Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2014 Intel Corporation
  4 *
  5 * Adjustable fractional divider clock implementation.
  6 * Uses rational best approximation algorithm.
  7 *
  8 * Output is calculated as
  9 *
 10 *	rate = (m / n) * parent_rate				(1)
 11 *
 12 * This is useful when we have a prescaler block which asks for
 13 * m (numerator) and n (denominator) values to be provided to satisfy
 14 * the (1) as much as possible.
 15 *
 16 * Since m and n have the limitation by a range, e.g.
 17 *
 18 *	n >= 1, n < N_width, where N_width = 2^nwidth		(2)
 19 *
 20 * for some cases the output may be saturated. Hence, from (1) and (2),
 21 * assuming the worst case when m = 1, the inequality
 22 *
 23 *	floor(log2(parent_rate / rate)) <= nwidth		(3)
 24 *
 25 * may be derived. Thus, in cases when
 26 *
 27 *	(parent_rate / rate) >> N_width				(4)
 28 *
 29 * we might scale up the rate by 2^scale (see the description of
 30 * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
 31 *
 32 *	scale = floor(log2(parent_rate / rate)) - nwidth	(5)
 33 *
 34 * and assume that the IP, that needs m and n, has also its own
 35 * prescaler, which is capable to divide by 2^scale. In this way
 36 * we get the denominator to satisfy the desired range (2) and
 37 * at the same time a much better result of m and n than simple
 38 * saturated values.
 39 */
 40
 41#include <linux/debugfs.h>
 42#include <linux/device.h>
 43#include <linux/io.h>
 44#include <linux/math.h>
 45#include <linux/module.h>
 46#include <linux/rational.h>
 47#include <linux/slab.h>
 48
 49#include <linux/clk-provider.h>
 50
 51#include "clk-fractional-divider.h"
 52
 53static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
 54{
 55	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
 56		return ioread32be(fd->reg);
 57
 58	return readl(fd->reg);
 59}
 60
 61static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
 62{
 63	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
 64		iowrite32be(val, fd->reg);
 65	else
 66		writel(val, fd->reg);
 67}
 68
 69static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract)
 70{
 71	struct clk_fractional_divider *fd = to_clk_fd(hw);
 72	unsigned long flags = 0;
 73	unsigned long m, n;
 74	u32 mmask, nmask;
 75	u32 val;
 76
 77	if (fd->lock)
 78		spin_lock_irqsave(fd->lock, flags);
 79	else
 80		__acquire(fd->lock);
 81
 82	val = clk_fd_readl(fd);
 83
 84	if (fd->lock)
 85		spin_unlock_irqrestore(fd->lock, flags);
 86	else
 87		__release(fd->lock);
 88
 89	mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
 90	nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
 91
 92	m = (val & mmask) >> fd->mshift;
 93	n = (val & nmask) >> fd->nshift;
 94
 95	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
 96		m++;
 97		n++;
 98	}
 99
100	fract->numerator = m;
101	fract->denominator = n;
102}
103
104static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
105{
106	struct u32_fract fract;
107	u64 ret;
108
109	clk_fd_get_div(hw, &fract);
110
111	if (!fract.numerator || !fract.denominator)
112		return parent_rate;
113
114	ret = (u64)parent_rate * fract.numerator;
115	do_div(ret, fract.denominator);
116
117	return ret;
118}
119
120void clk_fractional_divider_general_approximation(struct clk_hw *hw,
121						  unsigned long rate,
122						  unsigned long *parent_rate,
123						  unsigned long *m, unsigned long *n)
124{
125	struct clk_fractional_divider *fd = to_clk_fd(hw);
126	unsigned long max_m, max_n;
127
128	/*
129	 * Get rate closer to *parent_rate to guarantee there is no overflow
130	 * for m and n. In the result it will be the nearest rate left shifted
131	 * by (scale - fd->nwidth) bits.
132	 *
133	 * For the detailed explanation see the top comment in this file.
134	 */
135	if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
136		unsigned long scale = fls_long(*parent_rate / rate - 1);
137
138		if (scale > fd->nwidth)
139			rate <<= scale - fd->nwidth;
140	}
141
142	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
143		max_m = 1 << fd->mwidth;
144		max_n = 1 << fd->nwidth;
145	} else {
146		max_m = GENMASK(fd->mwidth - 1, 0);
147		max_n = GENMASK(fd->nwidth - 1, 0);
148	}
149
150	rational_best_approximation(rate, *parent_rate, max_m, max_n, m, n);
151}
152EXPORT_SYMBOL_GPL(clk_fractional_divider_general_approximation);
153
154static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate,
155			      unsigned long *parent_rate)
156{
157	struct clk_fractional_divider *fd = to_clk_fd(hw);
158	unsigned long m, n;
159	u64 ret;
160
161	if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate))
162		return *parent_rate;
163
164	if (fd->approximation)
165		fd->approximation(hw, rate, parent_rate, &m, &n);
166	else
167		clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n);
168
169	ret = (u64)*parent_rate * m;
170	do_div(ret, n);
171
172	return ret;
173}
174
175static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
176			   unsigned long parent_rate)
177{
178	struct clk_fractional_divider *fd = to_clk_fd(hw);
179	unsigned long flags = 0;
180	unsigned long m, n, max_m, max_n;
181	u32 mmask, nmask;
182	u32 val;
183
184	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
185		max_m = 1 << fd->mwidth;
186		max_n = 1 << fd->nwidth;
187	} else {
188		max_m = GENMASK(fd->mwidth - 1, 0);
189		max_n = GENMASK(fd->nwidth - 1, 0);
190	}
191	rational_best_approximation(rate, parent_rate, max_m, max_n, &m, &n);
192
193	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
194		m--;
195		n--;
196	}
197
198	if (fd->lock)
199		spin_lock_irqsave(fd->lock, flags);
200	else
201		__acquire(fd->lock);
202
203	mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
204	nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
205
206	val = clk_fd_readl(fd);
207	val &= ~(mmask | nmask);
208	val |= (m << fd->mshift) | (n << fd->nshift);
209	clk_fd_writel(fd, val);
210
211	if (fd->lock)
212		spin_unlock_irqrestore(fd->lock, flags);
213	else
214		__release(fd->lock);
215
216	return 0;
217}
218
219#ifdef CONFIG_DEBUG_FS
220static int clk_fd_numerator_get(void *hw, u64 *val)
221{
222	struct u32_fract fract;
223
224	clk_fd_get_div(hw, &fract);
225
226	*val = fract.numerator;
227
228	return 0;
229}
230DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n");
231
232static int clk_fd_denominator_get(void *hw, u64 *val)
233{
234	struct u32_fract fract;
235
236	clk_fd_get_div(hw, &fract);
237
238	*val = fract.denominator;
239
240	return 0;
241}
242DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n");
243
244static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry)
245{
246	debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops);
247	debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops);
248}
249#endif
250
251const struct clk_ops clk_fractional_divider_ops = {
252	.recalc_rate = clk_fd_recalc_rate,
253	.round_rate = clk_fd_round_rate,
254	.set_rate = clk_fd_set_rate,
255#ifdef CONFIG_DEBUG_FS
256	.debug_init = clk_fd_debug_init,
257#endif
258};
259EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);
260
261struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
262		const char *name, const char *parent_name, unsigned long flags,
263		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
264		u8 clk_divider_flags, spinlock_t *lock)
265{
266	struct clk_fractional_divider *fd;
267	struct clk_init_data init;
268	struct clk_hw *hw;
269	int ret;
270
271	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
272	if (!fd)
273		return ERR_PTR(-ENOMEM);
274
275	init.name = name;
276	init.ops = &clk_fractional_divider_ops;
277	init.flags = flags;
278	init.parent_names = parent_name ? &parent_name : NULL;
279	init.num_parents = parent_name ? 1 : 0;
280
281	fd->reg = reg;
282	fd->mshift = mshift;
283	fd->mwidth = mwidth;
284	fd->nshift = nshift;
285	fd->nwidth = nwidth;
286	fd->flags = clk_divider_flags;
287	fd->lock = lock;
288	fd->hw.init = &init;
289
290	hw = &fd->hw;
291	ret = clk_hw_register(dev, hw);
292	if (ret) {
293		kfree(fd);
294		hw = ERR_PTR(ret);
295	}
296
297	return hw;
298}
299EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);
300
301struct clk *clk_register_fractional_divider(struct device *dev,
302		const char *name, const char *parent_name, unsigned long flags,
303		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
304		u8 clk_divider_flags, spinlock_t *lock)
305{
306	struct clk_hw *hw;
307
308	hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
309			reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
310			lock);
311	if (IS_ERR(hw))
312		return ERR_CAST(hw);
313	return hw->clk;
314}
315EXPORT_SYMBOL_GPL(clk_register_fractional_divider);
316
317void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
318{
319	struct clk_fractional_divider *fd;
320
321	fd = to_clk_fd(hw);
322
323	clk_hw_unregister(hw);
324	kfree(fd);
325}