Linux Audio

Check our new training course

Loading...
v3.5.6
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/fixmap.h>
  16#include <asm/hpet.h>
  17#include <asm/time.h>
 
  18
  19#define HPET_MASK			CLOCKSOURCE_MASK(32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21/* FSEC = 10^-15
  22   NSEC = 10^-9 */
  23#define FSEC_PER_NSEC			1000000L
  24
  25#define HPET_DEV_USED_BIT		2
  26#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
  27#define HPET_DEV_VALID			0x8
  28#define HPET_DEV_FSB_CAP		0x1000
  29#define HPET_DEV_PERI_CAP		0x2000
  30
  31#define HPET_MIN_CYCLES			128
  32#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  33
  34/*
  35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  36 */
  37unsigned long				hpet_address;
  38u8					hpet_blockid; /* OS timer block num */
  39u8					hpet_msi_disable;
  40
  41#ifdef CONFIG_PCI_MSI
  42static unsigned long			hpet_num_timers;
 
  43#endif
 
  44static void __iomem			*hpet_virt_address;
  45
  46struct hpet_dev {
  47	struct clock_event_device	evt;
  48	unsigned int			num;
  49	int				cpu;
  50	unsigned int			irq;
  51	unsigned int			flags;
  52	char				name[10];
  53};
  54
  55inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
 
  56{
  57	return container_of(evtdev, struct hpet_dev, evt);
  58}
  59
  60inline unsigned int hpet_readl(unsigned int a)
  61{
  62	return readl(hpet_virt_address + a);
  63}
  64
  65static inline void hpet_writel(unsigned int d, unsigned int a)
  66{
  67	writel(d, hpet_virt_address + a);
  68}
  69
  70#ifdef CONFIG_X86_64
  71#include <asm/pgtable.h>
  72#endif
  73
  74static inline void hpet_set_mapping(void)
  75{
  76	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  77#ifdef CONFIG_X86_64
  78	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  79#endif
  80}
  81
  82static inline void hpet_clear_mapping(void)
  83{
  84	iounmap(hpet_virt_address);
  85	hpet_virt_address = NULL;
  86}
  87
  88/*
  89 * HPET command line enable / disable
  90 */
  91static int boot_hpet_disable;
  92int hpet_force_user;
  93static int hpet_verbose;
  94
  95static int __init hpet_setup(char *str)
  96{
  97	while (str) {
  98		char *next = strchr(str, ',');
  99
 100		if (next)
 101			*next++ = 0;
 102		if (!strncmp("disable", str, 7))
 103			boot_hpet_disable = 1;
 104		if (!strncmp("force", str, 5))
 105			hpet_force_user = 1;
 106		if (!strncmp("verbose", str, 7))
 107			hpet_verbose = 1;
 108		str = next;
 109	}
 110	return 1;
 111}
 112__setup("hpet=", hpet_setup);
 113
 114static int __init disable_hpet(char *str)
 115{
 116	boot_hpet_disable = 1;
 117	return 1;
 118}
 119__setup("nohpet", disable_hpet);
 120
 121static inline int is_hpet_capable(void)
 122{
 123	return !boot_hpet_disable && hpet_address;
 124}
 125
 126/*
 127 * HPET timer interrupt enable / disable
 128 */
 129static int hpet_legacy_int_enabled;
 130
 131/**
 132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 133 */
 134int is_hpet_enabled(void)
 135{
 136	return is_hpet_capable() && hpet_legacy_int_enabled;
 137}
 138EXPORT_SYMBOL_GPL(is_hpet_enabled);
 139
 140static void _hpet_print_config(const char *function, int line)
 141{
 142	u32 i, timers, l, h;
 143	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 144	l = hpet_readl(HPET_ID);
 145	h = hpet_readl(HPET_PERIOD);
 146	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 147	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 148	l = hpet_readl(HPET_CFG);
 149	h = hpet_readl(HPET_STATUS);
 150	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 
 
 
 151	l = hpet_readl(HPET_COUNTER);
 152	h = hpet_readl(HPET_COUNTER+4);
 153	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 154
 155	for (i = 0; i < timers; i++) {
 
 
 156		l = hpet_readl(HPET_Tn_CFG(i));
 157		h = hpet_readl(HPET_Tn_CFG(i)+4);
 158		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 159		       i, l, h);
 160		l = hpet_readl(HPET_Tn_CMP(i));
 161		h = hpet_readl(HPET_Tn_CMP(i)+4);
 162		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 163		       i, l, h);
 164		l = hpet_readl(HPET_Tn_ROUTE(i));
 165		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 166		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 167		       i, l, h);
 168	}
 169}
 170
 171#define hpet_print_config()					\
 172do {								\
 173	if (hpet_verbose)					\
 174		_hpet_print_config(__FUNCTION__, __LINE__);	\
 175} while (0)
 176
 177/*
 178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 179 * timer 0 and timer 1 in case of RTC emulation.
 180 */
 181#ifdef CONFIG_HPET
 182
 183static void hpet_reserve_msi_timers(struct hpet_data *hd);
 184
 185static void hpet_reserve_platform_timers(unsigned int id)
 186{
 187	struct hpet __iomem *hpet = hpet_virt_address;
 188	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 189	unsigned int nrtimers, i;
 190	struct hpet_data hd;
 191
 192	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 193
 194	memset(&hd, 0, sizeof(hd));
 195	hd.hd_phys_address	= hpet_address;
 196	hd.hd_address		= hpet;
 197	hd.hd_nirqs		= nrtimers;
 198	hpet_reserve_timer(&hd, 0);
 199
 200#ifdef CONFIG_HPET_EMULATE_RTC
 201	hpet_reserve_timer(&hd, 1);
 202#endif
 203
 204	/*
 205	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 206	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 207	 * don't bother configuring *any* comparator interrupts.
 208	 */
 209	hd.hd_irq[0] = HPET_LEGACY_8254;
 210	hd.hd_irq[1] = HPET_LEGACY_RTC;
 211
 212	for (i = 2; i < nrtimers; timer++, i++) {
 213		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 214			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 215	}
 216
 217	hpet_reserve_msi_timers(&hd);
 
 218
 219	hpet_alloc(&hd);
 
 
 
 
 
 
 
 
 
 
 220
 
 221}
 222#else
 223static void hpet_reserve_platform_timers(unsigned int id) { }
 224#endif
 225
 226/*
 227 * Common hpet info
 228 */
 229static unsigned long hpet_freq;
 230
 231static void hpet_legacy_set_mode(enum clock_event_mode mode,
 232			  struct clock_event_device *evt);
 233static int hpet_legacy_next_event(unsigned long delta,
 234			   struct clock_event_device *evt);
 235
 236/*
 237 * The hpet clock event device
 238 */
 239static struct clock_event_device hpet_clockevent = {
 240	.name		= "hpet",
 241	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 242	.set_mode	= hpet_legacy_set_mode,
 243	.set_next_event = hpet_legacy_next_event,
 244	.irq		= 0,
 245	.rating		= 50,
 246};
 
 247
 
 248static void hpet_stop_counter(void)
 249{
 250	unsigned long cfg = hpet_readl(HPET_CFG);
 
 251	cfg &= ~HPET_CFG_ENABLE;
 252	hpet_writel(cfg, HPET_CFG);
 253}
 254
 255static void hpet_reset_counter(void)
 256{
 257	hpet_writel(0, HPET_COUNTER);
 258	hpet_writel(0, HPET_COUNTER + 4);
 259}
 260
 261static void hpet_start_counter(void)
 262{
 263	unsigned int cfg = hpet_readl(HPET_CFG);
 
 264	cfg |= HPET_CFG_ENABLE;
 265	hpet_writel(cfg, HPET_CFG);
 266}
 267
 268static void hpet_restart_counter(void)
 269{
 270	hpet_stop_counter();
 271	hpet_reset_counter();
 272	hpet_start_counter();
 273}
 274
 275static void hpet_resume_device(void)
 276{
 277	force_hpet_resume();
 278}
 279
 280static void hpet_resume_counter(struct clocksource *cs)
 281{
 282	hpet_resume_device();
 283	hpet_restart_counter();
 284}
 285
 286static void hpet_enable_legacy_int(void)
 287{
 288	unsigned int cfg = hpet_readl(HPET_CFG);
 289
 290	cfg |= HPET_CFG_LEGACY;
 291	hpet_writel(cfg, HPET_CFG);
 292	hpet_legacy_int_enabled = 1;
 293}
 294
 295static void hpet_legacy_clockevent_register(void)
 296{
 297	/* Start HPET legacy interrupts */
 298	hpet_enable_legacy_int();
 
 299
 
 
 
 
 
 
 
 
 
 
 
 300	/*
 301	 * Start hpet with the boot cpu mask and make it
 302	 * global after the IO_APIC has been initialized.
 
 
 
 303	 */
 304	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 305	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 306					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 307	global_clock_event = &hpet_clockevent;
 308	printk(KERN_DEBUG "hpet clockevent registered\n");
 309}
 310
 311static int hpet_setup_msi_irq(unsigned int irq);
 
 
 
 
 
 
 
 
 
 
 
 312
 313static void hpet_set_mode(enum clock_event_mode mode,
 314			  struct clock_event_device *evt, int timer)
 315{
 316	unsigned int cfg, cmp, now;
 317	uint64_t delta;
 318
 319	switch (mode) {
 320	case CLOCK_EVT_MODE_PERIODIC:
 321		hpet_stop_counter();
 322		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 323		delta >>= evt->shift;
 324		now = hpet_readl(HPET_COUNTER);
 325		cmp = now + (unsigned int) delta;
 326		cfg = hpet_readl(HPET_Tn_CFG(timer));
 327		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 328		       HPET_TN_SETVAL | HPET_TN_32BIT;
 329		hpet_writel(cfg, HPET_Tn_CFG(timer));
 330		hpet_writel(cmp, HPET_Tn_CMP(timer));
 331		udelay(1);
 332		/*
 333		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 334		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 335		 * bit is automatically cleared after the first write.
 336		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 337		 * Publication # 24674)
 338		 */
 339		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 340		hpet_start_counter();
 341		hpet_print_config();
 342		break;
 343
 344	case CLOCK_EVT_MODE_ONESHOT:
 345		cfg = hpet_readl(HPET_Tn_CFG(timer));
 346		cfg &= ~HPET_TN_PERIODIC;
 347		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 348		hpet_writel(cfg, HPET_Tn_CFG(timer));
 349		break;
 350
 351	case CLOCK_EVT_MODE_UNUSED:
 352	case CLOCK_EVT_MODE_SHUTDOWN:
 353		cfg = hpet_readl(HPET_Tn_CFG(timer));
 354		cfg &= ~HPET_TN_ENABLE;
 355		hpet_writel(cfg, HPET_Tn_CFG(timer));
 356		break;
 357
 358	case CLOCK_EVT_MODE_RESUME:
 359		if (timer == 0) {
 360			hpet_enable_legacy_int();
 361		} else {
 362			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 363			hpet_setup_msi_irq(hdev->irq);
 364			disable_irq(hdev->irq);
 365			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 366			enable_irq(hdev->irq);
 367		}
 368		hpet_print_config();
 369		break;
 370	}
 371}
 372
 373static int hpet_next_event(unsigned long delta,
 374			   struct clock_event_device *evt, int timer)
 375{
 
 
 
 
 
 
 
 
 
 376	u32 cnt;
 377	s32 res;
 378
 379	cnt = hpet_readl(HPET_COUNTER);
 380	cnt += (u32) delta;
 381	hpet_writel(cnt, HPET_Tn_CMP(timer));
 382
 383	/*
 384	 * HPETs are a complete disaster. The compare register is
 385	 * based on a equal comparison and neither provides a less
 386	 * than or equal functionality (which would require to take
 387	 * the wraparound into account) nor a simple count down event
 388	 * mode. Further the write to the comparator register is
 389	 * delayed internally up to two HPET clock cycles in certain
 390	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 391	 * longer delays. We worked around that by reading back the
 392	 * compare register, but that required another workaround for
 393	 * ICH9,10 chips where the first readout after write can
 394	 * return the old stale value. We already had a minimum
 395	 * programming delta of 5us enforced, but a NMI or SMI hitting
 396	 * between the counter readout and the comparator write can
 397	 * move us behind that point easily. Now instead of reading
 398	 * the compare register back several times, we make the ETIME
 399	 * decision based on the following: Return ETIME if the
 400	 * counter value after the write is less than HPET_MIN_CYCLES
 401	 * away from the event or if the counter is already ahead of
 402	 * the event. The minimum programming delta for the generic
 403	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 404	 */
 405	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 406
 407	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 408}
 409
 410static void hpet_legacy_set_mode(enum clock_event_mode mode,
 411			struct clock_event_device *evt)
 412{
 413	hpet_set_mode(mode, evt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414}
 415
 416static int hpet_legacy_next_event(unsigned long delta,
 417			struct clock_event_device *evt)
 418{
 419	return hpet_next_event(delta, evt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420}
 421
 422/*
 423 * HPET MSI Support
 424 */
 425#ifdef CONFIG_PCI_MSI
 426
 427static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 428static struct hpet_dev	*hpet_devs;
 429
 430void hpet_msi_unmask(struct irq_data *data)
 431{
 432	struct hpet_dev *hdev = data->handler_data;
 433	unsigned int cfg;
 434
 435	/* unmask it */
 436	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 437	cfg |= HPET_TN_FSB;
 438	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 439}
 440
 441void hpet_msi_mask(struct irq_data *data)
 442{
 443	struct hpet_dev *hdev = data->handler_data;
 444	unsigned int cfg;
 445
 446	/* mask it */
 447	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 448	cfg &= ~HPET_TN_FSB;
 449	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 450}
 451
 452void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 453{
 454	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 455	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 456}
 457
 458void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 459{
 460	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 461	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 462	msg->address_hi = 0;
 463}
 464
 465static void hpet_msi_set_mode(enum clock_event_mode mode,
 466				struct clock_event_device *evt)
 467{
 468	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 469	hpet_set_mode(mode, evt, hdev->num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470}
 471
 472static int hpet_msi_next_event(unsigned long delta,
 473				struct clock_event_device *evt)
 474{
 475	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 476	return hpet_next_event(delta, evt, hdev->num);
 477}
 478
 479static int hpet_setup_msi_irq(unsigned int irq)
 
 
 
 
 
 
 
 
 
 
 
 480{
 481	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
 482		destroy_irq(irq);
 483		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	}
 485	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486}
 487
 488static int hpet_assign_irq(struct hpet_dev *dev)
 
 489{
 490	unsigned int irq;
 491
 492	irq = create_irq_nr(0, -1);
 493	if (!irq)
 494		return -EINVAL;
 
 
 495
 496	irq_set_handler_data(irq, dev);
 
 497
 498	if (hpet_setup_msi_irq(irq))
 499		return -EINVAL;
 
 
 
 500
 501	dev->irq = irq;
 
 
 
 502	return 0;
 503}
 504
 505static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 506{
 507	struct hpet_dev *dev = (struct hpet_dev *)data;
 508	struct clock_event_device *hevt = &dev->evt;
 509
 510	if (!hevt->event_handler) {
 511		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 512				dev->num);
 513		return IRQ_HANDLED;
 514	}
 515
 516	hevt->event_handler(hevt);
 517	return IRQ_HANDLED;
 518}
 519
 520static int hpet_setup_irq(struct hpet_dev *dev)
 521{
 522
 523	if (request_irq(dev->irq, hpet_interrupt_handler,
 524			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 525			dev->name, dev))
 526		return -1;
 527
 528	disable_irq(dev->irq);
 529	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 530	enable_irq(dev->irq);
 531
 532	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 533			 dev->name, dev->irq);
 534
 535	return 0;
 536}
 537
 538/* This should be called in specific @cpu */
 539static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 540{
 541	struct clock_event_device *evt = &hdev->evt;
 542
 543	WARN_ON(cpu != smp_processor_id());
 544	if (!(hdev->flags & HPET_DEV_VALID))
 545		return;
 546
 547	if (hpet_setup_msi_irq(hdev->irq))
 548		return;
 549
 550	hdev->cpu = cpu;
 551	per_cpu(cpu_hpet_dev, cpu) = hdev;
 552	evt->name = hdev->name;
 553	hpet_setup_irq(hdev);
 554	evt->irq = hdev->irq;
 555
 556	evt->rating = 110;
 557	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 558	if (hdev->flags & HPET_DEV_PERI_CAP)
 559		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 560
 561	evt->set_mode = hpet_msi_set_mode;
 562	evt->set_next_event = hpet_msi_next_event;
 563	evt->cpumask = cpumask_of(hdev->cpu);
 564
 565	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 566					0x7FFFFFFF);
 
 
 
 
 567}
 568
 569#ifdef CONFIG_HPET
 570/* Reserve at least one timer for userspace (/dev/hpet) */
 571#define RESERVE_TIMERS 1
 572#else
 573#define RESERVE_TIMERS 0
 574#endif
 575
 576static void hpet_msi_capability_lookup(unsigned int start_timer)
 
 
 
 
 
 577{
 578	unsigned int id;
 579	unsigned int num_timers;
 580	unsigned int num_timers_used = 0;
 581	int i;
 582
 583	if (hpet_msi_disable)
 584		return;
 
 
 
 
 
 
 
 
 
 
 
 585
 586	if (boot_cpu_has(X86_FEATURE_ARAT))
 
 587		return;
 588	id = hpet_readl(HPET_ID);
 589
 590	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 591	num_timers++; /* Value read out starts from 0 */
 592	hpet_print_config();
 593
 594	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 595	if (!hpet_devs)
 596		return;
 597
 598	hpet_num_timers = num_timers;
 
 
 599
 600	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 601		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 602		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 603
 604		/* Only consider HPET timer with MSI support */
 605		if (!(cfg & HPET_TN_FSB_CAP))
 606			continue;
 607
 608		hdev->flags = 0;
 609		if (cfg & HPET_TN_PERIODIC_CAP)
 610			hdev->flags |= HPET_DEV_PERI_CAP;
 611		hdev->num = i;
 612
 613		sprintf(hdev->name, "hpet%d", i);
 614		if (hpet_assign_irq(hdev))
 615			continue;
 616
 617		hdev->flags |= HPET_DEV_FSB_CAP;
 618		hdev->flags |= HPET_DEV_VALID;
 619		num_timers_used++;
 620		if (num_timers_used == num_possible_cpus())
 621			break;
 622	}
 623
 624	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 625		num_timers, num_timers_used);
 626}
 627
 628#ifdef CONFIG_HPET
 629static void hpet_reserve_msi_timers(struct hpet_data *hd)
 630{
 631	int i;
 632
 633	if (!hpet_devs)
 634		return;
 635
 636	for (i = 0; i < hpet_num_timers; i++) {
 637		struct hpet_dev *hdev = &hpet_devs[i];
 638
 639		if (!(hdev->flags & HPET_DEV_VALID))
 640			continue;
 641
 642		hd->hd_irq[hdev->num] = hdev->irq;
 643		hpet_reserve_timer(hd, hdev->num);
 644	}
 645}
 646#endif
 647
 648static struct hpet_dev *hpet_get_unused_timer(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649{
 650	int i;
 
 651
 652	if (!hpet_devs)
 653		return NULL;
 654
 655	for (i = 0; i < hpet_num_timers; i++) {
 656		struct hpet_dev *hdev = &hpet_devs[i];
 
 
 
 657
 658		if (!(hdev->flags & HPET_DEV_VALID))
 659			continue;
 660		if (test_and_set_bit(HPET_DEV_USED_BIT,
 661			(unsigned long *)&hdev->flags))
 662			continue;
 663		return hdev;
 664	}
 665	return NULL;
 666}
 667
 668struct hpet_work_struct {
 669	struct delayed_work work;
 670	struct completion complete;
 671};
 672
 673static void hpet_work(struct work_struct *w)
 674{
 675	struct hpet_dev *hdev;
 676	int cpu = smp_processor_id();
 677	struct hpet_work_struct *hpet_work;
 678
 679	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 680
 681	hdev = hpet_get_unused_timer();
 682	if (hdev)
 683		init_one_hpet_msi_clockevent(hdev, cpu);
 684
 685	complete(&hpet_work->complete);
 686}
 687
 688static int hpet_cpuhp_notify(struct notifier_block *n,
 689		unsigned long action, void *hcpu)
 690{
 691	unsigned long cpu = (unsigned long)hcpu;
 692	struct hpet_work_struct work;
 693	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 694
 695	switch (action & 0xf) {
 696	case CPU_ONLINE:
 697		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 698		init_completion(&work.complete);
 699		/* FIXME: add schedule_work_on() */
 700		schedule_delayed_work_on(cpu, &work.work, 0);
 701		wait_for_completion(&work.complete);
 702		destroy_timer_on_stack(&work.work.timer);
 703		break;
 704	case CPU_DEAD:
 705		if (hdev) {
 706			free_irq(hdev->irq, hdev);
 707			hdev->flags &= ~HPET_DEV_USED;
 708			per_cpu(cpu_hpet_dev, cpu) = NULL;
 709		}
 710		break;
 711	}
 712	return NOTIFY_OK;
 713}
 714#else
 715
 716static int hpet_setup_msi_irq(unsigned int irq)
 717{
 718	return 0;
 719}
 720static void hpet_msi_capability_lookup(unsigned int start_timer)
 721{
 722	return;
 723}
 724
 725#ifdef CONFIG_HPET
 726static void hpet_reserve_msi_timers(struct hpet_data *hd)
 727{
 728	return;
 729}
 730#endif
 
 
 
 
 
 
 
 
 
 
 
 731
 732static int hpet_cpuhp_notify(struct notifier_block *n,
 733		unsigned long action, void *hcpu)
 734{
 735	return NOTIFY_OK;
 736}
 737
 738#endif
 739
 740/*
 741 * Clock source related code
 742 */
 743static cycle_t read_hpet(struct clocksource *cs)
 744{
 745	return (cycle_t)hpet_readl(HPET_COUNTER);
 746}
 
 747
 748static struct clocksource clocksource_hpet = {
 749	.name		= "hpet",
 750	.rating		= 250,
 751	.read		= read_hpet,
 752	.mask		= HPET_MASK,
 753	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 754	.resume		= hpet_resume_counter,
 755#ifdef CONFIG_X86_64
 756	.archdata	= { .vclock_mode = VCLOCK_HPET },
 757#endif
 758};
 759
 760static int hpet_clocksource_register(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761{
 762	u64 start, now;
 763	cycle_t t1;
 764
 765	/* Start the counter */
 766	hpet_restart_counter();
 767
 768	/* Verify whether hpet counter works */
 769	t1 = hpet_readl(HPET_COUNTER);
 770	rdtscll(start);
 771
 772	/*
 773	 * We don't know the TSC frequency yet, but waiting for
 774	 * 200000 TSC cycles is safe:
 775	 * 4 GHz == 50us
 776	 * 1 GHz == 200us
 777	 */
 778	do {
 779		rep_nop();
 780		rdtscll(now);
 
 781	} while ((now - start) < 200000UL);
 782
 783	if (t1 == hpet_readl(HPET_COUNTER)) {
 784		printk(KERN_WARNING
 785		       "HPET counter not counting. HPET disabled\n");
 786		return -ENODEV;
 787	}
 788
 789	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 790	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791}
 792
 793static u32 *hpet_boot_cfg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795/**
 796 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 797 */
 798int __init hpet_enable(void)
 799{
 800	u32 hpet_period, cfg, id;
 
 
 801	u64 freq;
 802	unsigned int i, last;
 803
 804	if (!is_hpet_capable())
 805		return 0;
 806
 
 
 
 807	hpet_set_mapping();
 
 
 
 
 
 
 808
 809	/*
 810	 * Read the period and check for a sane value:
 811	 */
 812	hpet_period = hpet_readl(HPET_PERIOD);
 813
 814	/*
 815	 * AMD SB700 based systems with spread spectrum enabled use a
 816	 * SMM based HPET emulation to provide proper frequency
 817	 * setting. The SMM code is initialized with the first HPET
 818	 * register access and takes some time to complete. During
 819	 * this time the config register reads 0xffffffff. We check
 820	 * for max. 1000 loops whether the config register reads a non
 821	 * 0xffffffff value to make sure that HPET is up and running
 822	 * before we go further. A counting loop is safe, as the HPET
 823	 * access takes thousands of CPU cycles. On non SB700 based
 824	 * machines this check is only done once and has no side
 825	 * effects.
 826	 */
 827	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 828		if (i == 1000) {
 829			printk(KERN_WARNING
 830			       "HPET config register value = 0xFFFFFFFF. "
 831			       "Disabling HPET\n");
 832			goto out_nohpet;
 833		}
 834	}
 835
 836	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 837		goto out_nohpet;
 838
 839	/*
 840	 * The period is a femto seconds value. Convert it to a
 841	 * frequency.
 842	 */
 843	freq = FSEC_PER_SEC;
 844	do_div(freq, hpet_period);
 845	hpet_freq = freq;
 846
 847	/*
 848	 * Read the HPET ID register to retrieve the IRQ routing
 849	 * information and the number of channels
 850	 */
 851	id = hpet_readl(HPET_ID);
 852	hpet_print_config();
 853
 854	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 
 855
 856#ifdef CONFIG_HPET_EMULATE_RTC
 857	/*
 858	 * The legacy routing mode needs at least two channels, tick timer
 859	 * and the rtc emulation channel.
 860	 */
 861	if (!last)
 862		goto out_nohpet;
 863#endif
 864
 
 
 
 
 
 
 
 
 
 865	cfg = hpet_readl(HPET_CFG);
 866	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 867				GFP_KERNEL);
 868	if (hpet_boot_cfg)
 869		*hpet_boot_cfg = cfg;
 870	else
 871		pr_warn("HPET initial state will not be saved\n");
 872	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 873	hpet_writel(cfg, HPET_CFG);
 874	if (cfg)
 875		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 876			cfg);
 
 
 
 877
 878	for (i = 0; i <= last; ++i) {
 879		cfg = hpet_readl(HPET_Tn_CFG(i));
 880		if (hpet_boot_cfg)
 881			hpet_boot_cfg[i + 1] = cfg;
 
 
 882		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 883		hpet_writel(cfg, HPET_Tn_CFG(i));
 
 884		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 885			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 886			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
 887		if (cfg)
 888			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 889				cfg, i);
 890	}
 891	hpet_print_config();
 892
 893	if (hpet_clocksource_register())
 
 
 
 
 
 894		goto out_nohpet;
 895
 
 
 
 
 896	if (id & HPET_ID_LEGSUP) {
 897		hpet_legacy_clockevent_register();
 
 
 
 898		return 1;
 899	}
 900	return 0;
 901
 902out_nohpet:
 
 
 
 903	hpet_clear_mapping();
 904	hpet_address = 0;
 905	return 0;
 906}
 907
 908/*
 909 * Needs to be late, as the reserve_timer code calls kalloc !
 
 
 
 
 910 *
 911 * Not a problem on i386 as hpet_enable is called from late_time_init,
 912 * but on x86_64 it is necessary !
 
 
 
 
 913 */
 914static __init int hpet_late_init(void)
 915{
 916	int cpu;
 917
 918	if (boot_hpet_disable)
 919		return -ENODEV;
 920
 921	if (!hpet_address) {
 922		if (!force_hpet_address)
 923			return -ENODEV;
 924
 925		hpet_address = force_hpet_address;
 926		hpet_enable();
 927	}
 928
 929	if (!hpet_virt_address)
 930		return -ENODEV;
 931
 932	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 933		hpet_msi_capability_lookup(2);
 934	else
 935		hpet_msi_capability_lookup(0);
 936
 937	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 938	hpet_print_config();
 939
 940	if (hpet_msi_disable)
 941		return 0;
 942
 943	if (boot_cpu_has(X86_FEATURE_ARAT))
 944		return 0;
 945
 946	for_each_online_cpu(cpu) {
 947		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 948	}
 949
 950	/* This notifier should be called after workqueue is ready */
 951	hotcpu_notifier(hpet_cpuhp_notify, -20);
 952
 953	return 0;
 
 
 
 
 954}
 955fs_initcall(hpet_late_init);
 956
 957void hpet_disable(void)
 958{
 959	if (is_hpet_capable() && hpet_virt_address) {
 960		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
 961
 962		if (hpet_boot_cfg)
 963			cfg = *hpet_boot_cfg;
 964		else if (hpet_legacy_int_enabled) {
 965			cfg &= ~HPET_CFG_LEGACY;
 966			hpet_legacy_int_enabled = 0;
 967		}
 968		cfg &= ~HPET_CFG_ENABLE;
 969		hpet_writel(cfg, HPET_CFG);
 970
 971		if (!hpet_boot_cfg)
 972			return;
 973
 974		id = hpet_readl(HPET_ID);
 975		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 976
 977		for (id = 0; id <= last; ++id)
 978			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
 
 
 979
 980		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
 981			hpet_writel(*hpet_boot_cfg, HPET_CFG);
 982	}
 
 
 
 
 983}
 984
 985#ifdef CONFIG_HPET_EMULATE_RTC
 986
 987/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 
 988 * is enabled, we support RTC interrupt functionality in software.
 
 989 * RTC has 3 kinds of interrupts:
 990 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 991 *    is updated
 992 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 993 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 994 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 995 * (1) and (2) above are implemented using polling at a frequency of
 996 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 997 * overhead. (DEFAULT_RTC_INT_FREQ)
 998 * For (3), we use interrupts at 64Hz or user specified periodic
 999 * frequency, whichever is higher.
 
 
 
 
1000 */
1001#include <linux/mc146818rtc.h>
1002#include <linux/rtc.h>
1003#include <asm/rtc.h>
1004
1005#define DEFAULT_RTC_INT_FREQ	64
1006#define DEFAULT_RTC_SHIFT	6
1007#define RTC_NUM_INTS		1
1008
1009static unsigned long hpet_rtc_flags;
1010static int hpet_prev_update_sec;
1011static struct rtc_time hpet_alarm_time;
1012static unsigned long hpet_pie_count;
1013static u32 hpet_t1_cmp;
1014static u32 hpet_default_delta;
1015static u32 hpet_pie_delta;
1016static unsigned long hpet_pie_limit;
1017
1018static rtc_irq_handler irq_handler;
1019
1020/*
1021 * Check that the hpet counter c1 is ahead of the c2
1022 */
1023static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1024{
1025	return (s32)(c2 - c1) < 0;
1026}
1027
1028/*
1029 * Registers a IRQ handler.
1030 */
1031int hpet_register_irq_handler(rtc_irq_handler handler)
1032{
1033	if (!is_hpet_enabled())
1034		return -ENODEV;
1035	if (irq_handler)
1036		return -EBUSY;
1037
1038	irq_handler = handler;
1039
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1043
1044/*
1045 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1046 * and does cleanup.
1047 */
1048void hpet_unregister_irq_handler(rtc_irq_handler handler)
1049{
1050	if (!is_hpet_enabled())
1051		return;
1052
1053	irq_handler = NULL;
1054	hpet_rtc_flags = 0;
1055}
1056EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1057
1058/*
1059 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1060 * is not supported by all HPET implementations for timer 1.
1061 *
1062 * hpet_rtc_timer_init() is called when the rtc is initialized.
1063 */
1064int hpet_rtc_timer_init(void)
1065{
1066	unsigned int cfg, cnt, delta;
1067	unsigned long flags;
1068
1069	if (!is_hpet_enabled())
1070		return 0;
1071
1072	if (!hpet_default_delta) {
 
1073		uint64_t clc;
1074
1075		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1076		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1077		hpet_default_delta = clc;
1078	}
1079
1080	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1081		delta = hpet_default_delta;
1082	else
1083		delta = hpet_pie_delta;
1084
1085	local_irq_save(flags);
1086
1087	cnt = delta + hpet_readl(HPET_COUNTER);
1088	hpet_writel(cnt, HPET_T1_CMP);
1089	hpet_t1_cmp = cnt;
1090
1091	cfg = hpet_readl(HPET_T1_CFG);
1092	cfg &= ~HPET_TN_PERIODIC;
1093	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1094	hpet_writel(cfg, HPET_T1_CFG);
1095
1096	local_irq_restore(flags);
1097
1098	return 1;
1099}
1100EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1101
1102static void hpet_disable_rtc_channel(void)
1103{
1104	unsigned long cfg;
1105	cfg = hpet_readl(HPET_T1_CFG);
1106	cfg &= ~HPET_TN_ENABLE;
1107	hpet_writel(cfg, HPET_T1_CFG);
1108}
1109
1110/*
1111 * The functions below are called from rtc driver.
1112 * Return 0 if HPET is not being used.
1113 * Otherwise do the necessary changes and return 1.
1114 */
1115int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1116{
1117	if (!is_hpet_enabled())
1118		return 0;
1119
1120	hpet_rtc_flags &= ~bit_mask;
1121	if (unlikely(!hpet_rtc_flags))
1122		hpet_disable_rtc_channel();
1123
1124	return 1;
1125}
1126EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1127
1128int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1129{
1130	unsigned long oldbits = hpet_rtc_flags;
1131
1132	if (!is_hpet_enabled())
1133		return 0;
1134
1135	hpet_rtc_flags |= bit_mask;
1136
1137	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1138		hpet_prev_update_sec = -1;
1139
1140	if (!oldbits)
1141		hpet_rtc_timer_init();
1142
1143	return 1;
1144}
1145EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1146
1147int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1148			unsigned char sec)
1149{
1150	if (!is_hpet_enabled())
1151		return 0;
1152
1153	hpet_alarm_time.tm_hour = hrs;
1154	hpet_alarm_time.tm_min = min;
1155	hpet_alarm_time.tm_sec = sec;
1156
1157	return 1;
1158}
1159EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1160
1161int hpet_set_periodic_freq(unsigned long freq)
1162{
1163	uint64_t clc;
1164
1165	if (!is_hpet_enabled())
1166		return 0;
1167
1168	if (freq <= DEFAULT_RTC_INT_FREQ)
1169		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1170	else {
1171		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
 
 
1172		do_div(clc, freq);
1173		clc >>= hpet_clockevent.shift;
1174		hpet_pie_delta = clc;
1175		hpet_pie_limit = 0;
1176	}
 
1177	return 1;
1178}
1179EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1180
1181int hpet_rtc_dropped_irq(void)
1182{
1183	return is_hpet_enabled();
1184}
1185EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1186
1187static void hpet_rtc_timer_reinit(void)
1188{
1189	unsigned int delta;
1190	int lost_ints = -1;
1191
1192	if (unlikely(!hpet_rtc_flags))
1193		hpet_disable_rtc_channel();
1194
1195	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1196		delta = hpet_default_delta;
1197	else
1198		delta = hpet_pie_delta;
1199
1200	/*
1201	 * Increment the comparator value until we are ahead of the
1202	 * current count.
1203	 */
1204	do {
1205		hpet_t1_cmp += delta;
1206		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1207		lost_ints++;
1208	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1209
1210	if (lost_ints) {
1211		if (hpet_rtc_flags & RTC_PIE)
1212			hpet_pie_count += lost_ints;
1213		if (printk_ratelimit())
1214			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1215				lost_ints);
1216	}
1217}
1218
1219irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1220{
1221	struct rtc_time curr_time;
1222	unsigned long rtc_int_flag = 0;
1223
1224	hpet_rtc_timer_reinit();
1225	memset(&curr_time, 0, sizeof(struct rtc_time));
1226
1227	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1228		get_rtc_time(&curr_time);
 
 
 
 
1229
1230	if (hpet_rtc_flags & RTC_UIE &&
1231	    curr_time.tm_sec != hpet_prev_update_sec) {
1232		if (hpet_prev_update_sec >= 0)
1233			rtc_int_flag = RTC_UF;
1234		hpet_prev_update_sec = curr_time.tm_sec;
1235	}
1236
1237	if (hpet_rtc_flags & RTC_PIE &&
1238	    ++hpet_pie_count >= hpet_pie_limit) {
1239		rtc_int_flag |= RTC_PF;
1240		hpet_pie_count = 0;
1241	}
1242
1243	if (hpet_rtc_flags & RTC_AIE &&
1244	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1245	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1246	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1247			rtc_int_flag |= RTC_AF;
1248
1249	if (rtc_int_flag) {
1250		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1251		if (irq_handler)
1252			irq_handler(rtc_int_flag, dev_id);
1253	}
1254	return IRQ_HANDLED;
1255}
1256EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1257#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
 
 
 
   6#include <linux/hpet.h>
 
   7#include <linux/cpu.h>
   8#include <linux/irq.h>
 
   9
  10#include <asm/irq_remapping.h>
  11#include <asm/hpet.h>
  12#include <asm/time.h>
  13#include <asm/mwait.h>
  14
  15#undef  pr_fmt
  16#define pr_fmt(fmt) "hpet: " fmt
  17
  18enum hpet_mode {
  19	HPET_MODE_UNUSED,
  20	HPET_MODE_LEGACY,
  21	HPET_MODE_CLOCKEVT,
  22	HPET_MODE_DEVICE,
  23};
  24
  25struct hpet_channel {
  26	struct clock_event_device	evt;
  27	unsigned int			num;
  28	unsigned int			cpu;
  29	unsigned int			irq;
  30	unsigned int			in_use;
  31	enum hpet_mode			mode;
  32	unsigned int			boot_cfg;
  33	char				name[10];
  34};
  35
  36struct hpet_base {
  37	unsigned int			nr_channels;
  38	unsigned int			nr_clockevents;
  39	unsigned int			boot_cfg;
  40	struct hpet_channel		*channels;
  41};
  42
  43#define HPET_MASK			CLOCKSOURCE_MASK(32)
 
 
 
 
 
 
 
 
  44
  45#define HPET_MIN_CYCLES			128
  46#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  47
  48/*
  49 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  50 */
  51unsigned long				hpet_address;
  52u8					hpet_blockid; /* OS timer block num */
  53bool					hpet_msi_disable;
  54
  55#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
  56static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
  57static struct irq_domain		*hpet_domain;
  58#endif
  59
  60static void __iomem			*hpet_virt_address;
  61
  62static struct hpet_base			hpet_base;
  63
  64static bool				hpet_legacy_int_enabled;
  65static unsigned long			hpet_freq;
  66
  67bool					boot_hpet_disable;
  68bool					hpet_force_user;
  69static bool				hpet_verbose;
  70
  71static inline
  72struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
  73{
  74	return container_of(evt, struct hpet_channel, evt);
  75}
  76
  77inline unsigned int hpet_readl(unsigned int a)
  78{
  79	return readl(hpet_virt_address + a);
  80}
  81
  82static inline void hpet_writel(unsigned int d, unsigned int a)
  83{
  84	writel(d, hpet_virt_address + a);
  85}
  86
 
 
 
 
  87static inline void hpet_set_mapping(void)
  88{
  89	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
 
 
 
  90}
  91
  92static inline void hpet_clear_mapping(void)
  93{
  94	iounmap(hpet_virt_address);
  95	hpet_virt_address = NULL;
  96}
  97
  98/*
  99 * HPET command line enable / disable
 100 */
 
 
 
 
 101static int __init hpet_setup(char *str)
 102{
 103	while (str) {
 104		char *next = strchr(str, ',');
 105
 106		if (next)
 107			*next++ = 0;
 108		if (!strncmp("disable", str, 7))
 109			boot_hpet_disable = true;
 110		if (!strncmp("force", str, 5))
 111			hpet_force_user = true;
 112		if (!strncmp("verbose", str, 7))
 113			hpet_verbose = true;
 114		str = next;
 115	}
 116	return 1;
 117}
 118__setup("hpet=", hpet_setup);
 119
 120static int __init disable_hpet(char *str)
 121{
 122	boot_hpet_disable = true;
 123	return 1;
 124}
 125__setup("nohpet", disable_hpet);
 126
 127static inline int is_hpet_capable(void)
 128{
 129	return !boot_hpet_disable && hpet_address;
 130}
 131
 
 
 
 
 
 132/**
 133 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
 134 */
 135int is_hpet_enabled(void)
 136{
 137	return is_hpet_capable() && hpet_legacy_int_enabled;
 138}
 139EXPORT_SYMBOL_GPL(is_hpet_enabled);
 140
 141static void _hpet_print_config(const char *function, int line)
 142{
 143	u32 i, id, period, cfg, status, channels, l, h;
 144
 145	pr_info("%s(%d):\n", function, line);
 146
 147	id = hpet_readl(HPET_ID);
 148	period = hpet_readl(HPET_PERIOD);
 149	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
 150
 151	cfg = hpet_readl(HPET_CFG);
 152	status = hpet_readl(HPET_STATUS);
 153	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
 154
 155	l = hpet_readl(HPET_COUNTER);
 156	h = hpet_readl(HPET_COUNTER+4);
 157	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 158
 159	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 160
 161	for (i = 0; i < channels; i++) {
 162		l = hpet_readl(HPET_Tn_CFG(i));
 163		h = hpet_readl(HPET_Tn_CFG(i)+4);
 164		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
 165
 166		l = hpet_readl(HPET_Tn_CMP(i));
 167		h = hpet_readl(HPET_Tn_CMP(i)+4);
 168		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
 169
 170		l = hpet_readl(HPET_Tn_ROUTE(i));
 171		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 172		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
 
 173	}
 174}
 175
 176#define hpet_print_config()					\
 177do {								\
 178	if (hpet_verbose)					\
 179		_hpet_print_config(__func__, __LINE__);	\
 180} while (0)
 181
 182/*
 183 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
 184 * timer 0 and timer 1 in case of RTC emulation.
 185 */
 186#ifdef CONFIG_HPET
 187
 188static void __init hpet_reserve_platform_timers(void)
 
 
 189{
 
 
 
 190	struct hpet_data hd;
 191	unsigned int i;
 
 192
 193	memset(&hd, 0, sizeof(hd));
 194	hd.hd_phys_address	= hpet_address;
 195	hd.hd_address		= hpet_virt_address;
 196	hd.hd_nirqs		= hpet_base.nr_channels;
 
 
 
 
 
 197
 198	/*
 199	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 200	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 201	 * don't bother configuring *any* comparator interrupts.
 202	 */
 203	hd.hd_irq[0] = HPET_LEGACY_8254;
 204	hd.hd_irq[1] = HPET_LEGACY_RTC;
 205
 206	for (i = 0; i < hpet_base.nr_channels; i++) {
 207		struct hpet_channel *hc = hpet_base.channels + i;
 
 
 208
 209		if (i >= 2)
 210			hd.hd_irq[i] = hc->irq;
 211
 212		switch (hc->mode) {
 213		case HPET_MODE_UNUSED:
 214		case HPET_MODE_DEVICE:
 215			hc->mode = HPET_MODE_DEVICE;
 216			break;
 217		case HPET_MODE_CLOCKEVT:
 218		case HPET_MODE_LEGACY:
 219			hpet_reserve_timer(&hd, hc->num);
 220			break;
 221		}
 222	}
 223
 224	hpet_alloc(&hd);
 225}
 
 
 
 226
 227static void __init hpet_select_device_channel(void)
 228{
 229	int i;
 
 230
 231	for (i = 0; i < hpet_base.nr_channels; i++) {
 232		struct hpet_channel *hc = hpet_base.channels + i;
 
 
 233
 234		/* Associate the first unused channel to /dev/hpet */
 235		if (hc->mode == HPET_MODE_UNUSED) {
 236			hc->mode = HPET_MODE_DEVICE;
 237			return;
 238		}
 239	}
 240}
 241
 242#else
 243static inline void hpet_reserve_platform_timers(void) { }
 244static inline void hpet_select_device_channel(void) {}
 245#endif
 246
 247/* Common HPET functions */
 248static void hpet_stop_counter(void)
 249{
 250	u32 cfg = hpet_readl(HPET_CFG);
 251
 252	cfg &= ~HPET_CFG_ENABLE;
 253	hpet_writel(cfg, HPET_CFG);
 254}
 255
 256static void hpet_reset_counter(void)
 257{
 258	hpet_writel(0, HPET_COUNTER);
 259	hpet_writel(0, HPET_COUNTER + 4);
 260}
 261
 262static void hpet_start_counter(void)
 263{
 264	unsigned int cfg = hpet_readl(HPET_CFG);
 265
 266	cfg |= HPET_CFG_ENABLE;
 267	hpet_writel(cfg, HPET_CFG);
 268}
 269
 270static void hpet_restart_counter(void)
 271{
 272	hpet_stop_counter();
 273	hpet_reset_counter();
 274	hpet_start_counter();
 275}
 276
 277static void hpet_resume_device(void)
 278{
 279	force_hpet_resume();
 280}
 281
 282static void hpet_resume_counter(struct clocksource *cs)
 283{
 284	hpet_resume_device();
 285	hpet_restart_counter();
 286}
 287
 288static void hpet_enable_legacy_int(void)
 289{
 290	unsigned int cfg = hpet_readl(HPET_CFG);
 291
 292	cfg |= HPET_CFG_LEGACY;
 293	hpet_writel(cfg, HPET_CFG);
 294	hpet_legacy_int_enabled = true;
 295}
 296
 297static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
 298{
 299	unsigned int channel = clockevent_to_channel(evt)->num;
 300	unsigned int cfg, cmp, now;
 301	uint64_t delta;
 302
 303	hpet_stop_counter();
 304	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 305	delta >>= evt->shift;
 306	now = hpet_readl(HPET_COUNTER);
 307	cmp = now + (unsigned int)delta;
 308	cfg = hpet_readl(HPET_Tn_CFG(channel));
 309	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 310	       HPET_TN_32BIT;
 311	hpet_writel(cfg, HPET_Tn_CFG(channel));
 312	hpet_writel(cmp, HPET_Tn_CMP(channel));
 313	udelay(1);
 314	/*
 315	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 316	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 317	 * bit is automatically cleared after the first write.
 318	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 319	 * Publication # 24674)
 320	 */
 321	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
 322	hpet_start_counter();
 323	hpet_print_config();
 324
 325	return 0;
 326}
 327
 328static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
 329{
 330	unsigned int channel = clockevent_to_channel(evt)->num;
 331	unsigned int cfg;
 332
 333	cfg = hpet_readl(HPET_Tn_CFG(channel));
 334	cfg &= ~HPET_TN_PERIODIC;
 335	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 336	hpet_writel(cfg, HPET_Tn_CFG(channel));
 337
 338	return 0;
 339}
 340
 341static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
 
 342{
 343	unsigned int channel = clockevent_to_channel(evt)->num;
 344	unsigned int cfg;
 345
 346	cfg = hpet_readl(HPET_Tn_CFG(channel));
 347	cfg &= ~HPET_TN_ENABLE;
 348	hpet_writel(cfg, HPET_Tn_CFG(channel));
 349
 350	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351}
 352
 353static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
 
 354{
 355	hpet_enable_legacy_int();
 356	hpet_print_config();
 357	return 0;
 358}
 359
 360static int
 361hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
 362{
 363	unsigned int channel = clockevent_to_channel(evt)->num;
 364	u32 cnt;
 365	s32 res;
 366
 367	cnt = hpet_readl(HPET_COUNTER);
 368	cnt += (u32) delta;
 369	hpet_writel(cnt, HPET_Tn_CMP(channel));
 370
 371	/*
 372	 * HPETs are a complete disaster. The compare register is
 373	 * based on a equal comparison and neither provides a less
 374	 * than or equal functionality (which would require to take
 375	 * the wraparound into account) nor a simple count down event
 376	 * mode. Further the write to the comparator register is
 377	 * delayed internally up to two HPET clock cycles in certain
 378	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 379	 * longer delays. We worked around that by reading back the
 380	 * compare register, but that required another workaround for
 381	 * ICH9,10 chips where the first readout after write can
 382	 * return the old stale value. We already had a minimum
 383	 * programming delta of 5us enforced, but a NMI or SMI hitting
 384	 * between the counter readout and the comparator write can
 385	 * move us behind that point easily. Now instead of reading
 386	 * the compare register back several times, we make the ETIME
 387	 * decision based on the following: Return ETIME if the
 388	 * counter value after the write is less than HPET_MIN_CYCLES
 389	 * away from the event or if the counter is already ahead of
 390	 * the event. The minimum programming delta for the generic
 391	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 392	 */
 393	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 394
 395	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 396}
 397
 398static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
 
 399{
 400	struct clock_event_device *evt = &hc->evt;
 401
 402	evt->rating		= rating;
 403	evt->irq		= hc->irq;
 404	evt->name		= hc->name;
 405	evt->cpumask		= cpumask_of(hc->cpu);
 406	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
 407	evt->set_next_event	= hpet_clkevt_set_next_event;
 408	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
 409
 410	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 411	if (hc->boot_cfg & HPET_TN_PERIODIC) {
 412		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
 413		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
 414	}
 415}
 416
 417static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
 
 418{
 419	/*
 420	 * Start HPET with the boot CPU's cpumask and make it global after
 421	 * the IO_APIC has been initialized.
 422	 */
 423	hc->cpu = boot_cpu_data.cpu_index;
 424	strscpy(hc->name, "hpet", sizeof(hc->name));
 425	hpet_init_clockevent(hc, 50);
 426
 427	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
 428
 429	/*
 430	 * Legacy horrors and sins from the past. HPET used periodic mode
 431	 * unconditionally forever on the legacy channel 0. Removing the
 432	 * below hack and using the conditional in hpet_init_clockevent()
 433	 * makes at least Qemu and one hardware machine fail to boot.
 434	 * There are two issues which cause the boot failure:
 435	 *
 436	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
 437	 *    the next interrupt is not delivered despite the HPET channel
 438	 *    being programmed correctly. Reprogramming the HPET after
 439	 *    switching to IOAPIC makes it work again. After fixing this,
 440	 *    the next issue surfaces:
 441	 *
 442	 * #2 Due to the unconditional periodic mode availability the Local
 443	 *    APIC timer calibration can hijack the global clockevents
 444	 *    event handler without causing damage. Using oneshot at this
 445	 *    stage makes if hang because the HPET does not get
 446	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
 447	 *
 448	 * Both issues require major surgery and especially the kick HPET
 449	 * again after enabling IOAPIC results in really nasty hackery.
 450	 * This 'assume periodic works' magic has survived since HPET
 451	 * support got added, so it's questionable whether this should be
 452	 * fixed. Both Qemu and the failing hardware machine support
 453	 * periodic mode despite the fact that both don't advertise it in
 454	 * the configuration register and both need that extra kick after
 455	 * switching to IOAPIC. Seems to be a feature...
 456	 */
 457	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
 458	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
 459
 460	/* Start HPET legacy interrupts */
 461	hpet_enable_legacy_int();
 462
 463	clockevents_config_and_register(&hc->evt, hpet_freq,
 464					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 465	global_clock_event = &hc->evt;
 466	pr_debug("Clockevent registered\n");
 467}
 468
 469/*
 470 * HPET MSI Support
 471 */
 472#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
 473static void hpet_msi_unmask(struct irq_data *data)
 
 
 
 
 474{
 475	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 476	unsigned int cfg;
 477
 478	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 479	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 480	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 
 481}
 482
 483static void hpet_msi_mask(struct irq_data *data)
 484{
 485	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 486	unsigned int cfg;
 487
 488	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 489	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 490	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 
 491}
 492
 493static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
 494{
 495	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
 496	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
 497}
 498
 499static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
 500{
 501	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
 
 
 502}
 503
 504static struct irq_chip hpet_msi_controller __ro_after_init = {
 505	.name = "HPET-MSI",
 506	.irq_unmask = hpet_msi_unmask,
 507	.irq_mask = hpet_msi_mask,
 508	.irq_ack = irq_chip_ack_parent,
 509	.irq_set_affinity = msi_domain_set_affinity,
 510	.irq_retrigger = irq_chip_retrigger_hierarchy,
 511	.irq_write_msi_msg = hpet_msi_write_msg,
 512	.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
 513};
 514
 515static int hpet_msi_init(struct irq_domain *domain,
 516			 struct msi_domain_info *info, unsigned int virq,
 517			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
 518{
 519	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
 520	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
 521			    handle_edge_irq, arg->data, "edge");
 522
 523	return 0;
 524}
 525
 526static void hpet_msi_free(struct irq_domain *domain,
 527			  struct msi_domain_info *info, unsigned int virq)
 528{
 529	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
 
 530}
 531
 532static struct msi_domain_ops hpet_msi_domain_ops = {
 533	.msi_init	= hpet_msi_init,
 534	.msi_free	= hpet_msi_free,
 535};
 536
 537static struct msi_domain_info hpet_msi_domain_info = {
 538	.ops		= &hpet_msi_domain_ops,
 539	.chip		= &hpet_msi_controller,
 540	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
 541};
 542
 543static struct irq_domain *hpet_create_irq_domain(int hpet_id)
 544{
 545	struct msi_domain_info *domain_info;
 546	struct irq_domain *parent, *d;
 547	struct fwnode_handle *fn;
 548	struct irq_fwspec fwspec;
 549
 550	if (x86_vector_domain == NULL)
 551		return NULL;
 552
 553	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
 554	if (!domain_info)
 555		return NULL;
 556
 557	*domain_info = hpet_msi_domain_info;
 558	domain_info->data = (void *)(long)hpet_id;
 559
 560	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
 561					      hpet_id);
 562	if (!fn) {
 563		kfree(domain_info);
 564		return NULL;
 565	}
 566
 567	fwspec.fwnode = fn;
 568	fwspec.param_count = 1;
 569	fwspec.param[0] = hpet_id;
 570
 571	parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY);
 572	if (!parent) {
 573		irq_domain_free_fwnode(fn);
 574		kfree(domain_info);
 575		return NULL;
 576	}
 577	if (parent != x86_vector_domain)
 578		hpet_msi_controller.name = "IR-HPET-MSI";
 579
 580	d = msi_create_irq_domain(fn, domain_info, parent);
 581	if (!d) {
 582		irq_domain_free_fwnode(fn);
 583		kfree(domain_info);
 584	}
 585	return d;
 586}
 587
 588static inline int hpet_dev_id(struct irq_domain *domain)
 589{
 590	struct msi_domain_info *info = msi_get_domain_info(domain);
 591
 592	return (int)(long)info->data;
 593}
 594
 595static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
 596			   int dev_num)
 597{
 598	struct irq_alloc_info info;
 599
 600	init_irq_alloc_info(&info, NULL);
 601	info.type = X86_IRQ_ALLOC_TYPE_HPET;
 602	info.data = hc;
 603	info.devid = hpet_dev_id(domain);
 604	info.hwirq = dev_num;
 605
 606	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
 607}
 608
 609static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
 610{
 611	struct hpet_channel *hc = clockevent_to_channel(evt);
 612	struct irq_data *data = irq_get_irq_data(hc->irq);
 613	struct msi_msg msg;
 614
 615	/* Restore the MSI msg and unmask the interrupt */
 616	irq_chip_compose_msi_msg(data, &msg);
 617	hpet_msi_write(hc, &msg);
 618	hpet_msi_unmask(data);
 619	return 0;
 620}
 621
 622static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
 623{
 624	struct hpet_channel *hc = data;
 625	struct clock_event_device *evt = &hc->evt;
 626
 627	if (!evt->event_handler) {
 628		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
 
 629		return IRQ_HANDLED;
 630	}
 631
 632	evt->event_handler(evt);
 633	return IRQ_HANDLED;
 634}
 635
 636static int hpet_setup_msi_irq(struct hpet_channel *hc)
 637{
 638	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
 639			IRQF_TIMER | IRQF_NOBALANCING,
 640			hc->name, hc))
 
 641		return -1;
 642
 643	disable_irq(hc->irq);
 644	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
 645	enable_irq(hc->irq);
 646
 647	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
 
 648
 649	return 0;
 650}
 651
 652/* Invoked from the hotplug callback on @cpu */
 653static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
 654{
 655	struct clock_event_device *evt = &hc->evt;
 656
 657	hc->cpu = cpu;
 658	per_cpu(cpu_hpet_channel, cpu) = hc;
 659	hpet_setup_msi_irq(hc);
 660
 661	hpet_init_clockevent(hc, 110);
 662	evt->tick_resume = hpet_clkevt_msi_resume;
 663
 664	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 665					0x7FFFFFFF);
 666}
 
 
 667
 668static struct hpet_channel *hpet_get_unused_clockevent(void)
 669{
 670	int i;
 
 671
 672	for (i = 0; i < hpet_base.nr_channels; i++) {
 673		struct hpet_channel *hc = hpet_base.channels + i;
 
 674
 675		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
 676			continue;
 677		hc->in_use = 1;
 678		return hc;
 679	}
 680	return NULL;
 681}
 682
 683static int hpet_cpuhp_online(unsigned int cpu)
 684{
 685	struct hpet_channel *hc = hpet_get_unused_clockevent();
 
 
 
 686
 687	if (hc)
 688		init_one_hpet_msi_clockevent(hc, cpu);
 689	return 0;
 690}
 691
 692static int hpet_cpuhp_dead(unsigned int cpu)
 693{
 694	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
 
 
 
 695
 696	if (!hc)
 697		return 0;
 698	free_irq(hc->irq, hc);
 699	hc->in_use = 0;
 700	per_cpu(cpu_hpet_channel, cpu) = NULL;
 701	return 0;
 702}
 703
 704static void __init hpet_select_clockevents(void)
 705{
 706	unsigned int i;
 707
 708	hpet_base.nr_clockevents = 0;
 709
 710	/* No point if MSI is disabled or CPU has an Always Running APIC Timer */
 711	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
 712		return;
 
 713
 
 
 714	hpet_print_config();
 715
 716	hpet_domain = hpet_create_irq_domain(hpet_blockid);
 717	if (!hpet_domain)
 718		return;
 719
 720	for (i = 0; i < hpet_base.nr_channels; i++) {
 721		struct hpet_channel *hc = hpet_base.channels + i;
 722		int irq;
 723
 724		if (hc->mode != HPET_MODE_UNUSED)
 725			continue;
 
 726
 727		/* Only consider HPET channel with MSI support */
 728		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
 729			continue;
 730
 731		sprintf(hc->name, "hpet%d", i);
 
 
 
 732
 733		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
 734		if (irq <= 0)
 735			continue;
 736
 737		hc->irq = irq;
 738		hc->mode = HPET_MODE_CLOCKEVT;
 739
 740		if (++hpet_base.nr_clockevents == num_possible_cpus())
 741			break;
 742	}
 743
 744	pr_info("%d channels of %d reserved for per-cpu timers\n",
 745		hpet_base.nr_channels, hpet_base.nr_clockevents);
 746}
 747
 748#else
 
 
 
 
 
 
 749
 750static inline void hpet_select_clockevents(void) { }
 
 751
 752#define hpet_cpuhp_online	NULL
 753#define hpet_cpuhp_dead		NULL
 754
 
 
 
 
 755#endif
 756
 757/*
 758 * Clock source related code
 759 */
 760#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 761/*
 762 * Reading the HPET counter is a very slow operation. If a large number of
 763 * CPUs are trying to access the HPET counter simultaneously, it can cause
 764 * massive delays and slow down system performance dramatically. This may
 765 * happen when HPET is the default clock source instead of TSC. For a
 766 * really large system with hundreds of CPUs, the slowdown may be so
 767 * severe, that it can actually crash the system because of a NMI watchdog
 768 * soft lockup, for example.
 769 *
 770 * If multiple CPUs are trying to access the HPET counter at the same time,
 771 * we don't actually need to read the counter multiple times. Instead, the
 772 * other CPUs can use the counter value read by the first CPU in the group.
 773 *
 774 * This special feature is only enabled on x86-64 systems. It is unlikely
 775 * that 32-bit x86 systems will have enough CPUs to require this feature
 776 * with its associated locking overhead. We also need 64-bit atomic read.
 777 *
 778 * The lock and the HPET value are stored together and can be read in a
 779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 780 * is 32 bits in size.
 781 */
 782union hpet_lock {
 783	struct {
 784		arch_spinlock_t lock;
 785		u32 value;
 786	};
 787	u64 lockval;
 788};
 789
 790static union hpet_lock hpet __cacheline_aligned = {
 791	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 792};
 793
 794static u64 read_hpet(struct clocksource *cs)
 795{
 796	unsigned long flags;
 797	union hpet_lock old, new;
 798
 799	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 
 800
 801	/*
 802	 * Read HPET directly if in NMI.
 803	 */
 804	if (in_nmi())
 805		return (u64)hpet_readl(HPET_COUNTER);
 806
 807	/*
 808	 * Read the current state of the lock and HPET value atomically.
 809	 */
 810	old.lockval = READ_ONCE(hpet.lockval);
 
 
 
 
 
 811
 812	if (arch_spin_is_locked(&old.lock))
 813		goto contended;
 
 
 814
 815	local_irq_save(flags);
 816	if (arch_spin_trylock(&hpet.lock)) {
 817		new.value = hpet_readl(HPET_COUNTER);
 818		/*
 819		 * Use WRITE_ONCE() to prevent store tearing.
 820		 */
 821		WRITE_ONCE(hpet.value, new.value);
 822		arch_spin_unlock(&hpet.lock);
 823		local_irq_restore(flags);
 824		return (u64)new.value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825	}
 826	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 827
 828contended:
 829	/*
 830	 * Contended case
 831	 * --------------
 832	 * Wait until the HPET value change or the lock is free to indicate
 833	 * its value is up-to-date.
 834	 *
 835	 * It is possible that old.value has already contained the latest
 836	 * HPET value while the lock holder was in the process of releasing
 837	 * the lock. Checking for lock state change will enable us to return
 838	 * the value immediately instead of waiting for the next HPET reader
 839	 * to come along.
 840	 */
 841	do {
 842		cpu_relax();
 843		new.lockval = READ_ONCE(hpet.lockval);
 844	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 845
 846	return (u64)new.value;
 
 
 
 847}
 848#else
 
 
 849/*
 850 * For UP or 32-bit.
 851 */
 852static u64 read_hpet(struct clocksource *cs)
 853{
 854	return (u64)hpet_readl(HPET_COUNTER);
 855}
 856#endif
 857
 858static struct clocksource clocksource_hpet = {
 859	.name		= "hpet",
 860	.rating		= 250,
 861	.read		= read_hpet,
 862	.mask		= HPET_MASK,
 863	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 864	.resume		= hpet_resume_counter,
 
 
 
 865};
 866
 867/*
 868 * AMD SB700 based systems with spread spectrum enabled use a SMM based
 869 * HPET emulation to provide proper frequency setting.
 870 *
 871 * On such systems the SMM code is initialized with the first HPET register
 872 * access and takes some time to complete. During this time the config
 873 * register reads 0xffffffff. We check for max 1000 loops whether the
 874 * config register reads a non-0xffffffff value to make sure that the
 875 * HPET is up and running before we proceed any further.
 876 *
 877 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
 878 *
 879 * On non-SB700 based machines this check is only done once and has no
 880 * side effects.
 881 */
 882static bool __init hpet_cfg_working(void)
 883{
 884	int i;
 885
 886	for (i = 0; i < 1000; i++) {
 887		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
 888			return true;
 889	}
 890
 891	pr_warn("Config register invalid. Disabling HPET\n");
 892	return false;
 893}
 894
 895static bool __init hpet_counting(void)
 896{
 897	u64 start, now, t1;
 
 898
 
 899	hpet_restart_counter();
 900
 
 901	t1 = hpet_readl(HPET_COUNTER);
 902	start = rdtsc();
 903
 904	/*
 905	 * We don't know the TSC frequency yet, but waiting for
 906	 * 200000 TSC cycles is safe:
 907	 * 4 GHz == 50us
 908	 * 1 GHz == 200us
 909	 */
 910	do {
 911		if (t1 != hpet_readl(HPET_COUNTER))
 912			return true;
 913		now = rdtsc();
 914	} while ((now - start) < 200000UL);
 915
 916	pr_warn("Counter not counting. HPET disabled\n");
 917	return false;
 918}
 
 
 919
 920static bool __init mwait_pc10_supported(void)
 921{
 922	unsigned int eax, ebx, ecx, mwait_substates;
 923
 924	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 925		return false;
 926
 927	if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
 928		return false;
 929
 930	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
 931		return false;
 932
 933	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
 934
 935	return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
 936	       (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
 937	       (mwait_substates & (0xF << 28));
 938}
 939
 940/*
 941 * Check whether the system supports PC10. If so force disable HPET as that
 942 * stops counting in PC10. This check is overbroad as it does not take any
 943 * of the following into account:
 944 *
 945 *	- ACPI tables
 946 *	- Enablement of intel_idle
 947 *	- Command line arguments which limit intel_idle C-state support
 948 *
 949 * That's perfectly fine. HPET is a piece of hardware designed by committee
 950 * and the only reasons why it is still in use on modern systems is the
 951 * fact that it is impossible to reliably query TSC and CPU frequency via
 952 * CPUID or firmware.
 953 *
 954 * If HPET is functional it is useful for calibrating TSC, but this can be
 955 * done via PMTIMER as well which seems to be the last remaining timer on
 956 * X86/INTEL platforms that has not been completely wreckaged by feature
 957 * creep.
 958 *
 959 * In theory HPET support should be removed altogether, but there are older
 960 * systems out there which depend on it because TSC and APIC timer are
 961 * dysfunctional in deeper C-states.
 962 *
 963 * It's only 20 years now that hardware people have been asked to provide
 964 * reliable and discoverable facilities which can be used for timekeeping
 965 * and per CPU timer interrupts.
 966 *
 967 * The probability that this problem is going to be solved in the
 968 * foreseeable future is close to zero, so the kernel has to be cluttered
 969 * with heuristics to keep up with the ever growing amount of hardware and
 970 * firmware trainwrecks. Hopefully some day hardware people will understand
 971 * that the approach of "This can be fixed in software" is not sustainable.
 972 * Hope dies last...
 973 */
 974static bool __init hpet_is_pc10_damaged(void)
 975{
 976	unsigned long long pcfg;
 977
 978	/* Check whether PC10 substates are supported */
 979	if (!mwait_pc10_supported())
 980		return false;
 981
 982	/* Check whether PC10 is enabled in PKG C-state limit */
 983	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
 984	if ((pcfg & 0xF) < 8)
 985		return false;
 986
 987	if (hpet_force_user) {
 988		pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
 989		return false;
 990	}
 991
 992	pr_info("HPET dysfunctional in PC10. Force disabled.\n");
 993	boot_hpet_disable = true;
 994	return true;
 995}
 996
 997/**
 998 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 999 */
1000int __init hpet_enable(void)
1001{
1002	u32 hpet_period, cfg, id, irq;
1003	unsigned int i, channels;
1004	struct hpet_channel *hc;
1005	u64 freq;
 
1006
1007	if (!is_hpet_capable())
1008		return 0;
1009
1010	if (hpet_is_pc10_damaged())
1011		return 0;
1012
1013	hpet_set_mapping();
1014	if (!hpet_virt_address)
1015		return 0;
1016
1017	/* Validate that the config register is working */
1018	if (!hpet_cfg_working())
1019		goto out_nohpet;
1020
1021	/*
1022	 * Read the period and check for a sane value:
1023	 */
1024	hpet_period = hpet_readl(HPET_PERIOD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1026		goto out_nohpet;
1027
1028	/* The period is a femtoseconds value. Convert it to a frequency. */
 
 
 
1029	freq = FSEC_PER_SEC;
1030	do_div(freq, hpet_period);
1031	hpet_freq = freq;
1032
1033	/*
1034	 * Read the HPET ID register to retrieve the IRQ routing
1035	 * information and the number of channels
1036	 */
1037	id = hpet_readl(HPET_ID);
1038	hpet_print_config();
1039
1040	/* This is the HPET channel number which is zero based */
1041	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
1042
 
1043	/*
1044	 * The legacy routing mode needs at least two channels, tick timer
1045	 * and the rtc emulation channel.
1046	 */
1047	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
1048		goto out_nohpet;
 
1049
1050	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1051	if (!hc) {
1052		pr_warn("Disabling HPET.\n");
1053		goto out_nohpet;
1054	}
1055	hpet_base.channels = hc;
1056	hpet_base.nr_channels = channels;
1057
1058	/* Read, store and sanitize the global configuration */
1059	cfg = hpet_readl(HPET_CFG);
1060	hpet_base.boot_cfg = cfg;
 
 
 
 
 
1061	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1062	hpet_writel(cfg, HPET_CFG);
1063	if (cfg)
1064		pr_warn("Global config: Unknown bits %#x\n", cfg);
1065
1066	/* Read, store and sanitize the per channel configuration */
1067	for (i = 0; i < channels; i++, hc++) {
1068		hc->num = i;
1069
 
1070		cfg = hpet_readl(HPET_Tn_CFG(i));
1071		hc->boot_cfg = cfg;
1072		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1073		hc->irq = irq;
1074
1075		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1076		hpet_writel(cfg, HPET_Tn_CFG(i));
1077
1078		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1079			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1080			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1081		if (cfg)
1082			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
 
1083	}
1084	hpet_print_config();
1085
1086	/*
1087	 * Validate that the counter is counting. This needs to be done
1088	 * after sanitizing the config registers to properly deal with
1089	 * force enabled HPETs.
1090	 */
1091	if (!hpet_counting())
1092		goto out_nohpet;
1093
1094	if (tsc_clocksource_watchdog_disabled())
1095		clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
1096	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1097
1098	if (id & HPET_ID_LEGSUP) {
1099		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1100		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1101		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1102			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1103		return 1;
1104	}
1105	return 0;
1106
1107out_nohpet:
1108	kfree(hpet_base.channels);
1109	hpet_base.channels = NULL;
1110	hpet_base.nr_channels = 0;
1111	hpet_clear_mapping();
1112	hpet_address = 0;
1113	return 0;
1114}
1115
1116/*
1117 * The late initialization runs after the PCI quirks have been invoked
1118 * which might have detected a system on which the HPET can be enforced.
1119 *
1120 * Also, the MSI machinery is not working yet when the HPET is initialized
1121 * early.
1122 *
1123 * If the HPET is enabled, then:
1124 *
1125 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1126 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1127 *  3) Setup /dev/hpet if CONFIG_HPET=y
1128 *  4) Register hotplug callbacks when clockevents are available
1129 */
1130static __init int hpet_late_init(void)
1131{
1132	int ret;
 
 
 
1133
1134	if (!hpet_address) {
1135		if (!force_hpet_address)
1136			return -ENODEV;
1137
1138		hpet_address = force_hpet_address;
1139		hpet_enable();
1140	}
1141
1142	if (!hpet_virt_address)
1143		return -ENODEV;
1144
1145	hpet_select_device_channel();
1146	hpet_select_clockevents();
1147	hpet_reserve_platform_timers();
 
 
 
1148	hpet_print_config();
1149
1150	if (!hpet_base.nr_clockevents)
1151		return 0;
1152
1153	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1154				hpet_cpuhp_online, NULL);
1155	if (ret)
1156		return ret;
1157	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1158				hpet_cpuhp_dead);
1159	if (ret)
1160		goto err_cpuhp;
 
 
1161	return 0;
1162
1163err_cpuhp:
1164	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1165	return ret;
1166}
1167fs_initcall(hpet_late_init);
1168
1169void hpet_disable(void)
1170{
1171	unsigned int i;
1172	u32 cfg;
 
 
 
 
 
 
 
 
 
1173
1174	if (!is_hpet_capable() || !hpet_virt_address)
1175		return;
 
 
 
1176
1177	/* Restore boot configuration with the enable bit cleared */
1178	cfg = hpet_base.boot_cfg;
1179	cfg &= ~HPET_CFG_ENABLE;
1180	hpet_writel(cfg, HPET_CFG);
1181
1182	/* Restore the channel boot configuration */
1183	for (i = 0; i < hpet_base.nr_channels; i++)
1184		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1185
1186	/* If the HPET was enabled at boot time, reenable it */
1187	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1188		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1189}
1190
1191#ifdef CONFIG_HPET_EMULATE_RTC
1192
1193/*
1194 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1195 * is enabled, we support RTC interrupt functionality in software.
1196 *
1197 * RTC has 3 kinds of interrupts:
1198 *
1199 *  1) Update Interrupt - generate an interrupt, every second, when the
1200 *     RTC clock is updated
1201 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1202 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1203 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1204 *
1205 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1206 * DEFAULT_RTC_INT_FREQ.
1207 *
1208 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1209 *
1210 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1211 * if it's higher.
1212 */
1213#include <linux/mc146818rtc.h>
1214#include <linux/rtc.h>
 
1215
1216#define DEFAULT_RTC_INT_FREQ	64
1217#define DEFAULT_RTC_SHIFT	6
1218#define RTC_NUM_INTS		1
1219
1220static unsigned long hpet_rtc_flags;
1221static int hpet_prev_update_sec;
1222static struct rtc_time hpet_alarm_time;
1223static unsigned long hpet_pie_count;
1224static u32 hpet_t1_cmp;
1225static u32 hpet_default_delta;
1226static u32 hpet_pie_delta;
1227static unsigned long hpet_pie_limit;
1228
1229static rtc_irq_handler irq_handler;
1230
1231/*
1232 * Check that the HPET counter c1 is ahead of c2
1233 */
1234static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1235{
1236	return (s32)(c2 - c1) < 0;
1237}
1238
1239/*
1240 * Registers a IRQ handler.
1241 */
1242int hpet_register_irq_handler(rtc_irq_handler handler)
1243{
1244	if (!is_hpet_enabled())
1245		return -ENODEV;
1246	if (irq_handler)
1247		return -EBUSY;
1248
1249	irq_handler = handler;
1250
1251	return 0;
1252}
1253EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1254
1255/*
1256 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1257 * and does cleanup.
1258 */
1259void hpet_unregister_irq_handler(rtc_irq_handler handler)
1260{
1261	if (!is_hpet_enabled())
1262		return;
1263
1264	irq_handler = NULL;
1265	hpet_rtc_flags = 0;
1266}
1267EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1268
1269/*
1270 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1271 * is not supported by all HPET implementations for channel 1.
1272 *
1273 * hpet_rtc_timer_init() is called when the rtc is initialized.
1274 */
1275int hpet_rtc_timer_init(void)
1276{
1277	unsigned int cfg, cnt, delta;
1278	unsigned long flags;
1279
1280	if (!is_hpet_enabled())
1281		return 0;
1282
1283	if (!hpet_default_delta) {
1284		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1285		uint64_t clc;
1286
1287		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1288		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1289		hpet_default_delta = clc;
1290	}
1291
1292	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1293		delta = hpet_default_delta;
1294	else
1295		delta = hpet_pie_delta;
1296
1297	local_irq_save(flags);
1298
1299	cnt = delta + hpet_readl(HPET_COUNTER);
1300	hpet_writel(cnt, HPET_T1_CMP);
1301	hpet_t1_cmp = cnt;
1302
1303	cfg = hpet_readl(HPET_T1_CFG);
1304	cfg &= ~HPET_TN_PERIODIC;
1305	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1306	hpet_writel(cfg, HPET_T1_CFG);
1307
1308	local_irq_restore(flags);
1309
1310	return 1;
1311}
1312EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1313
1314static void hpet_disable_rtc_channel(void)
1315{
1316	u32 cfg = hpet_readl(HPET_T1_CFG);
1317
1318	cfg &= ~HPET_TN_ENABLE;
1319	hpet_writel(cfg, HPET_T1_CFG);
1320}
1321
1322/*
1323 * The functions below are called from rtc driver.
1324 * Return 0 if HPET is not being used.
1325 * Otherwise do the necessary changes and return 1.
1326 */
1327int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1328{
1329	if (!is_hpet_enabled())
1330		return 0;
1331
1332	hpet_rtc_flags &= ~bit_mask;
1333	if (unlikely(!hpet_rtc_flags))
1334		hpet_disable_rtc_channel();
1335
1336	return 1;
1337}
1338EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1339
1340int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1341{
1342	unsigned long oldbits = hpet_rtc_flags;
1343
1344	if (!is_hpet_enabled())
1345		return 0;
1346
1347	hpet_rtc_flags |= bit_mask;
1348
1349	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1350		hpet_prev_update_sec = -1;
1351
1352	if (!oldbits)
1353		hpet_rtc_timer_init();
1354
1355	return 1;
1356}
1357EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1358
1359int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 
1360{
1361	if (!is_hpet_enabled())
1362		return 0;
1363
1364	hpet_alarm_time.tm_hour = hrs;
1365	hpet_alarm_time.tm_min = min;
1366	hpet_alarm_time.tm_sec = sec;
1367
1368	return 1;
1369}
1370EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1371
1372int hpet_set_periodic_freq(unsigned long freq)
1373{
1374	uint64_t clc;
1375
1376	if (!is_hpet_enabled())
1377		return 0;
1378
1379	if (freq <= DEFAULT_RTC_INT_FREQ) {
1380		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1381	} else {
1382		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1383
1384		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1385		do_div(clc, freq);
1386		clc >>= evt->shift;
1387		hpet_pie_delta = clc;
1388		hpet_pie_limit = 0;
1389	}
1390
1391	return 1;
1392}
1393EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1394
1395int hpet_rtc_dropped_irq(void)
1396{
1397	return is_hpet_enabled();
1398}
1399EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1400
1401static void hpet_rtc_timer_reinit(void)
1402{
1403	unsigned int delta;
1404	int lost_ints = -1;
1405
1406	if (unlikely(!hpet_rtc_flags))
1407		hpet_disable_rtc_channel();
1408
1409	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1410		delta = hpet_default_delta;
1411	else
1412		delta = hpet_pie_delta;
1413
1414	/*
1415	 * Increment the comparator value until we are ahead of the
1416	 * current count.
1417	 */
1418	do {
1419		hpet_t1_cmp += delta;
1420		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1421		lost_ints++;
1422	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1423
1424	if (lost_ints) {
1425		if (hpet_rtc_flags & RTC_PIE)
1426			hpet_pie_count += lost_ints;
1427		if (printk_ratelimit())
1428			pr_warn("Lost %d RTC interrupts\n", lost_ints);
 
1429	}
1430}
1431
1432irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1433{
1434	struct rtc_time curr_time;
1435	unsigned long rtc_int_flag = 0;
1436
1437	hpet_rtc_timer_reinit();
1438	memset(&curr_time, 0, sizeof(struct rtc_time));
1439
1440	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
1441		if (unlikely(mc146818_get_time(&curr_time, 10) < 0)) {
1442			pr_err_ratelimited("unable to read current time from RTC\n");
1443			return IRQ_HANDLED;
1444		}
1445	}
1446
1447	if (hpet_rtc_flags & RTC_UIE &&
1448	    curr_time.tm_sec != hpet_prev_update_sec) {
1449		if (hpet_prev_update_sec >= 0)
1450			rtc_int_flag = RTC_UF;
1451		hpet_prev_update_sec = curr_time.tm_sec;
1452	}
1453
1454	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
 
1455		rtc_int_flag |= RTC_PF;
1456		hpet_pie_count = 0;
1457	}
1458
1459	if (hpet_rtc_flags & RTC_AIE &&
1460	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1461	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1462	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1463		rtc_int_flag |= RTC_AF;
1464
1465	if (rtc_int_flag) {
1466		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1467		if (irq_handler)
1468			irq_handler(rtc_int_flag, dev_id);
1469	}
1470	return IRQ_HANDLED;
1471}
1472EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1473#endif