Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Common clock framework driver for the Versaclock7 family of timing devices.
   4 *
   5 * Copyright (c) 2022 Renesas Electronics Corporation
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/bitfield.h>
  11#include <linux/clk.h>
  12#include <linux/clk-provider.h>
  13#include <linux/i2c.h>
  14#include <linux/math64.h>
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/property.h>
  18#include <linux/regmap.h>
  19#include <linux/swab.h>
  20
  21/*
  22 * 16-bit register address: the lower 8 bits of the register address come
  23 * from the offset addr byte and the upper 8 bits come from the page register.
  24 */
  25#define VC7_PAGE_ADDR			0xFD
  26#define VC7_PAGE_WINDOW			256
  27#define VC7_MAX_REG			0x364
  28
  29/* Maximum number of banks supported by VC7 */
  30#define VC7_NUM_BANKS			7
  31
  32/* Maximum number of FODs supported by VC7 */
  33#define VC7_NUM_FOD			3
  34
  35/* Maximum number of IODs supported by VC7 */
  36#define VC7_NUM_IOD			4
  37
  38/* Maximum number of outputs supported by VC7 */
  39#define VC7_NUM_OUT			12
  40
  41/* VCO valid range is 9.5 GHz to 10.7 GHz */
  42#define VC7_APLL_VCO_MIN		9500000000UL
  43#define VC7_APLL_VCO_MAX		10700000000UL
  44
  45/* APLL denominator is fixed at 2^27 */
  46#define VC7_APLL_DENOMINATOR_BITS	27
  47
  48/* FOD 1st stage denominator is fixed 2^34 */
  49#define VC7_FOD_DENOMINATOR_BITS	34
  50
  51/* IOD can operate between 1kHz and 650MHz */
  52#define VC7_IOD_RATE_MIN		1000UL
  53#define VC7_IOD_RATE_MAX		650000000UL
  54#define VC7_IOD_MIN_DIVISOR		14
  55#define VC7_IOD_MAX_DIVISOR		0x1ffffff /* 25-bit */
  56
  57#define VC7_FOD_RATE_MIN		1000UL
  58#define VC7_FOD_RATE_MAX		650000000UL
  59#define VC7_FOD_1ST_STAGE_RATE_MIN	33000000UL /* 33 MHz */
  60#define VC7_FOD_1ST_STAGE_RATE_MAX	650000000UL /* 650 MHz */
  61#define VC7_FOD_1ST_INT_MAX		324
  62#define VC7_FOD_2ND_INT_MIN		2
  63#define VC7_FOD_2ND_INT_MAX		0x1ffff /* 17-bit */
  64
  65/* VC7 Registers */
  66
  67#define VC7_REG_XO_CNFG			0x2C
  68#define VC7_REG_XO_CNFG_COUNT		4
  69#define VC7_REG_XO_IB_H_DIV_SHIFT	24
  70#define VC7_REG_XO_IB_H_DIV_MASK	GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
  71
  72#define VC7_REG_APLL_FB_DIV_FRAC	0x120
  73#define VC7_REG_APLL_FB_DIV_FRAC_COUNT	4
  74#define VC7_REG_APLL_FB_DIV_FRAC_MASK	GENMASK(26, 0)
  75
  76#define VC7_REG_APLL_FB_DIV_INT		0x124
  77#define VC7_REG_APLL_FB_DIV_INT_COUNT	2
  78#define VC7_REG_APLL_FB_DIV_INT_MASK	GENMASK(9, 0)
  79
  80#define VC7_REG_APLL_CNFG		0x127
  81#define VC7_REG_APLL_EN_DOUBLER		BIT(0)
  82
  83#define VC7_REG_OUT_BANK_CNFG(idx)	(0x280 + (0x4 * (idx)))
  84#define VC7_REG_OUTPUT_BANK_SRC_MASK	GENMASK(2, 0)
  85
  86#define VC7_REG_FOD_INT_CNFG(idx)	(0x1E0 + (0x10 * (idx)))
  87#define VC7_REG_FOD_INT_CNFG_COUNT	8
  88#define VC7_REG_FOD_1ST_INT_MASK	GENMASK(8, 0)
  89#define VC7_REG_FOD_2ND_INT_SHIFT	9
  90#define VC7_REG_FOD_2ND_INT_MASK	GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
  91#define VC7_REG_FOD_FRAC_SHIFT		26
  92#define VC7_REG_FOD_FRAC_MASK		GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
  93
  94#define VC7_REG_IOD_INT_CNFG(idx)	(0x1C0 + (0x8 * (idx)))
  95#define VC7_REG_IOD_INT_CNFG_COUNT	4
  96#define VC7_REG_IOD_INT_MASK		GENMASK(24, 0)
  97
  98#define VC7_REG_ODRV_EN(idx)		(0x240 + (0x4 * (idx)))
  99#define VC7_REG_OUT_DIS			BIT(0)
 100
 101struct vc7_driver_data;
 102static const struct regmap_config vc7_regmap_config;
 103
 104/* Supported Renesas VC7 models */
 105enum vc7_model {
 106	VC7_RC21008A,
 107};
 108
 109struct vc7_chip_info {
 110	const enum vc7_model model;
 111	const unsigned int banks[VC7_NUM_BANKS];
 112	const unsigned int num_banks;
 113	const unsigned int outputs[VC7_NUM_OUT];
 114	const unsigned int num_outputs;
 115};
 116
 117/*
 118 * Changing the APLL frequency is currently not supported.
 119 * The APLL will consist of an opaque block between the XO and FOD/IODs and
 120 * its frequency will be computed based on the current state of the device.
 121 */
 122struct vc7_apll_data {
 123	struct clk *clk;
 124	struct vc7_driver_data *vc7;
 125	u8 xo_ib_h_div;
 126	u8 en_doubler;
 127	u16 apll_fb_div_int;
 128	u32 apll_fb_div_frac;
 129};
 130
 131struct vc7_fod_data {
 132	struct clk_hw hw;
 133	struct vc7_driver_data *vc7;
 134	unsigned int num;
 135	u32 fod_1st_int;
 136	u32 fod_2nd_int;
 137	u64 fod_frac;
 138};
 139
 140struct vc7_iod_data {
 141	struct clk_hw hw;
 142	struct vc7_driver_data *vc7;
 143	unsigned int num;
 144	u32 iod_int;
 145};
 146
 147struct vc7_out_data {
 148	struct clk_hw hw;
 149	struct vc7_driver_data *vc7;
 150	unsigned int num;
 151	unsigned int out_dis;
 152};
 153
 154struct vc7_driver_data {
 155	struct i2c_client *client;
 156	struct regmap *regmap;
 157	const struct vc7_chip_info *chip_info;
 158
 159	struct clk *pin_xin;
 160	struct vc7_apll_data clk_apll;
 161	struct vc7_fod_data clk_fod[VC7_NUM_FOD];
 162	struct vc7_iod_data clk_iod[VC7_NUM_IOD];
 163	struct vc7_out_data clk_out[VC7_NUM_OUT];
 164};
 165
 166struct vc7_bank_src_map {
 167	enum vc7_bank_src_type {
 168		VC7_FOD,
 169		VC7_IOD,
 170	} type;
 171	union _divider {
 172		struct vc7_iod_data *iod;
 173		struct vc7_fod_data *fod;
 174	} src;
 175};
 176
 177static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
 178				     void *data)
 179{
 180	struct vc7_driver_data *vc7 = data;
 181	unsigned int idx = clkspec->args[0];
 182
 183	if (idx >= vc7->chip_info->num_outputs)
 184		return ERR_PTR(-EINVAL);
 185
 186	return &vc7->clk_out[idx].hw;
 187}
 188
 189static const unsigned int RC21008A_index_to_output_mapping[] = {
 190	1, 2, 3, 6, 7, 8, 10, 11
 191};
 192
 193static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
 194{
 195	switch (model) {
 196	case VC7_RC21008A:
 197		return RC21008A_index_to_output_mapping[i];
 198	default:
 199		return i;
 200	}
 201}
 202
 203/* bank to output mapping, same across all variants */
 204static const unsigned int output_bank_mapping[] = {
 205	0, /* Output 0 */
 206	1, /* Output 1 */
 207	2, /* Output 2 */
 208	2, /* Output 3 */
 209	3, /* Output 4 */
 210	3, /* Output 5 */
 211	3, /* Output 6 */
 212	3, /* Output 7 */
 213	4, /* Output 8 */
 214	4, /* Output 9 */
 215	5, /* Output 10 */
 216	6  /* Output 11 */
 217};
 218
 219/**
 220 * vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
 221 * as an upper and lower part.
 222 *
 223 * @left: The left argument.
 224 * @right: The right argument.
 225 * @hi: The upper 64-bits of the 128-bit product.
 226 * @lo: The lower 64-bits of the 128-bit product.
 227 *
 228 * From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
 229 */
 230static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
 231{
 232	u64 a0 = left & 0xffffffffull;
 233	u64 a1 = left >> 32;
 234	u64 b0 = right & 0xffffffffull;
 235	u64 b1 = right >> 32;
 236	u64 m0 = a0 * b0;
 237	u64 m1 = a0 * b1;
 238	u64 m2 = a1 * b0;
 239	u64 m3 = a1 * b1;
 240
 241	m2 += (m0 >> 32);
 242	m2 += m1;
 243
 244	/* Overflow */
 245	if (m2 < m1)
 246		m3 += 0x100000000ull;
 247
 248	*lo = (m0 & 0xffffffffull) | (m2 << 32);
 249	*hi = m3 + (m2 >> 32);
 250}
 251
 252/**
 253 * vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
 254 *
 255 * @numhi: The uppper 64-bits of the dividend.
 256 * @numlo: The lower 64-bits of the dividend.
 257 * @den: The denominator (divisor).
 258 * @r: The remainder, pass NULL if the remainder is not needed.
 259 *
 260 * Originally from libdivide, modified to use kernel u64/u32 types.
 261 *
 262 * See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
 263 *
 264 * Return: The 64-bit quotient of the division.
 265 *
 266 * In case of overflow of division by zero, max(u64) is returned.
 267 */
 268static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
 269{
 270	/*
 271	 * We work in base 2**32.
 272	 * A uint32 holds a single digit. A uint64 holds two digits.
 273	 * Our numerator is conceptually [num3, num2, num1, num0].
 274	 * Our denominator is [den1, den0].
 275	 */
 276	const u64 b = ((u64)1 << 32);
 277
 278	/* The high and low digits of our computed quotient. */
 279	u32 q1, q0;
 280
 281	/* The normalization shift factor */
 282	int shift;
 283
 284	/*
 285	 * The high and low digits of our denominator (after normalizing).
 286	 * Also the low 2 digits of our numerator (after normalizing).
 287	 */
 288	u32 den1, den0, num1, num0;
 289
 290	/* A partial remainder; */
 291	u64 rem;
 292
 293	/*
 294	 * The estimated quotient, and its corresponding remainder (unrelated
 295	 * to true remainder).
 296	 */
 297	u64 qhat, rhat;
 298
 299	/* Variables used to correct the estimated quotient. */
 300	u64 c1, c2;
 301
 302	/* Check for overflow and divide by 0. */
 303	if (numhi >= den) {
 304		if (r)
 305			*r = ~0ull;
 306		return ~0ull;
 307	}
 308
 309	/*
 310	 * Determine the normalization factor. We multiply den by this, so that
 311	 * its leading digit is at least half b. In binary this means just
 312	 * shifting left by the number of leading zeros, so that there's a 1 in
 313	 * the MSB.
 314	 *
 315	 * We also shift numer by the same amount. This cannot overflow because
 316	 * numhi < den.  The expression (-shift & 63) is the same as (64 -
 317	 * shift), except it avoids the UB of shifting by 64. The funny bitwise
 318	 * 'and' ensures that numlo does not get shifted into numhi if shift is
 319	 * 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
 320	 * sequence below avoids it.
 321	 */
 322	shift = __builtin_clzll(den);
 323	den <<= shift;
 324	numhi <<= shift;
 325	numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
 326	numlo <<= shift;
 327
 328	/*
 329	 * Extract the low digits of the numerator and both digits of the
 330	 * denominator.
 331	 */
 332	num1 = (u32)(numlo >> 32);
 333	num0 = (u32)(numlo & 0xFFFFFFFFu);
 334	den1 = (u32)(den >> 32);
 335	den0 = (u32)(den & 0xFFFFFFFFu);
 336
 337	/*
 338	 * We wish to compute q1 = [n3 n2 n1] / [d1 d0].
 339	 * Estimate q1 as [n3 n2] / [d1], and then correct it.
 340	 * Note while qhat may be 2 digits, q1 is always 1 digit.
 341	 */
 342	qhat = div64_u64_rem(numhi, den1, &rhat);
 343	c1 = qhat * den0;
 344	c2 = rhat * b + num1;
 345	if (c1 > c2)
 346		qhat -= (c1 - c2 > den) ? 2 : 1;
 347	q1 = (u32)qhat;
 348
 349	/* Compute the true (partial) remainder. */
 350	rem = numhi * b + num1 - q1 * den;
 351
 352	/*
 353	 * We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
 354	 * Estimate q0 as [rem1 rem0] / [d1] and correct it.
 355	 */
 356	qhat = div64_u64_rem(rem, den1, &rhat);
 357	c1 = qhat * den0;
 358	c2 = rhat * b + num0;
 359	if (c1 > c2)
 360		qhat -= (c1 - c2 > den) ? 2 : 1;
 361	q0 = (u32)qhat;
 362
 363	/* Return remainder if requested. */
 364	if (r)
 365		*r = (rem * b + num0 - q0 * den) >> shift;
 366	return ((u64)q1 << 32) | q0;
 367}
 368
 369static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
 370			    unsigned int bank_idx,
 371			    unsigned int output_bank_src,
 372			    struct vc7_bank_src_map *map)
 373{
 374	/* Mapping from Table 38 in datasheet */
 375	if (bank_idx == 0 || bank_idx == 1) {
 376		switch (output_bank_src) {
 377		case 0:
 378			map->type = VC7_IOD,
 379			map->src.iod = &vc7->clk_iod[0];
 380			return 0;
 381		case 1:
 382			map->type = VC7_IOD,
 383			map->src.iod = &vc7->clk_iod[1];
 384			return 0;
 385		case 4:
 386			map->type = VC7_FOD,
 387			map->src.fod = &vc7->clk_fod[0];
 388			return 0;
 389		case 5:
 390			map->type = VC7_FOD,
 391			map->src.fod = &vc7->clk_fod[1];
 392			return 0;
 393		default:
 394			break;
 395		}
 396	} else if (bank_idx == 2) {
 397		switch (output_bank_src) {
 398		case 1:
 399			map->type = VC7_IOD,
 400			map->src.iod = &vc7->clk_iod[1];
 401			return 0;
 402		case 4:
 403			map->type = VC7_FOD,
 404			map->src.fod = &vc7->clk_fod[0];
 405			return 0;
 406		case 5:
 407			map->type = VC7_FOD,
 408			map->src.fod = &vc7->clk_fod[1];
 409			return 0;
 410		default:
 411			break;
 412		}
 413	} else if (bank_idx == 3) {
 414		switch (output_bank_src) {
 415		case 4:
 416			map->type = VC7_FOD,
 417			map->src.fod = &vc7->clk_fod[0];
 418			return 0;
 419		case 5:
 420			map->type = VC7_FOD,
 421			map->src.fod = &vc7->clk_fod[1];
 422			return 0;
 423		case 6:
 424			map->type = VC7_FOD,
 425			map->src.fod = &vc7->clk_fod[2];
 426			return 0;
 427		default:
 428			break;
 429		}
 430	} else if (bank_idx == 4) {
 431		switch (output_bank_src) {
 432		case 0:
 433			/* CLKIN1 not supported in this driver */
 434			break;
 435		case 2:
 436			map->type = VC7_IOD,
 437			map->src.iod = &vc7->clk_iod[2];
 438			return 0;
 439		case 5:
 440			map->type = VC7_FOD,
 441			map->src.fod = &vc7->clk_fod[1];
 442			return 0;
 443		case 6:
 444			map->type = VC7_FOD,
 445			map->src.fod = &vc7->clk_fod[2];
 446			return 0;
 447		case 7:
 448			/* CLKIN0 not supported in this driver */
 449			break;
 450		default:
 451			break;
 452		}
 453	} else if (bank_idx == 5) {
 454		switch (output_bank_src) {
 455		case 0:
 456			/* CLKIN1 not supported in this driver */
 457			break;
 458		case 1:
 459			/* XIN_REFIN not supported in this driver */
 460			break;
 461		case 2:
 462			map->type = VC7_IOD,
 463			map->src.iod = &vc7->clk_iod[2];
 464			return 0;
 465		case 3:
 466			map->type = VC7_IOD,
 467			map->src.iod = &vc7->clk_iod[3];
 468			return 0;
 469		case 5:
 470			map->type = VC7_FOD,
 471			map->src.fod = &vc7->clk_fod[1];
 472			return 0;
 473		case 6:
 474			map->type = VC7_FOD,
 475			map->src.fod = &vc7->clk_fod[2];
 476			return 0;
 477		case 7:
 478			/* CLKIN0 not supported in this driver */
 479			break;
 480		default:
 481			break;
 482		}
 483	} else if (bank_idx == 6) {
 484		switch (output_bank_src) {
 485		case 0:
 486			/* CLKIN1 not supported in this driver */
 487			break;
 488		case 2:
 489			map->type = VC7_IOD,
 490			map->src.iod = &vc7->clk_iod[2];
 491			return 0;
 492		case 3:
 493			map->type = VC7_IOD,
 494			map->src.iod = &vc7->clk_iod[3];
 495			return 0;
 496		case 5:
 497			map->type = VC7_FOD,
 498			map->src.fod = &vc7->clk_fod[1];
 499			return 0;
 500		case 6:
 501			map->type = VC7_FOD,
 502			map->src.fod = &vc7->clk_fod[2];
 503			return 0;
 504		case 7:
 505			/* CLKIN0 not supported in this driver */
 506			break;
 507		default:
 508			break;
 509		}
 510	}
 511
 512	pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
 513	return -1;
 514}
 515
 516static int vc7_read_apll(struct vc7_driver_data *vc7)
 517{
 518	int err;
 519	u32 val32;
 520	u16 val16;
 521
 522	err = regmap_bulk_read(vc7->regmap,
 523			       VC7_REG_XO_CNFG,
 524			       (u32 *)&val32,
 525			       VC7_REG_XO_CNFG_COUNT);
 526	if (err) {
 527		dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
 528		return err;
 529	}
 530
 531	vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
 532		>> VC7_REG_XO_IB_H_DIV_SHIFT;
 533
 534	err = regmap_read(vc7->regmap,
 535			  VC7_REG_APLL_CNFG,
 536			  &val32);
 537	if (err) {
 538		dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
 539		return err;
 540	}
 541
 542	vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
 543
 544	err = regmap_bulk_read(vc7->regmap,
 545			       VC7_REG_APLL_FB_DIV_FRAC,
 546			       (u32 *)&val32,
 547			       VC7_REG_APLL_FB_DIV_FRAC_COUNT);
 548	if (err) {
 549		dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
 550		return err;
 551	}
 552
 553	vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
 554
 555	err = regmap_bulk_read(vc7->regmap,
 556			       VC7_REG_APLL_FB_DIV_INT,
 557			       (u16 *)&val16,
 558			       VC7_REG_APLL_FB_DIV_INT_COUNT);
 559	if (err) {
 560		dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
 561		return err;
 562	}
 563
 564	vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
 565
 566	return 0;
 567}
 568
 569static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
 570{
 571	int err;
 572	u64 val;
 573
 574	err = regmap_bulk_read(vc7->regmap,
 575			       VC7_REG_FOD_INT_CNFG(idx),
 576			       (u64 *)&val,
 577			       VC7_REG_FOD_INT_CNFG_COUNT);
 578	if (err) {
 579		dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
 580		return err;
 581	}
 582
 583	vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
 584	vc7->clk_fod[idx].fod_2nd_int =
 585	    (val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
 586	vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
 587		>> VC7_REG_FOD_FRAC_SHIFT;
 588
 589	return 0;
 590}
 591
 592static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
 593{
 594	int err;
 595	u64 val;
 596
 597	/*
 598	 * FOD dividers are part of an atomic group where fod_1st_int,
 599	 * fod_2nd_int, and fod_frac must be written together. The new divider
 600	 * is applied when the MSB of fod_frac is written.
 601	 */
 602
 603	err = regmap_bulk_read(vc7->regmap,
 604			       VC7_REG_FOD_INT_CNFG(idx),
 605			       (u64 *)&val,
 606			       VC7_REG_FOD_INT_CNFG_COUNT);
 607	if (err) {
 608		dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
 609		return err;
 610	}
 611
 612	val = u64_replace_bits(val,
 613			       vc7->clk_fod[idx].fod_1st_int,
 614			       VC7_REG_FOD_1ST_INT_MASK);
 615	val = u64_replace_bits(val,
 616			       vc7->clk_fod[idx].fod_2nd_int,
 617			       VC7_REG_FOD_2ND_INT_MASK);
 618	val = u64_replace_bits(val,
 619			       vc7->clk_fod[idx].fod_frac,
 620			       VC7_REG_FOD_FRAC_MASK);
 621
 622	err = regmap_bulk_write(vc7->regmap,
 623				VC7_REG_FOD_INT_CNFG(idx),
 624				(u64 *)&val,
 625				sizeof(u64));
 626	if (err) {
 627		dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
 628		return err;
 629	}
 630
 631	return 0;
 632}
 633
 634static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
 635{
 636	int err;
 637	u32 val;
 638
 639	err = regmap_bulk_read(vc7->regmap,
 640			       VC7_REG_IOD_INT_CNFG(idx),
 641			       (u32 *)&val,
 642			       VC7_REG_IOD_INT_CNFG_COUNT);
 643	if (err) {
 644		dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
 645		return err;
 646	}
 647
 648	vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
 649
 650	return 0;
 651}
 652
 653static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
 654{
 655	int err;
 656	u32 val;
 657
 658	/*
 659	 * IOD divider field is atomic and all bits must be written.
 660	 * The new divider is applied when the MSB of iod_int is written.
 661	 */
 662
 663	err = regmap_bulk_read(vc7->regmap,
 664			       VC7_REG_IOD_INT_CNFG(idx),
 665			       (u32 *)&val,
 666			       VC7_REG_IOD_INT_CNFG_COUNT);
 667	if (err) {
 668		dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
 669		return err;
 670	}
 671
 672	val = u32_replace_bits(val,
 673			       vc7->clk_iod[idx].iod_int,
 674			       VC7_REG_IOD_INT_MASK);
 675
 676	err = regmap_bulk_write(vc7->regmap,
 677				VC7_REG_IOD_INT_CNFG(idx),
 678				(u32 *)&val,
 679				sizeof(u32));
 680	if (err) {
 681		dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
 682		return err;
 683	}
 684
 685	return 0;
 686}
 687
 688static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
 689{
 690	int err;
 691	unsigned int val, out_num;
 692
 693	out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
 694	err = regmap_read(vc7->regmap,
 695			  VC7_REG_ODRV_EN(out_num),
 696			  &val);
 697	if (err) {
 698		dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
 699		return err;
 700	}
 701
 702	vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
 703
 704	return 0;
 705}
 706
 707static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
 708{
 709	int err;
 710	unsigned int out_num;
 711
 712	out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
 713	err = regmap_write_bits(vc7->regmap,
 714				VC7_REG_ODRV_EN(out_num),
 715				VC7_REG_OUT_DIS,
 716				vc7->clk_out[idx].out_dis);
 717
 718	if (err) {
 719		dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
 720		return err;
 721	}
 722
 723	return 0;
 724}
 725
 726static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
 727{
 728	int err;
 729	unsigned long xtal_rate;
 730	u64 refin_div, apll_rate;
 731
 732	xtal_rate = clk_get_rate(vc7->pin_xin);
 733	err = vc7_read_apll(vc7);
 734	if (err) {
 735		dev_err(&vc7->client->dev, "unable to read apll\n");
 736		return err;
 737	}
 738
 739	/* 0 is bypassed, 1 is reserved */
 740	if (vc7->clk_apll.xo_ib_h_div < 2)
 741		refin_div = xtal_rate;
 742	else
 743		refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
 744
 745	if (vc7->clk_apll.en_doubler)
 746		refin_div *= 2;
 747
 748	/* divider = int + (frac / 2^27) */
 749	apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
 750		    ((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
 751
 752	pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
 753		 __func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
 754		 vc7->clk_apll.apll_fb_div_frac);
 755	pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
 756		 __func__, refin_div, apll_rate);
 757
 758	return apll_rate;
 759}
 760
 761static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
 762				 u32 *divider)
 763{
 764	*divider = DIV_ROUND_UP(parent_rate, rate);
 765	if (*divider < VC7_IOD_MIN_DIVISOR)
 766		*divider = VC7_IOD_MIN_DIVISOR;
 767	if (*divider > VC7_IOD_MAX_DIVISOR)
 768		*divider = VC7_IOD_MAX_DIVISOR;
 769}
 770
 771static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
 772				   u32 *div_int, u64 *div_frac)
 773{
 774	u64 rem;
 775
 776	*div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
 777	*div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
 778}
 779
 780static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
 781						 u32 fod_1st_int, u64 fod_frac)
 782{
 783	u64 numer, denom, hi, lo, divisor;
 784
 785	numer = fod_frac;
 786	denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
 787
 788	if (fod_frac) {
 789		vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
 790		divisor = ((u64)fod_1st_int * denom) + numer;
 791		return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
 792	}
 793
 794	return div64_u64(parent_rate, fod_1st_int);
 795}
 796
 797static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
 798						 u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
 799{
 800	unsigned long fod_1st_stage_rate;
 801
 802	fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
 803
 804	if (fod_2nd_int < 2)
 805		return fod_1st_stage_rate;
 806
 807	/*
 808	 * There is a div-by-2 preceding the 2nd stage integer divider
 809	 * (not shown on block diagram) so the actual 2nd stage integer
 810	 * divisor is 2 * N.
 811	 */
 812	return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
 813}
 814
 815static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
 816				 u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
 817{
 818	unsigned int allow_frac, i, best_frac_i;
 819	unsigned long first_stage_rate;
 820
 821	vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
 822	first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
 823
 824	*fod_2nd_int = 0;
 825
 826	/* Do we need the second stage integer divider? */
 827	if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
 828		allow_frac = 0;
 829		best_frac_i = VC7_FOD_2ND_INT_MIN;
 830
 831		for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
 832			/*
 833			 * 1) There is a div-by-2 preceding the 2nd stage integer divider
 834			 *    (not shown on block diagram) so the actual 2nd stage integer
 835			 *    divisor is 2 * N.
 836			 * 2) Attempt to find an integer solution first. This means stepping
 837			 *    through each 2nd stage integer and recalculating the 1st stage
 838			 *    until the 1st stage frequency is out of bounds. If no integer
 839			 *    solution is found, use the best fractional solution.
 840			 */
 841			vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
 842			first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
 843								       *fod_1st_int,
 844								       *fod_frac);
 845
 846			/* Remember the first viable fractional solution */
 847			if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
 848			    first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
 849				best_frac_i = i;
 850			}
 851
 852			/* Is the divider viable? Prefer integer solutions over fractional. */
 853			if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
 854			    first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
 855			    (allow_frac || *fod_frac == 0)) {
 856				*fod_2nd_int = i;
 857				break;
 858			}
 859
 860			/* Ran out of divisors or the 1st stage frequency is out of range */
 861			if (i >= VC7_FOD_2ND_INT_MAX ||
 862			    first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
 863				allow_frac = 1;
 864				i = best_frac_i;
 865
 866				/* Restore the best frac and rerun the loop for the last time */
 867				if (best_frac_i != VC7_FOD_2ND_INT_MIN)
 868					i--;
 869
 870				continue;
 871			}
 872		}
 873	}
 874}
 875
 876static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
 877{
 878	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
 879	struct vc7_driver_data *vc7 = fod->vc7;
 880	int err;
 881	unsigned long fod_rate;
 882
 883	err = vc7_read_fod(vc7, fod->num);
 884	if (err) {
 885		dev_err(&vc7->client->dev, "error reading registers for %s\n",
 886			clk_hw_get_name(hw));
 887		return err;
 888	}
 889
 890	pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
 891
 892	fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
 893					       fod->fod_2nd_int, fod->fod_frac);
 894
 895	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
 896		 __func__, clk_hw_get_name(hw),
 897		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
 898	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
 899
 900	return fod_rate;
 901}
 902
 903static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
 904{
 905	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
 906	unsigned long fod_rate;
 907
 908	pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
 909		 __func__, clk_hw_get_name(hw), rate, *parent_rate);
 910
 911	vc7_calc_fod_divider(rate, *parent_rate,
 912			     &fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
 913	fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
 914					       fod->fod_2nd_int, fod->fod_frac);
 915
 916	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
 917		 __func__, clk_hw_get_name(hw),
 918		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
 919	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
 920
 921	return fod_rate;
 922}
 923
 924static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
 925{
 926	struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
 927	struct vc7_driver_data *vc7 = fod->vc7;
 928	unsigned long fod_rate;
 929
 930	pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
 931		 __func__, clk_hw_get_name(hw), rate, parent_rate);
 932
 933	if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
 934		dev_err(&vc7->client->dev,
 935			"requested frequency %lu Hz for %s is out of range\n",
 936			rate, clk_hw_get_name(hw));
 937		return -EINVAL;
 938	}
 939
 940	vc7_write_fod(vc7, fod->num);
 941
 942	fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
 943					       fod->fod_2nd_int, fod->fod_frac);
 944
 945	pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
 946		 __func__, clk_hw_get_name(hw),
 947		 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
 948	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
 949
 950	return 0;
 951}
 952
 953static const struct clk_ops vc7_fod_ops = {
 954	.recalc_rate = vc7_fod_recalc_rate,
 955	.round_rate = vc7_fod_round_rate,
 956	.set_rate = vc7_fod_set_rate,
 957};
 958
 959static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
 960{
 961	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
 962	struct vc7_driver_data *vc7 = iod->vc7;
 963	int err;
 964	unsigned long iod_rate;
 965
 966	err = vc7_read_iod(vc7, iod->num);
 967	if (err) {
 968		dev_err(&vc7->client->dev, "error reading registers for %s\n",
 969			clk_hw_get_name(hw));
 970		return err;
 971	}
 972
 973	iod_rate = div64_u64(parent_rate, iod->iod_int);
 974
 975	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
 976	pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
 977
 978	return iod_rate;
 979}
 980
 981static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
 982{
 983	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
 984	unsigned long iod_rate;
 985
 986	pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
 987		 __func__, clk_hw_get_name(hw), rate, *parent_rate);
 988
 989	vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
 990	iod_rate = div64_u64(*parent_rate, iod->iod_int);
 991
 992	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
 993	pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
 994
 995	return iod_rate;
 996}
 997
 998static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
 999{
1000	struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
1001	struct vc7_driver_data *vc7 = iod->vc7;
1002	unsigned long iod_rate;
1003
1004	pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
1005		 __func__, clk_hw_get_name(hw), rate, parent_rate);
1006
1007	if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
1008		dev_err(&vc7->client->dev,
1009			"requested frequency %lu Hz for %s is out of range\n",
1010			rate, clk_hw_get_name(hw));
1011		return -EINVAL;
1012	}
1013
1014	vc7_write_iod(vc7, iod->num);
1015
1016	iod_rate = div64_u64(parent_rate, iod->iod_int);
1017
1018	pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
1019	pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
1020
1021	return 0;
1022}
1023
1024static const struct clk_ops vc7_iod_ops = {
1025	.recalc_rate = vc7_iod_recalc_rate,
1026	.round_rate = vc7_iod_round_rate,
1027	.set_rate = vc7_iod_set_rate,
1028};
1029
1030static int vc7_clk_out_prepare(struct clk_hw *hw)
1031{
1032	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1033	struct vc7_driver_data *vc7 = out->vc7;
1034	int err;
1035
1036	out->out_dis = 0;
1037
1038	err = vc7_write_output(vc7, out->num);
1039	if (err) {
1040		dev_err(&vc7->client->dev, "error writing registers for %s\n",
1041			clk_hw_get_name(hw));
1042		return err;
1043	}
1044
1045	pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
1046
1047	return 0;
1048}
1049
1050static void vc7_clk_out_unprepare(struct clk_hw *hw)
1051{
1052	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1053	struct vc7_driver_data *vc7 = out->vc7;
1054	int err;
1055
1056	out->out_dis = 1;
1057
1058	err = vc7_write_output(vc7, out->num);
1059	if (err) {
1060		dev_err(&vc7->client->dev, "error writing registers for %s\n",
1061			clk_hw_get_name(hw));
1062		return;
1063	}
1064
1065	pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
1066}
1067
1068static int vc7_clk_out_is_enabled(struct clk_hw *hw)
1069{
1070	struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1071	struct vc7_driver_data *vc7 = out->vc7;
1072	int err, is_enabled;
1073
1074	err = vc7_read_output(vc7, out->num);
1075	if (err) {
1076		dev_err(&vc7->client->dev, "error reading registers for %s\n",
1077			clk_hw_get_name(hw));
1078		return err;
1079	}
1080
1081	is_enabled = !out->out_dis;
1082
1083	pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
1084
1085	return is_enabled;
1086}
1087
1088static const struct clk_ops vc7_clk_out_ops = {
1089	.prepare = vc7_clk_out_prepare,
1090	.unprepare = vc7_clk_out_unprepare,
1091	.is_enabled = vc7_clk_out_is_enabled,
1092};
1093
1094static int vc7_probe(struct i2c_client *client)
1095{
1096	struct vc7_driver_data *vc7;
1097	struct clk_init_data clk_init;
1098	struct vc7_bank_src_map bank_src_map;
1099	const char *node_name, *apll_name;
1100	const char *parent_names[1];
1101	unsigned int i, val, bank_idx, out_num;
1102	unsigned long apll_rate;
1103	int ret;
1104
1105	vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
1106	if (!vc7)
1107		return -ENOMEM;
1108
1109	i2c_set_clientdata(client, vc7);
1110	vc7->client = client;
1111	vc7->chip_info = i2c_get_match_data(client);
1112
1113	vc7->pin_xin = devm_clk_get(&client->dev, "xin");
1114	if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
1115		return dev_err_probe(&client->dev, -EPROBE_DEFER,
1116				     "xin not specified\n");
1117	}
1118
1119	vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
1120	if (IS_ERR(vc7->regmap)) {
1121		return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
1122				     "failed to allocate register map\n");
1123	}
1124
1125	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1126				    &node_name))
1127		node_name = client->dev.of_node->name;
1128
1129	/* Register APLL */
1130	apll_rate = vc7_get_apll_rate(vc7);
1131	apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
1132	vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
1133						    __clk_get_name(vc7->pin_xin),
1134						    0, apll_rate);
1135	kfree(apll_name); /* ccf made a copy of the name */
1136	if (IS_ERR(vc7->clk_apll.clk)) {
1137		return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
1138				     "failed to register apll\n");
1139	}
1140
1141	/* Register FODs */
1142	for (i = 0; i < VC7_NUM_FOD; i++) {
1143		memset(&clk_init, 0, sizeof(clk_init));
1144		clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
1145		clk_init.ops = &vc7_fod_ops;
1146		clk_init.parent_names = parent_names;
1147		parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1148		clk_init.num_parents = 1;
1149		vc7->clk_fod[i].num = i;
1150		vc7->clk_fod[i].vc7 = vc7;
1151		vc7->clk_fod[i].hw.init = &clk_init;
1152		ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
1153		if (ret)
1154			goto err_clk_register;
1155		kfree(clk_init.name); /* ccf made a copy of the name */
1156	}
1157
1158	/* Register IODs */
1159	for (i = 0; i < VC7_NUM_IOD; i++) {
1160		memset(&clk_init, 0, sizeof(clk_init));
1161		clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
1162		clk_init.ops = &vc7_iod_ops;
1163		clk_init.parent_names = parent_names;
1164		parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1165		clk_init.num_parents = 1;
1166		vc7->clk_iod[i].num = i;
1167		vc7->clk_iod[i].vc7 = vc7;
1168		vc7->clk_iod[i].hw.init = &clk_init;
1169		ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
1170		if (ret)
1171			goto err_clk_register;
1172		kfree(clk_init.name); /* ccf made a copy of the name */
1173	}
1174
1175	/* Register outputs */
1176	for (i = 0; i < vc7->chip_info->num_outputs; i++) {
1177		out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
1178
1179		/*
1180		 * This driver does not support remapping FOD/IOD to banks.
1181		 * The device state is read and the driver is setup to match
1182		 * the device's existing mapping.
1183		 */
1184		bank_idx = output_bank_mapping[out_num];
1185
1186		regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
1187		val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
1188
1189		memset(&bank_src_map, 0, sizeof(bank_src_map));
1190		ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
1191		if (ret) {
1192			dev_err_probe(&client->dev, ret,
1193				      "unable to register output %d\n", i);
1194			return ret;
1195		}
1196
1197		switch (bank_src_map.type) {
1198		case VC7_FOD:
1199			parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
1200			break;
1201		case VC7_IOD:
1202			parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
1203			break;
1204		}
1205
1206		memset(&clk_init, 0, sizeof(clk_init));
1207		clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
1208		clk_init.ops = &vc7_clk_out_ops;
1209		clk_init.flags = CLK_SET_RATE_PARENT;
1210		clk_init.parent_names = parent_names;
1211		clk_init.num_parents = 1;
1212		vc7->clk_out[i].num = i;
1213		vc7->clk_out[i].vc7 = vc7;
1214		vc7->clk_out[i].hw.init = &clk_init;
1215		ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
1216		if (ret)
1217			goto err_clk_register;
1218		kfree(clk_init.name); /* ccf made a copy of the name */
1219	}
1220
1221	ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
1222	if (ret) {
1223		dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
1224		goto err_clk;
1225	}
1226
1227	return ret;
1228
1229err_clk_register:
1230	dev_err_probe(&client->dev, ret,
1231		      "unable to register %s\n", clk_init.name);
1232	kfree(clk_init.name); /* ccf made a copy of the name */
1233err_clk:
1234	clk_unregister_fixed_rate(vc7->clk_apll.clk);
1235	return ret;
1236}
1237
1238static void vc7_remove(struct i2c_client *client)
1239{
1240	struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
1241
1242	of_clk_del_provider(client->dev.of_node);
1243	clk_unregister_fixed_rate(vc7->clk_apll.clk);
1244}
1245
1246static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
1247{
1248	if (reg == VC7_PAGE_ADDR)
1249		return false;
1250
1251	return true;
1252}
1253
1254static const struct vc7_chip_info vc7_rc21008a_info = {
1255	.model = VC7_RC21008A,
1256	.num_banks = 6,
1257	.num_outputs = 8,
1258};
1259
1260static struct regmap_range_cfg vc7_range_cfg[] = {
1261{
1262	.range_min = 0,
1263	.range_max = VC7_MAX_REG,
1264	.selector_reg = VC7_PAGE_ADDR,
1265	.selector_mask = 0xFF,
1266	.selector_shift = 0,
1267	.window_start = 0,
1268	.window_len = VC7_PAGE_WINDOW,
1269}};
1270
1271static const struct regmap_config vc7_regmap_config = {
1272	.reg_bits = 8,
1273	.val_bits = 8,
1274	.max_register = VC7_MAX_REG,
1275	.ranges = vc7_range_cfg,
1276	.num_ranges = ARRAY_SIZE(vc7_range_cfg),
1277	.volatile_reg = vc7_volatile_reg,
1278	.cache_type = REGCACHE_MAPLE,
1279	.can_multi_write = true,
1280	.reg_format_endian = REGMAP_ENDIAN_LITTLE,
1281	.val_format_endian = REGMAP_ENDIAN_LITTLE,
1282};
1283
1284static const struct i2c_device_id vc7_i2c_id[] = {
1285	{ "rc21008a", .driver_data = (kernel_ulong_t)&vc7_rc21008a_info },
1286	{}
1287};
1288MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
1289
1290static const struct of_device_id vc7_of_match[] = {
1291	{ .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
1292	{}
1293};
1294MODULE_DEVICE_TABLE(of, vc7_of_match);
1295
1296static struct i2c_driver vc7_i2c_driver = {
1297	.driver = {
1298		.name = "vc7",
1299		.of_match_table = vc7_of_match,
1300	},
1301	.probe = vc7_probe,
1302	.remove = vc7_remove,
1303	.id_table = vc7_i2c_id,
1304};
1305module_i2c_driver(vc7_i2c_driver);
1306
1307MODULE_LICENSE("GPL");
1308MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com");
1309MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");