Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, "port");
50 of_node_put(ports);
51 of_node_put(port);
52
53 return !!port;
54}
55EXPORT_SYMBOL(of_graph_is_present);
56
57/**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
71int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73{
74 struct property *prop = of_find_property(np, propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88}
89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91/**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
107static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109{
110 struct property *prop = of_find_property(np, propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(-EINVAL);
114 if (!prop->value)
115 return ERR_PTR(-ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(-EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(-EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125}
126
127/**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
144int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147{
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 ((index + 1) * sizeof(*out_value)),
150 0,
151 NULL);
152
153 if (IS_ERR(val))
154 return PTR_ERR(val);
155
156 *out_value = be32_to_cpup(((__be32 *)val) + index);
157 return 0;
158}
159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161/**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
178int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181{
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 ((index + 1) * sizeof(*out_value)),
184 0, NULL);
185
186 if (IS_ERR(val))
187 return PTR_ERR(val);
188
189 *out_value = be64_to_cpup(((__be64 *)val) + index);
190 return 0;
191}
192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194/**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
200 * @out_values: pointer to found values.
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
218int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221{
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 (sz_min * sizeof(*out_values)),
225 (sz_max * sizeof(*out_values)),
226 &sz);
227
228 if (IS_ERR(val))
229 return PTR_ERR(val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241}
242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244/**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
250 * @out_values: pointer to found values.
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
268int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271{
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 (sz_min * sizeof(*out_values)),
275 (sz_max * sizeof(*out_values)),
276 &sz);
277
278 if (IS_ERR(val))
279 return PTR_ERR(val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(val++);
289
290 return sz;
291}
292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294/**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
300 * @out_values: pointer to return found values.
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
315int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318{
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 (sz_min * sizeof(*out_values)),
322 (sz_max * sizeof(*out_values)),
323 &sz);
324
325 if (IS_ERR(val))
326 return PTR_ERR(val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(val++);
336
337 return sz;
338}
339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341/**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
356int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358{
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 sizeof(*out_value),
361 0,
362 NULL);
363
364 if (IS_ERR(val))
365 return PTR_ERR(val);
366
367 *out_value = of_read_number(val, 2);
368 return 0;
369}
370EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372/**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
378 * @out_values: pointer to found values.
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
393int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396{
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 (sz_min * sizeof(*out_values)),
400 (sz_max * sizeof(*out_values)),
401 &sz);
402
403 if (IS_ERR(val))
404 return PTR_ERR(val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(val, 2);
414 val += 2;
415 }
416
417 return sz;
418}
419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421/**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
440int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442{
443 const struct property *prop = of_find_property(np, propname, NULL);
444
445 if (!prop)
446 return -EINVAL;
447 if (!prop->length)
448 return -ENODATA;
449 if (strnlen(prop->value, prop->length) >= prop->length)
450 return -EILSEQ;
451 *out_string = prop->value;
452 return 0;
453}
454EXPORT_SYMBOL_GPL(of_property_read_string);
455
456/**
457 * of_property_match_string() - Find string in a list and return index
458 * @np: pointer to node containing string list property
459 * @propname: string list property name
460 * @string: pointer to string to search for in string list
461 *
462 * This function searches a string list property and returns the index
463 * of a specific string value.
464 */
465int of_property_match_string(const struct device_node *np, const char *propname,
466 const char *string)
467{
468 const struct property *prop = of_find_property(np, propname, NULL);
469 size_t l;
470 int i;
471 const char *p, *end;
472
473 if (!prop)
474 return -EINVAL;
475 if (!prop->value)
476 return -ENODATA;
477
478 p = prop->value;
479 end = p + prop->length;
480
481 for (i = 0; p < end; i++, p += l) {
482 l = strnlen(p, end - p) + 1;
483 if (p + l > end)
484 return -EILSEQ;
485 pr_debug("comparing %s with %s\n", string, p);
486 if (strcmp(string, p) == 0)
487 return i; /* Found it; return index */
488 }
489 return -ENODATA;
490}
491EXPORT_SYMBOL_GPL(of_property_match_string);
492
493/**
494 * of_property_read_string_helper() - Utility helper for parsing string properties
495 * @np: device node from which the property value is to be read.
496 * @propname: name of the property to be searched.
497 * @out_strs: output array of string pointers.
498 * @sz: number of array elements to read.
499 * @skip: Number of strings to skip over at beginning of list.
500 *
501 * Don't call this function directly. It is a utility helper for the
502 * of_property_read_string*() family of functions.
503 */
504int of_property_read_string_helper(const struct device_node *np,
505 const char *propname, const char **out_strs,
506 size_t sz, int skip)
507{
508 const struct property *prop = of_find_property(np, propname, NULL);
509 int l = 0, i = 0;
510 const char *p, *end;
511
512 if (!prop)
513 return -EINVAL;
514 if (!prop->value)
515 return -ENODATA;
516 p = prop->value;
517 end = p + prop->length;
518
519 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
520 l = strnlen(p, end - p) + 1;
521 if (p + l > end)
522 return -EILSEQ;
523 if (out_strs && i >= skip)
524 *out_strs++ = p;
525 }
526 i -= skip;
527 return i <= 0 ? -ENODATA : i;
528}
529EXPORT_SYMBOL_GPL(of_property_read_string_helper);
530
531const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
532 u32 *pu)
533{
534 const void *curv = cur;
535
536 if (!prop)
537 return NULL;
538
539 if (!cur) {
540 curv = prop->value;
541 goto out_val;
542 }
543
544 curv += sizeof(*cur);
545 if (curv >= prop->value + prop->length)
546 return NULL;
547
548out_val:
549 *pu = be32_to_cpup(curv);
550 return curv;
551}
552EXPORT_SYMBOL_GPL(of_prop_next_u32);
553
554const char *of_prop_next_string(struct property *prop, const char *cur)
555{
556 const void *curv = cur;
557
558 if (!prop)
559 return NULL;
560
561 if (!cur)
562 return prop->value;
563
564 curv += strlen(cur) + 1;
565 if (curv >= prop->value + prop->length)
566 return NULL;
567
568 return curv;
569}
570EXPORT_SYMBOL_GPL(of_prop_next_string);
571
572/**
573 * of_graph_parse_endpoint() - parse common endpoint node properties
574 * @node: pointer to endpoint device_node
575 * @endpoint: pointer to the OF endpoint data structure
576 *
577 * The caller should hold a reference to @node.
578 */
579int of_graph_parse_endpoint(const struct device_node *node,
580 struct of_endpoint *endpoint)
581{
582 struct device_node *port_node = of_get_parent(node);
583
584 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
585 __func__, node);
586
587 memset(endpoint, 0, sizeof(*endpoint));
588
589 endpoint->local_node = node;
590 /*
591 * It doesn't matter whether the two calls below succeed.
592 * If they don't then the default value 0 is used.
593 */
594 of_property_read_u32(port_node, "reg", &endpoint->port);
595 of_property_read_u32(node, "reg", &endpoint->id);
596
597 of_node_put(port_node);
598
599 return 0;
600}
601EXPORT_SYMBOL(of_graph_parse_endpoint);
602
603/**
604 * of_graph_get_port_by_id() - get the port matching a given id
605 * @parent: pointer to the parent device node
606 * @id: id of the port
607 *
608 * Return: A 'port' node pointer with refcount incremented. The caller
609 * has to use of_node_put() on it when done.
610 */
611struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
612{
613 struct device_node *node, *port;
614
615 node = of_get_child_by_name(parent, "ports");
616 if (node)
617 parent = node;
618
619 for_each_child_of_node(parent, port) {
620 u32 port_id = 0;
621
622 if (!of_node_name_eq(port, "port"))
623 continue;
624 of_property_read_u32(port, "reg", &port_id);
625 if (id == port_id)
626 break;
627 }
628
629 of_node_put(node);
630
631 return port;
632}
633EXPORT_SYMBOL(of_graph_get_port_by_id);
634
635/**
636 * of_graph_get_next_endpoint() - get next endpoint node
637 * @parent: pointer to the parent device node
638 * @prev: previous endpoint node, or NULL to get first
639 *
640 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
641 * of the passed @prev node is decremented.
642 */
643struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
644 struct device_node *prev)
645{
646 struct device_node *endpoint;
647 struct device_node *port;
648
649 if (!parent)
650 return NULL;
651
652 /*
653 * Start by locating the port node. If no previous endpoint is specified
654 * search for the first port node, otherwise get the previous endpoint
655 * parent port node.
656 */
657 if (!prev) {
658 struct device_node *node;
659
660 node = of_get_child_by_name(parent, "ports");
661 if (node)
662 parent = node;
663
664 port = of_get_child_by_name(parent, "port");
665 of_node_put(node);
666
667 if (!port) {
668 pr_err("graph: no port node found in %pOF\n", parent);
669 return NULL;
670 }
671 } else {
672 port = of_get_parent(prev);
673 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
674 __func__, prev))
675 return NULL;
676 }
677
678 while (1) {
679 /*
680 * Now that we have a port node, get the next endpoint by
681 * getting the next child. If the previous endpoint is NULL this
682 * will return the first child.
683 */
684 endpoint = of_get_next_child(port, prev);
685 if (endpoint) {
686 of_node_put(port);
687 return endpoint;
688 }
689
690 /* No more endpoints under this port, try the next one. */
691 prev = NULL;
692
693 do {
694 port = of_get_next_child(parent, port);
695 if (!port)
696 return NULL;
697 } while (!of_node_name_eq(port, "port"));
698 }
699}
700EXPORT_SYMBOL(of_graph_get_next_endpoint);
701
702/**
703 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
704 * @parent: pointer to the parent device node
705 * @port_reg: identifier (value of reg property) of the parent port node
706 * @reg: identifier (value of reg property) of the endpoint node
707 *
708 * Return: An 'endpoint' node pointer which is identified by reg and at the same
709 * is the child of a port node identified by port_reg. reg and port_reg are
710 * ignored when they are -1. Use of_node_put() on the pointer when done.
711 */
712struct device_node *of_graph_get_endpoint_by_regs(
713 const struct device_node *parent, int port_reg, int reg)
714{
715 struct of_endpoint endpoint;
716 struct device_node *node = NULL;
717
718 for_each_endpoint_of_node(parent, node) {
719 of_graph_parse_endpoint(node, &endpoint);
720 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
721 ((reg == -1) || (endpoint.id == reg)))
722 return node;
723 }
724
725 return NULL;
726}
727EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
728
729/**
730 * of_graph_get_remote_endpoint() - get remote endpoint node
731 * @node: pointer to a local endpoint device_node
732 *
733 * Return: Remote endpoint node associated with remote endpoint node linked
734 * to @node. Use of_node_put() on it when done.
735 */
736struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
737{
738 /* Get remote endpoint node. */
739 return of_parse_phandle(node, "remote-endpoint", 0);
740}
741EXPORT_SYMBOL(of_graph_get_remote_endpoint);
742
743/**
744 * of_graph_get_port_parent() - get port's parent node
745 * @node: pointer to a local endpoint device_node
746 *
747 * Return: device node associated with endpoint node linked
748 * to @node. Use of_node_put() on it when done.
749 */
750struct device_node *of_graph_get_port_parent(struct device_node *node)
751{
752 unsigned int depth;
753
754 if (!node)
755 return NULL;
756
757 /*
758 * Preserve usecount for passed in node as of_get_next_parent()
759 * will do of_node_put() on it.
760 */
761 of_node_get(node);
762
763 /* Walk 3 levels up only if there is 'ports' node. */
764 for (depth = 3; depth && node; depth--) {
765 node = of_get_next_parent(node);
766 if (depth == 2 && !of_node_name_eq(node, "ports") &&
767 !of_node_name_eq(node, "in-ports") &&
768 !of_node_name_eq(node, "out-ports"))
769 break;
770 }
771 return node;
772}
773EXPORT_SYMBOL(of_graph_get_port_parent);
774
775/**
776 * of_graph_get_remote_port_parent() - get remote port's parent node
777 * @node: pointer to a local endpoint device_node
778 *
779 * Return: Remote device node associated with remote endpoint node linked
780 * to @node. Use of_node_put() on it when done.
781 */
782struct device_node *of_graph_get_remote_port_parent(
783 const struct device_node *node)
784{
785 struct device_node *np, *pp;
786
787 /* Get remote endpoint node. */
788 np = of_graph_get_remote_endpoint(node);
789
790 pp = of_graph_get_port_parent(np);
791
792 of_node_put(np);
793
794 return pp;
795}
796EXPORT_SYMBOL(of_graph_get_remote_port_parent);
797
798/**
799 * of_graph_get_remote_port() - get remote port node
800 * @node: pointer to a local endpoint device_node
801 *
802 * Return: Remote port node associated with remote endpoint node linked
803 * to @node. Use of_node_put() on it when done.
804 */
805struct device_node *of_graph_get_remote_port(const struct device_node *node)
806{
807 struct device_node *np;
808
809 /* Get remote endpoint node. */
810 np = of_graph_get_remote_endpoint(node);
811 if (!np)
812 return NULL;
813 return of_get_next_parent(np);
814}
815EXPORT_SYMBOL(of_graph_get_remote_port);
816
817int of_graph_get_endpoint_count(const struct device_node *np)
818{
819 struct device_node *endpoint;
820 int num = 0;
821
822 for_each_endpoint_of_node(np, endpoint)
823 num++;
824
825 return num;
826}
827EXPORT_SYMBOL(of_graph_get_endpoint_count);
828
829/**
830 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
831 * @node: pointer to parent device_node containing graph port/endpoint
832 * @port: identifier (value of reg property) of the parent port node
833 * @endpoint: identifier (value of reg property) of the endpoint node
834 *
835 * Return: Remote device node associated with remote endpoint node linked
836 * to @node. Use of_node_put() on it when done.
837 */
838struct device_node *of_graph_get_remote_node(const struct device_node *node,
839 u32 port, u32 endpoint)
840{
841 struct device_node *endpoint_node, *remote;
842
843 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
844 if (!endpoint_node) {
845 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
846 port, endpoint, node);
847 return NULL;
848 }
849
850 remote = of_graph_get_remote_port_parent(endpoint_node);
851 of_node_put(endpoint_node);
852 if (!remote) {
853 pr_debug("no valid remote node\n");
854 return NULL;
855 }
856
857 if (!of_device_is_available(remote)) {
858 pr_debug("not available for remote node\n");
859 of_node_put(remote);
860 return NULL;
861 }
862
863 return remote;
864}
865EXPORT_SYMBOL(of_graph_get_remote_node);
866
867static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
868{
869 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
870}
871
872static void of_fwnode_put(struct fwnode_handle *fwnode)
873{
874 of_node_put(to_of_node(fwnode));
875}
876
877static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
878{
879 return of_device_is_available(to_of_node(fwnode));
880}
881
882static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
883{
884 return true;
885}
886
887static enum dev_dma_attr
888of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
889{
890 if (of_dma_is_coherent(to_of_node(fwnode)))
891 return DEV_DMA_COHERENT;
892 else
893 return DEV_DMA_NON_COHERENT;
894}
895
896static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
897 const char *propname)
898{
899 return of_property_read_bool(to_of_node(fwnode), propname);
900}
901
902static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
903 const char *propname,
904 unsigned int elem_size, void *val,
905 size_t nval)
906{
907 const struct device_node *node = to_of_node(fwnode);
908
909 if (!val)
910 return of_property_count_elems_of_size(node, propname,
911 elem_size);
912
913 switch (elem_size) {
914 case sizeof(u8):
915 return of_property_read_u8_array(node, propname, val, nval);
916 case sizeof(u16):
917 return of_property_read_u16_array(node, propname, val, nval);
918 case sizeof(u32):
919 return of_property_read_u32_array(node, propname, val, nval);
920 case sizeof(u64):
921 return of_property_read_u64_array(node, propname, val, nval);
922 }
923
924 return -ENXIO;
925}
926
927static int
928of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
929 const char *propname, const char **val,
930 size_t nval)
931{
932 const struct device_node *node = to_of_node(fwnode);
933
934 return val ?
935 of_property_read_string_array(node, propname, val, nval) :
936 of_property_count_strings(node, propname);
937}
938
939static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
940{
941 return kbasename(to_of_node(fwnode)->full_name);
942}
943
944static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
945{
946 /* Root needs no prefix here (its name is "/"). */
947 if (!to_of_node(fwnode)->parent)
948 return "";
949
950 return "/";
951}
952
953static struct fwnode_handle *
954of_fwnode_get_parent(const struct fwnode_handle *fwnode)
955{
956 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
957}
958
959static struct fwnode_handle *
960of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
961 struct fwnode_handle *child)
962{
963 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
964 to_of_node(child)));
965}
966
967static struct fwnode_handle *
968of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
969 const char *childname)
970{
971 const struct device_node *node = to_of_node(fwnode);
972 struct device_node *child;
973
974 for_each_available_child_of_node(node, child)
975 if (of_node_name_eq(child, childname))
976 return of_fwnode_handle(child);
977
978 return NULL;
979}
980
981static int
982of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
983 const char *prop, const char *nargs_prop,
984 unsigned int nargs, unsigned int index,
985 struct fwnode_reference_args *args)
986{
987 struct of_phandle_args of_args;
988 unsigned int i;
989 int ret;
990
991 if (nargs_prop)
992 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
993 nargs_prop, index, &of_args);
994 else
995 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
996 nargs, index, &of_args);
997 if (ret < 0)
998 return ret;
999 if (!args) {
1000 of_node_put(of_args.np);
1001 return 0;
1002 }
1003
1004 args->nargs = of_args.args_count;
1005 args->fwnode = of_fwnode_handle(of_args.np);
1006
1007 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1008 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1009
1010 return 0;
1011}
1012
1013static struct fwnode_handle *
1014of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1015 struct fwnode_handle *prev)
1016{
1017 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1018 to_of_node(prev)));
1019}
1020
1021static struct fwnode_handle *
1022of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1023{
1024 return of_fwnode_handle(
1025 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1026}
1027
1028static struct fwnode_handle *
1029of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1030{
1031 struct device_node *np;
1032
1033 /* Get the parent of the port */
1034 np = of_get_parent(to_of_node(fwnode));
1035 if (!np)
1036 return NULL;
1037
1038 /* Is this the "ports" node? If not, it's the port parent. */
1039 if (!of_node_name_eq(np, "ports"))
1040 return of_fwnode_handle(np);
1041
1042 return of_fwnode_handle(of_get_next_parent(np));
1043}
1044
1045static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1046 struct fwnode_endpoint *endpoint)
1047{
1048 const struct device_node *node = to_of_node(fwnode);
1049 struct device_node *port_node = of_get_parent(node);
1050
1051 endpoint->local_fwnode = fwnode;
1052
1053 of_property_read_u32(port_node, "reg", &endpoint->port);
1054 of_property_read_u32(node, "reg", &endpoint->id);
1055
1056 of_node_put(port_node);
1057
1058 return 0;
1059}
1060
1061static const void *
1062of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1063 const struct device *dev)
1064{
1065 return of_device_get_match_data(dev);
1066}
1067
1068static void of_link_to_phandle(struct device_node *con_np,
1069 struct device_node *sup_np)
1070{
1071 struct device_node *tmp_np = of_node_get(sup_np);
1072
1073 /* Check that sup_np and its ancestors are available. */
1074 while (tmp_np) {
1075 if (of_fwnode_handle(tmp_np)->dev) {
1076 of_node_put(tmp_np);
1077 break;
1078 }
1079
1080 if (!of_device_is_available(tmp_np)) {
1081 of_node_put(tmp_np);
1082 return;
1083 }
1084
1085 tmp_np = of_get_next_parent(tmp_np);
1086 }
1087
1088 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1089}
1090
1091/**
1092 * parse_prop_cells - Property parsing function for suppliers
1093 *
1094 * @np: Pointer to device tree node containing a list
1095 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1096 * @index: For properties holding a list of phandles, this is the index
1097 * into the list.
1098 * @list_name: Property name that is known to contain list of phandle(s) to
1099 * supplier(s)
1100 * @cells_name: property name that specifies phandles' arguments count
1101 *
1102 * This is a helper function to parse properties that have a known fixed name
1103 * and are a list of phandles and phandle arguments.
1104 *
1105 * Returns:
1106 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1107 * on it when done.
1108 * - NULL if no phandle found at index
1109 */
1110static struct device_node *parse_prop_cells(struct device_node *np,
1111 const char *prop_name, int index,
1112 const char *list_name,
1113 const char *cells_name)
1114{
1115 struct of_phandle_args sup_args;
1116
1117 if (strcmp(prop_name, list_name))
1118 return NULL;
1119
1120 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1121 &sup_args))
1122 return NULL;
1123
1124 return sup_args.np;
1125}
1126
1127#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1128static struct device_node *parse_##fname(struct device_node *np, \
1129 const char *prop_name, int index) \
1130{ \
1131 return parse_prop_cells(np, prop_name, index, name, cells); \
1132}
1133
1134static int strcmp_suffix(const char *str, const char *suffix)
1135{
1136 unsigned int len, suffix_len;
1137
1138 len = strlen(str);
1139 suffix_len = strlen(suffix);
1140 if (len <= suffix_len)
1141 return -1;
1142 return strcmp(str + len - suffix_len, suffix);
1143}
1144
1145/**
1146 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1147 *
1148 * @np: Pointer to device tree node containing a list
1149 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1150 * @index: For properties holding a list of phandles, this is the index
1151 * into the list.
1152 * @suffix: Property suffix that is known to contain list of phandle(s) to
1153 * supplier(s)
1154 * @cells_name: property name that specifies phandles' arguments count
1155 *
1156 * This is a helper function to parse properties that have a known fixed suffix
1157 * and are a list of phandles and phandle arguments.
1158 *
1159 * Returns:
1160 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1161 * on it when done.
1162 * - NULL if no phandle found at index
1163 */
1164static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1165 const char *prop_name, int index,
1166 const char *suffix,
1167 const char *cells_name)
1168{
1169 struct of_phandle_args sup_args;
1170
1171 if (strcmp_suffix(prop_name, suffix))
1172 return NULL;
1173
1174 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1175 &sup_args))
1176 return NULL;
1177
1178 return sup_args.np;
1179}
1180
1181#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1182static struct device_node *parse_##fname(struct device_node *np, \
1183 const char *prop_name, int index) \
1184{ \
1185 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1186}
1187
1188/**
1189 * struct supplier_bindings - Property parsing functions for suppliers
1190 *
1191 * @parse_prop: function name
1192 * parse_prop() finds the node corresponding to a supplier phandle
1193 * parse_prop.np: Pointer to device node holding supplier phandle property
1194 * parse_prop.prop_name: Name of property holding a phandle value
1195 * parse_prop.index: For properties holding a list of phandles, this is the
1196 * index into the list
1197 * @get_con_dev: If the consumer node containing the property is never converted
1198 * to a struct device, implement this ops so fw_devlink can use it
1199 * to find the true consumer.
1200 * @optional: Describes whether a supplier is mandatory or not
1201 *
1202 * Returns:
1203 * parse_prop() return values are
1204 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1205 * on it when done.
1206 * - NULL if no phandle found at index
1207 */
1208struct supplier_bindings {
1209 struct device_node *(*parse_prop)(struct device_node *np,
1210 const char *prop_name, int index);
1211 struct device_node *(*get_con_dev)(struct device_node *np);
1212 bool optional;
1213};
1214
1215DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1216DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1217DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1218DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1219DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1220DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1221DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1222DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1223DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1224DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1225DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1226DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1227DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1228DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1229DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1230DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1231DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1232DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1233DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1234DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1235DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1236DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1237DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1238DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1239DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1240DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1241DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1242DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1243DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1244DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1245
1246static struct device_node *parse_gpios(struct device_node *np,
1247 const char *prop_name, int index)
1248{
1249 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1250 return NULL;
1251
1252 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1253 "#gpio-cells");
1254}
1255
1256static struct device_node *parse_iommu_maps(struct device_node *np,
1257 const char *prop_name, int index)
1258{
1259 if (strcmp(prop_name, "iommu-map"))
1260 return NULL;
1261
1262 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1263}
1264
1265static struct device_node *parse_gpio_compat(struct device_node *np,
1266 const char *prop_name, int index)
1267{
1268 struct of_phandle_args sup_args;
1269
1270 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1271 return NULL;
1272
1273 /*
1274 * Ignore node with gpio-hog property since its gpios are all provided
1275 * by its parent.
1276 */
1277 if (of_property_read_bool(np, "gpio-hog"))
1278 return NULL;
1279
1280 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1281 &sup_args))
1282 return NULL;
1283
1284 return sup_args.np;
1285}
1286
1287static struct device_node *parse_interrupts(struct device_node *np,
1288 const char *prop_name, int index)
1289{
1290 struct of_phandle_args sup_args;
1291
1292 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1293 return NULL;
1294
1295 if (strcmp(prop_name, "interrupts") &&
1296 strcmp(prop_name, "interrupts-extended"))
1297 return NULL;
1298
1299 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1300}
1301
1302static struct device_node *parse_remote_endpoint(struct device_node *np,
1303 const char *prop_name,
1304 int index)
1305{
1306 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1307 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1308 return NULL;
1309
1310 return of_graph_get_remote_port_parent(np);
1311}
1312
1313static const struct supplier_bindings of_supplier_bindings[] = {
1314 { .parse_prop = parse_clocks, },
1315 { .parse_prop = parse_interconnects, },
1316 { .parse_prop = parse_iommus, .optional = true, },
1317 { .parse_prop = parse_iommu_maps, .optional = true, },
1318 { .parse_prop = parse_mboxes, },
1319 { .parse_prop = parse_io_channels, },
1320 { .parse_prop = parse_interrupt_parent, },
1321 { .parse_prop = parse_dmas, .optional = true, },
1322 { .parse_prop = parse_power_domains, },
1323 { .parse_prop = parse_hwlocks, },
1324 { .parse_prop = parse_extcon, },
1325 { .parse_prop = parse_nvmem_cells, },
1326 { .parse_prop = parse_phys, },
1327 { .parse_prop = parse_wakeup_parent, },
1328 { .parse_prop = parse_pinctrl0, },
1329 { .parse_prop = parse_pinctrl1, },
1330 { .parse_prop = parse_pinctrl2, },
1331 { .parse_prop = parse_pinctrl3, },
1332 { .parse_prop = parse_pinctrl4, },
1333 { .parse_prop = parse_pinctrl5, },
1334 { .parse_prop = parse_pinctrl6, },
1335 { .parse_prop = parse_pinctrl7, },
1336 { .parse_prop = parse_pinctrl8, },
1337 {
1338 .parse_prop = parse_remote_endpoint,
1339 .get_con_dev = of_graph_get_port_parent,
1340 },
1341 { .parse_prop = parse_pwms, },
1342 { .parse_prop = parse_resets, },
1343 { .parse_prop = parse_leds, },
1344 { .parse_prop = parse_backlight, },
1345 { .parse_prop = parse_panel, },
1346 { .parse_prop = parse_msi_parent, },
1347 { .parse_prop = parse_gpio_compat, },
1348 { .parse_prop = parse_interrupts, },
1349 { .parse_prop = parse_regulators, },
1350 { .parse_prop = parse_gpio, },
1351 { .parse_prop = parse_gpios, },
1352 {}
1353};
1354
1355/**
1356 * of_link_property - Create device links to suppliers listed in a property
1357 * @con_np: The consumer device tree node which contains the property
1358 * @prop_name: Name of property to be parsed
1359 *
1360 * This function checks if the property @prop_name that is present in the
1361 * @con_np device tree node is one of the known common device tree bindings
1362 * that list phandles to suppliers. If @prop_name isn't one, this function
1363 * doesn't do anything.
1364 *
1365 * If @prop_name is one, this function attempts to create fwnode links from the
1366 * consumer device tree node @con_np to all the suppliers device tree nodes
1367 * listed in @prop_name.
1368 *
1369 * Any failed attempt to create a fwnode link will NOT result in an immediate
1370 * return. of_link_property() must create links to all the available supplier
1371 * device tree nodes even when attempts to create a link to one or more
1372 * suppliers fail.
1373 */
1374static int of_link_property(struct device_node *con_np, const char *prop_name)
1375{
1376 struct device_node *phandle;
1377 const struct supplier_bindings *s = of_supplier_bindings;
1378 unsigned int i = 0;
1379 bool matched = false;
1380
1381 /* Do not stop at first failed link, link all available suppliers. */
1382 while (!matched && s->parse_prop) {
1383 if (s->optional && !fw_devlink_is_strict()) {
1384 s++;
1385 continue;
1386 }
1387
1388 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1389 struct device_node *con_dev_np;
1390
1391 con_dev_np = s->get_con_dev
1392 ? s->get_con_dev(con_np)
1393 : of_node_get(con_np);
1394 matched = true;
1395 i++;
1396 of_link_to_phandle(con_dev_np, phandle);
1397 of_node_put(phandle);
1398 of_node_put(con_dev_np);
1399 }
1400 s++;
1401 }
1402 return 0;
1403}
1404
1405static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1406{
1407#ifdef CONFIG_OF_ADDRESS
1408 return of_iomap(to_of_node(fwnode), index);
1409#else
1410 return NULL;
1411#endif
1412}
1413
1414static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1415 unsigned int index)
1416{
1417 return of_irq_get(to_of_node(fwnode), index);
1418}
1419
1420static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1421{
1422 struct property *p;
1423 struct device_node *con_np = to_of_node(fwnode);
1424
1425 if (IS_ENABLED(CONFIG_X86))
1426 return 0;
1427
1428 if (!con_np)
1429 return -EINVAL;
1430
1431 for_each_property_of_node(con_np, p)
1432 of_link_property(con_np, p->name);
1433
1434 return 0;
1435}
1436
1437const struct fwnode_operations of_fwnode_ops = {
1438 .get = of_fwnode_get,
1439 .put = of_fwnode_put,
1440 .device_is_available = of_fwnode_device_is_available,
1441 .device_get_match_data = of_fwnode_device_get_match_data,
1442 .device_dma_supported = of_fwnode_device_dma_supported,
1443 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1444 .property_present = of_fwnode_property_present,
1445 .property_read_int_array = of_fwnode_property_read_int_array,
1446 .property_read_string_array = of_fwnode_property_read_string_array,
1447 .get_name = of_fwnode_get_name,
1448 .get_name_prefix = of_fwnode_get_name_prefix,
1449 .get_parent = of_fwnode_get_parent,
1450 .get_next_child_node = of_fwnode_get_next_child_node,
1451 .get_named_child_node = of_fwnode_get_named_child_node,
1452 .get_reference_args = of_fwnode_get_reference_args,
1453 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1454 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1455 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1456 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1457 .iomap = of_fwnode_iomap,
1458 .irq_get = of_fwnode_irq_get,
1459 .add_links = of_fwnode_add_links,
1460};
1461EXPORT_SYMBOL_GPL(of_fwnode_ops);