Loading...
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6#include <linux/export.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24#include <linux/vmalloc.h>
25#include <linux/ftrace.h>
26#include <linux/cpu.h>
27#include <linux/slab.h>
28
29#include <asm/head.h>
30#include <asm/ptrace.h>
31#include <linux/atomic.h>
32#include <asm/tlbflush.h>
33#include <asm/mmu_context.h>
34#include <asm/cpudata.h>
35#include <asm/hvtramp.h>
36#include <asm/io.h>
37#include <asm/timer.h>
38
39#include <asm/irq.h>
40#include <asm/irq_regs.h>
41#include <asm/page.h>
42#include <asm/pgtable.h>
43#include <asm/oplib.h>
44#include <asm/uaccess.h>
45#include <asm/starfire.h>
46#include <asm/tlb.h>
47#include <asm/sections.h>
48#include <asm/prom.h>
49#include <asm/mdesc.h>
50#include <asm/ldc.h>
51#include <asm/hypervisor.h>
52#include <asm/pcr.h>
53
54#include "cpumap.h"
55
56int sparc64_multi_core __read_mostly;
57
58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63EXPORT_SYMBOL(cpu_core_map);
64
65static cpumask_t smp_commenced_mask;
66
67void smp_info(struct seq_file *m)
68{
69 int i;
70
71 seq_printf(m, "State:\n");
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
74}
75
76void smp_bogo(struct seq_file *m)
77{
78 int i;
79
80 for_each_online_cpu(i)
81 seq_printf(m,
82 "Cpu%dClkTck\t: %016lx\n",
83 i, cpu_data(i).clock_tick);
84}
85
86extern void setup_sparc64_timer(void);
87
88static volatile unsigned long callin_flag = 0;
89
90void __cpuinit smp_callin(void)
91{
92 int cpuid = hard_smp_processor_id();
93
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
98
99 __flush_tlb_all();
100
101 setup_sparc64_timer();
102
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
105
106 local_irq_enable();
107
108 callin_flag = 1;
109 __asm__ __volatile__("membar #Sync\n\t"
110 "flush %%g6" : : : "memory");
111
112 /* Clear this or we will die instantly when we
113 * schedule back to this idler...
114 */
115 current_thread_info()->new_child = 0;
116
117 /* Attach to the address space of init_task. */
118 atomic_inc(&init_mm.mm_count);
119 current->active_mm = &init_mm;
120
121 /* inform the notifiers about the new cpu */
122 notify_cpu_starting(cpuid);
123
124 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
125 rmb();
126
127 ipi_call_lock_irq();
128 set_cpu_online(cpuid, true);
129 ipi_call_unlock_irq();
130
131 /* idle thread is expected to have preempt disabled */
132 preempt_disable();
133}
134
135void cpu_panic(void)
136{
137 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 panic("SMP bolixed\n");
139}
140
141/* This tick register synchronization scheme is taken entirely from
142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143 *
144 * The only change I've made is to rework it so that the master
145 * initiates the synchonization instead of the slave. -DaveM
146 */
147
148#define MASTER 0
149#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
150
151#define NUM_ROUNDS 64 /* magic value */
152#define NUM_ITERS 5 /* likewise */
153
154static DEFINE_SPINLOCK(itc_sync_lock);
155static unsigned long go[SLAVE + 1];
156
157#define DEBUG_TICK_SYNC 0
158
159static inline long get_delta (long *rt, long *master)
160{
161 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162 unsigned long tcenter, t0, t1, tm;
163 unsigned long i;
164
165 for (i = 0; i < NUM_ITERS; i++) {
166 t0 = tick_ops->get_tick();
167 go[MASTER] = 1;
168 membar_safe("#StoreLoad");
169 while (!(tm = go[SLAVE]))
170 rmb();
171 go[SLAVE] = 0;
172 wmb();
173 t1 = tick_ops->get_tick();
174
175 if (t1 - t0 < best_t1 - best_t0)
176 best_t0 = t0, best_t1 = t1, best_tm = tm;
177 }
178
179 *rt = best_t1 - best_t0;
180 *master = best_tm - best_t0;
181
182 /* average best_t0 and best_t1 without overflow: */
183 tcenter = (best_t0/2 + best_t1/2);
184 if (best_t0 % 2 + best_t1 % 2 == 2)
185 tcenter++;
186 return tcenter - best_tm;
187}
188
189void smp_synchronize_tick_client(void)
190{
191 long i, delta, adj, adjust_latency = 0, done = 0;
192 unsigned long flags, rt, master_time_stamp;
193#if DEBUG_TICK_SYNC
194 struct {
195 long rt; /* roundtrip time */
196 long master; /* master's timestamp */
197 long diff; /* difference between midpoint and master's timestamp */
198 long lat; /* estimate of itc adjustment latency */
199 } t[NUM_ROUNDS];
200#endif
201
202 go[MASTER] = 1;
203
204 while (go[MASTER])
205 rmb();
206
207 local_irq_save(flags);
208 {
209 for (i = 0; i < NUM_ROUNDS; i++) {
210 delta = get_delta(&rt, &master_time_stamp);
211 if (delta == 0)
212 done = 1; /* let's lock on to this... */
213
214 if (!done) {
215 if (i > 0) {
216 adjust_latency += -delta;
217 adj = -delta + adjust_latency/4;
218 } else
219 adj = -delta;
220
221 tick_ops->add_tick(adj);
222 }
223#if DEBUG_TICK_SYNC
224 t[i].rt = rt;
225 t[i].master = master_time_stamp;
226 t[i].diff = delta;
227 t[i].lat = adjust_latency/4;
228#endif
229 }
230 }
231 local_irq_restore(flags);
232
233#if DEBUG_TICK_SYNC
234 for (i = 0; i < NUM_ROUNDS; i++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t[i].rt, t[i].master, t[i].diff, t[i].lat);
237#endif
238
239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240 "(last diff %ld cycles, maxerr %lu cycles)\n",
241 smp_processor_id(), delta, rt);
242}
243
244static void smp_start_sync_tick_client(int cpu);
245
246static void smp_synchronize_one_tick(int cpu)
247{
248 unsigned long flags, i;
249
250 go[MASTER] = 0;
251
252 smp_start_sync_tick_client(cpu);
253
254 /* wait for client to be ready */
255 while (!go[MASTER])
256 rmb();
257
258 /* now let the client proceed into his loop */
259 go[MASTER] = 0;
260 membar_safe("#StoreLoad");
261
262 spin_lock_irqsave(&itc_sync_lock, flags);
263 {
264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 while (!go[MASTER])
266 rmb();
267 go[MASTER] = 0;
268 wmb();
269 go[SLAVE] = tick_ops->get_tick();
270 membar_safe("#StoreLoad");
271 }
272 }
273 spin_unlock_irqrestore(&itc_sync_lock, flags);
274}
275
276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277/* XXX Put this in some common place. XXX */
278static unsigned long kimage_addr_to_ra(void *p)
279{
280 unsigned long val = (unsigned long) p;
281
282 return kern_base + (val - KERNBASE);
283}
284
285static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
286{
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 struct hvtramp_descr *hdesc;
290 unsigned long trampoline_ra;
291 struct trap_per_cpu *tb;
292 u64 tte_vaddr, tte_data;
293 unsigned long hv_err;
294 int i;
295
296 hdesc = kzalloc(sizeof(*hdesc) +
297 (sizeof(struct hvtramp_mapping) *
298 num_kernel_image_mappings - 1),
299 GFP_KERNEL);
300 if (!hdesc) {
301 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302 "hvtramp_descr.\n");
303 return;
304 }
305 *descrp = hdesc;
306
307 hdesc->cpu = cpu;
308 hdesc->num_mappings = num_kernel_image_mappings;
309
310 tb = &trap_block[cpu];
311
312 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
313 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314
315 hdesc->thread_reg = thread_reg;
316
317 tte_vaddr = (unsigned long) KERNBASE;
318 tte_data = kern_locked_tte_data;
319
320 for (i = 0; i < hdesc->num_mappings; i++) {
321 hdesc->maps[i].vaddr = tte_vaddr;
322 hdesc->maps[i].tte = tte_data;
323 tte_vaddr += 0x400000;
324 tte_data += 0x400000;
325 }
326
327 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328
329 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
330 kimage_addr_to_ra(&sparc64_ttable_tl0),
331 __pa(hdesc));
332 if (hv_err)
333 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
334 "gives error %lu\n", hv_err);
335}
336#endif
337
338extern unsigned long sparc64_cpu_startup;
339
340/* The OBP cpu startup callback truncates the 3rd arg cookie to
341 * 32-bits (I think) so to be safe we have it read the pointer
342 * contained here so we work on >4GB machines. -DaveM
343 */
344static struct thread_info *cpu_new_thread = NULL;
345
346static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
347{
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 void *descr = NULL;
353 int timeout, ret;
354
355 callin_flag = 0;
356 cpu_new_thread = task_thread_info(idle);
357
358 if (tlb_type == hypervisor) {
359#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
360 if (ldom_domaining_enabled)
361 ldom_startcpu_cpuid(cpu,
362 (unsigned long) cpu_new_thread,
363 &descr);
364 else
365#endif
366 prom_startcpu_cpuid(cpu, entry, cookie);
367 } else {
368 struct device_node *dp = of_find_node_by_cpuid(cpu);
369
370 prom_startcpu(dp->phandle, entry, cookie);
371 }
372
373 for (timeout = 0; timeout < 50000; timeout++) {
374 if (callin_flag)
375 break;
376 udelay(100);
377 }
378
379 if (callin_flag) {
380 ret = 0;
381 } else {
382 printk("Processor %d is stuck.\n", cpu);
383 ret = -ENODEV;
384 }
385 cpu_new_thread = NULL;
386
387 kfree(descr);
388
389 return ret;
390}
391
392static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
393{
394 u64 result, target;
395 int stuck, tmp;
396
397 if (this_is_starfire) {
398 /* map to real upaid */
399 cpu = (((cpu & 0x3c) << 1) |
400 ((cpu & 0x40) >> 4) |
401 (cpu & 0x3));
402 }
403
404 target = (cpu << 14) | 0x70;
405again:
406 /* Ok, this is the real Spitfire Errata #54.
407 * One must read back from a UDB internal register
408 * after writes to the UDB interrupt dispatch, but
409 * before the membar Sync for that write.
410 * So we use the high UDB control register (ASI 0x7f,
411 * ADDR 0x20) for the dummy read. -DaveM
412 */
413 tmp = 0x40;
414 __asm__ __volatile__(
415 "wrpr %1, %2, %%pstate\n\t"
416 "stxa %4, [%0] %3\n\t"
417 "stxa %5, [%0+%8] %3\n\t"
418 "add %0, %8, %0\n\t"
419 "stxa %6, [%0+%8] %3\n\t"
420 "membar #Sync\n\t"
421 "stxa %%g0, [%7] %3\n\t"
422 "membar #Sync\n\t"
423 "mov 0x20, %%g1\n\t"
424 "ldxa [%%g1] 0x7f, %%g0\n\t"
425 "membar #Sync"
426 : "=r" (tmp)
427 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
428 "r" (data0), "r" (data1), "r" (data2), "r" (target),
429 "r" (0x10), "0" (tmp)
430 : "g1");
431
432 /* NOTE: PSTATE_IE is still clear. */
433 stuck = 100000;
434 do {
435 __asm__ __volatile__("ldxa [%%g0] %1, %0"
436 : "=r" (result)
437 : "i" (ASI_INTR_DISPATCH_STAT));
438 if (result == 0) {
439 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
440 : : "r" (pstate));
441 return;
442 }
443 stuck -= 1;
444 if (stuck == 0)
445 break;
446 } while (result & 0x1);
447 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
448 : : "r" (pstate));
449 if (stuck == 0) {
450 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
451 smp_processor_id(), result);
452 } else {
453 udelay(2);
454 goto again;
455 }
456}
457
458static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
459{
460 u64 *mondo, data0, data1, data2;
461 u16 *cpu_list;
462 u64 pstate;
463 int i;
464
465 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
466 cpu_list = __va(tb->cpu_list_pa);
467 mondo = __va(tb->cpu_mondo_block_pa);
468 data0 = mondo[0];
469 data1 = mondo[1];
470 data2 = mondo[2];
471 for (i = 0; i < cnt; i++)
472 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
473}
474
475/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
476 * packet, but we have no use for that. However we do take advantage of
477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
478 */
479static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
480{
481 int nack_busy_id, is_jbus, need_more;
482 u64 *mondo, pstate, ver, busy_mask;
483 u16 *cpu_list;
484
485 cpu_list = __va(tb->cpu_list_pa);
486 mondo = __va(tb->cpu_mondo_block_pa);
487
488 /* Unfortunately, someone at Sun had the brilliant idea to make the
489 * busy/nack fields hard-coded by ITID number for this Ultra-III
490 * derivative processor.
491 */
492 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
493 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
494 (ver >> 32) == __SERRANO_ID);
495
496 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
497
498retry:
499 need_more = 0;
500 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
501 : : "r" (pstate), "i" (PSTATE_IE));
502
503 /* Setup the dispatch data registers. */
504 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
505 "stxa %1, [%4] %6\n\t"
506 "stxa %2, [%5] %6\n\t"
507 "membar #Sync\n\t"
508 : /* no outputs */
509 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
510 "r" (0x40), "r" (0x50), "r" (0x60),
511 "i" (ASI_INTR_W));
512
513 nack_busy_id = 0;
514 busy_mask = 0;
515 {
516 int i;
517
518 for (i = 0; i < cnt; i++) {
519 u64 target, nr;
520
521 nr = cpu_list[i];
522 if (nr == 0xffff)
523 continue;
524
525 target = (nr << 14) | 0x70;
526 if (is_jbus) {
527 busy_mask |= (0x1UL << (nr * 2));
528 } else {
529 target |= (nack_busy_id << 24);
530 busy_mask |= (0x1UL <<
531 (nack_busy_id * 2));
532 }
533 __asm__ __volatile__(
534 "stxa %%g0, [%0] %1\n\t"
535 "membar #Sync\n\t"
536 : /* no outputs */
537 : "r" (target), "i" (ASI_INTR_W));
538 nack_busy_id++;
539 if (nack_busy_id == 32) {
540 need_more = 1;
541 break;
542 }
543 }
544 }
545
546 /* Now, poll for completion. */
547 {
548 u64 dispatch_stat, nack_mask;
549 long stuck;
550
551 stuck = 100000 * nack_busy_id;
552 nack_mask = busy_mask << 1;
553 do {
554 __asm__ __volatile__("ldxa [%%g0] %1, %0"
555 : "=r" (dispatch_stat)
556 : "i" (ASI_INTR_DISPATCH_STAT));
557 if (!(dispatch_stat & (busy_mask | nack_mask))) {
558 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
559 : : "r" (pstate));
560 if (unlikely(need_more)) {
561 int i, this_cnt = 0;
562 for (i = 0; i < cnt; i++) {
563 if (cpu_list[i] == 0xffff)
564 continue;
565 cpu_list[i] = 0xffff;
566 this_cnt++;
567 if (this_cnt == 32)
568 break;
569 }
570 goto retry;
571 }
572 return;
573 }
574 if (!--stuck)
575 break;
576 } while (dispatch_stat & busy_mask);
577
578 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
579 : : "r" (pstate));
580
581 if (dispatch_stat & busy_mask) {
582 /* Busy bits will not clear, continue instead
583 * of freezing up on this cpu.
584 */
585 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
586 smp_processor_id(), dispatch_stat);
587 } else {
588 int i, this_busy_nack = 0;
589
590 /* Delay some random time with interrupts enabled
591 * to prevent deadlock.
592 */
593 udelay(2 * nack_busy_id);
594
595 /* Clear out the mask bits for cpus which did not
596 * NACK us.
597 */
598 for (i = 0; i < cnt; i++) {
599 u64 check_mask, nr;
600
601 nr = cpu_list[i];
602 if (nr == 0xffff)
603 continue;
604
605 if (is_jbus)
606 check_mask = (0x2UL << (2*nr));
607 else
608 check_mask = (0x2UL <<
609 this_busy_nack);
610 if ((dispatch_stat & check_mask) == 0)
611 cpu_list[i] = 0xffff;
612 this_busy_nack += 2;
613 if (this_busy_nack == 64)
614 break;
615 }
616
617 goto retry;
618 }
619 }
620}
621
622/* Multi-cpu list version. */
623static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
624{
625 int retries, this_cpu, prev_sent, i, saw_cpu_error;
626 unsigned long status;
627 u16 *cpu_list;
628
629 this_cpu = smp_processor_id();
630
631 cpu_list = __va(tb->cpu_list_pa);
632
633 saw_cpu_error = 0;
634 retries = 0;
635 prev_sent = 0;
636 do {
637 int forward_progress, n_sent;
638
639 status = sun4v_cpu_mondo_send(cnt,
640 tb->cpu_list_pa,
641 tb->cpu_mondo_block_pa);
642
643 /* HV_EOK means all cpus received the xcall, we're done. */
644 if (likely(status == HV_EOK))
645 break;
646
647 /* First, see if we made any forward progress.
648 *
649 * The hypervisor indicates successful sends by setting
650 * cpu list entries to the value 0xffff.
651 */
652 n_sent = 0;
653 for (i = 0; i < cnt; i++) {
654 if (likely(cpu_list[i] == 0xffff))
655 n_sent++;
656 }
657
658 forward_progress = 0;
659 if (n_sent > prev_sent)
660 forward_progress = 1;
661
662 prev_sent = n_sent;
663
664 /* If we get a HV_ECPUERROR, then one or more of the cpus
665 * in the list are in error state. Use the cpu_state()
666 * hypervisor call to find out which cpus are in error state.
667 */
668 if (unlikely(status == HV_ECPUERROR)) {
669 for (i = 0; i < cnt; i++) {
670 long err;
671 u16 cpu;
672
673 cpu = cpu_list[i];
674 if (cpu == 0xffff)
675 continue;
676
677 err = sun4v_cpu_state(cpu);
678 if (err == HV_CPU_STATE_ERROR) {
679 saw_cpu_error = (cpu + 1);
680 cpu_list[i] = 0xffff;
681 }
682 }
683 } else if (unlikely(status != HV_EWOULDBLOCK))
684 goto fatal_mondo_error;
685
686 /* Don't bother rewriting the CPU list, just leave the
687 * 0xffff and non-0xffff entries in there and the
688 * hypervisor will do the right thing.
689 *
690 * Only advance timeout state if we didn't make any
691 * forward progress.
692 */
693 if (unlikely(!forward_progress)) {
694 if (unlikely(++retries > 10000))
695 goto fatal_mondo_timeout;
696
697 /* Delay a little bit to let other cpus catch up
698 * on their cpu mondo queue work.
699 */
700 udelay(2 * cnt);
701 }
702 } while (1);
703
704 if (unlikely(saw_cpu_error))
705 goto fatal_mondo_cpu_error;
706
707 return;
708
709fatal_mondo_cpu_error:
710 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
711 "(including %d) were in error state\n",
712 this_cpu, saw_cpu_error - 1);
713 return;
714
715fatal_mondo_timeout:
716 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
717 " progress after %d retries.\n",
718 this_cpu, retries);
719 goto dump_cpu_list_and_out;
720
721fatal_mondo_error:
722 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
723 this_cpu, status);
724 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
725 "mondo_block_pa(%lx)\n",
726 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
727
728dump_cpu_list_and_out:
729 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
730 for (i = 0; i < cnt; i++)
731 printk("%u ", cpu_list[i]);
732 printk("]\n");
733}
734
735static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
736
737static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
738{
739 struct trap_per_cpu *tb;
740 int this_cpu, i, cnt;
741 unsigned long flags;
742 u16 *cpu_list;
743 u64 *mondo;
744
745 /* We have to do this whole thing with interrupts fully disabled.
746 * Otherwise if we send an xcall from interrupt context it will
747 * corrupt both our mondo block and cpu list state.
748 *
749 * One consequence of this is that we cannot use timeout mechanisms
750 * that depend upon interrupts being delivered locally. So, for
751 * example, we cannot sample jiffies and expect it to advance.
752 *
753 * Fortunately, udelay() uses %stick/%tick so we can use that.
754 */
755 local_irq_save(flags);
756
757 this_cpu = smp_processor_id();
758 tb = &trap_block[this_cpu];
759
760 mondo = __va(tb->cpu_mondo_block_pa);
761 mondo[0] = data0;
762 mondo[1] = data1;
763 mondo[2] = data2;
764 wmb();
765
766 cpu_list = __va(tb->cpu_list_pa);
767
768 /* Setup the initial cpu list. */
769 cnt = 0;
770 for_each_cpu(i, mask) {
771 if (i == this_cpu || !cpu_online(i))
772 continue;
773 cpu_list[cnt++] = i;
774 }
775
776 if (cnt)
777 xcall_deliver_impl(tb, cnt);
778
779 local_irq_restore(flags);
780}
781
782/* Send cross call to all processors mentioned in MASK_P
783 * except self. Really, there are only two cases currently,
784 * "cpu_online_mask" and "mm_cpumask(mm)".
785 */
786static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
787{
788 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
789
790 xcall_deliver(data0, data1, data2, mask);
791}
792
793/* Send cross call to all processors except self. */
794static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
795{
796 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
797}
798
799extern unsigned long xcall_sync_tick;
800
801static void smp_start_sync_tick_client(int cpu)
802{
803 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
804 cpumask_of(cpu));
805}
806
807extern unsigned long xcall_call_function;
808
809void arch_send_call_function_ipi_mask(const struct cpumask *mask)
810{
811 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
812}
813
814extern unsigned long xcall_call_function_single;
815
816void arch_send_call_function_single_ipi(int cpu)
817{
818 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
819 cpumask_of(cpu));
820}
821
822void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
823{
824 clear_softint(1 << irq);
825 generic_smp_call_function_interrupt();
826}
827
828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
829{
830 clear_softint(1 << irq);
831 generic_smp_call_function_single_interrupt();
832}
833
834static void tsb_sync(void *info)
835{
836 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
837 struct mm_struct *mm = info;
838
839 /* It is not valid to test "current->active_mm == mm" here.
840 *
841 * The value of "current" is not changed atomically with
842 * switch_mm(). But that's OK, we just need to check the
843 * current cpu's trap block PGD physical address.
844 */
845 if (tp->pgd_paddr == __pa(mm->pgd))
846 tsb_context_switch(mm);
847}
848
849void smp_tsb_sync(struct mm_struct *mm)
850{
851 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
852}
853
854extern unsigned long xcall_flush_tlb_mm;
855extern unsigned long xcall_flush_tlb_pending;
856extern unsigned long xcall_flush_tlb_kernel_range;
857extern unsigned long xcall_fetch_glob_regs;
858extern unsigned long xcall_receive_signal;
859extern unsigned long xcall_new_mmu_context_version;
860#ifdef CONFIG_KGDB
861extern unsigned long xcall_kgdb_capture;
862#endif
863
864#ifdef DCACHE_ALIASING_POSSIBLE
865extern unsigned long xcall_flush_dcache_page_cheetah;
866#endif
867extern unsigned long xcall_flush_dcache_page_spitfire;
868
869#ifdef CONFIG_DEBUG_DCFLUSH
870extern atomic_t dcpage_flushes;
871extern atomic_t dcpage_flushes_xcall;
872#endif
873
874static inline void __local_flush_dcache_page(struct page *page)
875{
876#ifdef DCACHE_ALIASING_POSSIBLE
877 __flush_dcache_page(page_address(page),
878 ((tlb_type == spitfire) &&
879 page_mapping(page) != NULL));
880#else
881 if (page_mapping(page) != NULL &&
882 tlb_type == spitfire)
883 __flush_icache_page(__pa(page_address(page)));
884#endif
885}
886
887void smp_flush_dcache_page_impl(struct page *page, int cpu)
888{
889 int this_cpu;
890
891 if (tlb_type == hypervisor)
892 return;
893
894#ifdef CONFIG_DEBUG_DCFLUSH
895 atomic_inc(&dcpage_flushes);
896#endif
897
898 this_cpu = get_cpu();
899
900 if (cpu == this_cpu) {
901 __local_flush_dcache_page(page);
902 } else if (cpu_online(cpu)) {
903 void *pg_addr = page_address(page);
904 u64 data0 = 0;
905
906 if (tlb_type == spitfire) {
907 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
908 if (page_mapping(page) != NULL)
909 data0 |= ((u64)1 << 32);
910 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
911#ifdef DCACHE_ALIASING_POSSIBLE
912 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
913#endif
914 }
915 if (data0) {
916 xcall_deliver(data0, __pa(pg_addr),
917 (u64) pg_addr, cpumask_of(cpu));
918#ifdef CONFIG_DEBUG_DCFLUSH
919 atomic_inc(&dcpage_flushes_xcall);
920#endif
921 }
922 }
923
924 put_cpu();
925}
926
927void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
928{
929 void *pg_addr;
930 u64 data0;
931
932 if (tlb_type == hypervisor)
933 return;
934
935 preempt_disable();
936
937#ifdef CONFIG_DEBUG_DCFLUSH
938 atomic_inc(&dcpage_flushes);
939#endif
940 data0 = 0;
941 pg_addr = page_address(page);
942 if (tlb_type == spitfire) {
943 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
944 if (page_mapping(page) != NULL)
945 data0 |= ((u64)1 << 32);
946 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
947#ifdef DCACHE_ALIASING_POSSIBLE
948 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
949#endif
950 }
951 if (data0) {
952 xcall_deliver(data0, __pa(pg_addr),
953 (u64) pg_addr, cpu_online_mask);
954#ifdef CONFIG_DEBUG_DCFLUSH
955 atomic_inc(&dcpage_flushes_xcall);
956#endif
957 }
958 __local_flush_dcache_page(page);
959
960 preempt_enable();
961}
962
963void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
964{
965 struct mm_struct *mm;
966 unsigned long flags;
967
968 clear_softint(1 << irq);
969
970 /* See if we need to allocate a new TLB context because
971 * the version of the one we are using is now out of date.
972 */
973 mm = current->active_mm;
974 if (unlikely(!mm || (mm == &init_mm)))
975 return;
976
977 spin_lock_irqsave(&mm->context.lock, flags);
978
979 if (unlikely(!CTX_VALID(mm->context)))
980 get_new_mmu_context(mm);
981
982 spin_unlock_irqrestore(&mm->context.lock, flags);
983
984 load_secondary_context(mm);
985 __flush_tlb_mm(CTX_HWBITS(mm->context),
986 SECONDARY_CONTEXT);
987}
988
989void smp_new_mmu_context_version(void)
990{
991 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
992}
993
994#ifdef CONFIG_KGDB
995void kgdb_roundup_cpus(unsigned long flags)
996{
997 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
998}
999#endif
1000
1001void smp_fetch_global_regs(void)
1002{
1003 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1004}
1005
1006/* We know that the window frames of the user have been flushed
1007 * to the stack before we get here because all callers of us
1008 * are flush_tlb_*() routines, and these run after flush_cache_*()
1009 * which performs the flushw.
1010 *
1011 * The SMP TLB coherency scheme we use works as follows:
1012 *
1013 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1014 * space has (potentially) executed on, this is the heuristic
1015 * we use to avoid doing cross calls.
1016 *
1017 * Also, for flushing from kswapd and also for clones, we
1018 * use cpu_vm_mask as the list of cpus to make run the TLB.
1019 *
1020 * 2) TLB context numbers are shared globally across all processors
1021 * in the system, this allows us to play several games to avoid
1022 * cross calls.
1023 *
1024 * One invariant is that when a cpu switches to a process, and
1025 * that processes tsk->active_mm->cpu_vm_mask does not have the
1026 * current cpu's bit set, that tlb context is flushed locally.
1027 *
1028 * If the address space is non-shared (ie. mm->count == 1) we avoid
1029 * cross calls when we want to flush the currently running process's
1030 * tlb state. This is done by clearing all cpu bits except the current
1031 * processor's in current->mm->cpu_vm_mask and performing the
1032 * flush locally only. This will force any subsequent cpus which run
1033 * this task to flush the context from the local tlb if the process
1034 * migrates to another cpu (again).
1035 *
1036 * 3) For shared address spaces (threads) and swapping we bite the
1037 * bullet for most cases and perform the cross call (but only to
1038 * the cpus listed in cpu_vm_mask).
1039 *
1040 * The performance gain from "optimizing" away the cross call for threads is
1041 * questionable (in theory the big win for threads is the massive sharing of
1042 * address space state across processors).
1043 */
1044
1045/* This currently is only used by the hugetlb arch pre-fault
1046 * hook on UltraSPARC-III+ and later when changing the pagesize
1047 * bits of the context register for an address space.
1048 */
1049void smp_flush_tlb_mm(struct mm_struct *mm)
1050{
1051 u32 ctx = CTX_HWBITS(mm->context);
1052 int cpu = get_cpu();
1053
1054 if (atomic_read(&mm->mm_users) == 1) {
1055 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1056 goto local_flush_and_out;
1057 }
1058
1059 smp_cross_call_masked(&xcall_flush_tlb_mm,
1060 ctx, 0, 0,
1061 mm_cpumask(mm));
1062
1063local_flush_and_out:
1064 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1065
1066 put_cpu();
1067}
1068
1069void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1070{
1071 u32 ctx = CTX_HWBITS(mm->context);
1072 int cpu = get_cpu();
1073
1074 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1075 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1076 else
1077 smp_cross_call_masked(&xcall_flush_tlb_pending,
1078 ctx, nr, (unsigned long) vaddrs,
1079 mm_cpumask(mm));
1080
1081 __flush_tlb_pending(ctx, nr, vaddrs);
1082
1083 put_cpu();
1084}
1085
1086void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1087{
1088 start &= PAGE_MASK;
1089 end = PAGE_ALIGN(end);
1090 if (start != end) {
1091 smp_cross_call(&xcall_flush_tlb_kernel_range,
1092 0, start, end);
1093
1094 __flush_tlb_kernel_range(start, end);
1095 }
1096}
1097
1098/* CPU capture. */
1099/* #define CAPTURE_DEBUG */
1100extern unsigned long xcall_capture;
1101
1102static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1103static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1104static unsigned long penguins_are_doing_time;
1105
1106void smp_capture(void)
1107{
1108 int result = atomic_add_ret(1, &smp_capture_depth);
1109
1110 if (result == 1) {
1111 int ncpus = num_online_cpus();
1112
1113#ifdef CAPTURE_DEBUG
1114 printk("CPU[%d]: Sending penguins to jail...",
1115 smp_processor_id());
1116#endif
1117 penguins_are_doing_time = 1;
1118 atomic_inc(&smp_capture_registry);
1119 smp_cross_call(&xcall_capture, 0, 0, 0);
1120 while (atomic_read(&smp_capture_registry) != ncpus)
1121 rmb();
1122#ifdef CAPTURE_DEBUG
1123 printk("done\n");
1124#endif
1125 }
1126}
1127
1128void smp_release(void)
1129{
1130 if (atomic_dec_and_test(&smp_capture_depth)) {
1131#ifdef CAPTURE_DEBUG
1132 printk("CPU[%d]: Giving pardon to "
1133 "imprisoned penguins\n",
1134 smp_processor_id());
1135#endif
1136 penguins_are_doing_time = 0;
1137 membar_safe("#StoreLoad");
1138 atomic_dec(&smp_capture_registry);
1139 }
1140}
1141
1142/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1143 * set, so they can service tlb flush xcalls...
1144 */
1145extern void prom_world(int);
1146
1147void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1148{
1149 clear_softint(1 << irq);
1150
1151 preempt_disable();
1152
1153 __asm__ __volatile__("flushw");
1154 prom_world(1);
1155 atomic_inc(&smp_capture_registry);
1156 membar_safe("#StoreLoad");
1157 while (penguins_are_doing_time)
1158 rmb();
1159 atomic_dec(&smp_capture_registry);
1160 prom_world(0);
1161
1162 preempt_enable();
1163}
1164
1165/* /proc/profile writes can call this, don't __init it please. */
1166int setup_profiling_timer(unsigned int multiplier)
1167{
1168 return -EINVAL;
1169}
1170
1171void __init smp_prepare_cpus(unsigned int max_cpus)
1172{
1173}
1174
1175void __devinit smp_prepare_boot_cpu(void)
1176{
1177}
1178
1179void __init smp_setup_processor_id(void)
1180{
1181 if (tlb_type == spitfire)
1182 xcall_deliver_impl = spitfire_xcall_deliver;
1183 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1184 xcall_deliver_impl = cheetah_xcall_deliver;
1185 else
1186 xcall_deliver_impl = hypervisor_xcall_deliver;
1187}
1188
1189void __devinit smp_fill_in_sib_core_maps(void)
1190{
1191 unsigned int i;
1192
1193 for_each_present_cpu(i) {
1194 unsigned int j;
1195
1196 cpumask_clear(&cpu_core_map[i]);
1197 if (cpu_data(i).core_id == 0) {
1198 cpumask_set_cpu(i, &cpu_core_map[i]);
1199 continue;
1200 }
1201
1202 for_each_present_cpu(j) {
1203 if (cpu_data(i).core_id ==
1204 cpu_data(j).core_id)
1205 cpumask_set_cpu(j, &cpu_core_map[i]);
1206 }
1207 }
1208
1209 for_each_present_cpu(i) {
1210 unsigned int j;
1211
1212 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1213 if (cpu_data(i).proc_id == -1) {
1214 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1215 continue;
1216 }
1217
1218 for_each_present_cpu(j) {
1219 if (cpu_data(i).proc_id ==
1220 cpu_data(j).proc_id)
1221 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1222 }
1223 }
1224}
1225
1226int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1227{
1228 int ret = smp_boot_one_cpu(cpu, tidle);
1229
1230 if (!ret) {
1231 cpumask_set_cpu(cpu, &smp_commenced_mask);
1232 while (!cpu_online(cpu))
1233 mb();
1234 if (!cpu_online(cpu)) {
1235 ret = -ENODEV;
1236 } else {
1237 /* On SUN4V, writes to %tick and %stick are
1238 * not allowed.
1239 */
1240 if (tlb_type != hypervisor)
1241 smp_synchronize_one_tick(cpu);
1242 }
1243 }
1244 return ret;
1245}
1246
1247#ifdef CONFIG_HOTPLUG_CPU
1248void cpu_play_dead(void)
1249{
1250 int cpu = smp_processor_id();
1251 unsigned long pstate;
1252
1253 idle_task_exit();
1254
1255 if (tlb_type == hypervisor) {
1256 struct trap_per_cpu *tb = &trap_block[cpu];
1257
1258 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1259 tb->cpu_mondo_pa, 0);
1260 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1261 tb->dev_mondo_pa, 0);
1262 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1263 tb->resum_mondo_pa, 0);
1264 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1265 tb->nonresum_mondo_pa, 0);
1266 }
1267
1268 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1269 membar_safe("#Sync");
1270
1271 local_irq_disable();
1272
1273 __asm__ __volatile__(
1274 "rdpr %%pstate, %0\n\t"
1275 "wrpr %0, %1, %%pstate"
1276 : "=r" (pstate)
1277 : "i" (PSTATE_IE));
1278
1279 while (1)
1280 barrier();
1281}
1282
1283int __cpu_disable(void)
1284{
1285 int cpu = smp_processor_id();
1286 cpuinfo_sparc *c;
1287 int i;
1288
1289 for_each_cpu(i, &cpu_core_map[cpu])
1290 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1291 cpumask_clear(&cpu_core_map[cpu]);
1292
1293 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1294 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1295 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1296
1297 c = &cpu_data(cpu);
1298
1299 c->core_id = 0;
1300 c->proc_id = -1;
1301
1302 smp_wmb();
1303
1304 /* Make sure no interrupts point to this cpu. */
1305 fixup_irqs();
1306
1307 local_irq_enable();
1308 mdelay(1);
1309 local_irq_disable();
1310
1311 ipi_call_lock();
1312 set_cpu_online(cpu, false);
1313 ipi_call_unlock();
1314
1315 cpu_map_rebuild();
1316
1317 return 0;
1318}
1319
1320void __cpu_die(unsigned int cpu)
1321{
1322 int i;
1323
1324 for (i = 0; i < 100; i++) {
1325 smp_rmb();
1326 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1327 break;
1328 msleep(100);
1329 }
1330 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1331 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1332 } else {
1333#if defined(CONFIG_SUN_LDOMS)
1334 unsigned long hv_err;
1335 int limit = 100;
1336
1337 do {
1338 hv_err = sun4v_cpu_stop(cpu);
1339 if (hv_err == HV_EOK) {
1340 set_cpu_present(cpu, false);
1341 break;
1342 }
1343 } while (--limit > 0);
1344 if (limit <= 0) {
1345 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1346 hv_err);
1347 }
1348#endif
1349 }
1350}
1351#endif
1352
1353void __init smp_cpus_done(unsigned int max_cpus)
1354{
1355 pcr_arch_init();
1356}
1357
1358void smp_send_reschedule(int cpu)
1359{
1360 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361 cpumask_of(cpu));
1362}
1363
1364void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1365{
1366 clear_softint(1 << irq);
1367 scheduler_ipi();
1368}
1369
1370/* This is a nop because we capture all other cpus
1371 * anyways when making the PROM active.
1372 */
1373void smp_send_stop(void)
1374{
1375}
1376
1377/**
1378 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1379 * @cpu: cpu to allocate for
1380 * @size: size allocation in bytes
1381 * @align: alignment
1382 *
1383 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1384 * does the right thing for NUMA regardless of the current
1385 * configuration.
1386 *
1387 * RETURNS:
1388 * Pointer to the allocated area on success, NULL on failure.
1389 */
1390static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1391 size_t align)
1392{
1393 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1394#ifdef CONFIG_NEED_MULTIPLE_NODES
1395 int node = cpu_to_node(cpu);
1396 void *ptr;
1397
1398 if (!node_online(node) || !NODE_DATA(node)) {
1399 ptr = __alloc_bootmem(size, align, goal);
1400 pr_info("cpu %d has no node %d or node-local memory\n",
1401 cpu, node);
1402 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1403 cpu, size, __pa(ptr));
1404 } else {
1405 ptr = __alloc_bootmem_node(NODE_DATA(node),
1406 size, align, goal);
1407 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1408 "%016lx\n", cpu, size, node, __pa(ptr));
1409 }
1410 return ptr;
1411#else
1412 return __alloc_bootmem(size, align, goal);
1413#endif
1414}
1415
1416static void __init pcpu_free_bootmem(void *ptr, size_t size)
1417{
1418 free_bootmem(__pa(ptr), size);
1419}
1420
1421static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1422{
1423 if (cpu_to_node(from) == cpu_to_node(to))
1424 return LOCAL_DISTANCE;
1425 else
1426 return REMOTE_DISTANCE;
1427}
1428
1429static void __init pcpu_populate_pte(unsigned long addr)
1430{
1431 pgd_t *pgd = pgd_offset_k(addr);
1432 pud_t *pud;
1433 pmd_t *pmd;
1434
1435 pud = pud_offset(pgd, addr);
1436 if (pud_none(*pud)) {
1437 pmd_t *new;
1438
1439 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440 pud_populate(&init_mm, pud, new);
1441 }
1442
1443 pmd = pmd_offset(pud, addr);
1444 if (!pmd_present(*pmd)) {
1445 pte_t *new;
1446
1447 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1448 pmd_populate_kernel(&init_mm, pmd, new);
1449 }
1450}
1451
1452void __init setup_per_cpu_areas(void)
1453{
1454 unsigned long delta;
1455 unsigned int cpu;
1456 int rc = -EINVAL;
1457
1458 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1459 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1460 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1461 pcpu_cpu_distance,
1462 pcpu_alloc_bootmem,
1463 pcpu_free_bootmem);
1464 if (rc)
1465 pr_warning("PERCPU: %s allocator failed (%d), "
1466 "falling back to page size\n",
1467 pcpu_fc_names[pcpu_chosen_fc], rc);
1468 }
1469 if (rc < 0)
1470 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1471 pcpu_alloc_bootmem,
1472 pcpu_free_bootmem,
1473 pcpu_populate_pte);
1474 if (rc < 0)
1475 panic("cannot initialize percpu area (err=%d)", rc);
1476
1477 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1478 for_each_possible_cpu(cpu)
1479 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1480
1481 /* Setup %g5 for the boot cpu. */
1482 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1483
1484 of_fill_in_cpu_data();
1485 if (tlb_type == hypervisor)
1486 mdesc_fill_in_cpu_data(cpu_all_mask);
1487}
1// SPDX-License-Identifier: GPL-2.0
2/* smp.c: Sparc64 SMP support.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 */
6
7#include <linux/export.h>
8#include <linux/kernel.h>
9#include <linux/sched/mm.h>
10#include <linux/sched/hotplug.h>
11#include <linux/mm.h>
12#include <linux/pagemap.h>
13#include <linux/threads.h>
14#include <linux/smp.h>
15#include <linux/interrupt.h>
16#include <linux/kernel_stat.h>
17#include <linux/delay.h>
18#include <linux/init.h>
19#include <linux/spinlock.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/cache.h>
23#include <linux/jiffies.h>
24#include <linux/profile.h>
25#include <linux/memblock.h>
26#include <linux/vmalloc.h>
27#include <linux/ftrace.h>
28#include <linux/cpu.h>
29#include <linux/slab.h>
30#include <linux/kgdb.h>
31
32#include <asm/head.h>
33#include <asm/ptrace.h>
34#include <linux/atomic.h>
35#include <asm/tlbflush.h>
36#include <asm/mmu_context.h>
37#include <asm/cpudata.h>
38#include <asm/hvtramp.h>
39#include <asm/io.h>
40#include <asm/timer.h>
41#include <asm/setup.h>
42
43#include <asm/irq.h>
44#include <asm/irq_regs.h>
45#include <asm/page.h>
46#include <asm/oplib.h>
47#include <linux/uaccess.h>
48#include <asm/starfire.h>
49#include <asm/tlb.h>
50#include <asm/pgalloc.h>
51#include <asm/sections.h>
52#include <asm/prom.h>
53#include <asm/mdesc.h>
54#include <asm/ldc.h>
55#include <asm/hypervisor.h>
56#include <asm/pcr.h>
57
58#include "cpumap.h"
59#include "kernel.h"
60
61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64
65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72EXPORT_SYMBOL(cpu_core_map);
73EXPORT_SYMBOL(cpu_core_sib_map);
74EXPORT_SYMBOL(cpu_core_sib_cache_map);
75
76static cpumask_t smp_commenced_mask;
77
78static DEFINE_PER_CPU(bool, poke);
79static bool cpu_poke;
80
81void smp_info(struct seq_file *m)
82{
83 int i;
84
85 seq_printf(m, "State:\n");
86 for_each_online_cpu(i)
87 seq_printf(m, "CPU%d:\t\tonline\n", i);
88}
89
90void smp_bogo(struct seq_file *m)
91{
92 int i;
93
94 for_each_online_cpu(i)
95 seq_printf(m,
96 "Cpu%dClkTck\t: %016lx\n",
97 i, cpu_data(i).clock_tick);
98}
99
100extern void setup_sparc64_timer(void);
101
102static volatile unsigned long callin_flag = 0;
103
104void smp_callin(void)
105{
106 int cpuid = hard_smp_processor_id();
107
108 __local_per_cpu_offset = __per_cpu_offset(cpuid);
109
110 if (tlb_type == hypervisor)
111 sun4v_ktsb_register();
112
113 __flush_tlb_all();
114
115 setup_sparc64_timer();
116
117 if (cheetah_pcache_forced_on)
118 cheetah_enable_pcache();
119
120 callin_flag = 1;
121 __asm__ __volatile__("membar #Sync\n\t"
122 "flush %%g6" : : : "memory");
123
124 /* Clear this or we will die instantly when we
125 * schedule back to this idler...
126 */
127 current_thread_info()->new_child = 0;
128
129 /* Attach to the address space of init_task. */
130 mmgrab(&init_mm);
131 current->active_mm = &init_mm;
132
133 /* inform the notifiers about the new cpu */
134 notify_cpu_starting(cpuid);
135
136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137 rmb();
138
139 set_cpu_online(cpuid, true);
140
141 local_irq_enable();
142
143 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
144}
145
146void cpu_panic(void)
147{
148 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149 panic("SMP bolixed\n");
150}
151
152/* This tick register synchronization scheme is taken entirely from
153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154 *
155 * The only change I've made is to rework it so that the master
156 * initiates the synchonization instead of the slave. -DaveM
157 */
158
159#define MASTER 0
160#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162#define NUM_ROUNDS 64 /* magic value */
163#define NUM_ITERS 5 /* likewise */
164
165static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166static unsigned long go[SLAVE + 1];
167
168#define DEBUG_TICK_SYNC 0
169
170static inline long get_delta (long *rt, long *master)
171{
172 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173 unsigned long tcenter, t0, t1, tm;
174 unsigned long i;
175
176 for (i = 0; i < NUM_ITERS; i++) {
177 t0 = tick_ops->get_tick();
178 go[MASTER] = 1;
179 membar_safe("#StoreLoad");
180 while (!(tm = go[SLAVE]))
181 rmb();
182 go[SLAVE] = 0;
183 wmb();
184 t1 = tick_ops->get_tick();
185
186 if (t1 - t0 < best_t1 - best_t0)
187 best_t0 = t0, best_t1 = t1, best_tm = tm;
188 }
189
190 *rt = best_t1 - best_t0;
191 *master = best_tm - best_t0;
192
193 /* average best_t0 and best_t1 without overflow: */
194 tcenter = (best_t0/2 + best_t1/2);
195 if (best_t0 % 2 + best_t1 % 2 == 2)
196 tcenter++;
197 return tcenter - best_tm;
198}
199
200void smp_synchronize_tick_client(void)
201{
202 long i, delta, adj, adjust_latency = 0, done = 0;
203 unsigned long flags, rt, master_time_stamp;
204#if DEBUG_TICK_SYNC
205 struct {
206 long rt; /* roundtrip time */
207 long master; /* master's timestamp */
208 long diff; /* difference between midpoint and master's timestamp */
209 long lat; /* estimate of itc adjustment latency */
210 } t[NUM_ROUNDS];
211#endif
212
213 go[MASTER] = 1;
214
215 while (go[MASTER])
216 rmb();
217
218 local_irq_save(flags);
219 {
220 for (i = 0; i < NUM_ROUNDS; i++) {
221 delta = get_delta(&rt, &master_time_stamp);
222 if (delta == 0)
223 done = 1; /* let's lock on to this... */
224
225 if (!done) {
226 if (i > 0) {
227 adjust_latency += -delta;
228 adj = -delta + adjust_latency/4;
229 } else
230 adj = -delta;
231
232 tick_ops->add_tick(adj);
233 }
234#if DEBUG_TICK_SYNC
235 t[i].rt = rt;
236 t[i].master = master_time_stamp;
237 t[i].diff = delta;
238 t[i].lat = adjust_latency/4;
239#endif
240 }
241 }
242 local_irq_restore(flags);
243
244#if DEBUG_TICK_SYNC
245 for (i = 0; i < NUM_ROUNDS; i++)
246 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247 t[i].rt, t[i].master, t[i].diff, t[i].lat);
248#endif
249
250 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251 "(last diff %ld cycles, maxerr %lu cycles)\n",
252 smp_processor_id(), delta, rt);
253}
254
255static void smp_start_sync_tick_client(int cpu);
256
257static void smp_synchronize_one_tick(int cpu)
258{
259 unsigned long flags, i;
260
261 go[MASTER] = 0;
262
263 smp_start_sync_tick_client(cpu);
264
265 /* wait for client to be ready */
266 while (!go[MASTER])
267 rmb();
268
269 /* now let the client proceed into his loop */
270 go[MASTER] = 0;
271 membar_safe("#StoreLoad");
272
273 raw_spin_lock_irqsave(&itc_sync_lock, flags);
274 {
275 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276 while (!go[MASTER])
277 rmb();
278 go[MASTER] = 0;
279 wmb();
280 go[SLAVE] = tick_ops->get_tick();
281 membar_safe("#StoreLoad");
282 }
283 }
284 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285}
286
287#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
288static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289 void **descrp)
290{
291 extern unsigned long sparc64_ttable_tl0;
292 extern unsigned long kern_locked_tte_data;
293 struct hvtramp_descr *hdesc;
294 unsigned long trampoline_ra;
295 struct trap_per_cpu *tb;
296 u64 tte_vaddr, tte_data;
297 unsigned long hv_err;
298 int i;
299
300 hdesc = kzalloc(sizeof(*hdesc) +
301 (sizeof(struct hvtramp_mapping) *
302 num_kernel_image_mappings - 1),
303 GFP_KERNEL);
304 if (!hdesc) {
305 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
306 "hvtramp_descr.\n");
307 return;
308 }
309 *descrp = hdesc;
310
311 hdesc->cpu = cpu;
312 hdesc->num_mappings = num_kernel_image_mappings;
313
314 tb = &trap_block[cpu];
315
316 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
317 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
318
319 hdesc->thread_reg = thread_reg;
320
321 tte_vaddr = (unsigned long) KERNBASE;
322 tte_data = kern_locked_tte_data;
323
324 for (i = 0; i < hdesc->num_mappings; i++) {
325 hdesc->maps[i].vaddr = tte_vaddr;
326 hdesc->maps[i].tte = tte_data;
327 tte_vaddr += 0x400000;
328 tte_data += 0x400000;
329 }
330
331 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
332
333 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
334 kimage_addr_to_ra(&sparc64_ttable_tl0),
335 __pa(hdesc));
336 if (hv_err)
337 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
338 "gives error %lu\n", hv_err);
339}
340#endif
341
342extern unsigned long sparc64_cpu_startup;
343
344/* The OBP cpu startup callback truncates the 3rd arg cookie to
345 * 32-bits (I think) so to be safe we have it read the pointer
346 * contained here so we work on >4GB machines. -DaveM
347 */
348static struct thread_info *cpu_new_thread = NULL;
349
350static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
351{
352 unsigned long entry =
353 (unsigned long)(&sparc64_cpu_startup);
354 unsigned long cookie =
355 (unsigned long)(&cpu_new_thread);
356 void *descr = NULL;
357 int timeout, ret;
358
359 callin_flag = 0;
360 cpu_new_thread = task_thread_info(idle);
361
362 if (tlb_type == hypervisor) {
363#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
366 (unsigned long) cpu_new_thread,
367 &descr);
368 else
369#endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
371 } else {
372 struct device_node *dp = of_find_node_by_cpuid(cpu);
373
374 prom_startcpu(dp->phandle, entry, cookie);
375 }
376
377 for (timeout = 0; timeout < 50000; timeout++) {
378 if (callin_flag)
379 break;
380 udelay(100);
381 }
382
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
387 ret = -ENODEV;
388 }
389 cpu_new_thread = NULL;
390
391 kfree(descr);
392
393 return ret;
394}
395
396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397{
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460}
461
462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463{
464 u64 *mondo, data0, data1, data2;
465 u16 *cpu_list;
466 u64 pstate;
467 int i;
468
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
472 data0 = mondo[0];
473 data1 = mondo[1];
474 data2 = mondo[2];
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477}
478
479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 */
483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484{
485 int nack_busy_id, is_jbus, need_more;
486 u64 *mondo, pstate, ver, busy_mask;
487 u16 *cpu_list;
488
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
491
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
495 */
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
499
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502retry:
503 need_more = 0;
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
506
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
511 "membar #Sync\n\t"
512 : /* no outputs */
513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514 "r" (0x40), "r" (0x50), "r" (0x60),
515 "i" (ASI_INTR_W));
516
517 nack_busy_id = 0;
518 busy_mask = 0;
519 {
520 int i;
521
522 for (i = 0; i < cnt; i++) {
523 u64 target, nr;
524
525 nr = cpu_list[i];
526 if (nr == 0xffff)
527 continue;
528
529 target = (nr << 14) | 0x70;
530 if (is_jbus) {
531 busy_mask |= (0x1UL << (nr * 2));
532 } else {
533 target |= (nack_busy_id << 24);
534 busy_mask |= (0x1UL <<
535 (nack_busy_id * 2));
536 }
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
539 "membar #Sync\n\t"
540 : /* no outputs */
541 : "r" (target), "i" (ASI_INTR_W));
542 nack_busy_id++;
543 if (nack_busy_id == 32) {
544 need_more = 1;
545 break;
546 }
547 }
548 }
549
550 /* Now, poll for completion. */
551 {
552 u64 dispatch_stat, nack_mask;
553 long stuck;
554
555 stuck = 100000 * nack_busy_id;
556 nack_mask = busy_mask << 1;
557 do {
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 : : "r" (pstate));
564 if (unlikely(need_more)) {
565 int i, this_cnt = 0;
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
568 continue;
569 cpu_list[i] = 0xffff;
570 this_cnt++;
571 if (this_cnt == 32)
572 break;
573 }
574 goto retry;
575 }
576 return;
577 }
578 if (!--stuck)
579 break;
580 } while (dispatch_stat & busy_mask);
581
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 : : "r" (pstate));
584
585 if (dispatch_stat & busy_mask) {
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
588 */
589 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590 smp_processor_id(), dispatch_stat);
591 } else {
592 int i, this_busy_nack = 0;
593
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
596 */
597 udelay(2 * nack_busy_id);
598
599 /* Clear out the mask bits for cpus which did not
600 * NACK us.
601 */
602 for (i = 0; i < cnt; i++) {
603 u64 check_mask, nr;
604
605 nr = cpu_list[i];
606 if (nr == 0xffff)
607 continue;
608
609 if (is_jbus)
610 check_mask = (0x2UL << (2*nr));
611 else
612 check_mask = (0x2UL <<
613 this_busy_nack);
614 if ((dispatch_stat & check_mask) == 0)
615 cpu_list[i] = 0xffff;
616 this_busy_nack += 2;
617 if (this_busy_nack == 64)
618 break;
619 }
620
621 goto retry;
622 }
623 }
624}
625
626#define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
627#define MONDO_USEC_WAIT_MIN 2
628#define MONDO_USEC_WAIT_MAX 100
629#define MONDO_RETRY_LIMIT 500000
630
631/* Multi-cpu list version.
632 *
633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
634 * Sometimes not all cpus receive the mondo, requiring us to re-send
635 * the mondo until all cpus have received, or cpus are truly stuck
636 * unable to receive mondo, and we timeout.
637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
638 * perform guest service, such as PCIe error handling. Consider the
639 * service time, 1 second overall wait is reasonable for 1 cpu.
640 * Here two in-between mondo check wait time are defined: 2 usec for
641 * single cpu quick turn around and up to 100usec for large cpu count.
642 * Deliver mondo to large number of cpus could take longer, we adjusts
643 * the retry count as long as target cpus are making forward progress.
644 */
645static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
646{
647 int this_cpu, tot_cpus, prev_sent, i, rem;
648 int usec_wait, retries, tot_retries;
649 u16 first_cpu = 0xffff;
650 unsigned long xc_rcvd = 0;
651 unsigned long status;
652 int ecpuerror_id = 0;
653 int enocpu_id = 0;
654 u16 *cpu_list;
655 u16 cpu;
656
657 this_cpu = smp_processor_id();
658 cpu_list = __va(tb->cpu_list_pa);
659 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
660 if (usec_wait > MONDO_USEC_WAIT_MAX)
661 usec_wait = MONDO_USEC_WAIT_MAX;
662 retries = tot_retries = 0;
663 tot_cpus = cnt;
664 prev_sent = 0;
665
666 do {
667 int n_sent, mondo_delivered, target_cpu_busy;
668
669 status = sun4v_cpu_mondo_send(cnt,
670 tb->cpu_list_pa,
671 tb->cpu_mondo_block_pa);
672
673 /* HV_EOK means all cpus received the xcall, we're done. */
674 if (likely(status == HV_EOK))
675 goto xcall_done;
676
677 /* If not these non-fatal errors, panic */
678 if (unlikely((status != HV_EWOULDBLOCK) &&
679 (status != HV_ECPUERROR) &&
680 (status != HV_ENOCPU)))
681 goto fatal_errors;
682
683 /* First, see if we made any forward progress.
684 *
685 * Go through the cpu_list, count the target cpus that have
686 * received our mondo (n_sent), and those that did not (rem).
687 * Re-pack cpu_list with the cpus remain to be retried in the
688 * front - this simplifies tracking the truly stalled cpus.
689 *
690 * The hypervisor indicates successful sends by setting
691 * cpu list entries to the value 0xffff.
692 *
693 * EWOULDBLOCK means some target cpus did not receive the
694 * mondo and retry usually helps.
695 *
696 * ECPUERROR means at least one target cpu is in error state,
697 * it's usually safe to skip the faulty cpu and retry.
698 *
699 * ENOCPU means one of the target cpu doesn't belong to the
700 * domain, perhaps offlined which is unexpected, but not
701 * fatal and it's okay to skip the offlined cpu.
702 */
703 rem = 0;
704 n_sent = 0;
705 for (i = 0; i < cnt; i++) {
706 cpu = cpu_list[i];
707 if (likely(cpu == 0xffff)) {
708 n_sent++;
709 } else if ((status == HV_ECPUERROR) &&
710 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
711 ecpuerror_id = cpu + 1;
712 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
713 enocpu_id = cpu + 1;
714 } else {
715 cpu_list[rem++] = cpu;
716 }
717 }
718
719 /* No cpu remained, we're done. */
720 if (rem == 0)
721 break;
722
723 /* Otherwise, update the cpu count for retry. */
724 cnt = rem;
725
726 /* Record the overall number of mondos received by the
727 * first of the remaining cpus.
728 */
729 if (first_cpu != cpu_list[0]) {
730 first_cpu = cpu_list[0];
731 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
732 }
733
734 /* Was any mondo delivered successfully? */
735 mondo_delivered = (n_sent > prev_sent);
736 prev_sent = n_sent;
737
738 /* or, was any target cpu busy processing other mondos? */
739 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
740 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
741
742 /* Retry count is for no progress. If we're making progress,
743 * reset the retry count.
744 */
745 if (likely(mondo_delivered || target_cpu_busy)) {
746 tot_retries += retries;
747 retries = 0;
748 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
749 goto fatal_mondo_timeout;
750 }
751
752 /* Delay a little bit to let other cpus catch up on
753 * their cpu mondo queue work.
754 */
755 if (!mondo_delivered)
756 udelay(usec_wait);
757
758 retries++;
759 } while (1);
760
761xcall_done:
762 if (unlikely(ecpuerror_id > 0)) {
763 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
764 this_cpu, ecpuerror_id - 1);
765 } else if (unlikely(enocpu_id > 0)) {
766 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
767 this_cpu, enocpu_id - 1);
768 }
769 return;
770
771fatal_errors:
772 /* fatal errors include bad alignment, etc */
773 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
774 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
775 panic("Unexpected SUN4V mondo error %lu\n", status);
776
777fatal_mondo_timeout:
778 /* some cpus being non-responsive to the cpu mondo */
779 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
780 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
781 panic("SUN4V mondo timeout panic\n");
782}
783
784static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
785
786static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
787{
788 struct trap_per_cpu *tb;
789 int this_cpu, i, cnt;
790 unsigned long flags;
791 u16 *cpu_list;
792 u64 *mondo;
793
794 /* We have to do this whole thing with interrupts fully disabled.
795 * Otherwise if we send an xcall from interrupt context it will
796 * corrupt both our mondo block and cpu list state.
797 *
798 * One consequence of this is that we cannot use timeout mechanisms
799 * that depend upon interrupts being delivered locally. So, for
800 * example, we cannot sample jiffies and expect it to advance.
801 *
802 * Fortunately, udelay() uses %stick/%tick so we can use that.
803 */
804 local_irq_save(flags);
805
806 this_cpu = smp_processor_id();
807 tb = &trap_block[this_cpu];
808
809 mondo = __va(tb->cpu_mondo_block_pa);
810 mondo[0] = data0;
811 mondo[1] = data1;
812 mondo[2] = data2;
813 wmb();
814
815 cpu_list = __va(tb->cpu_list_pa);
816
817 /* Setup the initial cpu list. */
818 cnt = 0;
819 for_each_cpu(i, mask) {
820 if (i == this_cpu || !cpu_online(i))
821 continue;
822 cpu_list[cnt++] = i;
823 }
824
825 if (cnt)
826 xcall_deliver_impl(tb, cnt);
827
828 local_irq_restore(flags);
829}
830
831/* Send cross call to all processors mentioned in MASK_P
832 * except self. Really, there are only two cases currently,
833 * "cpu_online_mask" and "mm_cpumask(mm)".
834 */
835static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
836{
837 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
838
839 xcall_deliver(data0, data1, data2, mask);
840}
841
842/* Send cross call to all processors except self. */
843static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
844{
845 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
846}
847
848extern unsigned long xcall_sync_tick;
849
850static void smp_start_sync_tick_client(int cpu)
851{
852 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
853 cpumask_of(cpu));
854}
855
856extern unsigned long xcall_call_function;
857
858void arch_send_call_function_ipi_mask(const struct cpumask *mask)
859{
860 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
861}
862
863extern unsigned long xcall_call_function_single;
864
865void arch_send_call_function_single_ipi(int cpu)
866{
867 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
868 cpumask_of(cpu));
869}
870
871void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
872{
873 clear_softint(1 << irq);
874 irq_enter();
875 generic_smp_call_function_interrupt();
876 irq_exit();
877}
878
879void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
880{
881 clear_softint(1 << irq);
882 irq_enter();
883 generic_smp_call_function_single_interrupt();
884 irq_exit();
885}
886
887static void tsb_sync(void *info)
888{
889 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
890 struct mm_struct *mm = info;
891
892 /* It is not valid to test "current->active_mm == mm" here.
893 *
894 * The value of "current" is not changed atomically with
895 * switch_mm(). But that's OK, we just need to check the
896 * current cpu's trap block PGD physical address.
897 */
898 if (tp->pgd_paddr == __pa(mm->pgd))
899 tsb_context_switch(mm);
900}
901
902void smp_tsb_sync(struct mm_struct *mm)
903{
904 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
905}
906
907extern unsigned long xcall_flush_tlb_mm;
908extern unsigned long xcall_flush_tlb_page;
909extern unsigned long xcall_flush_tlb_kernel_range;
910extern unsigned long xcall_fetch_glob_regs;
911extern unsigned long xcall_fetch_glob_pmu;
912extern unsigned long xcall_fetch_glob_pmu_n4;
913extern unsigned long xcall_receive_signal;
914extern unsigned long xcall_new_mmu_context_version;
915#ifdef CONFIG_KGDB
916extern unsigned long xcall_kgdb_capture;
917#endif
918
919#ifdef DCACHE_ALIASING_POSSIBLE
920extern unsigned long xcall_flush_dcache_page_cheetah;
921#endif
922extern unsigned long xcall_flush_dcache_page_spitfire;
923
924static inline void __local_flush_dcache_folio(struct folio *folio)
925{
926 unsigned int i, nr = folio_nr_pages(folio);
927
928#ifdef DCACHE_ALIASING_POSSIBLE
929 for (i = 0; i < nr; i++)
930 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
931 ((tlb_type == spitfire) &&
932 folio_flush_mapping(folio) != NULL));
933#else
934 if (folio_flush_mapping(folio) != NULL &&
935 tlb_type == spitfire) {
936 unsigned long pfn = folio_pfn(folio)
937 for (i = 0; i < nr; i++)
938 __flush_icache_page((pfn + i) * PAGE_SIZE);
939 }
940#endif
941}
942
943void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
944{
945 int this_cpu;
946
947 if (tlb_type == hypervisor)
948 return;
949
950#ifdef CONFIG_DEBUG_DCFLUSH
951 atomic_inc(&dcpage_flushes);
952#endif
953
954 this_cpu = get_cpu();
955
956 if (cpu == this_cpu) {
957 __local_flush_dcache_folio(folio);
958 } else if (cpu_online(cpu)) {
959 void *pg_addr = folio_address(folio);
960 u64 data0 = 0;
961
962 if (tlb_type == spitfire) {
963 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
964 if (folio_flush_mapping(folio) != NULL)
965 data0 |= ((u64)1 << 32);
966 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
967#ifdef DCACHE_ALIASING_POSSIBLE
968 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
969#endif
970 }
971 if (data0) {
972 unsigned int i, nr = folio_nr_pages(folio);
973
974 for (i = 0; i < nr; i++) {
975 xcall_deliver(data0, __pa(pg_addr),
976 (u64) pg_addr, cpumask_of(cpu));
977#ifdef CONFIG_DEBUG_DCFLUSH
978 atomic_inc(&dcpage_flushes_xcall);
979#endif
980 pg_addr += PAGE_SIZE;
981 }
982 }
983 }
984
985 put_cpu();
986}
987
988void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
989{
990 void *pg_addr;
991 u64 data0;
992
993 if (tlb_type == hypervisor)
994 return;
995
996 preempt_disable();
997
998#ifdef CONFIG_DEBUG_DCFLUSH
999 atomic_inc(&dcpage_flushes);
1000#endif
1001 data0 = 0;
1002 pg_addr = folio_address(folio);
1003 if (tlb_type == spitfire) {
1004 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1005 if (folio_flush_mapping(folio) != NULL)
1006 data0 |= ((u64)1 << 32);
1007 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1008#ifdef DCACHE_ALIASING_POSSIBLE
1009 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1010#endif
1011 }
1012 if (data0) {
1013 unsigned int i, nr = folio_nr_pages(folio);
1014
1015 for (i = 0; i < nr; i++) {
1016 xcall_deliver(data0, __pa(pg_addr),
1017 (u64) pg_addr, cpu_online_mask);
1018#ifdef CONFIG_DEBUG_DCFLUSH
1019 atomic_inc(&dcpage_flushes_xcall);
1020#endif
1021 pg_addr += PAGE_SIZE;
1022 }
1023 }
1024 __local_flush_dcache_folio(folio);
1025
1026 preempt_enable();
1027}
1028
1029#ifdef CONFIG_KGDB
1030void kgdb_roundup_cpus(void)
1031{
1032 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1033}
1034#endif
1035
1036void smp_fetch_global_regs(void)
1037{
1038 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1039}
1040
1041void smp_fetch_global_pmu(void)
1042{
1043 if (tlb_type == hypervisor &&
1044 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1045 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1046 else
1047 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1048}
1049
1050/* We know that the window frames of the user have been flushed
1051 * to the stack before we get here because all callers of us
1052 * are flush_tlb_*() routines, and these run after flush_cache_*()
1053 * which performs the flushw.
1054 *
1055 * mm->cpu_vm_mask is a bit mask of which cpus an address
1056 * space has (potentially) executed on, this is the heuristic
1057 * we use to limit cross calls.
1058 */
1059
1060/* This currently is only used by the hugetlb arch pre-fault
1061 * hook on UltraSPARC-III+ and later when changing the pagesize
1062 * bits of the context register for an address space.
1063 */
1064void smp_flush_tlb_mm(struct mm_struct *mm)
1065{
1066 u32 ctx = CTX_HWBITS(mm->context);
1067
1068 get_cpu();
1069
1070 smp_cross_call_masked(&xcall_flush_tlb_mm,
1071 ctx, 0, 0,
1072 mm_cpumask(mm));
1073
1074 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1075
1076 put_cpu();
1077}
1078
1079struct tlb_pending_info {
1080 unsigned long ctx;
1081 unsigned long nr;
1082 unsigned long *vaddrs;
1083};
1084
1085static void tlb_pending_func(void *info)
1086{
1087 struct tlb_pending_info *t = info;
1088
1089 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1090}
1091
1092void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1093{
1094 u32 ctx = CTX_HWBITS(mm->context);
1095 struct tlb_pending_info info;
1096
1097 get_cpu();
1098
1099 info.ctx = ctx;
1100 info.nr = nr;
1101 info.vaddrs = vaddrs;
1102
1103 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104 &info, 1);
1105
1106 __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108 put_cpu();
1109}
1110
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113 unsigned long context = CTX_HWBITS(mm->context);
1114
1115 get_cpu();
1116
1117 smp_cross_call_masked(&xcall_flush_tlb_page,
1118 context, vaddr, 0,
1119 mm_cpumask(mm));
1120
1121 __flush_tlb_page(context, vaddr);
1122
1123 put_cpu();
1124}
1125
1126void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1127{
1128 start &= PAGE_MASK;
1129 end = PAGE_ALIGN(end);
1130 if (start != end) {
1131 smp_cross_call(&xcall_flush_tlb_kernel_range,
1132 0, start, end);
1133
1134 __flush_tlb_kernel_range(start, end);
1135 }
1136}
1137
1138/* CPU capture. */
1139/* #define CAPTURE_DEBUG */
1140extern unsigned long xcall_capture;
1141
1142static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1143static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1144static unsigned long penguins_are_doing_time;
1145
1146void smp_capture(void)
1147{
1148 int result = atomic_add_return(1, &smp_capture_depth);
1149
1150 if (result == 1) {
1151 int ncpus = num_online_cpus();
1152
1153#ifdef CAPTURE_DEBUG
1154 printk("CPU[%d]: Sending penguins to jail...",
1155 smp_processor_id());
1156#endif
1157 penguins_are_doing_time = 1;
1158 atomic_inc(&smp_capture_registry);
1159 smp_cross_call(&xcall_capture, 0, 0, 0);
1160 while (atomic_read(&smp_capture_registry) != ncpus)
1161 rmb();
1162#ifdef CAPTURE_DEBUG
1163 printk("done\n");
1164#endif
1165 }
1166}
1167
1168void smp_release(void)
1169{
1170 if (atomic_dec_and_test(&smp_capture_depth)) {
1171#ifdef CAPTURE_DEBUG
1172 printk("CPU[%d]: Giving pardon to "
1173 "imprisoned penguins\n",
1174 smp_processor_id());
1175#endif
1176 penguins_are_doing_time = 0;
1177 membar_safe("#StoreLoad");
1178 atomic_dec(&smp_capture_registry);
1179 }
1180}
1181
1182/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1183 * set, so they can service tlb flush xcalls...
1184 */
1185extern void prom_world(int);
1186
1187void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1188{
1189 clear_softint(1 << irq);
1190
1191 preempt_disable();
1192
1193 __asm__ __volatile__("flushw");
1194 prom_world(1);
1195 atomic_inc(&smp_capture_registry);
1196 membar_safe("#StoreLoad");
1197 while (penguins_are_doing_time)
1198 rmb();
1199 atomic_dec(&smp_capture_registry);
1200 prom_world(0);
1201
1202 preempt_enable();
1203}
1204
1205void __init smp_prepare_cpus(unsigned int max_cpus)
1206{
1207}
1208
1209void smp_prepare_boot_cpu(void)
1210{
1211}
1212
1213void __init smp_setup_processor_id(void)
1214{
1215 if (tlb_type == spitfire)
1216 xcall_deliver_impl = spitfire_xcall_deliver;
1217 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1218 xcall_deliver_impl = cheetah_xcall_deliver;
1219 else
1220 xcall_deliver_impl = hypervisor_xcall_deliver;
1221}
1222
1223void __init smp_fill_in_cpu_possible_map(void)
1224{
1225 int possible_cpus = num_possible_cpus();
1226 int i;
1227
1228 if (possible_cpus > nr_cpu_ids)
1229 possible_cpus = nr_cpu_ids;
1230
1231 for (i = 0; i < possible_cpus; i++)
1232 set_cpu_possible(i, true);
1233 for (; i < NR_CPUS; i++)
1234 set_cpu_possible(i, false);
1235}
1236
1237void smp_fill_in_sib_core_maps(void)
1238{
1239 unsigned int i;
1240
1241 for_each_present_cpu(i) {
1242 unsigned int j;
1243
1244 cpumask_clear(&cpu_core_map[i]);
1245 if (cpu_data(i).core_id == 0) {
1246 cpumask_set_cpu(i, &cpu_core_map[i]);
1247 continue;
1248 }
1249
1250 for_each_present_cpu(j) {
1251 if (cpu_data(i).core_id ==
1252 cpu_data(j).core_id)
1253 cpumask_set_cpu(j, &cpu_core_map[i]);
1254 }
1255 }
1256
1257 for_each_present_cpu(i) {
1258 unsigned int j;
1259
1260 for_each_present_cpu(j) {
1261 if (cpu_data(i).max_cache_id ==
1262 cpu_data(j).max_cache_id)
1263 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1264
1265 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1266 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1267 }
1268 }
1269
1270 for_each_present_cpu(i) {
1271 unsigned int j;
1272
1273 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1274 if (cpu_data(i).proc_id == -1) {
1275 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1276 continue;
1277 }
1278
1279 for_each_present_cpu(j) {
1280 if (cpu_data(i).proc_id ==
1281 cpu_data(j).proc_id)
1282 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1283 }
1284 }
1285}
1286
1287int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1288{
1289 int ret = smp_boot_one_cpu(cpu, tidle);
1290
1291 if (!ret) {
1292 cpumask_set_cpu(cpu, &smp_commenced_mask);
1293 while (!cpu_online(cpu))
1294 mb();
1295 if (!cpu_online(cpu)) {
1296 ret = -ENODEV;
1297 } else {
1298 /* On SUN4V, writes to %tick and %stick are
1299 * not allowed.
1300 */
1301 if (tlb_type != hypervisor)
1302 smp_synchronize_one_tick(cpu);
1303 }
1304 }
1305 return ret;
1306}
1307
1308#ifdef CONFIG_HOTPLUG_CPU
1309void cpu_play_dead(void)
1310{
1311 int cpu = smp_processor_id();
1312 unsigned long pstate;
1313
1314 idle_task_exit();
1315
1316 if (tlb_type == hypervisor) {
1317 struct trap_per_cpu *tb = &trap_block[cpu];
1318
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1320 tb->cpu_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1322 tb->dev_mondo_pa, 0);
1323 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1324 tb->resum_mondo_pa, 0);
1325 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1326 tb->nonresum_mondo_pa, 0);
1327 }
1328
1329 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1330 membar_safe("#Sync");
1331
1332 local_irq_disable();
1333
1334 __asm__ __volatile__(
1335 "rdpr %%pstate, %0\n\t"
1336 "wrpr %0, %1, %%pstate"
1337 : "=r" (pstate)
1338 : "i" (PSTATE_IE));
1339
1340 while (1)
1341 barrier();
1342}
1343
1344int __cpu_disable(void)
1345{
1346 int cpu = smp_processor_id();
1347 cpuinfo_sparc *c;
1348 int i;
1349
1350 for_each_cpu(i, &cpu_core_map[cpu])
1351 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1352 cpumask_clear(&cpu_core_map[cpu]);
1353
1354 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1355 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1356 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1357
1358 c = &cpu_data(cpu);
1359
1360 c->core_id = 0;
1361 c->proc_id = -1;
1362
1363 smp_wmb();
1364
1365 /* Make sure no interrupts point to this cpu. */
1366 fixup_irqs();
1367
1368 local_irq_enable();
1369 mdelay(1);
1370 local_irq_disable();
1371
1372 set_cpu_online(cpu, false);
1373
1374 cpu_map_rebuild();
1375
1376 return 0;
1377}
1378
1379void __cpu_die(unsigned int cpu)
1380{
1381 int i;
1382
1383 for (i = 0; i < 100; i++) {
1384 smp_rmb();
1385 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1386 break;
1387 msleep(100);
1388 }
1389 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1390 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1391 } else {
1392#if defined(CONFIG_SUN_LDOMS)
1393 unsigned long hv_err;
1394 int limit = 100;
1395
1396 do {
1397 hv_err = sun4v_cpu_stop(cpu);
1398 if (hv_err == HV_EOK) {
1399 set_cpu_present(cpu, false);
1400 break;
1401 }
1402 } while (--limit > 0);
1403 if (limit <= 0) {
1404 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1405 hv_err);
1406 }
1407#endif
1408 }
1409}
1410#endif
1411
1412void __init smp_cpus_done(unsigned int max_cpus)
1413{
1414}
1415
1416static void send_cpu_ipi(int cpu)
1417{
1418 xcall_deliver((u64) &xcall_receive_signal,
1419 0, 0, cpumask_of(cpu));
1420}
1421
1422void scheduler_poke(void)
1423{
1424 if (!cpu_poke)
1425 return;
1426
1427 if (!__this_cpu_read(poke))
1428 return;
1429
1430 __this_cpu_write(poke, false);
1431 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432}
1433
1434static unsigned long send_cpu_poke(int cpu)
1435{
1436 unsigned long hv_err;
1437
1438 per_cpu(poke, cpu) = true;
1439 hv_err = sun4v_cpu_poke(cpu);
1440 if (hv_err != HV_EOK) {
1441 per_cpu(poke, cpu) = false;
1442 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1443 __func__, hv_err);
1444 }
1445
1446 return hv_err;
1447}
1448
1449void arch_smp_send_reschedule(int cpu)
1450{
1451 if (cpu == smp_processor_id()) {
1452 WARN_ON_ONCE(preemptible());
1453 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1454 return;
1455 }
1456
1457 /* Use cpu poke to resume idle cpu if supported. */
1458 if (cpu_poke && idle_cpu(cpu)) {
1459 unsigned long ret;
1460
1461 ret = send_cpu_poke(cpu);
1462 if (ret == HV_EOK)
1463 return;
1464 }
1465
1466 /* Use IPI in following cases:
1467 * - cpu poke not supported
1468 * - cpu not idle
1469 * - send_cpu_poke() returns with error
1470 */
1471 send_cpu_ipi(cpu);
1472}
1473
1474void smp_init_cpu_poke(void)
1475{
1476 unsigned long major;
1477 unsigned long minor;
1478 int ret;
1479
1480 if (tlb_type != hypervisor)
1481 return;
1482
1483 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1484 if (ret) {
1485 pr_debug("HV_GRP_CORE is not registered\n");
1486 return;
1487 }
1488
1489 if (major == 1 && minor >= 6) {
1490 /* CPU POKE is registered. */
1491 cpu_poke = true;
1492 return;
1493 }
1494
1495 pr_debug("CPU_POKE not supported\n");
1496}
1497
1498void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1499{
1500 clear_softint(1 << irq);
1501 scheduler_ipi();
1502}
1503
1504static void stop_this_cpu(void *dummy)
1505{
1506 set_cpu_online(smp_processor_id(), false);
1507 prom_stopself();
1508}
1509
1510void smp_send_stop(void)
1511{
1512 int cpu;
1513
1514 if (tlb_type == hypervisor) {
1515 int this_cpu = smp_processor_id();
1516#ifdef CONFIG_SERIAL_SUNHV
1517 sunhv_migrate_hvcons_irq(this_cpu);
1518#endif
1519 for_each_online_cpu(cpu) {
1520 if (cpu == this_cpu)
1521 continue;
1522
1523 set_cpu_online(cpu, false);
1524#ifdef CONFIG_SUN_LDOMS
1525 if (ldom_domaining_enabled) {
1526 unsigned long hv_err;
1527 hv_err = sun4v_cpu_stop(cpu);
1528 if (hv_err)
1529 printk(KERN_ERR "sun4v_cpu_stop() "
1530 "failed err=%lu\n", hv_err);
1531 } else
1532#endif
1533 prom_stopcpu_cpuid(cpu);
1534 }
1535 } else
1536 smp_call_function(stop_this_cpu, NULL, 0);
1537}
1538
1539static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1540{
1541 if (cpu_to_node(from) == cpu_to_node(to))
1542 return LOCAL_DISTANCE;
1543 else
1544 return REMOTE_DISTANCE;
1545}
1546
1547static int __init pcpu_cpu_to_node(int cpu)
1548{
1549 return cpu_to_node(cpu);
1550}
1551
1552void __init setup_per_cpu_areas(void)
1553{
1554 unsigned long delta;
1555 unsigned int cpu;
1556 int rc = -EINVAL;
1557
1558 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1559 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1560 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1561 pcpu_cpu_distance,
1562 pcpu_cpu_to_node);
1563 if (rc)
1564 pr_warn("PERCPU: %s allocator failed (%d), "
1565 "falling back to page size\n",
1566 pcpu_fc_names[pcpu_chosen_fc], rc);
1567 }
1568 if (rc < 0)
1569 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1570 pcpu_cpu_to_node);
1571 if (rc < 0)
1572 panic("cannot initialize percpu area (err=%d)", rc);
1573
1574 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1575 for_each_possible_cpu(cpu)
1576 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1577
1578 /* Setup %g5 for the boot cpu. */
1579 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1580
1581 of_fill_in_cpu_data();
1582 if (tlb_type == hypervisor)
1583 mdesc_fill_in_cpu_data(cpu_all_mask);
1584}