Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
   4 *
   5 * (C) Copyright 2014, 2015 Linaro Ltd.
   6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
   7 *
   8 * CPPC describes a few methods for controlling CPU performance using
   9 * information from a per CPU table called CPC. This table is described in
  10 * the ACPI v5.0+ specification. The table consists of a list of
  11 * registers which may be memory mapped or hardware registers and also may
  12 * include some static integer values.
  13 *
  14 * CPU performance is on an abstract continuous scale as against a discretized
  15 * P-state scale which is tied to CPU frequency only. In brief, the basic
  16 * operation involves:
  17 *
  18 * - OS makes a CPU performance request. (Can provide min and max bounds)
  19 *
  20 * - Platform (such as BMC) is free to optimize request within requested bounds
  21 *   depending on power/thermal budgets etc.
  22 *
  23 * - Platform conveys its decision back to OS
  24 *
  25 * The communication between OS and platform occurs through another medium
  26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
  27 * mechanism which includes doorbell semantics to indicate register updates.
  28 * See drivers/mailbox/pcc.c for details on PCC.
  29 *
  30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
  31 * above specifications.
  32 */
  33
  34#define pr_fmt(fmt)	"ACPI CPPC: " fmt
  35
  36#include <linux/delay.h>
  37#include <linux/iopoll.h>
  38#include <linux/ktime.h>
  39#include <linux/rwsem.h>
  40#include <linux/wait.h>
  41#include <linux/topology.h>
  42#include <linux/dmi.h>
  43#include <linux/units.h>
  44#include <asm/unaligned.h>
  45
  46#include <acpi/cppc_acpi.h>
  47
  48struct cppc_pcc_data {
  49	struct pcc_mbox_chan *pcc_channel;
  50	void __iomem *pcc_comm_addr;
  51	bool pcc_channel_acquired;
  52	unsigned int deadline_us;
  53	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
  54
  55	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
  56	bool platform_owns_pcc;		/* Ownership of PCC subspace */
  57	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
  58
  59	/*
  60	 * Lock to provide controlled access to the PCC channel.
  61	 *
  62	 * For performance critical usecases(currently cppc_set_perf)
  63	 *	We need to take read_lock and check if channel belongs to OSPM
  64	 * before reading or writing to PCC subspace
  65	 *	We need to take write_lock before transferring the channel
  66	 * ownership to the platform via a Doorbell
  67	 *	This allows us to batch a number of CPPC requests if they happen
  68	 * to originate in about the same time
  69	 *
  70	 * For non-performance critical usecases(init)
  71	 *	Take write_lock for all purposes which gives exclusive access
  72	 */
  73	struct rw_semaphore pcc_lock;
  74
  75	/* Wait queue for CPUs whose requests were batched */
  76	wait_queue_head_t pcc_write_wait_q;
  77	ktime_t last_cmd_cmpl_time;
  78	ktime_t last_mpar_reset;
  79	int mpar_count;
  80	int refcount;
  81};
  82
  83/* Array to represent the PCC channel per subspace ID */
  84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
  85/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
  86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
  87
  88/*
  89 * The cpc_desc structure contains the ACPI register details
  90 * as described in the per CPU _CPC tables. The details
  91 * include the type of register (e.g. PCC, System IO, FFH etc.)
  92 * and destination addresses which lets us READ/WRITE CPU performance
  93 * information using the appropriate I/O methods.
  94 */
  95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
  96
  97/* pcc mapped address + header size + offset within PCC subspace */
  98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
  99						0x8 + (offs))
 100
 101/* Check if a CPC register is in PCC */
 102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
 103				(cpc)->cpc_entry.reg.space_id ==	\
 104				ACPI_ADR_SPACE_PLATFORM_COMM)
 105
 106/* Check if a CPC register is in SystemMemory */
 107#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
 108				(cpc)->cpc_entry.reg.space_id ==	\
 109				ACPI_ADR_SPACE_SYSTEM_MEMORY)
 110
 111/* Check if a CPC register is in SystemIo */
 112#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
 113				(cpc)->cpc_entry.reg.space_id ==	\
 114				ACPI_ADR_SPACE_SYSTEM_IO)
 115
 116/* Evaluates to True if reg is a NULL register descriptor */
 117#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
 118				(reg)->address == 0 &&			\
 119				(reg)->bit_width == 0 &&		\
 120				(reg)->bit_offset == 0 &&		\
 121				(reg)->access_width == 0)
 122
 123/* Evaluates to True if an optional cpc field is supported */
 124#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
 125				!!(cpc)->cpc_entry.int_value :		\
 126				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
 127/*
 128 * Arbitrary Retries in case the remote processor is slow to respond
 129 * to PCC commands. Keeping it high enough to cover emulators where
 130 * the processors run painfully slow.
 131 */
 132#define NUM_RETRIES 500ULL
 133
 134#define OVER_16BTS_MASK ~0xFFFFULL
 135
 136#define define_one_cppc_ro(_name)		\
 137static struct kobj_attribute _name =		\
 138__ATTR(_name, 0444, show_##_name, NULL)
 139
 140#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
 141
 142#define show_cppc_data(access_fn, struct_name, member_name)		\
 143	static ssize_t show_##member_name(struct kobject *kobj,		\
 144				struct kobj_attribute *attr, char *buf)	\
 145	{								\
 146		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
 147		struct struct_name st_name = {0};			\
 148		int ret;						\
 149									\
 150		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
 151		if (ret)						\
 152			return ret;					\
 153									\
 154		return sysfs_emit(buf, "%llu\n",		\
 155				(u64)st_name.member_name);		\
 156	}								\
 157	define_one_cppc_ro(member_name)
 158
 159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
 160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
 161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
 162show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
 163show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
 164show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
 165
 166show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
 167show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
 168
 169static ssize_t show_feedback_ctrs(struct kobject *kobj,
 170		struct kobj_attribute *attr, char *buf)
 171{
 172	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
 173	struct cppc_perf_fb_ctrs fb_ctrs = {0};
 174	int ret;
 175
 176	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
 177	if (ret)
 178		return ret;
 179
 180	return sysfs_emit(buf, "ref:%llu del:%llu\n",
 181			fb_ctrs.reference, fb_ctrs.delivered);
 182}
 183define_one_cppc_ro(feedback_ctrs);
 184
 185static struct attribute *cppc_attrs[] = {
 186	&feedback_ctrs.attr,
 187	&reference_perf.attr,
 188	&wraparound_time.attr,
 189	&highest_perf.attr,
 190	&lowest_perf.attr,
 191	&lowest_nonlinear_perf.attr,
 192	&nominal_perf.attr,
 193	&nominal_freq.attr,
 194	&lowest_freq.attr,
 195	NULL
 196};
 197ATTRIBUTE_GROUPS(cppc);
 198
 199static const struct kobj_type cppc_ktype = {
 200	.sysfs_ops = &kobj_sysfs_ops,
 201	.default_groups = cppc_groups,
 202};
 203
 204static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
 205{
 206	int ret, status;
 207	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 208	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
 209		pcc_ss_data->pcc_comm_addr;
 210
 211	if (!pcc_ss_data->platform_owns_pcc)
 212		return 0;
 213
 214	/*
 215	 * Poll PCC status register every 3us(delay_us) for maximum of
 216	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
 217	 */
 218	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
 219					status & PCC_CMD_COMPLETE_MASK, 3,
 220					pcc_ss_data->deadline_us);
 221
 222	if (likely(!ret)) {
 223		pcc_ss_data->platform_owns_pcc = false;
 224		if (chk_err_bit && (status & PCC_ERROR_MASK))
 225			ret = -EIO;
 226	}
 227
 228	if (unlikely(ret))
 229		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
 230		       pcc_ss_id, ret);
 231
 232	return ret;
 233}
 234
 235/*
 236 * This function transfers the ownership of the PCC to the platform
 237 * So it must be called while holding write_lock(pcc_lock)
 238 */
 239static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
 240{
 241	int ret = -EIO, i;
 242	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 243	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
 244		pcc_ss_data->pcc_comm_addr;
 245	unsigned int time_delta;
 246
 247	/*
 248	 * For CMD_WRITE we know for a fact the caller should have checked
 249	 * the channel before writing to PCC space
 250	 */
 251	if (cmd == CMD_READ) {
 252		/*
 253		 * If there are pending cpc_writes, then we stole the channel
 254		 * before write completion, so first send a WRITE command to
 255		 * platform
 256		 */
 257		if (pcc_ss_data->pending_pcc_write_cmd)
 258			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 259
 260		ret = check_pcc_chan(pcc_ss_id, false);
 261		if (ret)
 262			goto end;
 263	} else /* CMD_WRITE */
 264		pcc_ss_data->pending_pcc_write_cmd = FALSE;
 265
 266	/*
 267	 * Handle the Minimum Request Turnaround Time(MRTT)
 268	 * "The minimum amount of time that OSPM must wait after the completion
 269	 * of a command before issuing the next command, in microseconds"
 270	 */
 271	if (pcc_ss_data->pcc_mrtt) {
 272		time_delta = ktime_us_delta(ktime_get(),
 273					    pcc_ss_data->last_cmd_cmpl_time);
 274		if (pcc_ss_data->pcc_mrtt > time_delta)
 275			udelay(pcc_ss_data->pcc_mrtt - time_delta);
 276	}
 277
 278	/*
 279	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
 280	 * "The maximum number of periodic requests that the subspace channel can
 281	 * support, reported in commands per minute. 0 indicates no limitation."
 282	 *
 283	 * This parameter should be ideally zero or large enough so that it can
 284	 * handle maximum number of requests that all the cores in the system can
 285	 * collectively generate. If it is not, we will follow the spec and just
 286	 * not send the request to the platform after hitting the MPAR limit in
 287	 * any 60s window
 288	 */
 289	if (pcc_ss_data->pcc_mpar) {
 290		if (pcc_ss_data->mpar_count == 0) {
 291			time_delta = ktime_ms_delta(ktime_get(),
 292						    pcc_ss_data->last_mpar_reset);
 293			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
 294				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
 295					 pcc_ss_id);
 296				ret = -EIO;
 297				goto end;
 298			}
 299			pcc_ss_data->last_mpar_reset = ktime_get();
 300			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
 301		}
 302		pcc_ss_data->mpar_count--;
 303	}
 304
 305	/* Write to the shared comm region. */
 306	writew_relaxed(cmd, &generic_comm_base->command);
 307
 308	/* Flip CMD COMPLETE bit */
 309	writew_relaxed(0, &generic_comm_base->status);
 310
 311	pcc_ss_data->platform_owns_pcc = true;
 312
 313	/* Ring doorbell */
 314	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
 315	if (ret < 0) {
 316		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
 317		       pcc_ss_id, cmd, ret);
 318		goto end;
 319	}
 320
 321	/* wait for completion and check for PCC error bit */
 322	ret = check_pcc_chan(pcc_ss_id, true);
 323
 324	if (pcc_ss_data->pcc_mrtt)
 325		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
 326
 327	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
 328		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
 329	else
 330		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
 331
 332end:
 333	if (cmd == CMD_WRITE) {
 334		if (unlikely(ret)) {
 335			for_each_possible_cpu(i) {
 336				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
 337
 338				if (!desc)
 339					continue;
 340
 341				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
 342					desc->write_cmd_status = ret;
 343			}
 344		}
 345		pcc_ss_data->pcc_write_cnt++;
 346		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
 347	}
 348
 349	return ret;
 350}
 351
 352static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
 353{
 354	if (ret < 0)
 355		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
 356				*(u16 *)msg, ret);
 357	else
 358		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
 359				*(u16 *)msg, ret);
 360}
 361
 362static struct mbox_client cppc_mbox_cl = {
 363	.tx_done = cppc_chan_tx_done,
 364	.knows_txdone = true,
 365};
 366
 367static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
 368{
 369	int result = -EFAULT;
 370	acpi_status status = AE_OK;
 371	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
 372	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
 373	struct acpi_buffer state = {0, NULL};
 374	union acpi_object  *psd = NULL;
 375	struct acpi_psd_package *pdomain;
 376
 377	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
 378					    &buffer, ACPI_TYPE_PACKAGE);
 379	if (status == AE_NOT_FOUND)	/* _PSD is optional */
 380		return 0;
 381	if (ACPI_FAILURE(status))
 382		return -ENODEV;
 383
 384	psd = buffer.pointer;
 385	if (!psd || psd->package.count != 1) {
 386		pr_debug("Invalid _PSD data\n");
 387		goto end;
 388	}
 389
 390	pdomain = &(cpc_ptr->domain_info);
 391
 392	state.length = sizeof(struct acpi_psd_package);
 393	state.pointer = pdomain;
 394
 395	status = acpi_extract_package(&(psd->package.elements[0]),
 396		&format, &state);
 397	if (ACPI_FAILURE(status)) {
 398		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
 399		goto end;
 400	}
 401
 402	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
 403		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
 404		goto end;
 405	}
 406
 407	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
 408		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
 409		goto end;
 410	}
 411
 412	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
 413	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
 414	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
 415		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
 416		goto end;
 417	}
 418
 419	result = 0;
 420end:
 421	kfree(buffer.pointer);
 422	return result;
 423}
 424
 425bool acpi_cpc_valid(void)
 426{
 427	struct cpc_desc *cpc_ptr;
 428	int cpu;
 429
 430	if (acpi_disabled)
 431		return false;
 432
 433	for_each_present_cpu(cpu) {
 434		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 435		if (!cpc_ptr)
 436			return false;
 437	}
 438
 439	return true;
 440}
 441EXPORT_SYMBOL_GPL(acpi_cpc_valid);
 442
 443bool cppc_allow_fast_switch(void)
 444{
 445	struct cpc_register_resource *desired_reg;
 446	struct cpc_desc *cpc_ptr;
 447	int cpu;
 448
 449	for_each_possible_cpu(cpu) {
 450		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 451		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
 452		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
 453				!CPC_IN_SYSTEM_IO(desired_reg))
 454			return false;
 455	}
 456
 457	return true;
 458}
 459EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
 460
 461/**
 462 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
 463 * @cpu: Find all CPUs that share a domain with cpu.
 464 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
 465 *
 466 *	Return: 0 for success or negative value for err.
 467 */
 468int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
 469{
 470	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
 471	struct acpi_psd_package *match_pdomain;
 472	struct acpi_psd_package *pdomain;
 473	int count_target, i;
 474
 475	/*
 476	 * Now that we have _PSD data from all CPUs, let's setup P-state
 477	 * domain info.
 478	 */
 479	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 480	if (!cpc_ptr)
 481		return -EFAULT;
 482
 483	pdomain = &(cpc_ptr->domain_info);
 484	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
 485	if (pdomain->num_processors <= 1)
 486		return 0;
 487
 488	/* Validate the Domain info */
 489	count_target = pdomain->num_processors;
 490	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
 491		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 492	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
 493		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
 494	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
 495		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
 496
 497	for_each_possible_cpu(i) {
 498		if (i == cpu)
 499			continue;
 500
 501		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
 502		if (!match_cpc_ptr)
 503			goto err_fault;
 504
 505		match_pdomain = &(match_cpc_ptr->domain_info);
 506		if (match_pdomain->domain != pdomain->domain)
 507			continue;
 508
 509		/* Here i and cpu are in the same domain */
 510		if (match_pdomain->num_processors != count_target)
 511			goto err_fault;
 512
 513		if (pdomain->coord_type != match_pdomain->coord_type)
 514			goto err_fault;
 515
 516		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
 517	}
 518
 519	return 0;
 520
 521err_fault:
 522	/* Assume no coordination on any error parsing domain info */
 523	cpumask_clear(cpu_data->shared_cpu_map);
 524	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
 525	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
 526
 527	return -EFAULT;
 528}
 529EXPORT_SYMBOL_GPL(acpi_get_psd_map);
 530
 531static int register_pcc_channel(int pcc_ss_idx)
 532{
 533	struct pcc_mbox_chan *pcc_chan;
 534	u64 usecs_lat;
 535
 536	if (pcc_ss_idx >= 0) {
 537		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
 538
 539		if (IS_ERR(pcc_chan)) {
 540			pr_err("Failed to find PCC channel for subspace %d\n",
 541			       pcc_ss_idx);
 542			return -ENODEV;
 543		}
 544
 545		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
 546		/*
 547		 * cppc_ss->latency is just a Nominal value. In reality
 548		 * the remote processor could be much slower to reply.
 549		 * So add an arbitrary amount of wait on top of Nominal.
 550		 */
 551		usecs_lat = NUM_RETRIES * pcc_chan->latency;
 552		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
 553		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
 554		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
 555		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
 556
 557		pcc_data[pcc_ss_idx]->pcc_comm_addr =
 558			acpi_os_ioremap(pcc_chan->shmem_base_addr,
 559					pcc_chan->shmem_size);
 560		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
 561			pr_err("Failed to ioremap PCC comm region mem for %d\n",
 562			       pcc_ss_idx);
 563			return -ENOMEM;
 564		}
 565
 566		/* Set flag so that we don't come here for each CPU. */
 567		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
 568	}
 569
 570	return 0;
 571}
 572
 573/**
 574 * cpc_ffh_supported() - check if FFH reading supported
 575 *
 576 * Check if the architecture has support for functional fixed hardware
 577 * read/write capability.
 578 *
 579 * Return: true for supported, false for not supported
 580 */
 581bool __weak cpc_ffh_supported(void)
 582{
 583	return false;
 584}
 585
 586/**
 587 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
 588 *
 589 * Check if the architectural support for CPPC is present even
 590 * if the _OSC hasn't prescribed it
 591 *
 592 * Return: true for supported, false for not supported
 593 */
 594bool __weak cpc_supported_by_cpu(void)
 595{
 596	return false;
 597}
 598
 599/**
 600 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 601 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
 602 *
 603 * Check and allocate the cppc_pcc_data memory.
 604 * In some processor configurations it is possible that same subspace
 605 * is shared between multiple CPUs. This is seen especially in CPUs
 606 * with hardware multi-threading support.
 607 *
 608 * Return: 0 for success, errno for failure
 609 */
 610static int pcc_data_alloc(int pcc_ss_id)
 611{
 612	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
 613		return -EINVAL;
 614
 615	if (pcc_data[pcc_ss_id]) {
 616		pcc_data[pcc_ss_id]->refcount++;
 617	} else {
 618		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
 619					      GFP_KERNEL);
 620		if (!pcc_data[pcc_ss_id])
 621			return -ENOMEM;
 622		pcc_data[pcc_ss_id]->refcount++;
 623	}
 624
 625	return 0;
 626}
 627
 628/*
 629 * An example CPC table looks like the following.
 630 *
 631 *  Name (_CPC, Package() {
 632 *      17,							// NumEntries
 633 *      1,							// Revision
 634 *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
 635 *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
 636 *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
 637 *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
 638 *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
 639 *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
 640 *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
 641 *      ...
 642 *      ...
 643 *      ...
 644 *  }
 645 * Each Register() encodes how to access that specific register.
 646 * e.g. a sample PCC entry has the following encoding:
 647 *
 648 *  Register (
 649 *      PCC,	// AddressSpaceKeyword
 650 *      8,	// RegisterBitWidth
 651 *      8,	// RegisterBitOffset
 652 *      0x30,	// RegisterAddress
 653 *      9,	// AccessSize (subspace ID)
 654 *  )
 655 */
 656
 657#ifndef arch_init_invariance_cppc
 658static inline void arch_init_invariance_cppc(void) { }
 659#endif
 660
 661/**
 662 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 663 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
 664 *
 665 *	Return: 0 for success or negative value for err.
 666 */
 667int acpi_cppc_processor_probe(struct acpi_processor *pr)
 668{
 669	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
 670	union acpi_object *out_obj, *cpc_obj;
 671	struct cpc_desc *cpc_ptr;
 672	struct cpc_reg *gas_t;
 673	struct device *cpu_dev;
 674	acpi_handle handle = pr->handle;
 675	unsigned int num_ent, i, cpc_rev;
 676	int pcc_subspace_id = -1;
 677	acpi_status status;
 678	int ret = -ENODATA;
 679
 680	if (!osc_sb_cppc2_support_acked) {
 681		pr_debug("CPPC v2 _OSC not acked\n");
 682		if (!cpc_supported_by_cpu())
 683			return -ENODEV;
 684	}
 685
 686	/* Parse the ACPI _CPC table for this CPU. */
 687	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
 688			ACPI_TYPE_PACKAGE);
 689	if (ACPI_FAILURE(status)) {
 690		ret = -ENODEV;
 691		goto out_buf_free;
 692	}
 693
 694	out_obj = (union acpi_object *) output.pointer;
 695
 696	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
 697	if (!cpc_ptr) {
 698		ret = -ENOMEM;
 699		goto out_buf_free;
 700	}
 701
 702	/* First entry is NumEntries. */
 703	cpc_obj = &out_obj->package.elements[0];
 704	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 705		num_ent = cpc_obj->integer.value;
 706		if (num_ent <= 1) {
 707			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
 708				 num_ent, pr->id);
 709			goto out_free;
 710		}
 711	} else {
 712		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
 713			 cpc_obj->type, pr->id);
 714		goto out_free;
 715	}
 716
 717	/* Second entry should be revision. */
 718	cpc_obj = &out_obj->package.elements[1];
 719	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 720		cpc_rev = cpc_obj->integer.value;
 721	} else {
 722		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
 723			 cpc_obj->type, pr->id);
 724		goto out_free;
 725	}
 726
 727	if (cpc_rev < CPPC_V2_REV) {
 728		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
 729			 pr->id);
 730		goto out_free;
 731	}
 732
 733	/*
 734	 * Disregard _CPC if the number of entries in the return pachage is not
 735	 * as expected, but support future revisions being proper supersets of
 736	 * the v3 and only causing more entries to be returned by _CPC.
 737	 */
 738	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
 739	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
 740	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
 741		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
 742			 num_ent, pr->id);
 743		goto out_free;
 744	}
 745	if (cpc_rev > CPPC_V3_REV) {
 746		num_ent = CPPC_V3_NUM_ENT;
 747		cpc_rev = CPPC_V3_REV;
 748	}
 749
 750	cpc_ptr->num_entries = num_ent;
 751	cpc_ptr->version = cpc_rev;
 752
 753	/* Iterate through remaining entries in _CPC */
 754	for (i = 2; i < num_ent; i++) {
 755		cpc_obj = &out_obj->package.elements[i];
 756
 757		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 758			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
 759			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
 760		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
 761			gas_t = (struct cpc_reg *)
 762				cpc_obj->buffer.pointer;
 763
 764			/*
 765			 * The PCC Subspace index is encoded inside
 766			 * the CPC table entries. The same PCC index
 767			 * will be used for all the PCC entries,
 768			 * so extract it only once.
 769			 */
 770			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
 771				if (pcc_subspace_id < 0) {
 772					pcc_subspace_id = gas_t->access_width;
 773					if (pcc_data_alloc(pcc_subspace_id))
 774						goto out_free;
 775				} else if (pcc_subspace_id != gas_t->access_width) {
 776					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
 777						 pr->id);
 778					goto out_free;
 779				}
 780			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 781				if (gas_t->address) {
 782					void __iomem *addr;
 783
 784					if (!osc_cpc_flexible_adr_space_confirmed) {
 785						pr_debug("Flexible address space capability not supported\n");
 786						if (!cpc_supported_by_cpu())
 787							goto out_free;
 788					}
 789
 790					addr = ioremap(gas_t->address, gas_t->bit_width/8);
 791					if (!addr)
 792						goto out_free;
 793					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
 794				}
 795			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
 796				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
 797					/*
 798					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
 799					 * SystemIO doesn't implement 64-bit
 800					 * registers.
 801					 */
 802					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
 803						 gas_t->access_width);
 804					goto out_free;
 805				}
 806				if (gas_t->address & OVER_16BTS_MASK) {
 807					/* SystemIO registers use 16-bit integer addresses */
 808					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
 809						 gas_t->address);
 810					goto out_free;
 811				}
 812				if (!osc_cpc_flexible_adr_space_confirmed) {
 813					pr_debug("Flexible address space capability not supported\n");
 814					if (!cpc_supported_by_cpu())
 815						goto out_free;
 816				}
 817			} else {
 818				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
 819					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
 820					pr_debug("Unsupported register type (%d) in _CPC\n",
 821						 gas_t->space_id);
 822					goto out_free;
 823				}
 824			}
 825
 826			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
 827			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
 828		} else {
 829			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
 830				 i, pr->id);
 831			goto out_free;
 832		}
 833	}
 834	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
 835
 836	/*
 837	 * Initialize the remaining cpc_regs as unsupported.
 838	 * Example: In case FW exposes CPPC v2, the below loop will initialize
 839	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
 840	 */
 841	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
 842		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
 843		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
 844	}
 845
 846
 847	/* Store CPU Logical ID */
 848	cpc_ptr->cpu_id = pr->id;
 849
 850	/* Parse PSD data for this CPU */
 851	ret = acpi_get_psd(cpc_ptr, handle);
 852	if (ret)
 853		goto out_free;
 854
 855	/* Register PCC channel once for all PCC subspace ID. */
 856	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
 857		ret = register_pcc_channel(pcc_subspace_id);
 858		if (ret)
 859			goto out_free;
 860
 861		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
 862		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
 863	}
 864
 865	/* Everything looks okay */
 866	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
 867
 868	/* Add per logical CPU nodes for reading its feedback counters. */
 869	cpu_dev = get_cpu_device(pr->id);
 870	if (!cpu_dev) {
 871		ret = -EINVAL;
 872		goto out_free;
 873	}
 874
 875	/* Plug PSD data into this CPU's CPC descriptor. */
 876	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
 877
 878	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
 879			"acpi_cppc");
 880	if (ret) {
 881		per_cpu(cpc_desc_ptr, pr->id) = NULL;
 882		kobject_put(&cpc_ptr->kobj);
 883		goto out_free;
 884	}
 885
 886	arch_init_invariance_cppc();
 887
 888	kfree(output.pointer);
 889	return 0;
 890
 891out_free:
 892	/* Free all the mapped sys mem areas for this CPU */
 893	for (i = 2; i < cpc_ptr->num_entries; i++) {
 894		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 895
 896		if (addr)
 897			iounmap(addr);
 898	}
 899	kfree(cpc_ptr);
 900
 901out_buf_free:
 902	kfree(output.pointer);
 903	return ret;
 904}
 905EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
 906
 907/**
 908 * acpi_cppc_processor_exit - Cleanup CPC structs.
 909 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
 910 *
 911 * Return: Void
 912 */
 913void acpi_cppc_processor_exit(struct acpi_processor *pr)
 914{
 915	struct cpc_desc *cpc_ptr;
 916	unsigned int i;
 917	void __iomem *addr;
 918	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
 919
 920	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
 921		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
 922			pcc_data[pcc_ss_id]->refcount--;
 923			if (!pcc_data[pcc_ss_id]->refcount) {
 924				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
 925				kfree(pcc_data[pcc_ss_id]);
 926				pcc_data[pcc_ss_id] = NULL;
 927			}
 928		}
 929	}
 930
 931	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
 932	if (!cpc_ptr)
 933		return;
 934
 935	/* Free all the mapped sys mem areas for this CPU */
 936	for (i = 2; i < cpc_ptr->num_entries; i++) {
 937		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 938		if (addr)
 939			iounmap(addr);
 940	}
 941
 942	kobject_put(&cpc_ptr->kobj);
 943	kfree(cpc_ptr);
 944}
 945EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
 946
 947/**
 948 * cpc_read_ffh() - Read FFH register
 949 * @cpunum:	CPU number to read
 950 * @reg:	cppc register information
 951 * @val:	place holder for return value
 952 *
 953 * Read bit_width bits from a specified address and bit_offset
 954 *
 955 * Return: 0 for success and error code
 956 */
 957int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
 958{
 959	return -ENOTSUPP;
 960}
 961
 962/**
 963 * cpc_write_ffh() - Write FFH register
 964 * @cpunum:	CPU number to write
 965 * @reg:	cppc register information
 966 * @val:	value to write
 967 *
 968 * Write value of bit_width bits to a specified address and bit_offset
 969 *
 970 * Return: 0 for success and error code
 971 */
 972int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
 973{
 974	return -ENOTSUPP;
 975}
 976
 977/*
 978 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 979 * as fast as possible. We have already mapped the PCC subspace during init, so
 980 * we can directly write to it.
 981 */
 982
 983static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
 984{
 985	void __iomem *vaddr = NULL;
 986	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 987	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
 988
 989	if (reg_res->type == ACPI_TYPE_INTEGER) {
 990		*val = reg_res->cpc_entry.int_value;
 991		return 0;
 992	}
 993
 994	*val = 0;
 995
 996	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
 997		u32 width = 8 << (reg->access_width - 1);
 998		u32 val_u32;
 999		acpi_status status;
1000
1001		status = acpi_os_read_port((acpi_io_address)reg->address,
1002					   &val_u32, width);
1003		if (ACPI_FAILURE(status)) {
1004			pr_debug("Error: Failed to read SystemIO port %llx\n",
1005				 reg->address);
1006			return -EFAULT;
1007		}
1008
1009		*val = val_u32;
1010		return 0;
1011	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1012		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1013	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1014		vaddr = reg_res->sys_mem_vaddr;
1015	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1016		return cpc_read_ffh(cpu, reg, val);
1017	else
1018		return acpi_os_read_memory((acpi_physical_address)reg->address,
1019				val, reg->bit_width);
1020
1021	switch (reg->bit_width) {
1022	case 8:
1023		*val = readb_relaxed(vaddr);
1024		break;
1025	case 16:
1026		*val = readw_relaxed(vaddr);
1027		break;
1028	case 32:
1029		*val = readl_relaxed(vaddr);
1030		break;
1031	case 64:
1032		*val = readq_relaxed(vaddr);
1033		break;
1034	default:
1035		pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1036			 reg->bit_width, pcc_ss_id);
1037		return -EFAULT;
1038	}
1039
1040	return 0;
1041}
1042
1043static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1044{
1045	int ret_val = 0;
1046	void __iomem *vaddr = NULL;
1047	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1048	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1049
1050	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1051		u32 width = 8 << (reg->access_width - 1);
1052		acpi_status status;
1053
1054		status = acpi_os_write_port((acpi_io_address)reg->address,
1055					    (u32)val, width);
1056		if (ACPI_FAILURE(status)) {
1057			pr_debug("Error: Failed to write SystemIO port %llx\n",
1058				 reg->address);
1059			return -EFAULT;
1060		}
1061
1062		return 0;
1063	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1064		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1065	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1066		vaddr = reg_res->sys_mem_vaddr;
1067	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1068		return cpc_write_ffh(cpu, reg, val);
1069	else
1070		return acpi_os_write_memory((acpi_physical_address)reg->address,
1071				val, reg->bit_width);
1072
1073	switch (reg->bit_width) {
1074	case 8:
1075		writeb_relaxed(val, vaddr);
1076		break;
1077	case 16:
1078		writew_relaxed(val, vaddr);
1079		break;
1080	case 32:
1081		writel_relaxed(val, vaddr);
1082		break;
1083	case 64:
1084		writeq_relaxed(val, vaddr);
1085		break;
1086	default:
1087		pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1088			 reg->bit_width, pcc_ss_id);
1089		ret_val = -EFAULT;
1090		break;
1091	}
1092
1093	return ret_val;
1094}
1095
1096static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1097{
1098	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1099	struct cpc_register_resource *reg;
1100
1101	if (!cpc_desc) {
1102		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1103		return -ENODEV;
1104	}
1105
1106	reg = &cpc_desc->cpc_regs[reg_idx];
1107
1108	if (CPC_IN_PCC(reg)) {
1109		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1110		struct cppc_pcc_data *pcc_ss_data = NULL;
1111		int ret = 0;
1112
1113		if (pcc_ss_id < 0)
1114			return -EIO;
1115
1116		pcc_ss_data = pcc_data[pcc_ss_id];
1117
1118		down_write(&pcc_ss_data->pcc_lock);
1119
1120		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1121			cpc_read(cpunum, reg, perf);
1122		else
1123			ret = -EIO;
1124
1125		up_write(&pcc_ss_data->pcc_lock);
1126
1127		return ret;
1128	}
1129
1130	cpc_read(cpunum, reg, perf);
1131
1132	return 0;
1133}
1134
1135/**
1136 * cppc_get_desired_perf - Get the desired performance register value.
1137 * @cpunum: CPU from which to get desired performance.
1138 * @desired_perf: Return address.
1139 *
1140 * Return: 0 for success, -EIO otherwise.
1141 */
1142int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1143{
1144	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1145}
1146EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1147
1148/**
1149 * cppc_get_nominal_perf - Get the nominal performance register value.
1150 * @cpunum: CPU from which to get nominal performance.
1151 * @nominal_perf: Return address.
1152 *
1153 * Return: 0 for success, -EIO otherwise.
1154 */
1155int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1156{
1157	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1158}
1159
1160/**
1161 * cppc_get_epp_perf - Get the epp register value.
1162 * @cpunum: CPU from which to get epp preference value.
1163 * @epp_perf: Return address.
1164 *
1165 * Return: 0 for success, -EIO otherwise.
1166 */
1167int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1168{
1169	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1170}
1171EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1172
1173/**
1174 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1175 * @cpunum: CPU from which to get capabilities info.
1176 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1177 *
1178 * Return: 0 for success with perf_caps populated else -ERRNO.
1179 */
1180int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1181{
1182	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1183	struct cpc_register_resource *highest_reg, *lowest_reg,
1184		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1185		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1186	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1187	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1188	struct cppc_pcc_data *pcc_ss_data = NULL;
1189	int ret = 0, regs_in_pcc = 0;
1190
1191	if (!cpc_desc) {
1192		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193		return -ENODEV;
1194	}
1195
1196	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1197	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1198	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1199	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1200	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1201	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1202	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1203
1204	/* Are any of the regs PCC ?*/
1205	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1206		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1207		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1208		if (pcc_ss_id < 0) {
1209			pr_debug("Invalid pcc_ss_id\n");
1210			return -ENODEV;
1211		}
1212		pcc_ss_data = pcc_data[pcc_ss_id];
1213		regs_in_pcc = 1;
1214		down_write(&pcc_ss_data->pcc_lock);
1215		/* Ring doorbell once to update PCC subspace */
1216		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1217			ret = -EIO;
1218			goto out_err;
1219		}
1220	}
1221
1222	cpc_read(cpunum, highest_reg, &high);
1223	perf_caps->highest_perf = high;
1224
1225	cpc_read(cpunum, lowest_reg, &low);
1226	perf_caps->lowest_perf = low;
1227
1228	cpc_read(cpunum, nominal_reg, &nom);
1229	perf_caps->nominal_perf = nom;
1230
1231	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1232	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1233		perf_caps->guaranteed_perf = 0;
1234	} else {
1235		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1236		perf_caps->guaranteed_perf = guaranteed;
1237	}
1238
1239	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1240	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1241
1242	if (!high || !low || !nom || !min_nonlinear)
1243		ret = -EFAULT;
1244
1245	/* Read optional lowest and nominal frequencies if present */
1246	if (CPC_SUPPORTED(low_freq_reg))
1247		cpc_read(cpunum, low_freq_reg, &low_f);
1248
1249	if (CPC_SUPPORTED(nom_freq_reg))
1250		cpc_read(cpunum, nom_freq_reg, &nom_f);
1251
1252	perf_caps->lowest_freq = low_f;
1253	perf_caps->nominal_freq = nom_f;
1254
1255
1256out_err:
1257	if (regs_in_pcc)
1258		up_write(&pcc_ss_data->pcc_lock);
1259	return ret;
1260}
1261EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1262
1263/**
1264 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1265 *
1266 * CPPC has flexibility about how CPU performance counters are accessed.
1267 * One of the choices is PCC regions, which can have a high access latency. This
1268 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1269 *
1270 * Return: true if any of the counters are in PCC regions, false otherwise
1271 */
1272bool cppc_perf_ctrs_in_pcc(void)
1273{
1274	int cpu;
1275
1276	for_each_present_cpu(cpu) {
1277		struct cpc_register_resource *ref_perf_reg;
1278		struct cpc_desc *cpc_desc;
1279
1280		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1281
1282		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1283		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1284		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1285			return true;
1286
1287
1288		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1289
1290		/*
1291		 * If reference perf register is not supported then we should
1292		 * use the nominal perf value
1293		 */
1294		if (!CPC_SUPPORTED(ref_perf_reg))
1295			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1296
1297		if (CPC_IN_PCC(ref_perf_reg))
1298			return true;
1299	}
1300
1301	return false;
1302}
1303EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1304
1305/**
1306 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1307 * @cpunum: CPU from which to read counters.
1308 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1309 *
1310 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1311 */
1312int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1313{
1314	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1315	struct cpc_register_resource *delivered_reg, *reference_reg,
1316		*ref_perf_reg, *ctr_wrap_reg;
1317	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1318	struct cppc_pcc_data *pcc_ss_data = NULL;
1319	u64 delivered, reference, ref_perf, ctr_wrap_time;
1320	int ret = 0, regs_in_pcc = 0;
1321
1322	if (!cpc_desc) {
1323		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1324		return -ENODEV;
1325	}
1326
1327	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1328	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1329	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1330	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1331
1332	/*
1333	 * If reference perf register is not supported then we should
1334	 * use the nominal perf value
1335	 */
1336	if (!CPC_SUPPORTED(ref_perf_reg))
1337		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1338
1339	/* Are any of the regs PCC ?*/
1340	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1341		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1342		if (pcc_ss_id < 0) {
1343			pr_debug("Invalid pcc_ss_id\n");
1344			return -ENODEV;
1345		}
1346		pcc_ss_data = pcc_data[pcc_ss_id];
1347		down_write(&pcc_ss_data->pcc_lock);
1348		regs_in_pcc = 1;
1349		/* Ring doorbell once to update PCC subspace */
1350		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1351			ret = -EIO;
1352			goto out_err;
1353		}
1354	}
1355
1356	cpc_read(cpunum, delivered_reg, &delivered);
1357	cpc_read(cpunum, reference_reg, &reference);
1358	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1359
1360	/*
1361	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1362	 * performance counters are assumed to never wrap during the lifetime of
1363	 * platform
1364	 */
1365	ctr_wrap_time = (u64)(~((u64)0));
1366	if (CPC_SUPPORTED(ctr_wrap_reg))
1367		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1368
1369	if (!delivered || !reference ||	!ref_perf) {
1370		ret = -EFAULT;
1371		goto out_err;
1372	}
1373
1374	perf_fb_ctrs->delivered = delivered;
1375	perf_fb_ctrs->reference = reference;
1376	perf_fb_ctrs->reference_perf = ref_perf;
1377	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1378out_err:
1379	if (regs_in_pcc)
1380		up_write(&pcc_ss_data->pcc_lock);
1381	return ret;
1382}
1383EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1384
1385/*
1386 * Set Energy Performance Preference Register value through
1387 * Performance Controls Interface
1388 */
1389int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1390{
1391	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1392	struct cpc_register_resource *epp_set_reg;
1393	struct cpc_register_resource *auto_sel_reg;
1394	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1395	struct cppc_pcc_data *pcc_ss_data = NULL;
1396	int ret;
1397
1398	if (!cpc_desc) {
1399		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1400		return -ENODEV;
1401	}
1402
1403	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1404	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1405
1406	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1407		if (pcc_ss_id < 0) {
1408			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1409			return -ENODEV;
1410		}
1411
1412		if (CPC_SUPPORTED(auto_sel_reg)) {
1413			ret = cpc_write(cpu, auto_sel_reg, enable);
1414			if (ret)
1415				return ret;
1416		}
1417
1418		if (CPC_SUPPORTED(epp_set_reg)) {
1419			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1420			if (ret)
1421				return ret;
1422		}
1423
1424		pcc_ss_data = pcc_data[pcc_ss_id];
1425
1426		down_write(&pcc_ss_data->pcc_lock);
1427		/* after writing CPC, transfer the ownership of PCC to platform */
1428		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1429		up_write(&pcc_ss_data->pcc_lock);
1430	} else {
1431		ret = -ENOTSUPP;
1432		pr_debug("_CPC in PCC is not supported\n");
1433	}
1434
1435	return ret;
1436}
1437EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1438
1439/**
1440 * cppc_get_auto_sel_caps - Read autonomous selection register.
1441 * @cpunum : CPU from which to read register.
1442 * @perf_caps : struct where autonomous selection register value is updated.
1443 */
1444int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1445{
1446	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1447	struct cpc_register_resource *auto_sel_reg;
1448	u64  auto_sel;
1449
1450	if (!cpc_desc) {
1451		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1452		return -ENODEV;
1453	}
1454
1455	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1456
1457	if (!CPC_SUPPORTED(auto_sel_reg))
1458		pr_warn_once("Autonomous mode is not unsupported!\n");
1459
1460	if (CPC_IN_PCC(auto_sel_reg)) {
1461		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1462		struct cppc_pcc_data *pcc_ss_data = NULL;
1463		int ret = 0;
1464
1465		if (pcc_ss_id < 0)
1466			return -ENODEV;
1467
1468		pcc_ss_data = pcc_data[pcc_ss_id];
1469
1470		down_write(&pcc_ss_data->pcc_lock);
1471
1472		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1473			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1474			perf_caps->auto_sel = (bool)auto_sel;
1475		} else {
1476			ret = -EIO;
1477		}
1478
1479		up_write(&pcc_ss_data->pcc_lock);
1480
1481		return ret;
1482	}
1483
1484	return 0;
1485}
1486EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1487
1488/**
1489 * cppc_set_auto_sel - Write autonomous selection register.
1490 * @cpu    : CPU to which to write register.
1491 * @enable : the desired value of autonomous selection resiter to be updated.
1492 */
1493int cppc_set_auto_sel(int cpu, bool enable)
1494{
1495	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1496	struct cpc_register_resource *auto_sel_reg;
1497	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1498	struct cppc_pcc_data *pcc_ss_data = NULL;
1499	int ret = -EINVAL;
1500
1501	if (!cpc_desc) {
1502		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1503		return -ENODEV;
1504	}
1505
1506	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1507
1508	if (CPC_IN_PCC(auto_sel_reg)) {
1509		if (pcc_ss_id < 0) {
1510			pr_debug("Invalid pcc_ss_id\n");
1511			return -ENODEV;
1512		}
1513
1514		if (CPC_SUPPORTED(auto_sel_reg)) {
1515			ret = cpc_write(cpu, auto_sel_reg, enable);
1516			if (ret)
1517				return ret;
1518		}
1519
1520		pcc_ss_data = pcc_data[pcc_ss_id];
1521
1522		down_write(&pcc_ss_data->pcc_lock);
1523		/* after writing CPC, transfer the ownership of PCC to platform */
1524		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1525		up_write(&pcc_ss_data->pcc_lock);
1526	} else {
1527		ret = -ENOTSUPP;
1528		pr_debug("_CPC in PCC is not supported\n");
1529	}
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1534
1535/**
1536 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1537 * Continuous Performance Control package EnableRegister field.
1538 * @cpu: CPU for which to enable CPPC register.
1539 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1540 *
1541 * Return: 0 for success, -ERRNO or -EIO otherwise.
1542 */
1543int cppc_set_enable(int cpu, bool enable)
1544{
1545	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1546	struct cpc_register_resource *enable_reg;
1547	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1548	struct cppc_pcc_data *pcc_ss_data = NULL;
1549	int ret = -EINVAL;
1550
1551	if (!cpc_desc) {
1552		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1553		return -EINVAL;
1554	}
1555
1556	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1557
1558	if (CPC_IN_PCC(enable_reg)) {
1559
1560		if (pcc_ss_id < 0)
1561			return -EIO;
1562
1563		ret = cpc_write(cpu, enable_reg, enable);
1564		if (ret)
1565			return ret;
1566
1567		pcc_ss_data = pcc_data[pcc_ss_id];
1568
1569		down_write(&pcc_ss_data->pcc_lock);
1570		/* after writing CPC, transfer the ownership of PCC to platfrom */
1571		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1572		up_write(&pcc_ss_data->pcc_lock);
1573		return ret;
1574	}
1575
1576	return cpc_write(cpu, enable_reg, enable);
1577}
1578EXPORT_SYMBOL_GPL(cppc_set_enable);
1579
1580/**
1581 * cppc_set_perf - Set a CPU's performance controls.
1582 * @cpu: CPU for which to set performance controls.
1583 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1584 *
1585 * Return: 0 for success, -ERRNO otherwise.
1586 */
1587int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1588{
1589	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1590	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1591	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1592	struct cppc_pcc_data *pcc_ss_data = NULL;
1593	int ret = 0;
1594
1595	if (!cpc_desc) {
1596		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1597		return -ENODEV;
1598	}
1599
1600	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1601	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1602	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1603
1604	/*
1605	 * This is Phase-I where we want to write to CPC registers
1606	 * -> We want all CPUs to be able to execute this phase in parallel
1607	 *
1608	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1609	 * achieve that goal here
1610	 */
1611	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1612		if (pcc_ss_id < 0) {
1613			pr_debug("Invalid pcc_ss_id\n");
1614			return -ENODEV;
1615		}
1616		pcc_ss_data = pcc_data[pcc_ss_id];
1617		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1618		if (pcc_ss_data->platform_owns_pcc) {
1619			ret = check_pcc_chan(pcc_ss_id, false);
1620			if (ret) {
1621				up_read(&pcc_ss_data->pcc_lock);
1622				return ret;
1623			}
1624		}
1625		/*
1626		 * Update the pending_write to make sure a PCC CMD_READ will not
1627		 * arrive and steal the channel during the switch to write lock
1628		 */
1629		pcc_ss_data->pending_pcc_write_cmd = true;
1630		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1631		cpc_desc->write_cmd_status = 0;
1632	}
1633
1634	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1635
1636	/*
1637	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1638	 * value to min and max perf, but they don't mean to set the zero value,
1639	 * they just don't want to write to those registers.
1640	 */
1641	if (perf_ctrls->min_perf)
1642		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1643	if (perf_ctrls->max_perf)
1644		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1645
1646	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1647		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1648	/*
1649	 * This is Phase-II where we transfer the ownership of PCC to Platform
1650	 *
1651	 * Short Summary: Basically if we think of a group of cppc_set_perf
1652	 * requests that happened in short overlapping interval. The last CPU to
1653	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1654	 *
1655	 * We have the following requirements for Phase-II:
1656	 *     1. We want to execute Phase-II only when there are no CPUs
1657	 * currently executing in Phase-I
1658	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1659	 * entering Phase-I.
1660	 *     3. We want only one CPU among all those who went through Phase-I
1661	 * to run phase-II
1662	 *
1663	 * If write_trylock fails to get the lock and doesn't transfer the
1664	 * PCC ownership to the platform, then one of the following will be TRUE
1665	 *     1. There is at-least one CPU in Phase-I which will later execute
1666	 * write_trylock, so the CPUs in Phase-I will be responsible for
1667	 * executing the Phase-II.
1668	 *     2. Some other CPU has beaten this CPU to successfully execute the
1669	 * write_trylock and has already acquired the write_lock. We know for a
1670	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1671	 * before this CPU's Phase-I as we held the read_lock.
1672	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1673	 * down_write, in which case, send_pcc_cmd will check for pending
1674	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1675	 * So this CPU can be certain that its request will be delivered
1676	 *    So in all cases, this CPU knows that its request will be delivered
1677	 * by another CPU and can return
1678	 *
1679	 * After getting the down_write we still need to check for
1680	 * pending_pcc_write_cmd to take care of the following scenario
1681	 *    The thread running this code could be scheduled out between
1682	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1683	 * could have delivered the request to Platform by triggering the
1684	 * doorbell and transferred the ownership of PCC to platform. So this
1685	 * avoids triggering an unnecessary doorbell and more importantly before
1686	 * triggering the doorbell it makes sure that the PCC channel ownership
1687	 * is still with OSPM.
1688	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1689	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1690	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1691	 * case during a CMD_READ and if there are pending writes it delivers
1692	 * the write command before servicing the read command
1693	 */
1694	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1695		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1696			/* Update only if there are pending write commands */
1697			if (pcc_ss_data->pending_pcc_write_cmd)
1698				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1699			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1700		} else
1701			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1702			wait_event(pcc_ss_data->pcc_write_wait_q,
1703				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1704
1705		/* send_pcc_cmd updates the status in case of failure */
1706		ret = cpc_desc->write_cmd_status;
1707	}
1708	return ret;
1709}
1710EXPORT_SYMBOL_GPL(cppc_set_perf);
1711
1712/**
1713 * cppc_get_transition_latency - returns frequency transition latency in ns
1714 * @cpu_num: CPU number for per_cpu().
1715 *
1716 * ACPI CPPC does not explicitly specify how a platform can specify the
1717 * transition latency for performance change requests. The closest we have
1718 * is the timing information from the PCCT tables which provides the info
1719 * on the number and frequency of PCC commands the platform can handle.
1720 *
1721 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1722 * then assume there is no latency.
1723 */
1724unsigned int cppc_get_transition_latency(int cpu_num)
1725{
1726	/*
1727	 * Expected transition latency is based on the PCCT timing values
1728	 * Below are definition from ACPI spec:
1729	 * pcc_nominal- Expected latency to process a command, in microseconds
1730	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1731	 *              channel can support, reported in commands per minute. 0
1732	 *              indicates no limitation.
1733	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1734	 *              completion of a command before issuing the next command,
1735	 *              in microseconds.
1736	 */
1737	unsigned int latency_ns = 0;
1738	struct cpc_desc *cpc_desc;
1739	struct cpc_register_resource *desired_reg;
1740	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1741	struct cppc_pcc_data *pcc_ss_data;
1742
1743	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1744	if (!cpc_desc)
1745		return CPUFREQ_ETERNAL;
1746
1747	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1748	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1749		return 0;
1750	else if (!CPC_IN_PCC(desired_reg))
1751		return CPUFREQ_ETERNAL;
1752
1753	if (pcc_ss_id < 0)
1754		return CPUFREQ_ETERNAL;
1755
1756	pcc_ss_data = pcc_data[pcc_ss_id];
1757	if (pcc_ss_data->pcc_mpar)
1758		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1759
1760	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1761	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1762
1763	return latency_ns;
1764}
1765EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1766
1767/* Minimum struct length needed for the DMI processor entry we want */
1768#define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1769
1770/* Offset in the DMI processor structure for the max frequency */
1771#define DMI_PROCESSOR_MAX_SPEED		0x14
1772
1773/* Callback function used to retrieve the max frequency from DMI */
1774static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1775{
1776	const u8 *dmi_data = (const u8 *)dm;
1777	u16 *mhz = (u16 *)private;
1778
1779	if (dm->type == DMI_ENTRY_PROCESSOR &&
1780	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1781		u16 val = (u16)get_unaligned((const u16 *)
1782				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1783		*mhz = val > *mhz ? val : *mhz;
1784	}
1785}
1786
1787/* Look up the max frequency in DMI */
1788static u64 cppc_get_dmi_max_khz(void)
1789{
1790	u16 mhz = 0;
1791
1792	dmi_walk(cppc_find_dmi_mhz, &mhz);
1793
1794	/*
1795	 * Real stupid fallback value, just in case there is no
1796	 * actual value set.
1797	 */
1798	mhz = mhz ? mhz : 1;
1799
1800	return KHZ_PER_MHZ * mhz;
1801}
1802
1803/*
1804 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1805 * use them to convert perf to freq and vice versa. The conversion is
1806 * extrapolated as an affine function passing by the 2 points:
1807 *  - (Low perf, Low freq)
1808 *  - (Nominal perf, Nominal freq)
1809 */
1810unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1811{
1812	s64 retval, offset = 0;
1813	static u64 max_khz;
1814	u64 mul, div;
1815
1816	if (caps->lowest_freq && caps->nominal_freq) {
1817		mul = caps->nominal_freq - caps->lowest_freq;
1818		mul *= KHZ_PER_MHZ;
1819		div = caps->nominal_perf - caps->lowest_perf;
1820		offset = caps->nominal_freq * KHZ_PER_MHZ -
1821			 div64_u64(caps->nominal_perf * mul, div);
1822	} else {
1823		if (!max_khz)
1824			max_khz = cppc_get_dmi_max_khz();
1825		mul = max_khz;
1826		div = caps->highest_perf;
1827	}
1828
1829	retval = offset + div64_u64(perf * mul, div);
1830	if (retval >= 0)
1831		return retval;
1832	return 0;
1833}
1834EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1835
1836unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1837{
1838	s64 retval, offset = 0;
1839	static u64 max_khz;
1840	u64  mul, div;
1841
1842	if (caps->lowest_freq && caps->nominal_freq) {
1843		mul = caps->nominal_perf - caps->lowest_perf;
1844		div = caps->nominal_freq - caps->lowest_freq;
1845		/*
1846		 * We don't need to convert to kHz for computing offset and can
1847		 * directly use nominal_freq and lowest_freq as the div64_u64
1848		 * will remove the frequency unit.
1849		 */
1850		offset = caps->nominal_perf -
1851			 div64_u64(caps->nominal_freq * mul, div);
1852		/* But we need it for computing the perf level. */
1853		div *= KHZ_PER_MHZ;
1854	} else {
1855		if (!max_khz)
1856			max_khz = cppc_get_dmi_max_khz();
1857		mul = caps->highest_perf;
1858		div = max_khz;
1859	}
1860
1861	retval = offset + div64_u64(freq * mul, div);
1862	if (retval >= 0)
1863		return retval;
1864	return 0;
1865}
1866EXPORT_SYMBOL_GPL(cppc_khz_to_perf);