Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * linux/arch/m68k/atari/time.c
  3 *
  4 * Atari time and real time clock stuff
  5 *
  6 * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
  7 *
  8 * This file is subject to the terms and conditions of the GNU General Public
  9 * License.  See the file COPYING in the main directory of this archive
 10 * for more details.
 11 */
 12
 13#include <linux/types.h>
 14#include <linux/mc146818rtc.h>
 15#include <linux/interrupt.h>
 16#include <linux/init.h>
 17#include <linux/rtc.h>
 18#include <linux/bcd.h>
 
 19#include <linux/delay.h>
 20#include <linux/export.h>
 21
 22#include <asm/atariints.h>
 
 
 
 23
 24DEFINE_SPINLOCK(rtc_lock);
 25EXPORT_SYMBOL_GPL(rtc_lock);
 26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27void __init
 28atari_sched_init(irq_handler_t timer_routine)
 29{
 30    /* set Timer C data Register */
 31    st_mfp.tim_dt_c = INT_TICKS;
 32    /* start timer C, div = 1:100 */
 33    st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 15) | 0x60;
 34    /* install interrupt service routine for MFP Timer C */
 35    if (request_irq(IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW,
 36		    "timer", timer_routine))
 37	pr_err("Couldn't register timer interrupt\n");
 
 
 38}
 39
 40/* ++andreas: gettimeoffset fixed to check for pending interrupt */
 41
 42#define TICK_SIZE 10000
 43
 44/* This is always executed with interrupts disabled.  */
 45unsigned long atari_gettimeoffset (void)
 46{
 47  unsigned long ticks, offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 48
 49  /* read MFP timer C current value */
 50  ticks = st_mfp.tim_dt_c;
 51  /* The probability of underflow is less than 2% */
 52  if (ticks > INT_TICKS - INT_TICKS / 50)
 53    /* Check for pending timer interrupt */
 54    if (st_mfp.int_pn_b & (1 << 5))
 55      offset = TICK_SIZE;
 56
 57  ticks = INT_TICKS - ticks;
 58  ticks = ticks * 10000L / INT_TICKS;
 59
 60  return ticks + offset;
 61}
 62
 63
 64static void mste_read(struct MSTE_RTC *val)
 65{
 66#define COPY(v) val->v=(mste_rtc.v & 0xf)
 67	do {
 68		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
 69		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
 70		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
 71		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
 72		COPY(year_tens) ;
 73	/* prevent from reading the clock while it changed */
 74	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
 75#undef COPY
 76}
 77
 78static void mste_write(struct MSTE_RTC *val)
 79{
 80#define COPY(v) mste_rtc.v=val->v
 81	do {
 82		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
 83		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
 84		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
 85		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
 86		COPY(year_tens) ;
 87	/* prevent from writing the clock while it changed */
 88	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
 89#undef COPY
 90}
 91
 92#define	RTC_READ(reg)				\
 93    ({	unsigned char	__val;			\
 94		(void) atari_writeb(reg,&tt_rtc.regsel);	\
 95		__val = tt_rtc.data;		\
 96		__val;				\
 97	})
 98
 99#define	RTC_WRITE(reg,val)			\
100    do {					\
101		atari_writeb(reg,&tt_rtc.regsel);	\
102		tt_rtc.data = (val);		\
103	} while(0)
104
105
106#define HWCLK_POLL_INTERVAL	5
107
108int atari_mste_hwclk( int op, struct rtc_time *t )
109{
110    int hour, year;
111    int hr24=0;
112    struct MSTE_RTC val;
113
114    mste_rtc.mode=(mste_rtc.mode | 1);
115    hr24=mste_rtc.mon_tens & 1;
116    mste_rtc.mode=(mste_rtc.mode & ~1);
117
118    if (op) {
119        /* write: prepare values */
120
121        val.sec_ones = t->tm_sec % 10;
122        val.sec_tens = t->tm_sec / 10;
123        val.min_ones = t->tm_min % 10;
124        val.min_tens = t->tm_min / 10;
125        hour = t->tm_hour;
126        if (!hr24) {
127	    if (hour > 11)
128		hour += 20 - 12;
129	    if (hour == 0 || hour == 20)
130		hour += 12;
131        }
132        val.hr_ones = hour % 10;
133        val.hr_tens = hour / 10;
134        val.day_ones = t->tm_mday % 10;
135        val.day_tens = t->tm_mday / 10;
136        val.mon_ones = (t->tm_mon+1) % 10;
137        val.mon_tens = (t->tm_mon+1) / 10;
138        year = t->tm_year - 80;
139        val.year_ones = year % 10;
140        val.year_tens = year / 10;
141        val.weekday = t->tm_wday;
142        mste_write(&val);
143        mste_rtc.mode=(mste_rtc.mode | 1);
144        val.year_ones = (year % 4);	/* leap year register */
145        mste_rtc.mode=(mste_rtc.mode & ~1);
146    }
147    else {
148        mste_read(&val);
149        t->tm_sec = val.sec_ones + val.sec_tens * 10;
150        t->tm_min = val.min_ones + val.min_tens * 10;
151        hour = val.hr_ones + val.hr_tens * 10;
152	if (!hr24) {
153	    if (hour == 12 || hour == 12 + 20)
154		hour -= 12;
155	    if (hour >= 20)
156                hour += 12 - 20;
157        }
158	t->tm_hour = hour;
159	t->tm_mday = val.day_ones + val.day_tens * 10;
160        t->tm_mon  = val.mon_ones + val.mon_tens * 10 - 1;
161        t->tm_year = val.year_ones + val.year_tens * 10 + 80;
162        t->tm_wday = val.weekday;
163    }
164    return 0;
165}
166
167int atari_tt_hwclk( int op, struct rtc_time *t )
168{
169    int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
170    unsigned long	flags;
171    unsigned char	ctrl;
172    int pm = 0;
173
174    ctrl = RTC_READ(RTC_CONTROL); /* control registers are
175                                   * independent from the UIP */
176
177    if (op) {
178        /* write: prepare values */
179
180        sec  = t->tm_sec;
181        min  = t->tm_min;
182        hour = t->tm_hour;
183        day  = t->tm_mday;
184        mon  = t->tm_mon + 1;
185        year = t->tm_year - atari_rtc_year_offset;
186        wday = t->tm_wday + (t->tm_wday >= 0);
187
188        if (!(ctrl & RTC_24H)) {
189	    if (hour > 11) {
190		pm = 0x80;
191		if (hour != 12)
192		    hour -= 12;
193	    }
194	    else if (hour == 0)
195		hour = 12;
196        }
197
198        if (!(ctrl & RTC_DM_BINARY)) {
199	    sec = bin2bcd(sec);
200	    min = bin2bcd(min);
201	    hour = bin2bcd(hour);
202	    day = bin2bcd(day);
203	    mon = bin2bcd(mon);
204	    year = bin2bcd(year);
205	    if (wday >= 0)
206		wday = bin2bcd(wday);
207        }
208    }
209
210    /* Reading/writing the clock registers is a bit critical due to
211     * the regular update cycle of the RTC. While an update is in
212     * progress, registers 0..9 shouldn't be touched.
213     * The problem is solved like that: If an update is currently in
214     * progress (the UIP bit is set), the process sleeps for a while
215     * (50ms). This really should be enough, since the update cycle
216     * normally needs 2 ms.
217     * If the UIP bit reads as 0, we have at least 244 usecs until the
218     * update starts. This should be enough... But to be sure,
219     * additionally the RTC_SET bit is set to prevent an update cycle.
220     */
221
222    while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
223	if (in_atomic() || irqs_disabled())
224	    mdelay(1);
225	else
226	    schedule_timeout_interruptible(HWCLK_POLL_INTERVAL);
227    }
228
229    local_irq_save(flags);
230    RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
231    if (!op) {
232        sec  = RTC_READ( RTC_SECONDS );
233        min  = RTC_READ( RTC_MINUTES );
234        hour = RTC_READ( RTC_HOURS );
235        day  = RTC_READ( RTC_DAY_OF_MONTH );
236        mon  = RTC_READ( RTC_MONTH );
237        year = RTC_READ( RTC_YEAR );
238        wday = RTC_READ( RTC_DAY_OF_WEEK );
239    }
240    else {
241        RTC_WRITE( RTC_SECONDS, sec );
242        RTC_WRITE( RTC_MINUTES, min );
243        RTC_WRITE( RTC_HOURS, hour + pm);
244        RTC_WRITE( RTC_DAY_OF_MONTH, day );
245        RTC_WRITE( RTC_MONTH, mon );
246        RTC_WRITE( RTC_YEAR, year );
247        if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
248    }
249    RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
250    local_irq_restore(flags);
251
252    if (!op) {
253        /* read: adjust values */
254
255        if (hour & 0x80) {
256	    hour &= ~0x80;
257	    pm = 1;
258	}
259
260	if (!(ctrl & RTC_DM_BINARY)) {
261	    sec = bcd2bin(sec);
262	    min = bcd2bin(min);
263	    hour = bcd2bin(hour);
264	    day = bcd2bin(day);
265	    mon = bcd2bin(mon);
266	    year = bcd2bin(year);
267	    wday = bcd2bin(wday);
268        }
269
270        if (!(ctrl & RTC_24H)) {
271	    if (!pm && hour == 12)
272		hour = 0;
273	    else if (pm && hour != 12)
274		hour += 12;
275        }
276
277        t->tm_sec  = sec;
278        t->tm_min  = min;
279        t->tm_hour = hour;
280        t->tm_mday = day;
281        t->tm_mon  = mon - 1;
282        t->tm_year = year + atari_rtc_year_offset;
283        t->tm_wday = wday - 1;
284    }
285
286    return( 0 );
287}
288
289
290int atari_mste_set_clock_mmss (unsigned long nowtime)
291{
292    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
293    struct MSTE_RTC val;
294    unsigned char rtc_minutes;
295
296    mste_read(&val);
297    rtc_minutes= val.min_ones + val.min_tens * 10;
298    if ((rtc_minutes < real_minutes
299         ? real_minutes - rtc_minutes
300         : rtc_minutes - real_minutes) < 30)
301    {
302        val.sec_ones = real_seconds % 10;
303        val.sec_tens = real_seconds / 10;
304        val.min_ones = real_minutes % 10;
305        val.min_tens = real_minutes / 10;
306        mste_write(&val);
307    }
308    else
309        return -1;
310    return 0;
311}
312
313int atari_tt_set_clock_mmss (unsigned long nowtime)
314{
315    int retval = 0;
316    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
317    unsigned char save_control, save_freq_select, rtc_minutes;
318
319    save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */
320    RTC_WRITE (RTC_CONTROL, save_control | RTC_SET);
321
322    save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */
323    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2);
324
325    rtc_minutes = RTC_READ (RTC_MINUTES);
326    if (!(save_control & RTC_DM_BINARY))
327	rtc_minutes = bcd2bin(rtc_minutes);
328
329    /* Since we're only adjusting minutes and seconds, don't interfere
330       with hour overflow.  This avoids messing with unknown time zones
331       but requires your RTC not to be off by more than 30 minutes.  */
332    if ((rtc_minutes < real_minutes
333         ? real_minutes - rtc_minutes
334         : rtc_minutes - real_minutes) < 30)
335        {
336            if (!(save_control & RTC_DM_BINARY))
337                {
338		    real_seconds = bin2bcd(real_seconds);
339		    real_minutes = bin2bcd(real_minutes);
340                }
341            RTC_WRITE (RTC_SECONDS, real_seconds);
342            RTC_WRITE (RTC_MINUTES, real_minutes);
343        }
344    else
345        retval = -1;
346
347    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select);
348    RTC_WRITE (RTC_CONTROL, save_control);
349    return retval;
350}
351
352/*
353 * Local variables:
354 *  c-indent-level: 4
355 *  tab-width: 8
356 * End:
357 */
v6.8
  1/*
  2 * linux/arch/m68k/atari/time.c
  3 *
  4 * Atari time and real time clock stuff
  5 *
  6 * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
  7 *
  8 * This file is subject to the terms and conditions of the GNU General Public
  9 * License.  See the file COPYING in the main directory of this archive
 10 * for more details.
 11 */
 12
 13#include <linux/types.h>
 14#include <linux/mc146818rtc.h>
 15#include <linux/interrupt.h>
 16#include <linux/init.h>
 17#include <linux/rtc.h>
 18#include <linux/bcd.h>
 19#include <linux/clocksource.h>
 20#include <linux/delay.h>
 21#include <linux/export.h>
 22
 23#include <asm/atariints.h>
 24#include <asm/machdep.h>
 25
 26#include "atari.h"
 27
 28DEFINE_SPINLOCK(rtc_lock);
 29EXPORT_SYMBOL_GPL(rtc_lock);
 30
 31static u64 atari_read_clk(struct clocksource *cs);
 32
 33static struct clocksource atari_clk = {
 34	.name   = "mfp",
 35	.rating = 100,
 36	.read   = atari_read_clk,
 37	.mask   = CLOCKSOURCE_MASK(32),
 38	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 39};
 40
 41static u32 clk_total;
 42static u8 last_timer_count;
 43
 44static irqreturn_t mfp_timer_c_handler(int irq, void *dev_id)
 45{
 46	unsigned long flags;
 47
 48	local_irq_save(flags);
 49	do {
 50		last_timer_count = st_mfp.tim_dt_c;
 51	} while (last_timer_count == 1);
 52	clk_total += INT_TICKS;
 53	legacy_timer_tick(1);
 54	timer_heartbeat();
 55	local_irq_restore(flags);
 56
 57	return IRQ_HANDLED;
 58}
 59
 60void __init
 61atari_sched_init(void)
 62{
 63    /* set Timer C data Register */
 64    st_mfp.tim_dt_c = INT_TICKS;
 65    /* start timer C, div = 1:100 */
 66    st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 15) | 0x60;
 67    /* install interrupt service routine for MFP Timer C */
 68    if (request_irq(IRQ_MFP_TIMC, mfp_timer_c_handler, IRQF_TIMER, "timer",
 69                    NULL))
 70	pr_err("Couldn't register timer interrupt\n");
 71
 72    clocksource_register_hz(&atari_clk, INT_CLK);
 73}
 74
 75/* ++andreas: gettimeoffset fixed to check for pending interrupt */
 76
 77static u64 atari_read_clk(struct clocksource *cs)
 
 
 
 78{
 79	unsigned long flags;
 80	u8 count;
 81	u32 ticks;
 82
 83	local_irq_save(flags);
 84	/* Ensure that the count is monotonically decreasing, even though
 85	 * the result may briefly stop changing after counter wrap-around.
 86	 */
 87	count = min(st_mfp.tim_dt_c, last_timer_count);
 88	last_timer_count = count;
 89
 90	ticks = INT_TICKS - count;
 91	ticks += clk_total;
 92	local_irq_restore(flags);
 93
 94	return ticks;
 
 
 
 
 
 
 
 
 
 
 
 95}
 96
 97
 98static void mste_read(struct MSTE_RTC *val)
 99{
100#define COPY(v) val->v=(mste_rtc.v & 0xf)
101	do {
102		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
103		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
104		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
105		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
106		COPY(year_tens) ;
107	/* prevent from reading the clock while it changed */
108	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
109#undef COPY
110}
111
112static void mste_write(struct MSTE_RTC *val)
113{
114#define COPY(v) mste_rtc.v=val->v
115	do {
116		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
117		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
118		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
119		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
120		COPY(year_tens) ;
121	/* prevent from writing the clock while it changed */
122	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
123#undef COPY
124}
125
126#define	RTC_READ(reg)				\
127    ({	unsigned char	__val;			\
128		(void) atari_writeb(reg,&tt_rtc.regsel);	\
129		__val = tt_rtc.data;		\
130		__val;				\
131	})
132
133#define	RTC_WRITE(reg,val)			\
134    do {					\
135		atari_writeb(reg,&tt_rtc.regsel);	\
136		tt_rtc.data = (val);		\
137	} while(0)
138
139
140#define HWCLK_POLL_INTERVAL	5
141
142int atari_mste_hwclk( int op, struct rtc_time *t )
143{
144    int hour, year;
145    int hr24=0;
146    struct MSTE_RTC val;
147
148    mste_rtc.mode=(mste_rtc.mode | 1);
149    hr24=mste_rtc.mon_tens & 1;
150    mste_rtc.mode=(mste_rtc.mode & ~1);
151
152    if (op) {
153        /* write: prepare values */
154
155        val.sec_ones = t->tm_sec % 10;
156        val.sec_tens = t->tm_sec / 10;
157        val.min_ones = t->tm_min % 10;
158        val.min_tens = t->tm_min / 10;
159        hour = t->tm_hour;
160        if (!hr24) {
161	    if (hour > 11)
162		hour += 20 - 12;
163	    if (hour == 0 || hour == 20)
164		hour += 12;
165        }
166        val.hr_ones = hour % 10;
167        val.hr_tens = hour / 10;
168        val.day_ones = t->tm_mday % 10;
169        val.day_tens = t->tm_mday / 10;
170        val.mon_ones = (t->tm_mon+1) % 10;
171        val.mon_tens = (t->tm_mon+1) / 10;
172        year = t->tm_year - 80;
173        val.year_ones = year % 10;
174        val.year_tens = year / 10;
175        val.weekday = t->tm_wday;
176        mste_write(&val);
177        mste_rtc.mode=(mste_rtc.mode | 1);
178        val.year_ones = (year % 4);	/* leap year register */
179        mste_rtc.mode=(mste_rtc.mode & ~1);
180    }
181    else {
182        mste_read(&val);
183        t->tm_sec = val.sec_ones + val.sec_tens * 10;
184        t->tm_min = val.min_ones + val.min_tens * 10;
185        hour = val.hr_ones + val.hr_tens * 10;
186	if (!hr24) {
187	    if (hour == 12 || hour == 12 + 20)
188		hour -= 12;
189	    if (hour >= 20)
190                hour += 12 - 20;
191        }
192	t->tm_hour = hour;
193	t->tm_mday = val.day_ones + val.day_tens * 10;
194        t->tm_mon  = val.mon_ones + val.mon_tens * 10 - 1;
195        t->tm_year = val.year_ones + val.year_tens * 10 + 80;
196        t->tm_wday = val.weekday;
197    }
198    return 0;
199}
200
201int atari_tt_hwclk( int op, struct rtc_time *t )
202{
203    int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
204    unsigned long	flags;
205    unsigned char	ctrl;
206    int pm = 0;
207
208    ctrl = RTC_READ(RTC_CONTROL); /* control registers are
209                                   * independent from the UIP */
210
211    if (op) {
212        /* write: prepare values */
213
214        sec  = t->tm_sec;
215        min  = t->tm_min;
216        hour = t->tm_hour;
217        day  = t->tm_mday;
218        mon  = t->tm_mon + 1;
219        year = t->tm_year - atari_rtc_year_offset;
220        wday = t->tm_wday + (t->tm_wday >= 0);
221
222        if (!(ctrl & RTC_24H)) {
223	    if (hour > 11) {
224		pm = 0x80;
225		if (hour != 12)
226		    hour -= 12;
227	    }
228	    else if (hour == 0)
229		hour = 12;
230        }
231
232        if (!(ctrl & RTC_DM_BINARY)) {
233	    sec = bin2bcd(sec);
234	    min = bin2bcd(min);
235	    hour = bin2bcd(hour);
236	    day = bin2bcd(day);
237	    mon = bin2bcd(mon);
238	    year = bin2bcd(year);
239	    if (wday >= 0)
240		wday = bin2bcd(wday);
241        }
242    }
243
244    /* Reading/writing the clock registers is a bit critical due to
245     * the regular update cycle of the RTC. While an update is in
246     * progress, registers 0..9 shouldn't be touched.
247     * The problem is solved like that: If an update is currently in
248     * progress (the UIP bit is set), the process sleeps for a while
249     * (50ms). This really should be enough, since the update cycle
250     * normally needs 2 ms.
251     * If the UIP bit reads as 0, we have at least 244 usecs until the
252     * update starts. This should be enough... But to be sure,
253     * additionally the RTC_SET bit is set to prevent an update cycle.
254     */
255
256    while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
257	if (in_atomic() || irqs_disabled())
258	    mdelay(1);
259	else
260	    schedule_timeout_interruptible(HWCLK_POLL_INTERVAL);
261    }
262
263    local_irq_save(flags);
264    RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
265    if (!op) {
266        sec  = RTC_READ( RTC_SECONDS );
267        min  = RTC_READ( RTC_MINUTES );
268        hour = RTC_READ( RTC_HOURS );
269        day  = RTC_READ( RTC_DAY_OF_MONTH );
270        mon  = RTC_READ( RTC_MONTH );
271        year = RTC_READ( RTC_YEAR );
272        wday = RTC_READ( RTC_DAY_OF_WEEK );
273    }
274    else {
275        RTC_WRITE( RTC_SECONDS, sec );
276        RTC_WRITE( RTC_MINUTES, min );
277        RTC_WRITE( RTC_HOURS, hour + pm);
278        RTC_WRITE( RTC_DAY_OF_MONTH, day );
279        RTC_WRITE( RTC_MONTH, mon );
280        RTC_WRITE( RTC_YEAR, year );
281        if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
282    }
283    RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
284    local_irq_restore(flags);
285
286    if (!op) {
287        /* read: adjust values */
288
289        if (hour & 0x80) {
290	    hour &= ~0x80;
291	    pm = 1;
292	}
293
294	if (!(ctrl & RTC_DM_BINARY)) {
295	    sec = bcd2bin(sec);
296	    min = bcd2bin(min);
297	    hour = bcd2bin(hour);
298	    day = bcd2bin(day);
299	    mon = bcd2bin(mon);
300	    year = bcd2bin(year);
301	    wday = bcd2bin(wday);
302        }
303
304        if (!(ctrl & RTC_24H)) {
305	    if (!pm && hour == 12)
306		hour = 0;
307	    else if (pm && hour != 12)
308		hour += 12;
309        }
310
311        t->tm_sec  = sec;
312        t->tm_min  = min;
313        t->tm_hour = hour;
314        t->tm_mday = day;
315        t->tm_mon  = mon - 1;
316        t->tm_year = year + atari_rtc_year_offset;
317        t->tm_wday = wday - 1;
318    }
319
320    return( 0 );
321}