading the
2719	 * MFT (and other metadata) from disk into memory. We'll only
2720	 * release this metadata during umount, so the locking patterns
2721	 * observed during bootstrap do not count. So turn off the
2722	 * observation of locking patterns (strictly for this context
2723	 * only) while mounting NTFS. [The validator is still active
2724	 * otherwise, even for this context: it will for example record
2725	 * lock class registrations.]
2726	 */
2727	lockdep_off();
2728	ntfs_debug("Entering.");
2729#ifndef NTFS_RW
2730	sb->s_flags |= MS_RDONLY;
2731#endif /* ! NTFS_RW */
2732	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2733	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2734	vol = NTFS_SB(sb);
2735	if (!vol) {
2736		if (!silent)
2737			ntfs_error(sb, "Allocation of NTFS volume structure "
2738					"failed. Aborting mount...");
2739		lockdep_on();
2740		return -ENOMEM;
2741	}
2742	/* Initialize ntfs_volume structure. */
2743	*vol = (ntfs_volume) {
2744		.sb = sb,
2745		/*
2746		 * Default is group and other don't have any access to files or
2747		 * directories while owner has full access. Further, files by
2748		 * default are not executable but directories are of course
2749		 * browseable.
2750		 */
2751		.fmask = 0177,
2752		.dmask = 0077,
2753	};
2754	init_rwsem(&vol->mftbmp_lock);
2755	init_rwsem(&vol->lcnbmp_lock);
2756
2757	/* By default, enable sparse support. */
2758	NVolSetSparseEnabled(vol);
2759
2760	/* Important to get the mount options dealt with now. */
2761	if (!parse_options(vol, (char*)opt))
2762		goto err_out_now;
2763
2764	/* We support sector sizes up to the PAGE_CACHE_SIZE. */
2765	if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2766		if (!silent)
2767			ntfs_error(sb, "Device has unsupported sector size "
2768					"(%i).  The maximum supported sector "
2769					"size on this architecture is %lu "
2770					"bytes.",
2771					bdev_logical_block_size(sb->s_bdev),
2772					PAGE_CACHE_SIZE);
2773		goto err_out_now;
2774	}
2775	/*
2776	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2777	 * sector size, whichever is bigger.
2778	 */
2779	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2780	if (blocksize < NTFS_BLOCK_SIZE) {
2781		if (!silent)
2782			ntfs_error(sb, "Unable to set device block size.");
2783		goto err_out_now;
2784	}
2785	BUG_ON(blocksize != sb->s_blocksize);
2786	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2787			blocksize, sb->s_blocksize_bits);
2788	/* Determine the size of the device in units of block_size bytes. */
2789	if (!i_size_read(sb->s_bdev->bd_inode)) {
 
2790		if (!silent)
2791			ntfs_error(sb, "Unable to determine device size.");
2792		goto err_out_now;
2793	}
2794	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2795			sb->s_blocksize_bits;
2796	/* Read the boot sector and return unlocked buffer head to it. */
2797	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2798		if (!silent)
2799			ntfs_error(sb, "Not an NTFS volume.");
2800		goto err_out_now;
2801	}
2802	/*
2803	 * Extract the data from the boot sector and setup the ntfs volume
2804	 * using it.
2805	 */
2806	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2807	brelse(bh);
2808	if (!result) {
2809		if (!silent)
2810			ntfs_error(sb, "Unsupported NTFS filesystem.");
2811		goto err_out_now;
2812	}
2813	/*
2814	 * If the boot sector indicates a sector size bigger than the current
2815	 * device block size, switch the device block size to the sector size.
2816	 * TODO: It may be possible to support this case even when the set
2817	 * below fails, we would just be breaking up the i/o for each sector
2818	 * into multiple blocks for i/o purposes but otherwise it should just
2819	 * work.  However it is safer to leave disabled until someone hits this
2820	 * error message and then we can get them to try it without the setting
2821	 * so we know for sure that it works.
2822	 */
2823	if (vol->sector_size > blocksize) {
2824		blocksize = sb_set_blocksize(sb, vol->sector_size);
2825		if (blocksize != vol->sector_size) {
2826			if (!silent)
2827				ntfs_error(sb, "Unable to set device block "
2828						"size to sector size (%i).",
2829						vol->sector_size);
2830			goto err_out_now;
2831		}
2832		BUG_ON(blocksize != sb->s_blocksize);
2833		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2834				sb->s_blocksize_bits;
2835		ntfs_debug("Changed device block size to %i bytes (block size "
2836				"bits %i) to match volume sector size.",
2837				blocksize, sb->s_blocksize_bits);
2838	}
2839	/* Initialize the cluster and mft allocators. */
2840	ntfs_setup_allocators(vol);
2841	/* Setup remaining fields in the super block. */
2842	sb->s_magic = NTFS_SB_MAGIC;
2843	/*
2844	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2845	 *	sb->s_maxbytes = ~0ULL >> 1;
2846	 * But the kernel uses a long as the page cache page index which on
2847	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2848	 * defined to the maximum the page cache page index can cope with
2849	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2850	 */
2851	sb->s_maxbytes = MAX_LFS_FILESIZE;
2852	/* Ntfs measures time in 100ns intervals. */
2853	sb->s_time_gran = 100;
2854	/*
2855	 * Now load the metadata required for the page cache and our address
2856	 * space operations to function. We do this by setting up a specialised
2857	 * read_inode method and then just calling the normal iget() to obtain
2858	 * the inode for $MFT which is sufficient to allow our normal inode
2859	 * operations and associated address space operations to function.
2860	 */
2861	sb->s_op = &ntfs_sops;
2862	tmp_ino = new_inode(sb);
2863	if (!tmp_ino) {
2864		if (!silent)
2865			ntfs_error(sb, "Failed to load essential metadata.");
2866		goto err_out_now;
2867	}
2868	tmp_ino->i_ino = FILE_MFT;
2869	insert_inode_hash(tmp_ino);
2870	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2871		if (!silent)
2872			ntfs_error(sb, "Failed to load essential metadata.");
2873		goto iput_tmp_ino_err_out_now;
2874	}
2875	mutex_lock(&ntfs_lock);
2876	/*
2877	 * The current mount is a compression user if the cluster size is
2878	 * less than or equal 4kiB.
2879	 */
2880	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2881		result = allocate_compression_buffers();
2882		if (result) {
2883			ntfs_error(NULL, "Failed to allocate buffers "
2884					"for compression engine.");
2885			ntfs_nr_compression_users--;
2886			mutex_unlock(&ntfs_lock);
2887			goto iput_tmp_ino_err_out_now;
2888		}
2889	}
2890	/*
2891	 * Generate the global default upcase table if necessary.  Also
2892	 * temporarily increment the number of upcase users to avoid race
2893	 * conditions with concurrent (u)mounts.
2894	 */
2895	if (!default_upcase)
2896		default_upcase = generate_default_upcase();
2897	ntfs_nr_upcase_users++;
2898	mutex_unlock(&ntfs_lock);
2899	/*
2900	 * From now on, ignore @silent parameter. If we fail below this line,
2901	 * it will be due to a corrupt fs or a system error, so we report it.
2902	 */
2903	/*
2904	 * Open the system files with normal access functions and complete
2905	 * setting up the ntfs super block.
2906	 */
2907	if (!load_system_files(vol)) {
2908		ntfs_error(sb, "Failed to load system files.");
2909		goto unl_upcase_iput_tmp_ino_err_out_now;
2910	}
2911
2912	/* We grab a reference, simulating an ntfs_iget(). */
2913	ihold(vol->root_ino);
2914	if ((sb->s_root = d_make_root(vol->root_ino))) {
2915		ntfs_debug("Exiting, status successful.");
2916		/* Release the default upcase if it has no users. */
2917		mutex_lock(&ntfs_lock);
2918		if (!--ntfs_nr_upcase_users && default_upcase) {
2919			ntfs_free(default_upcase);
2920			default_upcase = NULL;
2921		}
2922		mutex_unlock(&ntfs_lock);
2923		sb->s_export_op = &ntfs_export_ops;
2924		lockdep_on();
2925		return 0;
2926	}
2927	ntfs_error(sb, "Failed to allocate root directory.");
2928	/* Clean up after the successful load_system_files() call from above. */
2929	// TODO: Use ntfs_put_super() instead of repeating all this code...
2930	// FIXME: Should mark the volume clean as the error is most likely
2931	// 	  -ENOMEM.
2932	iput(vol->vol_ino);
2933	vol->vol_ino = NULL;
2934	/* NTFS 3.0+ specific clean up. */
2935	if (vol->major_ver >= 3) {
2936#ifdef NTFS_RW
2937		if (vol->usnjrnl_j_ino) {
2938			iput(vol->usnjrnl_j_ino);
2939			vol->usnjrnl_j_ino = NULL;
2940		}
2941		if (vol->usnjrnl_max_ino) {
2942			iput(vol->usnjrnl_max_ino);
2943			vol->usnjrnl_max_ino = NULL;
2944		}
2945		if (vol->usnjrnl_ino) {
2946			iput(vol->usnjrnl_ino);
2947			vol->usnjrnl_ino = NULL;
2948		}
2949		if (vol->quota_q_ino) {
2950			iput(vol->quota_q_ino);
2951			vol->quota_q_ino = NULL;
2952		}
2953		if (vol->quota_ino) {
2954			iput(vol->quota_ino);
2955			vol->quota_ino = NULL;
2956		}
2957#endif /* NTFS_RW */
2958		if (vol->extend_ino) {
2959			iput(vol->extend_ino);
2960			vol->extend_ino = NULL;
2961		}
2962		if (vol->secure_ino) {
2963			iput(vol->secure_ino);
2964			vol->secure_ino = NULL;
2965		}
2966	}
2967	iput(vol->root_ino);
2968	vol->root_ino = NULL;
2969	iput(vol->lcnbmp_ino);
2970	vol->lcnbmp_ino = NULL;
2971	iput(vol->mftbmp_ino);
2972	vol->mftbmp_ino = NULL;
2973#ifdef NTFS_RW
2974	if (vol->logfile_ino) {
2975		iput(vol->logfile_ino);
2976		vol->logfile_ino = NULL;
2977	}
2978	if (vol->mftmirr_ino) {
2979		iput(vol->mftmirr_ino);
2980		vol->mftmirr_ino = NULL;
2981	}
2982#endif /* NTFS_RW */
2983	/* Throw away the table of attribute definitions. */
2984	vol->attrdef_size = 0;
2985	if (vol->attrdef) {
2986		ntfs_free(vol->attrdef);
2987		vol->attrdef = NULL;
2988	}
2989	vol->upcase_len = 0;
2990	mutex_lock(&ntfs_lock);
2991	if (vol->upcase == default_upcase) {
2992		ntfs_nr_upcase_users--;
2993		vol->upcase = NULL;
2994	}
2995	mutex_unlock(&ntfs_lock);
2996	if (vol->upcase) {
2997		ntfs_free(vol->upcase);
2998		vol->upcase = NULL;
2999	}
3000	if (vol->nls_map) {
3001		unload_nls(vol->nls_map);
3002		vol->nls_map = NULL;
3003	}
3004	/* Error exit code path. */
3005unl_upcase_iput_tmp_ino_err_out_now:
3006	/*
3007	 * Decrease the number of upcase users and destroy the global default
3008	 * upcase table if necessary.
3009	 */
3010	mutex_lock(&ntfs_lock);
3011	if (!--ntfs_nr_upcase_users && default_upcase) {
3012		ntfs_free(default_upcase);
3013		default_upcase = NULL;
3014	}
3015	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3016		free_compression_buffers();
3017	mutex_unlock(&ntfs_lock);
3018iput_tmp_ino_err_out_now:
3019	iput(tmp_ino);
3020	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3021		iput(vol->mft_ino);
3022	vol->mft_ino = NULL;
3023	/* Errors at this stage are irrelevant. */
3024err_out_now:
3025	sb->s_fs_info = NULL;
3026	kfree(vol);
3027	ntfs_debug("Failed, returning -EINVAL.");
3028	lockdep_on();
3029	return -EINVAL;
3030}
3031
3032/*
3033 * This is a slab cache to optimize allocations and deallocations of Unicode
3034 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3035 * (255) Unicode characters + a terminating NULL Unicode character.
3036 */
3037struct kmem_cache *ntfs_name_cache;
3038
3039/* Slab caches for efficient allocation/deallocation of inodes. */
3040struct kmem_cache *ntfs_inode_cache;
3041struct kmem_cache *ntfs_big_inode_cache;
3042
3043/* Init once constructor for the inode slab cache. */
3044static void ntfs_big_inode_init_once(void *foo)
3045{
3046	ntfs_inode *ni = (ntfs_inode *)foo;
3047
3048	inode_init_once(VFS_I(ni));
3049}
3050
3051/*
3052 * Slab caches to optimize allocations and deallocations of attribute search
3053 * contexts and index contexts, respectively.
3054 */
3055struct kmem_cache *ntfs_attr_ctx_cache;
3056struct kmem_cache *ntfs_index_ctx_cache;
3057
3058/* Driver wide mutex. */
3059DEFINE_MUTEX(ntfs_lock);
3060
3061static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3062	int flags, const char *dev_name, void *data)
3063{
3064	return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3065}
3066
3067static struct file_system_type ntfs_fs_type = {
3068	.owner		= THIS_MODULE,
3069	.name		= "ntfs",
3070	.mount		= ntfs_mount,
3071	.kill_sb	= kill_block_super,
3072	.fs_flags	= FS_REQUIRES_DEV,
3073};
 
3074
3075/* Stable names for the slab caches. */
3076static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3077static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3078static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3079static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3080static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3081
3082static int __init init_ntfs_fs(void)
3083{
3084	int err = 0;
3085
3086	/* This may be ugly but it results in pretty output so who cares. (-8 */
3087	printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3088#ifdef NTFS_RW
3089			"W"
3090#else
3091			"O"
3092#endif
3093#ifdef DEBUG
3094			" DEBUG"
3095#endif
3096#ifdef MODULE
3097			" MODULE"
3098#endif
3099			"].\n");
3100
3101	ntfs_debug("Debug messages are enabled.");
3102
3103	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3104			sizeof(ntfs_index_context), 0 /* offset */,
3105			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3106	if (!ntfs_index_ctx_cache) {
3107		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3108				ntfs_index_ctx_cache_name);
3109		goto ictx_err_out;
3110	}
3111	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3112			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3113			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3114	if (!ntfs_attr_ctx_cache) {
3115		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3116				ntfs_attr_ctx_cache_name);
3117		goto actx_err_out;
3118	}
3119
3120	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3121			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3122			SLAB_HWCACHE_ALIGN, NULL);
3123	if (!ntfs_name_cache) {
3124		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3125				ntfs_name_cache_name);
3126		goto name_err_out;
3127	}
3128
3129	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3130			sizeof(ntfs_inode), 0,
3131			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3132	if (!ntfs_inode_cache) {
3133		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3134				ntfs_inode_cache_name);
3135		goto inode_err_out;
3136	}
3137
3138	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3139			sizeof(big_ntfs_inode), 0,
3140			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3141			ntfs_big_inode_init_once);
3142	if (!ntfs_big_inode_cache) {
3143		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3144				ntfs_big_inode_cache_name);
3145		goto big_inode_err_out;
3146	}
3147
3148	/* Register the ntfs sysctls. */
3149	err = ntfs_sysctl(1);
3150	if (err) {
3151		printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3152		goto sysctl_err_out;
3153	}
3154
3155	err = register_filesystem(&ntfs_fs_type);
3156	if (!err) {
3157		ntfs_debug("NTFS driver registered successfully.");
3158		return 0; /* Success! */
3159	}
3160	printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3161
3162	/* Unregister the ntfs sysctls. */
3163	ntfs_sysctl(0);
3164sysctl_err_out:
3165	kmem_cache_destroy(ntfs_big_inode_cache);
3166big_inode_err_out:
3167	kmem_cache_destroy(ntfs_inode_cache);
3168inode_err_out:
3169	kmem_cache_destroy(ntfs_name_cache);
3170name_err_out:
3171	kmem_cache_destroy(ntfs_attr_ctx_cache);
3172actx_err_out:
3173	kmem_cache_destroy(ntfs_index_ctx_cache);
3174ictx_err_out:
3175	if (!err) {
3176		printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3177				"registration...\n");
3178		err = -ENOMEM;
3179	}
3180	return err;
3181}
3182
3183static void __exit exit_ntfs_fs(void)
3184{
3185	ntfs_debug("Unregistering NTFS driver.");
3186
3187	unregister_filesystem(&ntfs_fs_type);
 
 
 
 
 
 
3188	kmem_cache_destroy(ntfs_big_inode_cache);
3189	kmem_cache_destroy(ntfs_inode_cache);
3190	kmem_cache_destroy(ntfs_name_cache);
3191	kmem_cache_destroy(ntfs_attr_ctx_cache);
3192	kmem_cache_destroy(ntfs_index_ctx_cache);
3193	/* Unregister the ntfs sysctls. */
3194	ntfs_sysctl(0);
3195}
3196
3197MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3198MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.");
3199MODULE_VERSION(NTFS_VERSION);
3200MODULE_LICENSE("GPL");
3201#ifdef DEBUG
3202module_param(debug_msgs, bint, 0);
3203MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3204#endif
3205
3206module_init(init_ntfs_fs)
3207module_exit(exit_ntfs_fs)
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
   4 *
   5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   6 * Copyright (c) 2001,2002 Richard Russon
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/stddef.h>
  11#include <linux/init.h>
  12#include <linux/slab.h>
  13#include <linux/string.h>
  14#include <linux/spinlock.h>
  15#include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
  16#include <linux/backing-dev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/vfs.h>
  19#include <linux/moduleparam.h>
  20#include <linux/bitmap.h>
  21
  22#include "sysctl.h"
  23#include "logfile.h"
  24#include "quota.h"
  25#include "usnjrnl.h"
  26#include "dir.h"
  27#include "debug.h"
  28#include "index.h"
  29#include "inode.h"
  30#include "aops.h"
  31#include "layout.h"
  32#include "malloc.h"
  33#include "ntfs.h"
  34
  35/* Number of mounted filesystems which have compression enabled. */
  36static unsigned long ntfs_nr_compression_users;
  37
  38/* A global default upcase table and a corresponding reference count. */
  39static ntfschar *default_upcase;
  40static unsigned long ntfs_nr_upcase_users;
  41
  42/* Error constants/strings used in inode.c::ntfs_show_options(). */
  43typedef enum {
  44	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
  45	ON_ERRORS_PANIC			= 0x01,
  46	ON_ERRORS_REMOUNT_RO		= 0x02,
  47	ON_ERRORS_CONTINUE		= 0x04,
  48	/* Optional, can be combined with any of the above. */
  49	ON_ERRORS_RECOVER		= 0x10,
  50} ON_ERRORS_ACTIONS;
  51
  52const option_t on_errors_arr[] = {
  53	{ ON_ERRORS_PANIC,	"panic" },
  54	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
  55	{ ON_ERRORS_CONTINUE,	"continue", },
  56	{ ON_ERRORS_RECOVER,	"recover" },
  57	{ 0,			NULL }
  58};
  59
  60/**
  61 * simple_getbool - convert input string to a boolean value
  62 * @s: input string to convert
  63 * @setval: where to store the output boolean value
  64 *
  65 * Copied from old ntfs driver (which copied from vfat driver).
  66 *
  67 * "1", "yes", "true", or an empty string are converted to %true.
  68 * "0", "no", and "false" are converted to %false.
  69 *
  70 * Return: %1 if the string is converted or was empty and *setval contains it;
  71 *	   %0 if the string was not valid.
  72 */
  73static int simple_getbool(char *s, bool *setval)
  74{
  75	if (s) {
  76		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
  77			*setval = true;
  78		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
  79							!strcmp(s, "false"))
  80			*setval = false;
  81		else
  82			return 0;
  83	} else
  84		*setval = true;
  85	return 1;
  86}
  87
  88/**
  89 * parse_options - parse the (re)mount options
  90 * @vol:	ntfs volume
  91 * @opt:	string containing the (re)mount options
  92 *
  93 * Parse the recognized options in @opt for the ntfs volume described by @vol.
  94 */
  95static bool parse_options(ntfs_volume *vol, char *opt)
  96{
  97	char *p, *v, *ov;
  98	static char *utf8 = "utf8";
  99	int errors = 0, sloppy = 0;
 100	kuid_t uid = INVALID_UID;
 101	kgid_t gid = INVALID_GID;
 102	umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
 103	int mft_zone_multiplier = -1, on_errors = -1;
 104	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
 105	struct nls_table *nls_map = NULL, *old_nls;
 106
 107	/* I am lazy... (-8 */
 108#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
 109	if (!strcmp(p, option)) {					\
 110		if (!v || !*v)						\
 111			variable = default_value;			\
 112		else {							\
 113			variable = simple_strtoul(ov = v, &v, 0);	\
 114			if (*v)						\
 115				goto needs_val;				\
 116		}							\
 117	}
 118#define NTFS_GETOPT(option, variable)					\
 119	if (!strcmp(p, option)) {					\
 120		if (!v || !*v)						\
 121			goto needs_arg;					\
 122		variable = simple_strtoul(ov = v, &v, 0);		\
 123		if (*v)							\
 124			goto needs_val;					\
 125	}
 126#define NTFS_GETOPT_UID(option, variable)				\
 127	if (!strcmp(p, option)) {					\
 128		uid_t uid_value;					\
 129		if (!v || !*v)						\
 130			goto needs_arg;					\
 131		uid_value = simple_strtoul(ov = v, &v, 0);		\
 132		if (*v)							\
 133			goto needs_val;					\
 134		variable = make_kuid(current_user_ns(), uid_value);	\
 135		if (!uid_valid(variable))				\
 136			goto needs_val;					\
 137	}
 138#define NTFS_GETOPT_GID(option, variable)				\
 139	if (!strcmp(p, option)) {					\
 140		gid_t gid_value;					\
 141		if (!v || !*v)						\
 142			goto needs_arg;					\
 143		gid_value = simple_strtoul(ov = v, &v, 0);		\
 144		if (*v)							\
 145			goto needs_val;					\
 146		variable = make_kgid(current_user_ns(), gid_value);	\
 147		if (!gid_valid(variable))				\
 148			goto needs_val;					\
 149	}
 150#define NTFS_GETOPT_OCTAL(option, variable)				\
 151	if (!strcmp(p, option)) {					\
 152		if (!v || !*v)						\
 153			goto needs_arg;					\
 154		variable = simple_strtoul(ov = v, &v, 8);		\
 155		if (*v)							\
 156			goto needs_val;					\
 157	}
 158#define NTFS_GETOPT_BOOL(option, variable)				\
 159	if (!strcmp(p, option)) {					\
 160		bool val;						\
 161		if (!simple_getbool(v, &val))				\
 162			goto needs_bool;				\
 163		variable = val;						\
 164	}
 165#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
 166	if (!strcmp(p, option)) {					\
 167		int _i;							\
 168		if (!v || !*v)						\
 169			goto needs_arg;					\
 170		ov = v;							\
 171		if (variable == -1)					\
 172			variable = 0;					\
 173		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
 174			if (!strcmp(opt_array[_i].str, v)) {		\
 175				variable |= opt_array[_i].val;		\
 176				break;					\
 177			}						\
 178		if (!opt_array[_i].str || !*opt_array[_i].str)		\
 179			goto needs_val;					\
 180	}
 181	if (!opt || !*opt)
 182		goto no_mount_options;
 183	ntfs_debug("Entering with mount options string: %s", opt);
 184	while ((p = strsep(&opt, ","))) {
 185		if ((v = strchr(p, '=')))
 186			*v++ = 0;
 187		NTFS_GETOPT_UID("uid", uid)
 188		else NTFS_GETOPT_GID("gid", gid)
 189		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
 190		else NTFS_GETOPT_OCTAL("fmask", fmask)
 191		else NTFS_GETOPT_OCTAL("dmask", dmask)
 192		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
 193		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
 194		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
 195		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
 196		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
 197		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
 198				on_errors_arr)
 199		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
 200			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
 201					p);
 202		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
 203			if (!strcmp(p, "iocharset"))
 204				ntfs_warning(vol->sb, "Option iocharset is "
 205						"deprecated. Please use "
 206						"option nls=<charsetname> in "
 207						"the future.");
 208			if (!v || !*v)
 209				goto needs_arg;
 210use_utf8:
 211			old_nls = nls_map;
 212			nls_map = load_nls(v);
 213			if (!nls_map) {
 214				if (!old_nls) {
 215					ntfs_error(vol->sb, "NLS character set "
 216							"%s not found.", v);
 217					return false;
 218				}
 219				ntfs_error(vol->sb, "NLS character set %s not "
 220						"found. Using previous one %s.",
 221						v, old_nls->charset);
 222				nls_map = old_nls;
 223			} else /* nls_map */ {
 224				unload_nls(old_nls);
 225			}
 226		} else if (!strcmp(p, "utf8")) {
 227			bool val = false;
 228			ntfs_warning(vol->sb, "Option utf8 is no longer "
 229				   "supported, using option nls=utf8. Please "
 230				   "use option nls=utf8 in the future and "
 231				   "make sure utf8 is compiled either as a "
 232				   "module or into the kernel.");
 233			if (!v || !*v)
 234				val = true;
 235			else if (!simple_getbool(v, &val))
 236				goto needs_bool;
 237			if (val) {
 238				v = utf8;
 239				goto use_utf8;
 240			}
 241		} else {
 242			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
 243			if (errors < INT_MAX)
 244				errors++;
 245		}
 246#undef NTFS_GETOPT_OPTIONS_ARRAY
 247#undef NTFS_GETOPT_BOOL
 248#undef NTFS_GETOPT
 249#undef NTFS_GETOPT_WITH_DEFAULT
 250	}
 251no_mount_options:
 252	if (errors && !sloppy)
 253		return false;
 254	if (sloppy)
 255		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
 256				"unrecognized mount option(s) and continuing.");
 257	/* Keep this first! */
 258	if (on_errors != -1) {
 259		if (!on_errors) {
 260			ntfs_error(vol->sb, "Invalid errors option argument "
 261					"or bug in options parser.");
 262			return false;
 263		}
 264	}
 265	if (nls_map) {
 266		if (vol->nls_map && vol->nls_map != nls_map) {
 267			ntfs_error(vol->sb, "Cannot change NLS character set "
 268					"on remount.");
 269			return false;
 270		} /* else (!vol->nls_map) */
 271		ntfs_debug("Using NLS character set %s.", nls_map->charset);
 272		vol->nls_map = nls_map;
 273	} else /* (!nls_map) */ {
 274		if (!vol->nls_map) {
 275			vol->nls_map = load_nls_default();
 276			if (!vol->nls_map) {
 277				ntfs_error(vol->sb, "Failed to load default "
 278						"NLS character set.");
 279				return false;
 280			}
 281			ntfs_debug("Using default NLS character set (%s).",
 282					vol->nls_map->charset);
 283		}
 284	}
 285	if (mft_zone_multiplier != -1) {
 286		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
 287				mft_zone_multiplier) {
 288			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
 289					"on remount.");
 290			return false;
 291		}
 292		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
 293			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
 294					"Using default value, i.e. 1.");
 295			mft_zone_multiplier = 1;
 296		}
 297		vol->mft_zone_multiplier = mft_zone_multiplier;
 298	}
 299	if (!vol->mft_zone_multiplier)
 300		vol->mft_zone_multiplier = 1;
 301	if (on_errors != -1)
 302		vol->on_errors = on_errors;
 303	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
 304		vol->on_errors |= ON_ERRORS_CONTINUE;
 305	if (uid_valid(uid))
 306		vol->uid = uid;
 307	if (gid_valid(gid))
 308		vol->gid = gid;
 309	if (fmask != (umode_t)-1)
 310		vol->fmask = fmask;
 311	if (dmask != (umode_t)-1)
 312		vol->dmask = dmask;
 313	if (show_sys_files != -1) {
 314		if (show_sys_files)
 315			NVolSetShowSystemFiles(vol);
 316		else
 317			NVolClearShowSystemFiles(vol);
 318	}
 319	if (case_sensitive != -1) {
 320		if (case_sensitive)
 321			NVolSetCaseSensitive(vol);
 322		else
 323			NVolClearCaseSensitive(vol);
 324	}
 325	if (disable_sparse != -1) {
 326		if (disable_sparse)
 327			NVolClearSparseEnabled(vol);
 328		else {
 329			if (!NVolSparseEnabled(vol) &&
 330					vol->major_ver && vol->major_ver < 3)
 331				ntfs_warning(vol->sb, "Not enabling sparse "
 332						"support due to NTFS volume "
 333						"version %i.%i (need at least "
 334						"version 3.0).", vol->major_ver,
 335						vol->minor_ver);
 336			else
 337				NVolSetSparseEnabled(vol);
 338		}
 339	}
 340	return true;
 341needs_arg:
 342	ntfs_error(vol->sb, "The %s option requires an argument.", p);
 343	return false;
 344needs_bool:
 345	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
 346	return false;
 347needs_val:
 348	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
 349	return false;
 350}
 351
 352#ifdef NTFS_RW
 353
 354/**
 355 * ntfs_write_volume_flags - write new flags to the volume information flags
 356 * @vol:	ntfs volume on which to modify the flags
 357 * @flags:	new flags value for the volume information flags
 358 *
 359 * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
 360 * instead (see below).
 361 *
 362 * Replace the volume information flags on the volume @vol with the value
 363 * supplied in @flags.  Note, this overwrites the volume information flags, so
 364 * make sure to combine the flags you want to modify with the old flags and use
 365 * the result when calling ntfs_write_volume_flags().
 366 *
 367 * Return 0 on success and -errno on error.
 368 */
 369static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
 370{
 371	ntfs_inode *ni = NTFS_I(vol->vol_ino);
 372	MFT_RECORD *m;
 373	VOLUME_INFORMATION *vi;
 374	ntfs_attr_search_ctx *ctx;
 375	int err;
 376
 377	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
 378			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
 379	if (vol->vol_flags == flags)
 380		goto done;
 381	BUG_ON(!ni);
 382	m = map_mft_record(ni);
 383	if (IS_ERR(m)) {
 384		err = PTR_ERR(m);
 385		goto err_out;
 386	}
 387	ctx = ntfs_attr_get_search_ctx(ni, m);
 388	if (!ctx) {
 389		err = -ENOMEM;
 390		goto put_unm_err_out;
 391	}
 392	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
 393			ctx);
 394	if (err)
 395		goto put_unm_err_out;
 396	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
 397			le16_to_cpu(ctx->attr->data.resident.value_offset));
 398	vol->vol_flags = vi->flags = flags;
 399	flush_dcache_mft_record_page(ctx->ntfs_ino);
 400	mark_mft_record_dirty(ctx->ntfs_ino);
 401	ntfs_attr_put_search_ctx(ctx);
 402	unmap_mft_record(ni);
 403done:
 404	ntfs_debug("Done.");
 405	return 0;
 406put_unm_err_out:
 407	if (ctx)
 408		ntfs_attr_put_search_ctx(ctx);
 409	unmap_mft_record(ni);
 410err_out:
 411	ntfs_error(vol->sb, "Failed with error code %i.", -err);
 412	return err;
 413}
 414
 415/**
 416 * ntfs_set_volume_flags - set bits in the volume information flags
 417 * @vol:	ntfs volume on which to modify the flags
 418 * @flags:	flags to set on the volume
 419 *
 420 * Set the bits in @flags in the volume information flags on the volume @vol.
 421 *
 422 * Return 0 on success and -errno on error.
 423 */
 424static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 425{
 426	flags &= VOLUME_FLAGS_MASK;
 427	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
 428}
 429
 430/**
 431 * ntfs_clear_volume_flags - clear bits in the volume information flags
 432 * @vol:	ntfs volume on which to modify the flags
 433 * @flags:	flags to clear on the volume
 434 *
 435 * Clear the bits in @flags in the volume information flags on the volume @vol.
 436 *
 437 * Return 0 on success and -errno on error.
 438 */
 439static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 440{
 441	flags &= VOLUME_FLAGS_MASK;
 442	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
 443	return ntfs_write_volume_flags(vol, flags);
 444}
 445
 446#endif /* NTFS_RW */
 447
 448/**
 449 * ntfs_remount - change the mount options of a mounted ntfs filesystem
 450 * @sb:		superblock of mounted ntfs filesystem
 451 * @flags:	remount flags
 452 * @opt:	remount options string
 453 *
 454 * Change the mount options of an already mounted ntfs filesystem.
 455 *
 456 * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
 457 * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
 458 * @sb->s_flags are not changed.
 459 */
 460static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
 461{
 462	ntfs_volume *vol = NTFS_SB(sb);
 463
 464	ntfs_debug("Entering with remount options string: %s", opt);
 465
 466	sync_filesystem(sb);
 467
 468#ifndef NTFS_RW
 469	/* For read-only compiled driver, enforce read-only flag. */
 470	*flags |= SB_RDONLY;
 471#else /* NTFS_RW */
 472	/*
 473	 * For the read-write compiled driver, if we are remounting read-write,
 474	 * make sure there are no volume errors and that no unsupported volume
 475	 * flags are set.  Also, empty the logfile journal as it would become
 476	 * stale as soon as something is written to the volume and mark the
 477	 * volume dirty so that chkdsk is run if the volume is not umounted
 478	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
 479	 * the volume on boot and updates them.
 480	 *
 481	 * When remounting read-only, mark the volume clean if no volume errors
 482	 * have occurred.
 483	 */
 484	if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) {
 485		static const char *es = ".  Cannot remount read-write.";
 486
 487		/* Remounting read-write. */
 488		if (NVolErrors(vol)) {
 489			ntfs_error(sb, "Volume has errors and is read-only%s",
 490					es);
 491			return -EROFS;
 492		}
 493		if (vol->vol_flags & VOLUME_IS_DIRTY) {
 494			ntfs_error(sb, "Volume is dirty and read-only%s", es);
 495			return -EROFS;
 496		}
 497		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
 498			ntfs_error(sb, "Volume has been modified by chkdsk "
 499					"and is read-only%s", es);
 500			return -EROFS;
 501		}
 502		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
 503			ntfs_error(sb, "Volume has unsupported flags set "
 504					"(0x%x) and is read-only%s",
 505					(unsigned)le16_to_cpu(vol->vol_flags),
 506					es);
 507			return -EROFS;
 508		}
 509		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
 510			ntfs_error(sb, "Failed to set dirty bit in volume "
 511					"information flags%s", es);
 512			return -EROFS;
 513		}
 514#if 0
 515		// TODO: Enable this code once we start modifying anything that
 516		//	 is different between NTFS 1.2 and 3.x...
 517		/* Set NT4 compatibility flag on newer NTFS version volumes. */
 518		if ((vol->major_ver > 1)) {
 519			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
 520				ntfs_error(sb, "Failed to set NT4 "
 521						"compatibility flag%s", es);
 522				NVolSetErrors(vol);
 523				return -EROFS;
 524			}
 525		}
 526#endif
 527		if (!ntfs_empty_logfile(vol->logfile_ino)) {
 528			ntfs_error(sb, "Failed to empty journal $LogFile%s",
 529					es);
 530			NVolSetErrors(vol);
 531			return -EROFS;
 532		}
 533		if (!ntfs_mark_quotas_out_of_date(vol)) {
 534			ntfs_error(sb, "Failed to mark quotas out of date%s",
 535					es);
 536			NVolSetErrors(vol);
 537			return -EROFS;
 538		}
 539		if (!ntfs_stamp_usnjrnl(vol)) {
 540			ntfs_error(sb, "Failed to stamp transaction log "
 541					"($UsnJrnl)%s", es);
 542			NVolSetErrors(vol);
 543			return -EROFS;
 544		}
 545	} else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) {
 546		/* Remounting read-only. */
 547		if (!NVolErrors(vol)) {
 548			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
 549				ntfs_warning(sb, "Failed to clear dirty bit "
 550						"in volume information "
 551						"flags.  Run chkdsk.");
 552		}
 553	}
 554#endif /* NTFS_RW */
 555
 556	// TODO: Deal with *flags.
 557
 558	if (!parse_options(vol, opt))
 559		return -EINVAL;
 560
 561	ntfs_debug("Done.");
 562	return 0;
 563}
 564
 565/**
 566 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
 567 * @sb:		Super block of the device to which @b belongs.
 568 * @b:		Boot sector of device @sb to check.
 569 * @silent:	If 'true', all output will be silenced.
 570 *
 571 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
 572 * sector. Returns 'true' if it is valid and 'false' if not.
 573 *
 574 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
 575 * is 'true'.
 576 */
 577static bool is_boot_sector_ntfs(const struct super_block *sb,
 578		const NTFS_BOOT_SECTOR *b, const bool silent)
 579{
 580	/*
 581	 * Check that checksum == sum of u32 values from b to the checksum
 582	 * field.  If checksum is zero, no checking is done.  We will work when
 583	 * the checksum test fails, since some utilities update the boot sector
 584	 * ignoring the checksum which leaves the checksum out-of-date.  We
 585	 * report a warning if this is the case.
 586	 */
 587	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
 588		le32 *u;
 589		u32 i;
 590
 591		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
 592			i += le32_to_cpup(u);
 593		if (le32_to_cpu(b->checksum) != i)
 594			ntfs_warning(sb, "Invalid boot sector checksum.");
 595	}
 596	/* Check OEMidentifier is "NTFS    " */
 597	if (b->oem_id != magicNTFS)
 598		goto not_ntfs;
 599	/* Check bytes per sector value is between 256 and 4096. */
 600	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
 601			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
 602		goto not_ntfs;
 603	/* Check sectors per cluster value is valid. */
 604	switch (b->bpb.sectors_per_cluster) {
 605	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
 606		break;
 607	default:
 608		goto not_ntfs;
 609	}
 610	/* Check the cluster size is not above the maximum (64kiB). */
 611	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
 612			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
 613		goto not_ntfs;
 614	/* Check reserved/unused fields are really zero. */
 615	if (le16_to_cpu(b->bpb.reserved_sectors) ||
 616			le16_to_cpu(b->bpb.root_entries) ||
 617			le16_to_cpu(b->bpb.sectors) ||
 618			le16_to_cpu(b->bpb.sectors_per_fat) ||
 619			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
 620		goto not_ntfs;
 621	/* Check clusters per file mft record value is valid. */
 622	if ((u8)b->clusters_per_mft_record < 0xe1 ||
 623			(u8)b->clusters_per_mft_record > 0xf7)
 624		switch (b->clusters_per_mft_record) {
 625		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 626			break;
 627		default:
 628			goto not_ntfs;
 629		}
 630	/* Check clusters per index block value is valid. */
 631	if ((u8)b->clusters_per_index_record < 0xe1 ||
 632			(u8)b->clusters_per_index_record > 0xf7)
 633		switch (b->clusters_per_index_record) {
 634		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 635			break;
 636		default:
 637			goto not_ntfs;
 638		}
 639	/*
 640	 * Check for valid end of sector marker. We will work without it, but
 641	 * many BIOSes will refuse to boot from a bootsector if the magic is
 642	 * incorrect, so we emit a warning.
 643	 */
 644	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
 645		ntfs_warning(sb, "Invalid end of sector marker.");
 646	return true;
 647not_ntfs:
 648	return false;
 649}
 650
 651/**
 652 * read_ntfs_boot_sector - read the NTFS boot sector of a device
 653 * @sb:		super block of device to read the boot sector from
 654 * @silent:	if true, suppress all output
 655 *
 656 * Reads the boot sector from the device and validates it. If that fails, tries
 657 * to read the backup boot sector, first from the end of the device a-la NT4 and
 658 * later and then from the middle of the device a-la NT3.51 and before.
 659 *
 660 * If a valid boot sector is found but it is not the primary boot sector, we
 661 * repair the primary boot sector silently (unless the device is read-only or
 662 * the primary boot sector is not accessible).
 663 *
 664 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
 665 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
 666 * to their respective values.
 667 *
 668 * Return the unlocked buffer head containing the boot sector or NULL on error.
 669 */
 670static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
 671		const int silent)
 672{
 673	const char *read_err_str = "Unable to read %s boot sector.";
 674	struct buffer_head *bh_primary, *bh_backup;
 675	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
 676
 677	/* Try to read primary boot sector. */
 678	if ((bh_primary = sb_bread(sb, 0))) {
 679		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 680				bh_primary->b_data, silent))
 681			return bh_primary;
 682		if (!silent)
 683			ntfs_error(sb, "Primary boot sector is invalid.");
 684	} else if (!silent)
 685		ntfs_error(sb, read_err_str, "primary");
 686	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
 687		if (bh_primary)
 688			brelse(bh_primary);
 689		if (!silent)
 690			ntfs_error(sb, "Mount option errors=recover not used. "
 691					"Aborting without trying to recover.");
 692		return NULL;
 693	}
 694	/* Try to read NT4+ backup boot sector. */
 695	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
 696		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 697				bh_backup->b_data, silent))
 698			goto hotfix_primary_boot_sector;
 699		brelse(bh_backup);
 700	} else if (!silent)
 701		ntfs_error(sb, read_err_str, "backup");
 702	/* Try to read NT3.51- backup boot sector. */
 703	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
 704		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 705				bh_backup->b_data, silent))
 706			goto hotfix_primary_boot_sector;
 707		if (!silent)
 708			ntfs_error(sb, "Could not find a valid backup boot "
 709					"sector.");
 710		brelse(bh_backup);
 711	} else if (!silent)
 712		ntfs_error(sb, read_err_str, "backup");
 713	/* We failed. Cleanup and return. */
 714	if (bh_primary)
 715		brelse(bh_primary);
 716	return NULL;
 717hotfix_primary_boot_sector:
 718	if (bh_primary) {
 719		/*
 720		 * If we managed to read sector zero and the volume is not
 721		 * read-only, copy the found, valid backup boot sector to the
 722		 * primary boot sector.  Note we only copy the actual boot
 723		 * sector structure, not the actual whole device sector as that
 724		 * may be bigger and would potentially damage the $Boot system
 725		 * file (FIXME: Would be nice to know if the backup boot sector
 726		 * on a large sector device contains the whole boot loader or
 727		 * just the first 512 bytes).
 728		 */
 729		if (!sb_rdonly(sb)) {
 730			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
 731					"boot sector from backup copy.");
 732			memcpy(bh_primary->b_data, bh_backup->b_data,
 733					NTFS_BLOCK_SIZE);
 734			mark_buffer_dirty(bh_primary);
 735			sync_dirty_buffer(bh_primary);
 736			if (buffer_uptodate(bh_primary)) {
 737				brelse(bh_backup);
 738				return bh_primary;
 739			}
 740			ntfs_error(sb, "Hot-fix: Device write error while "
 741					"recovering primary boot sector.");
 742		} else {
 743			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
 744					"sector failed: Read-only mount.");
 745		}
 746		brelse(bh_primary);
 747	}
 748	ntfs_warning(sb, "Using backup boot sector.");
 749	return bh_backup;
 750}
 751
 752/**
 753 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
 754 * @vol:	volume structure to initialise with data from boot sector
 755 * @b:		boot sector to parse
 756 *
 757 * Parse the ntfs boot sector @b and store all imporant information therein in
 758 * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
 759 */
 760static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
 761{
 762	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
 763	int clusters_per_mft_record, clusters_per_index_record;
 764	s64 ll;
 765
 766	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
 767	vol->sector_size_bits = ffs(vol->sector_size) - 1;
 768	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
 769			vol->sector_size);
 770	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
 771			vol->sector_size_bits);
 772	if (vol->sector_size < vol->sb->s_blocksize) {
 773		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
 774				"device block size (%lu).  This is not "
 775				"supported.  Sorry.", vol->sector_size,
 776				vol->sb->s_blocksize);
 777		return false;
 778	}
 779	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
 780	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
 781	ntfs_debug("sectors_per_cluster_bits = 0x%x",
 782			sectors_per_cluster_bits);
 783	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
 784	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
 785	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
 786	vol->cluster_size_mask = vol->cluster_size - 1;
 787	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
 788	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
 789			vol->cluster_size);
 790	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
 791	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
 792	if (vol->cluster_size < vol->sector_size) {
 793		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
 794				"sector size (%i).  This is not supported.  "
 795				"Sorry.", vol->cluster_size, vol->sector_size);
 796		return false;
 797	}
 798	clusters_per_mft_record = b->clusters_per_mft_record;
 799	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
 800			clusters_per_mft_record, clusters_per_mft_record);
 801	if (clusters_per_mft_record > 0)
 802		vol->mft_record_size = vol->cluster_size <<
 803				(ffs(clusters_per_mft_record) - 1);
 804	else
 805		/*
 806		 * When mft_record_size < cluster_size, clusters_per_mft_record
 807		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
 808		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
 809		 */
 810		vol->mft_record_size = 1 << -clusters_per_mft_record;
 811	vol->mft_record_size_mask = vol->mft_record_size - 1;
 812	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
 813	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
 814			vol->mft_record_size);
 815	ntfs_debug("vol->mft_record_size_mask = 0x%x",
 816			vol->mft_record_size_mask);
 817	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
 818			vol->mft_record_size_bits, vol->mft_record_size_bits);
 819	/*
 820	 * We cannot support mft record sizes above the PAGE_SIZE since
 821	 * we store $MFT/$DATA, the table of mft records in the page cache.
 822	 */
 823	if (vol->mft_record_size > PAGE_SIZE) {
 824		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
 825				"PAGE_SIZE on your system (%lu).  "
 826				"This is not supported.  Sorry.",
 827				vol->mft_record_size, PAGE_SIZE);
 828		return false;
 829	}
 830	/* We cannot support mft record sizes below the sector size. */
 831	if (vol->mft_record_size < vol->sector_size) {
 832		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
 833				"sector size (%i).  This is not supported.  "
 834				"Sorry.", vol->mft_record_size,
 835				vol->sector_size);
 836		return false;
 837	}
 838	clusters_per_index_record = b->clusters_per_index_record;
 839	ntfs_debug("clusters_per_index_record = %i (0x%x)",
 840			clusters_per_index_record, clusters_per_index_record);
 841	if (clusters_per_index_record > 0)
 842		vol->index_record_size = vol->cluster_size <<
 843				(ffs(clusters_per_index_record) - 1);
 844	else
 845		/*
 846		 * When index_record_size < cluster_size,
 847		 * clusters_per_index_record = -log2(index_record_size) bytes.
 848		 * index_record_size normaly equals 4096 bytes, which is
 849		 * encoded as 0xF4 (-12 in decimal).
 850		 */
 851		vol->index_record_size = 1 << -clusters_per_index_record;
 852	vol->index_record_size_mask = vol->index_record_size - 1;
 853	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
 854	ntfs_debug("vol->index_record_size = %i (0x%x)",
 855			vol->index_record_size, vol->index_record_size);
 856	ntfs_debug("vol->index_record_size_mask = 0x%x",
 857			vol->index_record_size_mask);
 858	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
 859			vol->index_record_size_bits,
 860			vol->index_record_size_bits);
 861	/* We cannot support index record sizes below the sector size. */
 862	if (vol->index_record_size < vol->sector_size) {
 863		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
 864				"the sector size (%i).  This is not "
 865				"supported.  Sorry.", vol->index_record_size,
 866				vol->sector_size);
 867		return false;
 868	}
 869	/*
 870	 * Get the size of the volume in clusters and check for 64-bit-ness.
 871	 * Windows currently only uses 32 bits to save the clusters so we do
 872	 * the same as it is much faster on 32-bit CPUs.
 873	 */
 874	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
 875	if ((u64)ll >= 1ULL << 32) {
 876		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
 877		return false;
 878	}
 879	vol->nr_clusters = ll;
 880	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
 881	/*
 882	 * On an architecture where unsigned long is 32-bits, we restrict the
 883	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
 884	 * will hopefully optimize the whole check away.
 885	 */
 886	if (sizeof(unsigned long) < 8) {
 887		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
 888			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
 889					"large for this architecture.  "
 890					"Maximum supported is 2TiB.  Sorry.",
 891					(unsigned long long)ll >> (40 -
 892					vol->cluster_size_bits));
 893			return false;
 894		}
 895	}
 896	ll = sle64_to_cpu(b->mft_lcn);
 897	if (ll >= vol->nr_clusters) {
 898		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
 899				"volume.  Weird.", (unsigned long long)ll,
 900				(unsigned long long)ll);
 901		return false;
 902	}
 903	vol->mft_lcn = ll;
 904	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
 905	ll = sle64_to_cpu(b->mftmirr_lcn);
 906	if (ll >= vol->nr_clusters) {
 907		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
 908				"of volume.  Weird.", (unsigned long long)ll,
 909				(unsigned long long)ll);
 910		return false;
 911	}
 912	vol->mftmirr_lcn = ll;
 913	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
 914#ifdef NTFS_RW
 915	/*
 916	 * Work out the size of the mft mirror in number of mft records. If the
 917	 * cluster size is less than or equal to the size taken by four mft
 918	 * records, the mft mirror stores the first four mft records. If the
 919	 * cluster size is bigger than the size taken by four mft records, the
 920	 * mft mirror contains as many mft records as will fit into one
 921	 * cluster.
 922	 */
 923	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
 924		vol->mftmirr_size = 4;
 925	else
 926		vol->mftmirr_size = vol->cluster_size >>
 927				vol->mft_record_size_bits;
 928	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
 929#endif /* NTFS_RW */
 930	vol->serial_no = le64_to_cpu(b->volume_serial_number);
 931	ntfs_debug("vol->serial_no = 0x%llx",
 932			(unsigned long long)vol->serial_no);
 933	return true;
 934}
 935
 936/**
 937 * ntfs_setup_allocators - initialize the cluster and mft allocators
 938 * @vol:	volume structure for which to setup the allocators
 939 *
 940 * Setup the cluster (lcn) and mft allocators to the starting values.
 941 */
 942static void ntfs_setup_allocators(ntfs_volume *vol)
 943{
 944#ifdef NTFS_RW
 945	LCN mft_zone_size, mft_lcn;
 946#endif /* NTFS_RW */
 947
 948	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
 949			vol->mft_zone_multiplier);
 950#ifdef NTFS_RW
 951	/* Determine the size of the MFT zone. */
 952	mft_zone_size = vol->nr_clusters;
 953	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
 954	case 4:
 955		mft_zone_size >>= 1;			/* 50%   */
 956		break;
 957	case 3:
 958		mft_zone_size = (mft_zone_size +
 959				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
 960		break;
 961	case 2:
 962		mft_zone_size >>= 2;			/* 25%   */
 963		break;
 964	/* case 1: */
 965	default:
 966		mft_zone_size >>= 3;			/* 12.5% */
 967		break;
 968	}
 969	/* Setup the mft zone. */
 970	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
 971	ntfs_debug("vol->mft_zone_pos = 0x%llx",
 972			(unsigned long long)vol->mft_zone_pos);
 973	/*
 974	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
 975	 * source) and if the actual mft_lcn is in the expected place or even
 976	 * further to the front of the volume, extend the mft_zone to cover the
 977	 * beginning of the volume as well.  This is in order to protect the
 978	 * area reserved for the mft bitmap as well within the mft_zone itself.
 979	 * On non-standard volumes we do not protect it as the overhead would
 980	 * be higher than the speed increase we would get by doing it.
 981	 */
 982	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
 983	if (mft_lcn * vol->cluster_size < 16 * 1024)
 984		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
 985				vol->cluster_size;
 986	if (vol->mft_zone_start <= mft_lcn)
 987		vol->mft_zone_start = 0;
 988	ntfs_debug("vol->mft_zone_start = 0x%llx",
 989			(unsigned long long)vol->mft_zone_start);
 990	/*
 991	 * Need to cap the mft zone on non-standard volumes so that it does
 992	 * not point outside the boundaries of the volume.  We do this by
 993	 * halving the zone size until we are inside the volume.
 994	 */
 995	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
 996	while (vol->mft_zone_end >= vol->nr_clusters) {
 997		mft_zone_size >>= 1;
 998		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
 999	}
1000	ntfs_debug("vol->mft_zone_end = 0x%llx",
1001			(unsigned long long)vol->mft_zone_end);
1002	/*
1003	 * Set the current position within each data zone to the start of the
1004	 * respective zone.
1005	 */
1006	vol->data1_zone_pos = vol->mft_zone_end;
1007	ntfs_debug("vol->data1_zone_pos = 0x%llx",
1008			(unsigned long long)vol->data1_zone_pos);
1009	vol->data2_zone_pos = 0;
1010	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1011			(unsigned long long)vol->data2_zone_pos);
1012
1013	/* Set the mft data allocation position to mft record 24. */
1014	vol->mft_data_pos = 24;
1015	ntfs_debug("vol->mft_data_pos = 0x%llx",
1016			(unsigned long long)vol->mft_data_pos);
1017#endif /* NTFS_RW */
1018}
1019
1020#ifdef NTFS_RW
1021
1022/**
1023 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1024 * @vol:	ntfs super block describing device whose mft mirror to load
1025 *
1026 * Return 'true' on success or 'false' on error.
1027 */
1028static bool load_and_init_mft_mirror(ntfs_volume *vol)
1029{
1030	struct inode *tmp_ino;
1031	ntfs_inode *tmp_ni;
1032
1033	ntfs_debug("Entering.");
1034	/* Get mft mirror inode. */
1035	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1036	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1037		if (!IS_ERR(tmp_ino))
1038			iput(tmp_ino);
1039		/* Caller will display error message. */
1040		return false;
1041	}
1042	/*
1043	 * Re-initialize some specifics about $MFTMirr's inode as
1044	 * ntfs_read_inode() will have set up the default ones.
1045	 */
1046	/* Set uid and gid to root. */
1047	tmp_ino->i_uid = GLOBAL_ROOT_UID;
1048	tmp_ino->i_gid = GLOBAL_ROOT_GID;
1049	/* Regular file.  No access for anyone. */
1050	tmp_ino->i_mode = S_IFREG;
1051	/* No VFS initiated operations allowed for $MFTMirr. */
1052	tmp_ino->i_op = &ntfs_empty_inode_ops;
1053	tmp_ino->i_fop = &ntfs_empty_file_ops;
1054	/* Put in our special address space operations. */
1055	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1056	tmp_ni = NTFS_I(tmp_ino);
1057	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1058	NInoSetMstProtected(tmp_ni);
1059	NInoSetSparseDisabled(tmp_ni);
1060	/*
1061	 * Set up our little cheat allowing us to reuse the async read io
1062	 * completion handler for directories.
1063	 */
1064	tmp_ni->itype.index.block_size = vol->mft_record_size;
1065	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1066	vol->mftmirr_ino = tmp_ino;
1067	ntfs_debug("Done.");
1068	return true;
1069}
1070
1071/**
1072 * check_mft_mirror - compare contents of the mft mirror with the mft
1073 * @vol:	ntfs super block describing device whose mft mirror to check
1074 *
1075 * Return 'true' on success or 'false' on error.
1076 *
1077 * Note, this function also results in the mft mirror runlist being completely
1078 * mapped into memory.  The mft mirror write code requires this and will BUG()
1079 * should it find an unmapped runlist element.
1080 */
1081static bool check_mft_mirror(ntfs_volume *vol)
1082{
1083	struct super_block *sb = vol->sb;
1084	ntfs_inode *mirr_ni;
1085	struct page *mft_page, *mirr_page;
1086	u8 *kmft, *kmirr;
1087	runlist_element *rl, rl2[2];
1088	pgoff_t index;
1089	int mrecs_per_page, i;
1090
1091	ntfs_debug("Entering.");
1092	/* Compare contents of $MFT and $MFTMirr. */
1093	mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
1094	BUG_ON(!mrecs_per_page);
1095	BUG_ON(!vol->mftmirr_size);
1096	mft_page = mirr_page = NULL;
1097	kmft = kmirr = NULL;
1098	index = i = 0;
1099	do {
1100		u32 bytes;
1101
1102		/* Switch pages if necessary. */
1103		if (!(i % mrecs_per_page)) {
1104			if (index) {
1105				ntfs_unmap_page(mft_page);
1106				ntfs_unmap_page(mirr_page);
1107			}
1108			/* Get the $MFT page. */
1109			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1110					index);
1111			if (IS_ERR(mft_page)) {
1112				ntfs_error(sb, "Failed to read $MFT.");
1113				return false;
1114			}
1115			kmft = page_address(mft_page);
1116			/* Get the $MFTMirr page. */
1117			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1118					index);
1119			if (IS_ERR(mirr_page)) {
1120				ntfs_error(sb, "Failed to read $MFTMirr.");
1121				goto mft_unmap_out;
1122			}
1123			kmirr = page_address(mirr_page);
1124			++index;
1125		}
1126		/* Do not check the record if it is not in use. */
1127		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1128			/* Make sure the record is ok. */
1129			if (ntfs_is_baad_recordp((le32*)kmft)) {
1130				ntfs_error(sb, "Incomplete multi sector "
1131						"transfer detected in mft "
1132						"record %i.", i);
1133mm_unmap_out:
1134				ntfs_unmap_page(mirr_page);
1135mft_unmap_out:
1136				ntfs_unmap_page(mft_page);
1137				return false;
1138			}
1139		}
1140		/* Do not check the mirror record if it is not in use. */
1141		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1142			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1143				ntfs_error(sb, "Incomplete multi sector "
1144						"transfer detected in mft "
1145						"mirror record %i.", i);
1146				goto mm_unmap_out;
1147			}
1148		}
1149		/* Get the amount of data in the current record. */
1150		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1151		if (bytes < sizeof(MFT_RECORD_OLD) ||
1152				bytes > vol->mft_record_size ||
1153				ntfs_is_baad_recordp((le32*)kmft)) {
1154			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1155			if (bytes < sizeof(MFT_RECORD_OLD) ||
1156					bytes > vol->mft_record_size ||
1157					ntfs_is_baad_recordp((le32*)kmirr))
1158				bytes = vol->mft_record_size;
1159		}
1160		/* Compare the two records. */
1161		if (memcmp(kmft, kmirr, bytes)) {
1162			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1163					"match.  Run ntfsfix or chkdsk.", i);
1164			goto mm_unmap_out;
1165		}
1166		kmft += vol->mft_record_size;
1167		kmirr += vol->mft_record_size;
1168	} while (++i < vol->mftmirr_size);
1169	/* Release the last pages. */
1170	ntfs_unmap_page(mft_page);
1171	ntfs_unmap_page(mirr_page);
1172
1173	/* Construct the mft mirror runlist by hand. */
1174	rl2[0].vcn = 0;
1175	rl2[0].lcn = vol->mftmirr_lcn;
1176	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1177			vol->cluster_size - 1) / vol->cluster_size;
1178	rl2[1].vcn = rl2[0].length;
1179	rl2[1].lcn = LCN_ENOENT;
1180	rl2[1].length = 0;
1181	/*
1182	 * Because we have just read all of the mft mirror, we know we have
1183	 * mapped the full runlist for it.
1184	 */
1185	mirr_ni = NTFS_I(vol->mftmirr_ino);
1186	down_read(&mirr_ni->runlist.lock);
1187	rl = mirr_ni->runlist.rl;
1188	/* Compare the two runlists.  They must be identical. */
1189	i = 0;
1190	do {
1191		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1192				rl2[i].length != rl[i].length) {
1193			ntfs_error(sb, "$MFTMirr location mismatch.  "
1194					"Run chkdsk.");
1195			up_read(&mirr_ni->runlist.lock);
1196			return false;
1197		}
1198	} while (rl2[i++].length);
1199	up_read(&mirr_ni->runlist.lock);
1200	ntfs_debug("Done.");
1201	return true;
1202}
1203
1204/**
1205 * load_and_check_logfile - load and check the logfile inode for a volume
1206 * @vol:	ntfs super block describing device whose logfile to load
1207 *
1208 * Return 'true' on success or 'false' on error.
1209 */
1210static bool load_and_check_logfile(ntfs_volume *vol,
1211		RESTART_PAGE_HEADER **rp)
1212{
1213	struct inode *tmp_ino;
1214
1215	ntfs_debug("Entering.");
1216	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1217	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1218		if (!IS_ERR(tmp_ino))
1219			iput(tmp_ino);
1220		/* Caller will display error message. */
1221		return false;
1222	}
1223	if (!ntfs_check_logfile(tmp_ino, rp)) {
1224		iput(tmp_ino);
1225		/* ntfs_check_logfile() will have displayed error output. */
1226		return false;
1227	}
1228	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1229	vol->logfile_ino = tmp_ino;
1230	ntfs_debug("Done.");
1231	return true;
1232}
1233
1234#define NTFS_HIBERFIL_HEADER_SIZE	4096
1235
1236/**
1237 * check_windows_hibernation_status - check if Windows is suspended on a volume
1238 * @vol:	ntfs super block of device to check
1239 *
1240 * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1241 * looking for the file hiberfil.sys in the root directory of the volume.  If
1242 * the file is not present Windows is definitely not suspended.
1243 *
1244 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1245 * definitely suspended (this volume is not the system volume).  Caveat:  on a
1246 * system with many volumes it is possible that the < 4kiB check is bogus but
1247 * for now this should do fine.
1248 *
1249 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1250 * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1251 * Windows is definitely suspended.  If it is completely full of zeroes,
1252 * Windows is definitely not hibernated.  Any other case is treated as if
1253 * Windows is suspended.  This caters for the above mentioned caveat of a
1254 * system with many volumes where no "hibr" magic would be present and there is
1255 * no zero header.
1256 *
1257 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1258 * hibernated on the volume, and -errno on error.
1259 */
1260static int check_windows_hibernation_status(ntfs_volume *vol)
1261{
1262	MFT_REF mref;
1263	struct inode *vi;
1264	struct page *page;
1265	u32 *kaddr, *kend;
1266	ntfs_name *name = NULL;
1267	int ret = 1;
1268	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1269			cpu_to_le16('i'), cpu_to_le16('b'),
1270			cpu_to_le16('e'), cpu_to_le16('r'),
1271			cpu_to_le16('f'), cpu_to_le16('i'),
1272			cpu_to_le16('l'), cpu_to_le16('.'),
1273			cpu_to_le16('s'), cpu_to_le16('y'),
1274			cpu_to_le16('s'), 0 };
1275
1276	ntfs_debug("Entering.");
1277	/*
1278	 * Find the inode number for the hibernation file by looking up the
1279	 * filename hiberfil.sys in the root directory.
1280	 */
1281	inode_lock(vol->root_ino);
1282	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1283			&name);
1284	inode_unlock(vol->root_ino);
1285	if (IS_ERR_MREF(mref)) {
1286		ret = MREF_ERR(mref);
1287		/* If the file does not exist, Windows is not hibernated. */
1288		if (ret == -ENOENT) {
1289			ntfs_debug("hiberfil.sys not present.  Windows is not "
1290					"hibernated on the volume.");
1291			return 0;
1292		}
1293		/* A real error occurred. */
1294		ntfs_error(vol->sb, "Failed to find inode number for "
1295				"hiberfil.sys.");
1296		return ret;
1297	}
1298	/* We do not care for the type of match that was found. */
1299	kfree(name);
1300	/* Get the inode. */
1301	vi = ntfs_iget(vol->sb, MREF(mref));
1302	if (IS_ERR(vi) || is_bad_inode(vi)) {
1303		if (!IS_ERR(vi))
1304			iput(vi);
1305		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1306		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1307	}
1308	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1309		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1310				"Windows is hibernated on the volume.  This "
1311				"is not the system volume.", i_size_read(vi));
1312		goto iput_out;
1313	}
1314	page = ntfs_map_page(vi->i_mapping, 0);
1315	if (IS_ERR(page)) {
1316		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1317		ret = PTR_ERR(page);
1318		goto iput_out;
1319	}
1320	kaddr = (u32*)page_address(page);
1321	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1322		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1323				"hibernated on the volume.  This is the "
1324				"system volume.");
1325		goto unm_iput_out;
1326	}
1327	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1328	do {
1329		if (unlikely(*kaddr)) {
1330			ntfs_debug("hiberfil.sys is larger than 4kiB "
1331					"(0x%llx), does not contain the "
1332					"\"hibr\" magic, and does not have a "
1333					"zero header.  Windows is hibernated "
1334					"on the volume.  This is not the "
1335					"system volume.", i_size_read(vi));
1336			goto unm_iput_out;
1337		}
1338	} while (++kaddr < kend);
1339	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1340			"hibernated on the volume.  This is the system "
1341			"volume.");
1342	ret = 0;
1343unm_iput_out:
1344	ntfs_unmap_page(page);
1345iput_out:
1346	iput(vi);
1347	return ret;
1348}
1349
1350/**
1351 * load_and_init_quota - load and setup the quota file for a volume if present
1352 * @vol:	ntfs super block describing device whose quota file to load
1353 *
1354 * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1355 * leave vol->quota_ino as NULL and return success.
1356 */
1357static bool load_and_init_quota(ntfs_volume *vol)
1358{
1359	MFT_REF mref;
1360	struct inode *tmp_ino;
1361	ntfs_name *name = NULL;
1362	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1363			cpu_to_le16('Q'), cpu_to_le16('u'),
1364			cpu_to_le16('o'), cpu_to_le16('t'),
1365			cpu_to_le16('a'), 0 };
1366	static ntfschar Q[3] = { cpu_to_le16('$'),
1367			cpu_to_le16('Q'), 0 };
1368
1369	ntfs_debug("Entering.");
1370	/*
1371	 * Find the inode number for the quota file by looking up the filename
1372	 * $Quota in the extended system files directory $Extend.
1373	 */
1374	inode_lock(vol->extend_ino);
1375	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1376			&name);
1377	inode_unlock(vol->extend_ino);
1378	if (IS_ERR_MREF(mref)) {
1379		/*
1380		 * If the file does not exist, quotas are disabled and have
1381		 * never been enabled on this volume, just return success.
1382		 */
1383		if (MREF_ERR(mref) == -ENOENT) {
1384			ntfs_debug("$Quota not present.  Volume does not have "
1385					"quotas enabled.");
1386			/*
1387			 * No need to try to set quotas out of date if they are
1388			 * not enabled.
1389			 */
1390			NVolSetQuotaOutOfDate(vol);
1391			return true;
1392		}
1393		/* A real error occurred. */
1394		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1395		return false;
1396	}
1397	/* We do not care for the type of match that was found. */
1398	kfree(name);
1399	/* Get the inode. */
1400	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1401	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1402		if (!IS_ERR(tmp_ino))
1403			iput(tmp_ino);
1404		ntfs_error(vol->sb, "Failed to load $Quota.");
1405		return false;
1406	}
1407	vol->quota_ino = tmp_ino;
1408	/* Get the $Q index allocation attribute. */
1409	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1410	if (IS_ERR(tmp_ino)) {
1411		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1412		return false;
1413	}
1414	vol->quota_q_ino = tmp_ino;
1415	ntfs_debug("Done.");
1416	return true;
1417}
1418
1419/**
1420 * load_and_init_usnjrnl - load and setup the transaction log if present
1421 * @vol:	ntfs super block describing device whose usnjrnl file to load
1422 *
1423 * Return 'true' on success or 'false' on error.
1424 *
1425 * If $UsnJrnl is not present or in the process of being disabled, we set
1426 * NVolUsnJrnlStamped() and return success.
1427 *
1428 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1429 * i.e. transaction logging has only just been enabled or the journal has been
1430 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1431 * and return success.
1432 */
1433static bool load_and_init_usnjrnl(ntfs_volume *vol)
1434{
1435	MFT_REF mref;
1436	struct inode *tmp_ino;
1437	ntfs_inode *tmp_ni;
1438	struct page *page;
1439	ntfs_name *name = NULL;
1440	USN_HEADER *uh;
1441	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1442			cpu_to_le16('U'), cpu_to_le16('s'),
1443			cpu_to_le16('n'), cpu_to_le16('J'),
1444			cpu_to_le16('r'), cpu_to_le16('n'),
1445			cpu_to_le16('l'), 0 };
1446	static ntfschar Max[5] = { cpu_to_le16('$'),
1447			cpu_to_le16('M'), cpu_to_le16('a'),
1448			cpu_to_le16('x'), 0 };
1449	static ntfschar J[3] = { cpu_to_le16('$'),
1450			cpu_to_le16('J'), 0 };
1451
1452	ntfs_debug("Entering.");
1453	/*
1454	 * Find the inode number for the transaction log file by looking up the
1455	 * filename $UsnJrnl in the extended system files directory $Extend.
1456	 */
1457	inode_lock(vol->extend_ino);
1458	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1459			&name);
1460	inode_unlock(vol->extend_ino);
1461	if (IS_ERR_MREF(mref)) {
1462		/*
1463		 * If the file does not exist, transaction logging is disabled,
1464		 * just return success.
1465		 */
1466		if (MREF_ERR(mref) == -ENOENT) {
1467			ntfs_debug("$UsnJrnl not present.  Volume does not "
1468					"have transaction logging enabled.");
1469not_enabled:
1470			/*
1471			 * No need to try to stamp the transaction log if
1472			 * transaction logging is not enabled.
1473			 */
1474			NVolSetUsnJrnlStamped(vol);
1475			return true;
1476		}
1477		/* A real error occurred. */
1478		ntfs_error(vol->sb, "Failed to find inode number for "
1479				"$UsnJrnl.");
1480		return false;
1481	}
1482	/* We do not care for the type of match that was found. */
1483	kfree(name);
1484	/* Get the inode. */
1485	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1486	if (IS_ERR(tmp_ino) || unlikely(is_bad_inode(tmp_ino))) {
1487		if (!IS_ERR(tmp_ino))
1488			iput(tmp_ino);
1489		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1490		return false;
1491	}
1492	vol->usnjrnl_ino = tmp_ino;
1493	/*
1494	 * If the transaction log is in the process of being deleted, we can
1495	 * ignore it.
1496	 */
1497	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1498		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1499				"Volume does not have transaction logging "
1500				"enabled.");
1501		goto not_enabled;
1502	}
1503	/* Get the $DATA/$Max attribute. */
1504	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1505	if (IS_ERR(tmp_ino)) {
1506		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1507				"attribute.");
1508		return false;
1509	}
1510	vol->usnjrnl_max_ino = tmp_ino;
1511	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1512		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1513				"attribute (size is 0x%llx but should be at "
1514				"least 0x%zx bytes).", i_size_read(tmp_ino),
1515				sizeof(USN_HEADER));
1516		return false;
1517	}
1518	/* Get the $DATA/$J attribute. */
1519	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1520	if (IS_ERR(tmp_ino)) {
1521		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1522				"attribute.");
1523		return false;
1524	}
1525	vol->usnjrnl_j_ino = tmp_ino;
1526	/* Verify $J is non-resident and sparse. */
1527	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1528	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1529		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1530				"and/or not sparse.");
1531		return false;
1532	}
1533	/* Read the USN_HEADER from $DATA/$Max. */
1534	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1535	if (IS_ERR(page)) {
1536		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1537				"attribute.");
1538		return false;
1539	}
1540	uh = (USN_HEADER*)page_address(page);
1541	/* Sanity check the $Max. */
1542	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1543			sle64_to_cpu(uh->maximum_size))) {
1544		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1545				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1546				(long long)sle64_to_cpu(uh->allocation_delta),
1547				(long long)sle64_to_cpu(uh->maximum_size));
1548		ntfs_unmap_page(page);
1549		return false;
1550	}
1551	/*
1552	 * If the transaction log has been stamped and nothing has been written
1553	 * to it since, we do not need to stamp it.
1554	 */
1555	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1556			i_size_read(vol->usnjrnl_j_ino))) {
1557		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1558				i_size_read(vol->usnjrnl_j_ino))) {
1559			ntfs_unmap_page(page);
1560			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1561					"logged since it was last stamped.  "
1562					"Treating this as if the volume does "
1563					"not have transaction logging "
1564					"enabled.");
1565			goto not_enabled;
1566		}
1567		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1568				"which is out of bounds (0x%llx).  $UsnJrnl "
1569				"is corrupt.",
1570				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1571				i_size_read(vol->usnjrnl_j_ino));
1572		ntfs_unmap_page(page);
1573		return false;
1574	}
1575	ntfs_unmap_page(page);
1576	ntfs_debug("Done.");
1577	return true;
1578}
1579
1580/**
1581 * load_and_init_attrdef - load the attribute definitions table for a volume
1582 * @vol:	ntfs super block describing device whose attrdef to load
1583 *
1584 * Return 'true' on success or 'false' on error.
1585 */
1586static bool load_and_init_attrdef(ntfs_volume *vol)
1587{
1588	loff_t i_size;
1589	struct super_block *sb = vol->sb;
1590	struct inode *ino;
1591	struct page *page;
1592	pgoff_t index, max_index;
1593	unsigned int size;
1594
1595	ntfs_debug("Entering.");
1596	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1597	ino = ntfs_iget(sb, FILE_AttrDef);
1598	if (IS_ERR(ino) || is_bad_inode(ino)) {
1599		if (!IS_ERR(ino))
1600			iput(ino);
1601		goto failed;
1602	}
1603	NInoSetSparseDisabled(NTFS_I(ino));
1604	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1605	i_size = i_size_read(ino);
1606	if (i_size <= 0 || i_size > 0x7fffffff)
1607		goto iput_failed;
1608	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1609	if (!vol->attrdef)
1610		goto iput_failed;
1611	index = 0;
1612	max_index = i_size >> PAGE_SHIFT;
1613	size = PAGE_SIZE;
1614	while (index < max_index) {
1615		/* Read the attrdef table and copy it into the linear buffer. */
1616read_partial_attrdef_page:
1617		page = ntfs_map_page(ino->i_mapping, index);
1618		if (IS_ERR(page))
1619			goto free_iput_failed;
1620		memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
1621				page_address(page), size);
1622		ntfs_unmap_page(page);
1623	}
1624	if (size == PAGE_SIZE) {
1625		size = i_size & ~PAGE_MASK;
1626		if (size)
1627			goto read_partial_attrdef_page;
1628	}
1629	vol->attrdef_size = i_size;
1630	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1631	iput(ino);
1632	return true;
1633free_iput_failed:
1634	ntfs_free(vol->attrdef);
1635	vol->attrdef = NULL;
1636iput_failed:
1637	iput(ino);
1638failed:
1639	ntfs_error(sb, "Failed to initialize attribute definition table.");
1640	return false;
1641}
1642
1643#endif /* NTFS_RW */
1644
1645/**
1646 * load_and_init_upcase - load the upcase table for an ntfs volume
1647 * @vol:	ntfs super block describing device whose upcase to load
1648 *
1649 * Return 'true' on success or 'false' on error.
1650 */
1651static bool load_and_init_upcase(ntfs_volume *vol)
1652{
1653	loff_t i_size;
1654	struct super_block *sb = vol->sb;
1655	struct inode *ino;
1656	struct page *page;
1657	pgoff_t index, max_index;
1658	unsigned int size;
1659	int i, max;
1660
1661	ntfs_debug("Entering.");
1662	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1663	ino = ntfs_iget(sb, FILE_UpCase);
1664	if (IS_ERR(ino) || is_bad_inode(ino)) {
1665		if (!IS_ERR(ino))
1666			iput(ino);
1667		goto upcase_failed;
1668	}
1669	/*
1670	 * The upcase size must not be above 64k Unicode characters, must not
1671	 * be zero and must be a multiple of sizeof(ntfschar).
1672	 */
1673	i_size = i_size_read(ino);
1674	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1675			i_size > 64ULL * 1024 * sizeof(ntfschar))
1676		goto iput_upcase_failed;
1677	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1678	if (!vol->upcase)
1679		goto iput_upcase_failed;
1680	index = 0;
1681	max_index = i_size >> PAGE_SHIFT;
1682	size = PAGE_SIZE;
1683	while (index < max_index) {
1684		/* Read the upcase table and copy it into the linear buffer. */
1685read_partial_upcase_page:
1686		page = ntfs_map_page(ino->i_mapping, index);
1687		if (IS_ERR(page))
1688			goto iput_upcase_failed;
1689		memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
1690				page_address(page), size);
1691		ntfs_unmap_page(page);
1692	}
1693	if (size == PAGE_SIZE) {
1694		size = i_size & ~PAGE_MASK;
1695		if (size)
1696			goto read_partial_upcase_page;
1697	}
1698	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1699	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1700			i_size, 64 * 1024 * sizeof(ntfschar));
1701	iput(ino);
1702	mutex_lock(&ntfs_lock);
1703	if (!default_upcase) {
1704		ntfs_debug("Using volume specified $UpCase since default is "
1705				"not present.");
1706		mutex_unlock(&ntfs_lock);
1707		return true;
1708	}
1709	max = default_upcase_len;
1710	if (max > vol->upcase_len)
1711		max = vol->upcase_len;
1712	for (i = 0; i < max; i++)
1713		if (vol->upcase[i] != default_upcase[i])
1714			break;
1715	if (i == max) {
1716		ntfs_free(vol->upcase);
1717		vol->upcase = default_upcase;
1718		vol->upcase_len = max;
1719		ntfs_nr_upcase_users++;
1720		mutex_unlock(&ntfs_lock);
1721		ntfs_debug("Volume specified $UpCase matches default. Using "
1722				"default.");
1723		return true;
1724	}
1725	mutex_unlock(&ntfs_lock);
1726	ntfs_debug("Using volume specified $UpCase since it does not match "
1727			"the default.");
1728	return true;
1729iput_upcase_failed:
1730	iput(ino);
1731	ntfs_free(vol->upcase);
1732	vol->upcase = NULL;
1733upcase_failed:
1734	mutex_lock(&ntfs_lock);
1735	if (default_upcase) {
1736		vol->upcase = default_upcase;
1737		vol->upcase_len = default_upcase_len;
1738		ntfs_nr_upcase_users++;
1739		mutex_unlock(&ntfs_lock);
1740		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1741				"default.");
1742		return true;
1743	}
1744	mutex_unlock(&ntfs_lock);
1745	ntfs_error(sb, "Failed to initialize upcase table.");
1746	return false;
1747}
1748
1749/*
1750 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1751 * their own special locking rules:
1752 */
1753static struct lock_class_key
1754	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1755	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1756
1757/**
1758 * load_system_files - open the system files using normal functions
1759 * @vol:	ntfs super block describing device whose system files to load
1760 *
1761 * Open the system files with normal access functions and complete setting up
1762 * the ntfs super block @vol.
1763 *
1764 * Return 'true' on success or 'false' on error.
1765 */
1766static bool load_system_files(ntfs_volume *vol)
1767{
1768	struct super_block *sb = vol->sb;
1769	MFT_RECORD *m;
1770	VOLUME_INFORMATION *vi;
1771	ntfs_attr_search_ctx *ctx;
1772#ifdef NTFS_RW
1773	RESTART_PAGE_HEADER *rp;
1774	int err;
1775#endif /* NTFS_RW */
1776
1777	ntfs_debug("Entering.");
1778#ifdef NTFS_RW
1779	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1780	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1781		static const char *es1 = "Failed to load $MFTMirr";
1782		static const char *es2 = "$MFTMirr does not match $MFT";
1783		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1784
1785		/* If a read-write mount, convert it to a read-only mount. */
1786		if (!sb_rdonly(sb)) {
1787			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1788					ON_ERRORS_CONTINUE))) {
1789				ntfs_error(sb, "%s and neither on_errors="
1790						"continue nor on_errors="
1791						"remount-ro was specified%s",
1792						!vol->mftmirr_ino ? es1 : es2,
1793						es3);
1794				goto iput_mirr_err_out;
1795			}
1796			sb->s_flags |= SB_RDONLY;
1797			ntfs_error(sb, "%s.  Mounting read-only%s",
1798					!vol->mftmirr_ino ? es1 : es2, es3);
1799		} else
1800			ntfs_warning(sb, "%s.  Will not be able to remount "
1801					"read-write%s",
1802					!vol->mftmirr_ino ? es1 : es2, es3);
1803		/* This will prevent a read-write remount. */
1804		NVolSetErrors(vol);
1805	}
1806#endif /* NTFS_RW */
1807	/* Get mft bitmap attribute inode. */
1808	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1809	if (IS_ERR(vol->mftbmp_ino)) {
1810		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1811		goto iput_mirr_err_out;
1812	}
1813	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1814			   &mftbmp_runlist_lock_key);
1815	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1816			   &mftbmp_mrec_lock_key);
1817	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1818	if (!load_and_init_upcase(vol))
1819		goto iput_mftbmp_err_out;
1820#ifdef NTFS_RW
1821	/*
1822	 * Read attribute definitions table and setup @vol->attrdef and
1823	 * @vol->attrdef_size.
1824	 */
1825	if (!load_and_init_attrdef(vol))
1826		goto iput_upcase_err_out;
1827#endif /* NTFS_RW */
1828	/*
1829	 * Get the cluster allocation bitmap inode and verify the size, no
1830	 * need for any locking at this stage as we are already running
1831	 * exclusively as we are mount in progress task.
1832	 */
1833	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1834	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1835		if (!IS_ERR(vol->lcnbmp_ino))
1836			iput(vol->lcnbmp_ino);
1837		goto bitmap_failed;
1838	}
1839	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1840			   &lcnbmp_runlist_lock_key);
1841	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1842			   &lcnbmp_mrec_lock_key);
1843
1844	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1845	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1846		iput(vol->lcnbmp_ino);
1847bitmap_failed:
1848		ntfs_error(sb, "Failed to load $Bitmap.");
1849		goto iput_attrdef_err_out;
1850	}
1851	/*
1852	 * Get the volume inode and setup our cache of the volume flags and
1853	 * version.
1854	 */
1855	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1856	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1857		if (!IS_ERR(vol->vol_ino))
1858			iput(vol->vol_ino);
1859volume_failed:
1860		ntfs_error(sb, "Failed to load $Volume.");
1861		goto iput_lcnbmp_err_out;
1862	}
1863	m = map_mft_record(NTFS_I(vol->vol_ino));
1864	if (IS_ERR(m)) {
1865iput_volume_failed:
1866		iput(vol->vol_ino);
1867		goto volume_failed;
1868	}
1869	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1870		ntfs_error(sb, "Failed to get attribute search context.");
1871		goto get_ctx_vol_failed;
1872	}
1873	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1874			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1875err_put_vol:
1876		ntfs_attr_put_search_ctx(ctx);
1877get_ctx_vol_failed:
1878		unmap_mft_record(NTFS_I(vol->vol_ino));
1879		goto iput_volume_failed;
1880	}
1881	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1882			le16_to_cpu(ctx->attr->data.resident.value_offset));
1883	/* Some bounds checks. */
1884	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1885			le32_to_cpu(ctx->attr->data.resident.value_length) >
1886			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1887		goto err_put_vol;
1888	/* Copy the volume flags and version to the ntfs_volume structure. */
1889	vol->vol_flags = vi->flags;
1890	vol->major_ver = vi->major_ver;
1891	vol->minor_ver = vi->minor_ver;
1892	ntfs_attr_put_search_ctx(ctx);
1893	unmap_mft_record(NTFS_I(vol->vol_ino));
1894	pr_info("volume version %i.%i.\n", vol->major_ver,
1895			vol->minor_ver);
1896	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1897		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1898				"volume version %i.%i (need at least version "
1899				"3.0).", vol->major_ver, vol->minor_ver);
1900		NVolClearSparseEnabled(vol);
1901	}
1902#ifdef NTFS_RW
1903	/* Make sure that no unsupported volume flags are set. */
1904	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1905		static const char *es1a = "Volume is dirty";
1906		static const char *es1b = "Volume has been modified by chkdsk";
1907		static const char *es1c = "Volume has unsupported flags set";
1908		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1909		static const char *es2b = ".  Mount in Windows.";
1910		const char *es1, *es2;
1911
1912		es2 = es2a;
1913		if (vol->vol_flags & VOLUME_IS_DIRTY)
1914			es1 = es1a;
1915		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1916			es1 = es1b;
1917			es2 = es2b;
1918		} else {
1919			es1 = es1c;
1920			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1921					"encountered.",
1922					(unsigned)le16_to_cpu(vol->vol_flags));
1923		}
1924		/* If a read-write mount, convert it to a read-only mount. */
1925		if (!sb_rdonly(sb)) {
1926			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1927					ON_ERRORS_CONTINUE))) {
1928				ntfs_error(sb, "%s and neither on_errors="
1929						"continue nor on_errors="
1930						"remount-ro was specified%s",
1931						es1, es2);
1932				goto iput_vol_err_out;
1933			}
1934			sb->s_flags |= SB_RDONLY;
1935			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1936		} else
1937			ntfs_warning(sb, "%s.  Will not be able to remount "
1938					"read-write%s", es1, es2);
1939		/*
1940		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1941		 * flags which we need to do in case any flags have changed.
1942		 */
1943	}
1944	/*
1945	 * Get the inode for the logfile, check it and determine if the volume
1946	 * was shutdown cleanly.
1947	 */
1948	rp = NULL;
1949	if (!load_and_check_logfile(vol, &rp) ||
1950			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1951		static const char *es1a = "Failed to load $LogFile";
1952		static const char *es1b = "$LogFile is not clean";
1953		static const char *es2 = ".  Mount in Windows.";
1954		const char *es1;
1955
1956		es1 = !vol->logfile_ino ? es1a : es1b;
1957		/* If a read-write mount, convert it to a read-only mount. */
1958		if (!sb_rdonly(sb)) {
1959			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1960					ON_ERRORS_CONTINUE))) {
1961				ntfs_error(sb, "%s and neither on_errors="
1962						"continue nor on_errors="
1963						"remount-ro was specified%s",
1964						es1, es2);
1965				if (vol->logfile_ino) {
1966					BUG_ON(!rp);
1967					ntfs_free(rp);
1968				}
1969				goto iput_logfile_err_out;
1970			}
1971			sb->s_flags |= SB_RDONLY;
1972			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1973		} else
1974			ntfs_warning(sb, "%s.  Will not be able to remount "
1975					"read-write%s", es1, es2);
1976		/* This will prevent a read-write remount. */
1977		NVolSetErrors(vol);
1978	}
1979	ntfs_free(rp);
1980#endif /* NTFS_RW */
1981	/* Get the root directory inode so we can do path lookups. */
1982	vol->root_ino = ntfs_iget(sb, FILE_root);
1983	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1984		if (!IS_ERR(vol->root_ino))
1985			iput(vol->root_ino);
1986		ntfs_error(sb, "Failed to load root directory.");
1987		goto iput_logfile_err_out;
1988	}
1989#ifdef NTFS_RW
1990	/*
1991	 * Check if Windows is suspended to disk on the target volume.  If it
1992	 * is hibernated, we must not write *anything* to the disk so set
1993	 * NVolErrors() without setting the dirty volume flag and mount
1994	 * read-only.  This will prevent read-write remounting and it will also
1995	 * prevent all writes.
1996	 */
1997	err = check_windows_hibernation_status(vol);
1998	if (unlikely(err)) {
1999		static const char *es1a = "Failed to determine if Windows is "
2000				"hibernated";
2001		static const char *es1b = "Windows is hibernated";
2002		static const char *es2 = ".  Run chkdsk.";
2003		const char *es1;
2004
2005		es1 = err < 0 ? es1a : es1b;
2006		/* If a read-write mount, convert it to a read-only mount. */
2007		if (!sb_rdonly(sb)) {
2008			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2009					ON_ERRORS_CONTINUE))) {
2010				ntfs_error(sb, "%s and neither on_errors="
2011						"continue nor on_errors="
2012						"remount-ro was specified%s",
2013						es1, es2);
2014				goto iput_root_err_out;
2015			}
2016			sb->s_flags |= SB_RDONLY;
2017			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2018		} else
2019			ntfs_warning(sb, "%s.  Will not be able to remount "
2020					"read-write%s", es1, es2);
2021		/* This will prevent a read-write remount. */
2022		NVolSetErrors(vol);
2023	}
2024	/* If (still) a read-write mount, mark the volume dirty. */
2025	if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
 
2026		static const char *es1 = "Failed to set dirty bit in volume "
2027				"information flags";
2028		static const char *es2 = ".  Run chkdsk.";
2029
2030		/* Convert to a read-only mount. */
2031		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2032				ON_ERRORS_CONTINUE))) {
2033			ntfs_error(sb, "%s and neither on_errors=continue nor "
2034					"on_errors=remount-ro was specified%s",
2035					es1, es2);
2036			goto iput_root_err_out;
2037		}
2038		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2039		sb->s_flags |= SB_RDONLY;
2040		/*
2041		 * Do not set NVolErrors() because ntfs_remount() might manage
2042		 * to set the dirty flag in which case all would be well.
2043		 */
2044	}
2045#if 0
2046	// TODO: Enable this code once we start modifying anything that is
2047	//	 different between NTFS 1.2 and 3.x...
2048	/*
2049	 * If (still) a read-write mount, set the NT4 compatibility flag on
2050	 * newer NTFS version volumes.
2051	 */
2052	if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) &&
2053			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2054		static const char *es1 = "Failed to set NT4 compatibility flag";
2055		static const char *es2 = ".  Run chkdsk.";
2056
2057		/* Convert to a read-only mount. */
2058		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2059				ON_ERRORS_CONTINUE))) {
2060			ntfs_error(sb, "%s and neither on_errors=continue nor "
2061					"on_errors=remount-ro was specified%s",
2062					es1, es2);
2063			goto iput_root_err_out;
2064		}
2065		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2066		sb->s_flags |= SB_RDONLY;
2067		NVolSetErrors(vol);
2068	}
2069#endif
2070	/* If (still) a read-write mount, empty the logfile. */
2071	if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) {
 
2072		static const char *es1 = "Failed to empty $LogFile";
2073		static const char *es2 = ".  Mount in Windows.";
2074
2075		/* Convert to a read-only mount. */
2076		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2077				ON_ERRORS_CONTINUE))) {
2078			ntfs_error(sb, "%s and neither on_errors=continue nor "
2079					"on_errors=remount-ro was specified%s",
2080					es1, es2);
2081			goto iput_root_err_out;
2082		}
2083		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2084		sb->s_flags |= SB_RDONLY;
2085		NVolSetErrors(vol);
2086	}
2087#endif /* NTFS_RW */
2088	/* If on NTFS versions before 3.0, we are done. */
2089	if (unlikely(vol->major_ver < 3))
2090		return true;
2091	/* NTFS 3.0+ specific initialization. */
2092	/* Get the security descriptors inode. */
2093	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2094	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2095		if (!IS_ERR(vol->secure_ino))
2096			iput(vol->secure_ino);
2097		ntfs_error(sb, "Failed to load $Secure.");
2098		goto iput_root_err_out;
2099	}
2100	// TODO: Initialize security.
2101	/* Get the extended system files' directory inode. */
2102	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2103	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino) ||
2104	    !S_ISDIR(vol->extend_ino->i_mode)) {
2105		if (!IS_ERR(vol->extend_ino))
2106			iput(vol->extend_ino);
2107		ntfs_error(sb, "Failed to load $Extend.");
2108		goto iput_sec_err_out;
2109	}
2110#ifdef NTFS_RW
2111	/* Find the quota file, load it if present, and set it up. */
2112	if (!load_and_init_quota(vol)) {
2113		static const char *es1 = "Failed to load $Quota";
2114		static const char *es2 = ".  Run chkdsk.";
2115
2116		/* If a read-write mount, convert it to a read-only mount. */
2117		if (!sb_rdonly(sb)) {
2118			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2119					ON_ERRORS_CONTINUE))) {
2120				ntfs_error(sb, "%s and neither on_errors="
2121						"continue nor on_errors="
2122						"remount-ro was specified%s",
2123						es1, es2);
2124				goto iput_quota_err_out;
2125			}
2126			sb->s_flags |= SB_RDONLY;
2127			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2128		} else
2129			ntfs_warning(sb, "%s.  Will not be able to remount "
2130					"read-write%s", es1, es2);
2131		/* This will prevent a read-write remount. */
2132		NVolSetErrors(vol);
2133	}
2134	/* If (still) a read-write mount, mark the quotas out of date. */
2135	if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) {
 
2136		static const char *es1 = "Failed to mark quotas out of date";
2137		static const char *es2 = ".  Run chkdsk.";
2138
2139		/* Convert to a read-only mount. */
2140		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2141				ON_ERRORS_CONTINUE))) {
2142			ntfs_error(sb, "%s and neither on_errors=continue nor "
2143					"on_errors=remount-ro was specified%s",
2144					es1, es2);
2145			goto iput_quota_err_out;
2146		}
2147		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2148		sb->s_flags |= SB_RDONLY;
2149		NVolSetErrors(vol);
2150	}
2151	/*
2152	 * Find the transaction log file ($UsnJrnl), load it if present, check
2153	 * it, and set it up.
2154	 */
2155	if (!load_and_init_usnjrnl(vol)) {
2156		static const char *es1 = "Failed to load $UsnJrnl";
2157		static const char *es2 = ".  Run chkdsk.";
2158
2159		/* If a read-write mount, convert it to a read-only mount. */
2160		if (!sb_rdonly(sb)) {
2161			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2162					ON_ERRORS_CONTINUE))) {
2163				ntfs_error(sb, "%s and neither on_errors="
2164						"continue nor on_errors="
2165						"remount-ro was specified%s",
2166						es1, es2);
2167				goto iput_usnjrnl_err_out;
2168			}
2169			sb->s_flags |= SB_RDONLY;
2170			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2171		} else
2172			ntfs_warning(sb, "%s.  Will not be able to remount "
2173					"read-write%s", es1, es2);
2174		/* This will prevent a read-write remount. */
2175		NVolSetErrors(vol);
2176	}
2177	/* If (still) a read-write mount, stamp the transaction log. */
2178	if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) {
2179		static const char *es1 = "Failed to stamp transaction log "
2180				"($UsnJrnl)";
2181		static const char *es2 = ".  Run chkdsk.";
2182
2183		/* Convert to a read-only mount. */
2184		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2185				ON_ERRORS_CONTINUE))) {
2186			ntfs_error(sb, "%s and neither on_errors=continue nor "
2187					"on_errors=remount-ro was specified%s",
2188					es1, es2);
2189			goto iput_usnjrnl_err_out;
2190		}
2191		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2192		sb->s_flags |= SB_RDONLY;
2193		NVolSetErrors(vol);
2194	}
2195#endif /* NTFS_RW */
2196	return true;
2197#ifdef NTFS_RW
2198iput_usnjrnl_err_out:
2199	iput(vol->usnjrnl_j_ino);
2200	iput(vol->usnjrnl_max_ino);
2201	iput(vol->usnjrnl_ino);
 
 
 
2202iput_quota_err_out:
2203	iput(vol->quota_q_ino);
2204	iput(vol->quota_ino);
 
 
2205	iput(vol->extend_ino);
2206#endif /* NTFS_RW */
2207iput_sec_err_out:
2208	iput(vol->secure_ino);
2209iput_root_err_out:
2210	iput(vol->root_ino);
2211iput_logfile_err_out:
2212#ifdef NTFS_RW
2213	iput(vol->logfile_ino);
 
2214iput_vol_err_out:
2215#endif /* NTFS_RW */
2216	iput(vol->vol_ino);
2217iput_lcnbmp_err_out:
2218	iput(vol->lcnbmp_ino);
2219iput_attrdef_err_out:
2220	vol->attrdef_size = 0;
2221	if (vol->attrdef) {
2222		ntfs_free(vol->attrdef);
2223		vol->attrdef = NULL;
2224	}
2225#ifdef NTFS_RW
2226iput_upcase_err_out:
2227#endif /* NTFS_RW */
2228	vol->upcase_len = 0;
2229	mutex_lock(&ntfs_lock);
2230	if (vol->upcase == default_upcase) {
2231		ntfs_nr_upcase_users--;
2232		vol->upcase = NULL;
2233	}
2234	mutex_unlock(&ntfs_lock);
2235	if (vol->upcase) {
2236		ntfs_free(vol->upcase);
2237		vol->upcase = NULL;
2238	}
2239iput_mftbmp_err_out:
2240	iput(vol->mftbmp_ino);
2241iput_mirr_err_out:
2242#ifdef NTFS_RW
2243	iput(vol->mftmirr_ino);
 
2244#endif /* NTFS_RW */
2245	return false;
2246}
2247
2248/**
2249 * ntfs_put_super - called by the vfs to unmount a volume
2250 * @sb:		vfs superblock of volume to unmount
2251 *
2252 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2253 * the volume is being unmounted (umount system call has been invoked) and it
2254 * releases all inodes and memory belonging to the NTFS specific part of the
2255 * super block.
2256 */
2257static void ntfs_put_super(struct super_block *sb)
2258{
2259	ntfs_volume *vol = NTFS_SB(sb);
2260
2261	ntfs_debug("Entering.");
2262
2263#ifdef NTFS_RW
2264	/*
2265	 * Commit all inodes while they are still open in case some of them
2266	 * cause others to be dirtied.
2267	 */
2268	ntfs_commit_inode(vol->vol_ino);
2269
2270	/* NTFS 3.0+ specific. */
2271	if (vol->major_ver >= 3) {
2272		if (vol->usnjrnl_j_ino)
2273			ntfs_commit_inode(vol->usnjrnl_j_ino);
2274		if (vol->usnjrnl_max_ino)
2275			ntfs_commit_inode(vol->usnjrnl_max_ino);
2276		if (vol->usnjrnl_ino)
2277			ntfs_commit_inode(vol->usnjrnl_ino);
2278		if (vol->quota_q_ino)
2279			ntfs_commit_inode(vol->quota_q_ino);
2280		if (vol->quota_ino)
2281			ntfs_commit_inode(vol->quota_ino);
2282		if (vol->extend_ino)
2283			ntfs_commit_inode(vol->extend_ino);
2284		if (vol->secure_ino)
2285			ntfs_commit_inode(vol->secure_ino);
2286	}
2287
2288	ntfs_commit_inode(vol->root_ino);
2289
2290	down_write(&vol->lcnbmp_lock);
2291	ntfs_commit_inode(vol->lcnbmp_ino);
2292	up_write(&vol->lcnbmp_lock);
2293
2294	down_write(&vol->mftbmp_lock);
2295	ntfs_commit_inode(vol->mftbmp_ino);
2296	up_write(&vol->mftbmp_lock);
2297
2298	if (vol->logfile_ino)
2299		ntfs_commit_inode(vol->logfile_ino);
2300
2301	if (vol->mftmirr_ino)
2302		ntfs_commit_inode(vol->mftmirr_ino);
2303	ntfs_commit_inode(vol->mft_ino);
2304
2305	/*
2306	 * If a read-write mount and no volume errors have occurred, mark the
2307	 * volume clean.  Also, re-commit all affected inodes.
2308	 */
2309	if (!sb_rdonly(sb)) {
2310		if (!NVolErrors(vol)) {
2311			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2312				ntfs_warning(sb, "Failed to clear dirty bit "
2313						"in volume information "
2314						"flags.  Run chkdsk.");
2315			ntfs_commit_inode(vol->vol_ino);
2316			ntfs_commit_inode(vol->root_ino);
2317			if (vol->mftmirr_ino)
2318				ntfs_commit_inode(vol->mftmirr_ino);
2319			ntfs_commit_inode(vol->mft_ino);
2320		} else {
2321			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2322					"marked dirty.  Run chkdsk.");
2323		}
2324	}
2325#endif /* NTFS_RW */
2326
2327	iput(vol->vol_ino);
2328	vol->vol_ino = NULL;
2329
2330	/* NTFS 3.0+ specific clean up. */
2331	if (vol->major_ver >= 3) {
2332#ifdef NTFS_RW
2333		if (vol->usnjrnl_j_ino) {
2334			iput(vol->usnjrnl_j_ino);
2335			vol->usnjrnl_j_ino = NULL;
2336		}
2337		if (vol->usnjrnl_max_ino) {
2338			iput(vol->usnjrnl_max_ino);
2339			vol->usnjrnl_max_ino = NULL;
2340		}
2341		if (vol->usnjrnl_ino) {
2342			iput(vol->usnjrnl_ino);
2343			vol->usnjrnl_ino = NULL;
2344		}
2345		if (vol->quota_q_ino) {
2346			iput(vol->quota_q_ino);
2347			vol->quota_q_ino = NULL;
2348		}
2349		if (vol->quota_ino) {
2350			iput(vol->quota_ino);
2351			vol->quota_ino = NULL;
2352		}
2353#endif /* NTFS_RW */
2354		if (vol->extend_ino) {
2355			iput(vol->extend_ino);
2356			vol->extend_ino = NULL;
2357		}
2358		if (vol->secure_ino) {
2359			iput(vol->secure_ino);
2360			vol->secure_ino = NULL;
2361		}
2362	}
2363
2364	iput(vol->root_ino);
2365	vol->root_ino = NULL;
2366
2367	down_write(&vol->lcnbmp_lock);
2368	iput(vol->lcnbmp_ino);
2369	vol->lcnbmp_ino = NULL;
2370	up_write(&vol->lcnbmp_lock);
2371
2372	down_write(&vol->mftbmp_lock);
2373	iput(vol->mftbmp_ino);
2374	vol->mftbmp_ino = NULL;
2375	up_write(&vol->mftbmp_lock);
2376
2377#ifdef NTFS_RW
2378	if (vol->logfile_ino) {
2379		iput(vol->logfile_ino);
2380		vol->logfile_ino = NULL;
2381	}
2382	if (vol->mftmirr_ino) {
2383		/* Re-commit the mft mirror and mft just in case. */
2384		ntfs_commit_inode(vol->mftmirr_ino);
2385		ntfs_commit_inode(vol->mft_ino);
2386		iput(vol->mftmirr_ino);
2387		vol->mftmirr_ino = NULL;
2388	}
2389	/*
2390	 * We should have no dirty inodes left, due to
2391	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2392	 * the underlying mft records are written out and cleaned.
2393	 */
2394	ntfs_commit_inode(vol->mft_ino);
2395	write_inode_now(vol->mft_ino, 1);
2396#endif /* NTFS_RW */
2397
2398	iput(vol->mft_ino);
2399	vol->mft_ino = NULL;
2400
2401	/* Throw away the table of attribute definitions. */
2402	vol->attrdef_size = 0;
2403	if (vol->attrdef) {
2404		ntfs_free(vol->attrdef);
2405		vol->attrdef = NULL;
2406	}
2407	vol->upcase_len = 0;
2408	/*
2409	 * Destroy the global default upcase table if necessary.  Also decrease
2410	 * the number of upcase users if we are a user.
2411	 */
2412	mutex_lock(&ntfs_lock);
2413	if (vol->upcase == default_upcase) {
2414		ntfs_nr_upcase_users--;
2415		vol->upcase = NULL;
2416	}
2417	if (!ntfs_nr_upcase_users && default_upcase) {
2418		ntfs_free(default_upcase);
2419		default_upcase = NULL;
2420	}
2421	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2422		free_compression_buffers();
2423	mutex_unlock(&ntfs_lock);
2424	if (vol->upcase) {
2425		ntfs_free(vol->upcase);
2426		vol->upcase = NULL;
2427	}
2428
2429	unload_nls(vol->nls_map);
2430
2431	sb->s_fs_info = NULL;
2432	kfree(vol);
2433}
2434
2435/**
2436 * get_nr_free_clusters - return the number of free clusters on a volume
2437 * @vol:	ntfs volume for which to obtain free cluster count
2438 *
2439 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2440 * actually calculate the number of clusters in use instead because this
2441 * allows us to not care about partial pages as these will be just zero filled
2442 * and hence not be counted as allocated clusters.
2443 *
2444 * The only particularity is that clusters beyond the end of the logical ntfs
2445 * volume will be marked as allocated to prevent errors which means we have to
2446 * discount those at the end. This is important as the cluster bitmap always
2447 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2448 * the logical volume and marked in use when they are not as they do not exist.
2449 *
2450 * If any pages cannot be read we assume all clusters in the erroring pages are
2451 * in use. This means we return an underestimate on errors which is better than
2452 * an overestimate.
2453 */
2454static s64 get_nr_free_clusters(ntfs_volume *vol)
2455{
2456	s64 nr_free = vol->nr_clusters;
2457	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2458	struct page *page;
2459	pgoff_t index, max_index;
2460
2461	ntfs_debug("Entering.");
2462	/* Serialize accesses to the cluster bitmap. */
2463	down_read(&vol->lcnbmp_lock);
2464	/*
2465	 * Convert the number of bits into bytes rounded up, then convert into
2466	 * multiples of PAGE_SIZE, rounding up so that if we have one
2467	 * full and one partial page max_index = 2.
2468	 */
2469	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
2470			PAGE_SHIFT;
2471	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2472	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2473			max_index, PAGE_SIZE / 4);
2474	for (index = 0; index < max_index; index++) {
2475		unsigned long *kaddr;
2476
2477		/*
2478		 * Read the page from page cache, getting it from backing store
2479		 * if necessary, and increment the use count.
2480		 */
2481		page = read_mapping_page(mapping, index, NULL);
2482		/* Ignore pages which errored synchronously. */
2483		if (IS_ERR(page)) {
2484			ntfs_debug("read_mapping_page() error. Skipping "
2485					"page (index 0x%lx).", index);
2486			nr_free -= PAGE_SIZE * 8;
2487			continue;
2488		}
2489		kaddr = kmap_atomic(page);
2490		/*
2491		 * Subtract the number of set bits. If this
2492		 * is the last page and it is partial we don't really care as
2493		 * it just means we do a little extra work but it won't affect
2494		 * the result as all out of range bytes are set to zero by
2495		 * ntfs_readpage().
2496		 */
2497		nr_free -= bitmap_weight(kaddr,
2498					PAGE_SIZE * BITS_PER_BYTE);
2499		kunmap_atomic(kaddr);
2500		put_page(page);
2501	}
2502	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2503	/*
2504	 * Fixup for eventual bits outside logical ntfs volume (see function
2505	 * description above).
2506	 */
2507	if (vol->nr_clusters & 63)
2508		nr_free += 64 - (vol->nr_clusters & 63);
2509	up_read(&vol->lcnbmp_lock);
2510	/* If errors occurred we may well have gone below zero, fix this. */
2511	if (nr_free < 0)
2512		nr_free = 0;
2513	ntfs_debug("Exiting.");
2514	return nr_free;
2515}
2516
2517/**
2518 * __get_nr_free_mft_records - return the number of free inodes on a volume
2519 * @vol:	ntfs volume for which to obtain free inode count
2520 * @nr_free:	number of mft records in filesystem
2521 * @max_index:	maximum number of pages containing set bits
2522 *
2523 * Calculate the number of free mft records (inodes) on the mounted NTFS
2524 * volume @vol. We actually calculate the number of mft records in use instead
2525 * because this allows us to not care about partial pages as these will be just
2526 * zero filled and hence not be counted as allocated mft record.
2527 *
2528 * If any pages cannot be read we assume all mft records in the erroring pages
2529 * are in use. This means we return an underestimate on errors which is better
2530 * than an overestimate.
2531 *
2532 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2533 */
2534static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2535		s64 nr_free, const pgoff_t max_index)
2536{
2537	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2538	struct page *page;
2539	pgoff_t index;
2540
2541	ntfs_debug("Entering.");
2542	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2543	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2544			"0x%lx.", max_index, PAGE_SIZE / 4);
2545	for (index = 0; index < max_index; index++) {
2546		unsigned long *kaddr;
2547
2548		/*
2549		 * Read the page from page cache, getting it from backing store
2550		 * if necessary, and increment the use count.
2551		 */
2552		page = read_mapping_page(mapping, index, NULL);
2553		/* Ignore pages which errored synchronously. */
2554		if (IS_ERR(page)) {
2555			ntfs_debug("read_mapping_page() error. Skipping "
2556					"page (index 0x%lx).", index);
2557			nr_free -= PAGE_SIZE * 8;
2558			continue;
2559		}
2560		kaddr = kmap_atomic(page);
2561		/*
2562		 * Subtract the number of set bits. If this
2563		 * is the last page and it is partial we don't really care as
2564		 * it just means we do a little extra work but it won't affect
2565		 * the result as all out of range bytes are set to zero by
2566		 * ntfs_readpage().
2567		 */
2568		nr_free -= bitmap_weight(kaddr,
2569					PAGE_SIZE * BITS_PER_BYTE);
2570		kunmap_atomic(kaddr);
2571		put_page(page);
2572	}
2573	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2574			index - 1);
2575	/* If errors occurred we may well have gone below zero, fix this. */
2576	if (nr_free < 0)
2577		nr_free = 0;
2578	ntfs_debug("Exiting.");
2579	return nr_free;
2580}
2581
2582/**
2583 * ntfs_statfs - return information about mounted NTFS volume
2584 * @dentry:	dentry from mounted volume
2585 * @sfs:	statfs structure in which to return the information
2586 *
2587 * Return information about the mounted NTFS volume @dentry in the statfs structure
2588 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2589 * called). We interpret the values to be correct of the moment in time at
2590 * which we are called. Most values are variable otherwise and this isn't just
2591 * the free values but the totals as well. For example we can increase the
2592 * total number of file nodes if we run out and we can keep doing this until
2593 * there is no more space on the volume left at all.
2594 *
2595 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2596 * ustat system calls.
2597 *
2598 * Return 0 on success or -errno on error.
2599 */
2600static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2601{
2602	struct super_block *sb = dentry->d_sb;
2603	s64 size;
2604	ntfs_volume *vol = NTFS_SB(sb);
2605	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2606	pgoff_t max_index;
2607	unsigned long flags;
2608
2609	ntfs_debug("Entering.");
2610	/* Type of filesystem. */
2611	sfs->f_type   = NTFS_SB_MAGIC;
2612	/* Optimal transfer block size. */
2613	sfs->f_bsize  = PAGE_SIZE;
2614	/*
2615	 * Total data blocks in filesystem in units of f_bsize and since
2616	 * inodes are also stored in data blocs ($MFT is a file) this is just
2617	 * the total clusters.
2618	 */
2619	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2620				PAGE_SHIFT;
2621	/* Free data blocks in filesystem in units of f_bsize. */
2622	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2623				PAGE_SHIFT;
2624	if (size < 0LL)
2625		size = 0LL;
2626	/* Free blocks avail to non-superuser, same as above on NTFS. */
2627	sfs->f_bavail = sfs->f_bfree = size;
2628	/* Serialize accesses to the inode bitmap. */
2629	down_read(&vol->mftbmp_lock);
2630	read_lock_irqsave(&mft_ni->size_lock, flags);
2631	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2632	/*
2633	 * Convert the maximum number of set bits into bytes rounded up, then
2634	 * convert into multiples of PAGE_SIZE, rounding up so that if we
2635	 * have one full and one partial page max_index = 2.
2636	 */
2637	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2638			+ 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2639	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2640	/* Number of inodes in filesystem (at this point in time). */
2641	sfs->f_files = size;
2642	/* Free inodes in fs (based on current total count). */
2643	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2644	up_read(&vol->mftbmp_lock);
2645	/*
2646	 * File system id. This is extremely *nix flavour dependent and even
2647	 * within Linux itself all fs do their own thing. I interpret this to
2648	 * mean a unique id associated with the mounted fs and not the id
2649	 * associated with the filesystem driver, the latter is already given
2650	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2651	 * volume serial number splitting it into two 32-bit parts. We enter
2652	 * the least significant 32-bits in f_fsid[0] and the most significant
2653	 * 32-bits in f_fsid[1].
2654	 */
2655	sfs->f_fsid = u64_to_fsid(vol->serial_no);
 
2656	/* Maximum length of filenames. */
2657	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2658	return 0;
2659}
2660
2661#ifdef NTFS_RW
2662static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2663{
2664	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2665}
2666#endif
2667
2668/*
2669 * The complete super operations.
2670 */
2671static const struct super_operations ntfs_sops = {
2672	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2673	.free_inode	= ntfs_free_big_inode, /* VFS: Deallocate inode. */
2674#ifdef NTFS_RW
 
 
2675	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2676						   disk. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677#endif /* NTFS_RW */
2678	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2679	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2680	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2681	.evict_inode	= ntfs_evict_big_inode,	/* VFS: Called when an inode is
2682						   removed from memory. */
 
2683	.show_options	= ntfs_show_options,	/* Show mount options in
2684						   proc. */
2685};
2686
2687/**
2688 * ntfs_fill_super - mount an ntfs filesystem
2689 * @sb:		super block of ntfs filesystem to mount
2690 * @opt:	string containing the mount options
2691 * @silent:	silence error output
2692 *
2693 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2694 * with the mount otions in @data with the NTFS filesystem.
2695 *
2696 * If @silent is true, remain silent even if errors are detected. This is used
2697 * during bootup, when the kernel tries to mount the root filesystem with all
2698 * registered filesystems one after the other until one succeeds. This implies
2699 * that all filesystems except the correct one will quite correctly and
2700 * expectedly return an error, but nobody wants to see error messages when in
2701 * fact this is what is supposed to happen.
2702 *
2703 * NOTE: @sb->s_flags contains the mount options flags.
2704 */
2705static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2706{
2707	ntfs_volume *vol;
2708	struct buffer_head *bh;
2709	struct inode *tmp_ino;
2710	int blocksize, result;
2711
2712	/*
2713	 * We do a pretty difficult piece of bootstrap by reading the
2714	 * MFT (and other metadata) from disk into memory. We'll only
2715	 * release this metadata during umount, so the locking patterns
2716	 * observed during bootstrap do not count. So turn off the
2717	 * observation of locking patterns (strictly for this context
2718	 * only) while mounting NTFS. [The validator is still active
2719	 * otherwise, even for this context: it will for example record
2720	 * lock class registrations.]
2721	 */
2722	lockdep_off();
2723	ntfs_debug("Entering.");
2724#ifndef NTFS_RW
2725	sb->s_flags |= SB_RDONLY;
2726#endif /* ! NTFS_RW */
2727	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2728	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2729	vol = NTFS_SB(sb);
2730	if (!vol) {
2731		if (!silent)
2732			ntfs_error(sb, "Allocation of NTFS volume structure "
2733					"failed. Aborting mount...");
2734		lockdep_on();
2735		return -ENOMEM;
2736	}
2737	/* Initialize ntfs_volume structure. */
2738	*vol = (ntfs_volume) {
2739		.sb = sb,
2740		/*
2741		 * Default is group and other don't have any access to files or
2742		 * directories while owner has full access. Further, files by
2743		 * default are not executable but directories are of course
2744		 * browseable.
2745		 */
2746		.fmask = 0177,
2747		.dmask = 0077,
2748	};
2749	init_rwsem(&vol->mftbmp_lock);
2750	init_rwsem(&vol->lcnbmp_lock);
2751
2752	/* By default, enable sparse support. */
2753	NVolSetSparseEnabled(vol);
2754
2755	/* Important to get the mount options dealt with now. */
2756	if (!parse_options(vol, (char*)opt))
2757		goto err_out_now;
2758
2759	/* We support sector sizes up to the PAGE_SIZE. */
2760	if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) {
2761		if (!silent)
2762			ntfs_error(sb, "Device has unsupported sector size "
2763					"(%i).  The maximum supported sector "
2764					"size on this architecture is %lu "
2765					"bytes.",
2766					bdev_logical_block_size(sb->s_bdev),
2767					PAGE_SIZE);
2768		goto err_out_now;
2769	}
2770	/*
2771	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2772	 * sector size, whichever is bigger.
2773	 */
2774	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2775	if (blocksize < NTFS_BLOCK_SIZE) {
2776		if (!silent)
2777			ntfs_error(sb, "Unable to set device block size.");
2778		goto err_out_now;
2779	}
2780	BUG_ON(blocksize != sb->s_blocksize);
2781	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2782			blocksize, sb->s_blocksize_bits);
2783	/* Determine the size of the device in units of block_size bytes. */
2784	vol->nr_blocks = sb_bdev_nr_blocks(sb);
2785	if (!vol->nr_blocks) {
2786		if (!silent)
2787			ntfs_error(sb, "Unable to determine device size.");
2788		goto err_out_now;
2789	}
 
 
2790	/* Read the boot sector and return unlocked buffer head to it. */
2791	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2792		if (!silent)
2793			ntfs_error(sb, "Not an NTFS volume.");
2794		goto err_out_now;
2795	}
2796	/*
2797	 * Extract the data from the boot sector and setup the ntfs volume
2798	 * using it.
2799	 */
2800	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2801	brelse(bh);
2802	if (!result) {
2803		if (!silent)
2804			ntfs_error(sb, "Unsupported NTFS filesystem.");
2805		goto err_out_now;
2806	}
2807	/*
2808	 * If the boot sector indicates a sector size bigger than the current
2809	 * device block size, switch the device block size to the sector size.
2810	 * TODO: It may be possible to support this case even when the set
2811	 * below fails, we would just be breaking up the i/o for each sector
2812	 * into multiple blocks for i/o purposes but otherwise it should just
2813	 * work.  However it is safer to leave disabled until someone hits this
2814	 * error message and then we can get them to try it without the setting
2815	 * so we know for sure that it works.
2816	 */
2817	if (vol->sector_size > blocksize) {
2818		blocksize = sb_set_blocksize(sb, vol->sector_size);
2819		if (blocksize != vol->sector_size) {
2820			if (!silent)
2821				ntfs_error(sb, "Unable to set device block "
2822						"size to sector size (%i).",
2823						vol->sector_size);
2824			goto err_out_now;
2825		}
2826		BUG_ON(blocksize != sb->s_blocksize);
2827		vol->nr_blocks = sb_bdev_nr_blocks(sb);
 
2828		ntfs_debug("Changed device block size to %i bytes (block size "
2829				"bits %i) to match volume sector size.",
2830				blocksize, sb->s_blocksize_bits);
2831	}
2832	/* Initialize the cluster and mft allocators. */
2833	ntfs_setup_allocators(vol);
2834	/* Setup remaining fields in the super block. */
2835	sb->s_magic = NTFS_SB_MAGIC;
2836	/*
2837	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2838	 *	sb->s_maxbytes = ~0ULL >> 1;
2839	 * But the kernel uses a long as the page cache page index which on
2840	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2841	 * defined to the maximum the page cache page index can cope with
2842	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2843	 */
2844	sb->s_maxbytes = MAX_LFS_FILESIZE;
2845	/* Ntfs measures time in 100ns intervals. */
2846	sb->s_time_gran = 100;
2847	/*
2848	 * Now load the metadata required for the page cache and our address
2849	 * space operations to function. We do this by setting up a specialised
2850	 * read_inode method and then just calling the normal iget() to obtain
2851	 * the inode for $MFT which is sufficient to allow our normal inode
2852	 * operations and associated address space operations to function.
2853	 */
2854	sb->s_op = &ntfs_sops;
2855	tmp_ino = new_inode(sb);
2856	if (!tmp_ino) {
2857		if (!silent)
2858			ntfs_error(sb, "Failed to load essential metadata.");
2859		goto err_out_now;
2860	}
2861	tmp_ino->i_ino = FILE_MFT;
2862	insert_inode_hash(tmp_ino);
2863	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2864		if (!silent)
2865			ntfs_error(sb, "Failed to load essential metadata.");
2866		goto iput_tmp_ino_err_out_now;
2867	}
2868	mutex_lock(&ntfs_lock);
2869	/*
2870	 * The current mount is a compression user if the cluster size is
2871	 * less than or equal 4kiB.
2872	 */
2873	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2874		result = allocate_compression_buffers();
2875		if (result) {
2876			ntfs_error(NULL, "Failed to allocate buffers "
2877					"for compression engine.");
2878			ntfs_nr_compression_users--;
2879			mutex_unlock(&ntfs_lock);
2880			goto iput_tmp_ino_err_out_now;
2881		}
2882	}
2883	/*
2884	 * Generate the global default upcase table if necessary.  Also
2885	 * temporarily increment the number of upcase users to avoid race
2886	 * conditions with concurrent (u)mounts.
2887	 */
2888	if (!default_upcase)
2889		default_upcase = generate_default_upcase();
2890	ntfs_nr_upcase_users++;
2891	mutex_unlock(&ntfs_lock);
2892	/*
2893	 * From now on, ignore @silent parameter. If we fail below this line,
2894	 * it will be due to a corrupt fs or a system error, so we report it.
2895	 */
2896	/*
2897	 * Open the system files with normal access functions and complete
2898	 * setting up the ntfs super block.
2899	 */
2900	if (!load_system_files(vol)) {
2901		ntfs_error(sb, "Failed to load system files.");
2902		goto unl_upcase_iput_tmp_ino_err_out_now;
2903	}
2904
2905	/* We grab a reference, simulating an ntfs_iget(). */
2906	ihold(vol->root_ino);
2907	if ((sb->s_root = d_make_root(vol->root_ino))) {
2908		ntfs_debug("Exiting, status successful.");
2909		/* Release the default upcase if it has no users. */
2910		mutex_lock(&ntfs_lock);
2911		if (!--ntfs_nr_upcase_users && default_upcase) {
2912			ntfs_free(default_upcase);
2913			default_upcase = NULL;
2914		}
2915		mutex_unlock(&ntfs_lock);
2916		sb->s_export_op = &ntfs_export_ops;
2917		lockdep_on();
2918		return 0;
2919	}
2920	ntfs_error(sb, "Failed to allocate root directory.");
2921	/* Clean up after the successful load_system_files() call from above. */
2922	// TODO: Use ntfs_put_super() instead of repeating all this code...
2923	// FIXME: Should mark the volume clean as the error is most likely
2924	// 	  -ENOMEM.
2925	iput(vol->vol_ino);
2926	vol->vol_ino = NULL;
2927	/* NTFS 3.0+ specific clean up. */
2928	if (vol->major_ver >= 3) {
2929#ifdef NTFS_RW
2930		if (vol->usnjrnl_j_ino) {
2931			iput(vol->usnjrnl_j_ino);
2932			vol->usnjrnl_j_ino = NULL;
2933		}
2934		if (vol->usnjrnl_max_ino) {
2935			iput(vol->usnjrnl_max_ino);
2936			vol->usnjrnl_max_ino = NULL;
2937		}
2938		if (vol->usnjrnl_ino) {
2939			iput(vol->usnjrnl_ino);
2940			vol->usnjrnl_ino = NULL;
2941		}
2942		if (vol->quota_q_ino) {
2943			iput(vol->quota_q_ino);
2944			vol->quota_q_ino = NULL;
2945		}
2946		if (vol->quota_ino) {
2947			iput(vol->quota_ino);
2948			vol->quota_ino = NULL;
2949		}
2950#endif /* NTFS_RW */
2951		if (vol->extend_ino) {
2952			iput(vol->extend_ino);
2953			vol->extend_ino = NULL;
2954		}
2955		if (vol->secure_ino) {
2956			iput(vol->secure_ino);
2957			vol->secure_ino = NULL;
2958		}
2959	}
2960	iput(vol->root_ino);
2961	vol->root_ino = NULL;
2962	iput(vol->lcnbmp_ino);
2963	vol->lcnbmp_ino = NULL;
2964	iput(vol->mftbmp_ino);
2965	vol->mftbmp_ino = NULL;
2966#ifdef NTFS_RW
2967	if (vol->logfile_ino) {
2968		iput(vol->logfile_ino);
2969		vol->logfile_ino = NULL;
2970	}
2971	if (vol->mftmirr_ino) {
2972		iput(vol->mftmirr_ino);
2973		vol->mftmirr_ino = NULL;
2974	}
2975#endif /* NTFS_RW */
2976	/* Throw away the table of attribute definitions. */
2977	vol->attrdef_size = 0;
2978	if (vol->attrdef) {
2979		ntfs_free(vol->attrdef);
2980		vol->attrdef = NULL;
2981	}
2982	vol->upcase_len = 0;
2983	mutex_lock(&ntfs_lock);
2984	if (vol->upcase == default_upcase) {
2985		ntfs_nr_upcase_users--;
2986		vol->upcase = NULL;
2987	}
2988	mutex_unlock(&ntfs_lock);
2989	if (vol->upcase) {
2990		ntfs_free(vol->upcase);
2991		vol->upcase = NULL;
2992	}
2993	if (vol->nls_map) {
2994		unload_nls(vol->nls_map);
2995		vol->nls_map = NULL;
2996	}
2997	/* Error exit code path. */
2998unl_upcase_iput_tmp_ino_err_out_now:
2999	/*
3000	 * Decrease the number of upcase users and destroy the global default
3001	 * upcase table if necessary.
3002	 */
3003	mutex_lock(&ntfs_lock);
3004	if (!--ntfs_nr_upcase_users && default_upcase) {
3005		ntfs_free(default_upcase);
3006		default_upcase = NULL;
3007	}
3008	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3009		free_compression_buffers();
3010	mutex_unlock(&ntfs_lock);
3011iput_tmp_ino_err_out_now:
3012	iput(tmp_ino);
3013	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3014		iput(vol->mft_ino);
3015	vol->mft_ino = NULL;
3016	/* Errors at this stage are irrelevant. */
3017err_out_now:
3018	sb->s_fs_info = NULL;
3019	kfree(vol);
3020	ntfs_debug("Failed, returning -EINVAL.");
3021	lockdep_on();
3022	return -EINVAL;
3023}
3024
3025/*
3026 * This is a slab cache to optimize allocations and deallocations of Unicode
3027 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3028 * (255) Unicode characters + a terminating NULL Unicode character.
3029 */
3030struct kmem_cache *ntfs_name_cache;
3031
3032/* Slab caches for efficient allocation/deallocation of inodes. */
3033struct kmem_cache *ntfs_inode_cache;
3034struct kmem_cache *ntfs_big_inode_cache;
3035
3036/* Init once constructor for the inode slab cache. */
3037static void ntfs_big_inode_init_once(void *foo)
3038{
3039	ntfs_inode *ni = (ntfs_inode *)foo;
3040
3041	inode_init_once(VFS_I(ni));
3042}
3043
3044/*
3045 * Slab caches to optimize allocations and deallocations of attribute search
3046 * contexts and index contexts, respectively.
3047 */
3048struct kmem_cache *ntfs_attr_ctx_cache;
3049struct kmem_cache *ntfs_index_ctx_cache;
3050
3051/* Driver wide mutex. */
3052DEFINE_MUTEX(ntfs_lock);
3053
3054static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3055	int flags, const char *dev_name, void *data)
3056{
3057	return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3058}
3059
3060static struct file_system_type ntfs_fs_type = {
3061	.owner		= THIS_MODULE,
3062	.name		= "ntfs",
3063	.mount		= ntfs_mount,
3064	.kill_sb	= kill_block_super,
3065	.fs_flags	= FS_REQUIRES_DEV,
3066};
3067MODULE_ALIAS_FS("ntfs");
3068
3069/* Stable names for the slab caches. */
3070static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3071static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3072static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3073static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3074static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3075
3076static int __init init_ntfs_fs(void)
3077{
3078	int err = 0;
3079
3080	/* This may be ugly but it results in pretty output so who cares. (-8 */
3081	pr_info("driver " NTFS_VERSION " [Flags: R/"
3082#ifdef NTFS_RW
3083			"W"
3084#else
3085			"O"
3086#endif
3087#ifdef DEBUG
3088			" DEBUG"
3089#endif
3090#ifdef MODULE
3091			" MODULE"
3092#endif
3093			"].\n");
3094
3095	ntfs_debug("Debug messages are enabled.");
3096
3097	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3098			sizeof(ntfs_index_context), 0 /* offset */,
3099			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3100	if (!ntfs_index_ctx_cache) {
3101		pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
 
3102		goto ictx_err_out;
3103	}
3104	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3105			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3106			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3107	if (!ntfs_attr_ctx_cache) {
3108		pr_crit("NTFS: Failed to create %s!\n",
3109			ntfs_attr_ctx_cache_name);
3110		goto actx_err_out;
3111	}
3112
3113	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3114			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3115			SLAB_HWCACHE_ALIGN, NULL);
3116	if (!ntfs_name_cache) {
3117		pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
 
3118		goto name_err_out;
3119	}
3120
3121	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3122			sizeof(ntfs_inode), 0,
3123			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3124	if (!ntfs_inode_cache) {
3125		pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
 
3126		goto inode_err_out;
3127	}
3128
3129	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3130			sizeof(big_ntfs_inode), 0,
3131			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
3132			SLAB_ACCOUNT, ntfs_big_inode_init_once);
3133	if (!ntfs_big_inode_cache) {
3134		pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
 
3135		goto big_inode_err_out;
3136	}
3137
3138	/* Register the ntfs sysctls. */
3139	err = ntfs_sysctl(1);
3140	if (err) {
3141		pr_crit("Failed to register NTFS sysctls!\n");
3142		goto sysctl_err_out;
3143	}
3144
3145	err = register_filesystem(&ntfs_fs_type);
3146	if (!err) {
3147		ntfs_debug("NTFS driver registered successfully.");
3148		return 0; /* Success! */
3149	}
3150	pr_crit("Failed to register NTFS filesystem driver!\n");
3151
3152	/* Unregister the ntfs sysctls. */
3153	ntfs_sysctl(0);
3154sysctl_err_out:
3155	kmem_cache_destroy(ntfs_big_inode_cache);
3156big_inode_err_out:
3157	kmem_cache_destroy(ntfs_inode_cache);
3158inode_err_out:
3159	kmem_cache_destroy(ntfs_name_cache);
3160name_err_out:
3161	kmem_cache_destroy(ntfs_attr_ctx_cache);
3162actx_err_out:
3163	kmem_cache_destroy(ntfs_index_ctx_cache);
3164ictx_err_out:
3165	if (!err) {
3166		pr_crit("Aborting NTFS filesystem driver registration...\n");
 
3167		err = -ENOMEM;
3168	}
3169	return err;
3170}
3171
3172static void __exit exit_ntfs_fs(void)
3173{
3174	ntfs_debug("Unregistering NTFS driver.");
3175
3176	unregister_filesystem(&ntfs_fs_type);
3177
3178	/*
3179	 * Make sure all delayed rcu free inodes are flushed before we
3180	 * destroy cache.
3181	 */
3182	rcu_barrier();
3183	kmem_cache_destroy(ntfs_big_inode_cache);
3184	kmem_cache_destroy(ntfs_inode_cache);
3185	kmem_cache_destroy(ntfs_name_cache);
3186	kmem_cache_destroy(ntfs_attr_ctx_cache);
3187	kmem_cache_destroy(ntfs_index_ctx_cache);
3188	/* Unregister the ntfs sysctls. */
3189	ntfs_sysctl(0);
3190}
3191
3192MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3193MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3194MODULE_VERSION(NTFS_VERSION);
3195MODULE_LICENSE("GPL");
3196#ifdef DEBUG
3197module_param(debug_msgs, bint, 0);
3198MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3199#endif
3200
3201module_init(init_ntfs_fs)
3202module_exit(exit_ntfs_fs)