Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
  53#define pr_fmt(fmt) "TCP: " fmt
  54
  55#include <linux/bottom_half.h>
  56#include <linux/types.h>
  57#include <linux/fcntl.h>
  58#include <linux/module.h>
  59#include <linux/random.h>
  60#include <linux/cache.h>
  61#include <linux/jhash.h>
  62#include <linux/init.h>
  63#include <linux/times.h>
  64#include <linux/slab.h>
  65
  66#include <net/net_namespace.h>
  67#include <net/icmp.h>
  68#include <net/inet_hashtables.h>
  69#include <net/tcp.h>
  70#include <net/transp_v6.h>
  71#include <net/ipv6.h>
  72#include <net/inet_common.h>
  73#include <net/timewait_sock.h>
  74#include <net/xfrm.h>
  75#include <net/netdma.h>
  76#include <net/secure_seq.h>
  77#include <net/tcp_memcontrol.h>
  78
  79#include <linux/inet.h>
  80#include <linux/ipv6.h>
  81#include <linux/stddef.h>
  82#include <linux/proc_fs.h>
  83#include <linux/seq_file.h>
 
 
  84
  85#include <linux/crypto.h>
  86#include <linux/scatterlist.h>
  87
  88int sysctl_tcp_tw_reuse __read_mostly;
  89int sysctl_tcp_low_latency __read_mostly;
  90EXPORT_SYMBOL(sysctl_tcp_low_latency);
  91
  92
  93#ifdef CONFIG_TCP_MD5SIG
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  96#endif
  97
  98struct inet_hashinfo tcp_hashinfo;
  99EXPORT_SYMBOL(tcp_hashinfo);
 100
 101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 102{
 103	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 104					  ip_hdr(skb)->saddr,
 105					  tcp_hdr(skb)->dest,
 106					  tcp_hdr(skb)->source);
 107}
 108
 109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 110{
 
 
 111	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 112	struct tcp_sock *tp = tcp_sk(sk);
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	/* With PAWS, it is safe from the viewpoint
 115	   of data integrity. Even without PAWS it is safe provided sequence
 116	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 117
 118	   Actually, the idea is close to VJ's one, only timestamp cache is
 119	   held not per host, but per port pair and TW bucket is used as state
 120	   holder.
 121
 122	   If TW bucket has been already destroyed we fall back to VJ's scheme
 123	   and use initial timestamp retrieved from peer table.
 124	 */
 125	if (tcptw->tw_ts_recent_stamp &&
 126	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 127			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 128		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 129		if (tp->write_seq == 0)
 130			tp->write_seq = 1;
 131		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 132		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133		sock_hold(sktw);
 134		return 1;
 135	}
 136
 137	return 0;
 138}
 139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 140
 141static int tcp_repair_connect(struct sock *sk)
 
 142{
 143	tcp_connect_init(sk);
 144	tcp_finish_connect(sk, NULL);
 
 
 
 
 145
 146	return 0;
 
 
 147}
 148
 149/* This will initiate an outgoing connection. */
 150int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 151{
 152	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 153	struct inet_sock *inet = inet_sk(sk);
 154	struct tcp_sock *tp = tcp_sk(sk);
 
 
 155	__be16 orig_sport, orig_dport;
 156	__be32 daddr, nexthop;
 157	struct flowi4 *fl4;
 158	struct rtable *rt;
 159	int err;
 160	struct ip_options_rcu *inet_opt;
 161
 162	if (addr_len < sizeof(struct sockaddr_in))
 163		return -EINVAL;
 164
 165	if (usin->sin_family != AF_INET)
 166		return -EAFNOSUPPORT;
 167
 168	nexthop = daddr = usin->sin_addr.s_addr;
 169	inet_opt = rcu_dereference_protected(inet->inet_opt,
 170					     sock_owned_by_user(sk));
 171	if (inet_opt && inet_opt->opt.srr) {
 172		if (!daddr)
 173			return -EINVAL;
 174		nexthop = inet_opt->opt.faddr;
 175	}
 176
 177	orig_sport = inet->inet_sport;
 178	orig_dport = usin->sin_port;
 179	fl4 = &inet->cork.fl.u.ip4;
 180	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 181			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 182			      IPPROTO_TCP,
 183			      orig_sport, orig_dport, sk, true);
 184	if (IS_ERR(rt)) {
 185		err = PTR_ERR(rt);
 186		if (err == -ENETUNREACH)
 187			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 188		return err;
 189	}
 190
 191	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 192		ip_rt_put(rt);
 193		return -ENETUNREACH;
 194	}
 195
 196	if (!inet_opt || !inet_opt->opt.srr)
 197		daddr = fl4->daddr;
 198
 199	if (!inet->inet_saddr)
 200		inet->inet_saddr = fl4->saddr;
 201	inet->inet_rcv_saddr = inet->inet_saddr;
 
 
 
 
 
 
 
 
 202
 203	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 204		/* Reset inherited state */
 205		tp->rx_opt.ts_recent	   = 0;
 206		tp->rx_opt.ts_recent_stamp = 0;
 207		if (likely(!tp->repair))
 208			tp->write_seq	   = 0;
 209	}
 210
 211	if (tcp_death_row.sysctl_tw_recycle &&
 212	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 213		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 214		/*
 215		 * VJ's idea. We save last timestamp seen from
 216		 * the destination in peer table, when entering state
 217		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 218		 * when trying new connection.
 219		 */
 220		if (peer) {
 221			inet_peer_refcheck(peer);
 222			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 223				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 224				tp->rx_opt.ts_recent = peer->tcp_ts;
 225			}
 226		}
 227	}
 228
 229	inet->inet_dport = usin->sin_port;
 230	inet->inet_daddr = daddr;
 231
 232	inet_csk(sk)->icsk_ext_hdr_len = 0;
 233	if (inet_opt)
 234		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 235
 236	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 237
 238	/* Socket identity is still unknown (sport may be zero).
 239	 * However we set state to SYN-SENT and not releasing socket
 240	 * lock select source port, enter ourselves into the hash tables and
 241	 * complete initialization after this.
 242	 */
 243	tcp_set_state(sk, TCP_SYN_SENT);
 244	err = inet_hash_connect(&tcp_death_row, sk);
 245	if (err)
 246		goto failure;
 247
 
 
 248	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 249			       inet->inet_sport, inet->inet_dport, sk);
 250	if (IS_ERR(rt)) {
 251		err = PTR_ERR(rt);
 252		rt = NULL;
 253		goto failure;
 254	}
 255	/* OK, now commit destination to socket.  */
 256	sk->sk_gso_type = SKB_GSO_TCPV4;
 257	sk_setup_caps(sk, &rt->dst);
 
 258
 259	if (!tp->write_seq && likely(!tp->repair))
 260		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 261							   inet->inet_daddr,
 262							   inet->inet_sport,
 263							   usin->sin_port);
 
 
 
 
 
 264
 265	inet->inet_id = tp->write_seq ^ jiffies;
 266
 267	if (likely(!tp->repair))
 268		err = tcp_connect(sk);
 269	else
 270		err = tcp_repair_connect(sk);
 
 
 271
 272	rt = NULL;
 273	if (err)
 274		goto failure;
 275
 276	return 0;
 277
 278failure:
 279	/*
 280	 * This unhashes the socket and releases the local port,
 281	 * if necessary.
 282	 */
 283	tcp_set_state(sk, TCP_CLOSE);
 
 284	ip_rt_put(rt);
 285	sk->sk_route_caps = 0;
 286	inet->inet_dport = 0;
 287	return err;
 288}
 289EXPORT_SYMBOL(tcp_v4_connect);
 290
 291/*
 292 * This routine does path mtu discovery as defined in RFC1191.
 
 
 293 */
 294static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 295{
 296	struct dst_entry *dst;
 297	struct inet_sock *inet = inet_sk(sk);
 
 
 298
 299	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 300	 * send out by Linux are always <576bytes so they should go through
 301	 * unfragmented).
 302	 */
 303	if (sk->sk_state == TCP_LISTEN)
 304		return;
 305
 306	/* We don't check in the destentry if pmtu discovery is forbidden
 307	 * on this route. We just assume that no packet_to_big packets
 308	 * are send back when pmtu discovery is not active.
 309	 * There is a small race when the user changes this flag in the
 310	 * route, but I think that's acceptable.
 311	 */
 312	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 313		return;
 314
 315	dst->ops->update_pmtu(dst, mtu);
 316
 317	/* Something is about to be wrong... Remember soft error
 318	 * for the case, if this connection will not able to recover.
 319	 */
 320	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 321		sk->sk_err_soft = EMSGSIZE;
 322
 323	mtu = dst_mtu(dst);
 324
 325	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 
 326	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 327		tcp_sync_mss(sk, mtu);
 328
 329		/* Resend the TCP packet because it's
 330		 * clear that the old packet has been
 331		 * dropped. This is the new "fast" path mtu
 332		 * discovery.
 333		 */
 334		tcp_simple_retransmit(sk);
 335	} /* else let the usual retransmit timer handle it */
 336}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337
 338/*
 339 * This routine is called by the ICMP module when it gets some
 340 * sort of error condition.  If err < 0 then the socket should
 341 * be closed and the error returned to the user.  If err > 0
 342 * it's just the icmp type << 8 | icmp code.  After adjustment
 343 * header points to the first 8 bytes of the tcp header.  We need
 344 * to find the appropriate port.
 345 *
 346 * The locking strategy used here is very "optimistic". When
 347 * someone else accesses the socket the ICMP is just dropped
 348 * and for some paths there is no check at all.
 349 * A more general error queue to queue errors for later handling
 350 * is probably better.
 351 *
 352 */
 353
 354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 355{
 356	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 357	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 358	struct inet_connection_sock *icsk;
 359	struct tcp_sock *tp;
 360	struct inet_sock *inet;
 361	const int type = icmp_hdr(icmp_skb)->type;
 362	const int code = icmp_hdr(icmp_skb)->code;
 363	struct sock *sk;
 364	struct sk_buff *skb;
 365	__u32 seq;
 366	__u32 remaining;
 367	int err;
 368	struct net *net = dev_net(icmp_skb->dev);
 369
 370	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374
 375	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 376			iph->saddr, th->source, inet_iif(icmp_skb));
 
 377	if (!sk) {
 378		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 379		return;
 380	}
 381	if (sk->sk_state == TCP_TIME_WAIT) {
 382		inet_twsk_put(inet_twsk(sk));
 383		return;
 
 
 
 
 
 
 
 
 
 384	}
 385
 386	bh_lock_sock(sk);
 387	/* If too many ICMPs get dropped on busy
 388	 * servers this needs to be solved differently.
 
 
 389	 */
 390	if (sock_owned_by_user(sk))
 391		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 392
 
 393	if (sk->sk_state == TCP_CLOSE)
 394		goto out;
 395
 396	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 397		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 398		goto out;
 
 
 
 399	}
 400
 401	icsk = inet_csk(sk);
 402	tp = tcp_sk(sk);
 403	seq = ntohl(th->seq);
 
 
 404	if (sk->sk_state != TCP_LISTEN &&
 405	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 406		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 407		goto out;
 408	}
 409
 410	switch (type) {
 
 
 
 
 411	case ICMP_SOURCE_QUENCH:
 412		/* Just silently ignore these. */
 413		goto out;
 414	case ICMP_PARAMETERPROB:
 415		err = EPROTO;
 416		break;
 417	case ICMP_DEST_UNREACH:
 418		if (code > NR_ICMP_UNREACH)
 419			goto out;
 420
 421		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 422			if (!sock_owned_by_user(sk))
 423				do_pmtu_discovery(sk, iph, info);
 
 
 
 
 
 
 
 
 
 
 
 
 424			goto out;
 425		}
 426
 427		err = icmp_err_convert[code].errno;
 428		/* check if icmp_skb allows revert of backoff
 429		 * (see draft-zimmermann-tcp-lcd) */
 430		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 431			break;
 432		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 433		    !icsk->icsk_backoff)
 434			break;
 435
 436		if (sock_owned_by_user(sk))
 437			break;
 438
 439		icsk->icsk_backoff--;
 440		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 441			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 442		tcp_bound_rto(sk);
 443
 444		skb = tcp_write_queue_head(sk);
 445		BUG_ON(!skb);
 446
 447		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 448				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 449
 450		if (remaining) {
 451			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 452						  remaining, TCP_RTO_MAX);
 453		} else {
 454			/* RTO revert clocked out retransmission.
 455			 * Will retransmit now */
 456			tcp_retransmit_timer(sk);
 457		}
 458
 459		break;
 460	case ICMP_TIME_EXCEEDED:
 461		err = EHOSTUNREACH;
 462		break;
 463	default:
 464		goto out;
 465	}
 466
 467	switch (sk->sk_state) {
 468		struct request_sock *req, **prev;
 469	case TCP_LISTEN:
 470		if (sock_owned_by_user(sk))
 471			goto out;
 472
 473		req = inet_csk_search_req(sk, &prev, th->dest,
 474					  iph->daddr, iph->saddr);
 475		if (!req)
 476			goto out;
 477
 478		/* ICMPs are not backlogged, hence we cannot get
 479		   an established socket here.
 480		 */
 481		WARN_ON(req->sk);
 
 482
 483		if (seq != tcp_rsk(req)->snt_isn) {
 484			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 485			goto out;
 486		}
 487
 488		/*
 489		 * Still in SYN_RECV, just remove it silently.
 490		 * There is no good way to pass the error to the newly
 491		 * created socket, and POSIX does not want network
 492		 * errors returned from accept().
 493		 */
 494		inet_csk_reqsk_queue_drop(sk, req, prev);
 495		goto out;
 496
 497	case TCP_SYN_SENT:
 498	case TCP_SYN_RECV:  /* Cannot happen.
 499			       It can f.e. if SYNs crossed.
 500			     */
 501		if (!sock_owned_by_user(sk)) {
 502			sk->sk_err = err;
 503
 504			sk->sk_error_report(sk);
 505
 506			tcp_done(sk);
 507		} else {
 508			sk->sk_err_soft = err;
 509		}
 510		goto out;
 511	}
 512
 513	/* If we've already connected we will keep trying
 514	 * until we time out, or the user gives up.
 515	 *
 516	 * rfc1122 4.2.3.9 allows to consider as hard errors
 517	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 518	 * but it is obsoleted by pmtu discovery).
 519	 *
 520	 * Note, that in modern internet, where routing is unreliable
 521	 * and in each dark corner broken firewalls sit, sending random
 522	 * errors ordered by their masters even this two messages finally lose
 523	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 524	 *
 525	 * Now we are in compliance with RFCs.
 526	 *							--ANK (980905)
 527	 */
 528
 529	inet = inet_sk(sk);
 530	if (!sock_owned_by_user(sk) && inet->recverr) {
 531		sk->sk_err = err;
 532		sk->sk_error_report(sk);
 533	} else	{ /* Only an error on timeout */
 534		sk->sk_err_soft = err;
 535	}
 536
 537out:
 538	bh_unlock_sock(sk);
 539	sock_put(sk);
 
 540}
 541
 542static void __tcp_v4_send_check(struct sk_buff *skb,
 543				__be32 saddr, __be32 daddr)
 544{
 545	struct tcphdr *th = tcp_hdr(skb);
 546
 547	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 548		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 549		skb->csum_start = skb_transport_header(skb) - skb->head;
 550		skb->csum_offset = offsetof(struct tcphdr, check);
 551	} else {
 552		th->check = tcp_v4_check(skb->len, saddr, daddr,
 553					 csum_partial(th,
 554						      th->doff << 2,
 555						      skb->csum));
 556	}
 557}
 558
 559/* This routine computes an IPv4 TCP checksum. */
 560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 561{
 562	const struct inet_sock *inet = inet_sk(sk);
 563
 564	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 565}
 566EXPORT_SYMBOL(tcp_v4_send_check);
 567
 568int tcp_v4_gso_send_check(struct sk_buff *skb)
 569{
 570	const struct iphdr *iph;
 571	struct tcphdr *th;
 572
 573	if (!pskb_may_pull(skb, sizeof(*th)))
 574		return -EINVAL;
 575
 576	iph = ip_hdr(skb);
 577	th = tcp_hdr(skb);
 578
 579	th->check = 0;
 580	skb->ip_summed = CHECKSUM_PARTIAL;
 581	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 582	return 0;
 583}
 584
 585/*
 586 *	This routine will send an RST to the other tcp.
 587 *
 588 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 589 *		      for reset.
 590 *	Answer: if a packet caused RST, it is not for a socket
 591 *		existing in our system, if it is matched to a socket,
 592 *		it is just duplicate segment or bug in other side's TCP.
 593 *		So that we build reply only basing on parameters
 594 *		arrived with segment.
 595 *	Exception: precedence violation. We do not implement it in any case.
 596 */
 597
 598static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 599{
 600	const struct tcphdr *th = tcp_hdr(skb);
 601	struct {
 602		struct tcphdr th;
 603#ifdef CONFIG_TCP_MD5SIG
 604		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 605#endif
 606	} rep;
 607	struct ip_reply_arg arg;
 608#ifdef CONFIG_TCP_MD5SIG
 609	struct tcp_md5sig_key *key;
 610	const __u8 *hash_location = NULL;
 611	unsigned char newhash[16];
 612	int genhash;
 613	struct sock *sk1 = NULL;
 614#endif
 
 
 615	struct net *net;
 616
 617	/* Never send a reset in response to a reset. */
 618	if (th->rst)
 619		return;
 620
 621	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 
 
 
 622		return;
 623
 624	/* Swap the send and the receive. */
 625	memset(&rep, 0, sizeof(rep));
 626	rep.th.dest   = th->source;
 627	rep.th.source = th->dest;
 628	rep.th.doff   = sizeof(struct tcphdr) / 4;
 629	rep.th.rst    = 1;
 630
 631	if (th->ack) {
 632		rep.th.seq = th->ack_seq;
 633	} else {
 634		rep.th.ack = 1;
 635		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 636				       skb->len - (th->doff << 2));
 637	}
 638
 639	memset(&arg, 0, sizeof(arg));
 640	arg.iov[0].iov_base = (unsigned char *)&rep;
 641	arg.iov[0].iov_len  = sizeof(rep.th);
 642
 
 643#ifdef CONFIG_TCP_MD5SIG
 
 644	hash_location = tcp_parse_md5sig_option(th);
 645	if (!sk && hash_location) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646		/*
 647		 * active side is lost. Try to find listening socket through
 648		 * source port, and then find md5 key through listening socket.
 649		 * we are not loose security here:
 650		 * Incoming packet is checked with md5 hash with finding key,
 651		 * no RST generated if md5 hash doesn't match.
 652		 */
 653		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
 654					     &tcp_hashinfo, ip_hdr(skb)->daddr,
 655					     ntohs(th->source), inet_iif(skb));
 
 656		/* don't send rst if it can't find key */
 657		if (!sk1)
 658			return;
 659		rcu_read_lock();
 660		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
 661					&ip_hdr(skb)->saddr, AF_INET);
 
 
 
 
 662		if (!key)
 663			goto release_sk1;
 
 664
 665		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
 666		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 667			goto release_sk1;
 668	} else {
 669		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
 670					     &ip_hdr(skb)->saddr,
 671					     AF_INET) : NULL;
 672	}
 673
 674	if (key) {
 675		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 676				   (TCPOPT_NOP << 16) |
 677				   (TCPOPT_MD5SIG << 8) |
 678				   TCPOLEN_MD5SIG);
 679		/* Update length and the length the header thinks exists */
 680		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 681		rep.th.doff = arg.iov[0].iov_len / 4;
 682
 683		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 684				     key, ip_hdr(skb)->saddr,
 685				     ip_hdr(skb)->daddr, &rep.th);
 686	}
 687#endif
 
 
 
 
 
 
 
 
 
 
 
 688	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 689				      ip_hdr(skb)->saddr, /* XXX */
 690				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 691	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 692	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 
 693	/* When socket is gone, all binding information is lost.
 694	 * routing might fail in this case. using iif for oif to
 695	 * make sure we can deliver it
 696	 */
 697	arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
 
 
 
 
 698
 699	net = dev_net(skb_dst(skb)->dev);
 700	arg.tos = ip_hdr(skb)->tos;
 701	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 702		      &arg, arg.iov[0].iov_len);
 703
 704	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 705	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707#ifdef CONFIG_TCP_MD5SIG
 708release_sk1:
 709	if (sk1) {
 710		rcu_read_unlock();
 711		sock_put(sk1);
 712	}
 713#endif
 714}
 715
 716/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 717   outside socket context is ugly, certainly. What can I do?
 718 */
 719
 720static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 721			    u32 win, u32 ts, int oif,
 
 722			    struct tcp_md5sig_key *key,
 723			    int reply_flags, u8 tos)
 724{
 725	const struct tcphdr *th = tcp_hdr(skb);
 726	struct {
 727		struct tcphdr th;
 728		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 729#ifdef CONFIG_TCP_MD5SIG
 730			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 731#endif
 732			];
 733	} rep;
 
 734	struct ip_reply_arg arg;
 735	struct net *net = dev_net(skb_dst(skb)->dev);
 
 736
 737	memset(&rep.th, 0, sizeof(struct tcphdr));
 738	memset(&arg, 0, sizeof(arg));
 739
 740	arg.iov[0].iov_base = (unsigned char *)&rep;
 741	arg.iov[0].iov_len  = sizeof(rep.th);
 742	if (ts) {
 743		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 744				   (TCPOPT_TIMESTAMP << 8) |
 745				   TCPOLEN_TIMESTAMP);
 746		rep.opt[1] = htonl(tcp_time_stamp);
 747		rep.opt[2] = htonl(ts);
 748		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 749	}
 750
 751	/* Swap the send and the receive. */
 752	rep.th.dest    = th->source;
 753	rep.th.source  = th->dest;
 754	rep.th.doff    = arg.iov[0].iov_len / 4;
 755	rep.th.seq     = htonl(seq);
 756	rep.th.ack_seq = htonl(ack);
 757	rep.th.ack     = 1;
 758	rep.th.window  = htons(win);
 759
 760#ifdef CONFIG_TCP_MD5SIG
 761	if (key) {
 762		int offset = (ts) ? 3 : 0;
 763
 764		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 765					  (TCPOPT_NOP << 16) |
 766					  (TCPOPT_MD5SIG << 8) |
 767					  TCPOLEN_MD5SIG);
 768		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 769		rep.th.doff = arg.iov[0].iov_len/4;
 770
 771		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 772				    key, ip_hdr(skb)->saddr,
 773				    ip_hdr(skb)->daddr, &rep.th);
 774	}
 775#endif
 776	arg.flags = reply_flags;
 777	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 778				      ip_hdr(skb)->saddr, /* XXX */
 779				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 780	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 781	if (oif)
 782		arg.bound_dev_if = oif;
 783	arg.tos = tos;
 784	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 785		      &arg, arg.iov[0].iov_len);
 786
 787	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 791{
 792	struct inet_timewait_sock *tw = inet_twsk(sk);
 793	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 794
 795	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 
 796			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 
 797			tcptw->tw_ts_recent,
 798			tw->tw_bound_dev_if,
 799			tcp_twsk_md5_key(tcptw),
 800			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 801			tw->tw_tos
 802			);
 803
 804	inet_twsk_put(tw);
 805}
 806
 807static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 808				  struct request_sock *req)
 809{
 810	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 811			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812			req->ts_recent,
 813			0,
 814			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
 815					  AF_INET),
 816			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 817			ip_hdr(skb)->tos);
 818}
 819
 820/*
 821 *	Send a SYN-ACK after having received a SYN.
 822 *	This still operates on a request_sock only, not on a big
 823 *	socket.
 824 */
 825static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 
 826			      struct request_sock *req,
 827			      struct request_values *rvp,
 828			      u16 queue_mapping)
 
 829{
 830	const struct inet_request_sock *ireq = inet_rsk(req);
 831	struct flowi4 fl4;
 832	int err = -1;
 833	struct sk_buff * skb;
 
 834
 835	/* First, grab a route. */
 836	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 837		return -1;
 838
 839	skb = tcp_make_synack(sk, dst, req, rvp);
 840
 841	if (skb) {
 842		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 843
 844		skb_set_queue_mapping(skb, queue_mapping);
 845		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 846					    ireq->rmt_addr,
 847					    ireq->opt);
 
 
 
 
 
 
 
 
 
 
 
 848		err = net_xmit_eval(err);
 849	}
 850
 851	dst_release(dst);
 852	return err;
 853}
 854
 855static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 856			      struct request_values *rvp)
 857{
 858	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 859	return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
 860}
 861
 862/*
 863 *	IPv4 request_sock destructor.
 864 */
 865static void tcp_v4_reqsk_destructor(struct request_sock *req)
 866{
 867	kfree(inet_rsk(req)->opt);
 868}
 869
 
 870/*
 871 * Return true if a syncookie should be sent
 
 
 872 */
 873bool tcp_syn_flood_action(struct sock *sk,
 874			 const struct sk_buff *skb,
 875			 const char *proto)
 876{
 877	const char *msg = "Dropping request";
 878	bool want_cookie = false;
 879	struct listen_sock *lopt;
 880
 
 
 881
 
 
 
 
 882
 883#ifdef CONFIG_SYN_COOKIES
 884	if (sysctl_tcp_syncookies) {
 885		msg = "Sending cookies";
 886		want_cookie = true;
 887		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 888	} else
 889#endif
 890		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 891
 892	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 893	if (!lopt->synflood_warned) {
 894		lopt->synflood_warned = 1;
 895		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
 896			proto, ntohs(tcp_hdr(skb)->dest), msg);
 897	}
 898	return want_cookie;
 899}
 900EXPORT_SYMBOL(tcp_syn_flood_action);
 901
 902/*
 903 * Save and compile IPv4 options into the request_sock if needed.
 904 */
 905static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 906						  struct sk_buff *skb)
 907{
 908	const struct ip_options *opt = &(IPCB(skb)->opt);
 909	struct ip_options_rcu *dopt = NULL;
 
 
 
 
 910
 911	if (opt && opt->optlen) {
 912		int opt_size = sizeof(*dopt) + opt->optlen;
 
 
 
 913
 914		dopt = kmalloc(opt_size, GFP_ATOMIC);
 915		if (dopt) {
 916			if (ip_options_echo(&dopt->opt, skb)) {
 917				kfree(dopt);
 918				dopt = NULL;
 919			}
 
 
 
 
 
 
 
 
 
 
 
 920		}
 
 
 
 921	}
 922	return dopt;
 923}
 
 924
 925#ifdef CONFIG_TCP_MD5SIG
 926/*
 927 * RFC2385 MD5 checksumming requires a mapping of
 928 * IP address->MD5 Key.
 929 * We need to maintain these in the sk structure.
 930 */
 931
 932/* Find the Key structure for an address.  */
 933struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
 934					 const union tcp_md5_addr *addr,
 935					 int family)
 936{
 937	struct tcp_sock *tp = tcp_sk(sk);
 938	struct tcp_md5sig_key *key;
 939	struct hlist_node *pos;
 940	unsigned int size = sizeof(struct in_addr);
 941	struct tcp_md5sig_info *md5sig;
 942
 943	/* caller either holds rcu_read_lock() or socket lock */
 944	md5sig = rcu_dereference_check(tp->md5sig_info,
 945				       sock_owned_by_user(sk) ||
 946				       lockdep_is_held(&sk->sk_lock.slock));
 947	if (!md5sig)
 948		return NULL;
 949#if IS_ENABLED(CONFIG_IPV6)
 950	if (family == AF_INET6)
 951		size = sizeof(struct in6_addr);
 952#endif
 953	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
 
 954		if (key->family != family)
 955			continue;
 956		if (!memcmp(&key->addr, addr, size))
 
 
 
 
 
 957			return key;
 958	}
 959	return NULL;
 960}
 961EXPORT_SYMBOL(tcp_md5_do_lookup);
 962
 963struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 964					 struct sock *addr_sk)
 965{
 966	union tcp_md5_addr *addr;
 
 967
 968	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
 969	return tcp_md5_do_lookup(sk, addr, AF_INET);
 
 
 970}
 971EXPORT_SYMBOL(tcp_v4_md5_lookup);
 972
 973static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 974						      struct request_sock *req)
 975{
 976	union tcp_md5_addr *addr;
 
 
 
 
 
 977
 978	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
 979	return tcp_md5_do_lookup(sk, addr, AF_INET);
 
 
 980}
 981
 982/* This can be called on a newly created socket, from other files */
 983int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
 984		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
 
 985{
 986	/* Add Key to the list */
 987	struct tcp_md5sig_key *key;
 988	struct tcp_sock *tp = tcp_sk(sk);
 989	struct tcp_md5sig_info *md5sig;
 990
 991	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
 992	if (key) {
 993		/* Pre-existing entry - just update that one. */
 994		memcpy(key->key, newkey, newkeylen);
 995		key->keylen = newkeylen;
 
 
 
 
 
 
 
 
 
 
 
 
 996		return 0;
 997	}
 998
 999	md5sig = rcu_dereference_protected(tp->md5sig_info,
1000					   sock_owned_by_user(sk));
1001	if (!md5sig) {
1002		md5sig = kmalloc(sizeof(*md5sig), gfp);
1003		if (!md5sig)
1004			return -ENOMEM;
1005
1006		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007		INIT_HLIST_HEAD(&md5sig->head);
1008		rcu_assign_pointer(tp->md5sig_info, md5sig);
1009	}
1010
1011	key = sock_kmalloc(sk, sizeof(*key), gfp);
1012	if (!key)
1013		return -ENOMEM;
1014	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015		sock_kfree_s(sk, key, sizeof(*key));
1016		return -ENOMEM;
1017	}
1018
1019	memcpy(key->key, newkey, newkeylen);
1020	key->keylen = newkeylen;
1021	key->family = family;
 
 
 
1022	memcpy(&key->addr, addr,
1023	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1024				      sizeof(struct in_addr));
1025	hlist_add_head_rcu(&key->node, &md5sig->head);
1026	return 0;
1027}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
 
 
1031{
1032	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	struct tcp_md5sig_key *key;
1034	struct tcp_md5sig_info *md5sig;
1035
1036	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037	if (!key)
1038		return -ENOENT;
1039	hlist_del_rcu(&key->node);
1040	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041	kfree_rcu(key, rcu);
1042	md5sig = rcu_dereference_protected(tp->md5sig_info,
1043					   sock_owned_by_user(sk));
1044	if (hlist_empty(&md5sig->head))
1045		tcp_free_md5sig_pool();
1046	return 0;
1047}
1048EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050void tcp_clear_md5_list(struct sock *sk)
1051{
1052	struct tcp_sock *tp = tcp_sk(sk);
1053	struct tcp_md5sig_key *key;
1054	struct hlist_node *pos, *n;
1055	struct tcp_md5sig_info *md5sig;
1056
1057	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059	if (!hlist_empty(&md5sig->head))
1060		tcp_free_md5sig_pool();
1061	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062		hlist_del_rcu(&key->node);
1063		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064		kfree_rcu(key, rcu);
1065	}
1066}
1067
1068static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069				 int optlen)
1070{
1071	struct tcp_md5sig cmd;
1072	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
 
 
 
 
1073
1074	if (optlen < sizeof(cmd))
1075		return -EINVAL;
1076
1077	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078		return -EFAULT;
1079
1080	if (sin->sin_family != AF_INET)
1081		return -EINVAL;
1082
1083	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085				      AF_INET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088		return -EINVAL;
1089
1090	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092			      GFP_KERNEL);
1093}
1094
1095static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096					__be32 daddr, __be32 saddr, int nbytes)
 
1097{
1098	struct tcp4_pseudohdr *bp;
1099	struct scatterlist sg;
 
1100
1101	bp = &hp->md5_blk.ip4;
1102
1103	/*
1104	 * 1. the TCP pseudo-header (in the order: source IP address,
1105	 * destination IP address, zero-padded protocol number, and
1106	 * segment length)
1107	 */
1108	bp->saddr = saddr;
1109	bp->daddr = daddr;
1110	bp->pad = 0;
1111	bp->protocol = IPPROTO_TCP;
1112	bp->len = cpu_to_be16(nbytes);
1113
1114	sg_init_one(&sg, bp, sizeof(*bp));
1115	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
 
 
 
 
 
 
1116}
1117
1118static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120{
1121	struct tcp_md5sig_pool *hp;
1122	struct hash_desc *desc;
1123
1124	hp = tcp_get_md5sig_pool();
1125	if (!hp)
1126		goto clear_hash_noput;
1127	desc = &hp->md5_desc;
1128
1129	if (crypto_hash_init(desc))
1130		goto clear_hash;
1131	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132		goto clear_hash;
1133	if (tcp_md5_hash_header(hp, th))
1134		goto clear_hash;
1135	if (tcp_md5_hash_key(hp, key))
1136		goto clear_hash;
1137	if (crypto_hash_final(desc, md5_hash))
 
1138		goto clear_hash;
1139
1140	tcp_put_md5sig_pool();
1141	return 0;
1142
1143clear_hash:
1144	tcp_put_md5sig_pool();
1145clear_hash_noput:
1146	memset(md5_hash, 0, 16);
1147	return 1;
1148}
1149
1150int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151			const struct sock *sk, const struct request_sock *req,
1152			const struct sk_buff *skb)
1153{
1154	struct tcp_md5sig_pool *hp;
1155	struct hash_desc *desc;
1156	const struct tcphdr *th = tcp_hdr(skb);
1157	__be32 saddr, daddr;
1158
1159	if (sk) {
1160		saddr = inet_sk(sk)->inet_saddr;
1161		daddr = inet_sk(sk)->inet_daddr;
1162	} else if (req) {
1163		saddr = inet_rsk(req)->loc_addr;
1164		daddr = inet_rsk(req)->rmt_addr;
1165	} else {
1166		const struct iphdr *iph = ip_hdr(skb);
1167		saddr = iph->saddr;
1168		daddr = iph->daddr;
1169	}
1170
1171	hp = tcp_get_md5sig_pool();
1172	if (!hp)
1173		goto clear_hash_noput;
1174	desc = &hp->md5_desc;
1175
1176	if (crypto_hash_init(desc))
1177		goto clear_hash;
1178
1179	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180		goto clear_hash;
1181	if (tcp_md5_hash_header(hp, th))
1182		goto clear_hash;
1183	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184		goto clear_hash;
1185	if (tcp_md5_hash_key(hp, key))
1186		goto clear_hash;
1187	if (crypto_hash_final(desc, md5_hash))
 
1188		goto clear_hash;
1189
1190	tcp_put_md5sig_pool();
1191	return 0;
1192
1193clear_hash:
1194	tcp_put_md5sig_pool();
1195clear_hash_noput:
1196	memset(md5_hash, 0, 16);
1197	return 1;
1198}
1199EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202{
1203	/*
1204	 * This gets called for each TCP segment that arrives
1205	 * so we want to be efficient.
1206	 * We have 3 drop cases:
1207	 * o No MD5 hash and one expected.
1208	 * o MD5 hash and we're not expecting one.
1209	 * o MD5 hash and its wrong.
1210	 */
1211	const __u8 *hash_location = NULL;
1212	struct tcp_md5sig_key *hash_expected;
1213	const struct iphdr *iph = ip_hdr(skb);
1214	const struct tcphdr *th = tcp_hdr(skb);
1215	int genhash;
1216	unsigned char newhash[16];
1217
1218	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219					  AF_INET);
1220	hash_location = tcp_parse_md5sig_option(th);
 
 
 
1221
1222	/* We've parsed the options - do we have a hash? */
1223	if (!hash_expected && !hash_location)
1224		return false;
 
1225
1226	if (hash_expected && !hash_location) {
1227		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228		return true;
1229	}
 
 
1230
1231	if (!hash_expected && hash_location) {
1232		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233		return true;
1234	}
1235
1236	/* Okay, so this is hash_expected and hash_location -
1237	 * so we need to calculate the checksum.
1238	 */
1239	genhash = tcp_v4_md5_hash_skb(newhash,
1240				      hash_expected,
1241				      NULL, NULL, skb);
1242
1243	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245				     &iph->saddr, ntohs(th->source),
1246				     &iph->daddr, ntohs(th->dest),
1247				     genhash ? " tcp_v4_calc_md5_hash failed"
1248				     : "");
1249		return true;
1250	}
1251	return false;
1252}
1253
1254#endif
1255
1256struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257	.family		=	PF_INET,
1258	.obj_size	=	sizeof(struct tcp_request_sock),
1259	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1260	.send_ack	=	tcp_v4_reqsk_send_ack,
1261	.destructor	=	tcp_v4_reqsk_destructor,
1262	.send_reset	=	tcp_v4_send_reset,
1263	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1264};
1265
 
 
1266#ifdef CONFIG_TCP_MD5SIG
1267static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1269	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1270};
1271#endif
 
 
 
 
 
 
 
 
1272
1273int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274{
1275	struct tcp_extend_values tmp_ext;
1276	struct tcp_options_received tmp_opt;
1277	const u8 *hash_location;
1278	struct request_sock *req;
1279	struct inet_request_sock *ireq;
1280	struct tcp_sock *tp = tcp_sk(sk);
1281	struct dst_entry *dst = NULL;
1282	__be32 saddr = ip_hdr(skb)->saddr;
1283	__be32 daddr = ip_hdr(skb)->daddr;
1284	__u32 isn = TCP_SKB_CB(skb)->when;
1285	bool want_cookie = false;
1286
1287	/* Never answer to SYNs send to broadcast or multicast */
1288	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289		goto drop;
1290
1291	/* TW buckets are converted to open requests without
1292	 * limitations, they conserve resources and peer is
1293	 * evidently real one.
1294	 */
1295	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297		if (!want_cookie)
1298			goto drop;
1299	}
1300
1301	/* Accept backlog is full. If we have already queued enough
1302	 * of warm entries in syn queue, drop request. It is better than
1303	 * clogging syn queue with openreqs with exponentially increasing
1304	 * timeout.
1305	 */
1306	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307		goto drop;
1308
1309	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310	if (!req)
1311		goto drop;
1312
1313#ifdef CONFIG_TCP_MD5SIG
1314	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315#endif
1316
1317	tcp_clear_options(&tmp_opt);
1318	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1320	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322	if (tmp_opt.cookie_plus > 0 &&
1323	    tmp_opt.saw_tstamp &&
1324	    !tp->rx_opt.cookie_out_never &&
1325	    (sysctl_tcp_cookie_size > 0 ||
1326	     (tp->cookie_values != NULL &&
1327	      tp->cookie_values->cookie_desired > 0))) {
1328		u8 *c;
1329		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333			goto drop_and_release;
1334
1335		/* Secret recipe starts with IP addresses */
1336		*mess++ ^= (__force u32)daddr;
1337		*mess++ ^= (__force u32)saddr;
1338
1339		/* plus variable length Initiator Cookie */
1340		c = (u8 *)mess;
1341		while (l-- > 0)
1342			*c++ ^= *hash_location++;
1343
1344		want_cookie = false;	/* not our kind of cookie */
1345		tmp_ext.cookie_out_never = 0; /* false */
1346		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347	} else if (!tp->rx_opt.cookie_in_always) {
1348		/* redundant indications, but ensure initialization. */
1349		tmp_ext.cookie_out_never = 1; /* true */
1350		tmp_ext.cookie_plus = 0;
1351	} else {
1352		goto drop_and_release;
1353	}
1354	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356	if (want_cookie && !tmp_opt.saw_tstamp)
1357		tcp_clear_options(&tmp_opt);
1358
1359	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360	tcp_openreq_init(req, &tmp_opt, skb);
1361
1362	ireq = inet_rsk(req);
1363	ireq->loc_addr = daddr;
1364	ireq->rmt_addr = saddr;
1365	ireq->no_srccheck = inet_sk(sk)->transparent;
1366	ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368	if (security_inet_conn_request(sk, skb, req))
1369		goto drop_and_free;
1370
1371	if (!want_cookie || tmp_opt.tstamp_ok)
1372		TCP_ECN_create_request(req, skb);
1373
1374	if (want_cookie) {
1375		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376		req->cookie_ts = tmp_opt.tstamp_ok;
1377	} else if (!isn) {
1378		struct inet_peer *peer = NULL;
1379		struct flowi4 fl4;
1380
1381		/* VJ's idea. We save last timestamp seen
1382		 * from the destination in peer table, when entering
1383		 * state TIME-WAIT, and check against it before
1384		 * accepting new connection request.
1385		 *
1386		 * If "isn" is not zero, this request hit alive
1387		 * timewait bucket, so that all the necessary checks
1388		 * are made in the function processing timewait state.
1389		 */
1390		if (tmp_opt.saw_tstamp &&
1391		    tcp_death_row.sysctl_tw_recycle &&
1392		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393		    fl4.daddr == saddr &&
1394		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395			inet_peer_refcheck(peer);
1396			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397			    (s32)(peer->tcp_ts - req->ts_recent) >
1398							TCP_PAWS_WINDOW) {
1399				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400				goto drop_and_release;
1401			}
1402		}
1403		/* Kill the following clause, if you dislike this way. */
1404		else if (!sysctl_tcp_syncookies &&
1405			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406			  (sysctl_max_syn_backlog >> 2)) &&
1407			 (!peer || !peer->tcp_ts_stamp) &&
1408			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409			/* Without syncookies last quarter of
1410			 * backlog is filled with destinations,
1411			 * proven to be alive.
1412			 * It means that we continue to communicate
1413			 * to destinations, already remembered
1414			 * to the moment of synflood.
1415			 */
1416			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417				       &saddr, ntohs(tcp_hdr(skb)->source));
1418			goto drop_and_release;
1419		}
1420
1421		isn = tcp_v4_init_sequence(skb);
1422	}
1423	tcp_rsk(req)->snt_isn = isn;
1424	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426	if (tcp_v4_send_synack(sk, dst, req,
1427			       (struct request_values *)&tmp_ext,
1428			       skb_get_queue_mapping(skb)) ||
1429	    want_cookie)
1430		goto drop_and_free;
1431
1432	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433	return 0;
1434
1435drop_and_release:
1436	dst_release(dst);
1437drop_and_free:
1438	reqsk_free(req);
1439drop:
 
1440	return 0;
1441}
1442EXPORT_SYMBOL(tcp_v4_conn_request);
1443
1444
1445/*
1446 * The three way handshake has completed - we got a valid synack -
1447 * now create the new socket.
1448 */
1449struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450				  struct request_sock *req,
1451				  struct dst_entry *dst)
 
 
1452{
1453	struct inet_request_sock *ireq;
 
1454	struct inet_sock *newinet;
1455	struct tcp_sock *newtp;
1456	struct sock *newsk;
1457#ifdef CONFIG_TCP_MD5SIG
 
1458	struct tcp_md5sig_key *key;
 
1459#endif
1460	struct ip_options_rcu *inet_opt;
1461
1462	if (sk_acceptq_is_full(sk))
1463		goto exit_overflow;
1464
1465	newsk = tcp_create_openreq_child(sk, req, skb);
1466	if (!newsk)
1467		goto exit_nonewsk;
1468
1469	newsk->sk_gso_type = SKB_GSO_TCPV4;
 
1470
1471	newtp		      = tcp_sk(newsk);
1472	newinet		      = inet_sk(newsk);
1473	ireq		      = inet_rsk(req);
1474	newinet->inet_daddr   = ireq->rmt_addr;
1475	newinet->inet_rcv_saddr = ireq->loc_addr;
1476	newinet->inet_saddr	      = ireq->loc_addr;
1477	inet_opt	      = ireq->opt;
1478	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479	ireq->opt	      = NULL;
1480	newinet->mc_index     = inet_iif(skb);
1481	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1482	newinet->rcv_tos      = ip_hdr(skb)->tos;
1483	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484	if (inet_opt)
1485		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486	newinet->inet_id = newtp->write_seq ^ jiffies;
 
 
 
 
 
 
1487
1488	if (!dst) {
1489		dst = inet_csk_route_child_sock(sk, newsk, req);
1490		if (!dst)
1491			goto put_and_exit;
1492	} else {
1493		/* syncookie case : see end of cookie_v4_check() */
1494	}
1495	sk_setup_caps(newsk, dst);
1496
1497	tcp_mtup_init(newsk);
 
1498	tcp_sync_mss(newsk, dst_mtu(dst));
1499	newtp->advmss = dst_metric_advmss(dst);
1500	if (tcp_sk(sk)->rx_opt.user_mss &&
1501	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1503
1504	tcp_initialize_rcv_mss(newsk);
1505	if (tcp_rsk(req)->snt_synack)
1506		tcp_valid_rtt_meas(newsk,
1507		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508	newtp->total_retrans = req->retrans;
1509
1510#ifdef CONFIG_TCP_MD5SIG
 
1511	/* Copy over the MD5 key from the original socket */
1512	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513				AF_INET);
1514	if (key != NULL) {
1515		/*
1516		 * We're using one, so create a matching key
1517		 * on the newsk structure. If we fail to get
1518		 * memory, then we end up not copying the key
1519		 * across. Shucks.
1520		 */
1521		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1523		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1524	}
1525#endif
1526
1527	if (__inet_inherit_port(sk, newsk) < 0)
1528		goto put_and_exit;
1529	__inet_hash_nolisten(newsk, NULL);
 
 
 
 
 
 
1530
 
 
 
 
 
 
 
 
 
1531	return newsk;
1532
1533exit_overflow:
1534	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535exit_nonewsk:
1536	dst_release(dst);
1537exit:
1538	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539	return NULL;
1540put_and_exit:
1541	tcp_clear_xmit_timers(newsk);
1542	tcp_cleanup_congestion_control(newsk);
1543	bh_unlock_sock(newsk);
1544	sock_put(newsk);
1545	goto exit;
1546}
1547EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1548
1549static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1550{
1551	struct tcphdr *th = tcp_hdr(skb);
1552	const struct iphdr *iph = ip_hdr(skb);
1553	struct sock *nsk;
1554	struct request_sock **prev;
1555	/* Find possible connection requests. */
1556	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557						       iph->saddr, iph->daddr);
1558	if (req)
1559		return tcp_check_req(sk, skb, req, prev);
1560
1561	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562			th->source, iph->daddr, th->dest, inet_iif(skb));
1563
1564	if (nsk) {
1565		if (nsk->sk_state != TCP_TIME_WAIT) {
1566			bh_lock_sock(nsk);
1567			return nsk;
1568		}
1569		inet_twsk_put(inet_twsk(nsk));
1570		return NULL;
1571	}
1572
1573#ifdef CONFIG_SYN_COOKIES
 
 
1574	if (!th->syn)
1575		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576#endif
1577	return sk;
1578}
1579
1580static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
 
1581{
1582	const struct iphdr *iph = ip_hdr(skb);
1583
1584	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585		if (!tcp_v4_check(skb->len, iph->saddr,
1586				  iph->daddr, skb->csum)) {
1587			skb->ip_summed = CHECKSUM_UNNECESSARY;
1588			return 0;
1589		}
1590	}
1591
1592	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593				       skb->len, IPPROTO_TCP, 0);
1594
1595	if (skb->len <= 76) {
1596		return __skb_checksum_complete(skb);
1597	}
1598	return 0;
 
1599}
1600
1601
 
1602/* The socket must have it's spinlock held when we get
1603 * here.
1604 *
1605 * We have a potential double-lock case here, so even when
1606 * doing backlog processing we use the BH locking scheme.
1607 * This is because we cannot sleep with the original spinlock
1608 * held.
1609 */
1610int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1611{
 
1612	struct sock *rsk;
1613#ifdef CONFIG_TCP_MD5SIG
1614	/*
1615	 * We really want to reject the packet as early as possible
1616	 * if:
1617	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1618	 *  o There is an MD5 option and we're not expecting one
1619	 */
1620	if (tcp_v4_inbound_md5_hash(sk, skb))
1621		goto discard;
1622#endif
1623
1624	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
 
 
 
 
 
1625		sock_rps_save_rxhash(sk, skb);
1626		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627			rsk = sk;
1628			goto reset;
 
 
 
 
 
1629		}
 
1630		return 0;
1631	}
1632
1633	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
 
1634		goto csum_err;
1635
1636	if (sk->sk_state == TCP_LISTEN) {
1637		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
 
1638		if (!nsk)
1639			goto discard;
1640
1641		if (nsk != sk) {
1642			sock_rps_save_rxhash(nsk, skb);
1643			if (tcp_child_process(sk, nsk, skb)) {
1644				rsk = nsk;
1645				goto reset;
1646			}
1647			return 0;
1648		}
1649	} else
1650		sock_rps_save_rxhash(sk, skb);
1651
1652	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1653		rsk = sk;
1654		goto reset;
1655	}
1656	return 0;
1657
1658reset:
1659	tcp_v4_send_reset(rsk, skb);
1660discard:
1661	kfree_skb(skb);
1662	/* Be careful here. If this function gets more complicated and
1663	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1664	 * might be destroyed here. This current version compiles correctly,
1665	 * but you have been warned.
1666	 */
1667	return 0;
1668
1669csum_err:
1670	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
 
1671	goto discard;
1672}
1673EXPORT_SYMBOL(tcp_v4_do_rcv);
1674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675/*
1676 *	From tcp_input.c
1677 */
1678
1679int tcp_v4_rcv(struct sk_buff *skb)
1680{
 
 
 
 
1681	const struct iphdr *iph;
1682	const struct tcphdr *th;
 
1683	struct sock *sk;
1684	int ret;
1685	struct net *net = dev_net(skb->dev);
1686
 
1687	if (skb->pkt_type != PACKET_HOST)
1688		goto discard_it;
1689
1690	/* Count it even if it's bad */
1691	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1692
1693	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694		goto discard_it;
1695
1696	th = tcp_hdr(skb);
1697
1698	if (th->doff < sizeof(struct tcphdr) / 4)
 
1699		goto bad_packet;
 
1700	if (!pskb_may_pull(skb, th->doff * 4))
1701		goto discard_it;
1702
1703	/* An explanation is required here, I think.
1704	 * Packet length and doff are validated by header prediction,
1705	 * provided case of th->doff==0 is eliminated.
1706	 * So, we defer the checks. */
1707	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708		goto bad_packet;
1709
1710	th = tcp_hdr(skb);
1711	iph = ip_hdr(skb);
1712	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714				    skb->len - th->doff * 4);
1715	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716	TCP_SKB_CB(skb)->when	 = 0;
1717	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718	TCP_SKB_CB(skb)->sacked	 = 0;
1719
1720	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
 
 
 
 
 
1721	if (!sk)
1722		goto no_tcp_socket;
1723
1724process:
1725	if (sk->sk_state == TCP_TIME_WAIT)
1726		goto do_time_wait;
1727
1728	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730		goto discard_and_relse;
1731	}
1732
1733	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
 
1734		goto discard_and_relse;
1735	nf_reset(skb);
1736
1737	if (sk_filter(sk, skb))
 
 
 
1738		goto discard_and_relse;
 
 
 
 
1739
1740	skb->dev = NULL;
1741
 
 
 
 
 
 
 
1742	bh_lock_sock_nested(sk);
 
1743	ret = 0;
1744	if (!sock_owned_by_user(sk)) {
1745#ifdef CONFIG_NET_DMA
1746		struct tcp_sock *tp = tcp_sk(sk);
1747		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748			tp->ucopy.dma_chan = net_dma_find_channel();
1749		if (tp->ucopy.dma_chan)
1750			ret = tcp_v4_do_rcv(sk, skb);
1751		else
1752#endif
1753		{
1754			if (!tcp_prequeue(sk, skb))
1755				ret = tcp_v4_do_rcv(sk, skb);
1756		}
1757	} else if (unlikely(sk_add_backlog(sk, skb,
1758					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759		bh_unlock_sock(sk);
1760		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761		goto discard_and_relse;
1762	}
1763	bh_unlock_sock(sk);
1764
1765	sock_put(sk);
 
 
1766
1767	return ret;
1768
1769no_tcp_socket:
 
1770	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771		goto discard_it;
1772
1773	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
 
 
 
 
 
 
1774bad_packet:
1775		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776	} else {
1777		tcp_v4_send_reset(NULL, skb);
1778	}
1779
1780discard_it:
 
1781	/* Discard frame. */
1782	kfree_skb(skb);
1783	return 0;
1784
1785discard_and_relse:
1786	sock_put(sk);
 
 
1787	goto discard_it;
1788
1789do_time_wait:
1790	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
1791		inet_twsk_put(inet_twsk(sk));
1792		goto discard_it;
1793	}
1794
1795	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
 
1797		inet_twsk_put(inet_twsk(sk));
1798		goto discard_it;
1799	}
1800	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801	case TCP_TW_SYN: {
1802		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803							&tcp_hashinfo,
 
 
1804							iph->daddr, th->dest,
1805							inet_iif(skb));
 
1806		if (sk2) {
1807			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808			inet_twsk_put(inet_twsk(sk));
1809			sk = sk2;
 
 
1810			goto process;
1811		}
1812		/* Fall through to ACK */
1813	}
 
 
1814	case TCP_TW_ACK:
1815		tcp_v4_timewait_ack(sk, skb);
1816		break;
1817	case TCP_TW_RST:
1818		goto no_tcp_socket;
 
 
1819	case TCP_TW_SUCCESS:;
1820	}
1821	goto discard_it;
1822}
1823
1824struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1825{
1826	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827	struct inet_sock *inet = inet_sk(sk);
1828	struct inet_peer *peer;
1829
1830	if (!rt ||
1831	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833		*release_it = true;
1834	} else {
1835		if (!rt->peer)
1836			rt_bind_peer(rt, inet->inet_daddr, 1);
1837		peer = rt->peer;
1838		*release_it = false;
1839	}
1840
1841	return peer;
1842}
1843EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845void *tcp_v4_tw_get_peer(struct sock *sk)
1846{
1847	const struct inet_timewait_sock *tw = inet_twsk(sk);
1848
1849	return inet_getpeer_v4(tw->tw_daddr, 1);
1850}
1851EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1852
1853static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1855	.twsk_unique	= tcp_twsk_unique,
1856	.twsk_destructor= tcp_twsk_destructor,
1857	.twsk_getpeer	= tcp_v4_tw_get_peer,
1858};
1859
 
 
 
 
 
 
 
 
 
 
 
1860const struct inet_connection_sock_af_ops ipv4_specific = {
1861	.queue_xmit	   = ip_queue_xmit,
1862	.send_check	   = tcp_v4_send_check,
1863	.rebuild_header	   = inet_sk_rebuild_header,
 
1864	.conn_request	   = tcp_v4_conn_request,
1865	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1866	.get_peer	   = tcp_v4_get_peer,
1867	.net_header_len	   = sizeof(struct iphdr),
1868	.setsockopt	   = ip_setsockopt,
1869	.getsockopt	   = ip_getsockopt,
1870	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1871	.sockaddr_len	   = sizeof(struct sockaddr_in),
1872	.bind_conflict	   = inet_csk_bind_conflict,
1873#ifdef CONFIG_COMPAT
1874	.compat_setsockopt = compat_ip_setsockopt,
1875	.compat_getsockopt = compat_ip_getsockopt,
1876#endif
1877};
1878EXPORT_SYMBOL(ipv4_specific);
1879
1880#ifdef CONFIG_TCP_MD5SIG
1881static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1882	.md5_lookup		= tcp_v4_md5_lookup,
1883	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1884	.md5_parse		= tcp_v4_parse_md5_keys,
1885};
1886#endif
1887
1888/* NOTE: A lot of things set to zero explicitly by call to
1889 *       sk_alloc() so need not be done here.
1890 */
1891static int tcp_v4_init_sock(struct sock *sk)
1892{
1893	struct inet_connection_sock *icsk = inet_csk(sk);
1894
1895	tcp_init_sock(sk);
1896
1897	icsk->icsk_af_ops = &ipv4_specific;
1898
1899#ifdef CONFIG_TCP_MD5SIG
1900	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901#endif
1902
1903	return 0;
1904}
1905
1906void tcp_v4_destroy_sock(struct sock *sk)
1907{
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
 
 
1910	tcp_clear_xmit_timers(sk);
1911
1912	tcp_cleanup_congestion_control(sk);
1913
 
 
1914	/* Cleanup up the write buffer. */
1915	tcp_write_queue_purge(sk);
1916
 
 
 
1917	/* Cleans up our, hopefully empty, out_of_order_queue. */
1918	__skb_queue_purge(&tp->out_of_order_queue);
1919
1920#ifdef CONFIG_TCP_MD5SIG
1921	/* Clean up the MD5 key list, if any */
1922	if (tp->md5sig_info) {
1923		tcp_clear_md5_list(sk);
1924		kfree_rcu(tp->md5sig_info, rcu);
1925		tp->md5sig_info = NULL;
 
1926	}
1927#endif
1928
1929#ifdef CONFIG_NET_DMA
1930	/* Cleans up our sk_async_wait_queue */
1931	__skb_queue_purge(&sk->sk_async_wait_queue);
1932#endif
1933
1934	/* Clean prequeue, it must be empty really */
1935	__skb_queue_purge(&tp->ucopy.prequeue);
1936
1937	/* Clean up a referenced TCP bind bucket. */
1938	if (inet_csk(sk)->icsk_bind_hash)
1939		inet_put_port(sk);
1940
1941	/*
1942	 * If sendmsg cached page exists, toss it.
1943	 */
1944	if (sk->sk_sndmsg_page) {
1945		__free_page(sk->sk_sndmsg_page);
1946		sk->sk_sndmsg_page = NULL;
1947	}
1948
1949	/* TCP Cookie Transactions */
1950	if (tp->cookie_values != NULL) {
1951		kref_put(&tp->cookie_values->kref,
1952			 tcp_cookie_values_release);
1953		tp->cookie_values = NULL;
1954	}
1955
1956	sk_sockets_allocated_dec(sk);
1957	sock_release_memcg(sk);
1958}
1959EXPORT_SYMBOL(tcp_v4_destroy_sock);
1960
1961#ifdef CONFIG_PROC_FS
1962/* Proc filesystem TCP sock list dumping. */
1963
1964static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
 
 
1965{
1966	return hlist_nulls_empty(head) ? NULL :
1967		list_entry(head->first, struct inet_timewait_sock, tw_node);
 
 
 
1968}
1969
1970static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
 
 
 
1971{
1972	return !is_a_nulls(tw->tw_node.next) ?
1973		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974}
1975
1976/*
1977 * Get next listener socket follow cur.  If cur is NULL, get first socket
1978 * starting from bucket given in st->bucket; when st->bucket is zero the
1979 * very first socket in the hash table is returned.
1980 */
1981static void *listening_get_next(struct seq_file *seq, void *cur)
1982{
1983	struct inet_connection_sock *icsk;
 
1984	struct hlist_nulls_node *node;
 
1985	struct sock *sk = cur;
1986	struct inet_listen_hashbucket *ilb;
1987	struct tcp_iter_state *st = seq->private;
1988	struct net *net = seq_file_net(seq);
1989
1990	if (!sk) {
1991		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992		spin_lock_bh(&ilb->lock);
1993		sk = sk_nulls_head(&ilb->head);
1994		st->offset = 0;
1995		goto get_sk;
1996	}
1997	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998	++st->num;
1999	++st->offset;
2000
2001	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002		struct request_sock *req = cur;
2003
2004		icsk = inet_csk(st->syn_wait_sk);
2005		req = req->dl_next;
2006		while (1) {
2007			while (req) {
2008				if (req->rsk_ops->family == st->family) {
2009					cur = req;
2010					goto out;
2011				}
2012				req = req->dl_next;
2013			}
2014			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015				break;
2016get_req:
2017			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2018		}
2019		sk	  = sk_nulls_next(st->syn_wait_sk);
2020		st->state = TCP_SEQ_STATE_LISTENING;
2021		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022	} else {
2023		icsk = inet_csk(sk);
2024		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026			goto start_req;
2027		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028		sk = sk_nulls_next(sk);
2029	}
2030get_sk:
2031	sk_nulls_for_each_from(sk, node) {
2032		if (!net_eq(sock_net(sk), net))
2033			continue;
2034		if (sk->sk_family == st->family) {
2035			cur = sk;
2036			goto out;
2037		}
2038		icsk = inet_csk(sk);
2039		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041start_req:
2042			st->uid		= sock_i_uid(sk);
2043			st->syn_wait_sk = sk;
2044			st->state	= TCP_SEQ_STATE_OPENREQ;
2045			st->sbucket	= 0;
2046			goto get_req;
2047		}
2048		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049	}
2050	spin_unlock_bh(&ilb->lock);
2051	st->offset = 0;
2052	if (++st->bucket < INET_LHTABLE_SIZE) {
2053		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054		spin_lock_bh(&ilb->lock);
2055		sk = sk_nulls_head(&ilb->head);
2056		goto get_sk;
2057	}
2058	cur = NULL;
2059out:
2060	return cur;
 
 
 
2061}
2062
2063static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2064{
2065	struct tcp_iter_state *st = seq->private;
2066	void *rc;
2067
2068	st->bucket = 0;
2069	st->offset = 0;
2070	rc = listening_get_next(seq, NULL);
2071
2072	while (rc && *pos) {
2073		rc = listening_get_next(seq, rc);
2074		--*pos;
2075	}
2076	return rc;
2077}
2078
2079static inline bool empty_bucket(struct tcp_iter_state *st)
 
2080{
2081	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083}
2084
2085/*
2086 * Get first established socket starting from bucket given in st->bucket.
2087 * If st->bucket is zero, the very first socket in the hash is returned.
2088 */
2089static void *established_get_first(struct seq_file *seq)
2090{
 
2091	struct tcp_iter_state *st = seq->private;
2092	struct net *net = seq_file_net(seq);
2093	void *rc = NULL;
2094
2095	st->offset = 0;
2096	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097		struct sock *sk;
2098		struct hlist_nulls_node *node;
2099		struct inet_timewait_sock *tw;
2100		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2101
2102		/* Lockless fast path for the common case of empty buckets */
2103		if (empty_bucket(st))
2104			continue;
2105
2106		spin_lock_bh(lock);
2107		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108			if (sk->sk_family != st->family ||
2109			    !net_eq(sock_net(sk), net)) {
2110				continue;
2111			}
2112			rc = sk;
2113			goto out;
2114		}
2115		st->state = TCP_SEQ_STATE_TIME_WAIT;
2116		inet_twsk_for_each(tw, node,
2117				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2118			if (tw->tw_family != st->family ||
2119			    !net_eq(twsk_net(tw), net)) {
2120				continue;
2121			}
2122			rc = tw;
2123			goto out;
2124		}
2125		spin_unlock_bh(lock);
2126		st->state = TCP_SEQ_STATE_ESTABLISHED;
2127	}
2128out:
2129	return rc;
2130}
2131
2132static void *established_get_next(struct seq_file *seq, void *cur)
2133{
2134	struct sock *sk = cur;
2135	struct inet_timewait_sock *tw;
2136	struct hlist_nulls_node *node;
2137	struct tcp_iter_state *st = seq->private;
2138	struct net *net = seq_file_net(seq);
 
2139
2140	++st->num;
2141	++st->offset;
2142
2143	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144		tw = cur;
2145		tw = tw_next(tw);
2146get_tw:
2147		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148			tw = tw_next(tw);
2149		}
2150		if (tw) {
2151			cur = tw;
2152			goto out;
2153		}
2154		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155		st->state = TCP_SEQ_STATE_ESTABLISHED;
2156
2157		/* Look for next non empty bucket */
2158		st->offset = 0;
2159		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160				empty_bucket(st))
2161			;
2162		if (st->bucket > tcp_hashinfo.ehash_mask)
2163			return NULL;
2164
2165		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167	} else
2168		sk = sk_nulls_next(sk);
2169
2170	sk_nulls_for_each_from(sk, node) {
2171		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172			goto found;
2173	}
2174
2175	st->state = TCP_SEQ_STATE_TIME_WAIT;
2176	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177	goto get_tw;
2178found:
2179	cur = sk;
2180out:
2181	return cur;
2182}
2183
2184static void *established_get_idx(struct seq_file *seq, loff_t pos)
2185{
2186	struct tcp_iter_state *st = seq->private;
2187	void *rc;
2188
2189	st->bucket = 0;
2190	rc = established_get_first(seq);
2191
2192	while (rc && pos) {
2193		rc = established_get_next(seq, rc);
2194		--pos;
2195	}
2196	return rc;
2197}
2198
2199static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2200{
2201	void *rc;
2202	struct tcp_iter_state *st = seq->private;
2203
2204	st->state = TCP_SEQ_STATE_LISTENING;
2205	rc	  = listening_get_idx(seq, &pos);
2206
2207	if (!rc) {
2208		st->state = TCP_SEQ_STATE_ESTABLISHED;
2209		rc	  = established_get_idx(seq, pos);
2210	}
2211
2212	return rc;
2213}
2214
2215static void *tcp_seek_last_pos(struct seq_file *seq)
2216{
 
2217	struct tcp_iter_state *st = seq->private;
 
2218	int offset = st->offset;
2219	int orig_num = st->num;
2220	void *rc = NULL;
2221
2222	switch (st->state) {
2223	case TCP_SEQ_STATE_OPENREQ:
2224	case TCP_SEQ_STATE_LISTENING:
2225		if (st->bucket >= INET_LHTABLE_SIZE)
2226			break;
2227		st->state = TCP_SEQ_STATE_LISTENING;
2228		rc = listening_get_next(seq, NULL);
2229		while (offset-- && rc)
2230			rc = listening_get_next(seq, rc);
2231		if (rc)
2232			break;
2233		st->bucket = 0;
2234		/* Fallthrough */
2235	case TCP_SEQ_STATE_ESTABLISHED:
2236	case TCP_SEQ_STATE_TIME_WAIT:
2237		st->state = TCP_SEQ_STATE_ESTABLISHED;
2238		if (st->bucket > tcp_hashinfo.ehash_mask)
 
 
2239			break;
2240		rc = established_get_first(seq);
2241		while (offset-- && rc)
2242			rc = established_get_next(seq, rc);
2243	}
2244
2245	st->num = orig_num;
2246
2247	return rc;
2248}
2249
2250static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2251{
2252	struct tcp_iter_state *st = seq->private;
2253	void *rc;
2254
2255	if (*pos && *pos == st->last_pos) {
2256		rc = tcp_seek_last_pos(seq);
2257		if (rc)
2258			goto out;
2259	}
2260
2261	st->state = TCP_SEQ_STATE_LISTENING;
2262	st->num = 0;
2263	st->bucket = 0;
2264	st->offset = 0;
2265	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2266
2267out:
2268	st->last_pos = *pos;
2269	return rc;
2270}
 
2271
2272static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273{
2274	struct tcp_iter_state *st = seq->private;
2275	void *rc = NULL;
2276
2277	if (v == SEQ_START_TOKEN) {
2278		rc = tcp_get_idx(seq, 0);
2279		goto out;
2280	}
2281
2282	switch (st->state) {
2283	case TCP_SEQ_STATE_OPENREQ:
2284	case TCP_SEQ_STATE_LISTENING:
2285		rc = listening_get_next(seq, v);
2286		if (!rc) {
2287			st->state = TCP_SEQ_STATE_ESTABLISHED;
2288			st->bucket = 0;
2289			st->offset = 0;
2290			rc	  = established_get_first(seq);
2291		}
2292		break;
2293	case TCP_SEQ_STATE_ESTABLISHED:
2294	case TCP_SEQ_STATE_TIME_WAIT:
2295		rc = established_get_next(seq, v);
2296		break;
2297	}
2298out:
2299	++*pos;
2300	st->last_pos = *pos;
2301	return rc;
2302}
 
2303
2304static void tcp_seq_stop(struct seq_file *seq, void *v)
2305{
 
2306	struct tcp_iter_state *st = seq->private;
2307
2308	switch (st->state) {
2309	case TCP_SEQ_STATE_OPENREQ:
2310		if (v) {
2311			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2313		}
2314	case TCP_SEQ_STATE_LISTENING:
2315		if (v != SEQ_START_TOKEN)
2316			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317		break;
2318	case TCP_SEQ_STATE_TIME_WAIT:
2319	case TCP_SEQ_STATE_ESTABLISHED:
2320		if (v)
2321			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322		break;
2323	}
2324}
 
2325
2326int tcp_seq_open(struct inode *inode, struct file *file)
2327{
2328	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329	struct tcp_iter_state *s;
2330	int err;
2331
2332	err = seq_open_net(inode, file, &afinfo->seq_ops,
2333			  sizeof(struct tcp_iter_state));
2334	if (err < 0)
2335		return err;
2336
2337	s = ((struct seq_file *)file->private_data)->private;
2338	s->family		= afinfo->family;
2339	s->last_pos 		= 0;
2340	return 0;
2341}
2342EXPORT_SYMBOL(tcp_seq_open);
2343
2344int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2345{
2346	int rc = 0;
2347	struct proc_dir_entry *p;
2348
2349	afinfo->seq_ops.start		= tcp_seq_start;
2350	afinfo->seq_ops.next		= tcp_seq_next;
2351	afinfo->seq_ops.stop		= tcp_seq_stop;
2352
2353	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354			     afinfo->seq_fops, afinfo);
2355	if (!p)
2356		rc = -ENOMEM;
2357	return rc;
2358}
2359EXPORT_SYMBOL(tcp_proc_register);
2360
2361void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362{
2363	proc_net_remove(net, afinfo->name);
2364}
2365EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368			 struct seq_file *f, int i, int uid, int *len)
2369{
2370	const struct inet_request_sock *ireq = inet_rsk(req);
2371	int ttd = req->expires - jiffies;
2372
2373	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375		i,
2376		ireq->loc_addr,
2377		ntohs(inet_sk(sk)->inet_sport),
2378		ireq->rmt_addr,
2379		ntohs(ireq->rmt_port),
2380		TCP_SYN_RECV,
2381		0, 0, /* could print option size, but that is af dependent. */
2382		1,    /* timers active (only the expire timer) */
2383		jiffies_to_clock_t(ttd),
2384		req->retrans,
2385		uid,
 
2386		0,  /* non standard timer */
2387		0, /* open_requests have no inode */
2388		atomic_read(&sk->sk_refcnt),
2389		req,
2390		len);
2391}
2392
2393static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394{
2395	int timer_active;
2396	unsigned long timer_expires;
2397	const struct tcp_sock *tp = tcp_sk(sk);
2398	const struct inet_connection_sock *icsk = inet_csk(sk);
2399	const struct inet_sock *inet = inet_sk(sk);
 
2400	__be32 dest = inet->inet_daddr;
2401	__be32 src = inet->inet_rcv_saddr;
2402	__u16 destp = ntohs(inet->inet_dport);
2403	__u16 srcp = ntohs(inet->inet_sport);
2404	int rx_queue;
 
2405
2406	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
 
 
2407		timer_active	= 1;
2408		timer_expires	= icsk->icsk_timeout;
2409	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410		timer_active	= 4;
2411		timer_expires	= icsk->icsk_timeout;
2412	} else if (timer_pending(&sk->sk_timer)) {
2413		timer_active	= 2;
2414		timer_expires	= sk->sk_timer.expires;
2415	} else {
2416		timer_active	= 0;
2417		timer_expires = jiffies;
2418	}
2419
2420	if (sk->sk_state == TCP_LISTEN)
2421		rx_queue = sk->sk_ack_backlog;
 
2422	else
2423		/*
2424		 * because we dont lock socket, we might find a transient negative value
2425		 */
2426		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
 
2427
2428	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430		i, src, srcp, dest, destp, sk->sk_state,
2431		tp->write_seq - tp->snd_una,
2432		rx_queue,
2433		timer_active,
2434		jiffies_to_clock_t(timer_expires - jiffies),
2435		icsk->icsk_retransmits,
2436		sock_i_uid(sk),
2437		icsk->icsk_probes_out,
2438		sock_i_ino(sk),
2439		atomic_read(&sk->sk_refcnt), sk,
2440		jiffies_to_clock_t(icsk->icsk_rto),
2441		jiffies_to_clock_t(icsk->icsk_ack.ato),
2442		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443		tp->snd_cwnd,
2444		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445		len);
 
2446}
2447
2448static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449			       struct seq_file *f, int i, int *len)
2450{
 
2451	__be32 dest, src;
2452	__u16 destp, srcp;
2453	int ttd = tw->tw_ttd - jiffies;
2454
2455	if (ttd < 0)
2456		ttd = 0;
2457
2458	dest  = tw->tw_daddr;
2459	src   = tw->tw_rcv_saddr;
2460	destp = ntohs(tw->tw_dport);
2461	srcp  = ntohs(tw->tw_sport);
2462
2463	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467		atomic_read(&tw->tw_refcnt), tw, len);
2468}
2469
2470#define TMPSZ 150
2471
2472static int tcp4_seq_show(struct seq_file *seq, void *v)
2473{
2474	struct tcp_iter_state *st;
2475	int len;
2476
 
2477	if (v == SEQ_START_TOKEN) {
2478		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479			   "  sl  local_address rem_address   st tx_queue "
2480			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2481			   "inode");
2482		goto out;
2483	}
2484	st = seq->private;
2485
2486	switch (st->state) {
2487	case TCP_SEQ_STATE_LISTENING:
2488	case TCP_SEQ_STATE_ESTABLISHED:
2489		get_tcp4_sock(v, seq, st->num, &len);
2490		break;
2491	case TCP_SEQ_STATE_OPENREQ:
2492		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493		break;
2494	case TCP_SEQ_STATE_TIME_WAIT:
2495		get_timewait4_sock(v, seq, st->num, &len);
2496		break;
2497	}
2498	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499out:
 
2500	return 0;
2501}
2502
2503static const struct file_operations tcp_afinfo_seq_fops = {
2504	.owner   = THIS_MODULE,
2505	.open    = tcp_seq_open,
2506	.read    = seq_read,
2507	.llseek  = seq_lseek,
2508	.release = seq_release_net
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2509};
2510
2511static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512	.name		= "tcp",
2513	.family		= AF_INET,
2514	.seq_fops	= &tcp_afinfo_seq_fops,
2515	.seq_ops	= {
2516		.show		= tcp4_seq_show,
2517	},
2518};
2519
2520static int __net_init tcp4_proc_init_net(struct net *net)
2521{
2522	return tcp_proc_register(net, &tcp4_seq_afinfo);
 
 
 
2523}
2524
2525static void __net_exit tcp4_proc_exit_net(struct net *net)
2526{
2527	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528}
2529
2530static struct pernet_operations tcp4_net_ops = {
2531	.init = tcp4_proc_init_net,
2532	.exit = tcp4_proc_exit_net,
2533};
2534
2535int __init tcp4_proc_init(void)
2536{
2537	return register_pernet_subsys(&tcp4_net_ops);
2538}
2539
2540void tcp4_proc_exit(void)
2541{
2542	unregister_pernet_subsys(&tcp4_net_ops);
2543}
2544#endif /* CONFIG_PROC_FS */
2545
2546struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547{
2548	const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550	switch (skb->ip_summed) {
2551	case CHECKSUM_COMPLETE:
2552		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553				  skb->csum)) {
2554			skb->ip_summed = CHECKSUM_UNNECESSARY;
2555			break;
2556		}
2557
2558		/* fall through */
2559	case CHECKSUM_NONE:
2560		NAPI_GRO_CB(skb)->flush = 1;
2561		return NULL;
2562	}
2563
2564	return tcp_gro_receive(head, skb);
2565}
2566
2567int tcp4_gro_complete(struct sk_buff *skb)
2568{
2569	const struct iphdr *iph = ip_hdr(skb);
2570	struct tcphdr *th = tcp_hdr(skb);
2571
2572	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573				  iph->saddr, iph->daddr, 0);
2574	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576	return tcp_gro_complete(skb);
2577}
 
2578
2579struct proto tcp_prot = {
2580	.name			= "TCP",
2581	.owner			= THIS_MODULE,
2582	.close			= tcp_close,
 
2583	.connect		= tcp_v4_connect,
2584	.disconnect		= tcp_disconnect,
2585	.accept			= inet_csk_accept,
2586	.ioctl			= tcp_ioctl,
2587	.init			= tcp_v4_init_sock,
2588	.destroy		= tcp_v4_destroy_sock,
2589	.shutdown		= tcp_shutdown,
2590	.setsockopt		= tcp_setsockopt,
2591	.getsockopt		= tcp_getsockopt,
 
 
2592	.recvmsg		= tcp_recvmsg,
2593	.sendmsg		= tcp_sendmsg,
2594	.sendpage		= tcp_sendpage,
2595	.backlog_rcv		= tcp_v4_do_rcv,
 
2596	.hash			= inet_hash,
2597	.unhash			= inet_unhash,
2598	.get_port		= inet_csk_get_port,
 
 
 
 
2599	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
 
2600	.sockets_allocated	= &tcp_sockets_allocated,
2601	.orphan_count		= &tcp_orphan_count,
 
2602	.memory_allocated	= &tcp_memory_allocated,
 
 
2603	.memory_pressure	= &tcp_memory_pressure,
2604	.sysctl_wmem		= sysctl_tcp_wmem,
2605	.sysctl_rmem		= sysctl_tcp_rmem,
 
2606	.max_header		= MAX_TCP_HEADER,
2607	.obj_size		= sizeof(struct tcp_sock),
2608	.slab_flags		= SLAB_DESTROY_BY_RCU,
2609	.twsk_prot		= &tcp_timewait_sock_ops,
2610	.rsk_prot		= &tcp_request_sock_ops,
2611	.h.hashinfo		= &tcp_hashinfo,
2612	.no_autobind		= true,
2613#ifdef CONFIG_COMPAT
2614	.compat_setsockopt	= compat_tcp_setsockopt,
2615	.compat_getsockopt	= compat_tcp_getsockopt,
2616#endif
2617#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618	.init_cgroup		= tcp_init_cgroup,
2619	.destroy_cgroup		= tcp_destroy_cgroup,
2620	.proto_cgroup		= tcp_proto_cgroup,
2621#endif
2622};
2623EXPORT_SYMBOL(tcp_prot);
2624
2625static int __net_init tcp_sk_init(struct net *net)
2626{
2627	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629}
2630
2631static void __net_exit tcp_sk_exit(struct net *net)
2632{
2633	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634}
2635
2636static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2637{
2638	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
 
 
 
 
 
 
 
 
2639}
2640
2641static struct pernet_operations __net_initdata tcp_sk_ops = {
2642       .init	   = tcp_sk_init,
2643       .exit	   = tcp_sk_exit,
2644       .exit_batch = tcp_sk_exit_batch,
2645};
2646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647void __init tcp_v4_init(void)
2648{
2649	inet_hashinfo_init(&tcp_hashinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650	if (register_pernet_subsys(&tcp_sk_ops))
2651		panic("Failed to create the TCP control socket.\n");
 
 
 
 
2652}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
 
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
 
 
 
 
 
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60
  61#include <net/net_namespace.h>
  62#include <net/icmp.h>
  63#include <net/inet_hashtables.h>
  64#include <net/tcp.h>
  65#include <net/transp_v6.h>
  66#include <net/ipv6.h>
  67#include <net/inet_common.h>
  68#include <net/timewait_sock.h>
  69#include <net/xfrm.h>
 
  70#include <net/secure_seq.h>
  71#include <net/busy_poll.h>
  72
  73#include <linux/inet.h>
  74#include <linux/ipv6.h>
  75#include <linux/stddef.h>
  76#include <linux/proc_fs.h>
  77#include <linux/seq_file.h>
  78#include <linux/inetdevice.h>
  79#include <linux/btf_ids.h>
  80
  81#include <crypto/hash.h>
  82#include <linux/scatterlist.h>
  83
  84#include <trace/events/tcp.h>
 
 
 
  85
  86#ifdef CONFIG_TCP_MD5SIG
  87static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  88			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  89#endif
  90
  91struct inet_hashinfo tcp_hashinfo;
  92EXPORT_SYMBOL(tcp_hashinfo);
  93
  94static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
  95
  96static u32 tcp_v4_init_seq(const struct sk_buff *skb)
  97{
  98	return secure_tcp_seq(ip_hdr(skb)->daddr,
  99			      ip_hdr(skb)->saddr,
 100			      tcp_hdr(skb)->dest,
 101			      tcp_hdr(skb)->source);
 102}
 103
 104static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 105{
 106	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 
 
 
 107}
 108
 109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 110{
 111	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 112	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 113	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 114	struct tcp_sock *tp = tcp_sk(sk);
 115
 116	if (reuse == 2) {
 117		/* Still does not detect *everything* that goes through
 118		 * lo, since we require a loopback src or dst address
 119		 * or direct binding to 'lo' interface.
 120		 */
 121		bool loopback = false;
 122		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 123			loopback = true;
 124#if IS_ENABLED(CONFIG_IPV6)
 125		if (tw->tw_family == AF_INET6) {
 126			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 127			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 128			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 129			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 130				loopback = true;
 131		} else
 132#endif
 133		{
 134			if (ipv4_is_loopback(tw->tw_daddr) ||
 135			    ipv4_is_loopback(tw->tw_rcv_saddr))
 136				loopback = true;
 137		}
 138		if (!loopback)
 139			reuse = 0;
 140	}
 141
 142	/* With PAWS, it is safe from the viewpoint
 143	   of data integrity. Even without PAWS it is safe provided sequence
 144	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 145
 146	   Actually, the idea is close to VJ's one, only timestamp cache is
 147	   held not per host, but per port pair and TW bucket is used as state
 148	   holder.
 149
 150	   If TW bucket has been already destroyed we fall back to VJ's scheme
 151	   and use initial timestamp retrieved from peer table.
 152	 */
 153	if (tcptw->tw_ts_recent_stamp &&
 154	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 155					    tcptw->tw_ts_recent_stamp)))) {
 156		/* In case of repair and re-using TIME-WAIT sockets we still
 157		 * want to be sure that it is safe as above but honor the
 158		 * sequence numbers and time stamps set as part of the repair
 159		 * process.
 160		 *
 161		 * Without this check re-using a TIME-WAIT socket with TCP
 162		 * repair would accumulate a -1 on the repair assigned
 163		 * sequence number. The first time it is reused the sequence
 164		 * is -1, the second time -2, etc. This fixes that issue
 165		 * without appearing to create any others.
 166		 */
 167		if (likely(!tp->repair)) {
 168			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 169
 170			if (!seq)
 171				seq = 1;
 172			WRITE_ONCE(tp->write_seq, seq);
 173			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 174			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 175		}
 176		sock_hold(sktw);
 177		return 1;
 178	}
 179
 180	return 0;
 181}
 182EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 183
 184static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 185			      int addr_len)
 186{
 187	/* This check is replicated from tcp_v4_connect() and intended to
 188	 * prevent BPF program called below from accessing bytes that are out
 189	 * of the bound specified by user in addr_len.
 190	 */
 191	if (addr_len < sizeof(struct sockaddr_in))
 192		return -EINVAL;
 193
 194	sock_owned_by_me(sk);
 195
 196	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
 197}
 198
 199/* This will initiate an outgoing connection. */
 200int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 201{
 202	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 203	struct inet_timewait_death_row *tcp_death_row;
 204	struct inet_sock *inet = inet_sk(sk);
 205	struct tcp_sock *tp = tcp_sk(sk);
 206	struct ip_options_rcu *inet_opt;
 207	struct net *net = sock_net(sk);
 208	__be16 orig_sport, orig_dport;
 209	__be32 daddr, nexthop;
 210	struct flowi4 *fl4;
 211	struct rtable *rt;
 212	int err;
 
 213
 214	if (addr_len < sizeof(struct sockaddr_in))
 215		return -EINVAL;
 216
 217	if (usin->sin_family != AF_INET)
 218		return -EAFNOSUPPORT;
 219
 220	nexthop = daddr = usin->sin_addr.s_addr;
 221	inet_opt = rcu_dereference_protected(inet->inet_opt,
 222					     lockdep_sock_is_held(sk));
 223	if (inet_opt && inet_opt->opt.srr) {
 224		if (!daddr)
 225			return -EINVAL;
 226		nexthop = inet_opt->opt.faddr;
 227	}
 228
 229	orig_sport = inet->inet_sport;
 230	orig_dport = usin->sin_port;
 231	fl4 = &inet->cork.fl.u.ip4;
 232	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 233			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 234			      orig_dport, sk);
 
 235	if (IS_ERR(rt)) {
 236		err = PTR_ERR(rt);
 237		if (err == -ENETUNREACH)
 238			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 239		return err;
 240	}
 241
 242	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 243		ip_rt_put(rt);
 244		return -ENETUNREACH;
 245	}
 246
 247	if (!inet_opt || !inet_opt->opt.srr)
 248		daddr = fl4->daddr;
 249
 250	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 251
 252	if (!inet->inet_saddr) {
 253		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 254		if (err) {
 255			ip_rt_put(rt);
 256			return err;
 257		}
 258	} else {
 259		sk_rcv_saddr_set(sk, inet->inet_saddr);
 260	}
 261
 262	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 263		/* Reset inherited state */
 264		tp->rx_opt.ts_recent	   = 0;
 265		tp->rx_opt.ts_recent_stamp = 0;
 266		if (likely(!tp->repair))
 267			WRITE_ONCE(tp->write_seq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268	}
 269
 270	inet->inet_dport = usin->sin_port;
 271	sk_daddr_set(sk, daddr);
 272
 273	inet_csk(sk)->icsk_ext_hdr_len = 0;
 274	if (inet_opt)
 275		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 276
 277	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 278
 279	/* Socket identity is still unknown (sport may be zero).
 280	 * However we set state to SYN-SENT and not releasing socket
 281	 * lock select source port, enter ourselves into the hash tables and
 282	 * complete initialization after this.
 283	 */
 284	tcp_set_state(sk, TCP_SYN_SENT);
 285	err = inet_hash_connect(tcp_death_row, sk);
 286	if (err)
 287		goto failure;
 288
 289	sk_set_txhash(sk);
 290
 291	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 292			       inet->inet_sport, inet->inet_dport, sk);
 293	if (IS_ERR(rt)) {
 294		err = PTR_ERR(rt);
 295		rt = NULL;
 296		goto failure;
 297	}
 298	/* OK, now commit destination to socket.  */
 299	sk->sk_gso_type = SKB_GSO_TCPV4;
 300	sk_setup_caps(sk, &rt->dst);
 301	rt = NULL;
 302
 303	if (likely(!tp->repair)) {
 304		if (!tp->write_seq)
 305			WRITE_ONCE(tp->write_seq,
 306				   secure_tcp_seq(inet->inet_saddr,
 307						  inet->inet_daddr,
 308						  inet->inet_sport,
 309						  usin->sin_port));
 310		tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr,
 311						 inet->inet_daddr);
 312	}
 313
 314	inet->inet_id = get_random_u16();
 315
 316	if (tcp_fastopen_defer_connect(sk, &err))
 317		return err;
 318	if (err)
 319		goto failure;
 320
 321	err = tcp_connect(sk);
 322
 
 323	if (err)
 324		goto failure;
 325
 326	return 0;
 327
 328failure:
 329	/*
 330	 * This unhashes the socket and releases the local port,
 331	 * if necessary.
 332	 */
 333	tcp_set_state(sk, TCP_CLOSE);
 334	inet_bhash2_reset_saddr(sk);
 335	ip_rt_put(rt);
 336	sk->sk_route_caps = 0;
 337	inet->inet_dport = 0;
 338	return err;
 339}
 340EXPORT_SYMBOL(tcp_v4_connect);
 341
 342/*
 343 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 344 * It can be called through tcp_release_cb() if socket was owned by user
 345 * at the time tcp_v4_err() was called to handle ICMP message.
 346 */
 347void tcp_v4_mtu_reduced(struct sock *sk)
 348{
 
 349	struct inet_sock *inet = inet_sk(sk);
 350	struct dst_entry *dst;
 351	u32 mtu;
 352
 353	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 
 
 
 
 354		return;
 355	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 356	dst = inet_csk_update_pmtu(sk, mtu);
 357	if (!dst)
 
 
 
 
 
 358		return;
 359
 
 
 360	/* Something is about to be wrong... Remember soft error
 361	 * for the case, if this connection will not able to recover.
 362	 */
 363	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 364		sk->sk_err_soft = EMSGSIZE;
 365
 366	mtu = dst_mtu(dst);
 367
 368	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 369	    ip_sk_accept_pmtu(sk) &&
 370	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 371		tcp_sync_mss(sk, mtu);
 372
 373		/* Resend the TCP packet because it's
 374		 * clear that the old packet has been
 375		 * dropped. This is the new "fast" path mtu
 376		 * discovery.
 377		 */
 378		tcp_simple_retransmit(sk);
 379	} /* else let the usual retransmit timer handle it */
 380}
 381EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 382
 383static void do_redirect(struct sk_buff *skb, struct sock *sk)
 384{
 385	struct dst_entry *dst = __sk_dst_check(sk, 0);
 386
 387	if (dst)
 388		dst->ops->redirect(dst, sk, skb);
 389}
 390
 391
 392/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 393void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 394{
 395	struct request_sock *req = inet_reqsk(sk);
 396	struct net *net = sock_net(sk);
 397
 398	/* ICMPs are not backlogged, hence we cannot get
 399	 * an established socket here.
 400	 */
 401	if (seq != tcp_rsk(req)->snt_isn) {
 402		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 403	} else if (abort) {
 404		/*
 405		 * Still in SYN_RECV, just remove it silently.
 406		 * There is no good way to pass the error to the newly
 407		 * created socket, and POSIX does not want network
 408		 * errors returned from accept().
 409		 */
 410		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 411		tcp_listendrop(req->rsk_listener);
 412	}
 413	reqsk_put(req);
 414}
 415EXPORT_SYMBOL(tcp_req_err);
 416
 417/* TCP-LD (RFC 6069) logic */
 418void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 419{
 420	struct inet_connection_sock *icsk = inet_csk(sk);
 421	struct tcp_sock *tp = tcp_sk(sk);
 422	struct sk_buff *skb;
 423	s32 remaining;
 424	u32 delta_us;
 425
 426	if (sock_owned_by_user(sk))
 427		return;
 428
 429	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 430	    !icsk->icsk_backoff)
 431		return;
 432
 433	skb = tcp_rtx_queue_head(sk);
 434	if (WARN_ON_ONCE(!skb))
 435		return;
 436
 437	icsk->icsk_backoff--;
 438	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 439	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 440
 441	tcp_mstamp_refresh(tp);
 442	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 443	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 444
 445	if (remaining > 0) {
 446		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 447					  remaining, TCP_RTO_MAX);
 448	} else {
 449		/* RTO revert clocked out retransmission.
 450		 * Will retransmit now.
 451		 */
 452		tcp_retransmit_timer(sk);
 453	}
 454}
 455EXPORT_SYMBOL(tcp_ld_RTO_revert);
 456
 457/*
 458 * This routine is called by the ICMP module when it gets some
 459 * sort of error condition.  If err < 0 then the socket should
 460 * be closed and the error returned to the user.  If err > 0
 461 * it's just the icmp type << 8 | icmp code.  After adjustment
 462 * header points to the first 8 bytes of the tcp header.  We need
 463 * to find the appropriate port.
 464 *
 465 * The locking strategy used here is very "optimistic". When
 466 * someone else accesses the socket the ICMP is just dropped
 467 * and for some paths there is no check at all.
 468 * A more general error queue to queue errors for later handling
 469 * is probably better.
 470 *
 471 */
 472
 473int tcp_v4_err(struct sk_buff *skb, u32 info)
 474{
 475	const struct iphdr *iph = (const struct iphdr *)skb->data;
 476	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 
 477	struct tcp_sock *tp;
 478	struct inet_sock *inet;
 479	const int type = icmp_hdr(skb)->type;
 480	const int code = icmp_hdr(skb)->code;
 481	struct sock *sk;
 482	struct request_sock *fastopen;
 483	u32 seq, snd_una;
 
 484	int err;
 485	struct net *net = dev_net(skb->dev);
 
 
 
 
 
 486
 487	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 488				       iph->daddr, th->dest, iph->saddr,
 489				       ntohs(th->source), inet_iif(skb), 0);
 490	if (!sk) {
 491		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 492		return -ENOENT;
 493	}
 494	if (sk->sk_state == TCP_TIME_WAIT) {
 495		inet_twsk_put(inet_twsk(sk));
 496		return 0;
 497	}
 498	seq = ntohl(th->seq);
 499	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 500		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 501				     type == ICMP_TIME_EXCEEDED ||
 502				     (type == ICMP_DEST_UNREACH &&
 503				      (code == ICMP_NET_UNREACH ||
 504				       code == ICMP_HOST_UNREACH)));
 505		return 0;
 506	}
 507
 508	bh_lock_sock(sk);
 509	/* If too many ICMPs get dropped on busy
 510	 * servers this needs to be solved differently.
 511	 * We do take care of PMTU discovery (RFC1191) special case :
 512	 * we can receive locally generated ICMP messages while socket is held.
 513	 */
 514	if (sock_owned_by_user(sk)) {
 515		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 516			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 517	}
 518	if (sk->sk_state == TCP_CLOSE)
 519		goto out;
 520
 521	if (static_branch_unlikely(&ip4_min_ttl)) {
 522		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 523		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 524			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 525			goto out;
 526		}
 527	}
 528
 
 529	tp = tcp_sk(sk);
 530	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 531	fastopen = rcu_dereference(tp->fastopen_rsk);
 532	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 533	if (sk->sk_state != TCP_LISTEN &&
 534	    !between(seq, snd_una, tp->snd_nxt)) {
 535		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 536		goto out;
 537	}
 538
 539	switch (type) {
 540	case ICMP_REDIRECT:
 541		if (!sock_owned_by_user(sk))
 542			do_redirect(skb, sk);
 543		goto out;
 544	case ICMP_SOURCE_QUENCH:
 545		/* Just silently ignore these. */
 546		goto out;
 547	case ICMP_PARAMETERPROB:
 548		err = EPROTO;
 549		break;
 550	case ICMP_DEST_UNREACH:
 551		if (code > NR_ICMP_UNREACH)
 552			goto out;
 553
 554		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 555			/* We are not interested in TCP_LISTEN and open_requests
 556			 * (SYN-ACKs send out by Linux are always <576bytes so
 557			 * they should go through unfragmented).
 558			 */
 559			if (sk->sk_state == TCP_LISTEN)
 560				goto out;
 561
 562			WRITE_ONCE(tp->mtu_info, info);
 563			if (!sock_owned_by_user(sk)) {
 564				tcp_v4_mtu_reduced(sk);
 565			} else {
 566				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 567					sock_hold(sk);
 568			}
 569			goto out;
 570		}
 571
 572		err = icmp_err_convert[code].errno;
 573		/* check if this ICMP message allows revert of backoff.
 574		 * (see RFC 6069)
 575		 */
 576		if (!fastopen &&
 577		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 578			tcp_ld_RTO_revert(sk, seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579		break;
 580	case ICMP_TIME_EXCEEDED:
 581		err = EHOSTUNREACH;
 582		break;
 583	default:
 584		goto out;
 585	}
 586
 587	switch (sk->sk_state) {
 588	case TCP_SYN_SENT:
 589	case TCP_SYN_RECV:
 590		/* Only in fast or simultaneous open. If a fast open socket is
 591		 * already accepted it is treated as a connected one below.
 
 
 
 
 
 
 
 
 592		 */
 593		if (fastopen && !fastopen->sk)
 594			break;
 595
 596		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 
 
 
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 598		if (!sock_owned_by_user(sk)) {
 599			sk->sk_err = err;
 600
 601			sk_error_report(sk);
 602
 603			tcp_done(sk);
 604		} else {
 605			sk->sk_err_soft = err;
 606		}
 607		goto out;
 608	}
 609
 610	/* If we've already connected we will keep trying
 611	 * until we time out, or the user gives up.
 612	 *
 613	 * rfc1122 4.2.3.9 allows to consider as hard errors
 614	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 615	 * but it is obsoleted by pmtu discovery).
 616	 *
 617	 * Note, that in modern internet, where routing is unreliable
 618	 * and in each dark corner broken firewalls sit, sending random
 619	 * errors ordered by their masters even this two messages finally lose
 620	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 621	 *
 622	 * Now we are in compliance with RFCs.
 623	 *							--ANK (980905)
 624	 */
 625
 626	inet = inet_sk(sk);
 627	if (!sock_owned_by_user(sk) && inet->recverr) {
 628		sk->sk_err = err;
 629		sk_error_report(sk);
 630	} else	{ /* Only an error on timeout */
 631		sk->sk_err_soft = err;
 632	}
 633
 634out:
 635	bh_unlock_sock(sk);
 636	sock_put(sk);
 637	return 0;
 638}
 639
 640void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 
 641{
 642	struct tcphdr *th = tcp_hdr(skb);
 643
 644	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 645	skb->csum_start = skb_transport_header(skb) - skb->head;
 646	skb->csum_offset = offsetof(struct tcphdr, check);
 
 
 
 
 
 
 
 647}
 648
 649/* This routine computes an IPv4 TCP checksum. */
 650void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 651{
 652	const struct inet_sock *inet = inet_sk(sk);
 653
 654	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 655}
 656EXPORT_SYMBOL(tcp_v4_send_check);
 657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658/*
 659 *	This routine will send an RST to the other tcp.
 660 *
 661 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 662 *		      for reset.
 663 *	Answer: if a packet caused RST, it is not for a socket
 664 *		existing in our system, if it is matched to a socket,
 665 *		it is just duplicate segment or bug in other side's TCP.
 666 *		So that we build reply only basing on parameters
 667 *		arrived with segment.
 668 *	Exception: precedence violation. We do not implement it in any case.
 669 */
 670
 671#ifdef CONFIG_TCP_MD5SIG
 672#define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
 673#else
 674#define OPTION_BYTES sizeof(__be32)
 675#endif
 676
 677static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
 678{
 679	const struct tcphdr *th = tcp_hdr(skb);
 680	struct {
 681		struct tcphdr th;
 682		__be32 opt[OPTION_BYTES / sizeof(__be32)];
 
 
 683	} rep;
 684	struct ip_reply_arg arg;
 685#ifdef CONFIG_TCP_MD5SIG
 686	struct tcp_md5sig_key *key = NULL;
 687	const __u8 *hash_location = NULL;
 688	unsigned char newhash[16];
 689	int genhash;
 690	struct sock *sk1 = NULL;
 691#endif
 692	u64 transmit_time = 0;
 693	struct sock *ctl_sk;
 694	struct net *net;
 695
 696	/* Never send a reset in response to a reset. */
 697	if (th->rst)
 698		return;
 699
 700	/* If sk not NULL, it means we did a successful lookup and incoming
 701	 * route had to be correct. prequeue might have dropped our dst.
 702	 */
 703	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 704		return;
 705
 706	/* Swap the send and the receive. */
 707	memset(&rep, 0, sizeof(rep));
 708	rep.th.dest   = th->source;
 709	rep.th.source = th->dest;
 710	rep.th.doff   = sizeof(struct tcphdr) / 4;
 711	rep.th.rst    = 1;
 712
 713	if (th->ack) {
 714		rep.th.seq = th->ack_seq;
 715	} else {
 716		rep.th.ack = 1;
 717		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 718				       skb->len - (th->doff << 2));
 719	}
 720
 721	memset(&arg, 0, sizeof(arg));
 722	arg.iov[0].iov_base = (unsigned char *)&rep;
 723	arg.iov[0].iov_len  = sizeof(rep.th);
 724
 725	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 726#ifdef CONFIG_TCP_MD5SIG
 727	rcu_read_lock();
 728	hash_location = tcp_parse_md5sig_option(th);
 729	if (sk && sk_fullsock(sk)) {
 730		const union tcp_md5_addr *addr;
 731		int l3index;
 732
 733		/* sdif set, means packet ingressed via a device
 734		 * in an L3 domain and inet_iif is set to it.
 735		 */
 736		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 737		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 738		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 739	} else if (hash_location) {
 740		const union tcp_md5_addr *addr;
 741		int sdif = tcp_v4_sdif(skb);
 742		int dif = inet_iif(skb);
 743		int l3index;
 744
 745		/*
 746		 * active side is lost. Try to find listening socket through
 747		 * source port, and then find md5 key through listening socket.
 748		 * we are not loose security here:
 749		 * Incoming packet is checked with md5 hash with finding key,
 750		 * no RST generated if md5 hash doesn't match.
 751		 */
 752		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 753					     NULL, 0, ip_hdr(skb)->saddr,
 754					     th->source, ip_hdr(skb)->daddr,
 755					     ntohs(th->source), dif, sdif);
 756		/* don't send rst if it can't find key */
 757		if (!sk1)
 758			goto out;
 759
 760		/* sdif set, means packet ingressed via a device
 761		 * in an L3 domain and dif is set to it.
 762		 */
 763		l3index = sdif ? dif : 0;
 764		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 765		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 766		if (!key)
 767			goto out;
 768
 769
 770		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 771		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 772			goto out;
 773
 
 
 
 774	}
 775
 776	if (key) {
 777		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 778				   (TCPOPT_NOP << 16) |
 779				   (TCPOPT_MD5SIG << 8) |
 780				   TCPOLEN_MD5SIG);
 781		/* Update length and the length the header thinks exists */
 782		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 783		rep.th.doff = arg.iov[0].iov_len / 4;
 784
 785		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 786				     key, ip_hdr(skb)->saddr,
 787				     ip_hdr(skb)->daddr, &rep.th);
 788	}
 789#endif
 790	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 791	if (rep.opt[0] == 0) {
 792		__be32 mrst = mptcp_reset_option(skb);
 793
 794		if (mrst) {
 795			rep.opt[0] = mrst;
 796			arg.iov[0].iov_len += sizeof(mrst);
 797			rep.th.doff = arg.iov[0].iov_len / 4;
 798		}
 799	}
 800
 801	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 802				      ip_hdr(skb)->saddr, /* XXX */
 803				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 804	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 805	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 806
 807	/* When socket is gone, all binding information is lost.
 808	 * routing might fail in this case. No choice here, if we choose to force
 809	 * input interface, we will misroute in case of asymmetric route.
 810	 */
 811	if (sk) {
 812		arg.bound_dev_if = sk->sk_bound_dev_if;
 813		if (sk_fullsock(sk))
 814			trace_tcp_send_reset(sk, skb);
 815	}
 816
 817	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 818		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 
 
 819
 820	arg.tos = ip_hdr(skb)->tos;
 821	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 822	local_bh_disable();
 823	ctl_sk = this_cpu_read(ipv4_tcp_sk);
 824	sock_net_set(ctl_sk, net);
 825	if (sk) {
 826		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 827				   inet_twsk(sk)->tw_mark : sk->sk_mark;
 828		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 829				   inet_twsk(sk)->tw_priority : sk->sk_priority;
 830		transmit_time = tcp_transmit_time(sk);
 831		xfrm_sk_clone_policy(ctl_sk, sk);
 832	}
 833	ip_send_unicast_reply(ctl_sk,
 834			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 835			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 836			      &arg, arg.iov[0].iov_len,
 837			      transmit_time);
 838
 839	ctl_sk->sk_mark = 0;
 840	xfrm_sk_free_policy(ctl_sk);
 841	sock_net_set(ctl_sk, &init_net);
 842	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 843	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 844	local_bh_enable();
 845
 846#ifdef CONFIG_TCP_MD5SIG
 847out:
 848	rcu_read_unlock();
 
 
 
 849#endif
 850}
 851
 852/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 853   outside socket context is ugly, certainly. What can I do?
 854 */
 855
 856static void tcp_v4_send_ack(const struct sock *sk,
 857			    struct sk_buff *skb, u32 seq, u32 ack,
 858			    u32 win, u32 tsval, u32 tsecr, int oif,
 859			    struct tcp_md5sig_key *key,
 860			    int reply_flags, u8 tos)
 861{
 862	const struct tcphdr *th = tcp_hdr(skb);
 863	struct {
 864		struct tcphdr th;
 865		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 866#ifdef CONFIG_TCP_MD5SIG
 867			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 868#endif
 869			];
 870	} rep;
 871	struct net *net = sock_net(sk);
 872	struct ip_reply_arg arg;
 873	struct sock *ctl_sk;
 874	u64 transmit_time;
 875
 876	memset(&rep.th, 0, sizeof(struct tcphdr));
 877	memset(&arg, 0, sizeof(arg));
 878
 879	arg.iov[0].iov_base = (unsigned char *)&rep;
 880	arg.iov[0].iov_len  = sizeof(rep.th);
 881	if (tsecr) {
 882		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 883				   (TCPOPT_TIMESTAMP << 8) |
 884				   TCPOLEN_TIMESTAMP);
 885		rep.opt[1] = htonl(tsval);
 886		rep.opt[2] = htonl(tsecr);
 887		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 888	}
 889
 890	/* Swap the send and the receive. */
 891	rep.th.dest    = th->source;
 892	rep.th.source  = th->dest;
 893	rep.th.doff    = arg.iov[0].iov_len / 4;
 894	rep.th.seq     = htonl(seq);
 895	rep.th.ack_seq = htonl(ack);
 896	rep.th.ack     = 1;
 897	rep.th.window  = htons(win);
 898
 899#ifdef CONFIG_TCP_MD5SIG
 900	if (key) {
 901		int offset = (tsecr) ? 3 : 0;
 902
 903		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 904					  (TCPOPT_NOP << 16) |
 905					  (TCPOPT_MD5SIG << 8) |
 906					  TCPOLEN_MD5SIG);
 907		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 908		rep.th.doff = arg.iov[0].iov_len/4;
 909
 910		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 911				    key, ip_hdr(skb)->saddr,
 912				    ip_hdr(skb)->daddr, &rep.th);
 913	}
 914#endif
 915	arg.flags = reply_flags;
 916	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 917				      ip_hdr(skb)->saddr, /* XXX */
 918				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 919	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 920	if (oif)
 921		arg.bound_dev_if = oif;
 922	arg.tos = tos;
 923	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
 924	local_bh_disable();
 925	ctl_sk = this_cpu_read(ipv4_tcp_sk);
 926	sock_net_set(ctl_sk, net);
 927	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 928			   inet_twsk(sk)->tw_mark : sk->sk_mark;
 929	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 930			   inet_twsk(sk)->tw_priority : sk->sk_priority;
 931	transmit_time = tcp_transmit_time(sk);
 932	ip_send_unicast_reply(ctl_sk,
 933			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 934			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 935			      &arg, arg.iov[0].iov_len,
 936			      transmit_time);
 937
 938	ctl_sk->sk_mark = 0;
 939	sock_net_set(ctl_sk, &init_net);
 940	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 941	local_bh_enable();
 942}
 943
 944static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 945{
 946	struct inet_timewait_sock *tw = inet_twsk(sk);
 947	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 948
 949	tcp_v4_send_ack(sk, skb,
 950			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 951			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 952			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
 953			tcptw->tw_ts_recent,
 954			tw->tw_bound_dev_if,
 955			tcp_twsk_md5_key(tcptw),
 956			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 957			tw->tw_tos
 958			);
 959
 960	inet_twsk_put(tw);
 961}
 962
 963static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
 964				  struct request_sock *req)
 965{
 966	const union tcp_md5_addr *addr;
 967	int l3index;
 968
 969	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
 970	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
 971	 */
 972	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
 973					     tcp_sk(sk)->snd_nxt;
 974
 975	/* RFC 7323 2.3
 976	 * The window field (SEG.WND) of every outgoing segment, with the
 977	 * exception of <SYN> segments, MUST be right-shifted by
 978	 * Rcv.Wind.Shift bits:
 979	 */
 980	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 981	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 982	tcp_v4_send_ack(sk, skb, seq,
 983			tcp_rsk(req)->rcv_nxt,
 984			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
 985			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
 986			req->ts_recent,
 987			0,
 988			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
 
 989			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 990			ip_hdr(skb)->tos);
 991}
 992
 993/*
 994 *	Send a SYN-ACK after having received a SYN.
 995 *	This still operates on a request_sock only, not on a big
 996 *	socket.
 997 */
 998static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
 999			      struct flowi *fl,
1000			      struct request_sock *req,
1001			      struct tcp_fastopen_cookie *foc,
1002			      enum tcp_synack_type synack_type,
1003			      struct sk_buff *syn_skb)
1004{
1005	const struct inet_request_sock *ireq = inet_rsk(req);
1006	struct flowi4 fl4;
1007	int err = -1;
1008	struct sk_buff *skb;
1009	u8 tos;
1010
1011	/* First, grab a route. */
1012	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1013		return -1;
1014
1015	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1016
1017	if (skb) {
1018		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1019
1020		tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1021				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1022				(inet_sk(sk)->tos & INET_ECN_MASK) :
1023				inet_sk(sk)->tos;
1024
1025		if (!INET_ECN_is_capable(tos) &&
1026		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1027			tos |= INET_ECN_ECT_0;
1028
1029		rcu_read_lock();
1030		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1031					    ireq->ir_rmt_addr,
1032					    rcu_dereference(ireq->ireq_opt),
1033					    tos);
1034		rcu_read_unlock();
1035		err = net_xmit_eval(err);
1036	}
1037
 
1038	return err;
1039}
1040
 
 
 
 
 
 
 
1041/*
1042 *	IPv4 request_sock destructor.
1043 */
1044static void tcp_v4_reqsk_destructor(struct request_sock *req)
1045{
1046	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1047}
1048
1049#ifdef CONFIG_TCP_MD5SIG
1050/*
1051 * RFC2385 MD5 checksumming requires a mapping of
1052 * IP address->MD5 Key.
1053 * We need to maintain these in the sk structure.
1054 */
 
 
 
 
 
 
 
1055
1056DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1057EXPORT_SYMBOL(tcp_md5_needed);
1058
1059static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1060{
1061	if (!old)
1062		return true;
1063
1064	/* l3index always overrides non-l3index */
1065	if (old->l3index && new->l3index == 0)
1066		return false;
1067	if (old->l3index == 0 && new->l3index)
1068		return true;
 
 
 
1069
1070	return old->prefixlen < new->prefixlen;
 
 
 
 
 
 
1071}
 
1072
1073/* Find the Key structure for an address.  */
1074struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1075					   const union tcp_md5_addr *addr,
1076					   int family)
 
1077{
1078	const struct tcp_sock *tp = tcp_sk(sk);
1079	struct tcp_md5sig_key *key;
1080	const struct tcp_md5sig_info *md5sig;
1081	__be32 mask;
1082	struct tcp_md5sig_key *best_match = NULL;
1083	bool match;
1084
1085	/* caller either holds rcu_read_lock() or socket lock */
1086	md5sig = rcu_dereference_check(tp->md5sig_info,
1087				       lockdep_sock_is_held(sk));
1088	if (!md5sig)
1089		return NULL;
1090
1091	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1092				 lockdep_sock_is_held(sk)) {
1093		if (key->family != family)
1094			continue;
1095		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1096			continue;
1097		if (family == AF_INET) {
1098			mask = inet_make_mask(key->prefixlen);
1099			match = (key->addr.a4.s_addr & mask) ==
1100				(addr->a4.s_addr & mask);
1101#if IS_ENABLED(CONFIG_IPV6)
1102		} else if (family == AF_INET6) {
1103			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1104						  key->prefixlen);
1105#endif
1106		} else {
1107			match = false;
1108		}
1109
1110		if (match && better_md5_match(best_match, key))
1111			best_match = key;
1112	}
1113	return best_match;
1114}
1115EXPORT_SYMBOL(__tcp_md5_do_lookup);
1116
1117static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1118						      const union tcp_md5_addr *addr,
1119						      int family, u8 prefixlen,
1120						      int l3index, u8 flags)
 
 
 
 
 
 
 
1121{
1122	const struct tcp_sock *tp = tcp_sk(sk);
1123	struct tcp_md5sig_key *key;
 
1124	unsigned int size = sizeof(struct in_addr);
1125	const struct tcp_md5sig_info *md5sig;
1126
1127	/* caller either holds rcu_read_lock() or socket lock */
1128	md5sig = rcu_dereference_check(tp->md5sig_info,
1129				       lockdep_sock_is_held(sk));
 
1130	if (!md5sig)
1131		return NULL;
1132#if IS_ENABLED(CONFIG_IPV6)
1133	if (family == AF_INET6)
1134		size = sizeof(struct in6_addr);
1135#endif
1136	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1137				 lockdep_sock_is_held(sk)) {
1138		if (key->family != family)
1139			continue;
1140		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1141			continue;
1142		if (key->l3index != l3index)
1143			continue;
1144		if (!memcmp(&key->addr, addr, size) &&
1145		    key->prefixlen == prefixlen)
1146			return key;
1147	}
1148	return NULL;
1149}
 
1150
1151struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1152					 const struct sock *addr_sk)
1153{
1154	const union tcp_md5_addr *addr;
1155	int l3index;
1156
1157	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1158						 addr_sk->sk_bound_dev_if);
1159	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1160	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1161}
1162EXPORT_SYMBOL(tcp_v4_md5_lookup);
1163
1164static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
 
1165{
1166	struct tcp_sock *tp = tcp_sk(sk);
1167	struct tcp_md5sig_info *md5sig;
1168
1169	md5sig = kmalloc(sizeof(*md5sig), gfp);
1170	if (!md5sig)
1171		return -ENOMEM;
1172
1173	sk_gso_disable(sk);
1174	INIT_HLIST_HEAD(&md5sig->head);
1175	rcu_assign_pointer(tp->md5sig_info, md5sig);
1176	return 0;
1177}
1178
1179/* This can be called on a newly created socket, from other files */
1180static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1181			    int family, u8 prefixlen, int l3index, u8 flags,
1182			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1183{
1184	/* Add Key to the list */
1185	struct tcp_md5sig_key *key;
1186	struct tcp_sock *tp = tcp_sk(sk);
1187	struct tcp_md5sig_info *md5sig;
1188
1189	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1190	if (key) {
1191		/* Pre-existing entry - just update that one.
1192		 * Note that the key might be used concurrently.
1193		 * data_race() is telling kcsan that we do not care of
1194		 * key mismatches, since changing MD5 key on live flows
1195		 * can lead to packet drops.
1196		 */
1197		data_race(memcpy(key->key, newkey, newkeylen));
1198
1199		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1200		 * Also note that a reader could catch new key->keylen value
1201		 * but old key->key[], this is the reason we use __GFP_ZERO
1202		 * at sock_kmalloc() time below these lines.
1203		 */
1204		WRITE_ONCE(key->keylen, newkeylen);
1205
1206		return 0;
1207	}
1208
1209	md5sig = rcu_dereference_protected(tp->md5sig_info,
1210					   lockdep_sock_is_held(sk));
 
 
 
 
 
 
 
 
 
1211
1212	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1213	if (!key)
1214		return -ENOMEM;
1215	if (!tcp_alloc_md5sig_pool()) {
1216		sock_kfree_s(sk, key, sizeof(*key));
1217		return -ENOMEM;
1218	}
1219
1220	memcpy(key->key, newkey, newkeylen);
1221	key->keylen = newkeylen;
1222	key->family = family;
1223	key->prefixlen = prefixlen;
1224	key->l3index = l3index;
1225	key->flags = flags;
1226	memcpy(&key->addr, addr,
1227	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1228								 sizeof(struct in_addr));
1229	hlist_add_head_rcu(&key->node, &md5sig->head);
1230	return 0;
1231}
1232
1233int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1234		   int family, u8 prefixlen, int l3index, u8 flags,
1235		   const u8 *newkey, u8 newkeylen)
1236{
1237	struct tcp_sock *tp = tcp_sk(sk);
1238
1239	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1240		if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1241			return -ENOMEM;
1242
1243		if (!static_branch_inc(&tcp_md5_needed.key)) {
1244			struct tcp_md5sig_info *md5sig;
1245
1246			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1247			rcu_assign_pointer(tp->md5sig_info, NULL);
1248			kfree_rcu(md5sig, rcu);
1249			return -EUSERS;
1250		}
1251	}
1252
1253	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1254				newkey, newkeylen, GFP_KERNEL);
1255}
1256EXPORT_SYMBOL(tcp_md5_do_add);
1257
1258int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1259		     int family, u8 prefixlen, int l3index,
1260		     struct tcp_md5sig_key *key)
1261{
1262	struct tcp_sock *tp = tcp_sk(sk);
1263
1264	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1265		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1266			return -ENOMEM;
1267
1268		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1269			struct tcp_md5sig_info *md5sig;
1270
1271			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1272			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1273			rcu_assign_pointer(tp->md5sig_info, NULL);
1274			kfree_rcu(md5sig, rcu);
1275			return -EUSERS;
1276		}
1277	}
1278
1279	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1280				key->flags, key->key, key->keylen,
1281				sk_gfp_mask(sk, GFP_ATOMIC));
1282}
1283EXPORT_SYMBOL(tcp_md5_key_copy);
1284
1285int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1286		   u8 prefixlen, int l3index, u8 flags)
1287{
1288	struct tcp_md5sig_key *key;
 
1289
1290	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1291	if (!key)
1292		return -ENOENT;
1293	hlist_del_rcu(&key->node);
1294	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1295	kfree_rcu(key, rcu);
 
 
 
 
1296	return 0;
1297}
1298EXPORT_SYMBOL(tcp_md5_do_del);
1299
1300static void tcp_clear_md5_list(struct sock *sk)
1301{
1302	struct tcp_sock *tp = tcp_sk(sk);
1303	struct tcp_md5sig_key *key;
1304	struct hlist_node *n;
1305	struct tcp_md5sig_info *md5sig;
1306
1307	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1308
1309	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
 
 
1310		hlist_del_rcu(&key->node);
1311		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1312		kfree_rcu(key, rcu);
1313	}
1314}
1315
1316static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1317				 sockptr_t optval, int optlen)
1318{
1319	struct tcp_md5sig cmd;
1320	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1321	const union tcp_md5_addr *addr;
1322	u8 prefixlen = 32;
1323	int l3index = 0;
1324	u8 flags;
1325
1326	if (optlen < sizeof(cmd))
1327		return -EINVAL;
1328
1329	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1330		return -EFAULT;
1331
1332	if (sin->sin_family != AF_INET)
1333		return -EINVAL;
1334
1335	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1336
1337	if (optname == TCP_MD5SIG_EXT &&
1338	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1339		prefixlen = cmd.tcpm_prefixlen;
1340		if (prefixlen > 32)
1341			return -EINVAL;
1342	}
1343
1344	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1345	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1346		struct net_device *dev;
1347
1348		rcu_read_lock();
1349		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1350		if (dev && netif_is_l3_master(dev))
1351			l3index = dev->ifindex;
1352
1353		rcu_read_unlock();
1354
1355		/* ok to reference set/not set outside of rcu;
1356		 * right now device MUST be an L3 master
1357		 */
1358		if (!dev || !l3index)
1359			return -EINVAL;
1360	}
1361
1362	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1363
1364	if (!cmd.tcpm_keylen)
1365		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1366
1367	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1368		return -EINVAL;
1369
1370	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1371			      cmd.tcpm_key, cmd.tcpm_keylen);
 
1372}
1373
1374static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1375				   __be32 daddr, __be32 saddr,
1376				   const struct tcphdr *th, int nbytes)
1377{
1378	struct tcp4_pseudohdr *bp;
1379	struct scatterlist sg;
1380	struct tcphdr *_th;
1381
1382	bp = hp->scratch;
 
 
 
 
 
 
1383	bp->saddr = saddr;
1384	bp->daddr = daddr;
1385	bp->pad = 0;
1386	bp->protocol = IPPROTO_TCP;
1387	bp->len = cpu_to_be16(nbytes);
1388
1389	_th = (struct tcphdr *)(bp + 1);
1390	memcpy(_th, th, sizeof(*th));
1391	_th->check = 0;
1392
1393	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1394	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1395				sizeof(*bp) + sizeof(*th));
1396	return crypto_ahash_update(hp->md5_req);
1397}
1398
1399static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1400			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1401{
1402	struct tcp_md5sig_pool *hp;
1403	struct ahash_request *req;
1404
1405	hp = tcp_get_md5sig_pool();
1406	if (!hp)
1407		goto clear_hash_noput;
1408	req = hp->md5_req;
1409
1410	if (crypto_ahash_init(req))
 
 
1411		goto clear_hash;
1412	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1413		goto clear_hash;
1414	if (tcp_md5_hash_key(hp, key))
1415		goto clear_hash;
1416	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1417	if (crypto_ahash_final(req))
1418		goto clear_hash;
1419
1420	tcp_put_md5sig_pool();
1421	return 0;
1422
1423clear_hash:
1424	tcp_put_md5sig_pool();
1425clear_hash_noput:
1426	memset(md5_hash, 0, 16);
1427	return 1;
1428}
1429
1430int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1431			const struct sock *sk,
1432			const struct sk_buff *skb)
1433{
1434	struct tcp_md5sig_pool *hp;
1435	struct ahash_request *req;
1436	const struct tcphdr *th = tcp_hdr(skb);
1437	__be32 saddr, daddr;
1438
1439	if (sk) { /* valid for establish/request sockets */
1440		saddr = sk->sk_rcv_saddr;
1441		daddr = sk->sk_daddr;
 
 
 
1442	} else {
1443		const struct iphdr *iph = ip_hdr(skb);
1444		saddr = iph->saddr;
1445		daddr = iph->daddr;
1446	}
1447
1448	hp = tcp_get_md5sig_pool();
1449	if (!hp)
1450		goto clear_hash_noput;
1451	req = hp->md5_req;
1452
1453	if (crypto_ahash_init(req))
1454		goto clear_hash;
1455
1456	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
 
 
1457		goto clear_hash;
1458	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1459		goto clear_hash;
1460	if (tcp_md5_hash_key(hp, key))
1461		goto clear_hash;
1462	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1463	if (crypto_ahash_final(req))
1464		goto clear_hash;
1465
1466	tcp_put_md5sig_pool();
1467	return 0;
1468
1469clear_hash:
1470	tcp_put_md5sig_pool();
1471clear_hash_noput:
1472	memset(md5_hash, 0, 16);
1473	return 1;
1474}
1475EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1476
1477#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478
1479static void tcp_v4_init_req(struct request_sock *req,
1480			    const struct sock *sk_listener,
1481			    struct sk_buff *skb)
1482{
1483	struct inet_request_sock *ireq = inet_rsk(req);
1484	struct net *net = sock_net(sk_listener);
1485
1486	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1487	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1488	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1489}
1490
1491static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1492					  struct sk_buff *skb,
1493					  struct flowi *fl,
1494					  struct request_sock *req)
1495{
1496	tcp_v4_init_req(req, sk, skb);
1497
1498	if (security_inet_conn_request(sk, skb, req))
1499		return NULL;
 
 
1500
1501	return inet_csk_route_req(sk, &fl->u.ip4, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502}
1503
 
 
1504struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1505	.family		=	PF_INET,
1506	.obj_size	=	sizeof(struct tcp_request_sock),
1507	.rtx_syn_ack	=	tcp_rtx_synack,
1508	.send_ack	=	tcp_v4_reqsk_send_ack,
1509	.destructor	=	tcp_v4_reqsk_destructor,
1510	.send_reset	=	tcp_v4_send_reset,
1511	.syn_ack_timeout =	tcp_syn_ack_timeout,
1512};
1513
1514const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1515	.mss_clamp	=	TCP_MSS_DEFAULT,
1516#ifdef CONFIG_TCP_MD5SIG
1517	.req_md5_lookup	=	tcp_v4_md5_lookup,
 
1518	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
 
1519#endif
1520#ifdef CONFIG_SYN_COOKIES
1521	.cookie_init_seq =	cookie_v4_init_sequence,
1522#endif
1523	.route_req	=	tcp_v4_route_req,
1524	.init_seq	=	tcp_v4_init_seq,
1525	.init_ts_off	=	tcp_v4_init_ts_off,
1526	.send_synack	=	tcp_v4_send_synack,
1527};
1528
1529int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1530{
 
 
 
 
 
 
 
 
 
 
 
 
1531	/* Never answer to SYNs send to broadcast or multicast */
1532	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1533		goto drop;
1534
1535	return tcp_conn_request(&tcp_request_sock_ops,
1536				&tcp_request_sock_ipv4_ops, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538drop:
1539	tcp_listendrop(sk);
1540	return 0;
1541}
1542EXPORT_SYMBOL(tcp_v4_conn_request);
1543
1544
1545/*
1546 * The three way handshake has completed - we got a valid synack -
1547 * now create the new socket.
1548 */
1549struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1550				  struct request_sock *req,
1551				  struct dst_entry *dst,
1552				  struct request_sock *req_unhash,
1553				  bool *own_req)
1554{
1555	struct inet_request_sock *ireq;
1556	bool found_dup_sk = false;
1557	struct inet_sock *newinet;
1558	struct tcp_sock *newtp;
1559	struct sock *newsk;
1560#ifdef CONFIG_TCP_MD5SIG
1561	const union tcp_md5_addr *addr;
1562	struct tcp_md5sig_key *key;
1563	int l3index;
1564#endif
1565	struct ip_options_rcu *inet_opt;
1566
1567	if (sk_acceptq_is_full(sk))
1568		goto exit_overflow;
1569
1570	newsk = tcp_create_openreq_child(sk, req, skb);
1571	if (!newsk)
1572		goto exit_nonewsk;
1573
1574	newsk->sk_gso_type = SKB_GSO_TCPV4;
1575	inet_sk_rx_dst_set(newsk, skb);
1576
1577	newtp		      = tcp_sk(newsk);
1578	newinet		      = inet_sk(newsk);
1579	ireq		      = inet_rsk(req);
1580	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1581	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1582	newsk->sk_bound_dev_if = ireq->ir_iif;
1583	newinet->inet_saddr   = ireq->ir_loc_addr;
1584	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1585	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1586	newinet->mc_index     = inet_iif(skb);
1587	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1588	newinet->rcv_tos      = ip_hdr(skb)->tos;
1589	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1590	if (inet_opt)
1591		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1592	newinet->inet_id = get_random_u16();
1593
1594	/* Set ToS of the new socket based upon the value of incoming SYN.
1595	 * ECT bits are set later in tcp_init_transfer().
1596	 */
1597	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1598		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1599
1600	if (!dst) {
1601		dst = inet_csk_route_child_sock(sk, newsk, req);
1602		if (!dst)
1603			goto put_and_exit;
1604	} else {
1605		/* syncookie case : see end of cookie_v4_check() */
1606	}
1607	sk_setup_caps(newsk, dst);
1608
1609	tcp_ca_openreq_child(newsk, dst);
1610
1611	tcp_sync_mss(newsk, dst_mtu(dst));
1612	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
 
 
 
1613
1614	tcp_initialize_rcv_mss(newsk);
 
 
 
 
1615
1616#ifdef CONFIG_TCP_MD5SIG
1617	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1618	/* Copy over the MD5 key from the original socket */
1619	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1620	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1621	if (key) {
1622		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1623			goto put_and_exit;
1624		sk_gso_disable(newsk);
 
 
 
 
 
 
1625	}
1626#endif
1627
1628	if (__inet_inherit_port(sk, newsk) < 0)
1629		goto put_and_exit;
1630	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1631				       &found_dup_sk);
1632	if (likely(*own_req)) {
1633		tcp_move_syn(newtp, req);
1634		ireq->ireq_opt = NULL;
1635	} else {
1636		newinet->inet_opt = NULL;
1637
1638		if (!req_unhash && found_dup_sk) {
1639			/* This code path should only be executed in the
1640			 * syncookie case only
1641			 */
1642			bh_unlock_sock(newsk);
1643			sock_put(newsk);
1644			newsk = NULL;
1645		}
1646	}
1647	return newsk;
1648
1649exit_overflow:
1650	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1651exit_nonewsk:
1652	dst_release(dst);
1653exit:
1654	tcp_listendrop(sk);
1655	return NULL;
1656put_and_exit:
1657	newinet->inet_opt = NULL;
1658	inet_csk_prepare_forced_close(newsk);
1659	tcp_done(newsk);
 
1660	goto exit;
1661}
1662EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1663
1664static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1665{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666#ifdef CONFIG_SYN_COOKIES
1667	const struct tcphdr *th = tcp_hdr(skb);
1668
1669	if (!th->syn)
1670		sk = cookie_v4_check(sk, skb);
1671#endif
1672	return sk;
1673}
1674
1675u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1676			 struct tcphdr *th, u32 *cookie)
1677{
1678	u16 mss = 0;
1679#ifdef CONFIG_SYN_COOKIES
1680	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1681				    &tcp_request_sock_ipv4_ops, sk, th);
1682	if (mss) {
1683		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1684		tcp_synq_overflow(sk);
 
 
 
 
 
 
 
 
1685	}
1686#endif
1687	return mss;
1688}
1689
1690INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1691							   u32));
1692/* The socket must have it's spinlock held when we get
1693 * here, unless it is a TCP_LISTEN socket.
1694 *
1695 * We have a potential double-lock case here, so even when
1696 * doing backlog processing we use the BH locking scheme.
1697 * This is because we cannot sleep with the original spinlock
1698 * held.
1699 */
1700int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1701{
1702	enum skb_drop_reason reason;
1703	struct sock *rsk;
 
 
 
 
 
 
 
 
 
 
1704
1705	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1706		struct dst_entry *dst;
1707
1708		dst = rcu_dereference_protected(sk->sk_rx_dst,
1709						lockdep_sock_is_held(sk));
1710
1711		sock_rps_save_rxhash(sk, skb);
1712		sk_mark_napi_id(sk, skb);
1713		if (dst) {
1714			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1715			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1716					     dst, 0)) {
1717				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1718				dst_release(dst);
1719			}
1720		}
1721		tcp_rcv_established(sk, skb);
1722		return 0;
1723	}
1724
1725	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1726	if (tcp_checksum_complete(skb))
1727		goto csum_err;
1728
1729	if (sk->sk_state == TCP_LISTEN) {
1730		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1731
1732		if (!nsk)
1733			goto discard;
 
1734		if (nsk != sk) {
 
1735			if (tcp_child_process(sk, nsk, skb)) {
1736				rsk = nsk;
1737				goto reset;
1738			}
1739			return 0;
1740		}
1741	} else
1742		sock_rps_save_rxhash(sk, skb);
1743
1744	if (tcp_rcv_state_process(sk, skb)) {
1745		rsk = sk;
1746		goto reset;
1747	}
1748	return 0;
1749
1750reset:
1751	tcp_v4_send_reset(rsk, skb);
1752discard:
1753	kfree_skb_reason(skb, reason);
1754	/* Be careful here. If this function gets more complicated and
1755	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1756	 * might be destroyed here. This current version compiles correctly,
1757	 * but you have been warned.
1758	 */
1759	return 0;
1760
1761csum_err:
1762	reason = SKB_DROP_REASON_TCP_CSUM;
1763	trace_tcp_bad_csum(skb);
1764	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1765	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1766	goto discard;
1767}
1768EXPORT_SYMBOL(tcp_v4_do_rcv);
1769
1770int tcp_v4_early_demux(struct sk_buff *skb)
1771{
1772	struct net *net = dev_net(skb->dev);
1773	const struct iphdr *iph;
1774	const struct tcphdr *th;
1775	struct sock *sk;
1776
1777	if (skb->pkt_type != PACKET_HOST)
1778		return 0;
1779
1780	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1781		return 0;
1782
1783	iph = ip_hdr(skb);
1784	th = tcp_hdr(skb);
1785
1786	if (th->doff < sizeof(struct tcphdr) / 4)
1787		return 0;
1788
1789	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1790				       iph->saddr, th->source,
1791				       iph->daddr, ntohs(th->dest),
1792				       skb->skb_iif, inet_sdif(skb));
1793	if (sk) {
1794		skb->sk = sk;
1795		skb->destructor = sock_edemux;
1796		if (sk_fullsock(sk)) {
1797			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1798
1799			if (dst)
1800				dst = dst_check(dst, 0);
1801			if (dst &&
1802			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1803				skb_dst_set_noref(skb, dst);
1804		}
1805	}
1806	return 0;
1807}
1808
1809bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1810		     enum skb_drop_reason *reason)
1811{
1812	u32 limit, tail_gso_size, tail_gso_segs;
1813	struct skb_shared_info *shinfo;
1814	const struct tcphdr *th;
1815	struct tcphdr *thtail;
1816	struct sk_buff *tail;
1817	unsigned int hdrlen;
1818	bool fragstolen;
1819	u32 gso_segs;
1820	u32 gso_size;
1821	int delta;
1822
1823	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1824	 * we can fix skb->truesize to its real value to avoid future drops.
1825	 * This is valid because skb is not yet charged to the socket.
1826	 * It has been noticed pure SACK packets were sometimes dropped
1827	 * (if cooked by drivers without copybreak feature).
1828	 */
1829	skb_condense(skb);
1830
1831	skb_dst_drop(skb);
1832
1833	if (unlikely(tcp_checksum_complete(skb))) {
1834		bh_unlock_sock(sk);
1835		trace_tcp_bad_csum(skb);
1836		*reason = SKB_DROP_REASON_TCP_CSUM;
1837		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1838		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1839		return true;
1840	}
1841
1842	/* Attempt coalescing to last skb in backlog, even if we are
1843	 * above the limits.
1844	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1845	 */
1846	th = (const struct tcphdr *)skb->data;
1847	hdrlen = th->doff * 4;
1848
1849	tail = sk->sk_backlog.tail;
1850	if (!tail)
1851		goto no_coalesce;
1852	thtail = (struct tcphdr *)tail->data;
1853
1854	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1855	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1856	    ((TCP_SKB_CB(tail)->tcp_flags |
1857	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1858	    !((TCP_SKB_CB(tail)->tcp_flags &
1859	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1860	    ((TCP_SKB_CB(tail)->tcp_flags ^
1861	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1862#ifdef CONFIG_TLS_DEVICE
1863	    tail->decrypted != skb->decrypted ||
1864#endif
1865	    thtail->doff != th->doff ||
1866	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1867		goto no_coalesce;
1868
1869	__skb_pull(skb, hdrlen);
1870
1871	shinfo = skb_shinfo(skb);
1872	gso_size = shinfo->gso_size ?: skb->len;
1873	gso_segs = shinfo->gso_segs ?: 1;
1874
1875	shinfo = skb_shinfo(tail);
1876	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1877	tail_gso_segs = shinfo->gso_segs ?: 1;
1878
1879	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1880		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1881
1882		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1883			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1884			thtail->window = th->window;
1885		}
1886
1887		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1888		 * thtail->fin, so that the fast path in tcp_rcv_established()
1889		 * is not entered if we append a packet with a FIN.
1890		 * SYN, RST, URG are not present.
1891		 * ACK is set on both packets.
1892		 * PSH : we do not really care in TCP stack,
1893		 *       at least for 'GRO' packets.
1894		 */
1895		thtail->fin |= th->fin;
1896		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1897
1898		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1899			TCP_SKB_CB(tail)->has_rxtstamp = true;
1900			tail->tstamp = skb->tstamp;
1901			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1902		}
1903
1904		/* Not as strict as GRO. We only need to carry mss max value */
1905		shinfo->gso_size = max(gso_size, tail_gso_size);
1906		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1907
1908		sk->sk_backlog.len += delta;
1909		__NET_INC_STATS(sock_net(sk),
1910				LINUX_MIB_TCPBACKLOGCOALESCE);
1911		kfree_skb_partial(skb, fragstolen);
1912		return false;
1913	}
1914	__skb_push(skb, hdrlen);
1915
1916no_coalesce:
1917	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1918
1919	/* Only socket owner can try to collapse/prune rx queues
1920	 * to reduce memory overhead, so add a little headroom here.
1921	 * Few sockets backlog are possibly concurrently non empty.
1922	 */
1923	limit += 64 * 1024;
1924
1925	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1926		bh_unlock_sock(sk);
1927		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1928		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1929		return true;
1930	}
1931	return false;
1932}
1933EXPORT_SYMBOL(tcp_add_backlog);
1934
1935int tcp_filter(struct sock *sk, struct sk_buff *skb)
1936{
1937	struct tcphdr *th = (struct tcphdr *)skb->data;
1938
1939	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1940}
1941EXPORT_SYMBOL(tcp_filter);
1942
1943static void tcp_v4_restore_cb(struct sk_buff *skb)
1944{
1945	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1946		sizeof(struct inet_skb_parm));
1947}
1948
1949static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1950			   const struct tcphdr *th)
1951{
1952	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1953	 * barrier() makes sure compiler wont play fool^Waliasing games.
1954	 */
1955	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1956		sizeof(struct inet_skb_parm));
1957	barrier();
1958
1959	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1960	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1961				    skb->len - th->doff * 4);
1962	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1963	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1964	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1965	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1966	TCP_SKB_CB(skb)->sacked	 = 0;
1967	TCP_SKB_CB(skb)->has_rxtstamp =
1968			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1969}
1970
1971/*
1972 *	From tcp_input.c
1973 */
1974
1975int tcp_v4_rcv(struct sk_buff *skb)
1976{
1977	struct net *net = dev_net(skb->dev);
1978	enum skb_drop_reason drop_reason;
1979	int sdif = inet_sdif(skb);
1980	int dif = inet_iif(skb);
1981	const struct iphdr *iph;
1982	const struct tcphdr *th;
1983	bool refcounted;
1984	struct sock *sk;
1985	int ret;
 
1986
1987	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1988	if (skb->pkt_type != PACKET_HOST)
1989		goto discard_it;
1990
1991	/* Count it even if it's bad */
1992	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1993
1994	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1995		goto discard_it;
1996
1997	th = (const struct tcphdr *)skb->data;
1998
1999	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2000		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2001		goto bad_packet;
2002	}
2003	if (!pskb_may_pull(skb, th->doff * 4))
2004		goto discard_it;
2005
2006	/* An explanation is required here, I think.
2007	 * Packet length and doff are validated by header prediction,
2008	 * provided case of th->doff==0 is eliminated.
2009	 * So, we defer the checks. */
 
 
2010
2011	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2012		goto csum_error;
 
 
 
 
 
 
 
2013
2014	th = (const struct tcphdr *)skb->data;
2015	iph = ip_hdr(skb);
2016lookup:
2017	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2018			       skb, __tcp_hdrlen(th), th->source,
2019			       th->dest, sdif, &refcounted);
2020	if (!sk)
2021		goto no_tcp_socket;
2022
2023process:
2024	if (sk->sk_state == TCP_TIME_WAIT)
2025		goto do_time_wait;
2026
2027	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2028		struct request_sock *req = inet_reqsk(sk);
2029		bool req_stolen = false;
2030		struct sock *nsk;
2031
2032		sk = req->rsk_listener;
2033		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2034			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2035		else
2036			drop_reason = tcp_inbound_md5_hash(sk, skb,
2037						   &iph->saddr, &iph->daddr,
2038						   AF_INET, dif, sdif);
2039		if (unlikely(drop_reason)) {
2040			sk_drops_add(sk, skb);
2041			reqsk_put(req);
2042			goto discard_it;
2043		}
2044		if (tcp_checksum_complete(skb)) {
2045			reqsk_put(req);
2046			goto csum_error;
2047		}
2048		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2049			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2050			if (!nsk) {
2051				inet_csk_reqsk_queue_drop_and_put(sk, req);
2052				goto lookup;
2053			}
2054			sk = nsk;
2055			/* reuseport_migrate_sock() has already held one sk_refcnt
2056			 * before returning.
2057			 */
2058		} else {
2059			/* We own a reference on the listener, increase it again
2060			 * as we might lose it too soon.
2061			 */
2062			sock_hold(sk);
2063		}
2064		refcounted = true;
2065		nsk = NULL;
2066		if (!tcp_filter(sk, skb)) {
2067			th = (const struct tcphdr *)skb->data;
2068			iph = ip_hdr(skb);
2069			tcp_v4_fill_cb(skb, iph, th);
2070			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2071		} else {
2072			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2073		}
2074		if (!nsk) {
2075			reqsk_put(req);
2076			if (req_stolen) {
2077				/* Another cpu got exclusive access to req
2078				 * and created a full blown socket.
2079				 * Try to feed this packet to this socket
2080				 * instead of discarding it.
2081				 */
2082				tcp_v4_restore_cb(skb);
2083				sock_put(sk);
2084				goto lookup;
2085			}
2086			goto discard_and_relse;
2087		}
2088		nf_reset_ct(skb);
2089		if (nsk == sk) {
2090			reqsk_put(req);
2091			tcp_v4_restore_cb(skb);
2092		} else if (tcp_child_process(sk, nsk, skb)) {
2093			tcp_v4_send_reset(nsk, skb);
2094			goto discard_and_relse;
2095		} else {
2096			sock_put(sk);
2097			return 0;
2098		}
2099	}
2100
2101	if (static_branch_unlikely(&ip4_min_ttl)) {
2102		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2103		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2104			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2105			goto discard_and_relse;
2106		}
2107	}
2108
2109	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2110		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2111		goto discard_and_relse;
2112	}
2113
2114	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2115					   &iph->daddr, AF_INET, dif, sdif);
2116	if (drop_reason)
2117		goto discard_and_relse;
 
2118
2119	nf_reset_ct(skb);
2120
2121	if (tcp_filter(sk, skb)) {
2122		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2123		goto discard_and_relse;
2124	}
2125	th = (const struct tcphdr *)skb->data;
2126	iph = ip_hdr(skb);
2127	tcp_v4_fill_cb(skb, iph, th);
2128
2129	skb->dev = NULL;
2130
2131	if (sk->sk_state == TCP_LISTEN) {
2132		ret = tcp_v4_do_rcv(sk, skb);
2133		goto put_and_return;
2134	}
2135
2136	sk_incoming_cpu_update(sk);
2137
2138	bh_lock_sock_nested(sk);
2139	tcp_segs_in(tcp_sk(sk), skb);
2140	ret = 0;
2141	if (!sock_owned_by_user(sk)) {
2142		ret = tcp_v4_do_rcv(sk, skb);
2143	} else {
2144		if (tcp_add_backlog(sk, skb, &drop_reason))
2145			goto discard_and_relse;
 
 
 
 
 
 
 
 
 
 
 
 
 
2146	}
2147	bh_unlock_sock(sk);
2148
2149put_and_return:
2150	if (refcounted)
2151		sock_put(sk);
2152
2153	return ret;
2154
2155no_tcp_socket:
2156	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2157	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2158		goto discard_it;
2159
2160	tcp_v4_fill_cb(skb, iph, th);
2161
2162	if (tcp_checksum_complete(skb)) {
2163csum_error:
2164		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2165		trace_tcp_bad_csum(skb);
2166		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2167bad_packet:
2168		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2169	} else {
2170		tcp_v4_send_reset(NULL, skb);
2171	}
2172
2173discard_it:
2174	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2175	/* Discard frame. */
2176	kfree_skb_reason(skb, drop_reason);
2177	return 0;
2178
2179discard_and_relse:
2180	sk_drops_add(sk, skb);
2181	if (refcounted)
2182		sock_put(sk);
2183	goto discard_it;
2184
2185do_time_wait:
2186	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2187		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2188		inet_twsk_put(inet_twsk(sk));
2189		goto discard_it;
2190	}
2191
2192	tcp_v4_fill_cb(skb, iph, th);
2193
2194	if (tcp_checksum_complete(skb)) {
2195		inet_twsk_put(inet_twsk(sk));
2196		goto csum_error;
2197	}
2198	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2199	case TCP_TW_SYN: {
2200		struct sock *sk2 = inet_lookup_listener(net,
2201							net->ipv4.tcp_death_row.hashinfo,
2202							skb, __tcp_hdrlen(th),
2203							iph->saddr, th->source,
2204							iph->daddr, th->dest,
2205							inet_iif(skb),
2206							sdif);
2207		if (sk2) {
2208			inet_twsk_deschedule_put(inet_twsk(sk));
 
2209			sk = sk2;
2210			tcp_v4_restore_cb(skb);
2211			refcounted = false;
2212			goto process;
2213		}
 
2214	}
2215		/* to ACK */
2216		fallthrough;
2217	case TCP_TW_ACK:
2218		tcp_v4_timewait_ack(sk, skb);
2219		break;
2220	case TCP_TW_RST:
2221		tcp_v4_send_reset(sk, skb);
2222		inet_twsk_deschedule_put(inet_twsk(sk));
2223		goto discard_it;
2224	case TCP_TW_SUCCESS:;
2225	}
2226	goto discard_it;
2227}
2228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229static struct timewait_sock_ops tcp_timewait_sock_ops = {
2230	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2231	.twsk_unique	= tcp_twsk_unique,
2232	.twsk_destructor= tcp_twsk_destructor,
 
2233};
2234
2235void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2236{
2237	struct dst_entry *dst = skb_dst(skb);
2238
2239	if (dst && dst_hold_safe(dst)) {
2240		rcu_assign_pointer(sk->sk_rx_dst, dst);
2241		sk->sk_rx_dst_ifindex = skb->skb_iif;
2242	}
2243}
2244EXPORT_SYMBOL(inet_sk_rx_dst_set);
2245
2246const struct inet_connection_sock_af_ops ipv4_specific = {
2247	.queue_xmit	   = ip_queue_xmit,
2248	.send_check	   = tcp_v4_send_check,
2249	.rebuild_header	   = inet_sk_rebuild_header,
2250	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2251	.conn_request	   = tcp_v4_conn_request,
2252	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
 
2253	.net_header_len	   = sizeof(struct iphdr),
2254	.setsockopt	   = ip_setsockopt,
2255	.getsockopt	   = ip_getsockopt,
2256	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2257	.sockaddr_len	   = sizeof(struct sockaddr_in),
2258	.mtu_reduced	   = tcp_v4_mtu_reduced,
 
 
 
 
2259};
2260EXPORT_SYMBOL(ipv4_specific);
2261
2262#ifdef CONFIG_TCP_MD5SIG
2263static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2264	.md5_lookup		= tcp_v4_md5_lookup,
2265	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2266	.md5_parse		= tcp_v4_parse_md5_keys,
2267};
2268#endif
2269
2270/* NOTE: A lot of things set to zero explicitly by call to
2271 *       sk_alloc() so need not be done here.
2272 */
2273static int tcp_v4_init_sock(struct sock *sk)
2274{
2275	struct inet_connection_sock *icsk = inet_csk(sk);
2276
2277	tcp_init_sock(sk);
2278
2279	icsk->icsk_af_ops = &ipv4_specific;
2280
2281#ifdef CONFIG_TCP_MD5SIG
2282	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2283#endif
2284
2285	return 0;
2286}
2287
2288void tcp_v4_destroy_sock(struct sock *sk)
2289{
2290	struct tcp_sock *tp = tcp_sk(sk);
2291
2292	trace_tcp_destroy_sock(sk);
2293
2294	tcp_clear_xmit_timers(sk);
2295
2296	tcp_cleanup_congestion_control(sk);
2297
2298	tcp_cleanup_ulp(sk);
2299
2300	/* Cleanup up the write buffer. */
2301	tcp_write_queue_purge(sk);
2302
2303	/* Check if we want to disable active TFO */
2304	tcp_fastopen_active_disable_ofo_check(sk);
2305
2306	/* Cleans up our, hopefully empty, out_of_order_queue. */
2307	skb_rbtree_purge(&tp->out_of_order_queue);
2308
2309#ifdef CONFIG_TCP_MD5SIG
2310	/* Clean up the MD5 key list, if any */
2311	if (tp->md5sig_info) {
2312		tcp_clear_md5_list(sk);
2313		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2314		tp->md5sig_info = NULL;
2315		static_branch_slow_dec_deferred(&tcp_md5_needed);
2316	}
2317#endif
2318
 
 
 
 
 
 
 
 
2319	/* Clean up a referenced TCP bind bucket. */
2320	if (inet_csk(sk)->icsk_bind_hash)
2321		inet_put_port(sk);
2322
2323	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
 
 
 
 
 
 
2324
2325	/* If socket is aborted during connect operation */
2326	tcp_free_fastopen_req(tp);
2327	tcp_fastopen_destroy_cipher(sk);
2328	tcp_saved_syn_free(tp);
 
 
2329
2330	sk_sockets_allocated_dec(sk);
 
2331}
2332EXPORT_SYMBOL(tcp_v4_destroy_sock);
2333
2334#ifdef CONFIG_PROC_FS
2335/* Proc filesystem TCP sock list dumping. */
2336
2337static unsigned short seq_file_family(const struct seq_file *seq);
2338
2339static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2340{
2341	unsigned short family = seq_file_family(seq);
2342
2343	/* AF_UNSPEC is used as a match all */
2344	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2345		net_eq(sock_net(sk), seq_file_net(seq)));
2346}
2347
2348/* Find a non empty bucket (starting from st->bucket)
2349 * and return the first sk from it.
2350 */
2351static void *listening_get_first(struct seq_file *seq)
2352{
2353	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2354	struct tcp_iter_state *st = seq->private;
2355
2356	st->offset = 0;
2357	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2358		struct inet_listen_hashbucket *ilb2;
2359		struct hlist_nulls_node *node;
2360		struct sock *sk;
2361
2362		ilb2 = &hinfo->lhash2[st->bucket];
2363		if (hlist_nulls_empty(&ilb2->nulls_head))
2364			continue;
2365
2366		spin_lock(&ilb2->lock);
2367		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2368			if (seq_sk_match(seq, sk))
2369				return sk;
2370		}
2371		spin_unlock(&ilb2->lock);
2372	}
2373
2374	return NULL;
2375}
2376
2377/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2378 * If "cur" is the last one in the st->bucket,
2379 * call listening_get_first() to return the first sk of the next
2380 * non empty bucket.
2381 */
2382static void *listening_get_next(struct seq_file *seq, void *cur)
2383{
2384	struct tcp_iter_state *st = seq->private;
2385	struct inet_listen_hashbucket *ilb2;
2386	struct hlist_nulls_node *node;
2387	struct inet_hashinfo *hinfo;
2388	struct sock *sk = cur;
 
 
 
2389
 
 
 
 
 
 
 
 
2390	++st->num;
2391	++st->offset;
2392
2393	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2394	sk_nulls_for_each_from(sk, node) {
2395		if (seq_sk_match(seq, sk))
2396			return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397	}
2398
2399	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2400	ilb2 = &hinfo->lhash2[st->bucket];
2401	spin_unlock(&ilb2->lock);
2402	++st->bucket;
2403	return listening_get_first(seq);
2404}
2405
2406static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2407{
2408	struct tcp_iter_state *st = seq->private;
2409	void *rc;
2410
2411	st->bucket = 0;
2412	st->offset = 0;
2413	rc = listening_get_first(seq);
2414
2415	while (rc && *pos) {
2416		rc = listening_get_next(seq, rc);
2417		--*pos;
2418	}
2419	return rc;
2420}
2421
2422static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2423				const struct tcp_iter_state *st)
2424{
2425	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
 
2426}
2427
2428/*
2429 * Get first established socket starting from bucket given in st->bucket.
2430 * If st->bucket is zero, the very first socket in the hash is returned.
2431 */
2432static void *established_get_first(struct seq_file *seq)
2433{
2434	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2435	struct tcp_iter_state *st = seq->private;
 
 
2436
2437	st->offset = 0;
2438	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2439		struct sock *sk;
2440		struct hlist_nulls_node *node;
2441		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
 
2442
2443		/* Lockless fast path for the common case of empty buckets */
2444		if (empty_bucket(hinfo, st))
2445			continue;
2446
2447		spin_lock_bh(lock);
2448		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2449			if (seq_sk_match(seq, sk))
2450				return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451		}
2452		spin_unlock_bh(lock);
 
2453	}
2454
2455	return NULL;
2456}
2457
2458static void *established_get_next(struct seq_file *seq, void *cur)
2459{
2460	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
 
 
2461	struct tcp_iter_state *st = seq->private;
2462	struct hlist_nulls_node *node;
2463	struct sock *sk = cur;
2464
2465	++st->num;
2466	++st->offset;
2467
2468	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2469
2470	sk_nulls_for_each_from(sk, node) {
2471		if (seq_sk_match(seq, sk))
2472			return sk;
2473	}
2474
2475	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2476	++st->bucket;
2477	return established_get_first(seq);
 
 
 
 
2478}
2479
2480static void *established_get_idx(struct seq_file *seq, loff_t pos)
2481{
2482	struct tcp_iter_state *st = seq->private;
2483	void *rc;
2484
2485	st->bucket = 0;
2486	rc = established_get_first(seq);
2487
2488	while (rc && pos) {
2489		rc = established_get_next(seq, rc);
2490		--pos;
2491	}
2492	return rc;
2493}
2494
2495static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2496{
2497	void *rc;
2498	struct tcp_iter_state *st = seq->private;
2499
2500	st->state = TCP_SEQ_STATE_LISTENING;
2501	rc	  = listening_get_idx(seq, &pos);
2502
2503	if (!rc) {
2504		st->state = TCP_SEQ_STATE_ESTABLISHED;
2505		rc	  = established_get_idx(seq, pos);
2506	}
2507
2508	return rc;
2509}
2510
2511static void *tcp_seek_last_pos(struct seq_file *seq)
2512{
2513	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2514	struct tcp_iter_state *st = seq->private;
2515	int bucket = st->bucket;
2516	int offset = st->offset;
2517	int orig_num = st->num;
2518	void *rc = NULL;
2519
2520	switch (st->state) {
 
2521	case TCP_SEQ_STATE_LISTENING:
2522		if (st->bucket > hinfo->lhash2_mask)
2523			break;
2524		rc = listening_get_first(seq);
2525		while (offset-- && rc && bucket == st->bucket)
 
2526			rc = listening_get_next(seq, rc);
2527		if (rc)
2528			break;
2529		st->bucket = 0;
 
 
 
2530		st->state = TCP_SEQ_STATE_ESTABLISHED;
2531		fallthrough;
2532	case TCP_SEQ_STATE_ESTABLISHED:
2533		if (st->bucket > hinfo->ehash_mask)
2534			break;
2535		rc = established_get_first(seq);
2536		while (offset-- && rc && bucket == st->bucket)
2537			rc = established_get_next(seq, rc);
2538	}
2539
2540	st->num = orig_num;
2541
2542	return rc;
2543}
2544
2545void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2546{
2547	struct tcp_iter_state *st = seq->private;
2548	void *rc;
2549
2550	if (*pos && *pos == st->last_pos) {
2551		rc = tcp_seek_last_pos(seq);
2552		if (rc)
2553			goto out;
2554	}
2555
2556	st->state = TCP_SEQ_STATE_LISTENING;
2557	st->num = 0;
2558	st->bucket = 0;
2559	st->offset = 0;
2560	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2561
2562out:
2563	st->last_pos = *pos;
2564	return rc;
2565}
2566EXPORT_SYMBOL(tcp_seq_start);
2567
2568void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2569{
2570	struct tcp_iter_state *st = seq->private;
2571	void *rc = NULL;
2572
2573	if (v == SEQ_START_TOKEN) {
2574		rc = tcp_get_idx(seq, 0);
2575		goto out;
2576	}
2577
2578	switch (st->state) {
 
2579	case TCP_SEQ_STATE_LISTENING:
2580		rc = listening_get_next(seq, v);
2581		if (!rc) {
2582			st->state = TCP_SEQ_STATE_ESTABLISHED;
2583			st->bucket = 0;
2584			st->offset = 0;
2585			rc	  = established_get_first(seq);
2586		}
2587		break;
2588	case TCP_SEQ_STATE_ESTABLISHED:
 
2589		rc = established_get_next(seq, v);
2590		break;
2591	}
2592out:
2593	++*pos;
2594	st->last_pos = *pos;
2595	return rc;
2596}
2597EXPORT_SYMBOL(tcp_seq_next);
2598
2599void tcp_seq_stop(struct seq_file *seq, void *v)
2600{
2601	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2602	struct tcp_iter_state *st = seq->private;
2603
2604	switch (st->state) {
 
 
 
 
 
2605	case TCP_SEQ_STATE_LISTENING:
2606		if (v != SEQ_START_TOKEN)
2607			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2608		break;
 
2609	case TCP_SEQ_STATE_ESTABLISHED:
2610		if (v)
2611			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2612		break;
2613	}
2614}
2615EXPORT_SYMBOL(tcp_seq_stop);
2616
2617static void get_openreq4(const struct request_sock *req,
2618			 struct seq_file *f, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619{
2620	const struct inet_request_sock *ireq = inet_rsk(req);
2621	long delta = req->rsk_timer.expires - jiffies;
2622
2623	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2624		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2625		i,
2626		ireq->ir_loc_addr,
2627		ireq->ir_num,
2628		ireq->ir_rmt_addr,
2629		ntohs(ireq->ir_rmt_port),
2630		TCP_SYN_RECV,
2631		0, 0, /* could print option size, but that is af dependent. */
2632		1,    /* timers active (only the expire timer) */
2633		jiffies_delta_to_clock_t(delta),
2634		req->num_timeout,
2635		from_kuid_munged(seq_user_ns(f),
2636				 sock_i_uid(req->rsk_listener)),
2637		0,  /* non standard timer */
2638		0, /* open_requests have no inode */
2639		0,
2640		req);
 
2641}
2642
2643static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2644{
2645	int timer_active;
2646	unsigned long timer_expires;
2647	const struct tcp_sock *tp = tcp_sk(sk);
2648	const struct inet_connection_sock *icsk = inet_csk(sk);
2649	const struct inet_sock *inet = inet_sk(sk);
2650	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2651	__be32 dest = inet->inet_daddr;
2652	__be32 src = inet->inet_rcv_saddr;
2653	__u16 destp = ntohs(inet->inet_dport);
2654	__u16 srcp = ntohs(inet->inet_sport);
2655	int rx_queue;
2656	int state;
2657
2658	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2659	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2660	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2661		timer_active	= 1;
2662		timer_expires	= icsk->icsk_timeout;
2663	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2664		timer_active	= 4;
2665		timer_expires	= icsk->icsk_timeout;
2666	} else if (timer_pending(&sk->sk_timer)) {
2667		timer_active	= 2;
2668		timer_expires	= sk->sk_timer.expires;
2669	} else {
2670		timer_active	= 0;
2671		timer_expires = jiffies;
2672	}
2673
2674	state = inet_sk_state_load(sk);
2675	if (state == TCP_LISTEN)
2676		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2677	else
2678		/* Because we don't lock the socket,
2679		 * we might find a transient negative value.
2680		 */
2681		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2682				      READ_ONCE(tp->copied_seq), 0);
2683
2684	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2685			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2686		i, src, srcp, dest, destp, state,
2687		READ_ONCE(tp->write_seq) - tp->snd_una,
2688		rx_queue,
2689		timer_active,
2690		jiffies_delta_to_clock_t(timer_expires - jiffies),
2691		icsk->icsk_retransmits,
2692		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2693		icsk->icsk_probes_out,
2694		sock_i_ino(sk),
2695		refcount_read(&sk->sk_refcnt), sk,
2696		jiffies_to_clock_t(icsk->icsk_rto),
2697		jiffies_to_clock_t(icsk->icsk_ack.ato),
2698		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2699		tcp_snd_cwnd(tp),
2700		state == TCP_LISTEN ?
2701		    fastopenq->max_qlen :
2702		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2703}
2704
2705static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2706			       struct seq_file *f, int i)
2707{
2708	long delta = tw->tw_timer.expires - jiffies;
2709	__be32 dest, src;
2710	__u16 destp, srcp;
 
 
 
 
2711
2712	dest  = tw->tw_daddr;
2713	src   = tw->tw_rcv_saddr;
2714	destp = ntohs(tw->tw_dport);
2715	srcp  = ntohs(tw->tw_sport);
2716
2717	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2718		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2719		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2720		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2721		refcount_read(&tw->tw_refcnt), tw);
2722}
2723
2724#define TMPSZ 150
2725
2726static int tcp4_seq_show(struct seq_file *seq, void *v)
2727{
2728	struct tcp_iter_state *st;
2729	struct sock *sk = v;
2730
2731	seq_setwidth(seq, TMPSZ - 1);
2732	if (v == SEQ_START_TOKEN) {
2733		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
 
2734			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2735			   "inode");
2736		goto out;
2737	}
2738	st = seq->private;
2739
2740	if (sk->sk_state == TCP_TIME_WAIT)
2741		get_timewait4_sock(v, seq, st->num);
2742	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2743		get_openreq4(v, seq, st->num);
2744	else
2745		get_tcp4_sock(v, seq, st->num);
 
 
 
 
 
 
 
2746out:
2747	seq_pad(seq, '\n');
2748	return 0;
2749}
2750
2751#ifdef CONFIG_BPF_SYSCALL
2752struct bpf_tcp_iter_state {
2753	struct tcp_iter_state state;
2754	unsigned int cur_sk;
2755	unsigned int end_sk;
2756	unsigned int max_sk;
2757	struct sock **batch;
2758	bool st_bucket_done;
2759};
2760
2761struct bpf_iter__tcp {
2762	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2763	__bpf_md_ptr(struct sock_common *, sk_common);
2764	uid_t uid __aligned(8);
2765};
2766
2767static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2768			     struct sock_common *sk_common, uid_t uid)
2769{
2770	struct bpf_iter__tcp ctx;
2771
2772	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2773	ctx.meta = meta;
2774	ctx.sk_common = sk_common;
2775	ctx.uid = uid;
2776	return bpf_iter_run_prog(prog, &ctx);
2777}
2778
2779static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2780{
2781	while (iter->cur_sk < iter->end_sk)
2782		sock_put(iter->batch[iter->cur_sk++]);
2783}
2784
2785static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2786				      unsigned int new_batch_sz)
2787{
2788	struct sock **new_batch;
2789
2790	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2791			     GFP_USER | __GFP_NOWARN);
2792	if (!new_batch)
2793		return -ENOMEM;
2794
2795	bpf_iter_tcp_put_batch(iter);
2796	kvfree(iter->batch);
2797	iter->batch = new_batch;
2798	iter->max_sk = new_batch_sz;
2799
2800	return 0;
2801}
2802
2803static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2804						 struct sock *start_sk)
2805{
2806	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2807	struct bpf_tcp_iter_state *iter = seq->private;
2808	struct tcp_iter_state *st = &iter->state;
2809	struct hlist_nulls_node *node;
2810	unsigned int expected = 1;
2811	struct sock *sk;
2812
2813	sock_hold(start_sk);
2814	iter->batch[iter->end_sk++] = start_sk;
2815
2816	sk = sk_nulls_next(start_sk);
2817	sk_nulls_for_each_from(sk, node) {
2818		if (seq_sk_match(seq, sk)) {
2819			if (iter->end_sk < iter->max_sk) {
2820				sock_hold(sk);
2821				iter->batch[iter->end_sk++] = sk;
2822			}
2823			expected++;
2824		}
2825	}
2826	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2827
2828	return expected;
2829}
2830
2831static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2832						   struct sock *start_sk)
2833{
2834	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2835	struct bpf_tcp_iter_state *iter = seq->private;
2836	struct tcp_iter_state *st = &iter->state;
2837	struct hlist_nulls_node *node;
2838	unsigned int expected = 1;
2839	struct sock *sk;
2840
2841	sock_hold(start_sk);
2842	iter->batch[iter->end_sk++] = start_sk;
2843
2844	sk = sk_nulls_next(start_sk);
2845	sk_nulls_for_each_from(sk, node) {
2846		if (seq_sk_match(seq, sk)) {
2847			if (iter->end_sk < iter->max_sk) {
2848				sock_hold(sk);
2849				iter->batch[iter->end_sk++] = sk;
2850			}
2851			expected++;
2852		}
2853	}
2854	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2855
2856	return expected;
2857}
2858
2859static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2860{
2861	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2862	struct bpf_tcp_iter_state *iter = seq->private;
2863	struct tcp_iter_state *st = &iter->state;
2864	unsigned int expected;
2865	bool resized = false;
2866	struct sock *sk;
2867
2868	/* The st->bucket is done.  Directly advance to the next
2869	 * bucket instead of having the tcp_seek_last_pos() to skip
2870	 * one by one in the current bucket and eventually find out
2871	 * it has to advance to the next bucket.
2872	 */
2873	if (iter->st_bucket_done) {
2874		st->offset = 0;
2875		st->bucket++;
2876		if (st->state == TCP_SEQ_STATE_LISTENING &&
2877		    st->bucket > hinfo->lhash2_mask) {
2878			st->state = TCP_SEQ_STATE_ESTABLISHED;
2879			st->bucket = 0;
2880		}
2881	}
2882
2883again:
2884	/* Get a new batch */
2885	iter->cur_sk = 0;
2886	iter->end_sk = 0;
2887	iter->st_bucket_done = false;
2888
2889	sk = tcp_seek_last_pos(seq);
2890	if (!sk)
2891		return NULL; /* Done */
2892
2893	if (st->state == TCP_SEQ_STATE_LISTENING)
2894		expected = bpf_iter_tcp_listening_batch(seq, sk);
2895	else
2896		expected = bpf_iter_tcp_established_batch(seq, sk);
2897
2898	if (iter->end_sk == expected) {
2899		iter->st_bucket_done = true;
2900		return sk;
2901	}
2902
2903	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2904		resized = true;
2905		goto again;
2906	}
2907
2908	return sk;
2909}
2910
2911static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2912{
2913	/* bpf iter does not support lseek, so it always
2914	 * continue from where it was stop()-ped.
2915	 */
2916	if (*pos)
2917		return bpf_iter_tcp_batch(seq);
2918
2919	return SEQ_START_TOKEN;
2920}
2921
2922static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2923{
2924	struct bpf_tcp_iter_state *iter = seq->private;
2925	struct tcp_iter_state *st = &iter->state;
2926	struct sock *sk;
2927
2928	/* Whenever seq_next() is called, the iter->cur_sk is
2929	 * done with seq_show(), so advance to the next sk in
2930	 * the batch.
2931	 */
2932	if (iter->cur_sk < iter->end_sk) {
2933		/* Keeping st->num consistent in tcp_iter_state.
2934		 * bpf_iter_tcp does not use st->num.
2935		 * meta.seq_num is used instead.
2936		 */
2937		st->num++;
2938		/* Move st->offset to the next sk in the bucket such that
2939		 * the future start() will resume at st->offset in
2940		 * st->bucket.  See tcp_seek_last_pos().
2941		 */
2942		st->offset++;
2943		sock_put(iter->batch[iter->cur_sk++]);
2944	}
2945
2946	if (iter->cur_sk < iter->end_sk)
2947		sk = iter->batch[iter->cur_sk];
2948	else
2949		sk = bpf_iter_tcp_batch(seq);
2950
2951	++*pos;
2952	/* Keeping st->last_pos consistent in tcp_iter_state.
2953	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2954	 */
2955	st->last_pos = *pos;
2956	return sk;
2957}
2958
2959static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2960{
2961	struct bpf_iter_meta meta;
2962	struct bpf_prog *prog;
2963	struct sock *sk = v;
2964	bool slow;
2965	uid_t uid;
2966	int ret;
2967
2968	if (v == SEQ_START_TOKEN)
2969		return 0;
2970
2971	if (sk_fullsock(sk))
2972		slow = lock_sock_fast(sk);
2973
2974	if (unlikely(sk_unhashed(sk))) {
2975		ret = SEQ_SKIP;
2976		goto unlock;
2977	}
2978
2979	if (sk->sk_state == TCP_TIME_WAIT) {
2980		uid = 0;
2981	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2982		const struct request_sock *req = v;
2983
2984		uid = from_kuid_munged(seq_user_ns(seq),
2985				       sock_i_uid(req->rsk_listener));
2986	} else {
2987		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2988	}
2989
2990	meta.seq = seq;
2991	prog = bpf_iter_get_info(&meta, false);
2992	ret = tcp_prog_seq_show(prog, &meta, v, uid);
2993
2994unlock:
2995	if (sk_fullsock(sk))
2996		unlock_sock_fast(sk, slow);
2997	return ret;
2998
2999}
3000
3001static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3002{
3003	struct bpf_tcp_iter_state *iter = seq->private;
3004	struct bpf_iter_meta meta;
3005	struct bpf_prog *prog;
3006
3007	if (!v) {
3008		meta.seq = seq;
3009		prog = bpf_iter_get_info(&meta, true);
3010		if (prog)
3011			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3012	}
3013
3014	if (iter->cur_sk < iter->end_sk) {
3015		bpf_iter_tcp_put_batch(iter);
3016		iter->st_bucket_done = false;
3017	}
3018}
3019
3020static const struct seq_operations bpf_iter_tcp_seq_ops = {
3021	.show		= bpf_iter_tcp_seq_show,
3022	.start		= bpf_iter_tcp_seq_start,
3023	.next		= bpf_iter_tcp_seq_next,
3024	.stop		= bpf_iter_tcp_seq_stop,
3025};
3026#endif
3027static unsigned short seq_file_family(const struct seq_file *seq)
3028{
3029	const struct tcp_seq_afinfo *afinfo;
3030
3031#ifdef CONFIG_BPF_SYSCALL
3032	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3033	if (seq->op == &bpf_iter_tcp_seq_ops)
3034		return AF_UNSPEC;
3035#endif
3036
3037	/* Iterated from proc fs */
3038	afinfo = pde_data(file_inode(seq->file));
3039	return afinfo->family;
3040}
3041
3042static const struct seq_operations tcp4_seq_ops = {
3043	.show		= tcp4_seq_show,
3044	.start		= tcp_seq_start,
3045	.next		= tcp_seq_next,
3046	.stop		= tcp_seq_stop,
3047};
3048
3049static struct tcp_seq_afinfo tcp4_seq_afinfo = {
 
3050	.family		= AF_INET,
 
 
 
 
3051};
3052
3053static int __net_init tcp4_proc_init_net(struct net *net)
3054{
3055	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3056			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3057		return -ENOMEM;
3058	return 0;
3059}
3060
3061static void __net_exit tcp4_proc_exit_net(struct net *net)
3062{
3063	remove_proc_entry("tcp", net->proc_net);
3064}
3065
3066static struct pernet_operations tcp4_net_ops = {
3067	.init = tcp4_proc_init_net,
3068	.exit = tcp4_proc_exit_net,
3069};
3070
3071int __init tcp4_proc_init(void)
3072{
3073	return register_pernet_subsys(&tcp4_net_ops);
3074}
3075
3076void tcp4_proc_exit(void)
3077{
3078	unregister_pernet_subsys(&tcp4_net_ops);
3079}
3080#endif /* CONFIG_PROC_FS */
3081
3082/* @wake is one when sk_stream_write_space() calls us.
3083 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3084 * This mimics the strategy used in sock_def_write_space().
3085 */
3086bool tcp_stream_memory_free(const struct sock *sk, int wake)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3087{
3088	const struct tcp_sock *tp = tcp_sk(sk);
3089	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3090			    READ_ONCE(tp->snd_nxt);
 
 
 
3091
3092	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3093}
3094EXPORT_SYMBOL(tcp_stream_memory_free);
3095
3096struct proto tcp_prot = {
3097	.name			= "TCP",
3098	.owner			= THIS_MODULE,
3099	.close			= tcp_close,
3100	.pre_connect		= tcp_v4_pre_connect,
3101	.connect		= tcp_v4_connect,
3102	.disconnect		= tcp_disconnect,
3103	.accept			= inet_csk_accept,
3104	.ioctl			= tcp_ioctl,
3105	.init			= tcp_v4_init_sock,
3106	.destroy		= tcp_v4_destroy_sock,
3107	.shutdown		= tcp_shutdown,
3108	.setsockopt		= tcp_setsockopt,
3109	.getsockopt		= tcp_getsockopt,
3110	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3111	.keepalive		= tcp_set_keepalive,
3112	.recvmsg		= tcp_recvmsg,
3113	.sendmsg		= tcp_sendmsg,
3114	.sendpage		= tcp_sendpage,
3115	.backlog_rcv		= tcp_v4_do_rcv,
3116	.release_cb		= tcp_release_cb,
3117	.hash			= inet_hash,
3118	.unhash			= inet_unhash,
3119	.get_port		= inet_csk_get_port,
3120	.put_port		= inet_put_port,
3121#ifdef CONFIG_BPF_SYSCALL
3122	.psock_update_sk_prot	= tcp_bpf_update_proto,
3123#endif
3124	.enter_memory_pressure	= tcp_enter_memory_pressure,
3125	.leave_memory_pressure	= tcp_leave_memory_pressure,
3126	.stream_memory_free	= tcp_stream_memory_free,
3127	.sockets_allocated	= &tcp_sockets_allocated,
3128	.orphan_count		= &tcp_orphan_count,
3129
3130	.memory_allocated	= &tcp_memory_allocated,
3131	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3132
3133	.memory_pressure	= &tcp_memory_pressure,
3134	.sysctl_mem		= sysctl_tcp_mem,
3135	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3136	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3137	.max_header		= MAX_TCP_HEADER,
3138	.obj_size		= sizeof(struct tcp_sock),
3139	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3140	.twsk_prot		= &tcp_timewait_sock_ops,
3141	.rsk_prot		= &tcp_request_sock_ops,
3142	.h.hashinfo		= NULL,
3143	.no_autobind		= true,
3144	.diag_destroy		= tcp_abort,
 
 
 
 
 
 
 
 
3145};
3146EXPORT_SYMBOL(tcp_prot);
3147
3148static void __net_exit tcp_sk_exit(struct net *net)
3149{
3150	if (net->ipv4.tcp_congestion_control)
3151		bpf_module_put(net->ipv4.tcp_congestion_control,
3152			       net->ipv4.tcp_congestion_control->owner);
3153}
3154
3155static void __net_init tcp_set_hashinfo(struct net *net)
3156{
3157	struct inet_hashinfo *hinfo;
3158	unsigned int ehash_entries;
3159	struct net *old_net;
3160
3161	if (net_eq(net, &init_net))
3162		goto fallback;
3163
3164	old_net = current->nsproxy->net_ns;
3165	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3166	if (!ehash_entries)
3167		goto fallback;
3168
3169	ehash_entries = roundup_pow_of_two(ehash_entries);
3170	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3171	if (!hinfo) {
3172		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3173			"for a netns, fallback to the global one\n",
3174			ehash_entries);
3175fallback:
3176		hinfo = &tcp_hashinfo;
3177		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3178	}
3179
3180	net->ipv4.tcp_death_row.hashinfo = hinfo;
3181	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3182	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3183}
3184
3185static int __net_init tcp_sk_init(struct net *net)
3186{
3187	net->ipv4.sysctl_tcp_ecn = 2;
3188	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3189
3190	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3191	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3192	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3193	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3194	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3195
3196	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3197	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3198	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3199
3200	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3201	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3202	net->ipv4.sysctl_tcp_syncookies = 1;
3203	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3204	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3205	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3206	net->ipv4.sysctl_tcp_orphan_retries = 0;
3207	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3208	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3209	net->ipv4.sysctl_tcp_tw_reuse = 2;
3210	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3211
3212	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3213	tcp_set_hashinfo(net);
3214
3215	net->ipv4.sysctl_tcp_sack = 1;
3216	net->ipv4.sysctl_tcp_window_scaling = 1;
3217	net->ipv4.sysctl_tcp_timestamps = 1;
3218	net->ipv4.sysctl_tcp_early_retrans = 3;
3219	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3220	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3221	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3222	net->ipv4.sysctl_tcp_max_reordering = 300;
3223	net->ipv4.sysctl_tcp_dsack = 1;
3224	net->ipv4.sysctl_tcp_app_win = 31;
3225	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3226	net->ipv4.sysctl_tcp_frto = 2;
3227	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3228	/* This limits the percentage of the congestion window which we
3229	 * will allow a single TSO frame to consume.  Building TSO frames
3230	 * which are too large can cause TCP streams to be bursty.
3231	 */
3232	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3233	/* Default TSQ limit of 16 TSO segments */
3234	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3235
3236	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3237	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3238
3239	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3240	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3241	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3242	net->ipv4.sysctl_tcp_autocorking = 1;
3243	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3244	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3245	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3246	if (net != &init_net) {
3247		memcpy(net->ipv4.sysctl_tcp_rmem,
3248		       init_net.ipv4.sysctl_tcp_rmem,
3249		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3250		memcpy(net->ipv4.sysctl_tcp_wmem,
3251		       init_net.ipv4.sysctl_tcp_wmem,
3252		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3253	}
3254	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3255	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3256	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3257	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3258	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3259	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3260
3261	/* Set default values for PLB */
3262	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3263	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3264	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3265	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3266	/* Default congestion threshold for PLB to mark a round is 50% */
3267	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3268
3269	/* Reno is always built in */
3270	if (!net_eq(net, &init_net) &&
3271	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3272			       init_net.ipv4.tcp_congestion_control->owner))
3273		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3274	else
3275		net->ipv4.tcp_congestion_control = &tcp_reno;
3276
3277	return 0;
3278}
3279
3280static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3281{
3282	struct net *net;
3283
3284	tcp_twsk_purge(net_exit_list, AF_INET);
3285
3286	list_for_each_entry(net, net_exit_list, exit_list) {
3287		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3288		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3289		tcp_fastopen_ctx_destroy(net);
3290	}
3291}
3292
3293static struct pernet_operations __net_initdata tcp_sk_ops = {
3294       .init	   = tcp_sk_init,
3295       .exit	   = tcp_sk_exit,
3296       .exit_batch = tcp_sk_exit_batch,
3297};
3298
3299#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3300DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3301		     struct sock_common *sk_common, uid_t uid)
3302
3303#define INIT_BATCH_SZ 16
3304
3305static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3306{
3307	struct bpf_tcp_iter_state *iter = priv_data;
3308	int err;
3309
3310	err = bpf_iter_init_seq_net(priv_data, aux);
3311	if (err)
3312		return err;
3313
3314	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3315	if (err) {
3316		bpf_iter_fini_seq_net(priv_data);
3317		return err;
3318	}
3319
3320	return 0;
3321}
3322
3323static void bpf_iter_fini_tcp(void *priv_data)
3324{
3325	struct bpf_tcp_iter_state *iter = priv_data;
3326
3327	bpf_iter_fini_seq_net(priv_data);
3328	kvfree(iter->batch);
3329}
3330
3331static const struct bpf_iter_seq_info tcp_seq_info = {
3332	.seq_ops		= &bpf_iter_tcp_seq_ops,
3333	.init_seq_private	= bpf_iter_init_tcp,
3334	.fini_seq_private	= bpf_iter_fini_tcp,
3335	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3336};
3337
3338static const struct bpf_func_proto *
3339bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3340			    const struct bpf_prog *prog)
3341{
3342	switch (func_id) {
3343	case BPF_FUNC_setsockopt:
3344		return &bpf_sk_setsockopt_proto;
3345	case BPF_FUNC_getsockopt:
3346		return &bpf_sk_getsockopt_proto;
3347	default:
3348		return NULL;
3349	}
3350}
3351
3352static struct bpf_iter_reg tcp_reg_info = {
3353	.target			= "tcp",
3354	.ctx_arg_info_size	= 1,
3355	.ctx_arg_info		= {
3356		{ offsetof(struct bpf_iter__tcp, sk_common),
3357		  PTR_TO_BTF_ID_OR_NULL },
3358	},
3359	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3360	.seq_info		= &tcp_seq_info,
3361};
3362
3363static void __init bpf_iter_register(void)
3364{
3365	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3366	if (bpf_iter_reg_target(&tcp_reg_info))
3367		pr_warn("Warning: could not register bpf iterator tcp\n");
3368}
3369
3370#endif
3371
3372void __init tcp_v4_init(void)
3373{
3374	int cpu, res;
3375
3376	for_each_possible_cpu(cpu) {
3377		struct sock *sk;
3378
3379		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3380					   IPPROTO_TCP, &init_net);
3381		if (res)
3382			panic("Failed to create the TCP control socket.\n");
3383		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3384
3385		/* Please enforce IP_DF and IPID==0 for RST and
3386		 * ACK sent in SYN-RECV and TIME-WAIT state.
3387		 */
3388		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3389
3390		per_cpu(ipv4_tcp_sk, cpu) = sk;
3391	}
3392	if (register_pernet_subsys(&tcp_sk_ops))
3393		panic("Failed to create the TCP control socket.\n");
3394
3395#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3396	bpf_iter_register();
3397#endif
3398}