Loading...
1/*
2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 * The filters are packed to hash tables of key nodes
12 * with a set of 32bit key/mask pairs at every node.
13 * Nodes reference next level hash tables etc.
14 *
15 * This scheme is the best universal classifier I managed to
16 * invent; it is not super-fast, but it is not slow (provided you
17 * program it correctly), and general enough. And its relative
18 * speed grows as the number of rules becomes larger.
19 *
20 * It seems that it represents the best middle point between
21 * speed and manageability both by human and by machine.
22 *
23 * It is especially useful for link sharing combined with QoS;
24 * pure RSVP doesn't need such a general approach and can use
25 * much simpler (and faster) schemes, sort of cls_rsvp.c.
26 *
27 * JHS: We should remove the CONFIG_NET_CLS_IND from here
28 * eventually when the meta match extension is made available
29 *
30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31 */
32
33#include <linux/module.h>
34#include <linux/slab.h>
35#include <linux/types.h>
36#include <linux/kernel.h>
37#include <linux/string.h>
38#include <linux/errno.h>
39#include <linux/rtnetlink.h>
40#include <linux/skbuff.h>
41#include <net/netlink.h>
42#include <net/act_api.h>
43#include <net/pkt_cls.h>
44
45struct tc_u_knode {
46 struct tc_u_knode *next;
47 u32 handle;
48 struct tc_u_hnode *ht_up;
49 struct tcf_exts exts;
50#ifdef CONFIG_NET_CLS_IND
51 char indev[IFNAMSIZ];
52#endif
53 u8 fshift;
54 struct tcf_result res;
55 struct tc_u_hnode *ht_down;
56#ifdef CONFIG_CLS_U32_PERF
57 struct tc_u32_pcnt *pf;
58#endif
59#ifdef CONFIG_CLS_U32_MARK
60 struct tc_u32_mark mark;
61#endif
62 struct tc_u32_sel sel;
63};
64
65struct tc_u_hnode {
66 struct tc_u_hnode *next;
67 u32 handle;
68 u32 prio;
69 struct tc_u_common *tp_c;
70 int refcnt;
71 unsigned int divisor;
72 struct tc_u_knode *ht[1];
73};
74
75struct tc_u_common {
76 struct tc_u_hnode *hlist;
77 struct Qdisc *q;
78 int refcnt;
79 u32 hgenerator;
80};
81
82static const struct tcf_ext_map u32_ext_map = {
83 .action = TCA_U32_ACT,
84 .police = TCA_U32_POLICE
85};
86
87static inline unsigned int u32_hash_fold(__be32 key,
88 const struct tc_u32_sel *sel,
89 u8 fshift)
90{
91 unsigned int h = ntohl(key & sel->hmask) >> fshift;
92
93 return h;
94}
95
96static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res)
97{
98 struct {
99 struct tc_u_knode *knode;
100 unsigned int off;
101 } stack[TC_U32_MAXDEPTH];
102
103 struct tc_u_hnode *ht = (struct tc_u_hnode *)tp->root;
104 unsigned int off = skb_network_offset(skb);
105 struct tc_u_knode *n;
106 int sdepth = 0;
107 int off2 = 0;
108 int sel = 0;
109#ifdef CONFIG_CLS_U32_PERF
110 int j;
111#endif
112 int i, r;
113
114next_ht:
115 n = ht->ht[sel];
116
117next_knode:
118 if (n) {
119 struct tc_u32_key *key = n->sel.keys;
120
121#ifdef CONFIG_CLS_U32_PERF
122 n->pf->rcnt += 1;
123 j = 0;
124#endif
125
126#ifdef CONFIG_CLS_U32_MARK
127 if ((skb->mark & n->mark.mask) != n->mark.val) {
128 n = n->next;
129 goto next_knode;
130 } else {
131 n->mark.success++;
132 }
133#endif
134
135 for (i = n->sel.nkeys; i > 0; i--, key++) {
136 int toff = off + key->off + (off2 & key->offmask);
137 __be32 *data, hdata;
138
139 if (skb_headroom(skb) + toff > INT_MAX)
140 goto out;
141
142 data = skb_header_pointer(skb, toff, 4, &hdata);
143 if (!data)
144 goto out;
145 if ((*data ^ key->val) & key->mask) {
146 n = n->next;
147 goto next_knode;
148 }
149#ifdef CONFIG_CLS_U32_PERF
150 n->pf->kcnts[j] += 1;
151 j++;
152#endif
153 }
154 if (n->ht_down == NULL) {
155check_terminal:
156 if (n->sel.flags & TC_U32_TERMINAL) {
157
158 *res = n->res;
159#ifdef CONFIG_NET_CLS_IND
160 if (!tcf_match_indev(skb, n->indev)) {
161 n = n->next;
162 goto next_knode;
163 }
164#endif
165#ifdef CONFIG_CLS_U32_PERF
166 n->pf->rhit += 1;
167#endif
168 r = tcf_exts_exec(skb, &n->exts, res);
169 if (r < 0) {
170 n = n->next;
171 goto next_knode;
172 }
173
174 return r;
175 }
176 n = n->next;
177 goto next_knode;
178 }
179
180 /* PUSH */
181 if (sdepth >= TC_U32_MAXDEPTH)
182 goto deadloop;
183 stack[sdepth].knode = n;
184 stack[sdepth].off = off;
185 sdepth++;
186
187 ht = n->ht_down;
188 sel = 0;
189 if (ht->divisor) {
190 __be32 *data, hdata;
191
192 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
193 &hdata);
194 if (!data)
195 goto out;
196 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
197 n->fshift);
198 }
199 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
200 goto next_ht;
201
202 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
203 off2 = n->sel.off + 3;
204 if (n->sel.flags & TC_U32_VAROFFSET) {
205 __be16 *data, hdata;
206
207 data = skb_header_pointer(skb,
208 off + n->sel.offoff,
209 2, &hdata);
210 if (!data)
211 goto out;
212 off2 += ntohs(n->sel.offmask & *data) >>
213 n->sel.offshift;
214 }
215 off2 &= ~3;
216 }
217 if (n->sel.flags & TC_U32_EAT) {
218 off += off2;
219 off2 = 0;
220 }
221
222 if (off < skb->len)
223 goto next_ht;
224 }
225
226 /* POP */
227 if (sdepth--) {
228 n = stack[sdepth].knode;
229 ht = n->ht_up;
230 off = stack[sdepth].off;
231 goto check_terminal;
232 }
233out:
234 return -1;
235
236deadloop:
237 net_warn_ratelimited("cls_u32: dead loop\n");
238 return -1;
239}
240
241static struct tc_u_hnode *
242u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
243{
244 struct tc_u_hnode *ht;
245
246 for (ht = tp_c->hlist; ht; ht = ht->next)
247 if (ht->handle == handle)
248 break;
249
250 return ht;
251}
252
253static struct tc_u_knode *
254u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
255{
256 unsigned int sel;
257 struct tc_u_knode *n = NULL;
258
259 sel = TC_U32_HASH(handle);
260 if (sel > ht->divisor)
261 goto out;
262
263 for (n = ht->ht[sel]; n; n = n->next)
264 if (n->handle == handle)
265 break;
266out:
267 return n;
268}
269
270
271static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
272{
273 struct tc_u_hnode *ht;
274 struct tc_u_common *tp_c = tp->data;
275
276 if (TC_U32_HTID(handle) == TC_U32_ROOT)
277 ht = tp->root;
278 else
279 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
280
281 if (!ht)
282 return 0;
283
284 if (TC_U32_KEY(handle) == 0)
285 return (unsigned long)ht;
286
287 return (unsigned long)u32_lookup_key(ht, handle);
288}
289
290static void u32_put(struct tcf_proto *tp, unsigned long f)
291{
292}
293
294static u32 gen_new_htid(struct tc_u_common *tp_c)
295{
296 int i = 0x800;
297
298 do {
299 if (++tp_c->hgenerator == 0x7FF)
300 tp_c->hgenerator = 1;
301 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
302
303 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
304}
305
306static int u32_init(struct tcf_proto *tp)
307{
308 struct tc_u_hnode *root_ht;
309 struct tc_u_common *tp_c;
310
311 tp_c = tp->q->u32_node;
312
313 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
314 if (root_ht == NULL)
315 return -ENOBUFS;
316
317 root_ht->divisor = 0;
318 root_ht->refcnt++;
319 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
320 root_ht->prio = tp->prio;
321
322 if (tp_c == NULL) {
323 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
324 if (tp_c == NULL) {
325 kfree(root_ht);
326 return -ENOBUFS;
327 }
328 tp_c->q = tp->q;
329 tp->q->u32_node = tp_c;
330 }
331
332 tp_c->refcnt++;
333 root_ht->next = tp_c->hlist;
334 tp_c->hlist = root_ht;
335 root_ht->tp_c = tp_c;
336
337 tp->root = root_ht;
338 tp->data = tp_c;
339 return 0;
340}
341
342static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n)
343{
344 tcf_unbind_filter(tp, &n->res);
345 tcf_exts_destroy(tp, &n->exts);
346 if (n->ht_down)
347 n->ht_down->refcnt--;
348#ifdef CONFIG_CLS_U32_PERF
349 kfree(n->pf);
350#endif
351 kfree(n);
352 return 0;
353}
354
355static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode* key)
356{
357 struct tc_u_knode **kp;
358 struct tc_u_hnode *ht = key->ht_up;
359
360 if (ht) {
361 for (kp = &ht->ht[TC_U32_HASH(key->handle)]; *kp; kp = &(*kp)->next) {
362 if (*kp == key) {
363 tcf_tree_lock(tp);
364 *kp = key->next;
365 tcf_tree_unlock(tp);
366
367 u32_destroy_key(tp, key);
368 return 0;
369 }
370 }
371 }
372 WARN_ON(1);
373 return 0;
374}
375
376static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
377{
378 struct tc_u_knode *n;
379 unsigned int h;
380
381 for (h = 0; h <= ht->divisor; h++) {
382 while ((n = ht->ht[h]) != NULL) {
383 ht->ht[h] = n->next;
384
385 u32_destroy_key(tp, n);
386 }
387 }
388}
389
390static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
391{
392 struct tc_u_common *tp_c = tp->data;
393 struct tc_u_hnode **hn;
394
395 WARN_ON(ht->refcnt);
396
397 u32_clear_hnode(tp, ht);
398
399 for (hn = &tp_c->hlist; *hn; hn = &(*hn)->next) {
400 if (*hn == ht) {
401 *hn = ht->next;
402 kfree(ht);
403 return 0;
404 }
405 }
406
407 WARN_ON(1);
408 return -ENOENT;
409}
410
411static void u32_destroy(struct tcf_proto *tp)
412{
413 struct tc_u_common *tp_c = tp->data;
414 struct tc_u_hnode *root_ht = tp->root;
415
416 WARN_ON(root_ht == NULL);
417
418 if (root_ht && --root_ht->refcnt == 0)
419 u32_destroy_hnode(tp, root_ht);
420
421 if (--tp_c->refcnt == 0) {
422 struct tc_u_hnode *ht;
423
424 tp->q->u32_node = NULL;
425
426 for (ht = tp_c->hlist; ht; ht = ht->next) {
427 ht->refcnt--;
428 u32_clear_hnode(tp, ht);
429 }
430
431 while ((ht = tp_c->hlist) != NULL) {
432 tp_c->hlist = ht->next;
433
434 WARN_ON(ht->refcnt != 0);
435
436 kfree(ht);
437 }
438
439 kfree(tp_c);
440 }
441
442 tp->data = NULL;
443}
444
445static int u32_delete(struct tcf_proto *tp, unsigned long arg)
446{
447 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg;
448
449 if (ht == NULL)
450 return 0;
451
452 if (TC_U32_KEY(ht->handle))
453 return u32_delete_key(tp, (struct tc_u_knode *)ht);
454
455 if (tp->root == ht)
456 return -EINVAL;
457
458 if (ht->refcnt == 1) {
459 ht->refcnt--;
460 u32_destroy_hnode(tp, ht);
461 } else {
462 return -EBUSY;
463 }
464
465 return 0;
466}
467
468static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
469{
470 struct tc_u_knode *n;
471 unsigned int i = 0x7FF;
472
473 for (n = ht->ht[TC_U32_HASH(handle)]; n; n = n->next)
474 if (i < TC_U32_NODE(n->handle))
475 i = TC_U32_NODE(n->handle);
476 i++;
477
478 return handle | (i > 0xFFF ? 0xFFF : i);
479}
480
481static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
482 [TCA_U32_CLASSID] = { .type = NLA_U32 },
483 [TCA_U32_HASH] = { .type = NLA_U32 },
484 [TCA_U32_LINK] = { .type = NLA_U32 },
485 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
486 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
487 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
488 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
489};
490
491static int u32_set_parms(struct tcf_proto *tp, unsigned long base,
492 struct tc_u_hnode *ht,
493 struct tc_u_knode *n, struct nlattr **tb,
494 struct nlattr *est)
495{
496 int err;
497 struct tcf_exts e;
498
499 err = tcf_exts_validate(tp, tb, est, &e, &u32_ext_map);
500 if (err < 0)
501 return err;
502
503 err = -EINVAL;
504 if (tb[TCA_U32_LINK]) {
505 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
506 struct tc_u_hnode *ht_down = NULL, *ht_old;
507
508 if (TC_U32_KEY(handle))
509 goto errout;
510
511 if (handle) {
512 ht_down = u32_lookup_ht(ht->tp_c, handle);
513
514 if (ht_down == NULL)
515 goto errout;
516 ht_down->refcnt++;
517 }
518
519 tcf_tree_lock(tp);
520 ht_old = n->ht_down;
521 n->ht_down = ht_down;
522 tcf_tree_unlock(tp);
523
524 if (ht_old)
525 ht_old->refcnt--;
526 }
527 if (tb[TCA_U32_CLASSID]) {
528 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
529 tcf_bind_filter(tp, &n->res, base);
530 }
531
532#ifdef CONFIG_NET_CLS_IND
533 if (tb[TCA_U32_INDEV]) {
534 err = tcf_change_indev(tp, n->indev, tb[TCA_U32_INDEV]);
535 if (err < 0)
536 goto errout;
537 }
538#endif
539 tcf_exts_change(tp, &n->exts, &e);
540
541 return 0;
542errout:
543 tcf_exts_destroy(tp, &e);
544 return err;
545}
546
547static int u32_change(struct tcf_proto *tp, unsigned long base, u32 handle,
548 struct nlattr **tca,
549 unsigned long *arg)
550{
551 struct tc_u_common *tp_c = tp->data;
552 struct tc_u_hnode *ht;
553 struct tc_u_knode *n;
554 struct tc_u32_sel *s;
555 struct nlattr *opt = tca[TCA_OPTIONS];
556 struct nlattr *tb[TCA_U32_MAX + 1];
557 u32 htid;
558 int err;
559
560 if (opt == NULL)
561 return handle ? -EINVAL : 0;
562
563 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy);
564 if (err < 0)
565 return err;
566
567 n = (struct tc_u_knode *)*arg;
568 if (n) {
569 if (TC_U32_KEY(n->handle) == 0)
570 return -EINVAL;
571
572 return u32_set_parms(tp, base, n->ht_up, n, tb, tca[TCA_RATE]);
573 }
574
575 if (tb[TCA_U32_DIVISOR]) {
576 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
577
578 if (--divisor > 0x100)
579 return -EINVAL;
580 if (TC_U32_KEY(handle))
581 return -EINVAL;
582 if (handle == 0) {
583 handle = gen_new_htid(tp->data);
584 if (handle == 0)
585 return -ENOMEM;
586 }
587 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
588 if (ht == NULL)
589 return -ENOBUFS;
590 ht->tp_c = tp_c;
591 ht->refcnt = 1;
592 ht->divisor = divisor;
593 ht->handle = handle;
594 ht->prio = tp->prio;
595 ht->next = tp_c->hlist;
596 tp_c->hlist = ht;
597 *arg = (unsigned long)ht;
598 return 0;
599 }
600
601 if (tb[TCA_U32_HASH]) {
602 htid = nla_get_u32(tb[TCA_U32_HASH]);
603 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
604 ht = tp->root;
605 htid = ht->handle;
606 } else {
607 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
608 if (ht == NULL)
609 return -EINVAL;
610 }
611 } else {
612 ht = tp->root;
613 htid = ht->handle;
614 }
615
616 if (ht->divisor < TC_U32_HASH(htid))
617 return -EINVAL;
618
619 if (handle) {
620 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
621 return -EINVAL;
622 handle = htid | TC_U32_NODE(handle);
623 } else
624 handle = gen_new_kid(ht, htid);
625
626 if (tb[TCA_U32_SEL] == NULL)
627 return -EINVAL;
628
629 s = nla_data(tb[TCA_U32_SEL]);
630
631 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
632 if (n == NULL)
633 return -ENOBUFS;
634
635#ifdef CONFIG_CLS_U32_PERF
636 n->pf = kzalloc(sizeof(struct tc_u32_pcnt) + s->nkeys*sizeof(u64), GFP_KERNEL);
637 if (n->pf == NULL) {
638 kfree(n);
639 return -ENOBUFS;
640 }
641#endif
642
643 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
644 n->ht_up = ht;
645 n->handle = handle;
646 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
647
648#ifdef CONFIG_CLS_U32_MARK
649 if (tb[TCA_U32_MARK]) {
650 struct tc_u32_mark *mark;
651
652 mark = nla_data(tb[TCA_U32_MARK]);
653 memcpy(&n->mark, mark, sizeof(struct tc_u32_mark));
654 n->mark.success = 0;
655 }
656#endif
657
658 err = u32_set_parms(tp, base, ht, n, tb, tca[TCA_RATE]);
659 if (err == 0) {
660 struct tc_u_knode **ins;
661 for (ins = &ht->ht[TC_U32_HASH(handle)]; *ins; ins = &(*ins)->next)
662 if (TC_U32_NODE(handle) < TC_U32_NODE((*ins)->handle))
663 break;
664
665 n->next = *ins;
666 tcf_tree_lock(tp);
667 *ins = n;
668 tcf_tree_unlock(tp);
669
670 *arg = (unsigned long)n;
671 return 0;
672 }
673#ifdef CONFIG_CLS_U32_PERF
674 kfree(n->pf);
675#endif
676 kfree(n);
677 return err;
678}
679
680static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
681{
682 struct tc_u_common *tp_c = tp->data;
683 struct tc_u_hnode *ht;
684 struct tc_u_knode *n;
685 unsigned int h;
686
687 if (arg->stop)
688 return;
689
690 for (ht = tp_c->hlist; ht; ht = ht->next) {
691 if (ht->prio != tp->prio)
692 continue;
693 if (arg->count >= arg->skip) {
694 if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
695 arg->stop = 1;
696 return;
697 }
698 }
699 arg->count++;
700 for (h = 0; h <= ht->divisor; h++) {
701 for (n = ht->ht[h]; n; n = n->next) {
702 if (arg->count < arg->skip) {
703 arg->count++;
704 continue;
705 }
706 if (arg->fn(tp, (unsigned long)n, arg) < 0) {
707 arg->stop = 1;
708 return;
709 }
710 arg->count++;
711 }
712 }
713 }
714}
715
716static int u32_dump(struct tcf_proto *tp, unsigned long fh,
717 struct sk_buff *skb, struct tcmsg *t)
718{
719 struct tc_u_knode *n = (struct tc_u_knode *)fh;
720 struct nlattr *nest;
721
722 if (n == NULL)
723 return skb->len;
724
725 t->tcm_handle = n->handle;
726
727 nest = nla_nest_start(skb, TCA_OPTIONS);
728 if (nest == NULL)
729 goto nla_put_failure;
730
731 if (TC_U32_KEY(n->handle) == 0) {
732 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh;
733 u32 divisor = ht->divisor + 1;
734
735 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
736 goto nla_put_failure;
737 } else {
738 if (nla_put(skb, TCA_U32_SEL,
739 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
740 &n->sel))
741 goto nla_put_failure;
742 if (n->ht_up) {
743 u32 htid = n->handle & 0xFFFFF000;
744 if (nla_put_u32(skb, TCA_U32_HASH, htid))
745 goto nla_put_failure;
746 }
747 if (n->res.classid &&
748 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
749 goto nla_put_failure;
750 if (n->ht_down &&
751 nla_put_u32(skb, TCA_U32_LINK, n->ht_down->handle))
752 goto nla_put_failure;
753
754#ifdef CONFIG_CLS_U32_MARK
755 if ((n->mark.val || n->mark.mask) &&
756 nla_put(skb, TCA_U32_MARK, sizeof(n->mark), &n->mark))
757 goto nla_put_failure;
758#endif
759
760 if (tcf_exts_dump(skb, &n->exts, &u32_ext_map) < 0)
761 goto nla_put_failure;
762
763#ifdef CONFIG_NET_CLS_IND
764 if (strlen(n->indev) &&
765 nla_put_string(skb, TCA_U32_INDEV, n->indev))
766 goto nla_put_failure;
767#endif
768#ifdef CONFIG_CLS_U32_PERF
769 if (nla_put(skb, TCA_U32_PCNT,
770 sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64),
771 n->pf))
772 goto nla_put_failure;
773#endif
774 }
775
776 nla_nest_end(skb, nest);
777
778 if (TC_U32_KEY(n->handle))
779 if (tcf_exts_dump_stats(skb, &n->exts, &u32_ext_map) < 0)
780 goto nla_put_failure;
781 return skb->len;
782
783nla_put_failure:
784 nla_nest_cancel(skb, nest);
785 return -1;
786}
787
788static struct tcf_proto_ops cls_u32_ops __read_mostly = {
789 .kind = "u32",
790 .classify = u32_classify,
791 .init = u32_init,
792 .destroy = u32_destroy,
793 .get = u32_get,
794 .put = u32_put,
795 .change = u32_change,
796 .delete = u32_delete,
797 .walk = u32_walk,
798 .dump = u32_dump,
799 .owner = THIS_MODULE,
800};
801
802static int __init init_u32(void)
803{
804 pr_info("u32 classifier\n");
805#ifdef CONFIG_CLS_U32_PERF
806 pr_info(" Performance counters on\n");
807#endif
808#ifdef CONFIG_NET_CLS_IND
809 pr_info(" input device check on\n");
810#endif
811#ifdef CONFIG_NET_CLS_ACT
812 pr_info(" Actions configured\n");
813#endif
814 return register_tcf_proto_ops(&cls_u32_ops);
815}
816
817static void __exit exit_u32(void)
818{
819 unregister_tcf_proto_ops(&cls_u32_ops);
820}
821
822module_init(init_u32)
823module_exit(exit_u32)
824MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 *
7 * The filters are packed to hash tables of key nodes
8 * with a set of 32bit key/mask pairs at every node.
9 * Nodes reference next level hash tables etc.
10 *
11 * This scheme is the best universal classifier I managed to
12 * invent; it is not super-fast, but it is not slow (provided you
13 * program it correctly), and general enough. And its relative
14 * speed grows as the number of rules becomes larger.
15 *
16 * It seems that it represents the best middle point between
17 * speed and manageability both by human and by machine.
18 *
19 * It is especially useful for link sharing combined with QoS;
20 * pure RSVP doesn't need such a general approach and can use
21 * much simpler (and faster) schemes, sort of cls_rsvp.c.
22 *
23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
24 */
25
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <linux/types.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/errno.h>
32#include <linux/percpu.h>
33#include <linux/rtnetlink.h>
34#include <linux/skbuff.h>
35#include <linux/bitmap.h>
36#include <linux/netdevice.h>
37#include <linux/hash.h>
38#include <net/netlink.h>
39#include <net/act_api.h>
40#include <net/pkt_cls.h>
41#include <linux/idr.h>
42#include <net/tc_wrapper.h>
43
44struct tc_u_knode {
45 struct tc_u_knode __rcu *next;
46 u32 handle;
47 struct tc_u_hnode __rcu *ht_up;
48 struct tcf_exts exts;
49 int ifindex;
50 u8 fshift;
51 struct tcf_result res;
52 struct tc_u_hnode __rcu *ht_down;
53#ifdef CONFIG_CLS_U32_PERF
54 struct tc_u32_pcnt __percpu *pf;
55#endif
56 u32 flags;
57 unsigned int in_hw_count;
58#ifdef CONFIG_CLS_U32_MARK
59 u32 val;
60 u32 mask;
61 u32 __percpu *pcpu_success;
62#endif
63 struct rcu_work rwork;
64 /* The 'sel' field MUST be the last field in structure to allow for
65 * tc_u32_keys allocated at end of structure.
66 */
67 struct tc_u32_sel sel;
68};
69
70struct tc_u_hnode {
71 struct tc_u_hnode __rcu *next;
72 u32 handle;
73 u32 prio;
74 refcount_t refcnt;
75 unsigned int divisor;
76 struct idr handle_idr;
77 bool is_root;
78 struct rcu_head rcu;
79 u32 flags;
80 /* The 'ht' field MUST be the last field in structure to allow for
81 * more entries allocated at end of structure.
82 */
83 struct tc_u_knode __rcu *ht[];
84};
85
86struct tc_u_common {
87 struct tc_u_hnode __rcu *hlist;
88 void *ptr;
89 refcount_t refcnt;
90 struct idr handle_idr;
91 struct hlist_node hnode;
92 long knodes;
93};
94
95static inline unsigned int u32_hash_fold(__be32 key,
96 const struct tc_u32_sel *sel,
97 u8 fshift)
98{
99 unsigned int h = ntohl(key & sel->hmask) >> fshift;
100
101 return h;
102}
103
104TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb,
105 const struct tcf_proto *tp,
106 struct tcf_result *res)
107{
108 struct {
109 struct tc_u_knode *knode;
110 unsigned int off;
111 } stack[TC_U32_MAXDEPTH];
112
113 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
114 unsigned int off = skb_network_offset(skb);
115 struct tc_u_knode *n;
116 int sdepth = 0;
117 int off2 = 0;
118 int sel = 0;
119#ifdef CONFIG_CLS_U32_PERF
120 int j;
121#endif
122 int i, r;
123
124next_ht:
125 n = rcu_dereference_bh(ht->ht[sel]);
126
127next_knode:
128 if (n) {
129 struct tc_u32_key *key = n->sel.keys;
130
131#ifdef CONFIG_CLS_U32_PERF
132 __this_cpu_inc(n->pf->rcnt);
133 j = 0;
134#endif
135
136 if (tc_skip_sw(n->flags)) {
137 n = rcu_dereference_bh(n->next);
138 goto next_knode;
139 }
140
141#ifdef CONFIG_CLS_U32_MARK
142 if ((skb->mark & n->mask) != n->val) {
143 n = rcu_dereference_bh(n->next);
144 goto next_knode;
145 } else {
146 __this_cpu_inc(*n->pcpu_success);
147 }
148#endif
149
150 for (i = n->sel.nkeys; i > 0; i--, key++) {
151 int toff = off + key->off + (off2 & key->offmask);
152 __be32 *data, hdata;
153
154 if (skb_headroom(skb) + toff > INT_MAX)
155 goto out;
156
157 data = skb_header_pointer(skb, toff, 4, &hdata);
158 if (!data)
159 goto out;
160 if ((*data ^ key->val) & key->mask) {
161 n = rcu_dereference_bh(n->next);
162 goto next_knode;
163 }
164#ifdef CONFIG_CLS_U32_PERF
165 __this_cpu_inc(n->pf->kcnts[j]);
166 j++;
167#endif
168 }
169
170 ht = rcu_dereference_bh(n->ht_down);
171 if (!ht) {
172check_terminal:
173 if (n->sel.flags & TC_U32_TERMINAL) {
174
175 *res = n->res;
176 if (!tcf_match_indev(skb, n->ifindex)) {
177 n = rcu_dereference_bh(n->next);
178 goto next_knode;
179 }
180#ifdef CONFIG_CLS_U32_PERF
181 __this_cpu_inc(n->pf->rhit);
182#endif
183 r = tcf_exts_exec(skb, &n->exts, res);
184 if (r < 0) {
185 n = rcu_dereference_bh(n->next);
186 goto next_knode;
187 }
188
189 return r;
190 }
191 n = rcu_dereference_bh(n->next);
192 goto next_knode;
193 }
194
195 /* PUSH */
196 if (sdepth >= TC_U32_MAXDEPTH)
197 goto deadloop;
198 stack[sdepth].knode = n;
199 stack[sdepth].off = off;
200 sdepth++;
201
202 ht = rcu_dereference_bh(n->ht_down);
203 sel = 0;
204 if (ht->divisor) {
205 __be32 *data, hdata;
206
207 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
208 &hdata);
209 if (!data)
210 goto out;
211 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
212 n->fshift);
213 }
214 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
215 goto next_ht;
216
217 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
218 off2 = n->sel.off + 3;
219 if (n->sel.flags & TC_U32_VAROFFSET) {
220 __be16 *data, hdata;
221
222 data = skb_header_pointer(skb,
223 off + n->sel.offoff,
224 2, &hdata);
225 if (!data)
226 goto out;
227 off2 += ntohs(n->sel.offmask & *data) >>
228 n->sel.offshift;
229 }
230 off2 &= ~3;
231 }
232 if (n->sel.flags & TC_U32_EAT) {
233 off += off2;
234 off2 = 0;
235 }
236
237 if (off < skb->len)
238 goto next_ht;
239 }
240
241 /* POP */
242 if (sdepth--) {
243 n = stack[sdepth].knode;
244 ht = rcu_dereference_bh(n->ht_up);
245 off = stack[sdepth].off;
246 goto check_terminal;
247 }
248out:
249 return -1;
250
251deadloop:
252 net_warn_ratelimited("cls_u32: dead loop\n");
253 return -1;
254}
255
256static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
257{
258 struct tc_u_hnode *ht;
259
260 for (ht = rtnl_dereference(tp_c->hlist);
261 ht;
262 ht = rtnl_dereference(ht->next))
263 if (ht->handle == handle)
264 break;
265
266 return ht;
267}
268
269static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
270{
271 unsigned int sel;
272 struct tc_u_knode *n = NULL;
273
274 sel = TC_U32_HASH(handle);
275 if (sel > ht->divisor)
276 goto out;
277
278 for (n = rtnl_dereference(ht->ht[sel]);
279 n;
280 n = rtnl_dereference(n->next))
281 if (n->handle == handle)
282 break;
283out:
284 return n;
285}
286
287
288static void *u32_get(struct tcf_proto *tp, u32 handle)
289{
290 struct tc_u_hnode *ht;
291 struct tc_u_common *tp_c = tp->data;
292
293 if (TC_U32_HTID(handle) == TC_U32_ROOT)
294 ht = rtnl_dereference(tp->root);
295 else
296 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
297
298 if (!ht)
299 return NULL;
300
301 if (TC_U32_KEY(handle) == 0)
302 return ht;
303
304 return u32_lookup_key(ht, handle);
305}
306
307/* Protected by rtnl lock */
308static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
309{
310 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL);
311 if (id < 0)
312 return 0;
313 return (id | 0x800U) << 20;
314}
315
316static struct hlist_head *tc_u_common_hash;
317
318#define U32_HASH_SHIFT 10
319#define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
320
321static void *tc_u_common_ptr(const struct tcf_proto *tp)
322{
323 struct tcf_block *block = tp->chain->block;
324
325 /* The block sharing is currently supported only
326 * for classless qdiscs. In that case we use block
327 * for tc_u_common identification. In case the
328 * block is not shared, block->q is a valid pointer
329 * and we can use that. That works for classful qdiscs.
330 */
331 if (tcf_block_shared(block))
332 return block;
333 else
334 return block->q;
335}
336
337static struct hlist_head *tc_u_hash(void *key)
338{
339 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT);
340}
341
342static struct tc_u_common *tc_u_common_find(void *key)
343{
344 struct tc_u_common *tc;
345 hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
346 if (tc->ptr == key)
347 return tc;
348 }
349 return NULL;
350}
351
352static int u32_init(struct tcf_proto *tp)
353{
354 struct tc_u_hnode *root_ht;
355 void *key = tc_u_common_ptr(tp);
356 struct tc_u_common *tp_c = tc_u_common_find(key);
357
358 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL);
359 if (root_ht == NULL)
360 return -ENOBUFS;
361
362 refcount_set(&root_ht->refcnt, 1);
363 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000;
364 root_ht->prio = tp->prio;
365 root_ht->is_root = true;
366 idr_init(&root_ht->handle_idr);
367
368 if (tp_c == NULL) {
369 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
370 if (tp_c == NULL) {
371 kfree(root_ht);
372 return -ENOBUFS;
373 }
374 refcount_set(&tp_c->refcnt, 1);
375 tp_c->ptr = key;
376 INIT_HLIST_NODE(&tp_c->hnode);
377 idr_init(&tp_c->handle_idr);
378
379 hlist_add_head(&tp_c->hnode, tc_u_hash(key));
380 } else {
381 refcount_inc(&tp_c->refcnt);
382 }
383
384 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
385 rcu_assign_pointer(tp_c->hlist, root_ht);
386
387 /* root_ht must be destroyed when tcf_proto is destroyed */
388 rcu_assign_pointer(tp->root, root_ht);
389 tp->data = tp_c;
390 return 0;
391}
392
393static void __u32_destroy_key(struct tc_u_knode *n)
394{
395 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
396
397 tcf_exts_destroy(&n->exts);
398 if (ht && refcount_dec_and_test(&ht->refcnt))
399 kfree(ht);
400 kfree(n);
401}
402
403static void u32_destroy_key(struct tc_u_knode *n, bool free_pf)
404{
405 tcf_exts_put_net(&n->exts);
406#ifdef CONFIG_CLS_U32_PERF
407 if (free_pf)
408 free_percpu(n->pf);
409#endif
410#ifdef CONFIG_CLS_U32_MARK
411 if (free_pf)
412 free_percpu(n->pcpu_success);
413#endif
414 __u32_destroy_key(n);
415}
416
417/* u32_delete_key_rcu should be called when free'ing a copied
418 * version of a tc_u_knode obtained from u32_init_knode(). When
419 * copies are obtained from u32_init_knode() the statistics are
420 * shared between the old and new copies to allow readers to
421 * continue to update the statistics during the copy. To support
422 * this the u32_delete_key_rcu variant does not free the percpu
423 * statistics.
424 */
425static void u32_delete_key_work(struct work_struct *work)
426{
427 struct tc_u_knode *key = container_of(to_rcu_work(work),
428 struct tc_u_knode,
429 rwork);
430 rtnl_lock();
431 u32_destroy_key(key, false);
432 rtnl_unlock();
433}
434
435/* u32_delete_key_freepf_rcu is the rcu callback variant
436 * that free's the entire structure including the statistics
437 * percpu variables. Only use this if the key is not a copy
438 * returned by u32_init_knode(). See u32_delete_key_rcu()
439 * for the variant that should be used with keys return from
440 * u32_init_knode()
441 */
442static void u32_delete_key_freepf_work(struct work_struct *work)
443{
444 struct tc_u_knode *key = container_of(to_rcu_work(work),
445 struct tc_u_knode,
446 rwork);
447 rtnl_lock();
448 u32_destroy_key(key, true);
449 rtnl_unlock();
450}
451
452static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
453{
454 struct tc_u_common *tp_c = tp->data;
455 struct tc_u_knode __rcu **kp;
456 struct tc_u_knode *pkp;
457 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
458
459 if (ht) {
460 kp = &ht->ht[TC_U32_HASH(key->handle)];
461 for (pkp = rtnl_dereference(*kp); pkp;
462 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
463 if (pkp == key) {
464 RCU_INIT_POINTER(*kp, key->next);
465 tp_c->knodes--;
466
467 tcf_unbind_filter(tp, &key->res);
468 idr_remove(&ht->handle_idr, key->handle);
469 tcf_exts_get_net(&key->exts);
470 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work);
471 return 0;
472 }
473 }
474 }
475 WARN_ON(1);
476 return 0;
477}
478
479static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
480 struct netlink_ext_ack *extack)
481{
482 struct tcf_block *block = tp->chain->block;
483 struct tc_cls_u32_offload cls_u32 = {};
484
485 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack);
486 cls_u32.command = TC_CLSU32_DELETE_HNODE;
487 cls_u32.hnode.divisor = h->divisor;
488 cls_u32.hnode.handle = h->handle;
489 cls_u32.hnode.prio = h->prio;
490
491 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true);
492}
493
494static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
495 u32 flags, struct netlink_ext_ack *extack)
496{
497 struct tcf_block *block = tp->chain->block;
498 struct tc_cls_u32_offload cls_u32 = {};
499 bool skip_sw = tc_skip_sw(flags);
500 bool offloaded = false;
501 int err;
502
503 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
504 cls_u32.command = TC_CLSU32_NEW_HNODE;
505 cls_u32.hnode.divisor = h->divisor;
506 cls_u32.hnode.handle = h->handle;
507 cls_u32.hnode.prio = h->prio;
508
509 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true);
510 if (err < 0) {
511 u32_clear_hw_hnode(tp, h, NULL);
512 return err;
513 } else if (err > 0) {
514 offloaded = true;
515 }
516
517 if (skip_sw && !offloaded)
518 return -EINVAL;
519
520 return 0;
521}
522
523static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
524 struct netlink_ext_ack *extack)
525{
526 struct tcf_block *block = tp->chain->block;
527 struct tc_cls_u32_offload cls_u32 = {};
528
529 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
530 cls_u32.command = TC_CLSU32_DELETE_KNODE;
531 cls_u32.knode.handle = n->handle;
532
533 tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false,
534 &n->flags, &n->in_hw_count, true);
535}
536
537static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
538 u32 flags, struct netlink_ext_ack *extack)
539{
540 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
541 struct tcf_block *block = tp->chain->block;
542 struct tc_cls_u32_offload cls_u32 = {};
543 bool skip_sw = tc_skip_sw(flags);
544 int err;
545
546 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
547 cls_u32.command = TC_CLSU32_REPLACE_KNODE;
548 cls_u32.knode.handle = n->handle;
549 cls_u32.knode.fshift = n->fshift;
550#ifdef CONFIG_CLS_U32_MARK
551 cls_u32.knode.val = n->val;
552 cls_u32.knode.mask = n->mask;
553#else
554 cls_u32.knode.val = 0;
555 cls_u32.knode.mask = 0;
556#endif
557 cls_u32.knode.sel = &n->sel;
558 cls_u32.knode.res = &n->res;
559 cls_u32.knode.exts = &n->exts;
560 if (n->ht_down)
561 cls_u32.knode.link_handle = ht->handle;
562
563 err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw,
564 &n->flags, &n->in_hw_count, true);
565 if (err) {
566 u32_remove_hw_knode(tp, n, NULL);
567 return err;
568 }
569
570 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
571 return -EINVAL;
572
573 return 0;
574}
575
576static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
577 struct netlink_ext_ack *extack)
578{
579 struct tc_u_common *tp_c = tp->data;
580 struct tc_u_knode *n;
581 unsigned int h;
582
583 for (h = 0; h <= ht->divisor; h++) {
584 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
585 RCU_INIT_POINTER(ht->ht[h],
586 rtnl_dereference(n->next));
587 tp_c->knodes--;
588 tcf_unbind_filter(tp, &n->res);
589 u32_remove_hw_knode(tp, n, extack);
590 idr_remove(&ht->handle_idr, n->handle);
591 if (tcf_exts_get_net(&n->exts))
592 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work);
593 else
594 u32_destroy_key(n, true);
595 }
596 }
597}
598
599static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
600 struct netlink_ext_ack *extack)
601{
602 struct tc_u_common *tp_c = tp->data;
603 struct tc_u_hnode __rcu **hn;
604 struct tc_u_hnode *phn;
605
606 u32_clear_hnode(tp, ht, extack);
607
608 hn = &tp_c->hlist;
609 for (phn = rtnl_dereference(*hn);
610 phn;
611 hn = &phn->next, phn = rtnl_dereference(*hn)) {
612 if (phn == ht) {
613 u32_clear_hw_hnode(tp, ht, extack);
614 idr_destroy(&ht->handle_idr);
615 idr_remove(&tp_c->handle_idr, ht->handle);
616 RCU_INIT_POINTER(*hn, ht->next);
617 kfree_rcu(ht, rcu);
618 return 0;
619 }
620 }
621
622 return -ENOENT;
623}
624
625static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
626 struct netlink_ext_ack *extack)
627{
628 struct tc_u_common *tp_c = tp->data;
629 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
630
631 WARN_ON(root_ht == NULL);
632
633 if (root_ht && refcount_dec_and_test(&root_ht->refcnt))
634 u32_destroy_hnode(tp, root_ht, extack);
635
636 if (refcount_dec_and_test(&tp_c->refcnt)) {
637 struct tc_u_hnode *ht;
638
639 hlist_del(&tp_c->hnode);
640
641 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
642 u32_clear_hnode(tp, ht, extack);
643 RCU_INIT_POINTER(tp_c->hlist, ht->next);
644
645 /* u32_destroy_key() will later free ht for us, if it's
646 * still referenced by some knode
647 */
648 if (refcount_dec_and_test(&ht->refcnt))
649 kfree_rcu(ht, rcu);
650 }
651
652 idr_destroy(&tp_c->handle_idr);
653 kfree(tp_c);
654 }
655
656 tp->data = NULL;
657}
658
659static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
660 bool rtnl_held, struct netlink_ext_ack *extack)
661{
662 struct tc_u_hnode *ht = arg;
663 struct tc_u_common *tp_c = tp->data;
664 int ret = 0;
665
666 if (TC_U32_KEY(ht->handle)) {
667 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack);
668 ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
669 goto out;
670 }
671
672 if (ht->is_root) {
673 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
674 return -EINVAL;
675 }
676
677 if (refcount_dec_if_one(&ht->refcnt)) {
678 u32_destroy_hnode(tp, ht, extack);
679 } else {
680 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
681 return -EBUSY;
682 }
683
684out:
685 *last = refcount_read(&tp_c->refcnt) == 1 && tp_c->knodes == 0;
686 return ret;
687}
688
689static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
690{
691 u32 index = htid | 0x800;
692 u32 max = htid | 0xFFF;
693
694 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) {
695 index = htid + 1;
696 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max,
697 GFP_KERNEL))
698 index = max;
699 }
700
701 return index;
702}
703
704static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
705 [TCA_U32_CLASSID] = { .type = NLA_U32 },
706 [TCA_U32_HASH] = { .type = NLA_U32 },
707 [TCA_U32_LINK] = { .type = NLA_U32 },
708 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
709 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
710 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
711 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
712 [TCA_U32_FLAGS] = { .type = NLA_U32 },
713};
714
715static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
716 struct nlattr **tb)
717{
718 if (tb[TCA_U32_CLASSID])
719 tcf_unbind_filter(tp, &n->res);
720}
721
722static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
723 unsigned long base, struct nlattr **tb)
724{
725 if (tb[TCA_U32_CLASSID]) {
726 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
727 tcf_bind_filter(tp, &n->res, base);
728 }
729}
730
731static int u32_set_parms(struct net *net, struct tcf_proto *tp,
732 struct tc_u_knode *n, struct nlattr **tb,
733 struct nlattr *est, u32 flags, u32 fl_flags,
734 struct netlink_ext_ack *extack)
735{
736 int err, ifindex = -1;
737
738 err = tcf_exts_validate_ex(net, tp, tb, est, &n->exts, flags,
739 fl_flags, extack);
740 if (err < 0)
741 return err;
742
743 if (tb[TCA_U32_INDEV]) {
744 ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack);
745 if (ifindex < 0)
746 return -EINVAL;
747 }
748
749 if (tb[TCA_U32_LINK]) {
750 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
751 struct tc_u_hnode *ht_down = NULL, *ht_old;
752
753 if (TC_U32_KEY(handle)) {
754 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
755 return -EINVAL;
756 }
757
758 if (handle) {
759 ht_down = u32_lookup_ht(tp->data, handle);
760
761 if (!ht_down) {
762 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
763 return -EINVAL;
764 }
765 if (ht_down->is_root) {
766 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
767 return -EINVAL;
768 }
769 refcount_inc(&ht_down->refcnt);
770 }
771
772 ht_old = rtnl_dereference(n->ht_down);
773 rcu_assign_pointer(n->ht_down, ht_down);
774
775 if (ht_old)
776 refcount_dec(&ht_old->refcnt);
777 }
778
779 if (ifindex >= 0)
780 n->ifindex = ifindex;
781
782 return 0;
783}
784
785static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
786 struct tc_u_knode *n)
787{
788 struct tc_u_knode __rcu **ins;
789 struct tc_u_knode *pins;
790 struct tc_u_hnode *ht;
791
792 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
793 ht = rtnl_dereference(tp->root);
794 else
795 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
796
797 ins = &ht->ht[TC_U32_HASH(n->handle)];
798
799 /* The node must always exist for it to be replaced if this is not the
800 * case then something went very wrong elsewhere.
801 */
802 for (pins = rtnl_dereference(*ins); ;
803 ins = &pins->next, pins = rtnl_dereference(*ins))
804 if (pins->handle == n->handle)
805 break;
806
807 idr_replace(&ht->handle_idr, n, n->handle);
808 RCU_INIT_POINTER(n->next, pins->next);
809 rcu_assign_pointer(*ins, n);
810}
811
812static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
813 struct tc_u_knode *n)
814{
815 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
816 struct tc_u32_sel *s = &n->sel;
817 struct tc_u_knode *new;
818
819 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL);
820 if (!new)
821 return NULL;
822
823 RCU_INIT_POINTER(new->next, n->next);
824 new->handle = n->handle;
825 RCU_INIT_POINTER(new->ht_up, n->ht_up);
826
827 new->ifindex = n->ifindex;
828 new->fshift = n->fshift;
829 new->flags = n->flags;
830 RCU_INIT_POINTER(new->ht_down, ht);
831
832#ifdef CONFIG_CLS_U32_PERF
833 /* Statistics may be incremented by readers during update
834 * so we must keep them in tact. When the node is later destroyed
835 * a special destroy call must be made to not free the pf memory.
836 */
837 new->pf = n->pf;
838#endif
839
840#ifdef CONFIG_CLS_U32_MARK
841 new->val = n->val;
842 new->mask = n->mask;
843 /* Similarly success statistics must be moved as pointers */
844 new->pcpu_success = n->pcpu_success;
845#endif
846 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
847
848 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) {
849 kfree(new);
850 return NULL;
851 }
852
853 /* bump reference count as long as we hold pointer to structure */
854 if (ht)
855 refcount_inc(&ht->refcnt);
856
857 return new;
858}
859
860static int u32_change(struct net *net, struct sk_buff *in_skb,
861 struct tcf_proto *tp, unsigned long base, u32 handle,
862 struct nlattr **tca, void **arg, u32 flags,
863 struct netlink_ext_ack *extack)
864{
865 struct tc_u_common *tp_c = tp->data;
866 struct tc_u_hnode *ht;
867 struct tc_u_knode *n;
868 struct tc_u32_sel *s;
869 struct nlattr *opt = tca[TCA_OPTIONS];
870 struct nlattr *tb[TCA_U32_MAX + 1];
871 u32 htid, userflags = 0;
872 size_t sel_size;
873 int err;
874
875 if (!opt) {
876 if (handle) {
877 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
878 return -EINVAL;
879 } else {
880 return 0;
881 }
882 }
883
884 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy,
885 extack);
886 if (err < 0)
887 return err;
888
889 if (tb[TCA_U32_FLAGS]) {
890 userflags = nla_get_u32(tb[TCA_U32_FLAGS]);
891 if (!tc_flags_valid(userflags)) {
892 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
893 return -EINVAL;
894 }
895 }
896
897 n = *arg;
898 if (n) {
899 struct tc_u_knode *new;
900
901 if (TC_U32_KEY(n->handle) == 0) {
902 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
903 return -EINVAL;
904 }
905
906 if ((n->flags ^ userflags) &
907 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
908 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
909 return -EINVAL;
910 }
911
912 new = u32_init_knode(net, tp, n);
913 if (!new)
914 return -ENOMEM;
915
916 err = u32_set_parms(net, tp, new, tb, tca[TCA_RATE],
917 flags, new->flags, extack);
918
919 if (err) {
920 __u32_destroy_key(new);
921 return err;
922 }
923
924 u32_bind_filter(tp, new, base, tb);
925
926 err = u32_replace_hw_knode(tp, new, flags, extack);
927 if (err) {
928 u32_unbind_filter(tp, new, tb);
929
930 if (tb[TCA_U32_LINK]) {
931 struct tc_u_hnode *ht_old;
932
933 ht_old = rtnl_dereference(n->ht_down);
934 if (ht_old)
935 refcount_inc(&ht_old->refcnt);
936 }
937 __u32_destroy_key(new);
938 return err;
939 }
940
941 if (!tc_in_hw(new->flags))
942 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
943
944 u32_replace_knode(tp, tp_c, new);
945 tcf_unbind_filter(tp, &n->res);
946 tcf_exts_get_net(&n->exts);
947 tcf_queue_work(&n->rwork, u32_delete_key_work);
948 return 0;
949 }
950
951 if (tb[TCA_U32_DIVISOR]) {
952 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
953
954 if (!is_power_of_2(divisor)) {
955 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
956 return -EINVAL;
957 }
958 if (divisor-- > 0x100) {
959 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
960 return -EINVAL;
961 }
962 if (TC_U32_KEY(handle)) {
963 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
964 return -EINVAL;
965 }
966 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL);
967 if (ht == NULL)
968 return -ENOBUFS;
969 if (handle == 0) {
970 handle = gen_new_htid(tp->data, ht);
971 if (handle == 0) {
972 kfree(ht);
973 return -ENOMEM;
974 }
975 } else {
976 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle,
977 handle, GFP_KERNEL);
978 if (err) {
979 kfree(ht);
980 return err;
981 }
982 }
983 refcount_set(&ht->refcnt, 1);
984 ht->divisor = divisor;
985 ht->handle = handle;
986 ht->prio = tp->prio;
987 idr_init(&ht->handle_idr);
988 ht->flags = userflags;
989
990 err = u32_replace_hw_hnode(tp, ht, userflags, extack);
991 if (err) {
992 idr_remove(&tp_c->handle_idr, handle);
993 kfree(ht);
994 return err;
995 }
996
997 RCU_INIT_POINTER(ht->next, tp_c->hlist);
998 rcu_assign_pointer(tp_c->hlist, ht);
999 *arg = ht;
1000
1001 return 0;
1002 }
1003
1004 if (tb[TCA_U32_HASH]) {
1005 htid = nla_get_u32(tb[TCA_U32_HASH]);
1006 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
1007 ht = rtnl_dereference(tp->root);
1008 htid = ht->handle;
1009 } else {
1010 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
1011 if (!ht) {
1012 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
1013 return -EINVAL;
1014 }
1015 }
1016 } else {
1017 ht = rtnl_dereference(tp->root);
1018 htid = ht->handle;
1019 }
1020
1021 if (ht->divisor < TC_U32_HASH(htid)) {
1022 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
1023 return -EINVAL;
1024 }
1025
1026 /* At this point, we need to derive the new handle that will be used to
1027 * uniquely map the identity of this table match entry. The
1028 * identity of the entry that we need to construct is 32 bits made of:
1029 * htid(12b):bucketid(8b):node/entryid(12b)
1030 *
1031 * At this point _we have the table(ht)_ in which we will insert this
1032 * entry. We carry the table's id in variable "htid".
1033 * Note that earlier code picked the ht selection either by a) the user
1034 * providing the htid specified via TCA_U32_HASH attribute or b) when
1035 * no such attribute is passed then the root ht, is default to at ID
1036 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0.
1037 * If OTOH the user passed us the htid, they may also pass a bucketid of
1038 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is
1039 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be
1040 * passed via the htid, so even if it was non-zero it will be ignored.
1041 *
1042 * We may also have a handle, if the user passed one. The handle also
1043 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b).
1044 * Rule: the bucketid on the handle is ignored even if one was passed;
1045 * rather the value on "htid" is always assumed to be the bucketid.
1046 */
1047 if (handle) {
1048 /* Rule: The htid from handle and tableid from htid must match */
1049 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
1050 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
1051 return -EINVAL;
1052 }
1053 /* Ok, so far we have a valid htid(12b):bucketid(8b) but we
1054 * need to finalize the table entry identification with the last
1055 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for
1056 * entries. Rule: nodeid of 0 is reserved only for tables(see
1057 * earlier code which processes TC_U32_DIVISOR attribute).
1058 * Rule: The nodeid can only be derived from the handle (and not
1059 * htid).
1060 * Rule: if the handle specified zero for the node id example
1061 * 0x60000000, then pick a new nodeid from the pool of IDs
1062 * this hash table has been allocating from.
1063 * If OTOH it is specified (i.e for example the user passed a
1064 * handle such as 0x60000123), then we use it generate our final
1065 * handle which is used to uniquely identify the match entry.
1066 */
1067 if (!TC_U32_NODE(handle)) {
1068 handle = gen_new_kid(ht, htid);
1069 } else {
1070 handle = htid | TC_U32_NODE(handle);
1071 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle,
1072 handle, GFP_KERNEL);
1073 if (err)
1074 return err;
1075 }
1076 } else {
1077 /* The user did not give us a handle; lets just generate one
1078 * from the table's pool of nodeids.
1079 */
1080 handle = gen_new_kid(ht, htid);
1081 }
1082
1083 if (tb[TCA_U32_SEL] == NULL) {
1084 NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
1085 err = -EINVAL;
1086 goto erridr;
1087 }
1088
1089 s = nla_data(tb[TCA_U32_SEL]);
1090 sel_size = struct_size(s, keys, s->nkeys);
1091 if (nla_len(tb[TCA_U32_SEL]) < sel_size) {
1092 err = -EINVAL;
1093 goto erridr;
1094 }
1095
1096 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL);
1097 if (n == NULL) {
1098 err = -ENOBUFS;
1099 goto erridr;
1100 }
1101
1102#ifdef CONFIG_CLS_U32_PERF
1103 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys),
1104 __alignof__(struct tc_u32_pcnt));
1105 if (!n->pf) {
1106 err = -ENOBUFS;
1107 goto errfree;
1108 }
1109#endif
1110
1111 unsafe_memcpy(&n->sel, s, sel_size,
1112 /* A composite flex-array structure destination,
1113 * which was correctly sized with struct_size(),
1114 * bounds-checked against nla_len(), and allocated
1115 * above. */);
1116 RCU_INIT_POINTER(n->ht_up, ht);
1117 n->handle = handle;
1118 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1119 n->flags = userflags;
1120
1121 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE);
1122 if (err < 0)
1123 goto errout;
1124
1125#ifdef CONFIG_CLS_U32_MARK
1126 n->pcpu_success = alloc_percpu(u32);
1127 if (!n->pcpu_success) {
1128 err = -ENOMEM;
1129 goto errout;
1130 }
1131
1132 if (tb[TCA_U32_MARK]) {
1133 struct tc_u32_mark *mark;
1134
1135 mark = nla_data(tb[TCA_U32_MARK]);
1136 n->val = mark->val;
1137 n->mask = mark->mask;
1138 }
1139#endif
1140
1141 err = u32_set_parms(net, tp, n, tb, tca[TCA_RATE],
1142 flags, n->flags, extack);
1143
1144 u32_bind_filter(tp, n, base, tb);
1145
1146 if (err == 0) {
1147 struct tc_u_knode __rcu **ins;
1148 struct tc_u_knode *pins;
1149
1150 err = u32_replace_hw_knode(tp, n, flags, extack);
1151 if (err)
1152 goto errunbind;
1153
1154 if (!tc_in_hw(n->flags))
1155 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1156
1157 ins = &ht->ht[TC_U32_HASH(handle)];
1158 for (pins = rtnl_dereference(*ins); pins;
1159 ins = &pins->next, pins = rtnl_dereference(*ins))
1160 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1161 break;
1162
1163 RCU_INIT_POINTER(n->next, pins);
1164 rcu_assign_pointer(*ins, n);
1165 tp_c->knodes++;
1166 *arg = n;
1167 return 0;
1168 }
1169
1170errunbind:
1171 u32_unbind_filter(tp, n, tb);
1172
1173#ifdef CONFIG_CLS_U32_MARK
1174 free_percpu(n->pcpu_success);
1175#endif
1176
1177errout:
1178 tcf_exts_destroy(&n->exts);
1179#ifdef CONFIG_CLS_U32_PERF
1180errfree:
1181 free_percpu(n->pf);
1182#endif
1183 kfree(n);
1184erridr:
1185 idr_remove(&ht->handle_idr, handle);
1186 return err;
1187}
1188
1189static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
1190 bool rtnl_held)
1191{
1192 struct tc_u_common *tp_c = tp->data;
1193 struct tc_u_hnode *ht;
1194 struct tc_u_knode *n;
1195 unsigned int h;
1196
1197 if (arg->stop)
1198 return;
1199
1200 for (ht = rtnl_dereference(tp_c->hlist);
1201 ht;
1202 ht = rtnl_dereference(ht->next)) {
1203 if (ht->prio != tp->prio)
1204 continue;
1205
1206 if (!tc_cls_stats_dump(tp, arg, ht))
1207 return;
1208
1209 for (h = 0; h <= ht->divisor; h++) {
1210 for (n = rtnl_dereference(ht->ht[h]);
1211 n;
1212 n = rtnl_dereference(n->next)) {
1213 if (!tc_cls_stats_dump(tp, arg, n))
1214 return;
1215 }
1216 }
1217 }
1218}
1219
1220static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
1221 bool add, flow_setup_cb_t *cb, void *cb_priv,
1222 struct netlink_ext_ack *extack)
1223{
1224 struct tc_cls_u32_offload cls_u32 = {};
1225 int err;
1226
1227 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack);
1228 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
1229 cls_u32.hnode.divisor = ht->divisor;
1230 cls_u32.hnode.handle = ht->handle;
1231 cls_u32.hnode.prio = ht->prio;
1232
1233 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
1234 if (err && add && tc_skip_sw(ht->flags))
1235 return err;
1236
1237 return 0;
1238}
1239
1240static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
1241 bool add, flow_setup_cb_t *cb, void *cb_priv,
1242 struct netlink_ext_ack *extack)
1243{
1244 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
1245 struct tcf_block *block = tp->chain->block;
1246 struct tc_cls_u32_offload cls_u32 = {};
1247
1248 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
1249 cls_u32.command = add ?
1250 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
1251 cls_u32.knode.handle = n->handle;
1252
1253 if (add) {
1254 cls_u32.knode.fshift = n->fshift;
1255#ifdef CONFIG_CLS_U32_MARK
1256 cls_u32.knode.val = n->val;
1257 cls_u32.knode.mask = n->mask;
1258#else
1259 cls_u32.knode.val = 0;
1260 cls_u32.knode.mask = 0;
1261#endif
1262 cls_u32.knode.sel = &n->sel;
1263 cls_u32.knode.res = &n->res;
1264 cls_u32.knode.exts = &n->exts;
1265 if (n->ht_down)
1266 cls_u32.knode.link_handle = ht->handle;
1267 }
1268
1269 return tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32,
1270 &cls_u32, cb_priv, &n->flags,
1271 &n->in_hw_count);
1272}
1273
1274static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
1275 void *cb_priv, struct netlink_ext_ack *extack)
1276{
1277 struct tc_u_common *tp_c = tp->data;
1278 struct tc_u_hnode *ht;
1279 struct tc_u_knode *n;
1280 unsigned int h;
1281 int err;
1282
1283 for (ht = rtnl_dereference(tp_c->hlist);
1284 ht;
1285 ht = rtnl_dereference(ht->next)) {
1286 if (ht->prio != tp->prio)
1287 continue;
1288
1289 /* When adding filters to a new dev, try to offload the
1290 * hashtable first. When removing, do the filters before the
1291 * hashtable.
1292 */
1293 if (add && !tc_skip_hw(ht->flags)) {
1294 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
1295 extack);
1296 if (err)
1297 return err;
1298 }
1299
1300 for (h = 0; h <= ht->divisor; h++) {
1301 for (n = rtnl_dereference(ht->ht[h]);
1302 n;
1303 n = rtnl_dereference(n->next)) {
1304 if (tc_skip_hw(n->flags))
1305 continue;
1306
1307 err = u32_reoffload_knode(tp, n, add, cb,
1308 cb_priv, extack);
1309 if (err)
1310 return err;
1311 }
1312 }
1313
1314 if (!add && !tc_skip_hw(ht->flags))
1315 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
1316 }
1317
1318 return 0;
1319}
1320
1321static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
1322 unsigned long base)
1323{
1324 struct tc_u_knode *n = fh;
1325
1326 tc_cls_bind_class(classid, cl, q, &n->res, base);
1327}
1328
1329static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1330 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
1331{
1332 struct tc_u_knode *n = fh;
1333 struct tc_u_hnode *ht_up, *ht_down;
1334 struct nlattr *nest;
1335
1336 if (n == NULL)
1337 return skb->len;
1338
1339 t->tcm_handle = n->handle;
1340
1341 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1342 if (nest == NULL)
1343 goto nla_put_failure;
1344
1345 if (TC_U32_KEY(n->handle) == 0) {
1346 struct tc_u_hnode *ht = fh;
1347 u32 divisor = ht->divisor + 1;
1348
1349 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1350 goto nla_put_failure;
1351 } else {
1352#ifdef CONFIG_CLS_U32_PERF
1353 struct tc_u32_pcnt *gpf;
1354 int cpu;
1355#endif
1356
1357 if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys),
1358 &n->sel))
1359 goto nla_put_failure;
1360
1361 ht_up = rtnl_dereference(n->ht_up);
1362 if (ht_up) {
1363 u32 htid = n->handle & 0xFFFFF000;
1364 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1365 goto nla_put_failure;
1366 }
1367 if (n->res.classid &&
1368 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1369 goto nla_put_failure;
1370
1371 ht_down = rtnl_dereference(n->ht_down);
1372 if (ht_down &&
1373 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1374 goto nla_put_failure;
1375
1376 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1377 goto nla_put_failure;
1378
1379#ifdef CONFIG_CLS_U32_MARK
1380 if ((n->val || n->mask)) {
1381 struct tc_u32_mark mark = {.val = n->val,
1382 .mask = n->mask,
1383 .success = 0};
1384 int cpum;
1385
1386 for_each_possible_cpu(cpum) {
1387 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1388
1389 mark.success += cnt;
1390 }
1391
1392 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1393 goto nla_put_failure;
1394 }
1395#endif
1396
1397 if (tcf_exts_dump(skb, &n->exts) < 0)
1398 goto nla_put_failure;
1399
1400 if (n->ifindex) {
1401 struct net_device *dev;
1402 dev = __dev_get_by_index(net, n->ifindex);
1403 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1404 goto nla_put_failure;
1405 }
1406#ifdef CONFIG_CLS_U32_PERF
1407 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL);
1408 if (!gpf)
1409 goto nla_put_failure;
1410
1411 for_each_possible_cpu(cpu) {
1412 int i;
1413 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1414
1415 gpf->rcnt += pf->rcnt;
1416 gpf->rhit += pf->rhit;
1417 for (i = 0; i < n->sel.nkeys; i++)
1418 gpf->kcnts[i] += pf->kcnts[i];
1419 }
1420
1421 if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys),
1422 gpf, TCA_U32_PAD)) {
1423 kfree(gpf);
1424 goto nla_put_failure;
1425 }
1426 kfree(gpf);
1427#endif
1428 }
1429
1430 nla_nest_end(skb, nest);
1431
1432 if (TC_U32_KEY(n->handle))
1433 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1434 goto nla_put_failure;
1435 return skb->len;
1436
1437nla_put_failure:
1438 nla_nest_cancel(skb, nest);
1439 return -1;
1440}
1441
1442static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1443 .kind = "u32",
1444 .classify = u32_classify,
1445 .init = u32_init,
1446 .destroy = u32_destroy,
1447 .get = u32_get,
1448 .change = u32_change,
1449 .delete = u32_delete,
1450 .walk = u32_walk,
1451 .reoffload = u32_reoffload,
1452 .dump = u32_dump,
1453 .bind_class = u32_bind_class,
1454 .owner = THIS_MODULE,
1455};
1456
1457static int __init init_u32(void)
1458{
1459 int i, ret;
1460
1461 pr_info("u32 classifier\n");
1462#ifdef CONFIG_CLS_U32_PERF
1463 pr_info(" Performance counters on\n");
1464#endif
1465 pr_info(" input device check on\n");
1466#ifdef CONFIG_NET_CLS_ACT
1467 pr_info(" Actions configured\n");
1468#endif
1469 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1470 sizeof(struct hlist_head),
1471 GFP_KERNEL);
1472 if (!tc_u_common_hash)
1473 return -ENOMEM;
1474
1475 for (i = 0; i < U32_HASH_SIZE; i++)
1476 INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1477
1478 ret = register_tcf_proto_ops(&cls_u32_ops);
1479 if (ret)
1480 kvfree(tc_u_common_hash);
1481 return ret;
1482}
1483
1484static void __exit exit_u32(void)
1485{
1486 unregister_tcf_proto_ops(&cls_u32_ops);
1487 kvfree(tc_u_common_hash);
1488}
1489
1490module_init(init_u32)
1491module_exit(exit_u32)
1492MODULE_DESCRIPTION("Universal 32bit based TC Classifier");
1493MODULE_LICENSE("GPL");