Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2015 Google, Inc.
  4 *
  5 * Author: Sami Tolvanen <samitolvanen@google.com>
  6 */
  7
  8#include "dm-verity-fec.h"
  9#include <linux/math64.h>
 10
 11#define DM_MSG_PREFIX	"verity-fec"
 12
 13/*
 14 * If error correction has been configured, returns true.
 15 */
 16bool verity_fec_is_enabled(struct dm_verity *v)
 17{
 18	return v->fec && v->fec->dev;
 19}
 20
 21/*
 22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
 23 * length fields.
 24 */
 25static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
 26{
 27	return (struct dm_verity_fec_io *)
 28		((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io));
 29}
 30
 31/*
 32 * Return an interleaved offset for a byte in RS block.
 33 */
 34static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
 35{
 36	u32 mod;
 37
 38	mod = do_div(offset, v->fec->rsn);
 39	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
 40}
 41
 42/*
 43 * Decode an RS block using Reed-Solomon.
 44 */
 45static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
 46			  u8 *data, u8 *fec, int neras)
 47{
 48	int i;
 49	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
 50
 51	for (i = 0; i < v->fec->roots; i++)
 52		par[i] = fec[i];
 53
 54	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
 55			  fio->erasures, 0, NULL);
 56}
 57
 58/*
 59 * Read error-correcting codes for the requested RS block. Returns a pointer
 60 * to the data block. Caller is responsible for releasing buf.
 61 */
 62static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
 63			   unsigned int *offset, struct dm_buffer **buf)
 64{
 65	u64 position, block, rem;
 66	u8 *res;
 67
 68	position = (index + rsb) * v->fec->roots;
 69	block = div64_u64_rem(position, v->fec->io_size, &rem);
 70	*offset = (unsigned int)rem;
 71
 72	res = dm_bufio_read(v->fec->bufio, block, buf);
 73	if (IS_ERR(res)) {
 74		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
 75		      v->data_dev->name, (unsigned long long)rsb,
 76		      (unsigned long long)block, PTR_ERR(res));
 77		*buf = NULL;
 78	}
 79
 80	return res;
 81}
 82
 83/* Loop over each preallocated buffer slot. */
 84#define fec_for_each_prealloc_buffer(__i) \
 85	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
 86
 87/* Loop over each extra buffer slot. */
 88#define fec_for_each_extra_buffer(io, __i) \
 89	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
 90
 91/* Loop over each allocated buffer. */
 92#define fec_for_each_buffer(io, __i) \
 93	for (__i = 0; __i < (io)->nbufs; __i++)
 94
 95/* Loop over each RS block in each allocated buffer. */
 96#define fec_for_each_buffer_rs_block(io, __i, __j) \
 97	fec_for_each_buffer(io, __i) \
 98		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
 99
100/*
101 * Return a pointer to the current RS block when called inside
102 * fec_for_each_buffer_rs_block.
103 */
104static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
105				      struct dm_verity_fec_io *fio,
106				      unsigned int i, unsigned int j)
107{
108	return &fio->bufs[i][j * v->fec->rsn];
109}
110
111/*
112 * Return an index to the current RS block when called inside
113 * fec_for_each_buffer_rs_block.
114 */
115static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j)
116{
117	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
118}
119
120/*
121 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
122 * starting from block_offset.
123 */
124static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
125			   u64 rsb, int byte_index, unsigned int block_offset,
126			   int neras)
127{
128	int r, corrected = 0, res;
129	struct dm_buffer *buf;
130	unsigned int n, i, offset;
131	u8 *par, *block;
132
133	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
134	if (IS_ERR(par))
135		return PTR_ERR(par);
136
137	/*
138	 * Decode the RS blocks we have in bufs. Each RS block results in
139	 * one corrected target byte and consumes fec->roots parity bytes.
140	 */
141	fec_for_each_buffer_rs_block(fio, n, i) {
142		block = fec_buffer_rs_block(v, fio, n, i);
143		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
144		if (res < 0) {
145			r = res;
146			goto error;
147		}
148
149		corrected += res;
150		fio->output[block_offset] = block[byte_index];
151
152		block_offset++;
153		if (block_offset >= 1 << v->data_dev_block_bits)
154			goto done;
155
156		/* read the next block when we run out of parity bytes */
157		offset += v->fec->roots;
158		if (offset >= v->fec->io_size) {
159			dm_bufio_release(buf);
160
161			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
162			if (IS_ERR(par))
163				return PTR_ERR(par);
164		}
165	}
166done:
167	r = corrected;
168error:
169	dm_bufio_release(buf);
170
171	if (r < 0 && neras)
172		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
173			    v->data_dev->name, (unsigned long long)rsb, r);
174	else if (r > 0)
175		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
176			     v->data_dev->name, (unsigned long long)rsb, r);
177
178	return r;
179}
180
181/*
182 * Locate data block erasures using verity hashes.
183 */
184static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
185			  u8 *want_digest, u8 *data)
186{
187	if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
188				 data, 1 << v->data_dev_block_bits,
189				 verity_io_real_digest(v, io), true)))
190		return 0;
191
192	return memcmp(verity_io_real_digest(v, io), want_digest,
193		      v->digest_size) != 0;
194}
195
196/*
197 * Read data blocks that are part of the RS block and deinterleave as much as
198 * fits into buffers. Check for erasure locations if @neras is non-NULL.
199 */
200static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
201			 u64 rsb, u64 target, unsigned int block_offset,
202			 int *neras)
203{
204	bool is_zero;
205	int i, j, target_index = -1;
206	struct dm_buffer *buf;
207	struct dm_bufio_client *bufio;
208	struct dm_verity_fec_io *fio = fec_io(io);
209	u64 block, ileaved;
210	u8 *bbuf, *rs_block;
211	u8 want_digest[HASH_MAX_DIGESTSIZE];
212	unsigned int n, k;
213
214	if (neras)
215		*neras = 0;
216
217	if (WARN_ON(v->digest_size > sizeof(want_digest)))
218		return -EINVAL;
219
220	/*
221	 * read each of the rsn data blocks that are part of the RS block, and
222	 * interleave contents to available bufs
223	 */
224	for (i = 0; i < v->fec->rsn; i++) {
225		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
226
227		/*
228		 * target is the data block we want to correct, target_index is
229		 * the index of this block within the rsn RS blocks
230		 */
231		if (ileaved == target)
232			target_index = i;
233
234		block = ileaved >> v->data_dev_block_bits;
235		bufio = v->fec->data_bufio;
236
237		if (block >= v->data_blocks) {
238			block -= v->data_blocks;
239
240			/*
241			 * blocks outside the area were assumed to contain
242			 * zeros when encoding data was generated
243			 */
244			if (unlikely(block >= v->fec->hash_blocks))
245				continue;
246
247			block += v->hash_start;
248			bufio = v->bufio;
249		}
250
251		bbuf = dm_bufio_read(bufio, block, &buf);
252		if (IS_ERR(bbuf)) {
253			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
254				     v->data_dev->name,
255				     (unsigned long long)rsb,
256				     (unsigned long long)block, PTR_ERR(bbuf));
257
258			/* assume the block is corrupted */
259			if (neras && *neras <= v->fec->roots)
260				fio->erasures[(*neras)++] = i;
261
262			continue;
263		}
264
265		/* locate erasures if the block is on the data device */
266		if (bufio == v->fec->data_bufio &&
267		    verity_hash_for_block(v, io, block, want_digest,
268					  &is_zero) == 0) {
269			/* skip known zero blocks entirely */
270			if (is_zero)
271				goto done;
272
273			/*
274			 * skip if we have already found the theoretical
275			 * maximum number (i.e. fec->roots) of erasures
276			 */
277			if (neras && *neras <= v->fec->roots &&
278			    fec_is_erasure(v, io, want_digest, bbuf))
279				fio->erasures[(*neras)++] = i;
280		}
281
282		/*
283		 * deinterleave and copy the bytes that fit into bufs,
284		 * starting from block_offset
285		 */
286		fec_for_each_buffer_rs_block(fio, n, j) {
287			k = fec_buffer_rs_index(n, j) + block_offset;
288
289			if (k >= 1 << v->data_dev_block_bits)
290				goto done;
291
292			rs_block = fec_buffer_rs_block(v, fio, n, j);
293			rs_block[i] = bbuf[k];
294		}
295done:
296		dm_bufio_release(buf);
297	}
298
299	return target_index;
300}
301
302/*
303 * Allocate RS control structure and FEC buffers from preallocated mempools,
304 * and attempt to allocate as many extra buffers as available.
305 */
306static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
307{
308	unsigned int n;
309
310	if (!fio->rs)
311		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
312
313	fec_for_each_prealloc_buffer(n) {
314		if (fio->bufs[n])
315			continue;
316
317		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
318		if (unlikely(!fio->bufs[n])) {
319			DMERR("failed to allocate FEC buffer");
320			return -ENOMEM;
321		}
322	}
323
324	/* try to allocate the maximum number of buffers */
325	fec_for_each_extra_buffer(fio, n) {
326		if (fio->bufs[n])
327			continue;
328
329		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
330		/* we can manage with even one buffer if necessary */
331		if (unlikely(!fio->bufs[n]))
332			break;
333	}
334	fio->nbufs = n;
335
336	if (!fio->output)
337		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
338
339	return 0;
340}
341
342/*
343 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
344 * zeroed before deinterleaving.
345 */
346static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
347{
348	unsigned int n;
349
350	fec_for_each_buffer(fio, n)
351		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
352
353	memset(fio->erasures, 0, sizeof(fio->erasures));
354}
355
356/*
357 * Decode all RS blocks in a single data block and return the target block
358 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
359 * hashes to locate erasures.
360 */
361static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
362			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
363			  bool use_erasures)
364{
365	int r, neras = 0;
366	unsigned int pos;
367
368	r = fec_alloc_bufs(v, fio);
369	if (unlikely(r < 0))
370		return r;
371
372	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
373		fec_init_bufs(v, fio);
374
375		r = fec_read_bufs(v, io, rsb, offset, pos,
376				  use_erasures ? &neras : NULL);
377		if (unlikely(r < 0))
378			return r;
379
380		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
381		if (r < 0)
382			return r;
383
384		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
385	}
386
387	/* Always re-validate the corrected block against the expected hash */
388	r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
389			1 << v->data_dev_block_bits,
390			verity_io_real_digest(v, io), true);
391	if (unlikely(r < 0))
392		return r;
393
394	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
395		   v->digest_size)) {
396		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
397			    v->data_dev->name, (unsigned long long)rsb, neras);
398		return -EILSEQ;
399	}
400
401	return 0;
402}
403
404static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
405		       size_t len)
406{
407	struct dm_verity_fec_io *fio = fec_io(io);
408
409	memcpy(data, &fio->output[fio->output_pos], len);
410	fio->output_pos += len;
411
412	return 0;
413}
414
415/*
416 * Correct errors in a block. Copies corrected block to dest if non-NULL,
417 * otherwise to a bio_vec starting from iter.
418 */
419int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
420		      enum verity_block_type type, sector_t block, u8 *dest,
421		      struct bvec_iter *iter)
422{
423	int r;
424	struct dm_verity_fec_io *fio = fec_io(io);
425	u64 offset, res, rsb;
426
427	if (!verity_fec_is_enabled(v))
428		return -EOPNOTSUPP;
429
430	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
431		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
432		return -EIO;
433	}
434
435	fio->level++;
436
437	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
438		block = block - v->hash_start + v->data_blocks;
439
440	/*
441	 * For RS(M, N), the continuous FEC data is divided into blocks of N
442	 * bytes. Since block size may not be divisible by N, the last block
443	 * is zero padded when decoding.
444	 *
445	 * Each byte of the block is covered by a different RS(M, N) code,
446	 * and each code is interleaved over N blocks to make it less likely
447	 * that bursty corruption will leave us in unrecoverable state.
448	 */
449
450	offset = block << v->data_dev_block_bits;
451	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
452
453	/*
454	 * The base RS block we can feed to the interleaver to find out all
455	 * blocks required for decoding.
456	 */
457	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
458
459	/*
460	 * Locating erasures is slow, so attempt to recover the block without
461	 * them first. Do a second attempt with erasures if the corruption is
462	 * bad enough.
463	 */
464	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
465	if (r < 0) {
466		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
467		if (r < 0)
468			goto done;
469	}
470
471	if (dest)
472		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
473	else if (iter) {
474		fio->output_pos = 0;
475		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
476	}
477
478done:
479	fio->level--;
480	return r;
481}
482
483/*
484 * Clean up per-bio data.
485 */
486void verity_fec_finish_io(struct dm_verity_io *io)
487{
488	unsigned int n;
489	struct dm_verity_fec *f = io->v->fec;
490	struct dm_verity_fec_io *fio = fec_io(io);
491
492	if (!verity_fec_is_enabled(io->v))
493		return;
494
495	mempool_free(fio->rs, &f->rs_pool);
496
497	fec_for_each_prealloc_buffer(n)
498		mempool_free(fio->bufs[n], &f->prealloc_pool);
499
500	fec_for_each_extra_buffer(fio, n)
501		mempool_free(fio->bufs[n], &f->extra_pool);
502
503	mempool_free(fio->output, &f->output_pool);
504}
505
506/*
507 * Initialize per-bio data.
508 */
509void verity_fec_init_io(struct dm_verity_io *io)
510{
511	struct dm_verity_fec_io *fio = fec_io(io);
512
513	if (!verity_fec_is_enabled(io->v))
514		return;
515
516	fio->rs = NULL;
517	memset(fio->bufs, 0, sizeof(fio->bufs));
518	fio->nbufs = 0;
519	fio->output = NULL;
520	fio->level = 0;
521}
522
523/*
524 * Append feature arguments and values to the status table.
525 */
526unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
527				 char *result, unsigned int maxlen)
528{
529	if (!verity_fec_is_enabled(v))
530		return sz;
531
532	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
533	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
534	       DM_VERITY_OPT_FEC_START " %llu "
535	       DM_VERITY_OPT_FEC_ROOTS " %d",
536	       v->fec->dev->name,
537	       (unsigned long long)v->fec->blocks,
538	       (unsigned long long)v->fec->start,
539	       v->fec->roots);
540
541	return sz;
542}
543
544void verity_fec_dtr(struct dm_verity *v)
545{
546	struct dm_verity_fec *f = v->fec;
547
548	if (!verity_fec_is_enabled(v))
549		goto out;
550
551	mempool_exit(&f->rs_pool);
552	mempool_exit(&f->prealloc_pool);
553	mempool_exit(&f->extra_pool);
554	mempool_exit(&f->output_pool);
555	kmem_cache_destroy(f->cache);
556
557	if (f->data_bufio)
558		dm_bufio_client_destroy(f->data_bufio);
559	if (f->bufio)
560		dm_bufio_client_destroy(f->bufio);
561
562	if (f->dev)
563		dm_put_device(v->ti, f->dev);
564out:
565	kfree(f);
566	v->fec = NULL;
567}
568
569static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
570{
571	struct dm_verity *v = pool_data;
572
573	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
574}
575
576static void fec_rs_free(void *element, void *pool_data)
577{
578	struct rs_control *rs = element;
579
580	if (rs)
581		free_rs(rs);
582}
583
584bool verity_is_fec_opt_arg(const char *arg_name)
585{
586	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
587		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
588		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
589		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
590}
591
592int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
593			      unsigned int *argc, const char *arg_name)
594{
595	int r;
596	struct dm_target *ti = v->ti;
597	const char *arg_value;
598	unsigned long long num_ll;
599	unsigned char num_c;
600	char dummy;
601
602	if (!*argc) {
603		ti->error = "FEC feature arguments require a value";
604		return -EINVAL;
605	}
606
607	arg_value = dm_shift_arg(as);
608	(*argc)--;
609
610	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
611		r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev);
612		if (r) {
613			ti->error = "FEC device lookup failed";
614			return r;
615		}
616
617	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
618		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
619		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
620		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
621			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
622			return -EINVAL;
623		}
624		v->fec->blocks = num_ll;
625
626	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
627		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
628		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
629		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
630			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
631			return -EINVAL;
632		}
633		v->fec->start = num_ll;
634
635	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
636		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
637		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
638		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
639			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
640			return -EINVAL;
641		}
642		v->fec->roots = num_c;
643
644	} else {
645		ti->error = "Unrecognized verity FEC feature request";
646		return -EINVAL;
647	}
648
649	return 0;
650}
651
652/*
653 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
654 */
655int verity_fec_ctr_alloc(struct dm_verity *v)
656{
657	struct dm_verity_fec *f;
658
659	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
660	if (!f) {
661		v->ti->error = "Cannot allocate FEC structure";
662		return -ENOMEM;
663	}
664	v->fec = f;
665
666	return 0;
667}
668
669/*
670 * Validate arguments and preallocate memory. Must be called after arguments
671 * have been parsed using verity_fec_parse_opt_args.
672 */
673int verity_fec_ctr(struct dm_verity *v)
674{
675	struct dm_verity_fec *f = v->fec;
676	struct dm_target *ti = v->ti;
677	u64 hash_blocks, fec_blocks;
678	int ret;
679
680	if (!verity_fec_is_enabled(v)) {
681		verity_fec_dtr(v);
682		return 0;
683	}
684
685	/*
686	 * FEC is computed over data blocks, possible metadata, and
687	 * hash blocks. In other words, FEC covers total of fec_blocks
688	 * blocks consisting of the following:
689	 *
690	 *  data blocks | hash blocks | metadata (optional)
691	 *
692	 * We allow metadata after hash blocks to support a use case
693	 * where all data is stored on the same device and FEC covers
694	 * the entire area.
695	 *
696	 * If metadata is included, we require it to be available on the
697	 * hash device after the hash blocks.
698	 */
699
700	hash_blocks = v->hash_blocks - v->hash_start;
701
702	/*
703	 * Require matching block sizes for data and hash devices for
704	 * simplicity.
705	 */
706	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
707		ti->error = "Block sizes must match to use FEC";
708		return -EINVAL;
709	}
710
711	if (!f->roots) {
712		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
713		return -EINVAL;
714	}
715	f->rsn = DM_VERITY_FEC_RSM - f->roots;
716
717	if (!f->blocks) {
718		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
719		return -EINVAL;
720	}
721
722	f->rounds = f->blocks;
723	if (sector_div(f->rounds, f->rsn))
724		f->rounds++;
725
726	/*
727	 * Due to optional metadata, f->blocks can be larger than
728	 * data_blocks and hash_blocks combined.
729	 */
730	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
731		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
732		return -EINVAL;
733	}
734
735	/*
736	 * Metadata is accessed through the hash device, so we require
737	 * it to be large enough.
738	 */
739	f->hash_blocks = f->blocks - v->data_blocks;
740	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
741		ti->error = "Hash device is too small for "
742			DM_VERITY_OPT_FEC_BLOCKS;
743		return -E2BIG;
744	}
745
746	if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
747		f->io_size = 1 << v->data_dev_block_bits;
748	else
749		f->io_size = v->fec->roots << SECTOR_SHIFT;
750
751	f->bufio = dm_bufio_client_create(f->dev->bdev,
752					  f->io_size,
753					  1, 0, NULL, NULL, 0);
754	if (IS_ERR(f->bufio)) {
755		ti->error = "Cannot initialize FEC bufio client";
756		return PTR_ERR(f->bufio);
757	}
758
759	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
760
761	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
762	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
763		ti->error = "FEC device is too small";
764		return -E2BIG;
765	}
766
767	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
768					       1 << v->data_dev_block_bits,
769					       1, 0, NULL, NULL, 0);
770	if (IS_ERR(f->data_bufio)) {
771		ti->error = "Cannot initialize FEC data bufio client";
772		return PTR_ERR(f->data_bufio);
773	}
774
775	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
776		ti->error = "Data device is too small";
777		return -E2BIG;
778	}
779
780	/* Preallocate an rs_control structure for each worker thread */
781	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
782			   fec_rs_free, (void *) v);
783	if (ret) {
784		ti->error = "Cannot allocate RS pool";
785		return ret;
786	}
787
788	f->cache = kmem_cache_create("dm_verity_fec_buffers",
789				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
790				     0, 0, NULL);
791	if (!f->cache) {
792		ti->error = "Cannot create FEC buffer cache";
793		return -ENOMEM;
794	}
795
796	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
797	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
798				     DM_VERITY_FEC_BUF_PREALLOC,
799				     f->cache);
800	if (ret) {
801		ti->error = "Cannot allocate FEC buffer prealloc pool";
802		return ret;
803	}
804
805	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
806	if (ret) {
807		ti->error = "Cannot allocate FEC buffer extra pool";
808		return ret;
809	}
810
811	/* Preallocate an output buffer for each thread */
812	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
813					1 << v->data_dev_block_bits);
814	if (ret) {
815		ti->error = "Cannot allocate FEC output pool";
816		return ret;
817	}
818
819	/* Reserve space for our per-bio data */
820	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
821
822	return 0;
823}