Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 
 29
 30int sysctl_tcp_syncookies __read_mostly = 1;
 31EXPORT_SYMBOL(sysctl_tcp_syncookies);
 32
 33int sysctl_tcp_abort_on_overflow __read_mostly;
 34
 35struct inet_timewait_death_row tcp_death_row = {
 36	.sysctl_max_tw_buckets = NR_FILE * 2,
 37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 39	.hashinfo	= &tcp_hashinfo,
 40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 41					    (unsigned long)&tcp_death_row),
 42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 43					     inet_twdr_twkill_work),
 44/* Short-time timewait calendar */
 45
 46	.twcal_hand	= -1,
 47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 48					    (unsigned long)&tcp_death_row),
 49};
 50EXPORT_SYMBOL_GPL(tcp_death_row);
 51
 52/* VJ's idea. Save last timestamp seen from this destination
 53 * and hold it at least for normal timewait interval to use for duplicate
 54 * segment detection in subsequent connections, before they enter synchronized
 55 * state.
 56 */
 57
 58static bool tcp_remember_stamp(struct sock *sk)
 59{
 60	const struct inet_connection_sock *icsk = inet_csk(sk);
 61	struct tcp_sock *tp = tcp_sk(sk);
 62	struct inet_peer *peer;
 63	bool release_it;
 64
 65	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
 66	if (peer) {
 67		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
 68		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 69		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
 70			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
 71			peer->tcp_ts = tp->rx_opt.ts_recent;
 72		}
 73		if (release_it)
 74			inet_putpeer(peer);
 75		return true;
 76	}
 77
 78	return false;
 79}
 80
 81static bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
 
 
 82{
 83	struct sock *sk = (struct sock *) tw;
 84	struct inet_peer *peer;
 85
 86	peer = twsk_getpeer(sk);
 87	if (peer) {
 88		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 89
 90		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
 91		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 92		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
 93			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
 94			peer->tcp_ts	   = tcptw->tw_ts_recent;
 95		}
 96		inet_putpeer(peer);
 97		return true;
 98	}
 99	return false;
100}
101
102static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103{
104	if (seq == s_win)
105		return true;
106	if (after(end_seq, s_win) && before(seq, e_win))
107		return true;
108	return seq == e_win && seq == end_seq;
109}
110
111/*
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 *   (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 *   lifetime in the internet, which results in wrong conclusion, that
117 *   it is set to catch "old duplicate segments" wandering out of their path.
118 *   It is not quite correct. This timeout is calculated so that it exceeds
119 *   maximal retransmission timeout enough to allow to lose one (or more)
120 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 *   finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128 *
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
132 *
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc.  --ANK
 
 
138 */
139enum tcp_tw_status
140tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141			   const struct tcphdr *th)
142{
143	struct tcp_options_received tmp_opt;
144	const u8 *hash_location;
145	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146	bool paws_reject = false;
147
148	tmp_opt.saw_tstamp = 0;
149	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151
152		if (tmp_opt.saw_tstamp) {
 
 
153			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
155			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156		}
157	}
158
159	if (tw->tw_substate == TCP_FIN_WAIT2) {
160		/* Just repeat all the checks of tcp_rcv_state_process() */
161
162		/* Out of window, send ACK */
163		if (paws_reject ||
164		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165				   tcptw->tw_rcv_nxt,
166				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167			return TCP_TW_ACK;
 
168
169		if (th->rst)
170			goto kill;
171
172		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173			goto kill_with_rst;
174
175		/* Dup ACK? */
176		if (!th->ack ||
177		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179			inet_twsk_put(tw);
180			return TCP_TW_SUCCESS;
181		}
182
183		/* New data or FIN. If new data arrive after half-duplex close,
184		 * reset.
185		 */
186		if (!th->fin ||
187		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188kill_with_rst:
189			inet_twsk_deschedule(tw, &tcp_death_row);
190			inet_twsk_put(tw);
191			return TCP_TW_RST;
192		}
193
194		/* FIN arrived, enter true time-wait state. */
195		tw->tw_substate	  = TCP_TIME_WAIT;
196		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197		if (tmp_opt.saw_tstamp) {
198			tcptw->tw_ts_recent_stamp = get_seconds();
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200		}
201
202		if (tcp_death_row.sysctl_tw_recycle &&
203		    tcptw->tw_ts_recent_stamp &&
204		    tcp_tw_remember_stamp(tw))
205			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206					   TCP_TIMEWAIT_LEN);
207		else
208			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209					   TCP_TIMEWAIT_LEN);
210		return TCP_TW_ACK;
211	}
212
213	/*
214	 *	Now real TIME-WAIT state.
215	 *
216	 *	RFC 1122:
217	 *	"When a connection is [...] on TIME-WAIT state [...]
218	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219	 *	reopen the connection directly, if it:
220	 *
221	 *	(1)  assigns its initial sequence number for the new
222	 *	connection to be larger than the largest sequence
223	 *	number it used on the previous connection incarnation,
224	 *	and
225	 *
226	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227	 *	to be an old duplicate".
228	 */
229
230	if (!paws_reject &&
231	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233		/* In window segment, it may be only reset or bare ack. */
234
235		if (th->rst) {
236			/* This is TIME_WAIT assassination, in two flavors.
237			 * Oh well... nobody has a sufficient solution to this
238			 * protocol bug yet.
239			 */
240			if (sysctl_tcp_rfc1337 == 0) {
241kill:
242				inet_twsk_deschedule(tw, &tcp_death_row);
243				inet_twsk_put(tw);
244				return TCP_TW_SUCCESS;
245			}
 
 
246		}
247		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248				   TCP_TIMEWAIT_LEN);
249
250		if (tmp_opt.saw_tstamp) {
251			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252			tcptw->tw_ts_recent_stamp = get_seconds();
253		}
254
255		inet_twsk_put(tw);
256		return TCP_TW_SUCCESS;
257	}
258
259	/* Out of window segment.
260
261	   All the segments are ACKed immediately.
262
263	   The only exception is new SYN. We accept it, if it is
264	   not old duplicate and we are not in danger to be killed
265	   by delayed old duplicates. RFC check is that it has
266	   newer sequence number works at rates <40Mbit/sec.
267	   However, if paws works, it is reliable AND even more,
268	   we even may relax silly seq space cutoff.
269
270	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272	   we must return socket to time-wait state. It is not good,
273	   but not fatal yet.
274	 */
275
276	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278	     (tmp_opt.saw_tstamp &&
279	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281		if (isn == 0)
282			isn++;
283		TCP_SKB_CB(skb)->when = isn;
284		return TCP_TW_SYN;
285	}
286
287	if (paws_reject)
288		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289
290	if (!th->rst) {
291		/* In this case we must reset the TIMEWAIT timer.
292		 *
293		 * If it is ACKless SYN it may be both old duplicate
294		 * and new good SYN with random sequence number <rcv_nxt.
295		 * Do not reschedule in the last case.
296		 */
297		if (paws_reject || th->ack)
298			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299					   TCP_TIMEWAIT_LEN);
300
301		/* Send ACK. Note, we do not put the bucket,
302		 * it will be released by caller.
303		 */
304		return TCP_TW_ACK;
305	}
306	inet_twsk_put(tw);
307	return TCP_TW_SUCCESS;
308}
309EXPORT_SYMBOL(tcp_timewait_state_process);
310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311/*
312 * Move a socket to time-wait or dead fin-wait-2 state.
313 */
314void tcp_time_wait(struct sock *sk, int state, int timeo)
315{
316	struct inet_timewait_sock *tw = NULL;
317	const struct inet_connection_sock *icsk = inet_csk(sk);
318	const struct tcp_sock *tp = tcp_sk(sk);
319	bool recycle_ok = false;
 
320
321	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322		recycle_ok = tcp_remember_stamp(sk);
323
324	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325		tw = inet_twsk_alloc(sk, state);
326
327	if (tw != NULL) {
328		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
330
331		tw->tw_transparent	= inet_sk(sk)->transparent;
 
 
332		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
333		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
334		tcptw->tw_snd_nxt	= tp->snd_nxt;
335		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
336		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
337		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
338
 
 
339#if IS_ENABLED(CONFIG_IPV6)
340		if (tw->tw_family == PF_INET6) {
341			struct ipv6_pinfo *np = inet6_sk(sk);
342			struct inet6_timewait_sock *tw6;
343
344			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345			tw6 = inet6_twsk((struct sock *)tw);
346			tw6->tw_v6_daddr = np->daddr;
347			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
348			tw->tw_tclass = np->tclass;
349			tw->tw_ipv6only = np->ipv6only;
 
 
350		}
351#endif
352
353#ifdef CONFIG_TCP_MD5SIG
354		/*
355		 * The timewait bucket does not have the key DB from the
356		 * sock structure. We just make a quick copy of the
357		 * md5 key being used (if indeed we are using one)
358		 * so the timewait ack generating code has the key.
359		 */
360		do {
361			struct tcp_md5sig_key *key;
362			tcptw->tw_md5_key = NULL;
363			key = tp->af_specific->md5_lookup(sk, sk);
364			if (key != NULL) {
365				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
366				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
367					BUG();
368			}
369		} while (0);
370#endif
371
372		/* Linkage updates. */
373		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
374
375		/* Get the TIME_WAIT timeout firing. */
376		if (timeo < rto)
377			timeo = rto;
378
379		if (recycle_ok) {
380			tw->tw_timeout = rto;
381		} else {
382			tw->tw_timeout = TCP_TIMEWAIT_LEN;
383			if (state == TCP_TIME_WAIT)
384				timeo = TCP_TIMEWAIT_LEN;
385		}
386
387		inet_twsk_schedule(tw, &tcp_death_row, timeo,
388				   TCP_TIMEWAIT_LEN);
389		inet_twsk_put(tw);
 
 
 
 
 
 
 
 
390	} else {
391		/* Sorry, if we're out of memory, just CLOSE this
392		 * socket up.  We've got bigger problems than
393		 * non-graceful socket closings.
394		 */
395		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
396	}
397
398	tcp_update_metrics(sk);
399	tcp_done(sk);
400}
 
401
402void tcp_twsk_destructor(struct sock *sk)
403{
404#ifdef CONFIG_TCP_MD5SIG
405	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
406	if (twsk->tw_md5_key) {
407		tcp_free_md5sig_pool();
408		kfree_rcu(twsk->tw_md5_key, rcu);
 
 
 
409	}
410#endif
411}
412EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
413
414static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
415					 struct request_sock *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416{
417	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
418}
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420/* This is not only more efficient than what we used to do, it eliminates
421 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422 *
423 * Actually, we could lots of memory writes here. tp of listening
424 * socket contains all necessary default parameters.
425 */
426struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 
 
427{
428	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
429
430	if (newsk != NULL) {
431		const struct inet_request_sock *ireq = inet_rsk(req);
432		struct tcp_request_sock *treq = tcp_rsk(req);
433		struct inet_connection_sock *newicsk = inet_csk(newsk);
434		struct tcp_sock *newtp = tcp_sk(newsk);
435		struct tcp_sock *oldtp = tcp_sk(sk);
436		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
437
438		/* TCP Cookie Transactions require space for the cookie pair,
439		 * as it differs for each connection.  There is no need to
440		 * copy any s_data_payload stored at the original socket.
441		 * Failure will prevent resuming the connection.
442		 *
443		 * Presumed copied, in order of appearance:
444		 *	cookie_in_always, cookie_out_never
445		 */
446		if (oldcvp != NULL) {
447			struct tcp_cookie_values *newcvp =
448				kzalloc(sizeof(*newtp->cookie_values),
449					GFP_ATOMIC);
450
451			if (newcvp != NULL) {
452				kref_init(&newcvp->kref);
453				newcvp->cookie_desired =
454						oldcvp->cookie_desired;
455				newtp->cookie_values = newcvp;
456			} else {
457				/* Not Yet Implemented */
458				newtp->cookie_values = NULL;
459			}
460		}
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467
468		newtp->snd_sml = newtp->snd_una =
469		newtp->snd_nxt = newtp->snd_up =
470			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
471
472		tcp_prequeue_init(newtp);
473
474		tcp_init_wl(newtp, treq->rcv_isn);
475
476		newtp->srtt = 0;
477		newtp->mdev = TCP_TIMEOUT_INIT;
478		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
479
480		newtp->packets_out = 0;
481		newtp->retrans_out = 0;
482		newtp->sacked_out = 0;
483		newtp->fackets_out = 0;
484		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
485		tcp_enable_early_retrans(newtp);
486
487		/* So many TCP implementations out there (incorrectly) count the
488		 * initial SYN frame in their delayed-ACK and congestion control
489		 * algorithms that we must have the following bandaid to talk
490		 * efficiently to them.  -DaveM
491		 */
492		newtp->snd_cwnd = TCP_INIT_CWND;
493		newtp->snd_cwnd_cnt = 0;
494		newtp->bytes_acked = 0;
495
496		newtp->frto_counter = 0;
497		newtp->frto_highmark = 0;
498
499		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
500		    !try_module_get(newicsk->icsk_ca_ops->owner))
501			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
502
503		tcp_set_ca_state(newsk, TCP_CA_Open);
504		tcp_init_xmit_timers(newsk);
505		skb_queue_head_init(&newtp->out_of_order_queue);
506		newtp->write_seq = newtp->pushed_seq =
507			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
508
509		newtp->rx_opt.saw_tstamp = 0;
510
511		newtp->rx_opt.dsack = 0;
512		newtp->rx_opt.num_sacks = 0;
513
514		newtp->urg_data = 0;
515
516		if (sock_flag(newsk, SOCK_KEEPOPEN))
517			inet_csk_reset_keepalive_timer(newsk,
518						       keepalive_time_when(newtp));
519
520		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
521		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
522			if (sysctl_tcp_fack)
523				tcp_enable_fack(newtp);
524		}
525		newtp->window_clamp = req->window_clamp;
526		newtp->rcv_ssthresh = req->rcv_wnd;
527		newtp->rcv_wnd = req->rcv_wnd;
528		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
529		if (newtp->rx_opt.wscale_ok) {
530			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
531			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
532		} else {
533			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
534			newtp->window_clamp = min(newtp->window_clamp, 65535U);
535		}
536		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
537				  newtp->rx_opt.snd_wscale);
538		newtp->max_window = newtp->snd_wnd;
539
540		if (newtp->rx_opt.tstamp_ok) {
541			newtp->rx_opt.ts_recent = req->ts_recent;
542			newtp->rx_opt.ts_recent_stamp = get_seconds();
543			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
544		} else {
545			newtp->rx_opt.ts_recent_stamp = 0;
546			newtp->tcp_header_len = sizeof(struct tcphdr);
547		}
548#ifdef CONFIG_TCP_MD5SIG
549		newtp->md5sig_info = NULL;	/*XXX*/
550		if (newtp->af_specific->md5_lookup(sk, newsk))
551			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
552#endif
553		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
554			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
555		newtp->rx_opt.mss_clamp = req->mss;
556		TCP_ECN_openreq_child(newtp, req);
 
 
 
 
 
 
 
557
558		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
559	}
560	return newsk;
561}
562EXPORT_SYMBOL(tcp_create_openreq_child);
563
564/*
565 *	Process an incoming packet for SYN_RECV sockets represented
566 *	as a request_sock.
 
 
 
 
 
 
567 */
568
569struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
570			   struct request_sock *req,
571			   struct request_sock **prev)
572{
573	struct tcp_options_received tmp_opt;
574	const u8 *hash_location;
575	struct sock *child;
576	const struct tcphdr *th = tcp_hdr(skb);
577	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578	bool paws_reject = false;
 
579
580	tmp_opt.saw_tstamp = 0;
581	if (th->doff > (sizeof(struct tcphdr)>>2)) {
582		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
583
584		if (tmp_opt.saw_tstamp) {
585			tmp_opt.ts_recent = req->ts_recent;
 
 
586			/* We do not store true stamp, but it is not required,
587			 * it can be estimated (approximately)
588			 * from another data.
589			 */
590			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
591			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
592		}
593	}
594
595	/* Check for pure retransmitted SYN. */
596	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
597	    flg == TCP_FLAG_SYN &&
598	    !paws_reject) {
599		/*
600		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
601		 * this case on figure 6 and figure 8, but formal
602		 * protocol description says NOTHING.
603		 * To be more exact, it says that we should send ACK,
604		 * because this segment (at least, if it has no data)
605		 * is out of window.
606		 *
607		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
608		 *  describe SYN-RECV state. All the description
609		 *  is wrong, we cannot believe to it and should
610		 *  rely only on common sense and implementation
611		 *  experience.
612		 *
613		 * Enforce "SYN-ACK" according to figure 8, figure 6
614		 * of RFC793, fixed by RFC1122.
 
 
 
 
 
 
615		 */
616		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
617		return NULL;
618	}
619
620	/* Further reproduces section "SEGMENT ARRIVES"
621	   for state SYN-RECEIVED of RFC793.
622	   It is broken, however, it does not work only
623	   when SYNs are crossed.
624
625	   You would think that SYN crossing is impossible here, since
626	   we should have a SYN_SENT socket (from connect()) on our end,
627	   but this is not true if the crossed SYNs were sent to both
628	   ends by a malicious third party.  We must defend against this,
629	   and to do that we first verify the ACK (as per RFC793, page
630	   36) and reset if it is invalid.  Is this a true full defense?
631	   To convince ourselves, let us consider a way in which the ACK
632	   test can still pass in this 'malicious crossed SYNs' case.
633	   Malicious sender sends identical SYNs (and thus identical sequence
634	   numbers) to both A and B:
635
636		A: gets SYN, seq=7
637		B: gets SYN, seq=7
638
639	   By our good fortune, both A and B select the same initial
640	   send sequence number of seven :-)
641
642		A: sends SYN|ACK, seq=7, ack_seq=8
643		B: sends SYN|ACK, seq=7, ack_seq=8
644
645	   So we are now A eating this SYN|ACK, ACK test passes.  So
646	   does sequence test, SYN is truncated, and thus we consider
647	   it a bare ACK.
648
649	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
650	   bare ACK.  Otherwise, we create an established connection.  Both
651	   ends (listening sockets) accept the new incoming connection and try
652	   to talk to each other. 8-)
653
654	   Note: This case is both harmless, and rare.  Possibility is about the
655	   same as us discovering intelligent life on another plant tomorrow.
656
657	   But generally, we should (RFC lies!) to accept ACK
658	   from SYNACK both here and in tcp_rcv_state_process().
659	   tcp_rcv_state_process() does not, hence, we do not too.
660
661	   Note that the case is absolutely generic:
662	   we cannot optimize anything here without
663	   violating protocol. All the checks must be made
664	   before attempt to create socket.
665	 */
666
667	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
668	 *                  and the incoming segment acknowledges something not yet
669	 *                  sent (the segment carries an unacceptable ACK) ...
670	 *                  a reset is sent."
671	 *
672	 * Invalid ACK: reset will be sent by listening socket
 
 
 
673	 */
674	if ((flg & TCP_FLAG_ACK) &&
675	    (TCP_SKB_CB(skb)->ack_seq !=
676	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
677		return sk;
678
679	/* Also, it would be not so bad idea to check rcv_tsecr, which
680	 * is essentially ACK extension and too early or too late values
681	 * should cause reset in unsynchronized states.
682	 */
683
684	/* RFC793: "first check sequence number". */
685
686	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
687					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
688		/* Out of window: send ACK and drop. */
689		if (!(flg & TCP_FLAG_RST))
 
 
 
690			req->rsk_ops->send_ack(sk, skb, req);
691		if (paws_reject)
692			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
693		return NULL;
694	}
695
696	/* In sequence, PAWS is OK. */
697
698	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
699		req->ts_recent = tmp_opt.rcv_tsval;
700
701	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
702		/* Truncate SYN, it is out of window starting
703		   at tcp_rsk(req)->rcv_isn + 1. */
704		flg &= ~TCP_FLAG_SYN;
705	}
706
707	/* RFC793: "second check the RST bit" and
708	 *	   "fourth, check the SYN bit"
709	 */
710	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
711		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
712		goto embryonic_reset;
713	}
714
715	/* ACK sequence verified above, just make sure ACK is
716	 * set.  If ACK not set, just silently drop the packet.
 
 
 
717	 */
718	if (!(flg & TCP_FLAG_ACK))
719		return NULL;
720
 
 
 
 
 
 
721	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
722	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
723	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
724		inet_rsk(req)->acked = 1;
725		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
726		return NULL;
727	}
728	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
729		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
730	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
731		tcp_rsk(req)->snt_synack = 0;
732
733	/* OK, ACK is valid, create big socket and
734	 * feed this segment to it. It will repeat all
735	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
736	 * ESTABLISHED STATE. If it will be dropped after
737	 * socket is created, wait for troubles.
738	 */
739	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
740	if (child == NULL)
 
741		goto listen_overflow;
742
743	inet_csk_reqsk_queue_unlink(sk, req, prev);
744	inet_csk_reqsk_queue_removed(sk, req);
 
 
 
745
746	inet_csk_reqsk_queue_add(sk, req, child);
747	return child;
 
 
748
749listen_overflow:
750	if (!sysctl_tcp_abort_on_overflow) {
 
 
 
751		inet_rsk(req)->acked = 1;
752		return NULL;
753	}
754
755embryonic_reset:
756	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
757	if (!(flg & TCP_FLAG_RST))
 
 
 
 
758		req->rsk_ops->send_reset(sk, skb);
759
760	inet_csk_reqsk_queue_drop(sk, req, prev);
 
 
 
 
 
 
 
 
 
761	return NULL;
762}
763EXPORT_SYMBOL(tcp_check_req);
764
765/*
766 * Queue segment on the new socket if the new socket is active,
767 * otherwise we just shortcircuit this and continue with
768 * the new socket.
 
 
 
 
 
 
769 */
770
771int tcp_child_process(struct sock *parent, struct sock *child,
772		      struct sk_buff *skb)
 
773{
774	int ret = 0;
775	int state = child->sk_state;
776
 
 
 
 
777	if (!sock_owned_by_user(child)) {
778		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
779					    skb->len);
780		/* Wakeup parent, send SIGIO */
781		if (state == TCP_SYN_RECV && child->sk_state != state)
782			parent->sk_data_ready(parent, 0);
783	} else {
784		/* Alas, it is possible again, because we do lookup
785		 * in main socket hash table and lock on listening
786		 * socket does not protect us more.
787		 */
788		__sk_add_backlog(child, skb);
789	}
790
791	bh_unlock_sock(child);
792	sock_put(child);
793	return ret;
794}
795EXPORT_SYMBOL(tcp_child_process);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 25
 26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27{
 28	if (seq == s_win)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29		return true;
 30	if (after(end_seq, s_win) && before(seq, e_win))
 31		return true;
 32	return seq == e_win && seq == end_seq;
 33}
 34
 35static enum tcp_tw_status
 36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 37				  const struct sk_buff *skb, int mib_idx)
 38{
 39	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 
 
 
 
 
 40
 41	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 42				  &tcptw->tw_last_oow_ack_time)) {
 43		/* Send ACK. Note, we do not put the bucket,
 44		 * it will be released by caller.
 45		 */
 46		return TCP_TW_ACK;
 
 
 47	}
 
 
 48
 49	/* We are rate-limiting, so just release the tw sock and drop skb. */
 50	inet_twsk_put(tw);
 51	return TCP_TW_SUCCESS;
 
 
 
 
 52}
 53
 54/*
 55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 56 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 57 *   (and, probably, tail of data) and one or more our ACKs are lost.
 58 * * What is TIME-WAIT timeout? It is associated with maximal packet
 59 *   lifetime in the internet, which results in wrong conclusion, that
 60 *   it is set to catch "old duplicate segments" wandering out of their path.
 61 *   It is not quite correct. This timeout is calculated so that it exceeds
 62 *   maximal retransmission timeout enough to allow to lose one (or more)
 63 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 64 * * When TIME-WAIT socket receives RST, it means that another end
 65 *   finally closed and we are allowed to kill TIME-WAIT too.
 66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 67 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 68 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 69 * * If we invented some more clever way to catch duplicates
 70 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 71 *
 72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 74 * from the very beginning.
 75 *
 76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 77 * is _not_ stateless. It means, that strictly speaking we must
 78 * spinlock it. I do not want! Well, probability of misbehaviour
 79 * is ridiculously low and, seems, we could use some mb() tricks
 80 * to avoid misread sequence numbers, states etc.  --ANK
 81 *
 82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 83 */
 84enum tcp_tw_status
 85tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 86			   const struct tcphdr *th)
 87{
 88	struct tcp_options_received tmp_opt;
 
 89	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 90	bool paws_reject = false;
 91
 92	tmp_opt.saw_tstamp = 0;
 93	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 94		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
 95
 96		if (tmp_opt.saw_tstamp) {
 97			if (tmp_opt.rcv_tsecr)
 98				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
 99			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102		}
103	}
104
105	if (tw->tw_substate == TCP_FIN_WAIT2) {
106		/* Just repeat all the checks of tcp_rcv_state_process() */
107
108		/* Out of window, send ACK */
109		if (paws_reject ||
110		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111				   tcptw->tw_rcv_nxt,
112				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113			return tcp_timewait_check_oow_rate_limit(
114				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116		if (th->rst)
117			goto kill;
118
119		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120			return TCP_TW_RST;
121
122		/* Dup ACK? */
123		if (!th->ack ||
124		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126			inet_twsk_put(tw);
127			return TCP_TW_SUCCESS;
128		}
129
130		/* New data or FIN. If new data arrive after half-duplex close,
131		 * reset.
132		 */
133		if (!th->fin ||
134		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
 
 
 
135			return TCP_TW_RST;
 
136
137		/* FIN arrived, enter true time-wait state. */
138		tw->tw_substate	  = TCP_TIME_WAIT;
139		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140		if (tmp_opt.saw_tstamp) {
141			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
143		}
144
145		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
 
 
146		return TCP_TW_ACK;
147	}
148
149	/*
150	 *	Now real TIME-WAIT state.
151	 *
152	 *	RFC 1122:
153	 *	"When a connection is [...] on TIME-WAIT state [...]
154	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155	 *	reopen the connection directly, if it:
156	 *
157	 *	(1)  assigns its initial sequence number for the new
158	 *	connection to be larger than the largest sequence
159	 *	number it used on the previous connection incarnation,
160	 *	and
161	 *
162	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163	 *	to be an old duplicate".
164	 */
165
166	if (!paws_reject &&
167	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169		/* In window segment, it may be only reset or bare ack. */
170
171		if (th->rst) {
172			/* This is TIME_WAIT assassination, in two flavors.
173			 * Oh well... nobody has a sufficient solution to this
174			 * protocol bug yet.
175			 */
176			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177kill:
178				inet_twsk_deschedule_put(tw);
 
179				return TCP_TW_SUCCESS;
180			}
181		} else {
182			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183		}
 
 
184
185		if (tmp_opt.saw_tstamp) {
186			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188		}
189
190		inet_twsk_put(tw);
191		return TCP_TW_SUCCESS;
192	}
193
194	/* Out of window segment.
195
196	   All the segments are ACKed immediately.
197
198	   The only exception is new SYN. We accept it, if it is
199	   not old duplicate and we are not in danger to be killed
200	   by delayed old duplicates. RFC check is that it has
201	   newer sequence number works at rates <40Mbit/sec.
202	   However, if paws works, it is reliable AND even more,
203	   we even may relax silly seq space cutoff.
204
205	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207	   we must return socket to time-wait state. It is not good,
208	   but not fatal yet.
209	 */
210
211	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213	     (tmp_opt.saw_tstamp &&
214	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216		if (isn == 0)
217			isn++;
218		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219		return TCP_TW_SYN;
220	}
221
222	if (paws_reject)
223		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225	if (!th->rst) {
226		/* In this case we must reset the TIMEWAIT timer.
227		 *
228		 * If it is ACKless SYN it may be both old duplicate
229		 * and new good SYN with random sequence number <rcv_nxt.
230		 * Do not reschedule in the last case.
231		 */
232		if (paws_reject || th->ack)
233			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
234
235		return tcp_timewait_check_oow_rate_limit(
236			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 
 
237	}
238	inet_twsk_put(tw);
239	return TCP_TW_SUCCESS;
240}
241EXPORT_SYMBOL(tcp_timewait_state_process);
242
243static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244{
245#ifdef CONFIG_TCP_MD5SIG
246	const struct tcp_sock *tp = tcp_sk(sk);
247	struct tcp_md5sig_key *key;
248
249	/*
250	 * The timewait bucket does not have the key DB from the
251	 * sock structure. We just make a quick copy of the
252	 * md5 key being used (if indeed we are using one)
253	 * so the timewait ack generating code has the key.
254	 */
255	tcptw->tw_md5_key = NULL;
256	if (!static_branch_unlikely(&tcp_md5_needed.key))
257		return;
258
259	key = tp->af_specific->md5_lookup(sk, sk);
260	if (key) {
261		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262		if (!tcptw->tw_md5_key)
263			return;
264		if (!tcp_alloc_md5sig_pool())
265			goto out_free;
266		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267			goto out_free;
268	}
269	return;
270out_free:
271	WARN_ON_ONCE(1);
272	kfree(tcptw->tw_md5_key);
273	tcptw->tw_md5_key = NULL;
274#endif
275}
276
277/*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
280void tcp_time_wait(struct sock *sk, int state, int timeo)
281{
 
282	const struct inet_connection_sock *icsk = inet_csk(sk);
283	const struct tcp_sock *tp = tcp_sk(sk);
284	struct net *net = sock_net(sk);
285	struct inet_timewait_sock *tw;
286
287	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
 
288
289	if (tw) {
 
 
 
290		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292		struct inet_sock *inet = inet_sk(sk);
293
294		tw->tw_transparent	= inet->transparent;
295		tw->tw_mark		= sk->sk_mark;
296		tw->tw_priority		= sk->sk_priority;
297		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
298		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
299		tcptw->tw_snd_nxt	= tp->snd_nxt;
300		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
301		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
302		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
303		tcptw->tw_ts_offset	= tp->tsoffset;
304		tcptw->tw_last_oow_ack_time = 0;
305		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
306#if IS_ENABLED(CONFIG_IPV6)
307		if (tw->tw_family == PF_INET6) {
308			struct ipv6_pinfo *np = inet6_sk(sk);
 
309
310			tw->tw_v6_daddr = sk->sk_v6_daddr;
311			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 
 
312			tw->tw_tclass = np->tclass;
313			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314			tw->tw_txhash = sk->sk_txhash;
315			tw->tw_ipv6only = sk->sk_ipv6only;
316		}
317#endif
318
319		tcp_time_wait_init(sk, tcptw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
321		/* Get the TIME_WAIT timeout firing. */
322		if (timeo < rto)
323			timeo = rto;
324
325		if (state == TCP_TIME_WAIT)
326			timeo = TCP_TIMEWAIT_LEN;
 
 
 
 
 
327
328		/* tw_timer is pinned, so we need to make sure BH are disabled
329		 * in following section, otherwise timer handler could run before
330		 * we complete the initialization.
331		 */
332		local_bh_disable();
333		inet_twsk_schedule(tw, timeo);
334		/* Linkage updates.
335		 * Note that access to tw after this point is illegal.
336		 */
337		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
338		local_bh_enable();
339	} else {
340		/* Sorry, if we're out of memory, just CLOSE this
341		 * socket up.  We've got bigger problems than
342		 * non-graceful socket closings.
343		 */
344		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
345	}
346
347	tcp_update_metrics(sk);
348	tcp_done(sk);
349}
350EXPORT_SYMBOL(tcp_time_wait);
351
352void tcp_twsk_destructor(struct sock *sk)
353{
354#ifdef CONFIG_TCP_MD5SIG
355	if (static_branch_unlikely(&tcp_md5_needed.key)) {
356		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358		if (twsk->tw_md5_key) {
359			kfree_rcu(twsk->tw_md5_key, rcu);
360			static_branch_slow_dec_deferred(&tcp_md5_needed);
361		}
362	}
363#endif
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367void tcp_twsk_purge(struct list_head *net_exit_list, int family)
368{
369	bool purged_once = false;
370	struct net *net;
371
372	list_for_each_entry(net, net_exit_list, exit_list) {
373		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
374			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
375			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
376		} else if (!purged_once) {
377			/* The last refcount is decremented in tcp_sk_exit_batch() */
378			if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
379				continue;
380
381			inet_twsk_purge(&tcp_hashinfo, family);
382			purged_once = true;
383		}
384	}
385}
386EXPORT_SYMBOL_GPL(tcp_twsk_purge);
387
388/* Warning : This function is called without sk_listener being locked.
389 * Be sure to read socket fields once, as their value could change under us.
390 */
391void tcp_openreq_init_rwin(struct request_sock *req,
392			   const struct sock *sk_listener,
393			   const struct dst_entry *dst)
394{
395	struct inet_request_sock *ireq = inet_rsk(req);
396	const struct tcp_sock *tp = tcp_sk(sk_listener);
397	int full_space = tcp_full_space(sk_listener);
398	u32 window_clamp;
399	__u8 rcv_wscale;
400	u32 rcv_wnd;
401	int mss;
402
403	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
404	window_clamp = READ_ONCE(tp->window_clamp);
405	/* Set this up on the first call only */
406	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
407
408	/* limit the window selection if the user enforce a smaller rx buffer */
409	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
410	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
411		req->rsk_window_clamp = full_space;
412
413	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
414	if (rcv_wnd == 0)
415		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
416	else if (full_space < rcv_wnd * mss)
417		full_space = rcv_wnd * mss;
418
419	/* tcp_full_space because it is guaranteed to be the first packet */
420	tcp_select_initial_window(sk_listener, full_space,
421		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
422		&req->rsk_rcv_wnd,
423		&req->rsk_window_clamp,
424		ireq->wscale_ok,
425		&rcv_wscale,
426		rcv_wnd);
427	ireq->rcv_wscale = rcv_wscale;
428}
429EXPORT_SYMBOL(tcp_openreq_init_rwin);
430
431static void tcp_ecn_openreq_child(struct tcp_sock *tp,
432				  const struct request_sock *req)
433{
434	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
435}
436
437void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
438{
439	struct inet_connection_sock *icsk = inet_csk(sk);
440	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
441	bool ca_got_dst = false;
442
443	if (ca_key != TCP_CA_UNSPEC) {
444		const struct tcp_congestion_ops *ca;
445
446		rcu_read_lock();
447		ca = tcp_ca_find_key(ca_key);
448		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
449			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
450			icsk->icsk_ca_ops = ca;
451			ca_got_dst = true;
452		}
453		rcu_read_unlock();
454	}
455
456	/* If no valid choice made yet, assign current system default ca. */
457	if (!ca_got_dst &&
458	    (!icsk->icsk_ca_setsockopt ||
459	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
460		tcp_assign_congestion_control(sk);
461
462	tcp_set_ca_state(sk, TCP_CA_Open);
463}
464EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
465
466static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
467				    struct request_sock *req,
468				    struct tcp_sock *newtp)
469{
470#if IS_ENABLED(CONFIG_SMC)
471	struct inet_request_sock *ireq;
472
473	if (static_branch_unlikely(&tcp_have_smc)) {
474		ireq = inet_rsk(req);
475		if (oldtp->syn_smc && !ireq->smc_ok)
476			newtp->syn_smc = 0;
477	}
478#endif
479}
480
481/* This is not only more efficient than what we used to do, it eliminates
482 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
483 *
484 * Actually, we could lots of memory writes here. tp of listening
485 * socket contains all necessary default parameters.
486 */
487struct sock *tcp_create_openreq_child(const struct sock *sk,
488				      struct request_sock *req,
489				      struct sk_buff *skb)
490{
491	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
492	const struct inet_request_sock *ireq = inet_rsk(req);
493	struct tcp_request_sock *treq = tcp_rsk(req);
494	struct inet_connection_sock *newicsk;
495	struct tcp_sock *oldtp, *newtp;
496	u32 seq;
497
498	if (!newsk)
499		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500
501	newicsk = inet_csk(newsk);
502	newtp = tcp_sk(newsk);
503	oldtp = tcp_sk(sk);
504
505	smc_check_reset_syn_req(oldtp, req, newtp);
506
507	/* Now setup tcp_sock */
508	newtp->pred_flags = 0;
509
510	seq = treq->rcv_isn + 1;
511	newtp->rcv_wup = seq;
512	WRITE_ONCE(newtp->copied_seq, seq);
513	WRITE_ONCE(newtp->rcv_nxt, seq);
514	newtp->segs_in = 1;
515
516	seq = treq->snt_isn + 1;
517	newtp->snd_sml = newtp->snd_una = seq;
518	WRITE_ONCE(newtp->snd_nxt, seq);
519	newtp->snd_up = seq;
520
521	INIT_LIST_HEAD(&newtp->tsq_node);
522	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
523
524	tcp_init_wl(newtp, treq->rcv_isn);
525
526	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
527	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
528
529	newtp->lsndtime = tcp_jiffies32;
530	newsk->sk_txhash = treq->txhash;
531	newtp->total_retrans = req->num_retrans;
532
533	tcp_init_xmit_timers(newsk);
534	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
535
536	if (sock_flag(newsk, SOCK_KEEPOPEN))
537		inet_csk_reset_keepalive_timer(newsk,
538					       keepalive_time_when(newtp));
539
540	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
541	newtp->rx_opt.sack_ok = ireq->sack_ok;
542	newtp->window_clamp = req->rsk_window_clamp;
543	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
544	newtp->rcv_wnd = req->rsk_rcv_wnd;
545	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
546	if (newtp->rx_opt.wscale_ok) {
547		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
548		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
549	} else {
550		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
551		newtp->window_clamp = min(newtp->window_clamp, 65535U);
552	}
553	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
554	newtp->max_window = newtp->snd_wnd;
555
556	if (newtp->rx_opt.tstamp_ok) {
557		newtp->rx_opt.ts_recent = req->ts_recent;
558		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
559		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
560	} else {
561		newtp->rx_opt.ts_recent_stamp = 0;
562		newtp->tcp_header_len = sizeof(struct tcphdr);
563	}
564	if (req->num_timeout) {
565		newtp->undo_marker = treq->snt_isn;
566		newtp->retrans_stamp = div_u64(treq->snt_synack,
567					       USEC_PER_SEC / TCP_TS_HZ);
568	}
569	newtp->tsoffset = treq->ts_off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570#ifdef CONFIG_TCP_MD5SIG
571	newtp->md5sig_info = NULL;	/*XXX*/
572	if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
573		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
574#endif
575	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
576		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
577	newtp->rx_opt.mss_clamp = req->mss;
578	tcp_ecn_openreq_child(newtp, req);
579	newtp->fastopen_req = NULL;
580	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
581
582	newtp->bpf_chg_cc_inprogress = 0;
583	tcp_bpf_clone(sk, newsk);
584
585	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
586
 
 
587	return newsk;
588}
589EXPORT_SYMBOL(tcp_create_openreq_child);
590
591/*
592 * Process an incoming packet for SYN_RECV sockets represented as a
593 * request_sock. Normally sk is the listener socket but for TFO it
594 * points to the child socket.
595 *
596 * XXX (TFO) - The current impl contains a special check for ack
597 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
598 *
599 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
600 */
601
602struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603			   struct request_sock *req,
604			   bool fastopen, bool *req_stolen)
605{
606	struct tcp_options_received tmp_opt;
 
607	struct sock *child;
608	const struct tcphdr *th = tcp_hdr(skb);
609	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610	bool paws_reject = false;
611	bool own_req;
612
613	tmp_opt.saw_tstamp = 0;
614	if (th->doff > (sizeof(struct tcphdr)>>2)) {
615		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617		if (tmp_opt.saw_tstamp) {
618			tmp_opt.ts_recent = req->ts_recent;
619			if (tmp_opt.rcv_tsecr)
620				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621			/* We do not store true stamp, but it is not required,
622			 * it can be estimated (approximately)
623			 * from another data.
624			 */
625			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627		}
628	}
629
630	/* Check for pure retransmitted SYN. */
631	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632	    flg == TCP_FLAG_SYN &&
633	    !paws_reject) {
634		/*
635		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636		 * this case on figure 6 and figure 8, but formal
637		 * protocol description says NOTHING.
638		 * To be more exact, it says that we should send ACK,
639		 * because this segment (at least, if it has no data)
640		 * is out of window.
641		 *
642		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643		 *  describe SYN-RECV state. All the description
644		 *  is wrong, we cannot believe to it and should
645		 *  rely only on common sense and implementation
646		 *  experience.
647		 *
648		 * Enforce "SYN-ACK" according to figure 8, figure 6
649		 * of RFC793, fixed by RFC1122.
650		 *
651		 * Note that even if there is new data in the SYN packet
652		 * they will be thrown away too.
653		 *
654		 * Reset timer after retransmitting SYNACK, similar to
655		 * the idea of fast retransmit in recovery.
656		 */
657		if (!tcp_oow_rate_limited(sock_net(sk), skb,
658					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659					  &tcp_rsk(req)->last_oow_ack_time) &&
660
661		    !inet_rtx_syn_ack(sk, req)) {
662			unsigned long expires = jiffies;
663
664			expires += reqsk_timeout(req, TCP_RTO_MAX);
665			if (!fastopen)
666				mod_timer_pending(&req->rsk_timer, expires);
667			else
668				req->rsk_timer.expires = expires;
669		}
670		return NULL;
671	}
672
673	/* Further reproduces section "SEGMENT ARRIVES"
674	   for state SYN-RECEIVED of RFC793.
675	   It is broken, however, it does not work only
676	   when SYNs are crossed.
677
678	   You would think that SYN crossing is impossible here, since
679	   we should have a SYN_SENT socket (from connect()) on our end,
680	   but this is not true if the crossed SYNs were sent to both
681	   ends by a malicious third party.  We must defend against this,
682	   and to do that we first verify the ACK (as per RFC793, page
683	   36) and reset if it is invalid.  Is this a true full defense?
684	   To convince ourselves, let us consider a way in which the ACK
685	   test can still pass in this 'malicious crossed SYNs' case.
686	   Malicious sender sends identical SYNs (and thus identical sequence
687	   numbers) to both A and B:
688
689		A: gets SYN, seq=7
690		B: gets SYN, seq=7
691
692	   By our good fortune, both A and B select the same initial
693	   send sequence number of seven :-)
694
695		A: sends SYN|ACK, seq=7, ack_seq=8
696		B: sends SYN|ACK, seq=7, ack_seq=8
697
698	   So we are now A eating this SYN|ACK, ACK test passes.  So
699	   does sequence test, SYN is truncated, and thus we consider
700	   it a bare ACK.
701
702	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703	   bare ACK.  Otherwise, we create an established connection.  Both
704	   ends (listening sockets) accept the new incoming connection and try
705	   to talk to each other. 8-)
706
707	   Note: This case is both harmless, and rare.  Possibility is about the
708	   same as us discovering intelligent life on another plant tomorrow.
709
710	   But generally, we should (RFC lies!) to accept ACK
711	   from SYNACK both here and in tcp_rcv_state_process().
712	   tcp_rcv_state_process() does not, hence, we do not too.
713
714	   Note that the case is absolutely generic:
715	   we cannot optimize anything here without
716	   violating protocol. All the checks must be made
717	   before attempt to create socket.
718	 */
719
720	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
721	 *                  and the incoming segment acknowledges something not yet
722	 *                  sent (the segment carries an unacceptable ACK) ...
723	 *                  a reset is sent."
724	 *
725	 * Invalid ACK: reset will be sent by listening socket.
726	 * Note that the ACK validity check for a Fast Open socket is done
727	 * elsewhere and is checked directly against the child socket rather
728	 * than req because user data may have been sent out.
729	 */
730	if ((flg & TCP_FLAG_ACK) && !fastopen &&
731	    (TCP_SKB_CB(skb)->ack_seq !=
732	     tcp_rsk(req)->snt_isn + 1))
733		return sk;
734
735	/* Also, it would be not so bad idea to check rcv_tsecr, which
736	 * is essentially ACK extension and too early or too late values
737	 * should cause reset in unsynchronized states.
738	 */
739
740	/* RFC793: "first check sequence number". */
741
742	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
744		/* Out of window: send ACK and drop. */
745		if (!(flg & TCP_FLAG_RST) &&
746		    !tcp_oow_rate_limited(sock_net(sk), skb,
747					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748					  &tcp_rsk(req)->last_oow_ack_time))
749			req->rsk_ops->send_ack(sk, skb, req);
750		if (paws_reject)
751			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752		return NULL;
753	}
754
755	/* In sequence, PAWS is OK. */
756
757	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758		req->ts_recent = tmp_opt.rcv_tsval;
759
760	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761		/* Truncate SYN, it is out of window starting
762		   at tcp_rsk(req)->rcv_isn + 1. */
763		flg &= ~TCP_FLAG_SYN;
764	}
765
766	/* RFC793: "second check the RST bit" and
767	 *	   "fourth, check the SYN bit"
768	 */
769	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771		goto embryonic_reset;
772	}
773
774	/* ACK sequence verified above, just make sure ACK is
775	 * set.  If ACK not set, just silently drop the packet.
776	 *
777	 * XXX (TFO) - if we ever allow "data after SYN", the
778	 * following check needs to be removed.
779	 */
780	if (!(flg & TCP_FLAG_ACK))
781		return NULL;
782
783	/* For Fast Open no more processing is needed (sk is the
784	 * child socket).
785	 */
786	if (fastopen)
787		return sk;
788
789	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
791	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792		inet_rsk(req)->acked = 1;
793		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794		return NULL;
795	}
 
 
 
 
796
797	/* OK, ACK is valid, create big socket and
798	 * feed this segment to it. It will repeat all
799	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800	 * ESTABLISHED STATE. If it will be dropped after
801	 * socket is created, wait for troubles.
802	 */
803	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804							 req, &own_req);
805	if (!child)
806		goto listen_overflow;
807
808	if (own_req && rsk_drop_req(req)) {
809		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811		return child;
812	}
813
814	sock_rps_save_rxhash(child, skb);
815	tcp_synack_rtt_meas(child, req);
816	*req_stolen = !own_req;
817	return inet_csk_complete_hashdance(sk, child, req, own_req);
818
819listen_overflow:
820	if (sk != req->rsk_listener)
821		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822
823	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824		inet_rsk(req)->acked = 1;
825		return NULL;
826	}
827
828embryonic_reset:
829	if (!(flg & TCP_FLAG_RST)) {
830		/* Received a bad SYN pkt - for TFO We try not to reset
831		 * the local connection unless it's really necessary to
832		 * avoid becoming vulnerable to outside attack aiming at
833		 * resetting legit local connections.
834		 */
835		req->rsk_ops->send_reset(sk, skb);
836	} else if (fastopen) { /* received a valid RST pkt */
837		reqsk_fastopen_remove(sk, req, true);
838		tcp_reset(sk, skb);
839	}
840	if (!fastopen) {
841		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842
843		if (unlinked)
844			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845		*req_stolen = !unlinked;
846	}
847	return NULL;
848}
849EXPORT_SYMBOL(tcp_check_req);
850
851/*
852 * Queue segment on the new socket if the new socket is active,
853 * otherwise we just shortcircuit this and continue with
854 * the new socket.
855 *
856 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857 * when entering. But other states are possible due to a race condition
858 * where after __inet_lookup_established() fails but before the listener
859 * locked is obtained, other packets cause the same connection to
860 * be created.
861 */
862
863int tcp_child_process(struct sock *parent, struct sock *child,
864		      struct sk_buff *skb)
865	__releases(&((child)->sk_lock.slock))
866{
867	int ret = 0;
868	int state = child->sk_state;
869
870	/* record sk_napi_id and sk_rx_queue_mapping of child. */
871	sk_mark_napi_id_set(child, skb);
872
873	tcp_segs_in(tcp_sk(child), skb);
874	if (!sock_owned_by_user(child)) {
875		ret = tcp_rcv_state_process(child, skb);
 
876		/* Wakeup parent, send SIGIO */
877		if (state == TCP_SYN_RECV && child->sk_state != state)
878			parent->sk_data_ready(parent);
879	} else {
880		/* Alas, it is possible again, because we do lookup
881		 * in main socket hash table and lock on listening
882		 * socket does not protect us more.
883		 */
884		__sk_add_backlog(child, skb);
885	}
886
887	bh_unlock_sock(child);
888	sock_put(child);
889	return ret;
890}
891EXPORT_SYMBOL(tcp_child_process);