Loading...
1/*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29#include <asm/uaccess.h>
30#include <linux/types.h>
31#include <linux/capability.h>
32#include <linux/errno.h>
33#include <linux/timer.h>
34#include <linux/mm.h>
35#include <linux/kernel.h>
36#include <linux/fcntl.h>
37#include <linux/stat.h>
38#include <linux/socket.h>
39#include <linux/in.h>
40#include <linux/inet.h>
41#include <linux/netdevice.h>
42#include <linux/inetdevice.h>
43#include <linux/igmp.h>
44#include <linux/proc_fs.h>
45#include <linux/seq_file.h>
46#include <linux/mroute.h>
47#include <linux/init.h>
48#include <linux/if_ether.h>
49#include <linux/slab.h>
50#include <net/net_namespace.h>
51#include <net/ip.h>
52#include <net/protocol.h>
53#include <linux/skbuff.h>
54#include <net/route.h>
55#include <net/sock.h>
56#include <net/icmp.h>
57#include <net/udp.h>
58#include <net/raw.h>
59#include <linux/notifier.h>
60#include <linux/if_arp.h>
61#include <linux/netfilter_ipv4.h>
62#include <linux/compat.h>
63#include <linux/export.h>
64#include <net/ipip.h>
65#include <net/checksum.h>
66#include <net/netlink.h>
67#include <net/fib_rules.h>
68
69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70#define CONFIG_IP_PIMSM 1
71#endif
72
73struct mr_table {
74 struct list_head list;
75#ifdef CONFIG_NET_NS
76 struct net *net;
77#endif
78 u32 id;
79 struct sock __rcu *mroute_sk;
80 struct timer_list ipmr_expire_timer;
81 struct list_head mfc_unres_queue;
82 struct list_head mfc_cache_array[MFC_LINES];
83 struct vif_device vif_table[MAXVIFS];
84 int maxvif;
85 atomic_t cache_resolve_queue_len;
86 int mroute_do_assert;
87 int mroute_do_pim;
88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89 int mroute_reg_vif_num;
90#endif
91};
92
93struct ipmr_rule {
94 struct fib_rule common;
95};
96
97struct ipmr_result {
98 struct mr_table *mrt;
99};
100
101/* Big lock, protecting vif table, mrt cache and mroute socket state.
102 * Note that the changes are semaphored via rtnl_lock.
103 */
104
105static DEFINE_RWLOCK(mrt_lock);
106
107/*
108 * Multicast router control variables
109 */
110
111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112
113/* Special spinlock for queue of unresolved entries */
114static DEFINE_SPINLOCK(mfc_unres_lock);
115
116/* We return to original Alan's scheme. Hash table of resolved
117 * entries is changed only in process context and protected
118 * with weak lock mrt_lock. Queue of unresolved entries is protected
119 * with strong spinlock mfc_unres_lock.
120 *
121 * In this case data path is free of exclusive locks at all.
122 */
123
124static struct kmem_cache *mrt_cachep __read_mostly;
125
126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127static void ipmr_free_table(struct mr_table *mrt);
128
129static int ip_mr_forward(struct net *net, struct mr_table *mrt,
130 struct sk_buff *skb, struct mfc_cache *cache,
131 int local);
132static int ipmr_cache_report(struct mr_table *mrt,
133 struct sk_buff *pkt, vifi_t vifi, int assert);
134static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
135 struct mfc_cache *c, struct rtmsg *rtm);
136static void mroute_clean_tables(struct mr_table *mrt);
137static void ipmr_expire_process(unsigned long arg);
138
139#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
140#define ipmr_for_each_table(mrt, net) \
141 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
142
143static struct mr_table *ipmr_get_table(struct net *net, u32 id)
144{
145 struct mr_table *mrt;
146
147 ipmr_for_each_table(mrt, net) {
148 if (mrt->id == id)
149 return mrt;
150 }
151 return NULL;
152}
153
154static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
155 struct mr_table **mrt)
156{
157 struct ipmr_result res;
158 struct fib_lookup_arg arg = { .result = &res, };
159 int err;
160
161 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
162 flowi4_to_flowi(flp4), 0, &arg);
163 if (err < 0)
164 return err;
165 *mrt = res.mrt;
166 return 0;
167}
168
169static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
170 int flags, struct fib_lookup_arg *arg)
171{
172 struct ipmr_result *res = arg->result;
173 struct mr_table *mrt;
174
175 switch (rule->action) {
176 case FR_ACT_TO_TBL:
177 break;
178 case FR_ACT_UNREACHABLE:
179 return -ENETUNREACH;
180 case FR_ACT_PROHIBIT:
181 return -EACCES;
182 case FR_ACT_BLACKHOLE:
183 default:
184 return -EINVAL;
185 }
186
187 mrt = ipmr_get_table(rule->fr_net, rule->table);
188 if (mrt == NULL)
189 return -EAGAIN;
190 res->mrt = mrt;
191 return 0;
192}
193
194static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
195{
196 return 1;
197}
198
199static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
200 FRA_GENERIC_POLICY,
201};
202
203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 struct fib_rule_hdr *frh, struct nlattr **tb)
205{
206 return 0;
207}
208
209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210 struct nlattr **tb)
211{
212 return 1;
213}
214
215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216 struct fib_rule_hdr *frh)
217{
218 frh->dst_len = 0;
219 frh->src_len = 0;
220 frh->tos = 0;
221 return 0;
222}
223
224static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
225 .family = RTNL_FAMILY_IPMR,
226 .rule_size = sizeof(struct ipmr_rule),
227 .addr_size = sizeof(u32),
228 .action = ipmr_rule_action,
229 .match = ipmr_rule_match,
230 .configure = ipmr_rule_configure,
231 .compare = ipmr_rule_compare,
232 .default_pref = fib_default_rule_pref,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .policy = ipmr_rule_policy,
236 .owner = THIS_MODULE,
237};
238
239static int __net_init ipmr_rules_init(struct net *net)
240{
241 struct fib_rules_ops *ops;
242 struct mr_table *mrt;
243 int err;
244
245 ops = fib_rules_register(&ipmr_rules_ops_template, net);
246 if (IS_ERR(ops))
247 return PTR_ERR(ops);
248
249 INIT_LIST_HEAD(&net->ipv4.mr_tables);
250
251 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
252 if (mrt == NULL) {
253 err = -ENOMEM;
254 goto err1;
255 }
256
257 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
258 if (err < 0)
259 goto err2;
260
261 net->ipv4.mr_rules_ops = ops;
262 return 0;
263
264err2:
265 kfree(mrt);
266err1:
267 fib_rules_unregister(ops);
268 return err;
269}
270
271static void __net_exit ipmr_rules_exit(struct net *net)
272{
273 struct mr_table *mrt, *next;
274
275 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276 list_del(&mrt->list);
277 ipmr_free_table(mrt);
278 }
279 fib_rules_unregister(net->ipv4.mr_rules_ops);
280}
281#else
282#define ipmr_for_each_table(mrt, net) \
283 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
284
285static struct mr_table *ipmr_get_table(struct net *net, u32 id)
286{
287 return net->ipv4.mrt;
288}
289
290static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
291 struct mr_table **mrt)
292{
293 *mrt = net->ipv4.mrt;
294 return 0;
295}
296
297static int __net_init ipmr_rules_init(struct net *net)
298{
299 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
300 return net->ipv4.mrt ? 0 : -ENOMEM;
301}
302
303static void __net_exit ipmr_rules_exit(struct net *net)
304{
305 ipmr_free_table(net->ipv4.mrt);
306}
307#endif
308
309static struct mr_table *ipmr_new_table(struct net *net, u32 id)
310{
311 struct mr_table *mrt;
312 unsigned int i;
313
314 mrt = ipmr_get_table(net, id);
315 if (mrt != NULL)
316 return mrt;
317
318 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
319 if (mrt == NULL)
320 return NULL;
321 write_pnet(&mrt->net, net);
322 mrt->id = id;
323
324 /* Forwarding cache */
325 for (i = 0; i < MFC_LINES; i++)
326 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
327
328 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
329
330 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
331 (unsigned long)mrt);
332
333#ifdef CONFIG_IP_PIMSM
334 mrt->mroute_reg_vif_num = -1;
335#endif
336#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
337 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
338#endif
339 return mrt;
340}
341
342static void ipmr_free_table(struct mr_table *mrt)
343{
344 del_timer_sync(&mrt->ipmr_expire_timer);
345 mroute_clean_tables(mrt);
346 kfree(mrt);
347}
348
349/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
350
351static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
352{
353 struct net *net = dev_net(dev);
354
355 dev_close(dev);
356
357 dev = __dev_get_by_name(net, "tunl0");
358 if (dev) {
359 const struct net_device_ops *ops = dev->netdev_ops;
360 struct ifreq ifr;
361 struct ip_tunnel_parm p;
362
363 memset(&p, 0, sizeof(p));
364 p.iph.daddr = v->vifc_rmt_addr.s_addr;
365 p.iph.saddr = v->vifc_lcl_addr.s_addr;
366 p.iph.version = 4;
367 p.iph.ihl = 5;
368 p.iph.protocol = IPPROTO_IPIP;
369 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
370 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
371
372 if (ops->ndo_do_ioctl) {
373 mm_segment_t oldfs = get_fs();
374
375 set_fs(KERNEL_DS);
376 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
377 set_fs(oldfs);
378 }
379 }
380}
381
382static
383struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
384{
385 struct net_device *dev;
386
387 dev = __dev_get_by_name(net, "tunl0");
388
389 if (dev) {
390 const struct net_device_ops *ops = dev->netdev_ops;
391 int err;
392 struct ifreq ifr;
393 struct ip_tunnel_parm p;
394 struct in_device *in_dev;
395
396 memset(&p, 0, sizeof(p));
397 p.iph.daddr = v->vifc_rmt_addr.s_addr;
398 p.iph.saddr = v->vifc_lcl_addr.s_addr;
399 p.iph.version = 4;
400 p.iph.ihl = 5;
401 p.iph.protocol = IPPROTO_IPIP;
402 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
403 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
404
405 if (ops->ndo_do_ioctl) {
406 mm_segment_t oldfs = get_fs();
407
408 set_fs(KERNEL_DS);
409 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
410 set_fs(oldfs);
411 } else {
412 err = -EOPNOTSUPP;
413 }
414 dev = NULL;
415
416 if (err == 0 &&
417 (dev = __dev_get_by_name(net, p.name)) != NULL) {
418 dev->flags |= IFF_MULTICAST;
419
420 in_dev = __in_dev_get_rtnl(dev);
421 if (in_dev == NULL)
422 goto failure;
423
424 ipv4_devconf_setall(in_dev);
425 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
426
427 if (dev_open(dev))
428 goto failure;
429 dev_hold(dev);
430 }
431 }
432 return dev;
433
434failure:
435 /* allow the register to be completed before unregistering. */
436 rtnl_unlock();
437 rtnl_lock();
438
439 unregister_netdevice(dev);
440 return NULL;
441}
442
443#ifdef CONFIG_IP_PIMSM
444
445static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
446{
447 struct net *net = dev_net(dev);
448 struct mr_table *mrt;
449 struct flowi4 fl4 = {
450 .flowi4_oif = dev->ifindex,
451 .flowi4_iif = skb->skb_iif,
452 .flowi4_mark = skb->mark,
453 };
454 int err;
455
456 err = ipmr_fib_lookup(net, &fl4, &mrt);
457 if (err < 0) {
458 kfree_skb(skb);
459 return err;
460 }
461
462 read_lock(&mrt_lock);
463 dev->stats.tx_bytes += skb->len;
464 dev->stats.tx_packets++;
465 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
466 read_unlock(&mrt_lock);
467 kfree_skb(skb);
468 return NETDEV_TX_OK;
469}
470
471static const struct net_device_ops reg_vif_netdev_ops = {
472 .ndo_start_xmit = reg_vif_xmit,
473};
474
475static void reg_vif_setup(struct net_device *dev)
476{
477 dev->type = ARPHRD_PIMREG;
478 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
479 dev->flags = IFF_NOARP;
480 dev->netdev_ops = ®_vif_netdev_ops,
481 dev->destructor = free_netdev;
482 dev->features |= NETIF_F_NETNS_LOCAL;
483}
484
485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
486{
487 struct net_device *dev;
488 struct in_device *in_dev;
489 char name[IFNAMSIZ];
490
491 if (mrt->id == RT_TABLE_DEFAULT)
492 sprintf(name, "pimreg");
493 else
494 sprintf(name, "pimreg%u", mrt->id);
495
496 dev = alloc_netdev(0, name, reg_vif_setup);
497
498 if (dev == NULL)
499 return NULL;
500
501 dev_net_set(dev, net);
502
503 if (register_netdevice(dev)) {
504 free_netdev(dev);
505 return NULL;
506 }
507 dev->iflink = 0;
508
509 rcu_read_lock();
510 in_dev = __in_dev_get_rcu(dev);
511 if (!in_dev) {
512 rcu_read_unlock();
513 goto failure;
514 }
515
516 ipv4_devconf_setall(in_dev);
517 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
518 rcu_read_unlock();
519
520 if (dev_open(dev))
521 goto failure;
522
523 dev_hold(dev);
524
525 return dev;
526
527failure:
528 /* allow the register to be completed before unregistering. */
529 rtnl_unlock();
530 rtnl_lock();
531
532 unregister_netdevice(dev);
533 return NULL;
534}
535#endif
536
537/*
538 * Delete a VIF entry
539 * @notify: Set to 1, if the caller is a notifier_call
540 */
541
542static int vif_delete(struct mr_table *mrt, int vifi, int notify,
543 struct list_head *head)
544{
545 struct vif_device *v;
546 struct net_device *dev;
547 struct in_device *in_dev;
548
549 if (vifi < 0 || vifi >= mrt->maxvif)
550 return -EADDRNOTAVAIL;
551
552 v = &mrt->vif_table[vifi];
553
554 write_lock_bh(&mrt_lock);
555 dev = v->dev;
556 v->dev = NULL;
557
558 if (!dev) {
559 write_unlock_bh(&mrt_lock);
560 return -EADDRNOTAVAIL;
561 }
562
563#ifdef CONFIG_IP_PIMSM
564 if (vifi == mrt->mroute_reg_vif_num)
565 mrt->mroute_reg_vif_num = -1;
566#endif
567
568 if (vifi + 1 == mrt->maxvif) {
569 int tmp;
570
571 for (tmp = vifi - 1; tmp >= 0; tmp--) {
572 if (VIF_EXISTS(mrt, tmp))
573 break;
574 }
575 mrt->maxvif = tmp+1;
576 }
577
578 write_unlock_bh(&mrt_lock);
579
580 dev_set_allmulti(dev, -1);
581
582 in_dev = __in_dev_get_rtnl(dev);
583 if (in_dev) {
584 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
585 ip_rt_multicast_event(in_dev);
586 }
587
588 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
589 unregister_netdevice_queue(dev, head);
590
591 dev_put(dev);
592 return 0;
593}
594
595static void ipmr_cache_free_rcu(struct rcu_head *head)
596{
597 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
598
599 kmem_cache_free(mrt_cachep, c);
600}
601
602static inline void ipmr_cache_free(struct mfc_cache *c)
603{
604 call_rcu(&c->rcu, ipmr_cache_free_rcu);
605}
606
607/* Destroy an unresolved cache entry, killing queued skbs
608 * and reporting error to netlink readers.
609 */
610
611static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
612{
613 struct net *net = read_pnet(&mrt->net);
614 struct sk_buff *skb;
615 struct nlmsgerr *e;
616
617 atomic_dec(&mrt->cache_resolve_queue_len);
618
619 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
620 if (ip_hdr(skb)->version == 0) {
621 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
622 nlh->nlmsg_type = NLMSG_ERROR;
623 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
624 skb_trim(skb, nlh->nlmsg_len);
625 e = NLMSG_DATA(nlh);
626 e->error = -ETIMEDOUT;
627 memset(&e->msg, 0, sizeof(e->msg));
628
629 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
630 } else {
631 kfree_skb(skb);
632 }
633 }
634
635 ipmr_cache_free(c);
636}
637
638
639/* Timer process for the unresolved queue. */
640
641static void ipmr_expire_process(unsigned long arg)
642{
643 struct mr_table *mrt = (struct mr_table *)arg;
644 unsigned long now;
645 unsigned long expires;
646 struct mfc_cache *c, *next;
647
648 if (!spin_trylock(&mfc_unres_lock)) {
649 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
650 return;
651 }
652
653 if (list_empty(&mrt->mfc_unres_queue))
654 goto out;
655
656 now = jiffies;
657 expires = 10*HZ;
658
659 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
660 if (time_after(c->mfc_un.unres.expires, now)) {
661 unsigned long interval = c->mfc_un.unres.expires - now;
662 if (interval < expires)
663 expires = interval;
664 continue;
665 }
666
667 list_del(&c->list);
668 ipmr_destroy_unres(mrt, c);
669 }
670
671 if (!list_empty(&mrt->mfc_unres_queue))
672 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
673
674out:
675 spin_unlock(&mfc_unres_lock);
676}
677
678/* Fill oifs list. It is called under write locked mrt_lock. */
679
680static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
681 unsigned char *ttls)
682{
683 int vifi;
684
685 cache->mfc_un.res.minvif = MAXVIFS;
686 cache->mfc_un.res.maxvif = 0;
687 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
688
689 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
690 if (VIF_EXISTS(mrt, vifi) &&
691 ttls[vifi] && ttls[vifi] < 255) {
692 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
693 if (cache->mfc_un.res.minvif > vifi)
694 cache->mfc_un.res.minvif = vifi;
695 if (cache->mfc_un.res.maxvif <= vifi)
696 cache->mfc_un.res.maxvif = vifi + 1;
697 }
698 }
699}
700
701static int vif_add(struct net *net, struct mr_table *mrt,
702 struct vifctl *vifc, int mrtsock)
703{
704 int vifi = vifc->vifc_vifi;
705 struct vif_device *v = &mrt->vif_table[vifi];
706 struct net_device *dev;
707 struct in_device *in_dev;
708 int err;
709
710 /* Is vif busy ? */
711 if (VIF_EXISTS(mrt, vifi))
712 return -EADDRINUSE;
713
714 switch (vifc->vifc_flags) {
715#ifdef CONFIG_IP_PIMSM
716 case VIFF_REGISTER:
717 /*
718 * Special Purpose VIF in PIM
719 * All the packets will be sent to the daemon
720 */
721 if (mrt->mroute_reg_vif_num >= 0)
722 return -EADDRINUSE;
723 dev = ipmr_reg_vif(net, mrt);
724 if (!dev)
725 return -ENOBUFS;
726 err = dev_set_allmulti(dev, 1);
727 if (err) {
728 unregister_netdevice(dev);
729 dev_put(dev);
730 return err;
731 }
732 break;
733#endif
734 case VIFF_TUNNEL:
735 dev = ipmr_new_tunnel(net, vifc);
736 if (!dev)
737 return -ENOBUFS;
738 err = dev_set_allmulti(dev, 1);
739 if (err) {
740 ipmr_del_tunnel(dev, vifc);
741 dev_put(dev);
742 return err;
743 }
744 break;
745
746 case VIFF_USE_IFINDEX:
747 case 0:
748 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
749 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
750 if (dev && __in_dev_get_rtnl(dev) == NULL) {
751 dev_put(dev);
752 return -EADDRNOTAVAIL;
753 }
754 } else {
755 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
756 }
757 if (!dev)
758 return -EADDRNOTAVAIL;
759 err = dev_set_allmulti(dev, 1);
760 if (err) {
761 dev_put(dev);
762 return err;
763 }
764 break;
765 default:
766 return -EINVAL;
767 }
768
769 in_dev = __in_dev_get_rtnl(dev);
770 if (!in_dev) {
771 dev_put(dev);
772 return -EADDRNOTAVAIL;
773 }
774 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
775 ip_rt_multicast_event(in_dev);
776
777 /* Fill in the VIF structures */
778
779 v->rate_limit = vifc->vifc_rate_limit;
780 v->local = vifc->vifc_lcl_addr.s_addr;
781 v->remote = vifc->vifc_rmt_addr.s_addr;
782 v->flags = vifc->vifc_flags;
783 if (!mrtsock)
784 v->flags |= VIFF_STATIC;
785 v->threshold = vifc->vifc_threshold;
786 v->bytes_in = 0;
787 v->bytes_out = 0;
788 v->pkt_in = 0;
789 v->pkt_out = 0;
790 v->link = dev->ifindex;
791 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
792 v->link = dev->iflink;
793
794 /* And finish update writing critical data */
795 write_lock_bh(&mrt_lock);
796 v->dev = dev;
797#ifdef CONFIG_IP_PIMSM
798 if (v->flags & VIFF_REGISTER)
799 mrt->mroute_reg_vif_num = vifi;
800#endif
801 if (vifi+1 > mrt->maxvif)
802 mrt->maxvif = vifi+1;
803 write_unlock_bh(&mrt_lock);
804 return 0;
805}
806
807/* called with rcu_read_lock() */
808static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
809 __be32 origin,
810 __be32 mcastgrp)
811{
812 int line = MFC_HASH(mcastgrp, origin);
813 struct mfc_cache *c;
814
815 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
816 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
817 return c;
818 }
819 return NULL;
820}
821
822/*
823 * Allocate a multicast cache entry
824 */
825static struct mfc_cache *ipmr_cache_alloc(void)
826{
827 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
828
829 if (c)
830 c->mfc_un.res.minvif = MAXVIFS;
831 return c;
832}
833
834static struct mfc_cache *ipmr_cache_alloc_unres(void)
835{
836 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
837
838 if (c) {
839 skb_queue_head_init(&c->mfc_un.unres.unresolved);
840 c->mfc_un.unres.expires = jiffies + 10*HZ;
841 }
842 return c;
843}
844
845/*
846 * A cache entry has gone into a resolved state from queued
847 */
848
849static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
850 struct mfc_cache *uc, struct mfc_cache *c)
851{
852 struct sk_buff *skb;
853 struct nlmsgerr *e;
854
855 /* Play the pending entries through our router */
856
857 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
858 if (ip_hdr(skb)->version == 0) {
859 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
860
861 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
862 nlh->nlmsg_len = skb_tail_pointer(skb) -
863 (u8 *)nlh;
864 } else {
865 nlh->nlmsg_type = NLMSG_ERROR;
866 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
867 skb_trim(skb, nlh->nlmsg_len);
868 e = NLMSG_DATA(nlh);
869 e->error = -EMSGSIZE;
870 memset(&e->msg, 0, sizeof(e->msg));
871 }
872
873 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
874 } else {
875 ip_mr_forward(net, mrt, skb, c, 0);
876 }
877 }
878}
879
880/*
881 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
882 * expects the following bizarre scheme.
883 *
884 * Called under mrt_lock.
885 */
886
887static int ipmr_cache_report(struct mr_table *mrt,
888 struct sk_buff *pkt, vifi_t vifi, int assert)
889{
890 struct sk_buff *skb;
891 const int ihl = ip_hdrlen(pkt);
892 struct igmphdr *igmp;
893 struct igmpmsg *msg;
894 struct sock *mroute_sk;
895 int ret;
896
897#ifdef CONFIG_IP_PIMSM
898 if (assert == IGMPMSG_WHOLEPKT)
899 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
900 else
901#endif
902 skb = alloc_skb(128, GFP_ATOMIC);
903
904 if (!skb)
905 return -ENOBUFS;
906
907#ifdef CONFIG_IP_PIMSM
908 if (assert == IGMPMSG_WHOLEPKT) {
909 /* Ugly, but we have no choice with this interface.
910 * Duplicate old header, fix ihl, length etc.
911 * And all this only to mangle msg->im_msgtype and
912 * to set msg->im_mbz to "mbz" :-)
913 */
914 skb_push(skb, sizeof(struct iphdr));
915 skb_reset_network_header(skb);
916 skb_reset_transport_header(skb);
917 msg = (struct igmpmsg *)skb_network_header(skb);
918 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
919 msg->im_msgtype = IGMPMSG_WHOLEPKT;
920 msg->im_mbz = 0;
921 msg->im_vif = mrt->mroute_reg_vif_num;
922 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
923 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
924 sizeof(struct iphdr));
925 } else
926#endif
927 {
928
929 /* Copy the IP header */
930
931 skb->network_header = skb->tail;
932 skb_put(skb, ihl);
933 skb_copy_to_linear_data(skb, pkt->data, ihl);
934 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
935 msg = (struct igmpmsg *)skb_network_header(skb);
936 msg->im_vif = vifi;
937 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
938
939 /* Add our header */
940
941 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
942 igmp->type =
943 msg->im_msgtype = assert;
944 igmp->code = 0;
945 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
946 skb->transport_header = skb->network_header;
947 }
948
949 rcu_read_lock();
950 mroute_sk = rcu_dereference(mrt->mroute_sk);
951 if (mroute_sk == NULL) {
952 rcu_read_unlock();
953 kfree_skb(skb);
954 return -EINVAL;
955 }
956
957 /* Deliver to mrouted */
958
959 ret = sock_queue_rcv_skb(mroute_sk, skb);
960 rcu_read_unlock();
961 if (ret < 0) {
962 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
963 kfree_skb(skb);
964 }
965
966 return ret;
967}
968
969/*
970 * Queue a packet for resolution. It gets locked cache entry!
971 */
972
973static int
974ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
975{
976 bool found = false;
977 int err;
978 struct mfc_cache *c;
979 const struct iphdr *iph = ip_hdr(skb);
980
981 spin_lock_bh(&mfc_unres_lock);
982 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
983 if (c->mfc_mcastgrp == iph->daddr &&
984 c->mfc_origin == iph->saddr) {
985 found = true;
986 break;
987 }
988 }
989
990 if (!found) {
991 /* Create a new entry if allowable */
992
993 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
994 (c = ipmr_cache_alloc_unres()) == NULL) {
995 spin_unlock_bh(&mfc_unres_lock);
996
997 kfree_skb(skb);
998 return -ENOBUFS;
999 }
1000
1001 /* Fill in the new cache entry */
1002
1003 c->mfc_parent = -1;
1004 c->mfc_origin = iph->saddr;
1005 c->mfc_mcastgrp = iph->daddr;
1006
1007 /* Reflect first query at mrouted. */
1008
1009 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1010 if (err < 0) {
1011 /* If the report failed throw the cache entry
1012 out - Brad Parker
1013 */
1014 spin_unlock_bh(&mfc_unres_lock);
1015
1016 ipmr_cache_free(c);
1017 kfree_skb(skb);
1018 return err;
1019 }
1020
1021 atomic_inc(&mrt->cache_resolve_queue_len);
1022 list_add(&c->list, &mrt->mfc_unres_queue);
1023
1024 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1025 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1026 }
1027
1028 /* See if we can append the packet */
1029
1030 if (c->mfc_un.unres.unresolved.qlen > 3) {
1031 kfree_skb(skb);
1032 err = -ENOBUFS;
1033 } else {
1034 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1035 err = 0;
1036 }
1037
1038 spin_unlock_bh(&mfc_unres_lock);
1039 return err;
1040}
1041
1042/*
1043 * MFC cache manipulation by user space mroute daemon
1044 */
1045
1046static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1047{
1048 int line;
1049 struct mfc_cache *c, *next;
1050
1051 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1052
1053 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1054 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1055 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1056 list_del_rcu(&c->list);
1057
1058 ipmr_cache_free(c);
1059 return 0;
1060 }
1061 }
1062 return -ENOENT;
1063}
1064
1065static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1066 struct mfcctl *mfc, int mrtsock)
1067{
1068 bool found = false;
1069 int line;
1070 struct mfc_cache *uc, *c;
1071
1072 if (mfc->mfcc_parent >= MAXVIFS)
1073 return -ENFILE;
1074
1075 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1076
1077 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1078 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1079 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1080 found = true;
1081 break;
1082 }
1083 }
1084
1085 if (found) {
1086 write_lock_bh(&mrt_lock);
1087 c->mfc_parent = mfc->mfcc_parent;
1088 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1089 if (!mrtsock)
1090 c->mfc_flags |= MFC_STATIC;
1091 write_unlock_bh(&mrt_lock);
1092 return 0;
1093 }
1094
1095 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1096 return -EINVAL;
1097
1098 c = ipmr_cache_alloc();
1099 if (c == NULL)
1100 return -ENOMEM;
1101
1102 c->mfc_origin = mfc->mfcc_origin.s_addr;
1103 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1104 c->mfc_parent = mfc->mfcc_parent;
1105 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1106 if (!mrtsock)
1107 c->mfc_flags |= MFC_STATIC;
1108
1109 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1110
1111 /*
1112 * Check to see if we resolved a queued list. If so we
1113 * need to send on the frames and tidy up.
1114 */
1115 found = false;
1116 spin_lock_bh(&mfc_unres_lock);
1117 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1118 if (uc->mfc_origin == c->mfc_origin &&
1119 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1120 list_del(&uc->list);
1121 atomic_dec(&mrt->cache_resolve_queue_len);
1122 found = true;
1123 break;
1124 }
1125 }
1126 if (list_empty(&mrt->mfc_unres_queue))
1127 del_timer(&mrt->ipmr_expire_timer);
1128 spin_unlock_bh(&mfc_unres_lock);
1129
1130 if (found) {
1131 ipmr_cache_resolve(net, mrt, uc, c);
1132 ipmr_cache_free(uc);
1133 }
1134 return 0;
1135}
1136
1137/*
1138 * Close the multicast socket, and clear the vif tables etc
1139 */
1140
1141static void mroute_clean_tables(struct mr_table *mrt)
1142{
1143 int i;
1144 LIST_HEAD(list);
1145 struct mfc_cache *c, *next;
1146
1147 /* Shut down all active vif entries */
1148
1149 for (i = 0; i < mrt->maxvif; i++) {
1150 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1151 vif_delete(mrt, i, 0, &list);
1152 }
1153 unregister_netdevice_many(&list);
1154
1155 /* Wipe the cache */
1156
1157 for (i = 0; i < MFC_LINES; i++) {
1158 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1159 if (c->mfc_flags & MFC_STATIC)
1160 continue;
1161 list_del_rcu(&c->list);
1162 ipmr_cache_free(c);
1163 }
1164 }
1165
1166 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1167 spin_lock_bh(&mfc_unres_lock);
1168 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1169 list_del(&c->list);
1170 ipmr_destroy_unres(mrt, c);
1171 }
1172 spin_unlock_bh(&mfc_unres_lock);
1173 }
1174}
1175
1176/* called from ip_ra_control(), before an RCU grace period,
1177 * we dont need to call synchronize_rcu() here
1178 */
1179static void mrtsock_destruct(struct sock *sk)
1180{
1181 struct net *net = sock_net(sk);
1182 struct mr_table *mrt;
1183
1184 rtnl_lock();
1185 ipmr_for_each_table(mrt, net) {
1186 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1187 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1188 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1189 mroute_clean_tables(mrt);
1190 }
1191 }
1192 rtnl_unlock();
1193}
1194
1195/*
1196 * Socket options and virtual interface manipulation. The whole
1197 * virtual interface system is a complete heap, but unfortunately
1198 * that's how BSD mrouted happens to think. Maybe one day with a proper
1199 * MOSPF/PIM router set up we can clean this up.
1200 */
1201
1202int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1203{
1204 int ret;
1205 struct vifctl vif;
1206 struct mfcctl mfc;
1207 struct net *net = sock_net(sk);
1208 struct mr_table *mrt;
1209
1210 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1211 if (mrt == NULL)
1212 return -ENOENT;
1213
1214 if (optname != MRT_INIT) {
1215 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1216 !capable(CAP_NET_ADMIN))
1217 return -EACCES;
1218 }
1219
1220 switch (optname) {
1221 case MRT_INIT:
1222 if (sk->sk_type != SOCK_RAW ||
1223 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1224 return -EOPNOTSUPP;
1225 if (optlen != sizeof(int))
1226 return -ENOPROTOOPT;
1227
1228 rtnl_lock();
1229 if (rtnl_dereference(mrt->mroute_sk)) {
1230 rtnl_unlock();
1231 return -EADDRINUSE;
1232 }
1233
1234 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1235 if (ret == 0) {
1236 rcu_assign_pointer(mrt->mroute_sk, sk);
1237 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1238 }
1239 rtnl_unlock();
1240 return ret;
1241 case MRT_DONE:
1242 if (sk != rcu_access_pointer(mrt->mroute_sk))
1243 return -EACCES;
1244 return ip_ra_control(sk, 0, NULL);
1245 case MRT_ADD_VIF:
1246 case MRT_DEL_VIF:
1247 if (optlen != sizeof(vif))
1248 return -EINVAL;
1249 if (copy_from_user(&vif, optval, sizeof(vif)))
1250 return -EFAULT;
1251 if (vif.vifc_vifi >= MAXVIFS)
1252 return -ENFILE;
1253 rtnl_lock();
1254 if (optname == MRT_ADD_VIF) {
1255 ret = vif_add(net, mrt, &vif,
1256 sk == rtnl_dereference(mrt->mroute_sk));
1257 } else {
1258 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1259 }
1260 rtnl_unlock();
1261 return ret;
1262
1263 /*
1264 * Manipulate the forwarding caches. These live
1265 * in a sort of kernel/user symbiosis.
1266 */
1267 case MRT_ADD_MFC:
1268 case MRT_DEL_MFC:
1269 if (optlen != sizeof(mfc))
1270 return -EINVAL;
1271 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1272 return -EFAULT;
1273 rtnl_lock();
1274 if (optname == MRT_DEL_MFC)
1275 ret = ipmr_mfc_delete(mrt, &mfc);
1276 else
1277 ret = ipmr_mfc_add(net, mrt, &mfc,
1278 sk == rtnl_dereference(mrt->mroute_sk));
1279 rtnl_unlock();
1280 return ret;
1281 /*
1282 * Control PIM assert.
1283 */
1284 case MRT_ASSERT:
1285 {
1286 int v;
1287 if (get_user(v, (int __user *)optval))
1288 return -EFAULT;
1289 mrt->mroute_do_assert = (v) ? 1 : 0;
1290 return 0;
1291 }
1292#ifdef CONFIG_IP_PIMSM
1293 case MRT_PIM:
1294 {
1295 int v;
1296
1297 if (get_user(v, (int __user *)optval))
1298 return -EFAULT;
1299 v = (v) ? 1 : 0;
1300
1301 rtnl_lock();
1302 ret = 0;
1303 if (v != mrt->mroute_do_pim) {
1304 mrt->mroute_do_pim = v;
1305 mrt->mroute_do_assert = v;
1306 }
1307 rtnl_unlock();
1308 return ret;
1309 }
1310#endif
1311#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1312 case MRT_TABLE:
1313 {
1314 u32 v;
1315
1316 if (optlen != sizeof(u32))
1317 return -EINVAL;
1318 if (get_user(v, (u32 __user *)optval))
1319 return -EFAULT;
1320
1321 rtnl_lock();
1322 ret = 0;
1323 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1324 ret = -EBUSY;
1325 } else {
1326 if (!ipmr_new_table(net, v))
1327 ret = -ENOMEM;
1328 raw_sk(sk)->ipmr_table = v;
1329 }
1330 rtnl_unlock();
1331 return ret;
1332 }
1333#endif
1334 /*
1335 * Spurious command, or MRT_VERSION which you cannot
1336 * set.
1337 */
1338 default:
1339 return -ENOPROTOOPT;
1340 }
1341}
1342
1343/*
1344 * Getsock opt support for the multicast routing system.
1345 */
1346
1347int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1348{
1349 int olr;
1350 int val;
1351 struct net *net = sock_net(sk);
1352 struct mr_table *mrt;
1353
1354 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1355 if (mrt == NULL)
1356 return -ENOENT;
1357
1358 if (optname != MRT_VERSION &&
1359#ifdef CONFIG_IP_PIMSM
1360 optname != MRT_PIM &&
1361#endif
1362 optname != MRT_ASSERT)
1363 return -ENOPROTOOPT;
1364
1365 if (get_user(olr, optlen))
1366 return -EFAULT;
1367
1368 olr = min_t(unsigned int, olr, sizeof(int));
1369 if (olr < 0)
1370 return -EINVAL;
1371
1372 if (put_user(olr, optlen))
1373 return -EFAULT;
1374 if (optname == MRT_VERSION)
1375 val = 0x0305;
1376#ifdef CONFIG_IP_PIMSM
1377 else if (optname == MRT_PIM)
1378 val = mrt->mroute_do_pim;
1379#endif
1380 else
1381 val = mrt->mroute_do_assert;
1382 if (copy_to_user(optval, &val, olr))
1383 return -EFAULT;
1384 return 0;
1385}
1386
1387/*
1388 * The IP multicast ioctl support routines.
1389 */
1390
1391int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1392{
1393 struct sioc_sg_req sr;
1394 struct sioc_vif_req vr;
1395 struct vif_device *vif;
1396 struct mfc_cache *c;
1397 struct net *net = sock_net(sk);
1398 struct mr_table *mrt;
1399
1400 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1401 if (mrt == NULL)
1402 return -ENOENT;
1403
1404 switch (cmd) {
1405 case SIOCGETVIFCNT:
1406 if (copy_from_user(&vr, arg, sizeof(vr)))
1407 return -EFAULT;
1408 if (vr.vifi >= mrt->maxvif)
1409 return -EINVAL;
1410 read_lock(&mrt_lock);
1411 vif = &mrt->vif_table[vr.vifi];
1412 if (VIF_EXISTS(mrt, vr.vifi)) {
1413 vr.icount = vif->pkt_in;
1414 vr.ocount = vif->pkt_out;
1415 vr.ibytes = vif->bytes_in;
1416 vr.obytes = vif->bytes_out;
1417 read_unlock(&mrt_lock);
1418
1419 if (copy_to_user(arg, &vr, sizeof(vr)))
1420 return -EFAULT;
1421 return 0;
1422 }
1423 read_unlock(&mrt_lock);
1424 return -EADDRNOTAVAIL;
1425 case SIOCGETSGCNT:
1426 if (copy_from_user(&sr, arg, sizeof(sr)))
1427 return -EFAULT;
1428
1429 rcu_read_lock();
1430 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1431 if (c) {
1432 sr.pktcnt = c->mfc_un.res.pkt;
1433 sr.bytecnt = c->mfc_un.res.bytes;
1434 sr.wrong_if = c->mfc_un.res.wrong_if;
1435 rcu_read_unlock();
1436
1437 if (copy_to_user(arg, &sr, sizeof(sr)))
1438 return -EFAULT;
1439 return 0;
1440 }
1441 rcu_read_unlock();
1442 return -EADDRNOTAVAIL;
1443 default:
1444 return -ENOIOCTLCMD;
1445 }
1446}
1447
1448#ifdef CONFIG_COMPAT
1449struct compat_sioc_sg_req {
1450 struct in_addr src;
1451 struct in_addr grp;
1452 compat_ulong_t pktcnt;
1453 compat_ulong_t bytecnt;
1454 compat_ulong_t wrong_if;
1455};
1456
1457struct compat_sioc_vif_req {
1458 vifi_t vifi; /* Which iface */
1459 compat_ulong_t icount;
1460 compat_ulong_t ocount;
1461 compat_ulong_t ibytes;
1462 compat_ulong_t obytes;
1463};
1464
1465int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1466{
1467 struct compat_sioc_sg_req sr;
1468 struct compat_sioc_vif_req vr;
1469 struct vif_device *vif;
1470 struct mfc_cache *c;
1471 struct net *net = sock_net(sk);
1472 struct mr_table *mrt;
1473
1474 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1475 if (mrt == NULL)
1476 return -ENOENT;
1477
1478 switch (cmd) {
1479 case SIOCGETVIFCNT:
1480 if (copy_from_user(&vr, arg, sizeof(vr)))
1481 return -EFAULT;
1482 if (vr.vifi >= mrt->maxvif)
1483 return -EINVAL;
1484 read_lock(&mrt_lock);
1485 vif = &mrt->vif_table[vr.vifi];
1486 if (VIF_EXISTS(mrt, vr.vifi)) {
1487 vr.icount = vif->pkt_in;
1488 vr.ocount = vif->pkt_out;
1489 vr.ibytes = vif->bytes_in;
1490 vr.obytes = vif->bytes_out;
1491 read_unlock(&mrt_lock);
1492
1493 if (copy_to_user(arg, &vr, sizeof(vr)))
1494 return -EFAULT;
1495 return 0;
1496 }
1497 read_unlock(&mrt_lock);
1498 return -EADDRNOTAVAIL;
1499 case SIOCGETSGCNT:
1500 if (copy_from_user(&sr, arg, sizeof(sr)))
1501 return -EFAULT;
1502
1503 rcu_read_lock();
1504 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1505 if (c) {
1506 sr.pktcnt = c->mfc_un.res.pkt;
1507 sr.bytecnt = c->mfc_un.res.bytes;
1508 sr.wrong_if = c->mfc_un.res.wrong_if;
1509 rcu_read_unlock();
1510
1511 if (copy_to_user(arg, &sr, sizeof(sr)))
1512 return -EFAULT;
1513 return 0;
1514 }
1515 rcu_read_unlock();
1516 return -EADDRNOTAVAIL;
1517 default:
1518 return -ENOIOCTLCMD;
1519 }
1520}
1521#endif
1522
1523
1524static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1525{
1526 struct net_device *dev = ptr;
1527 struct net *net = dev_net(dev);
1528 struct mr_table *mrt;
1529 struct vif_device *v;
1530 int ct;
1531
1532 if (event != NETDEV_UNREGISTER)
1533 return NOTIFY_DONE;
1534
1535 ipmr_for_each_table(mrt, net) {
1536 v = &mrt->vif_table[0];
1537 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1538 if (v->dev == dev)
1539 vif_delete(mrt, ct, 1, NULL);
1540 }
1541 }
1542 return NOTIFY_DONE;
1543}
1544
1545
1546static struct notifier_block ip_mr_notifier = {
1547 .notifier_call = ipmr_device_event,
1548};
1549
1550/*
1551 * Encapsulate a packet by attaching a valid IPIP header to it.
1552 * This avoids tunnel drivers and other mess and gives us the speed so
1553 * important for multicast video.
1554 */
1555
1556static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1557{
1558 struct iphdr *iph;
1559 const struct iphdr *old_iph = ip_hdr(skb);
1560
1561 skb_push(skb, sizeof(struct iphdr));
1562 skb->transport_header = skb->network_header;
1563 skb_reset_network_header(skb);
1564 iph = ip_hdr(skb);
1565
1566 iph->version = 4;
1567 iph->tos = old_iph->tos;
1568 iph->ttl = old_iph->ttl;
1569 iph->frag_off = 0;
1570 iph->daddr = daddr;
1571 iph->saddr = saddr;
1572 iph->protocol = IPPROTO_IPIP;
1573 iph->ihl = 5;
1574 iph->tot_len = htons(skb->len);
1575 ip_select_ident(iph, skb_dst(skb), NULL);
1576 ip_send_check(iph);
1577
1578 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1579 nf_reset(skb);
1580}
1581
1582static inline int ipmr_forward_finish(struct sk_buff *skb)
1583{
1584 struct ip_options *opt = &(IPCB(skb)->opt);
1585
1586 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1587 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1588
1589 if (unlikely(opt->optlen))
1590 ip_forward_options(skb);
1591
1592 return dst_output(skb);
1593}
1594
1595/*
1596 * Processing handlers for ipmr_forward
1597 */
1598
1599static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1600 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1601{
1602 const struct iphdr *iph = ip_hdr(skb);
1603 struct vif_device *vif = &mrt->vif_table[vifi];
1604 struct net_device *dev;
1605 struct rtable *rt;
1606 struct flowi4 fl4;
1607 int encap = 0;
1608
1609 if (vif->dev == NULL)
1610 goto out_free;
1611
1612#ifdef CONFIG_IP_PIMSM
1613 if (vif->flags & VIFF_REGISTER) {
1614 vif->pkt_out++;
1615 vif->bytes_out += skb->len;
1616 vif->dev->stats.tx_bytes += skb->len;
1617 vif->dev->stats.tx_packets++;
1618 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1619 goto out_free;
1620 }
1621#endif
1622
1623 if (vif->flags & VIFF_TUNNEL) {
1624 rt = ip_route_output_ports(net, &fl4, NULL,
1625 vif->remote, vif->local,
1626 0, 0,
1627 IPPROTO_IPIP,
1628 RT_TOS(iph->tos), vif->link);
1629 if (IS_ERR(rt))
1630 goto out_free;
1631 encap = sizeof(struct iphdr);
1632 } else {
1633 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1634 0, 0,
1635 IPPROTO_IPIP,
1636 RT_TOS(iph->tos), vif->link);
1637 if (IS_ERR(rt))
1638 goto out_free;
1639 }
1640
1641 dev = rt->dst.dev;
1642
1643 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1644 /* Do not fragment multicasts. Alas, IPv4 does not
1645 * allow to send ICMP, so that packets will disappear
1646 * to blackhole.
1647 */
1648
1649 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1650 ip_rt_put(rt);
1651 goto out_free;
1652 }
1653
1654 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1655
1656 if (skb_cow(skb, encap)) {
1657 ip_rt_put(rt);
1658 goto out_free;
1659 }
1660
1661 vif->pkt_out++;
1662 vif->bytes_out += skb->len;
1663
1664 skb_dst_drop(skb);
1665 skb_dst_set(skb, &rt->dst);
1666 ip_decrease_ttl(ip_hdr(skb));
1667
1668 /* FIXME: forward and output firewalls used to be called here.
1669 * What do we do with netfilter? -- RR
1670 */
1671 if (vif->flags & VIFF_TUNNEL) {
1672 ip_encap(skb, vif->local, vif->remote);
1673 /* FIXME: extra output firewall step used to be here. --RR */
1674 vif->dev->stats.tx_packets++;
1675 vif->dev->stats.tx_bytes += skb->len;
1676 }
1677
1678 IPCB(skb)->flags |= IPSKB_FORWARDED;
1679
1680 /*
1681 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1682 * not only before forwarding, but after forwarding on all output
1683 * interfaces. It is clear, if mrouter runs a multicasting
1684 * program, it should receive packets not depending to what interface
1685 * program is joined.
1686 * If we will not make it, the program will have to join on all
1687 * interfaces. On the other hand, multihoming host (or router, but
1688 * not mrouter) cannot join to more than one interface - it will
1689 * result in receiving multiple packets.
1690 */
1691 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1692 ipmr_forward_finish);
1693 return;
1694
1695out_free:
1696 kfree_skb(skb);
1697}
1698
1699static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1700{
1701 int ct;
1702
1703 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1704 if (mrt->vif_table[ct].dev == dev)
1705 break;
1706 }
1707 return ct;
1708}
1709
1710/* "local" means that we should preserve one skb (for local delivery) */
1711
1712static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1713 struct sk_buff *skb, struct mfc_cache *cache,
1714 int local)
1715{
1716 int psend = -1;
1717 int vif, ct;
1718
1719 vif = cache->mfc_parent;
1720 cache->mfc_un.res.pkt++;
1721 cache->mfc_un.res.bytes += skb->len;
1722
1723 /*
1724 * Wrong interface: drop packet and (maybe) send PIM assert.
1725 */
1726 if (mrt->vif_table[vif].dev != skb->dev) {
1727 int true_vifi;
1728
1729 if (rt_is_output_route(skb_rtable(skb))) {
1730 /* It is our own packet, looped back.
1731 * Very complicated situation...
1732 *
1733 * The best workaround until routing daemons will be
1734 * fixed is not to redistribute packet, if it was
1735 * send through wrong interface. It means, that
1736 * multicast applications WILL NOT work for
1737 * (S,G), which have default multicast route pointing
1738 * to wrong oif. In any case, it is not a good
1739 * idea to use multicasting applications on router.
1740 */
1741 goto dont_forward;
1742 }
1743
1744 cache->mfc_un.res.wrong_if++;
1745 true_vifi = ipmr_find_vif(mrt, skb->dev);
1746
1747 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1748 /* pimsm uses asserts, when switching from RPT to SPT,
1749 * so that we cannot check that packet arrived on an oif.
1750 * It is bad, but otherwise we would need to move pretty
1751 * large chunk of pimd to kernel. Ough... --ANK
1752 */
1753 (mrt->mroute_do_pim ||
1754 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1755 time_after(jiffies,
1756 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1757 cache->mfc_un.res.last_assert = jiffies;
1758 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1759 }
1760 goto dont_forward;
1761 }
1762
1763 mrt->vif_table[vif].pkt_in++;
1764 mrt->vif_table[vif].bytes_in += skb->len;
1765
1766 /*
1767 * Forward the frame
1768 */
1769 for (ct = cache->mfc_un.res.maxvif - 1;
1770 ct >= cache->mfc_un.res.minvif; ct--) {
1771 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1772 if (psend != -1) {
1773 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1774
1775 if (skb2)
1776 ipmr_queue_xmit(net, mrt, skb2, cache,
1777 psend);
1778 }
1779 psend = ct;
1780 }
1781 }
1782 if (psend != -1) {
1783 if (local) {
1784 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1785
1786 if (skb2)
1787 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1788 } else {
1789 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1790 return 0;
1791 }
1792 }
1793
1794dont_forward:
1795 if (!local)
1796 kfree_skb(skb);
1797 return 0;
1798}
1799
1800static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1801{
1802 struct rtable *rt = skb_rtable(skb);
1803 struct iphdr *iph = ip_hdr(skb);
1804 struct flowi4 fl4 = {
1805 .daddr = iph->daddr,
1806 .saddr = iph->saddr,
1807 .flowi4_tos = RT_TOS(iph->tos),
1808 .flowi4_oif = rt->rt_oif,
1809 .flowi4_iif = rt->rt_iif,
1810 .flowi4_mark = rt->rt_mark,
1811 };
1812 struct mr_table *mrt;
1813 int err;
1814
1815 err = ipmr_fib_lookup(net, &fl4, &mrt);
1816 if (err)
1817 return ERR_PTR(err);
1818 return mrt;
1819}
1820
1821/*
1822 * Multicast packets for forwarding arrive here
1823 * Called with rcu_read_lock();
1824 */
1825
1826int ip_mr_input(struct sk_buff *skb)
1827{
1828 struct mfc_cache *cache;
1829 struct net *net = dev_net(skb->dev);
1830 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1831 struct mr_table *mrt;
1832
1833 /* Packet is looped back after forward, it should not be
1834 * forwarded second time, but still can be delivered locally.
1835 */
1836 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1837 goto dont_forward;
1838
1839 mrt = ipmr_rt_fib_lookup(net, skb);
1840 if (IS_ERR(mrt)) {
1841 kfree_skb(skb);
1842 return PTR_ERR(mrt);
1843 }
1844 if (!local) {
1845 if (IPCB(skb)->opt.router_alert) {
1846 if (ip_call_ra_chain(skb))
1847 return 0;
1848 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1849 /* IGMPv1 (and broken IGMPv2 implementations sort of
1850 * Cisco IOS <= 11.2(8)) do not put router alert
1851 * option to IGMP packets destined to routable
1852 * groups. It is very bad, because it means
1853 * that we can forward NO IGMP messages.
1854 */
1855 struct sock *mroute_sk;
1856
1857 mroute_sk = rcu_dereference(mrt->mroute_sk);
1858 if (mroute_sk) {
1859 nf_reset(skb);
1860 raw_rcv(mroute_sk, skb);
1861 return 0;
1862 }
1863 }
1864 }
1865
1866 /* already under rcu_read_lock() */
1867 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1868
1869 /*
1870 * No usable cache entry
1871 */
1872 if (cache == NULL) {
1873 int vif;
1874
1875 if (local) {
1876 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1877 ip_local_deliver(skb);
1878 if (skb2 == NULL)
1879 return -ENOBUFS;
1880 skb = skb2;
1881 }
1882
1883 read_lock(&mrt_lock);
1884 vif = ipmr_find_vif(mrt, skb->dev);
1885 if (vif >= 0) {
1886 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1887 read_unlock(&mrt_lock);
1888
1889 return err2;
1890 }
1891 read_unlock(&mrt_lock);
1892 kfree_skb(skb);
1893 return -ENODEV;
1894 }
1895
1896 read_lock(&mrt_lock);
1897 ip_mr_forward(net, mrt, skb, cache, local);
1898 read_unlock(&mrt_lock);
1899
1900 if (local)
1901 return ip_local_deliver(skb);
1902
1903 return 0;
1904
1905dont_forward:
1906 if (local)
1907 return ip_local_deliver(skb);
1908 kfree_skb(skb);
1909 return 0;
1910}
1911
1912#ifdef CONFIG_IP_PIMSM
1913/* called with rcu_read_lock() */
1914static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1915 unsigned int pimlen)
1916{
1917 struct net_device *reg_dev = NULL;
1918 struct iphdr *encap;
1919
1920 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1921 /*
1922 * Check that:
1923 * a. packet is really sent to a multicast group
1924 * b. packet is not a NULL-REGISTER
1925 * c. packet is not truncated
1926 */
1927 if (!ipv4_is_multicast(encap->daddr) ||
1928 encap->tot_len == 0 ||
1929 ntohs(encap->tot_len) + pimlen > skb->len)
1930 return 1;
1931
1932 read_lock(&mrt_lock);
1933 if (mrt->mroute_reg_vif_num >= 0)
1934 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1935 read_unlock(&mrt_lock);
1936
1937 if (reg_dev == NULL)
1938 return 1;
1939
1940 skb->mac_header = skb->network_header;
1941 skb_pull(skb, (u8 *)encap - skb->data);
1942 skb_reset_network_header(skb);
1943 skb->protocol = htons(ETH_P_IP);
1944 skb->ip_summed = CHECKSUM_NONE;
1945 skb->pkt_type = PACKET_HOST;
1946
1947 skb_tunnel_rx(skb, reg_dev);
1948
1949 netif_rx(skb);
1950
1951 return NET_RX_SUCCESS;
1952}
1953#endif
1954
1955#ifdef CONFIG_IP_PIMSM_V1
1956/*
1957 * Handle IGMP messages of PIMv1
1958 */
1959
1960int pim_rcv_v1(struct sk_buff *skb)
1961{
1962 struct igmphdr *pim;
1963 struct net *net = dev_net(skb->dev);
1964 struct mr_table *mrt;
1965
1966 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1967 goto drop;
1968
1969 pim = igmp_hdr(skb);
1970
1971 mrt = ipmr_rt_fib_lookup(net, skb);
1972 if (IS_ERR(mrt))
1973 goto drop;
1974 if (!mrt->mroute_do_pim ||
1975 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1976 goto drop;
1977
1978 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1979drop:
1980 kfree_skb(skb);
1981 }
1982 return 0;
1983}
1984#endif
1985
1986#ifdef CONFIG_IP_PIMSM_V2
1987static int pim_rcv(struct sk_buff *skb)
1988{
1989 struct pimreghdr *pim;
1990 struct net *net = dev_net(skb->dev);
1991 struct mr_table *mrt;
1992
1993 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1994 goto drop;
1995
1996 pim = (struct pimreghdr *)skb_transport_header(skb);
1997 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1998 (pim->flags & PIM_NULL_REGISTER) ||
1999 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2000 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2001 goto drop;
2002
2003 mrt = ipmr_rt_fib_lookup(net, skb);
2004 if (IS_ERR(mrt))
2005 goto drop;
2006 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2007drop:
2008 kfree_skb(skb);
2009 }
2010 return 0;
2011}
2012#endif
2013
2014static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2015 struct mfc_cache *c, struct rtmsg *rtm)
2016{
2017 int ct;
2018 struct rtnexthop *nhp;
2019 u8 *b = skb_tail_pointer(skb);
2020 struct rtattr *mp_head;
2021
2022 /* If cache is unresolved, don't try to parse IIF and OIF */
2023 if (c->mfc_parent >= MAXVIFS)
2024 return -ENOENT;
2025
2026 if (VIF_EXISTS(mrt, c->mfc_parent))
2027 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2028
2029 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2030
2031 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2032 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2033 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2034 goto rtattr_failure;
2035 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2036 nhp->rtnh_flags = 0;
2037 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2038 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2039 nhp->rtnh_len = sizeof(*nhp);
2040 }
2041 }
2042 mp_head->rta_type = RTA_MULTIPATH;
2043 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2044 rtm->rtm_type = RTN_MULTICAST;
2045 return 1;
2046
2047rtattr_failure:
2048 nlmsg_trim(skb, b);
2049 return -EMSGSIZE;
2050}
2051
2052int ipmr_get_route(struct net *net, struct sk_buff *skb,
2053 __be32 saddr, __be32 daddr,
2054 struct rtmsg *rtm, int nowait)
2055{
2056 struct mfc_cache *cache;
2057 struct mr_table *mrt;
2058 int err;
2059
2060 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2061 if (mrt == NULL)
2062 return -ENOENT;
2063
2064 rcu_read_lock();
2065 cache = ipmr_cache_find(mrt, saddr, daddr);
2066
2067 if (cache == NULL) {
2068 struct sk_buff *skb2;
2069 struct iphdr *iph;
2070 struct net_device *dev;
2071 int vif = -1;
2072
2073 if (nowait) {
2074 rcu_read_unlock();
2075 return -EAGAIN;
2076 }
2077
2078 dev = skb->dev;
2079 read_lock(&mrt_lock);
2080 if (dev)
2081 vif = ipmr_find_vif(mrt, dev);
2082 if (vif < 0) {
2083 read_unlock(&mrt_lock);
2084 rcu_read_unlock();
2085 return -ENODEV;
2086 }
2087 skb2 = skb_clone(skb, GFP_ATOMIC);
2088 if (!skb2) {
2089 read_unlock(&mrt_lock);
2090 rcu_read_unlock();
2091 return -ENOMEM;
2092 }
2093
2094 skb_push(skb2, sizeof(struct iphdr));
2095 skb_reset_network_header(skb2);
2096 iph = ip_hdr(skb2);
2097 iph->ihl = sizeof(struct iphdr) >> 2;
2098 iph->saddr = saddr;
2099 iph->daddr = daddr;
2100 iph->version = 0;
2101 err = ipmr_cache_unresolved(mrt, vif, skb2);
2102 read_unlock(&mrt_lock);
2103 rcu_read_unlock();
2104 return err;
2105 }
2106
2107 read_lock(&mrt_lock);
2108 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2109 cache->mfc_flags |= MFC_NOTIFY;
2110 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2111 read_unlock(&mrt_lock);
2112 rcu_read_unlock();
2113 return err;
2114}
2115
2116static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2117 u32 pid, u32 seq, struct mfc_cache *c)
2118{
2119 struct nlmsghdr *nlh;
2120 struct rtmsg *rtm;
2121
2122 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2123 if (nlh == NULL)
2124 return -EMSGSIZE;
2125
2126 rtm = nlmsg_data(nlh);
2127 rtm->rtm_family = RTNL_FAMILY_IPMR;
2128 rtm->rtm_dst_len = 32;
2129 rtm->rtm_src_len = 32;
2130 rtm->rtm_tos = 0;
2131 rtm->rtm_table = mrt->id;
2132 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2133 goto nla_put_failure;
2134 rtm->rtm_type = RTN_MULTICAST;
2135 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2136 rtm->rtm_protocol = RTPROT_UNSPEC;
2137 rtm->rtm_flags = 0;
2138
2139 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2140 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2141 goto nla_put_failure;
2142 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2143 goto nla_put_failure;
2144
2145 return nlmsg_end(skb, nlh);
2146
2147nla_put_failure:
2148 nlmsg_cancel(skb, nlh);
2149 return -EMSGSIZE;
2150}
2151
2152static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2153{
2154 struct net *net = sock_net(skb->sk);
2155 struct mr_table *mrt;
2156 struct mfc_cache *mfc;
2157 unsigned int t = 0, s_t;
2158 unsigned int h = 0, s_h;
2159 unsigned int e = 0, s_e;
2160
2161 s_t = cb->args[0];
2162 s_h = cb->args[1];
2163 s_e = cb->args[2];
2164
2165 rcu_read_lock();
2166 ipmr_for_each_table(mrt, net) {
2167 if (t < s_t)
2168 goto next_table;
2169 if (t > s_t)
2170 s_h = 0;
2171 for (h = s_h; h < MFC_LINES; h++) {
2172 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2173 if (e < s_e)
2174 goto next_entry;
2175 if (ipmr_fill_mroute(mrt, skb,
2176 NETLINK_CB(cb->skb).pid,
2177 cb->nlh->nlmsg_seq,
2178 mfc) < 0)
2179 goto done;
2180next_entry:
2181 e++;
2182 }
2183 e = s_e = 0;
2184 }
2185 s_h = 0;
2186next_table:
2187 t++;
2188 }
2189done:
2190 rcu_read_unlock();
2191
2192 cb->args[2] = e;
2193 cb->args[1] = h;
2194 cb->args[0] = t;
2195
2196 return skb->len;
2197}
2198
2199#ifdef CONFIG_PROC_FS
2200/*
2201 * The /proc interfaces to multicast routing :
2202 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2203 */
2204struct ipmr_vif_iter {
2205 struct seq_net_private p;
2206 struct mr_table *mrt;
2207 int ct;
2208};
2209
2210static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2211 struct ipmr_vif_iter *iter,
2212 loff_t pos)
2213{
2214 struct mr_table *mrt = iter->mrt;
2215
2216 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2217 if (!VIF_EXISTS(mrt, iter->ct))
2218 continue;
2219 if (pos-- == 0)
2220 return &mrt->vif_table[iter->ct];
2221 }
2222 return NULL;
2223}
2224
2225static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2226 __acquires(mrt_lock)
2227{
2228 struct ipmr_vif_iter *iter = seq->private;
2229 struct net *net = seq_file_net(seq);
2230 struct mr_table *mrt;
2231
2232 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2233 if (mrt == NULL)
2234 return ERR_PTR(-ENOENT);
2235
2236 iter->mrt = mrt;
2237
2238 read_lock(&mrt_lock);
2239 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2240 : SEQ_START_TOKEN;
2241}
2242
2243static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244{
2245 struct ipmr_vif_iter *iter = seq->private;
2246 struct net *net = seq_file_net(seq);
2247 struct mr_table *mrt = iter->mrt;
2248
2249 ++*pos;
2250 if (v == SEQ_START_TOKEN)
2251 return ipmr_vif_seq_idx(net, iter, 0);
2252
2253 while (++iter->ct < mrt->maxvif) {
2254 if (!VIF_EXISTS(mrt, iter->ct))
2255 continue;
2256 return &mrt->vif_table[iter->ct];
2257 }
2258 return NULL;
2259}
2260
2261static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2262 __releases(mrt_lock)
2263{
2264 read_unlock(&mrt_lock);
2265}
2266
2267static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2268{
2269 struct ipmr_vif_iter *iter = seq->private;
2270 struct mr_table *mrt = iter->mrt;
2271
2272 if (v == SEQ_START_TOKEN) {
2273 seq_puts(seq,
2274 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2275 } else {
2276 const struct vif_device *vif = v;
2277 const char *name = vif->dev ? vif->dev->name : "none";
2278
2279 seq_printf(seq,
2280 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2281 vif - mrt->vif_table,
2282 name, vif->bytes_in, vif->pkt_in,
2283 vif->bytes_out, vif->pkt_out,
2284 vif->flags, vif->local, vif->remote);
2285 }
2286 return 0;
2287}
2288
2289static const struct seq_operations ipmr_vif_seq_ops = {
2290 .start = ipmr_vif_seq_start,
2291 .next = ipmr_vif_seq_next,
2292 .stop = ipmr_vif_seq_stop,
2293 .show = ipmr_vif_seq_show,
2294};
2295
2296static int ipmr_vif_open(struct inode *inode, struct file *file)
2297{
2298 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2299 sizeof(struct ipmr_vif_iter));
2300}
2301
2302static const struct file_operations ipmr_vif_fops = {
2303 .owner = THIS_MODULE,
2304 .open = ipmr_vif_open,
2305 .read = seq_read,
2306 .llseek = seq_lseek,
2307 .release = seq_release_net,
2308};
2309
2310struct ipmr_mfc_iter {
2311 struct seq_net_private p;
2312 struct mr_table *mrt;
2313 struct list_head *cache;
2314 int ct;
2315};
2316
2317
2318static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2319 struct ipmr_mfc_iter *it, loff_t pos)
2320{
2321 struct mr_table *mrt = it->mrt;
2322 struct mfc_cache *mfc;
2323
2324 rcu_read_lock();
2325 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2326 it->cache = &mrt->mfc_cache_array[it->ct];
2327 list_for_each_entry_rcu(mfc, it->cache, list)
2328 if (pos-- == 0)
2329 return mfc;
2330 }
2331 rcu_read_unlock();
2332
2333 spin_lock_bh(&mfc_unres_lock);
2334 it->cache = &mrt->mfc_unres_queue;
2335 list_for_each_entry(mfc, it->cache, list)
2336 if (pos-- == 0)
2337 return mfc;
2338 spin_unlock_bh(&mfc_unres_lock);
2339
2340 it->cache = NULL;
2341 return NULL;
2342}
2343
2344
2345static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2346{
2347 struct ipmr_mfc_iter *it = seq->private;
2348 struct net *net = seq_file_net(seq);
2349 struct mr_table *mrt;
2350
2351 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2352 if (mrt == NULL)
2353 return ERR_PTR(-ENOENT);
2354
2355 it->mrt = mrt;
2356 it->cache = NULL;
2357 it->ct = 0;
2358 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2359 : SEQ_START_TOKEN;
2360}
2361
2362static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2363{
2364 struct mfc_cache *mfc = v;
2365 struct ipmr_mfc_iter *it = seq->private;
2366 struct net *net = seq_file_net(seq);
2367 struct mr_table *mrt = it->mrt;
2368
2369 ++*pos;
2370
2371 if (v == SEQ_START_TOKEN)
2372 return ipmr_mfc_seq_idx(net, seq->private, 0);
2373
2374 if (mfc->list.next != it->cache)
2375 return list_entry(mfc->list.next, struct mfc_cache, list);
2376
2377 if (it->cache == &mrt->mfc_unres_queue)
2378 goto end_of_list;
2379
2380 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2381
2382 while (++it->ct < MFC_LINES) {
2383 it->cache = &mrt->mfc_cache_array[it->ct];
2384 if (list_empty(it->cache))
2385 continue;
2386 return list_first_entry(it->cache, struct mfc_cache, list);
2387 }
2388
2389 /* exhausted cache_array, show unresolved */
2390 rcu_read_unlock();
2391 it->cache = &mrt->mfc_unres_queue;
2392 it->ct = 0;
2393
2394 spin_lock_bh(&mfc_unres_lock);
2395 if (!list_empty(it->cache))
2396 return list_first_entry(it->cache, struct mfc_cache, list);
2397
2398end_of_list:
2399 spin_unlock_bh(&mfc_unres_lock);
2400 it->cache = NULL;
2401
2402 return NULL;
2403}
2404
2405static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2406{
2407 struct ipmr_mfc_iter *it = seq->private;
2408 struct mr_table *mrt = it->mrt;
2409
2410 if (it->cache == &mrt->mfc_unres_queue)
2411 spin_unlock_bh(&mfc_unres_lock);
2412 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2413 rcu_read_unlock();
2414}
2415
2416static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2417{
2418 int n;
2419
2420 if (v == SEQ_START_TOKEN) {
2421 seq_puts(seq,
2422 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2423 } else {
2424 const struct mfc_cache *mfc = v;
2425 const struct ipmr_mfc_iter *it = seq->private;
2426 const struct mr_table *mrt = it->mrt;
2427
2428 seq_printf(seq, "%08X %08X %-3hd",
2429 (__force u32) mfc->mfc_mcastgrp,
2430 (__force u32) mfc->mfc_origin,
2431 mfc->mfc_parent);
2432
2433 if (it->cache != &mrt->mfc_unres_queue) {
2434 seq_printf(seq, " %8lu %8lu %8lu",
2435 mfc->mfc_un.res.pkt,
2436 mfc->mfc_un.res.bytes,
2437 mfc->mfc_un.res.wrong_if);
2438 for (n = mfc->mfc_un.res.minvif;
2439 n < mfc->mfc_un.res.maxvif; n++) {
2440 if (VIF_EXISTS(mrt, n) &&
2441 mfc->mfc_un.res.ttls[n] < 255)
2442 seq_printf(seq,
2443 " %2d:%-3d",
2444 n, mfc->mfc_un.res.ttls[n]);
2445 }
2446 } else {
2447 /* unresolved mfc_caches don't contain
2448 * pkt, bytes and wrong_if values
2449 */
2450 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2451 }
2452 seq_putc(seq, '\n');
2453 }
2454 return 0;
2455}
2456
2457static const struct seq_operations ipmr_mfc_seq_ops = {
2458 .start = ipmr_mfc_seq_start,
2459 .next = ipmr_mfc_seq_next,
2460 .stop = ipmr_mfc_seq_stop,
2461 .show = ipmr_mfc_seq_show,
2462};
2463
2464static int ipmr_mfc_open(struct inode *inode, struct file *file)
2465{
2466 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2467 sizeof(struct ipmr_mfc_iter));
2468}
2469
2470static const struct file_operations ipmr_mfc_fops = {
2471 .owner = THIS_MODULE,
2472 .open = ipmr_mfc_open,
2473 .read = seq_read,
2474 .llseek = seq_lseek,
2475 .release = seq_release_net,
2476};
2477#endif
2478
2479#ifdef CONFIG_IP_PIMSM_V2
2480static const struct net_protocol pim_protocol = {
2481 .handler = pim_rcv,
2482 .netns_ok = 1,
2483};
2484#endif
2485
2486
2487/*
2488 * Setup for IP multicast routing
2489 */
2490static int __net_init ipmr_net_init(struct net *net)
2491{
2492 int err;
2493
2494 err = ipmr_rules_init(net);
2495 if (err < 0)
2496 goto fail;
2497
2498#ifdef CONFIG_PROC_FS
2499 err = -ENOMEM;
2500 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2501 goto proc_vif_fail;
2502 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2503 goto proc_cache_fail;
2504#endif
2505 return 0;
2506
2507#ifdef CONFIG_PROC_FS
2508proc_cache_fail:
2509 proc_net_remove(net, "ip_mr_vif");
2510proc_vif_fail:
2511 ipmr_rules_exit(net);
2512#endif
2513fail:
2514 return err;
2515}
2516
2517static void __net_exit ipmr_net_exit(struct net *net)
2518{
2519#ifdef CONFIG_PROC_FS
2520 proc_net_remove(net, "ip_mr_cache");
2521 proc_net_remove(net, "ip_mr_vif");
2522#endif
2523 ipmr_rules_exit(net);
2524}
2525
2526static struct pernet_operations ipmr_net_ops = {
2527 .init = ipmr_net_init,
2528 .exit = ipmr_net_exit,
2529};
2530
2531int __init ip_mr_init(void)
2532{
2533 int err;
2534
2535 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2536 sizeof(struct mfc_cache),
2537 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2538 NULL);
2539 if (!mrt_cachep)
2540 return -ENOMEM;
2541
2542 err = register_pernet_subsys(&ipmr_net_ops);
2543 if (err)
2544 goto reg_pernet_fail;
2545
2546 err = register_netdevice_notifier(&ip_mr_notifier);
2547 if (err)
2548 goto reg_notif_fail;
2549#ifdef CONFIG_IP_PIMSM_V2
2550 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2551 pr_err("%s: can't add PIM protocol\n", __func__);
2552 err = -EAGAIN;
2553 goto add_proto_fail;
2554 }
2555#endif
2556 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2557 NULL, ipmr_rtm_dumproute, NULL);
2558 return 0;
2559
2560#ifdef CONFIG_IP_PIMSM_V2
2561add_proto_fail:
2562 unregister_netdevice_notifier(&ip_mr_notifier);
2563#endif
2564reg_notif_fail:
2565 unregister_pernet_subsys(&ipmr_net_ops);
2566reg_pernet_fail:
2567 kmem_cache_destroy(mrt_cachep);
2568 return err;
2569}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24#include <linux/uaccess.h>
25#include <linux/types.h>
26#include <linux/cache.h>
27#include <linux/capability.h>
28#include <linux/errno.h>
29#include <linux/mm.h>
30#include <linux/kernel.h>
31#include <linux/fcntl.h>
32#include <linux/stat.h>
33#include <linux/socket.h>
34#include <linux/in.h>
35#include <linux/inet.h>
36#include <linux/netdevice.h>
37#include <linux/inetdevice.h>
38#include <linux/igmp.h>
39#include <linux/proc_fs.h>
40#include <linux/seq_file.h>
41#include <linux/mroute.h>
42#include <linux/init.h>
43#include <linux/if_ether.h>
44#include <linux/slab.h>
45#include <net/net_namespace.h>
46#include <net/ip.h>
47#include <net/protocol.h>
48#include <linux/skbuff.h>
49#include <net/route.h>
50#include <net/icmp.h>
51#include <net/udp.h>
52#include <net/raw.h>
53#include <linux/notifier.h>
54#include <linux/if_arp.h>
55#include <linux/netfilter_ipv4.h>
56#include <linux/compat.h>
57#include <linux/export.h>
58#include <linux/rhashtable.h>
59#include <net/ip_tunnels.h>
60#include <net/checksum.h>
61#include <net/netlink.h>
62#include <net/fib_rules.h>
63#include <linux/netconf.h>
64#include <net/rtnh.h>
65
66#include <linux/nospec.h>
67
68struct ipmr_rule {
69 struct fib_rule common;
70};
71
72struct ipmr_result {
73 struct mr_table *mrt;
74};
75
76/* Big lock, protecting vif table, mrt cache and mroute socket state.
77 * Note that the changes are semaphored via rtnl_lock.
78 */
79
80static DEFINE_SPINLOCK(mrt_lock);
81
82static struct net_device *vif_dev_read(const struct vif_device *vif)
83{
84 return rcu_dereference(vif->dev);
85}
86
87/* Multicast router control variables */
88
89/* Special spinlock for queue of unresolved entries */
90static DEFINE_SPINLOCK(mfc_unres_lock);
91
92/* We return to original Alan's scheme. Hash table of resolved
93 * entries is changed only in process context and protected
94 * with weak lock mrt_lock. Queue of unresolved entries is protected
95 * with strong spinlock mfc_unres_lock.
96 *
97 * In this case data path is free of exclusive locks at all.
98 */
99
100static struct kmem_cache *mrt_cachep __ro_after_init;
101
102static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103static void ipmr_free_table(struct mr_table *mrt);
104
105static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106 struct net_device *dev, struct sk_buff *skb,
107 struct mfc_cache *cache, int local);
108static int ipmr_cache_report(const struct mr_table *mrt,
109 struct sk_buff *pkt, vifi_t vifi, int assert);
110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
113static void mroute_clean_tables(struct mr_table *mrt, int flags);
114static void ipmr_expire_process(struct timer_list *t);
115
116#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117#define ipmr_for_each_table(mrt, net) \
118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
119 lockdep_rtnl_is_held() || \
120 list_empty(&net->ipv4.mr_tables))
121
122static struct mr_table *ipmr_mr_table_iter(struct net *net,
123 struct mr_table *mrt)
124{
125 struct mr_table *ret;
126
127 if (!mrt)
128 ret = list_entry_rcu(net->ipv4.mr_tables.next,
129 struct mr_table, list);
130 else
131 ret = list_entry_rcu(mrt->list.next,
132 struct mr_table, list);
133
134 if (&ret->list == &net->ipv4.mr_tables)
135 return NULL;
136 return ret;
137}
138
139static struct mr_table *ipmr_get_table(struct net *net, u32 id)
140{
141 struct mr_table *mrt;
142
143 ipmr_for_each_table(mrt, net) {
144 if (mrt->id == id)
145 return mrt;
146 }
147 return NULL;
148}
149
150static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
151 struct mr_table **mrt)
152{
153 int err;
154 struct ipmr_result res;
155 struct fib_lookup_arg arg = {
156 .result = &res,
157 .flags = FIB_LOOKUP_NOREF,
158 };
159
160 /* update flow if oif or iif point to device enslaved to l3mdev */
161 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
162
163 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
164 flowi4_to_flowi(flp4), 0, &arg);
165 if (err < 0)
166 return err;
167 *mrt = res.mrt;
168 return 0;
169}
170
171static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
172 int flags, struct fib_lookup_arg *arg)
173{
174 struct ipmr_result *res = arg->result;
175 struct mr_table *mrt;
176
177 switch (rule->action) {
178 case FR_ACT_TO_TBL:
179 break;
180 case FR_ACT_UNREACHABLE:
181 return -ENETUNREACH;
182 case FR_ACT_PROHIBIT:
183 return -EACCES;
184 case FR_ACT_BLACKHOLE:
185 default:
186 return -EINVAL;
187 }
188
189 arg->table = fib_rule_get_table(rule, arg);
190
191 mrt = ipmr_get_table(rule->fr_net, arg->table);
192 if (!mrt)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196}
197
198static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199{
200 return 1;
201}
202
203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 struct fib_rule_hdr *frh, struct nlattr **tb,
205 struct netlink_ext_ack *extack)
206{
207 return 0;
208}
209
210static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
211 struct nlattr **tb)
212{
213 return 1;
214}
215
216static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
217 struct fib_rule_hdr *frh)
218{
219 frh->dst_len = 0;
220 frh->src_len = 0;
221 frh->tos = 0;
222 return 0;
223}
224
225static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
226 .family = RTNL_FAMILY_IPMR,
227 .rule_size = sizeof(struct ipmr_rule),
228 .addr_size = sizeof(u32),
229 .action = ipmr_rule_action,
230 .match = ipmr_rule_match,
231 .configure = ipmr_rule_configure,
232 .compare = ipmr_rule_compare,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .owner = THIS_MODULE,
236};
237
238static int __net_init ipmr_rules_init(struct net *net)
239{
240 struct fib_rules_ops *ops;
241 struct mr_table *mrt;
242 int err;
243
244 ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 if (IS_ERR(ops))
246 return PTR_ERR(ops);
247
248 INIT_LIST_HEAD(&net->ipv4.mr_tables);
249
250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 if (IS_ERR(mrt)) {
252 err = PTR_ERR(mrt);
253 goto err1;
254 }
255
256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 if (err < 0)
258 goto err2;
259
260 net->ipv4.mr_rules_ops = ops;
261 return 0;
262
263err2:
264 rtnl_lock();
265 ipmr_free_table(mrt);
266 rtnl_unlock();
267err1:
268 fib_rules_unregister(ops);
269 return err;
270}
271
272static void __net_exit ipmr_rules_exit(struct net *net)
273{
274 struct mr_table *mrt, *next;
275
276 ASSERT_RTNL();
277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
278 list_del(&mrt->list);
279 ipmr_free_table(mrt);
280 }
281 fib_rules_unregister(net->ipv4.mr_rules_ops);
282}
283
284static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
285 struct netlink_ext_ack *extack)
286{
287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
288}
289
290static unsigned int ipmr_rules_seq_read(struct net *net)
291{
292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
293}
294
295bool ipmr_rule_default(const struct fib_rule *rule)
296{
297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
298}
299EXPORT_SYMBOL(ipmr_rule_default);
300#else
301#define ipmr_for_each_table(mrt, net) \
302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
303
304static struct mr_table *ipmr_mr_table_iter(struct net *net,
305 struct mr_table *mrt)
306{
307 if (!mrt)
308 return net->ipv4.mrt;
309 return NULL;
310}
311
312static struct mr_table *ipmr_get_table(struct net *net, u32 id)
313{
314 return net->ipv4.mrt;
315}
316
317static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
318 struct mr_table **mrt)
319{
320 *mrt = net->ipv4.mrt;
321 return 0;
322}
323
324static int __net_init ipmr_rules_init(struct net *net)
325{
326 struct mr_table *mrt;
327
328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
329 if (IS_ERR(mrt))
330 return PTR_ERR(mrt);
331 net->ipv4.mrt = mrt;
332 return 0;
333}
334
335static void __net_exit ipmr_rules_exit(struct net *net)
336{
337 ASSERT_RTNL();
338 ipmr_free_table(net->ipv4.mrt);
339 net->ipv4.mrt = NULL;
340}
341
342static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 struct netlink_ext_ack *extack)
344{
345 return 0;
346}
347
348static unsigned int ipmr_rules_seq_read(struct net *net)
349{
350 return 0;
351}
352
353bool ipmr_rule_default(const struct fib_rule *rule)
354{
355 return true;
356}
357EXPORT_SYMBOL(ipmr_rule_default);
358#endif
359
360static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 const void *ptr)
362{
363 const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 const struct mfc_cache *c = ptr;
365
366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 cmparg->mfc_origin != c->mfc_origin;
368}
369
370static const struct rhashtable_params ipmr_rht_params = {
371 .head_offset = offsetof(struct mr_mfc, mnode),
372 .key_offset = offsetof(struct mfc_cache, cmparg),
373 .key_len = sizeof(struct mfc_cache_cmp_arg),
374 .nelem_hint = 3,
375 .obj_cmpfn = ipmr_hash_cmp,
376 .automatic_shrinking = true,
377};
378
379static void ipmr_new_table_set(struct mr_table *mrt,
380 struct net *net)
381{
382#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384#endif
385}
386
387static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 .mfc_mcastgrp = htonl(INADDR_ANY),
389 .mfc_origin = htonl(INADDR_ANY),
390};
391
392static struct mr_table_ops ipmr_mr_table_ops = {
393 .rht_params = &ipmr_rht_params,
394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395};
396
397static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398{
399 struct mr_table *mrt;
400
401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 return ERR_PTR(-EINVAL);
404
405 mrt = ipmr_get_table(net, id);
406 if (mrt)
407 return mrt;
408
409 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 ipmr_expire_process, ipmr_new_table_set);
411}
412
413static void ipmr_free_table(struct mr_table *mrt)
414{
415 timer_shutdown_sync(&mrt->ipmr_expire_timer);
416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 rhltable_destroy(&mrt->mfc_hash);
419 kfree(mrt);
420}
421
422/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423
424/* Initialize ipmr pimreg/tunnel in_device */
425static bool ipmr_init_vif_indev(const struct net_device *dev)
426{
427 struct in_device *in_dev;
428
429 ASSERT_RTNL();
430
431 in_dev = __in_dev_get_rtnl(dev);
432 if (!in_dev)
433 return false;
434 ipv4_devconf_setall(in_dev);
435 neigh_parms_data_state_setall(in_dev->arp_parms);
436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437
438 return true;
439}
440
441static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442{
443 struct net_device *tunnel_dev, *new_dev;
444 struct ip_tunnel_parm p = { };
445 int err;
446
447 tunnel_dev = __dev_get_by_name(net, "tunl0");
448 if (!tunnel_dev)
449 goto out;
450
451 p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 p.iph.version = 4;
454 p.iph.ihl = 5;
455 p.iph.protocol = IPPROTO_IPIP;
456 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
457
458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 goto out;
460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 SIOCADDTUNNEL);
462 if (err)
463 goto out;
464
465 new_dev = __dev_get_by_name(net, p.name);
466 if (!new_dev)
467 goto out;
468
469 new_dev->flags |= IFF_MULTICAST;
470 if (!ipmr_init_vif_indev(new_dev))
471 goto out_unregister;
472 if (dev_open(new_dev, NULL))
473 goto out_unregister;
474 dev_hold(new_dev);
475 err = dev_set_allmulti(new_dev, 1);
476 if (err) {
477 dev_close(new_dev);
478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 SIOCDELTUNNEL);
480 dev_put(new_dev);
481 new_dev = ERR_PTR(err);
482 }
483 return new_dev;
484
485out_unregister:
486 unregister_netdevice(new_dev);
487out:
488 return ERR_PTR(-ENOBUFS);
489}
490
491#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
492static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493{
494 struct net *net = dev_net(dev);
495 struct mr_table *mrt;
496 struct flowi4 fl4 = {
497 .flowi4_oif = dev->ifindex,
498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
499 .flowi4_mark = skb->mark,
500 };
501 int err;
502
503 err = ipmr_fib_lookup(net, &fl4, &mrt);
504 if (err < 0) {
505 kfree_skb(skb);
506 return err;
507 }
508
509 DEV_STATS_ADD(dev, tx_bytes, skb->len);
510 DEV_STATS_INC(dev, tx_packets);
511 rcu_read_lock();
512
513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
514 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
515 IGMPMSG_WHOLEPKT);
516
517 rcu_read_unlock();
518 kfree_skb(skb);
519 return NETDEV_TX_OK;
520}
521
522static int reg_vif_get_iflink(const struct net_device *dev)
523{
524 return 0;
525}
526
527static const struct net_device_ops reg_vif_netdev_ops = {
528 .ndo_start_xmit = reg_vif_xmit,
529 .ndo_get_iflink = reg_vif_get_iflink,
530};
531
532static void reg_vif_setup(struct net_device *dev)
533{
534 dev->type = ARPHRD_PIMREG;
535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
536 dev->flags = IFF_NOARP;
537 dev->netdev_ops = ®_vif_netdev_ops;
538 dev->needs_free_netdev = true;
539 dev->features |= NETIF_F_NETNS_LOCAL;
540}
541
542static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
543{
544 struct net_device *dev;
545 char name[IFNAMSIZ];
546
547 if (mrt->id == RT_TABLE_DEFAULT)
548 sprintf(name, "pimreg");
549 else
550 sprintf(name, "pimreg%u", mrt->id);
551
552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
553
554 if (!dev)
555 return NULL;
556
557 dev_net_set(dev, net);
558
559 if (register_netdevice(dev)) {
560 free_netdev(dev);
561 return NULL;
562 }
563
564 if (!ipmr_init_vif_indev(dev))
565 goto failure;
566 if (dev_open(dev, NULL))
567 goto failure;
568
569 dev_hold(dev);
570
571 return dev;
572
573failure:
574 unregister_netdevice(dev);
575 return NULL;
576}
577
578/* called with rcu_read_lock() */
579static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
580 unsigned int pimlen)
581{
582 struct net_device *reg_dev = NULL;
583 struct iphdr *encap;
584 int vif_num;
585
586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
587 /* Check that:
588 * a. packet is really sent to a multicast group
589 * b. packet is not a NULL-REGISTER
590 * c. packet is not truncated
591 */
592 if (!ipv4_is_multicast(encap->daddr) ||
593 encap->tot_len == 0 ||
594 ntohs(encap->tot_len) + pimlen > skb->len)
595 return 1;
596
597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
599 if (vif_num >= 0)
600 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
601 if (!reg_dev)
602 return 1;
603
604 skb->mac_header = skb->network_header;
605 skb_pull(skb, (u8 *)encap - skb->data);
606 skb_reset_network_header(skb);
607 skb->protocol = htons(ETH_P_IP);
608 skb->ip_summed = CHECKSUM_NONE;
609
610 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
611
612 netif_rx(skb);
613
614 return NET_RX_SUCCESS;
615}
616#else
617static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
618{
619 return NULL;
620}
621#endif
622
623static int call_ipmr_vif_entry_notifiers(struct net *net,
624 enum fib_event_type event_type,
625 struct vif_device *vif,
626 struct net_device *vif_dev,
627 vifi_t vif_index, u32 tb_id)
628{
629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
630 vif, vif_dev, vif_index, tb_id,
631 &net->ipv4.ipmr_seq);
632}
633
634static int call_ipmr_mfc_entry_notifiers(struct net *net,
635 enum fib_event_type event_type,
636 struct mfc_cache *mfc, u32 tb_id)
637{
638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
639 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
640}
641
642/**
643 * vif_delete - Delete a VIF entry
644 * @mrt: Table to delete from
645 * @vifi: VIF identifier to delete
646 * @notify: Set to 1, if the caller is a notifier_call
647 * @head: if unregistering the VIF, place it on this queue
648 */
649static int vif_delete(struct mr_table *mrt, int vifi, int notify,
650 struct list_head *head)
651{
652 struct net *net = read_pnet(&mrt->net);
653 struct vif_device *v;
654 struct net_device *dev;
655 struct in_device *in_dev;
656
657 if (vifi < 0 || vifi >= mrt->maxvif)
658 return -EADDRNOTAVAIL;
659
660 v = &mrt->vif_table[vifi];
661
662 dev = rtnl_dereference(v->dev);
663 if (!dev)
664 return -EADDRNOTAVAIL;
665
666 spin_lock(&mrt_lock);
667 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
668 vifi, mrt->id);
669 RCU_INIT_POINTER(v->dev, NULL);
670
671 if (vifi == mrt->mroute_reg_vif_num) {
672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
674 }
675 if (vifi + 1 == mrt->maxvif) {
676 int tmp;
677
678 for (tmp = vifi - 1; tmp >= 0; tmp--) {
679 if (VIF_EXISTS(mrt, tmp))
680 break;
681 }
682 WRITE_ONCE(mrt->maxvif, tmp + 1);
683 }
684
685 spin_unlock(&mrt_lock);
686
687 dev_set_allmulti(dev, -1);
688
689 in_dev = __in_dev_get_rtnl(dev);
690 if (in_dev) {
691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
692 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
693 NETCONFA_MC_FORWARDING,
694 dev->ifindex, &in_dev->cnf);
695 ip_rt_multicast_event(in_dev);
696 }
697
698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
699 unregister_netdevice_queue(dev, head);
700
701 netdev_put(dev, &v->dev_tracker);
702 return 0;
703}
704
705static void ipmr_cache_free_rcu(struct rcu_head *head)
706{
707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
708
709 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
710}
711
712static void ipmr_cache_free(struct mfc_cache *c)
713{
714 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
715}
716
717/* Destroy an unresolved cache entry, killing queued skbs
718 * and reporting error to netlink readers.
719 */
720static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
721{
722 struct net *net = read_pnet(&mrt->net);
723 struct sk_buff *skb;
724 struct nlmsgerr *e;
725
726 atomic_dec(&mrt->cache_resolve_queue_len);
727
728 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
729 if (ip_hdr(skb)->version == 0) {
730 struct nlmsghdr *nlh = skb_pull(skb,
731 sizeof(struct iphdr));
732 nlh->nlmsg_type = NLMSG_ERROR;
733 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
734 skb_trim(skb, nlh->nlmsg_len);
735 e = nlmsg_data(nlh);
736 e->error = -ETIMEDOUT;
737 memset(&e->msg, 0, sizeof(e->msg));
738
739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
740 } else {
741 kfree_skb(skb);
742 }
743 }
744
745 ipmr_cache_free(c);
746}
747
748/* Timer process for the unresolved queue. */
749static void ipmr_expire_process(struct timer_list *t)
750{
751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
752 struct mr_mfc *c, *next;
753 unsigned long expires;
754 unsigned long now;
755
756 if (!spin_trylock(&mfc_unres_lock)) {
757 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
758 return;
759 }
760
761 if (list_empty(&mrt->mfc_unres_queue))
762 goto out;
763
764 now = jiffies;
765 expires = 10*HZ;
766
767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
768 if (time_after(c->mfc_un.unres.expires, now)) {
769 unsigned long interval = c->mfc_un.unres.expires - now;
770 if (interval < expires)
771 expires = interval;
772 continue;
773 }
774
775 list_del(&c->list);
776 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
777 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
778 }
779
780 if (!list_empty(&mrt->mfc_unres_queue))
781 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
782
783out:
784 spin_unlock(&mfc_unres_lock);
785}
786
787/* Fill oifs list. It is called under locked mrt_lock. */
788static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
789 unsigned char *ttls)
790{
791 int vifi;
792
793 cache->mfc_un.res.minvif = MAXVIFS;
794 cache->mfc_un.res.maxvif = 0;
795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
796
797 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
798 if (VIF_EXISTS(mrt, vifi) &&
799 ttls[vifi] && ttls[vifi] < 255) {
800 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
801 if (cache->mfc_un.res.minvif > vifi)
802 cache->mfc_un.res.minvif = vifi;
803 if (cache->mfc_un.res.maxvif <= vifi)
804 cache->mfc_un.res.maxvif = vifi + 1;
805 }
806 }
807 cache->mfc_un.res.lastuse = jiffies;
808}
809
810static int vif_add(struct net *net, struct mr_table *mrt,
811 struct vifctl *vifc, int mrtsock)
812{
813 struct netdev_phys_item_id ppid = { };
814 int vifi = vifc->vifc_vifi;
815 struct vif_device *v = &mrt->vif_table[vifi];
816 struct net_device *dev;
817 struct in_device *in_dev;
818 int err;
819
820 /* Is vif busy ? */
821 if (VIF_EXISTS(mrt, vifi))
822 return -EADDRINUSE;
823
824 switch (vifc->vifc_flags) {
825 case VIFF_REGISTER:
826 if (!ipmr_pimsm_enabled())
827 return -EINVAL;
828 /* Special Purpose VIF in PIM
829 * All the packets will be sent to the daemon
830 */
831 if (mrt->mroute_reg_vif_num >= 0)
832 return -EADDRINUSE;
833 dev = ipmr_reg_vif(net, mrt);
834 if (!dev)
835 return -ENOBUFS;
836 err = dev_set_allmulti(dev, 1);
837 if (err) {
838 unregister_netdevice(dev);
839 dev_put(dev);
840 return err;
841 }
842 break;
843 case VIFF_TUNNEL:
844 dev = ipmr_new_tunnel(net, vifc);
845 if (IS_ERR(dev))
846 return PTR_ERR(dev);
847 break;
848 case VIFF_USE_IFINDEX:
849 case 0:
850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
851 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
852 if (dev && !__in_dev_get_rtnl(dev)) {
853 dev_put(dev);
854 return -EADDRNOTAVAIL;
855 }
856 } else {
857 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
858 }
859 if (!dev)
860 return -EADDRNOTAVAIL;
861 err = dev_set_allmulti(dev, 1);
862 if (err) {
863 dev_put(dev);
864 return err;
865 }
866 break;
867 default:
868 return -EINVAL;
869 }
870
871 in_dev = __in_dev_get_rtnl(dev);
872 if (!in_dev) {
873 dev_put(dev);
874 return -EADDRNOTAVAIL;
875 }
876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
878 dev->ifindex, &in_dev->cnf);
879 ip_rt_multicast_event(in_dev);
880
881 /* Fill in the VIF structures */
882 vif_device_init(v, dev, vifc->vifc_rate_limit,
883 vifc->vifc_threshold,
884 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
885 (VIFF_TUNNEL | VIFF_REGISTER));
886
887 err = dev_get_port_parent_id(dev, &ppid, true);
888 if (err == 0) {
889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
890 v->dev_parent_id.id_len = ppid.id_len;
891 } else {
892 v->dev_parent_id.id_len = 0;
893 }
894
895 v->local = vifc->vifc_lcl_addr.s_addr;
896 v->remote = vifc->vifc_rmt_addr.s_addr;
897
898 /* And finish update writing critical data */
899 spin_lock(&mrt_lock);
900 rcu_assign_pointer(v->dev, dev);
901 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
902 if (v->flags & VIFF_REGISTER) {
903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
905 }
906 if (vifi+1 > mrt->maxvif)
907 WRITE_ONCE(mrt->maxvif, vifi + 1);
908 spin_unlock(&mrt_lock);
909 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
910 vifi, mrt->id);
911 return 0;
912}
913
914/* called with rcu_read_lock() */
915static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
916 __be32 origin,
917 __be32 mcastgrp)
918{
919 struct mfc_cache_cmp_arg arg = {
920 .mfc_mcastgrp = mcastgrp,
921 .mfc_origin = origin
922 };
923
924 return mr_mfc_find(mrt, &arg);
925}
926
927/* Look for a (*,G) entry */
928static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
929 __be32 mcastgrp, int vifi)
930{
931 struct mfc_cache_cmp_arg arg = {
932 .mfc_mcastgrp = mcastgrp,
933 .mfc_origin = htonl(INADDR_ANY)
934 };
935
936 if (mcastgrp == htonl(INADDR_ANY))
937 return mr_mfc_find_any_parent(mrt, vifi);
938 return mr_mfc_find_any(mrt, vifi, &arg);
939}
940
941/* Look for a (S,G,iif) entry if parent != -1 */
942static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
943 __be32 origin, __be32 mcastgrp,
944 int parent)
945{
946 struct mfc_cache_cmp_arg arg = {
947 .mfc_mcastgrp = mcastgrp,
948 .mfc_origin = origin,
949 };
950
951 return mr_mfc_find_parent(mrt, &arg, parent);
952}
953
954/* Allocate a multicast cache entry */
955static struct mfc_cache *ipmr_cache_alloc(void)
956{
957 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
958
959 if (c) {
960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
961 c->_c.mfc_un.res.minvif = MAXVIFS;
962 c->_c.free = ipmr_cache_free_rcu;
963 refcount_set(&c->_c.mfc_un.res.refcount, 1);
964 }
965 return c;
966}
967
968static struct mfc_cache *ipmr_cache_alloc_unres(void)
969{
970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
971
972 if (c) {
973 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
975 }
976 return c;
977}
978
979/* A cache entry has gone into a resolved state from queued */
980static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
981 struct mfc_cache *uc, struct mfc_cache *c)
982{
983 struct sk_buff *skb;
984 struct nlmsgerr *e;
985
986 /* Play the pending entries through our router */
987 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
988 if (ip_hdr(skb)->version == 0) {
989 struct nlmsghdr *nlh = skb_pull(skb,
990 sizeof(struct iphdr));
991
992 if (mr_fill_mroute(mrt, skb, &c->_c,
993 nlmsg_data(nlh)) > 0) {
994 nlh->nlmsg_len = skb_tail_pointer(skb) -
995 (u8 *)nlh;
996 } else {
997 nlh->nlmsg_type = NLMSG_ERROR;
998 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
999 skb_trim(skb, nlh->nlmsg_len);
1000 e = nlmsg_data(nlh);
1001 e->error = -EMSGSIZE;
1002 memset(&e->msg, 0, sizeof(e->msg));
1003 }
1004
1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1006 } else {
1007 rcu_read_lock();
1008 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1009 rcu_read_unlock();
1010 }
1011 }
1012}
1013
1014/* Bounce a cache query up to mrouted and netlink.
1015 *
1016 * Called under rcu_read_lock().
1017 */
1018static int ipmr_cache_report(const struct mr_table *mrt,
1019 struct sk_buff *pkt, vifi_t vifi, int assert)
1020{
1021 const int ihl = ip_hdrlen(pkt);
1022 struct sock *mroute_sk;
1023 struct igmphdr *igmp;
1024 struct igmpmsg *msg;
1025 struct sk_buff *skb;
1026 int ret;
1027
1028 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1029 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1030 else
1031 skb = alloc_skb(128, GFP_ATOMIC);
1032
1033 if (!skb)
1034 return -ENOBUFS;
1035
1036 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1037 /* Ugly, but we have no choice with this interface.
1038 * Duplicate old header, fix ihl, length etc.
1039 * And all this only to mangle msg->im_msgtype and
1040 * to set msg->im_mbz to "mbz" :-)
1041 */
1042 skb_push(skb, sizeof(struct iphdr));
1043 skb_reset_network_header(skb);
1044 skb_reset_transport_header(skb);
1045 msg = (struct igmpmsg *)skb_network_header(skb);
1046 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1047 msg->im_msgtype = assert;
1048 msg->im_mbz = 0;
1049 if (assert == IGMPMSG_WRVIFWHOLE) {
1050 msg->im_vif = vifi;
1051 msg->im_vif_hi = vifi >> 8;
1052 } else {
1053 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1054 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1055
1056 msg->im_vif = vif_num;
1057 msg->im_vif_hi = vif_num >> 8;
1058 }
1059 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1060 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1061 sizeof(struct iphdr));
1062 } else {
1063 /* Copy the IP header */
1064 skb_set_network_header(skb, skb->len);
1065 skb_put(skb, ihl);
1066 skb_copy_to_linear_data(skb, pkt->data, ihl);
1067 /* Flag to the kernel this is a route add */
1068 ip_hdr(skb)->protocol = 0;
1069 msg = (struct igmpmsg *)skb_network_header(skb);
1070 msg->im_vif = vifi;
1071 msg->im_vif_hi = vifi >> 8;
1072 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1073 /* Add our header */
1074 igmp = skb_put(skb, sizeof(struct igmphdr));
1075 igmp->type = assert;
1076 msg->im_msgtype = assert;
1077 igmp->code = 0;
1078 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1079 skb->transport_header = skb->network_header;
1080 }
1081
1082 mroute_sk = rcu_dereference(mrt->mroute_sk);
1083 if (!mroute_sk) {
1084 kfree_skb(skb);
1085 return -EINVAL;
1086 }
1087
1088 igmpmsg_netlink_event(mrt, skb);
1089
1090 /* Deliver to mrouted */
1091 ret = sock_queue_rcv_skb(mroute_sk, skb);
1092
1093 if (ret < 0) {
1094 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1095 kfree_skb(skb);
1096 }
1097
1098 return ret;
1099}
1100
1101/* Queue a packet for resolution. It gets locked cache entry! */
1102/* Called under rcu_read_lock() */
1103static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1104 struct sk_buff *skb, struct net_device *dev)
1105{
1106 const struct iphdr *iph = ip_hdr(skb);
1107 struct mfc_cache *c;
1108 bool found = false;
1109 int err;
1110
1111 spin_lock_bh(&mfc_unres_lock);
1112 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1113 if (c->mfc_mcastgrp == iph->daddr &&
1114 c->mfc_origin == iph->saddr) {
1115 found = true;
1116 break;
1117 }
1118 }
1119
1120 if (!found) {
1121 /* Create a new entry if allowable */
1122 c = ipmr_cache_alloc_unres();
1123 if (!c) {
1124 spin_unlock_bh(&mfc_unres_lock);
1125
1126 kfree_skb(skb);
1127 return -ENOBUFS;
1128 }
1129
1130 /* Fill in the new cache entry */
1131 c->_c.mfc_parent = -1;
1132 c->mfc_origin = iph->saddr;
1133 c->mfc_mcastgrp = iph->daddr;
1134
1135 /* Reflect first query at mrouted. */
1136 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1137
1138 if (err < 0) {
1139 /* If the report failed throw the cache entry
1140 out - Brad Parker
1141 */
1142 spin_unlock_bh(&mfc_unres_lock);
1143
1144 ipmr_cache_free(c);
1145 kfree_skb(skb);
1146 return err;
1147 }
1148
1149 atomic_inc(&mrt->cache_resolve_queue_len);
1150 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1151 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1152
1153 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1154 mod_timer(&mrt->ipmr_expire_timer,
1155 c->_c.mfc_un.unres.expires);
1156 }
1157
1158 /* See if we can append the packet */
1159 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1160 kfree_skb(skb);
1161 err = -ENOBUFS;
1162 } else {
1163 if (dev) {
1164 skb->dev = dev;
1165 skb->skb_iif = dev->ifindex;
1166 }
1167 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1168 err = 0;
1169 }
1170
1171 spin_unlock_bh(&mfc_unres_lock);
1172 return err;
1173}
1174
1175/* MFC cache manipulation by user space mroute daemon */
1176
1177static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1178{
1179 struct net *net = read_pnet(&mrt->net);
1180 struct mfc_cache *c;
1181
1182 /* The entries are added/deleted only under RTNL */
1183 rcu_read_lock();
1184 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1185 mfc->mfcc_mcastgrp.s_addr, parent);
1186 rcu_read_unlock();
1187 if (!c)
1188 return -ENOENT;
1189 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1190 list_del_rcu(&c->_c.list);
1191 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1192 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1193 mr_cache_put(&c->_c);
1194
1195 return 0;
1196}
1197
1198static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1199 struct mfcctl *mfc, int mrtsock, int parent)
1200{
1201 struct mfc_cache *uc, *c;
1202 struct mr_mfc *_uc;
1203 bool found;
1204 int ret;
1205
1206 if (mfc->mfcc_parent >= MAXVIFS)
1207 return -ENFILE;
1208
1209 /* The entries are added/deleted only under RTNL */
1210 rcu_read_lock();
1211 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1212 mfc->mfcc_mcastgrp.s_addr, parent);
1213 rcu_read_unlock();
1214 if (c) {
1215 spin_lock(&mrt_lock);
1216 c->_c.mfc_parent = mfc->mfcc_parent;
1217 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1218 if (!mrtsock)
1219 c->_c.mfc_flags |= MFC_STATIC;
1220 spin_unlock(&mrt_lock);
1221 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1222 mrt->id);
1223 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1224 return 0;
1225 }
1226
1227 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1228 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1229 return -EINVAL;
1230
1231 c = ipmr_cache_alloc();
1232 if (!c)
1233 return -ENOMEM;
1234
1235 c->mfc_origin = mfc->mfcc_origin.s_addr;
1236 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1237 c->_c.mfc_parent = mfc->mfcc_parent;
1238 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1239 if (!mrtsock)
1240 c->_c.mfc_flags |= MFC_STATIC;
1241
1242 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1243 ipmr_rht_params);
1244 if (ret) {
1245 pr_err("ipmr: rhtable insert error %d\n", ret);
1246 ipmr_cache_free(c);
1247 return ret;
1248 }
1249 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1250 /* Check to see if we resolved a queued list. If so we
1251 * need to send on the frames and tidy up.
1252 */
1253 found = false;
1254 spin_lock_bh(&mfc_unres_lock);
1255 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1256 uc = (struct mfc_cache *)_uc;
1257 if (uc->mfc_origin == c->mfc_origin &&
1258 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1259 list_del(&_uc->list);
1260 atomic_dec(&mrt->cache_resolve_queue_len);
1261 found = true;
1262 break;
1263 }
1264 }
1265 if (list_empty(&mrt->mfc_unres_queue))
1266 del_timer(&mrt->ipmr_expire_timer);
1267 spin_unlock_bh(&mfc_unres_lock);
1268
1269 if (found) {
1270 ipmr_cache_resolve(net, mrt, uc, c);
1271 ipmr_cache_free(uc);
1272 }
1273 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1274 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1275 return 0;
1276}
1277
1278/* Close the multicast socket, and clear the vif tables etc */
1279static void mroute_clean_tables(struct mr_table *mrt, int flags)
1280{
1281 struct net *net = read_pnet(&mrt->net);
1282 struct mr_mfc *c, *tmp;
1283 struct mfc_cache *cache;
1284 LIST_HEAD(list);
1285 int i;
1286
1287 /* Shut down all active vif entries */
1288 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1289 for (i = 0; i < mrt->maxvif; i++) {
1290 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1291 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1292 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1293 continue;
1294 vif_delete(mrt, i, 0, &list);
1295 }
1296 unregister_netdevice_many(&list);
1297 }
1298
1299 /* Wipe the cache */
1300 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1301 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1302 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1303 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1304 continue;
1305 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1306 list_del_rcu(&c->list);
1307 cache = (struct mfc_cache *)c;
1308 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1309 mrt->id);
1310 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1311 mr_cache_put(c);
1312 }
1313 }
1314
1315 if (flags & MRT_FLUSH_MFC) {
1316 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1317 spin_lock_bh(&mfc_unres_lock);
1318 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1319 list_del(&c->list);
1320 cache = (struct mfc_cache *)c;
1321 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1322 ipmr_destroy_unres(mrt, cache);
1323 }
1324 spin_unlock_bh(&mfc_unres_lock);
1325 }
1326 }
1327}
1328
1329/* called from ip_ra_control(), before an RCU grace period,
1330 * we don't need to call synchronize_rcu() here
1331 */
1332static void mrtsock_destruct(struct sock *sk)
1333{
1334 struct net *net = sock_net(sk);
1335 struct mr_table *mrt;
1336
1337 rtnl_lock();
1338 ipmr_for_each_table(mrt, net) {
1339 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1340 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1341 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1342 NETCONFA_MC_FORWARDING,
1343 NETCONFA_IFINDEX_ALL,
1344 net->ipv4.devconf_all);
1345 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1346 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1347 }
1348 }
1349 rtnl_unlock();
1350}
1351
1352/* Socket options and virtual interface manipulation. The whole
1353 * virtual interface system is a complete heap, but unfortunately
1354 * that's how BSD mrouted happens to think. Maybe one day with a proper
1355 * MOSPF/PIM router set up we can clean this up.
1356 */
1357
1358int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1359 unsigned int optlen)
1360{
1361 struct net *net = sock_net(sk);
1362 int val, ret = 0, parent = 0;
1363 struct mr_table *mrt;
1364 struct vifctl vif;
1365 struct mfcctl mfc;
1366 bool do_wrvifwhole;
1367 u32 uval;
1368
1369 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1370 rtnl_lock();
1371 if (sk->sk_type != SOCK_RAW ||
1372 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1373 ret = -EOPNOTSUPP;
1374 goto out_unlock;
1375 }
1376
1377 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1378 if (!mrt) {
1379 ret = -ENOENT;
1380 goto out_unlock;
1381 }
1382 if (optname != MRT_INIT) {
1383 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1384 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1385 ret = -EACCES;
1386 goto out_unlock;
1387 }
1388 }
1389
1390 switch (optname) {
1391 case MRT_INIT:
1392 if (optlen != sizeof(int)) {
1393 ret = -EINVAL;
1394 break;
1395 }
1396 if (rtnl_dereference(mrt->mroute_sk)) {
1397 ret = -EADDRINUSE;
1398 break;
1399 }
1400
1401 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1402 if (ret == 0) {
1403 rcu_assign_pointer(mrt->mroute_sk, sk);
1404 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1405 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1406 NETCONFA_MC_FORWARDING,
1407 NETCONFA_IFINDEX_ALL,
1408 net->ipv4.devconf_all);
1409 }
1410 break;
1411 case MRT_DONE:
1412 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1413 ret = -EACCES;
1414 } else {
1415 /* We need to unlock here because mrtsock_destruct takes
1416 * care of rtnl itself and we can't change that due to
1417 * the IP_ROUTER_ALERT setsockopt which runs without it.
1418 */
1419 rtnl_unlock();
1420 ret = ip_ra_control(sk, 0, NULL);
1421 goto out;
1422 }
1423 break;
1424 case MRT_ADD_VIF:
1425 case MRT_DEL_VIF:
1426 if (optlen != sizeof(vif)) {
1427 ret = -EINVAL;
1428 break;
1429 }
1430 if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1431 ret = -EFAULT;
1432 break;
1433 }
1434 if (vif.vifc_vifi >= MAXVIFS) {
1435 ret = -ENFILE;
1436 break;
1437 }
1438 if (optname == MRT_ADD_VIF) {
1439 ret = vif_add(net, mrt, &vif,
1440 sk == rtnl_dereference(mrt->mroute_sk));
1441 } else {
1442 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1443 }
1444 break;
1445 /* Manipulate the forwarding caches. These live
1446 * in a sort of kernel/user symbiosis.
1447 */
1448 case MRT_ADD_MFC:
1449 case MRT_DEL_MFC:
1450 parent = -1;
1451 fallthrough;
1452 case MRT_ADD_MFC_PROXY:
1453 case MRT_DEL_MFC_PROXY:
1454 if (optlen != sizeof(mfc)) {
1455 ret = -EINVAL;
1456 break;
1457 }
1458 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1459 ret = -EFAULT;
1460 break;
1461 }
1462 if (parent == 0)
1463 parent = mfc.mfcc_parent;
1464 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1465 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1466 else
1467 ret = ipmr_mfc_add(net, mrt, &mfc,
1468 sk == rtnl_dereference(mrt->mroute_sk),
1469 parent);
1470 break;
1471 case MRT_FLUSH:
1472 if (optlen != sizeof(val)) {
1473 ret = -EINVAL;
1474 break;
1475 }
1476 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1477 ret = -EFAULT;
1478 break;
1479 }
1480 mroute_clean_tables(mrt, val);
1481 break;
1482 /* Control PIM assert. */
1483 case MRT_ASSERT:
1484 if (optlen != sizeof(val)) {
1485 ret = -EINVAL;
1486 break;
1487 }
1488 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1489 ret = -EFAULT;
1490 break;
1491 }
1492 mrt->mroute_do_assert = val;
1493 break;
1494 case MRT_PIM:
1495 if (!ipmr_pimsm_enabled()) {
1496 ret = -ENOPROTOOPT;
1497 break;
1498 }
1499 if (optlen != sizeof(val)) {
1500 ret = -EINVAL;
1501 break;
1502 }
1503 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1504 ret = -EFAULT;
1505 break;
1506 }
1507
1508 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1509 val = !!val;
1510 if (val != mrt->mroute_do_pim) {
1511 mrt->mroute_do_pim = val;
1512 mrt->mroute_do_assert = val;
1513 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1514 }
1515 break;
1516 case MRT_TABLE:
1517 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1518 ret = -ENOPROTOOPT;
1519 break;
1520 }
1521 if (optlen != sizeof(uval)) {
1522 ret = -EINVAL;
1523 break;
1524 }
1525 if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1526 ret = -EFAULT;
1527 break;
1528 }
1529
1530 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1531 ret = -EBUSY;
1532 } else {
1533 mrt = ipmr_new_table(net, uval);
1534 if (IS_ERR(mrt))
1535 ret = PTR_ERR(mrt);
1536 else
1537 raw_sk(sk)->ipmr_table = uval;
1538 }
1539 break;
1540 /* Spurious command, or MRT_VERSION which you cannot set. */
1541 default:
1542 ret = -ENOPROTOOPT;
1543 }
1544out_unlock:
1545 rtnl_unlock();
1546out:
1547 return ret;
1548}
1549
1550/* Getsock opt support for the multicast routing system. */
1551int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1552 sockptr_t optlen)
1553{
1554 int olr;
1555 int val;
1556 struct net *net = sock_net(sk);
1557 struct mr_table *mrt;
1558
1559 if (sk->sk_type != SOCK_RAW ||
1560 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1561 return -EOPNOTSUPP;
1562
1563 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1564 if (!mrt)
1565 return -ENOENT;
1566
1567 switch (optname) {
1568 case MRT_VERSION:
1569 val = 0x0305;
1570 break;
1571 case MRT_PIM:
1572 if (!ipmr_pimsm_enabled())
1573 return -ENOPROTOOPT;
1574 val = mrt->mroute_do_pim;
1575 break;
1576 case MRT_ASSERT:
1577 val = mrt->mroute_do_assert;
1578 break;
1579 default:
1580 return -ENOPROTOOPT;
1581 }
1582
1583 if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1584 return -EFAULT;
1585 olr = min_t(unsigned int, olr, sizeof(int));
1586 if (olr < 0)
1587 return -EINVAL;
1588 if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1589 return -EFAULT;
1590 if (copy_to_sockptr(optval, &val, olr))
1591 return -EFAULT;
1592 return 0;
1593}
1594
1595/* The IP multicast ioctl support routines. */
1596int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1597{
1598 struct sioc_sg_req sr;
1599 struct sioc_vif_req vr;
1600 struct vif_device *vif;
1601 struct mfc_cache *c;
1602 struct net *net = sock_net(sk);
1603 struct mr_table *mrt;
1604
1605 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1606 if (!mrt)
1607 return -ENOENT;
1608
1609 switch (cmd) {
1610 case SIOCGETVIFCNT:
1611 if (copy_from_user(&vr, arg, sizeof(vr)))
1612 return -EFAULT;
1613 if (vr.vifi >= mrt->maxvif)
1614 return -EINVAL;
1615 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1616 rcu_read_lock();
1617 vif = &mrt->vif_table[vr.vifi];
1618 if (VIF_EXISTS(mrt, vr.vifi)) {
1619 vr.icount = READ_ONCE(vif->pkt_in);
1620 vr.ocount = READ_ONCE(vif->pkt_out);
1621 vr.ibytes = READ_ONCE(vif->bytes_in);
1622 vr.obytes = READ_ONCE(vif->bytes_out);
1623 rcu_read_unlock();
1624
1625 if (copy_to_user(arg, &vr, sizeof(vr)))
1626 return -EFAULT;
1627 return 0;
1628 }
1629 rcu_read_unlock();
1630 return -EADDRNOTAVAIL;
1631 case SIOCGETSGCNT:
1632 if (copy_from_user(&sr, arg, sizeof(sr)))
1633 return -EFAULT;
1634
1635 rcu_read_lock();
1636 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1637 if (c) {
1638 sr.pktcnt = c->_c.mfc_un.res.pkt;
1639 sr.bytecnt = c->_c.mfc_un.res.bytes;
1640 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1641 rcu_read_unlock();
1642
1643 if (copy_to_user(arg, &sr, sizeof(sr)))
1644 return -EFAULT;
1645 return 0;
1646 }
1647 rcu_read_unlock();
1648 return -EADDRNOTAVAIL;
1649 default:
1650 return -ENOIOCTLCMD;
1651 }
1652}
1653
1654#ifdef CONFIG_COMPAT
1655struct compat_sioc_sg_req {
1656 struct in_addr src;
1657 struct in_addr grp;
1658 compat_ulong_t pktcnt;
1659 compat_ulong_t bytecnt;
1660 compat_ulong_t wrong_if;
1661};
1662
1663struct compat_sioc_vif_req {
1664 vifi_t vifi; /* Which iface */
1665 compat_ulong_t icount;
1666 compat_ulong_t ocount;
1667 compat_ulong_t ibytes;
1668 compat_ulong_t obytes;
1669};
1670
1671int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1672{
1673 struct compat_sioc_sg_req sr;
1674 struct compat_sioc_vif_req vr;
1675 struct vif_device *vif;
1676 struct mfc_cache *c;
1677 struct net *net = sock_net(sk);
1678 struct mr_table *mrt;
1679
1680 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1681 if (!mrt)
1682 return -ENOENT;
1683
1684 switch (cmd) {
1685 case SIOCGETVIFCNT:
1686 if (copy_from_user(&vr, arg, sizeof(vr)))
1687 return -EFAULT;
1688 if (vr.vifi >= mrt->maxvif)
1689 return -EINVAL;
1690 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1691 rcu_read_lock();
1692 vif = &mrt->vif_table[vr.vifi];
1693 if (VIF_EXISTS(mrt, vr.vifi)) {
1694 vr.icount = READ_ONCE(vif->pkt_in);
1695 vr.ocount = READ_ONCE(vif->pkt_out);
1696 vr.ibytes = READ_ONCE(vif->bytes_in);
1697 vr.obytes = READ_ONCE(vif->bytes_out);
1698 rcu_read_unlock();
1699
1700 if (copy_to_user(arg, &vr, sizeof(vr)))
1701 return -EFAULT;
1702 return 0;
1703 }
1704 rcu_read_unlock();
1705 return -EADDRNOTAVAIL;
1706 case SIOCGETSGCNT:
1707 if (copy_from_user(&sr, arg, sizeof(sr)))
1708 return -EFAULT;
1709
1710 rcu_read_lock();
1711 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1712 if (c) {
1713 sr.pktcnt = c->_c.mfc_un.res.pkt;
1714 sr.bytecnt = c->_c.mfc_un.res.bytes;
1715 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1716 rcu_read_unlock();
1717
1718 if (copy_to_user(arg, &sr, sizeof(sr)))
1719 return -EFAULT;
1720 return 0;
1721 }
1722 rcu_read_unlock();
1723 return -EADDRNOTAVAIL;
1724 default:
1725 return -ENOIOCTLCMD;
1726 }
1727}
1728#endif
1729
1730static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1731{
1732 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1733 struct net *net = dev_net(dev);
1734 struct mr_table *mrt;
1735 struct vif_device *v;
1736 int ct;
1737
1738 if (event != NETDEV_UNREGISTER)
1739 return NOTIFY_DONE;
1740
1741 ipmr_for_each_table(mrt, net) {
1742 v = &mrt->vif_table[0];
1743 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1744 if (rcu_access_pointer(v->dev) == dev)
1745 vif_delete(mrt, ct, 1, NULL);
1746 }
1747 }
1748 return NOTIFY_DONE;
1749}
1750
1751static struct notifier_block ip_mr_notifier = {
1752 .notifier_call = ipmr_device_event,
1753};
1754
1755/* Encapsulate a packet by attaching a valid IPIP header to it.
1756 * This avoids tunnel drivers and other mess and gives us the speed so
1757 * important for multicast video.
1758 */
1759static void ip_encap(struct net *net, struct sk_buff *skb,
1760 __be32 saddr, __be32 daddr)
1761{
1762 struct iphdr *iph;
1763 const struct iphdr *old_iph = ip_hdr(skb);
1764
1765 skb_push(skb, sizeof(struct iphdr));
1766 skb->transport_header = skb->network_header;
1767 skb_reset_network_header(skb);
1768 iph = ip_hdr(skb);
1769
1770 iph->version = 4;
1771 iph->tos = old_iph->tos;
1772 iph->ttl = old_iph->ttl;
1773 iph->frag_off = 0;
1774 iph->daddr = daddr;
1775 iph->saddr = saddr;
1776 iph->protocol = IPPROTO_IPIP;
1777 iph->ihl = 5;
1778 iph->tot_len = htons(skb->len);
1779 ip_select_ident(net, skb, NULL);
1780 ip_send_check(iph);
1781
1782 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1783 nf_reset_ct(skb);
1784}
1785
1786static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1787 struct sk_buff *skb)
1788{
1789 struct ip_options *opt = &(IPCB(skb)->opt);
1790
1791 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1792 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1793
1794 if (unlikely(opt->optlen))
1795 ip_forward_options(skb);
1796
1797 return dst_output(net, sk, skb);
1798}
1799
1800#ifdef CONFIG_NET_SWITCHDEV
1801static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1802 int in_vifi, int out_vifi)
1803{
1804 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1805 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1806
1807 if (!skb->offload_l3_fwd_mark)
1808 return false;
1809 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1810 return false;
1811 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1812 &in_vif->dev_parent_id);
1813}
1814#else
1815static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1816 int in_vifi, int out_vifi)
1817{
1818 return false;
1819}
1820#endif
1821
1822/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1823
1824static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1825 int in_vifi, struct sk_buff *skb, int vifi)
1826{
1827 const struct iphdr *iph = ip_hdr(skb);
1828 struct vif_device *vif = &mrt->vif_table[vifi];
1829 struct net_device *vif_dev;
1830 struct net_device *dev;
1831 struct rtable *rt;
1832 struct flowi4 fl4;
1833 int encap = 0;
1834
1835 vif_dev = vif_dev_read(vif);
1836 if (!vif_dev)
1837 goto out_free;
1838
1839 if (vif->flags & VIFF_REGISTER) {
1840 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1841 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1842 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1843 DEV_STATS_INC(vif_dev, tx_packets);
1844 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1845 goto out_free;
1846 }
1847
1848 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1849 goto out_free;
1850
1851 if (vif->flags & VIFF_TUNNEL) {
1852 rt = ip_route_output_ports(net, &fl4, NULL,
1853 vif->remote, vif->local,
1854 0, 0,
1855 IPPROTO_IPIP,
1856 RT_TOS(iph->tos), vif->link);
1857 if (IS_ERR(rt))
1858 goto out_free;
1859 encap = sizeof(struct iphdr);
1860 } else {
1861 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1862 0, 0,
1863 IPPROTO_IPIP,
1864 RT_TOS(iph->tos), vif->link);
1865 if (IS_ERR(rt))
1866 goto out_free;
1867 }
1868
1869 dev = rt->dst.dev;
1870
1871 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1872 /* Do not fragment multicasts. Alas, IPv4 does not
1873 * allow to send ICMP, so that packets will disappear
1874 * to blackhole.
1875 */
1876 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1877 ip_rt_put(rt);
1878 goto out_free;
1879 }
1880
1881 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1882
1883 if (skb_cow(skb, encap)) {
1884 ip_rt_put(rt);
1885 goto out_free;
1886 }
1887
1888 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1889 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1890
1891 skb_dst_drop(skb);
1892 skb_dst_set(skb, &rt->dst);
1893 ip_decrease_ttl(ip_hdr(skb));
1894
1895 /* FIXME: forward and output firewalls used to be called here.
1896 * What do we do with netfilter? -- RR
1897 */
1898 if (vif->flags & VIFF_TUNNEL) {
1899 ip_encap(net, skb, vif->local, vif->remote);
1900 /* FIXME: extra output firewall step used to be here. --RR */
1901 DEV_STATS_INC(vif_dev, tx_packets);
1902 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1903 }
1904
1905 IPCB(skb)->flags |= IPSKB_FORWARDED;
1906
1907 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1908 * not only before forwarding, but after forwarding on all output
1909 * interfaces. It is clear, if mrouter runs a multicasting
1910 * program, it should receive packets not depending to what interface
1911 * program is joined.
1912 * If we will not make it, the program will have to join on all
1913 * interfaces. On the other hand, multihoming host (or router, but
1914 * not mrouter) cannot join to more than one interface - it will
1915 * result in receiving multiple packets.
1916 */
1917 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1918 net, NULL, skb, skb->dev, dev,
1919 ipmr_forward_finish);
1920 return;
1921
1922out_free:
1923 kfree_skb(skb);
1924}
1925
1926/* Called with mrt_lock or rcu_read_lock() */
1927static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1928{
1929 int ct;
1930 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1931 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1932 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1933 break;
1934 }
1935 return ct;
1936}
1937
1938/* "local" means that we should preserve one skb (for local delivery) */
1939/* Called uner rcu_read_lock() */
1940static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1941 struct net_device *dev, struct sk_buff *skb,
1942 struct mfc_cache *c, int local)
1943{
1944 int true_vifi = ipmr_find_vif(mrt, dev);
1945 int psend = -1;
1946 int vif, ct;
1947
1948 vif = c->_c.mfc_parent;
1949 c->_c.mfc_un.res.pkt++;
1950 c->_c.mfc_un.res.bytes += skb->len;
1951 c->_c.mfc_un.res.lastuse = jiffies;
1952
1953 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1954 struct mfc_cache *cache_proxy;
1955
1956 /* For an (*,G) entry, we only check that the incoming
1957 * interface is part of the static tree.
1958 */
1959 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1960 if (cache_proxy &&
1961 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1962 goto forward;
1963 }
1964
1965 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1966 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1967 if (rt_is_output_route(skb_rtable(skb))) {
1968 /* It is our own packet, looped back.
1969 * Very complicated situation...
1970 *
1971 * The best workaround until routing daemons will be
1972 * fixed is not to redistribute packet, if it was
1973 * send through wrong interface. It means, that
1974 * multicast applications WILL NOT work for
1975 * (S,G), which have default multicast route pointing
1976 * to wrong oif. In any case, it is not a good
1977 * idea to use multicasting applications on router.
1978 */
1979 goto dont_forward;
1980 }
1981
1982 c->_c.mfc_un.res.wrong_if++;
1983
1984 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1985 /* pimsm uses asserts, when switching from RPT to SPT,
1986 * so that we cannot check that packet arrived on an oif.
1987 * It is bad, but otherwise we would need to move pretty
1988 * large chunk of pimd to kernel. Ough... --ANK
1989 */
1990 (mrt->mroute_do_pim ||
1991 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1992 time_after(jiffies,
1993 c->_c.mfc_un.res.last_assert +
1994 MFC_ASSERT_THRESH)) {
1995 c->_c.mfc_un.res.last_assert = jiffies;
1996 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1997 if (mrt->mroute_do_wrvifwhole)
1998 ipmr_cache_report(mrt, skb, true_vifi,
1999 IGMPMSG_WRVIFWHOLE);
2000 }
2001 goto dont_forward;
2002 }
2003
2004forward:
2005 WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2006 mrt->vif_table[vif].pkt_in + 1);
2007 WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2008 mrt->vif_table[vif].bytes_in + skb->len);
2009
2010 /* Forward the frame */
2011 if (c->mfc_origin == htonl(INADDR_ANY) &&
2012 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2013 if (true_vifi >= 0 &&
2014 true_vifi != c->_c.mfc_parent &&
2015 ip_hdr(skb)->ttl >
2016 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2017 /* It's an (*,*) entry and the packet is not coming from
2018 * the upstream: forward the packet to the upstream
2019 * only.
2020 */
2021 psend = c->_c.mfc_parent;
2022 goto last_forward;
2023 }
2024 goto dont_forward;
2025 }
2026 for (ct = c->_c.mfc_un.res.maxvif - 1;
2027 ct >= c->_c.mfc_un.res.minvif; ct--) {
2028 /* For (*,G) entry, don't forward to the incoming interface */
2029 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2030 ct != true_vifi) &&
2031 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2032 if (psend != -1) {
2033 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2034
2035 if (skb2)
2036 ipmr_queue_xmit(net, mrt, true_vifi,
2037 skb2, psend);
2038 }
2039 psend = ct;
2040 }
2041 }
2042last_forward:
2043 if (psend != -1) {
2044 if (local) {
2045 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2046
2047 if (skb2)
2048 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2049 psend);
2050 } else {
2051 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2052 return;
2053 }
2054 }
2055
2056dont_forward:
2057 if (!local)
2058 kfree_skb(skb);
2059}
2060
2061static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2062{
2063 struct rtable *rt = skb_rtable(skb);
2064 struct iphdr *iph = ip_hdr(skb);
2065 struct flowi4 fl4 = {
2066 .daddr = iph->daddr,
2067 .saddr = iph->saddr,
2068 .flowi4_tos = RT_TOS(iph->tos),
2069 .flowi4_oif = (rt_is_output_route(rt) ?
2070 skb->dev->ifindex : 0),
2071 .flowi4_iif = (rt_is_output_route(rt) ?
2072 LOOPBACK_IFINDEX :
2073 skb->dev->ifindex),
2074 .flowi4_mark = skb->mark,
2075 };
2076 struct mr_table *mrt;
2077 int err;
2078
2079 err = ipmr_fib_lookup(net, &fl4, &mrt);
2080 if (err)
2081 return ERR_PTR(err);
2082 return mrt;
2083}
2084
2085/* Multicast packets for forwarding arrive here
2086 * Called with rcu_read_lock();
2087 */
2088int ip_mr_input(struct sk_buff *skb)
2089{
2090 struct mfc_cache *cache;
2091 struct net *net = dev_net(skb->dev);
2092 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2093 struct mr_table *mrt;
2094 struct net_device *dev;
2095
2096 /* skb->dev passed in is the loX master dev for vrfs.
2097 * As there are no vifs associated with loopback devices,
2098 * get the proper interface that does have a vif associated with it.
2099 */
2100 dev = skb->dev;
2101 if (netif_is_l3_master(skb->dev)) {
2102 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2103 if (!dev) {
2104 kfree_skb(skb);
2105 return -ENODEV;
2106 }
2107 }
2108
2109 /* Packet is looped back after forward, it should not be
2110 * forwarded second time, but still can be delivered locally.
2111 */
2112 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2113 goto dont_forward;
2114
2115 mrt = ipmr_rt_fib_lookup(net, skb);
2116 if (IS_ERR(mrt)) {
2117 kfree_skb(skb);
2118 return PTR_ERR(mrt);
2119 }
2120 if (!local) {
2121 if (IPCB(skb)->opt.router_alert) {
2122 if (ip_call_ra_chain(skb))
2123 return 0;
2124 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2125 /* IGMPv1 (and broken IGMPv2 implementations sort of
2126 * Cisco IOS <= 11.2(8)) do not put router alert
2127 * option to IGMP packets destined to routable
2128 * groups. It is very bad, because it means
2129 * that we can forward NO IGMP messages.
2130 */
2131 struct sock *mroute_sk;
2132
2133 mroute_sk = rcu_dereference(mrt->mroute_sk);
2134 if (mroute_sk) {
2135 nf_reset_ct(skb);
2136 raw_rcv(mroute_sk, skb);
2137 return 0;
2138 }
2139 }
2140 }
2141
2142 /* already under rcu_read_lock() */
2143 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2144 if (!cache) {
2145 int vif = ipmr_find_vif(mrt, dev);
2146
2147 if (vif >= 0)
2148 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2149 vif);
2150 }
2151
2152 /* No usable cache entry */
2153 if (!cache) {
2154 int vif;
2155
2156 if (local) {
2157 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2158 ip_local_deliver(skb);
2159 if (!skb2)
2160 return -ENOBUFS;
2161 skb = skb2;
2162 }
2163
2164 vif = ipmr_find_vif(mrt, dev);
2165 if (vif >= 0)
2166 return ipmr_cache_unresolved(mrt, vif, skb, dev);
2167 kfree_skb(skb);
2168 return -ENODEV;
2169 }
2170
2171 ip_mr_forward(net, mrt, dev, skb, cache, local);
2172
2173 if (local)
2174 return ip_local_deliver(skb);
2175
2176 return 0;
2177
2178dont_forward:
2179 if (local)
2180 return ip_local_deliver(skb);
2181 kfree_skb(skb);
2182 return 0;
2183}
2184
2185#ifdef CONFIG_IP_PIMSM_V1
2186/* Handle IGMP messages of PIMv1 */
2187int pim_rcv_v1(struct sk_buff *skb)
2188{
2189 struct igmphdr *pim;
2190 struct net *net = dev_net(skb->dev);
2191 struct mr_table *mrt;
2192
2193 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2194 goto drop;
2195
2196 pim = igmp_hdr(skb);
2197
2198 mrt = ipmr_rt_fib_lookup(net, skb);
2199 if (IS_ERR(mrt))
2200 goto drop;
2201 if (!mrt->mroute_do_pim ||
2202 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2203 goto drop;
2204
2205 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2206drop:
2207 kfree_skb(skb);
2208 }
2209 return 0;
2210}
2211#endif
2212
2213#ifdef CONFIG_IP_PIMSM_V2
2214static int pim_rcv(struct sk_buff *skb)
2215{
2216 struct pimreghdr *pim;
2217 struct net *net = dev_net(skb->dev);
2218 struct mr_table *mrt;
2219
2220 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2221 goto drop;
2222
2223 pim = (struct pimreghdr *)skb_transport_header(skb);
2224 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2225 (pim->flags & PIM_NULL_REGISTER) ||
2226 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2227 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2228 goto drop;
2229
2230 mrt = ipmr_rt_fib_lookup(net, skb);
2231 if (IS_ERR(mrt))
2232 goto drop;
2233 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2234drop:
2235 kfree_skb(skb);
2236 }
2237 return 0;
2238}
2239#endif
2240
2241int ipmr_get_route(struct net *net, struct sk_buff *skb,
2242 __be32 saddr, __be32 daddr,
2243 struct rtmsg *rtm, u32 portid)
2244{
2245 struct mfc_cache *cache;
2246 struct mr_table *mrt;
2247 int err;
2248
2249 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2250 if (!mrt)
2251 return -ENOENT;
2252
2253 rcu_read_lock();
2254 cache = ipmr_cache_find(mrt, saddr, daddr);
2255 if (!cache && skb->dev) {
2256 int vif = ipmr_find_vif(mrt, skb->dev);
2257
2258 if (vif >= 0)
2259 cache = ipmr_cache_find_any(mrt, daddr, vif);
2260 }
2261 if (!cache) {
2262 struct sk_buff *skb2;
2263 struct iphdr *iph;
2264 struct net_device *dev;
2265 int vif = -1;
2266
2267 dev = skb->dev;
2268 if (dev)
2269 vif = ipmr_find_vif(mrt, dev);
2270 if (vif < 0) {
2271 rcu_read_unlock();
2272 return -ENODEV;
2273 }
2274
2275 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2276 if (!skb2) {
2277 rcu_read_unlock();
2278 return -ENOMEM;
2279 }
2280
2281 NETLINK_CB(skb2).portid = portid;
2282 skb_push(skb2, sizeof(struct iphdr));
2283 skb_reset_network_header(skb2);
2284 iph = ip_hdr(skb2);
2285 iph->ihl = sizeof(struct iphdr) >> 2;
2286 iph->saddr = saddr;
2287 iph->daddr = daddr;
2288 iph->version = 0;
2289 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2290 rcu_read_unlock();
2291 return err;
2292 }
2293
2294 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2295 rcu_read_unlock();
2296 return err;
2297}
2298
2299static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2300 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2301 int flags)
2302{
2303 struct nlmsghdr *nlh;
2304 struct rtmsg *rtm;
2305 int err;
2306
2307 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2308 if (!nlh)
2309 return -EMSGSIZE;
2310
2311 rtm = nlmsg_data(nlh);
2312 rtm->rtm_family = RTNL_FAMILY_IPMR;
2313 rtm->rtm_dst_len = 32;
2314 rtm->rtm_src_len = 32;
2315 rtm->rtm_tos = 0;
2316 rtm->rtm_table = mrt->id;
2317 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2318 goto nla_put_failure;
2319 rtm->rtm_type = RTN_MULTICAST;
2320 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2321 if (c->_c.mfc_flags & MFC_STATIC)
2322 rtm->rtm_protocol = RTPROT_STATIC;
2323 else
2324 rtm->rtm_protocol = RTPROT_MROUTED;
2325 rtm->rtm_flags = 0;
2326
2327 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2328 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2329 goto nla_put_failure;
2330 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2331 /* do not break the dump if cache is unresolved */
2332 if (err < 0 && err != -ENOENT)
2333 goto nla_put_failure;
2334
2335 nlmsg_end(skb, nlh);
2336 return 0;
2337
2338nla_put_failure:
2339 nlmsg_cancel(skb, nlh);
2340 return -EMSGSIZE;
2341}
2342
2343static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2344 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2345 int flags)
2346{
2347 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2348 cmd, flags);
2349}
2350
2351static size_t mroute_msgsize(bool unresolved, int maxvif)
2352{
2353 size_t len =
2354 NLMSG_ALIGN(sizeof(struct rtmsg))
2355 + nla_total_size(4) /* RTA_TABLE */
2356 + nla_total_size(4) /* RTA_SRC */
2357 + nla_total_size(4) /* RTA_DST */
2358 ;
2359
2360 if (!unresolved)
2361 len = len
2362 + nla_total_size(4) /* RTA_IIF */
2363 + nla_total_size(0) /* RTA_MULTIPATH */
2364 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2365 /* RTA_MFC_STATS */
2366 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2367 ;
2368
2369 return len;
2370}
2371
2372static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2373 int cmd)
2374{
2375 struct net *net = read_pnet(&mrt->net);
2376 struct sk_buff *skb;
2377 int err = -ENOBUFS;
2378
2379 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2380 mrt->maxvif),
2381 GFP_ATOMIC);
2382 if (!skb)
2383 goto errout;
2384
2385 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2386 if (err < 0)
2387 goto errout;
2388
2389 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2390 return;
2391
2392errout:
2393 kfree_skb(skb);
2394 if (err < 0)
2395 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2396}
2397
2398static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2399{
2400 size_t len =
2401 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2402 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2403 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2404 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2405 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2406 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2407 /* IPMRA_CREPORT_PKT */
2408 + nla_total_size(payloadlen)
2409 ;
2410
2411 return len;
2412}
2413
2414static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2415{
2416 struct net *net = read_pnet(&mrt->net);
2417 struct nlmsghdr *nlh;
2418 struct rtgenmsg *rtgenm;
2419 struct igmpmsg *msg;
2420 struct sk_buff *skb;
2421 struct nlattr *nla;
2422 int payloadlen;
2423
2424 payloadlen = pkt->len - sizeof(struct igmpmsg);
2425 msg = (struct igmpmsg *)skb_network_header(pkt);
2426
2427 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2428 if (!skb)
2429 goto errout;
2430
2431 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2432 sizeof(struct rtgenmsg), 0);
2433 if (!nlh)
2434 goto errout;
2435 rtgenm = nlmsg_data(nlh);
2436 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2437 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2438 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2439 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2440 msg->im_src.s_addr) ||
2441 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2442 msg->im_dst.s_addr) ||
2443 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2444 goto nla_put_failure;
2445
2446 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2447 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2448 nla_data(nla), payloadlen))
2449 goto nla_put_failure;
2450
2451 nlmsg_end(skb, nlh);
2452
2453 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2454 return;
2455
2456nla_put_failure:
2457 nlmsg_cancel(skb, nlh);
2458errout:
2459 kfree_skb(skb);
2460 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2461}
2462
2463static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2464 const struct nlmsghdr *nlh,
2465 struct nlattr **tb,
2466 struct netlink_ext_ack *extack)
2467{
2468 struct rtmsg *rtm;
2469 int i, err;
2470
2471 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2472 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2473 return -EINVAL;
2474 }
2475
2476 if (!netlink_strict_get_check(skb))
2477 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2478 rtm_ipv4_policy, extack);
2479
2480 rtm = nlmsg_data(nlh);
2481 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2482 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2483 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2484 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2485 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2486 return -EINVAL;
2487 }
2488
2489 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2490 rtm_ipv4_policy, extack);
2491 if (err)
2492 return err;
2493
2494 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2495 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2496 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2497 return -EINVAL;
2498 }
2499
2500 for (i = 0; i <= RTA_MAX; i++) {
2501 if (!tb[i])
2502 continue;
2503
2504 switch (i) {
2505 case RTA_SRC:
2506 case RTA_DST:
2507 case RTA_TABLE:
2508 break;
2509 default:
2510 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2511 return -EINVAL;
2512 }
2513 }
2514
2515 return 0;
2516}
2517
2518static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2519 struct netlink_ext_ack *extack)
2520{
2521 struct net *net = sock_net(in_skb->sk);
2522 struct nlattr *tb[RTA_MAX + 1];
2523 struct sk_buff *skb = NULL;
2524 struct mfc_cache *cache;
2525 struct mr_table *mrt;
2526 __be32 src, grp;
2527 u32 tableid;
2528 int err;
2529
2530 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2531 if (err < 0)
2532 goto errout;
2533
2534 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2535 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2536 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2537
2538 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2539 if (!mrt) {
2540 err = -ENOENT;
2541 goto errout_free;
2542 }
2543
2544 /* entries are added/deleted only under RTNL */
2545 rcu_read_lock();
2546 cache = ipmr_cache_find(mrt, src, grp);
2547 rcu_read_unlock();
2548 if (!cache) {
2549 err = -ENOENT;
2550 goto errout_free;
2551 }
2552
2553 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2554 if (!skb) {
2555 err = -ENOBUFS;
2556 goto errout_free;
2557 }
2558
2559 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2560 nlh->nlmsg_seq, cache,
2561 RTM_NEWROUTE, 0);
2562 if (err < 0)
2563 goto errout_free;
2564
2565 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2566
2567errout:
2568 return err;
2569
2570errout_free:
2571 kfree_skb(skb);
2572 goto errout;
2573}
2574
2575static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2576{
2577 struct fib_dump_filter filter = {};
2578 int err;
2579
2580 if (cb->strict_check) {
2581 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2582 &filter, cb);
2583 if (err < 0)
2584 return err;
2585 }
2586
2587 if (filter.table_id) {
2588 struct mr_table *mrt;
2589
2590 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2591 if (!mrt) {
2592 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2593 return skb->len;
2594
2595 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2596 return -ENOENT;
2597 }
2598 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2599 &mfc_unres_lock, &filter);
2600 return skb->len ? : err;
2601 }
2602
2603 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2604 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2605}
2606
2607static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2608 [RTA_SRC] = { .type = NLA_U32 },
2609 [RTA_DST] = { .type = NLA_U32 },
2610 [RTA_IIF] = { .type = NLA_U32 },
2611 [RTA_TABLE] = { .type = NLA_U32 },
2612 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2613};
2614
2615static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2616{
2617 switch (rtm_protocol) {
2618 case RTPROT_STATIC:
2619 case RTPROT_MROUTED:
2620 return true;
2621 }
2622 return false;
2623}
2624
2625static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2626{
2627 struct rtnexthop *rtnh = nla_data(nla);
2628 int remaining = nla_len(nla), vifi = 0;
2629
2630 while (rtnh_ok(rtnh, remaining)) {
2631 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2632 if (++vifi == MAXVIFS)
2633 break;
2634 rtnh = rtnh_next(rtnh, &remaining);
2635 }
2636
2637 return remaining > 0 ? -EINVAL : vifi;
2638}
2639
2640/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2641static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2642 struct mfcctl *mfcc, int *mrtsock,
2643 struct mr_table **mrtret,
2644 struct netlink_ext_ack *extack)
2645{
2646 struct net_device *dev = NULL;
2647 u32 tblid = RT_TABLE_DEFAULT;
2648 struct mr_table *mrt;
2649 struct nlattr *attr;
2650 struct rtmsg *rtm;
2651 int ret, rem;
2652
2653 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2654 rtm_ipmr_policy, extack);
2655 if (ret < 0)
2656 goto out;
2657 rtm = nlmsg_data(nlh);
2658
2659 ret = -EINVAL;
2660 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2661 rtm->rtm_type != RTN_MULTICAST ||
2662 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2663 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2664 goto out;
2665
2666 memset(mfcc, 0, sizeof(*mfcc));
2667 mfcc->mfcc_parent = -1;
2668 ret = 0;
2669 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2670 switch (nla_type(attr)) {
2671 case RTA_SRC:
2672 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2673 break;
2674 case RTA_DST:
2675 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2676 break;
2677 case RTA_IIF:
2678 dev = __dev_get_by_index(net, nla_get_u32(attr));
2679 if (!dev) {
2680 ret = -ENODEV;
2681 goto out;
2682 }
2683 break;
2684 case RTA_MULTIPATH:
2685 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2686 ret = -EINVAL;
2687 goto out;
2688 }
2689 break;
2690 case RTA_PREFSRC:
2691 ret = 1;
2692 break;
2693 case RTA_TABLE:
2694 tblid = nla_get_u32(attr);
2695 break;
2696 }
2697 }
2698 mrt = ipmr_get_table(net, tblid);
2699 if (!mrt) {
2700 ret = -ENOENT;
2701 goto out;
2702 }
2703 *mrtret = mrt;
2704 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2705 if (dev)
2706 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2707
2708out:
2709 return ret;
2710}
2711
2712/* takes care of both newroute and delroute */
2713static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2714 struct netlink_ext_ack *extack)
2715{
2716 struct net *net = sock_net(skb->sk);
2717 int ret, mrtsock, parent;
2718 struct mr_table *tbl;
2719 struct mfcctl mfcc;
2720
2721 mrtsock = 0;
2722 tbl = NULL;
2723 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2724 if (ret < 0)
2725 return ret;
2726
2727 parent = ret ? mfcc.mfcc_parent : -1;
2728 if (nlh->nlmsg_type == RTM_NEWROUTE)
2729 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2730 else
2731 return ipmr_mfc_delete(tbl, &mfcc, parent);
2732}
2733
2734static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2735{
2736 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2737
2738 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2739 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2740 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2741 mrt->mroute_reg_vif_num) ||
2742 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2743 mrt->mroute_do_assert) ||
2744 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2745 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2746 mrt->mroute_do_wrvifwhole))
2747 return false;
2748
2749 return true;
2750}
2751
2752static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2753{
2754 struct net_device *vif_dev;
2755 struct nlattr *vif_nest;
2756 struct vif_device *vif;
2757
2758 vif = &mrt->vif_table[vifid];
2759 vif_dev = rtnl_dereference(vif->dev);
2760 /* if the VIF doesn't exist just continue */
2761 if (!vif_dev)
2762 return true;
2763
2764 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2765 if (!vif_nest)
2766 return false;
2767
2768 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2769 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2770 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2771 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2772 IPMRA_VIFA_PAD) ||
2773 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2774 IPMRA_VIFA_PAD) ||
2775 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2776 IPMRA_VIFA_PAD) ||
2777 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2778 IPMRA_VIFA_PAD) ||
2779 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2780 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2781 nla_nest_cancel(skb, vif_nest);
2782 return false;
2783 }
2784 nla_nest_end(skb, vif_nest);
2785
2786 return true;
2787}
2788
2789static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2790 struct netlink_ext_ack *extack)
2791{
2792 struct ifinfomsg *ifm;
2793
2794 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2795 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2796 return -EINVAL;
2797 }
2798
2799 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2800 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2801 return -EINVAL;
2802 }
2803
2804 ifm = nlmsg_data(nlh);
2805 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2806 ifm->ifi_change || ifm->ifi_index) {
2807 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2808 return -EINVAL;
2809 }
2810
2811 return 0;
2812}
2813
2814static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2815{
2816 struct net *net = sock_net(skb->sk);
2817 struct nlmsghdr *nlh = NULL;
2818 unsigned int t = 0, s_t;
2819 unsigned int e = 0, s_e;
2820 struct mr_table *mrt;
2821
2822 if (cb->strict_check) {
2823 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2824
2825 if (err < 0)
2826 return err;
2827 }
2828
2829 s_t = cb->args[0];
2830 s_e = cb->args[1];
2831
2832 ipmr_for_each_table(mrt, net) {
2833 struct nlattr *vifs, *af;
2834 struct ifinfomsg *hdr;
2835 u32 i;
2836
2837 if (t < s_t)
2838 goto skip_table;
2839 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2840 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2841 sizeof(*hdr), NLM_F_MULTI);
2842 if (!nlh)
2843 break;
2844
2845 hdr = nlmsg_data(nlh);
2846 memset(hdr, 0, sizeof(*hdr));
2847 hdr->ifi_family = RTNL_FAMILY_IPMR;
2848
2849 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2850 if (!af) {
2851 nlmsg_cancel(skb, nlh);
2852 goto out;
2853 }
2854
2855 if (!ipmr_fill_table(mrt, skb)) {
2856 nlmsg_cancel(skb, nlh);
2857 goto out;
2858 }
2859
2860 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2861 if (!vifs) {
2862 nla_nest_end(skb, af);
2863 nlmsg_end(skb, nlh);
2864 goto out;
2865 }
2866 for (i = 0; i < mrt->maxvif; i++) {
2867 if (e < s_e)
2868 goto skip_entry;
2869 if (!ipmr_fill_vif(mrt, i, skb)) {
2870 nla_nest_end(skb, vifs);
2871 nla_nest_end(skb, af);
2872 nlmsg_end(skb, nlh);
2873 goto out;
2874 }
2875skip_entry:
2876 e++;
2877 }
2878 s_e = 0;
2879 e = 0;
2880 nla_nest_end(skb, vifs);
2881 nla_nest_end(skb, af);
2882 nlmsg_end(skb, nlh);
2883skip_table:
2884 t++;
2885 }
2886
2887out:
2888 cb->args[1] = e;
2889 cb->args[0] = t;
2890
2891 return skb->len;
2892}
2893
2894#ifdef CONFIG_PROC_FS
2895/* The /proc interfaces to multicast routing :
2896 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2897 */
2898
2899static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2900 __acquires(RCU)
2901{
2902 struct mr_vif_iter *iter = seq->private;
2903 struct net *net = seq_file_net(seq);
2904 struct mr_table *mrt;
2905
2906 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2907 if (!mrt)
2908 return ERR_PTR(-ENOENT);
2909
2910 iter->mrt = mrt;
2911
2912 rcu_read_lock();
2913 return mr_vif_seq_start(seq, pos);
2914}
2915
2916static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2917 __releases(RCU)
2918{
2919 rcu_read_unlock();
2920}
2921
2922static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2923{
2924 struct mr_vif_iter *iter = seq->private;
2925 struct mr_table *mrt = iter->mrt;
2926
2927 if (v == SEQ_START_TOKEN) {
2928 seq_puts(seq,
2929 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2930 } else {
2931 const struct vif_device *vif = v;
2932 const struct net_device *vif_dev;
2933 const char *name;
2934
2935 vif_dev = vif_dev_read(vif);
2936 name = vif_dev ? vif_dev->name : "none";
2937 seq_printf(seq,
2938 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2939 vif - mrt->vif_table,
2940 name, vif->bytes_in, vif->pkt_in,
2941 vif->bytes_out, vif->pkt_out,
2942 vif->flags, vif->local, vif->remote);
2943 }
2944 return 0;
2945}
2946
2947static const struct seq_operations ipmr_vif_seq_ops = {
2948 .start = ipmr_vif_seq_start,
2949 .next = mr_vif_seq_next,
2950 .stop = ipmr_vif_seq_stop,
2951 .show = ipmr_vif_seq_show,
2952};
2953
2954static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2955{
2956 struct net *net = seq_file_net(seq);
2957 struct mr_table *mrt;
2958
2959 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2960 if (!mrt)
2961 return ERR_PTR(-ENOENT);
2962
2963 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2964}
2965
2966static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2967{
2968 int n;
2969
2970 if (v == SEQ_START_TOKEN) {
2971 seq_puts(seq,
2972 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2973 } else {
2974 const struct mfc_cache *mfc = v;
2975 const struct mr_mfc_iter *it = seq->private;
2976 const struct mr_table *mrt = it->mrt;
2977
2978 seq_printf(seq, "%08X %08X %-3hd",
2979 (__force u32) mfc->mfc_mcastgrp,
2980 (__force u32) mfc->mfc_origin,
2981 mfc->_c.mfc_parent);
2982
2983 if (it->cache != &mrt->mfc_unres_queue) {
2984 seq_printf(seq, " %8lu %8lu %8lu",
2985 mfc->_c.mfc_un.res.pkt,
2986 mfc->_c.mfc_un.res.bytes,
2987 mfc->_c.mfc_un.res.wrong_if);
2988 for (n = mfc->_c.mfc_un.res.minvif;
2989 n < mfc->_c.mfc_un.res.maxvif; n++) {
2990 if (VIF_EXISTS(mrt, n) &&
2991 mfc->_c.mfc_un.res.ttls[n] < 255)
2992 seq_printf(seq,
2993 " %2d:%-3d",
2994 n, mfc->_c.mfc_un.res.ttls[n]);
2995 }
2996 } else {
2997 /* unresolved mfc_caches don't contain
2998 * pkt, bytes and wrong_if values
2999 */
3000 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3001 }
3002 seq_putc(seq, '\n');
3003 }
3004 return 0;
3005}
3006
3007static const struct seq_operations ipmr_mfc_seq_ops = {
3008 .start = ipmr_mfc_seq_start,
3009 .next = mr_mfc_seq_next,
3010 .stop = mr_mfc_seq_stop,
3011 .show = ipmr_mfc_seq_show,
3012};
3013#endif
3014
3015#ifdef CONFIG_IP_PIMSM_V2
3016static const struct net_protocol pim_protocol = {
3017 .handler = pim_rcv,
3018};
3019#endif
3020
3021static unsigned int ipmr_seq_read(struct net *net)
3022{
3023 ASSERT_RTNL();
3024
3025 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3026}
3027
3028static int ipmr_dump(struct net *net, struct notifier_block *nb,
3029 struct netlink_ext_ack *extack)
3030{
3031 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3032 ipmr_mr_table_iter, extack);
3033}
3034
3035static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3036 .family = RTNL_FAMILY_IPMR,
3037 .fib_seq_read = ipmr_seq_read,
3038 .fib_dump = ipmr_dump,
3039 .owner = THIS_MODULE,
3040};
3041
3042static int __net_init ipmr_notifier_init(struct net *net)
3043{
3044 struct fib_notifier_ops *ops;
3045
3046 net->ipv4.ipmr_seq = 0;
3047
3048 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3049 if (IS_ERR(ops))
3050 return PTR_ERR(ops);
3051 net->ipv4.ipmr_notifier_ops = ops;
3052
3053 return 0;
3054}
3055
3056static void __net_exit ipmr_notifier_exit(struct net *net)
3057{
3058 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3059 net->ipv4.ipmr_notifier_ops = NULL;
3060}
3061
3062/* Setup for IP multicast routing */
3063static int __net_init ipmr_net_init(struct net *net)
3064{
3065 int err;
3066
3067 err = ipmr_notifier_init(net);
3068 if (err)
3069 goto ipmr_notifier_fail;
3070
3071 err = ipmr_rules_init(net);
3072 if (err < 0)
3073 goto ipmr_rules_fail;
3074
3075#ifdef CONFIG_PROC_FS
3076 err = -ENOMEM;
3077 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3078 sizeof(struct mr_vif_iter)))
3079 goto proc_vif_fail;
3080 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3081 sizeof(struct mr_mfc_iter)))
3082 goto proc_cache_fail;
3083#endif
3084 return 0;
3085
3086#ifdef CONFIG_PROC_FS
3087proc_cache_fail:
3088 remove_proc_entry("ip_mr_vif", net->proc_net);
3089proc_vif_fail:
3090 rtnl_lock();
3091 ipmr_rules_exit(net);
3092 rtnl_unlock();
3093#endif
3094ipmr_rules_fail:
3095 ipmr_notifier_exit(net);
3096ipmr_notifier_fail:
3097 return err;
3098}
3099
3100static void __net_exit ipmr_net_exit(struct net *net)
3101{
3102#ifdef CONFIG_PROC_FS
3103 remove_proc_entry("ip_mr_cache", net->proc_net);
3104 remove_proc_entry("ip_mr_vif", net->proc_net);
3105#endif
3106 ipmr_notifier_exit(net);
3107}
3108
3109static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3110{
3111 struct net *net;
3112
3113 rtnl_lock();
3114 list_for_each_entry(net, net_list, exit_list)
3115 ipmr_rules_exit(net);
3116 rtnl_unlock();
3117}
3118
3119static struct pernet_operations ipmr_net_ops = {
3120 .init = ipmr_net_init,
3121 .exit = ipmr_net_exit,
3122 .exit_batch = ipmr_net_exit_batch,
3123};
3124
3125int __init ip_mr_init(void)
3126{
3127 int err;
3128
3129 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3130 sizeof(struct mfc_cache),
3131 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3132 NULL);
3133
3134 err = register_pernet_subsys(&ipmr_net_ops);
3135 if (err)
3136 goto reg_pernet_fail;
3137
3138 err = register_netdevice_notifier(&ip_mr_notifier);
3139 if (err)
3140 goto reg_notif_fail;
3141#ifdef CONFIG_IP_PIMSM_V2
3142 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3143 pr_err("%s: can't add PIM protocol\n", __func__);
3144 err = -EAGAIN;
3145 goto add_proto_fail;
3146 }
3147#endif
3148 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3149 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3150 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3151 ipmr_rtm_route, NULL, 0);
3152 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3153 ipmr_rtm_route, NULL, 0);
3154
3155 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3156 NULL, ipmr_rtm_dumplink, 0);
3157 return 0;
3158
3159#ifdef CONFIG_IP_PIMSM_V2
3160add_proto_fail:
3161 unregister_netdevice_notifier(&ip_mr_notifier);
3162#endif
3163reg_notif_fail:
3164 unregister_pernet_subsys(&ipmr_net_ops);
3165reg_pernet_fail:
3166 kmem_cache_destroy(mrt_cachep);
3167 return err;
3168}