Loading...
1/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/slab.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/socket.h>
25#include <linux/netdevice.h>
26#include <linux/proc_fs.h>
27#ifdef CONFIG_SYSCTL
28#include <linux/sysctl.h>
29#endif
30#include <linux/times.h>
31#include <net/net_namespace.h>
32#include <net/neighbour.h>
33#include <net/dst.h>
34#include <net/sock.h>
35#include <net/netevent.h>
36#include <net/netlink.h>
37#include <linux/rtnetlink.h>
38#include <linux/random.h>
39#include <linux/string.h>
40#include <linux/log2.h>
41
42#define NEIGH_DEBUG 1
43
44#define NEIGH_PRINTK(x...) printk(x)
45#define NEIGH_NOPRINTK(x...) do { ; } while(0)
46#define NEIGH_PRINTK1 NEIGH_NOPRINTK
47#define NEIGH_PRINTK2 NEIGH_NOPRINTK
48
49#if NEIGH_DEBUG >= 1
50#undef NEIGH_PRINTK1
51#define NEIGH_PRINTK1 NEIGH_PRINTK
52#endif
53#if NEIGH_DEBUG >= 2
54#undef NEIGH_PRINTK2
55#define NEIGH_PRINTK2 NEIGH_PRINTK
56#endif
57
58#define PNEIGH_HASHMASK 0xF
59
60static void neigh_timer_handler(unsigned long arg);
61static void __neigh_notify(struct neighbour *n, int type, int flags);
62static void neigh_update_notify(struct neighbour *neigh);
63static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
64
65static struct neigh_table *neigh_tables;
66#ifdef CONFIG_PROC_FS
67static const struct file_operations neigh_stat_seq_fops;
68#endif
69
70/*
71 Neighbour hash table buckets are protected with rwlock tbl->lock.
72
73 - All the scans/updates to hash buckets MUST be made under this lock.
74 - NOTHING clever should be made under this lock: no callbacks
75 to protocol backends, no attempts to send something to network.
76 It will result in deadlocks, if backend/driver wants to use neighbour
77 cache.
78 - If the entry requires some non-trivial actions, increase
79 its reference count and release table lock.
80
81 Neighbour entries are protected:
82 - with reference count.
83 - with rwlock neigh->lock
84
85 Reference count prevents destruction.
86
87 neigh->lock mainly serializes ll address data and its validity state.
88 However, the same lock is used to protect another entry fields:
89 - timer
90 - resolution queue
91
92 Again, nothing clever shall be made under neigh->lock,
93 the most complicated procedure, which we allow is dev->hard_header.
94 It is supposed, that dev->hard_header is simplistic and does
95 not make callbacks to neighbour tables.
96
97 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
98 list of neighbour tables. This list is used only in process context,
99 */
100
101static DEFINE_RWLOCK(neigh_tbl_lock);
102
103static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
104{
105 kfree_skb(skb);
106 return -ENETDOWN;
107}
108
109static void neigh_cleanup_and_release(struct neighbour *neigh)
110{
111 if (neigh->parms->neigh_cleanup)
112 neigh->parms->neigh_cleanup(neigh);
113
114 __neigh_notify(neigh, RTM_DELNEIGH, 0);
115 neigh_release(neigh);
116}
117
118/*
119 * It is random distribution in the interval (1/2)*base...(3/2)*base.
120 * It corresponds to default IPv6 settings and is not overridable,
121 * because it is really reasonable choice.
122 */
123
124unsigned long neigh_rand_reach_time(unsigned long base)
125{
126 return base ? (net_random() % base) + (base >> 1) : 0;
127}
128EXPORT_SYMBOL(neigh_rand_reach_time);
129
130
131static int neigh_forced_gc(struct neigh_table *tbl)
132{
133 int shrunk = 0;
134 int i;
135 struct neigh_hash_table *nht;
136
137 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
138
139 write_lock_bh(&tbl->lock);
140 nht = rcu_dereference_protected(tbl->nht,
141 lockdep_is_held(&tbl->lock));
142 for (i = 0; i < (1 << nht->hash_shift); i++) {
143 struct neighbour *n;
144 struct neighbour __rcu **np;
145
146 np = &nht->hash_buckets[i];
147 while ((n = rcu_dereference_protected(*np,
148 lockdep_is_held(&tbl->lock))) != NULL) {
149 /* Neighbour record may be discarded if:
150 * - nobody refers to it.
151 * - it is not permanent
152 */
153 write_lock(&n->lock);
154 if (atomic_read(&n->refcnt) == 1 &&
155 !(n->nud_state & NUD_PERMANENT)) {
156 rcu_assign_pointer(*np,
157 rcu_dereference_protected(n->next,
158 lockdep_is_held(&tbl->lock)));
159 n->dead = 1;
160 shrunk = 1;
161 write_unlock(&n->lock);
162 neigh_cleanup_and_release(n);
163 continue;
164 }
165 write_unlock(&n->lock);
166 np = &n->next;
167 }
168 }
169
170 tbl->last_flush = jiffies;
171
172 write_unlock_bh(&tbl->lock);
173
174 return shrunk;
175}
176
177static void neigh_add_timer(struct neighbour *n, unsigned long when)
178{
179 neigh_hold(n);
180 if (unlikely(mod_timer(&n->timer, when))) {
181 printk("NEIGH: BUG, double timer add, state is %x\n",
182 n->nud_state);
183 dump_stack();
184 }
185}
186
187static int neigh_del_timer(struct neighbour *n)
188{
189 if ((n->nud_state & NUD_IN_TIMER) &&
190 del_timer(&n->timer)) {
191 neigh_release(n);
192 return 1;
193 }
194 return 0;
195}
196
197static void pneigh_queue_purge(struct sk_buff_head *list)
198{
199 struct sk_buff *skb;
200
201 while ((skb = skb_dequeue(list)) != NULL) {
202 dev_put(skb->dev);
203 kfree_skb(skb);
204 }
205}
206
207static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
208{
209 int i;
210 struct neigh_hash_table *nht;
211
212 nht = rcu_dereference_protected(tbl->nht,
213 lockdep_is_held(&tbl->lock));
214
215 for (i = 0; i < (1 << nht->hash_shift); i++) {
216 struct neighbour *n;
217 struct neighbour __rcu **np = &nht->hash_buckets[i];
218
219 while ((n = rcu_dereference_protected(*np,
220 lockdep_is_held(&tbl->lock))) != NULL) {
221 if (dev && n->dev != dev) {
222 np = &n->next;
223 continue;
224 }
225 rcu_assign_pointer(*np,
226 rcu_dereference_protected(n->next,
227 lockdep_is_held(&tbl->lock)));
228 write_lock(&n->lock);
229 neigh_del_timer(n);
230 n->dead = 1;
231
232 if (atomic_read(&n->refcnt) != 1) {
233 /* The most unpleasant situation.
234 We must destroy neighbour entry,
235 but someone still uses it.
236
237 The destroy will be delayed until
238 the last user releases us, but
239 we must kill timers etc. and move
240 it to safe state.
241 */
242 skb_queue_purge(&n->arp_queue);
243 n->arp_queue_len_bytes = 0;
244 n->output = neigh_blackhole;
245 if (n->nud_state & NUD_VALID)
246 n->nud_state = NUD_NOARP;
247 else
248 n->nud_state = NUD_NONE;
249 NEIGH_PRINTK2("neigh %p is stray.\n", n);
250 }
251 write_unlock(&n->lock);
252 neigh_cleanup_and_release(n);
253 }
254 }
255}
256
257void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
258{
259 write_lock_bh(&tbl->lock);
260 neigh_flush_dev(tbl, dev);
261 write_unlock_bh(&tbl->lock);
262}
263EXPORT_SYMBOL(neigh_changeaddr);
264
265int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
266{
267 write_lock_bh(&tbl->lock);
268 neigh_flush_dev(tbl, dev);
269 pneigh_ifdown(tbl, dev);
270 write_unlock_bh(&tbl->lock);
271
272 del_timer_sync(&tbl->proxy_timer);
273 pneigh_queue_purge(&tbl->proxy_queue);
274 return 0;
275}
276EXPORT_SYMBOL(neigh_ifdown);
277
278static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
279{
280 struct neighbour *n = NULL;
281 unsigned long now = jiffies;
282 int entries;
283
284 entries = atomic_inc_return(&tbl->entries) - 1;
285 if (entries >= tbl->gc_thresh3 ||
286 (entries >= tbl->gc_thresh2 &&
287 time_after(now, tbl->last_flush + 5 * HZ))) {
288 if (!neigh_forced_gc(tbl) &&
289 entries >= tbl->gc_thresh3)
290 goto out_entries;
291 }
292
293 if (tbl->entry_size)
294 n = kzalloc(tbl->entry_size, GFP_ATOMIC);
295 else {
296 int sz = sizeof(*n) + tbl->key_len;
297
298 sz = ALIGN(sz, NEIGH_PRIV_ALIGN);
299 sz += dev->neigh_priv_len;
300 n = kzalloc(sz, GFP_ATOMIC);
301 }
302 if (!n)
303 goto out_entries;
304
305 skb_queue_head_init(&n->arp_queue);
306 rwlock_init(&n->lock);
307 seqlock_init(&n->ha_lock);
308 n->updated = n->used = now;
309 n->nud_state = NUD_NONE;
310 n->output = neigh_blackhole;
311 seqlock_init(&n->hh.hh_lock);
312 n->parms = neigh_parms_clone(&tbl->parms);
313 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
314
315 NEIGH_CACHE_STAT_INC(tbl, allocs);
316 n->tbl = tbl;
317 atomic_set(&n->refcnt, 1);
318 n->dead = 1;
319out:
320 return n;
321
322out_entries:
323 atomic_dec(&tbl->entries);
324 goto out;
325}
326
327static void neigh_get_hash_rnd(u32 *x)
328{
329 get_random_bytes(x, sizeof(*x));
330 *x |= 1;
331}
332
333static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
334{
335 size_t size = (1 << shift) * sizeof(struct neighbour *);
336 struct neigh_hash_table *ret;
337 struct neighbour __rcu **buckets;
338 int i;
339
340 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
341 if (!ret)
342 return NULL;
343 if (size <= PAGE_SIZE)
344 buckets = kzalloc(size, GFP_ATOMIC);
345 else
346 buckets = (struct neighbour __rcu **)
347 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
348 get_order(size));
349 if (!buckets) {
350 kfree(ret);
351 return NULL;
352 }
353 ret->hash_buckets = buckets;
354 ret->hash_shift = shift;
355 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
356 neigh_get_hash_rnd(&ret->hash_rnd[i]);
357 return ret;
358}
359
360static void neigh_hash_free_rcu(struct rcu_head *head)
361{
362 struct neigh_hash_table *nht = container_of(head,
363 struct neigh_hash_table,
364 rcu);
365 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
366 struct neighbour __rcu **buckets = nht->hash_buckets;
367
368 if (size <= PAGE_SIZE)
369 kfree(buckets);
370 else
371 free_pages((unsigned long)buckets, get_order(size));
372 kfree(nht);
373}
374
375static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
376 unsigned long new_shift)
377{
378 unsigned int i, hash;
379 struct neigh_hash_table *new_nht, *old_nht;
380
381 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
382
383 old_nht = rcu_dereference_protected(tbl->nht,
384 lockdep_is_held(&tbl->lock));
385 new_nht = neigh_hash_alloc(new_shift);
386 if (!new_nht)
387 return old_nht;
388
389 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
390 struct neighbour *n, *next;
391
392 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
393 lockdep_is_held(&tbl->lock));
394 n != NULL;
395 n = next) {
396 hash = tbl->hash(n->primary_key, n->dev,
397 new_nht->hash_rnd);
398
399 hash >>= (32 - new_nht->hash_shift);
400 next = rcu_dereference_protected(n->next,
401 lockdep_is_held(&tbl->lock));
402
403 rcu_assign_pointer(n->next,
404 rcu_dereference_protected(
405 new_nht->hash_buckets[hash],
406 lockdep_is_held(&tbl->lock)));
407 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
408 }
409 }
410
411 rcu_assign_pointer(tbl->nht, new_nht);
412 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
413 return new_nht;
414}
415
416struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
417 struct net_device *dev)
418{
419 struct neighbour *n;
420 int key_len = tbl->key_len;
421 u32 hash_val;
422 struct neigh_hash_table *nht;
423
424 NEIGH_CACHE_STAT_INC(tbl, lookups);
425
426 rcu_read_lock_bh();
427 nht = rcu_dereference_bh(tbl->nht);
428 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
429
430 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
431 n != NULL;
432 n = rcu_dereference_bh(n->next)) {
433 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
434 if (!atomic_inc_not_zero(&n->refcnt))
435 n = NULL;
436 NEIGH_CACHE_STAT_INC(tbl, hits);
437 break;
438 }
439 }
440
441 rcu_read_unlock_bh();
442 return n;
443}
444EXPORT_SYMBOL(neigh_lookup);
445
446struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
447 const void *pkey)
448{
449 struct neighbour *n;
450 int key_len = tbl->key_len;
451 u32 hash_val;
452 struct neigh_hash_table *nht;
453
454 NEIGH_CACHE_STAT_INC(tbl, lookups);
455
456 rcu_read_lock_bh();
457 nht = rcu_dereference_bh(tbl->nht);
458 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
459
460 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
461 n != NULL;
462 n = rcu_dereference_bh(n->next)) {
463 if (!memcmp(n->primary_key, pkey, key_len) &&
464 net_eq(dev_net(n->dev), net)) {
465 if (!atomic_inc_not_zero(&n->refcnt))
466 n = NULL;
467 NEIGH_CACHE_STAT_INC(tbl, hits);
468 break;
469 }
470 }
471
472 rcu_read_unlock_bh();
473 return n;
474}
475EXPORT_SYMBOL(neigh_lookup_nodev);
476
477struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
478 struct net_device *dev)
479{
480 u32 hash_val;
481 int key_len = tbl->key_len;
482 int error;
483 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
484 struct neigh_hash_table *nht;
485
486 if (!n) {
487 rc = ERR_PTR(-ENOBUFS);
488 goto out;
489 }
490
491 memcpy(n->primary_key, pkey, key_len);
492 n->dev = dev;
493 dev_hold(dev);
494
495 /* Protocol specific setup. */
496 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
497 rc = ERR_PTR(error);
498 goto out_neigh_release;
499 }
500
501 if (dev->netdev_ops->ndo_neigh_construct) {
502 error = dev->netdev_ops->ndo_neigh_construct(n);
503 if (error < 0) {
504 rc = ERR_PTR(error);
505 goto out_neigh_release;
506 }
507 }
508
509 /* Device specific setup. */
510 if (n->parms->neigh_setup &&
511 (error = n->parms->neigh_setup(n)) < 0) {
512 rc = ERR_PTR(error);
513 goto out_neigh_release;
514 }
515
516 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
517
518 write_lock_bh(&tbl->lock);
519 nht = rcu_dereference_protected(tbl->nht,
520 lockdep_is_held(&tbl->lock));
521
522 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
523 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
524
525 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
526
527 if (n->parms->dead) {
528 rc = ERR_PTR(-EINVAL);
529 goto out_tbl_unlock;
530 }
531
532 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
533 lockdep_is_held(&tbl->lock));
534 n1 != NULL;
535 n1 = rcu_dereference_protected(n1->next,
536 lockdep_is_held(&tbl->lock))) {
537 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
538 neigh_hold(n1);
539 rc = n1;
540 goto out_tbl_unlock;
541 }
542 }
543
544 n->dead = 0;
545 neigh_hold(n);
546 rcu_assign_pointer(n->next,
547 rcu_dereference_protected(nht->hash_buckets[hash_val],
548 lockdep_is_held(&tbl->lock)));
549 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
550 write_unlock_bh(&tbl->lock);
551 NEIGH_PRINTK2("neigh %p is created.\n", n);
552 rc = n;
553out:
554 return rc;
555out_tbl_unlock:
556 write_unlock_bh(&tbl->lock);
557out_neigh_release:
558 neigh_release(n);
559 goto out;
560}
561EXPORT_SYMBOL(neigh_create);
562
563static u32 pneigh_hash(const void *pkey, int key_len)
564{
565 u32 hash_val = *(u32 *)(pkey + key_len - 4);
566 hash_val ^= (hash_val >> 16);
567 hash_val ^= hash_val >> 8;
568 hash_val ^= hash_val >> 4;
569 hash_val &= PNEIGH_HASHMASK;
570 return hash_val;
571}
572
573static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
574 struct net *net,
575 const void *pkey,
576 int key_len,
577 struct net_device *dev)
578{
579 while (n) {
580 if (!memcmp(n->key, pkey, key_len) &&
581 net_eq(pneigh_net(n), net) &&
582 (n->dev == dev || !n->dev))
583 return n;
584 n = n->next;
585 }
586 return NULL;
587}
588
589struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
590 struct net *net, const void *pkey, struct net_device *dev)
591{
592 int key_len = tbl->key_len;
593 u32 hash_val = pneigh_hash(pkey, key_len);
594
595 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
596 net, pkey, key_len, dev);
597}
598EXPORT_SYMBOL_GPL(__pneigh_lookup);
599
600struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
601 struct net *net, const void *pkey,
602 struct net_device *dev, int creat)
603{
604 struct pneigh_entry *n;
605 int key_len = tbl->key_len;
606 u32 hash_val = pneigh_hash(pkey, key_len);
607
608 read_lock_bh(&tbl->lock);
609 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
610 net, pkey, key_len, dev);
611 read_unlock_bh(&tbl->lock);
612
613 if (n || !creat)
614 goto out;
615
616 ASSERT_RTNL();
617
618 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
619 if (!n)
620 goto out;
621
622 write_pnet(&n->net, hold_net(net));
623 memcpy(n->key, pkey, key_len);
624 n->dev = dev;
625 if (dev)
626 dev_hold(dev);
627
628 if (tbl->pconstructor && tbl->pconstructor(n)) {
629 if (dev)
630 dev_put(dev);
631 release_net(net);
632 kfree(n);
633 n = NULL;
634 goto out;
635 }
636
637 write_lock_bh(&tbl->lock);
638 n->next = tbl->phash_buckets[hash_val];
639 tbl->phash_buckets[hash_val] = n;
640 write_unlock_bh(&tbl->lock);
641out:
642 return n;
643}
644EXPORT_SYMBOL(pneigh_lookup);
645
646
647int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
648 struct net_device *dev)
649{
650 struct pneigh_entry *n, **np;
651 int key_len = tbl->key_len;
652 u32 hash_val = pneigh_hash(pkey, key_len);
653
654 write_lock_bh(&tbl->lock);
655 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
656 np = &n->next) {
657 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
658 net_eq(pneigh_net(n), net)) {
659 *np = n->next;
660 write_unlock_bh(&tbl->lock);
661 if (tbl->pdestructor)
662 tbl->pdestructor(n);
663 if (n->dev)
664 dev_put(n->dev);
665 release_net(pneigh_net(n));
666 kfree(n);
667 return 0;
668 }
669 }
670 write_unlock_bh(&tbl->lock);
671 return -ENOENT;
672}
673
674static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
675{
676 struct pneigh_entry *n, **np;
677 u32 h;
678
679 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
680 np = &tbl->phash_buckets[h];
681 while ((n = *np) != NULL) {
682 if (!dev || n->dev == dev) {
683 *np = n->next;
684 if (tbl->pdestructor)
685 tbl->pdestructor(n);
686 if (n->dev)
687 dev_put(n->dev);
688 release_net(pneigh_net(n));
689 kfree(n);
690 continue;
691 }
692 np = &n->next;
693 }
694 }
695 return -ENOENT;
696}
697
698static void neigh_parms_destroy(struct neigh_parms *parms);
699
700static inline void neigh_parms_put(struct neigh_parms *parms)
701{
702 if (atomic_dec_and_test(&parms->refcnt))
703 neigh_parms_destroy(parms);
704}
705
706/*
707 * neighbour must already be out of the table;
708 *
709 */
710void neigh_destroy(struct neighbour *neigh)
711{
712 struct net_device *dev = neigh->dev;
713
714 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
715
716 if (!neigh->dead) {
717 pr_warn("Destroying alive neighbour %p\n", neigh);
718 dump_stack();
719 return;
720 }
721
722 if (neigh_del_timer(neigh))
723 pr_warn("Impossible event\n");
724
725 skb_queue_purge(&neigh->arp_queue);
726 neigh->arp_queue_len_bytes = 0;
727
728 if (dev->netdev_ops->ndo_neigh_destroy)
729 dev->netdev_ops->ndo_neigh_destroy(neigh);
730
731 dev_put(dev);
732 neigh_parms_put(neigh->parms);
733
734 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
735
736 atomic_dec(&neigh->tbl->entries);
737 kfree_rcu(neigh, rcu);
738}
739EXPORT_SYMBOL(neigh_destroy);
740
741/* Neighbour state is suspicious;
742 disable fast path.
743
744 Called with write_locked neigh.
745 */
746static void neigh_suspect(struct neighbour *neigh)
747{
748 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
749
750 neigh->output = neigh->ops->output;
751}
752
753/* Neighbour state is OK;
754 enable fast path.
755
756 Called with write_locked neigh.
757 */
758static void neigh_connect(struct neighbour *neigh)
759{
760 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
761
762 neigh->output = neigh->ops->connected_output;
763}
764
765static void neigh_periodic_work(struct work_struct *work)
766{
767 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
768 struct neighbour *n;
769 struct neighbour __rcu **np;
770 unsigned int i;
771 struct neigh_hash_table *nht;
772
773 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
774
775 write_lock_bh(&tbl->lock);
776 nht = rcu_dereference_protected(tbl->nht,
777 lockdep_is_held(&tbl->lock));
778
779 /*
780 * periodically recompute ReachableTime from random function
781 */
782
783 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
784 struct neigh_parms *p;
785 tbl->last_rand = jiffies;
786 for (p = &tbl->parms; p; p = p->next)
787 p->reachable_time =
788 neigh_rand_reach_time(p->base_reachable_time);
789 }
790
791 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
792 np = &nht->hash_buckets[i];
793
794 while ((n = rcu_dereference_protected(*np,
795 lockdep_is_held(&tbl->lock))) != NULL) {
796 unsigned int state;
797
798 write_lock(&n->lock);
799
800 state = n->nud_state;
801 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
802 write_unlock(&n->lock);
803 goto next_elt;
804 }
805
806 if (time_before(n->used, n->confirmed))
807 n->used = n->confirmed;
808
809 if (atomic_read(&n->refcnt) == 1 &&
810 (state == NUD_FAILED ||
811 time_after(jiffies, n->used + n->parms->gc_staletime))) {
812 *np = n->next;
813 n->dead = 1;
814 write_unlock(&n->lock);
815 neigh_cleanup_and_release(n);
816 continue;
817 }
818 write_unlock(&n->lock);
819
820next_elt:
821 np = &n->next;
822 }
823 /*
824 * It's fine to release lock here, even if hash table
825 * grows while we are preempted.
826 */
827 write_unlock_bh(&tbl->lock);
828 cond_resched();
829 write_lock_bh(&tbl->lock);
830 nht = rcu_dereference_protected(tbl->nht,
831 lockdep_is_held(&tbl->lock));
832 }
833 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
834 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
835 * base_reachable_time.
836 */
837 schedule_delayed_work(&tbl->gc_work,
838 tbl->parms.base_reachable_time >> 1);
839 write_unlock_bh(&tbl->lock);
840}
841
842static __inline__ int neigh_max_probes(struct neighbour *n)
843{
844 struct neigh_parms *p = n->parms;
845 return (n->nud_state & NUD_PROBE) ?
846 p->ucast_probes :
847 p->ucast_probes + p->app_probes + p->mcast_probes;
848}
849
850static void neigh_invalidate(struct neighbour *neigh)
851 __releases(neigh->lock)
852 __acquires(neigh->lock)
853{
854 struct sk_buff *skb;
855
856 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
857 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
858 neigh->updated = jiffies;
859
860 /* It is very thin place. report_unreachable is very complicated
861 routine. Particularly, it can hit the same neighbour entry!
862
863 So that, we try to be accurate and avoid dead loop. --ANK
864 */
865 while (neigh->nud_state == NUD_FAILED &&
866 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
867 write_unlock(&neigh->lock);
868 neigh->ops->error_report(neigh, skb);
869 write_lock(&neigh->lock);
870 }
871 skb_queue_purge(&neigh->arp_queue);
872 neigh->arp_queue_len_bytes = 0;
873}
874
875static void neigh_probe(struct neighbour *neigh)
876 __releases(neigh->lock)
877{
878 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
879 /* keep skb alive even if arp_queue overflows */
880 if (skb)
881 skb = skb_copy(skb, GFP_ATOMIC);
882 write_unlock(&neigh->lock);
883 neigh->ops->solicit(neigh, skb);
884 atomic_inc(&neigh->probes);
885 kfree_skb(skb);
886}
887
888/* Called when a timer expires for a neighbour entry. */
889
890static void neigh_timer_handler(unsigned long arg)
891{
892 unsigned long now, next;
893 struct neighbour *neigh = (struct neighbour *)arg;
894 unsigned int state;
895 int notify = 0;
896
897 write_lock(&neigh->lock);
898
899 state = neigh->nud_state;
900 now = jiffies;
901 next = now + HZ;
902
903 if (!(state & NUD_IN_TIMER))
904 goto out;
905
906 if (state & NUD_REACHABLE) {
907 if (time_before_eq(now,
908 neigh->confirmed + neigh->parms->reachable_time)) {
909 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
910 next = neigh->confirmed + neigh->parms->reachable_time;
911 } else if (time_before_eq(now,
912 neigh->used + neigh->parms->delay_probe_time)) {
913 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
914 neigh->nud_state = NUD_DELAY;
915 neigh->updated = jiffies;
916 neigh_suspect(neigh);
917 next = now + neigh->parms->delay_probe_time;
918 } else {
919 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
920 neigh->nud_state = NUD_STALE;
921 neigh->updated = jiffies;
922 neigh_suspect(neigh);
923 notify = 1;
924 }
925 } else if (state & NUD_DELAY) {
926 if (time_before_eq(now,
927 neigh->confirmed + neigh->parms->delay_probe_time)) {
928 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
929 neigh->nud_state = NUD_REACHABLE;
930 neigh->updated = jiffies;
931 neigh_connect(neigh);
932 notify = 1;
933 next = neigh->confirmed + neigh->parms->reachable_time;
934 } else {
935 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
936 neigh->nud_state = NUD_PROBE;
937 neigh->updated = jiffies;
938 atomic_set(&neigh->probes, 0);
939 next = now + neigh->parms->retrans_time;
940 }
941 } else {
942 /* NUD_PROBE|NUD_INCOMPLETE */
943 next = now + neigh->parms->retrans_time;
944 }
945
946 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
947 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
948 neigh->nud_state = NUD_FAILED;
949 notify = 1;
950 neigh_invalidate(neigh);
951 }
952
953 if (neigh->nud_state & NUD_IN_TIMER) {
954 if (time_before(next, jiffies + HZ/2))
955 next = jiffies + HZ/2;
956 if (!mod_timer(&neigh->timer, next))
957 neigh_hold(neigh);
958 }
959 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
960 neigh_probe(neigh);
961 } else {
962out:
963 write_unlock(&neigh->lock);
964 }
965
966 if (notify)
967 neigh_update_notify(neigh);
968
969 neigh_release(neigh);
970}
971
972int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
973{
974 int rc;
975 bool immediate_probe = false;
976
977 write_lock_bh(&neigh->lock);
978
979 rc = 0;
980 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
981 goto out_unlock_bh;
982
983 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
984 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
985 unsigned long next, now = jiffies;
986
987 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
988 neigh->nud_state = NUD_INCOMPLETE;
989 neigh->updated = now;
990 next = now + max(neigh->parms->retrans_time, HZ/2);
991 neigh_add_timer(neigh, next);
992 immediate_probe = true;
993 } else {
994 neigh->nud_state = NUD_FAILED;
995 neigh->updated = jiffies;
996 write_unlock_bh(&neigh->lock);
997
998 kfree_skb(skb);
999 return 1;
1000 }
1001 } else if (neigh->nud_state & NUD_STALE) {
1002 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
1003 neigh->nud_state = NUD_DELAY;
1004 neigh->updated = jiffies;
1005 neigh_add_timer(neigh,
1006 jiffies + neigh->parms->delay_probe_time);
1007 }
1008
1009 if (neigh->nud_state == NUD_INCOMPLETE) {
1010 if (skb) {
1011 while (neigh->arp_queue_len_bytes + skb->truesize >
1012 neigh->parms->queue_len_bytes) {
1013 struct sk_buff *buff;
1014
1015 buff = __skb_dequeue(&neigh->arp_queue);
1016 if (!buff)
1017 break;
1018 neigh->arp_queue_len_bytes -= buff->truesize;
1019 kfree_skb(buff);
1020 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1021 }
1022 skb_dst_force(skb);
1023 __skb_queue_tail(&neigh->arp_queue, skb);
1024 neigh->arp_queue_len_bytes += skb->truesize;
1025 }
1026 rc = 1;
1027 }
1028out_unlock_bh:
1029 if (immediate_probe)
1030 neigh_probe(neigh);
1031 else
1032 write_unlock(&neigh->lock);
1033 local_bh_enable();
1034 return rc;
1035}
1036EXPORT_SYMBOL(__neigh_event_send);
1037
1038static void neigh_update_hhs(struct neighbour *neigh)
1039{
1040 struct hh_cache *hh;
1041 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1042 = NULL;
1043
1044 if (neigh->dev->header_ops)
1045 update = neigh->dev->header_ops->cache_update;
1046
1047 if (update) {
1048 hh = &neigh->hh;
1049 if (hh->hh_len) {
1050 write_seqlock_bh(&hh->hh_lock);
1051 update(hh, neigh->dev, neigh->ha);
1052 write_sequnlock_bh(&hh->hh_lock);
1053 }
1054 }
1055}
1056
1057
1058
1059/* Generic update routine.
1060 -- lladdr is new lladdr or NULL, if it is not supplied.
1061 -- new is new state.
1062 -- flags
1063 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1064 if it is different.
1065 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1066 lladdr instead of overriding it
1067 if it is different.
1068 It also allows to retain current state
1069 if lladdr is unchanged.
1070 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1071
1072 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1073 NTF_ROUTER flag.
1074 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1075 a router.
1076
1077 Caller MUST hold reference count on the entry.
1078 */
1079
1080int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1081 u32 flags)
1082{
1083 u8 old;
1084 int err;
1085 int notify = 0;
1086 struct net_device *dev;
1087 int update_isrouter = 0;
1088
1089 write_lock_bh(&neigh->lock);
1090
1091 dev = neigh->dev;
1092 old = neigh->nud_state;
1093 err = -EPERM;
1094
1095 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1096 (old & (NUD_NOARP | NUD_PERMANENT)))
1097 goto out;
1098
1099 if (!(new & NUD_VALID)) {
1100 neigh_del_timer(neigh);
1101 if (old & NUD_CONNECTED)
1102 neigh_suspect(neigh);
1103 neigh->nud_state = new;
1104 err = 0;
1105 notify = old & NUD_VALID;
1106 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1107 (new & NUD_FAILED)) {
1108 neigh_invalidate(neigh);
1109 notify = 1;
1110 }
1111 goto out;
1112 }
1113
1114 /* Compare new lladdr with cached one */
1115 if (!dev->addr_len) {
1116 /* First case: device needs no address. */
1117 lladdr = neigh->ha;
1118 } else if (lladdr) {
1119 /* The second case: if something is already cached
1120 and a new address is proposed:
1121 - compare new & old
1122 - if they are different, check override flag
1123 */
1124 if ((old & NUD_VALID) &&
1125 !memcmp(lladdr, neigh->ha, dev->addr_len))
1126 lladdr = neigh->ha;
1127 } else {
1128 /* No address is supplied; if we know something,
1129 use it, otherwise discard the request.
1130 */
1131 err = -EINVAL;
1132 if (!(old & NUD_VALID))
1133 goto out;
1134 lladdr = neigh->ha;
1135 }
1136
1137 if (new & NUD_CONNECTED)
1138 neigh->confirmed = jiffies;
1139 neigh->updated = jiffies;
1140
1141 /* If entry was valid and address is not changed,
1142 do not change entry state, if new one is STALE.
1143 */
1144 err = 0;
1145 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1146 if (old & NUD_VALID) {
1147 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1148 update_isrouter = 0;
1149 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1150 (old & NUD_CONNECTED)) {
1151 lladdr = neigh->ha;
1152 new = NUD_STALE;
1153 } else
1154 goto out;
1155 } else {
1156 if (lladdr == neigh->ha && new == NUD_STALE &&
1157 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1158 (old & NUD_CONNECTED))
1159 )
1160 new = old;
1161 }
1162 }
1163
1164 if (new != old) {
1165 neigh_del_timer(neigh);
1166 if (new & NUD_IN_TIMER)
1167 neigh_add_timer(neigh, (jiffies +
1168 ((new & NUD_REACHABLE) ?
1169 neigh->parms->reachable_time :
1170 0)));
1171 neigh->nud_state = new;
1172 }
1173
1174 if (lladdr != neigh->ha) {
1175 write_seqlock(&neigh->ha_lock);
1176 memcpy(&neigh->ha, lladdr, dev->addr_len);
1177 write_sequnlock(&neigh->ha_lock);
1178 neigh_update_hhs(neigh);
1179 if (!(new & NUD_CONNECTED))
1180 neigh->confirmed = jiffies -
1181 (neigh->parms->base_reachable_time << 1);
1182 notify = 1;
1183 }
1184 if (new == old)
1185 goto out;
1186 if (new & NUD_CONNECTED)
1187 neigh_connect(neigh);
1188 else
1189 neigh_suspect(neigh);
1190 if (!(old & NUD_VALID)) {
1191 struct sk_buff *skb;
1192
1193 /* Again: avoid dead loop if something went wrong */
1194
1195 while (neigh->nud_state & NUD_VALID &&
1196 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1197 struct dst_entry *dst = skb_dst(skb);
1198 struct neighbour *n2, *n1 = neigh;
1199 write_unlock_bh(&neigh->lock);
1200
1201 rcu_read_lock();
1202 /* On shaper/eql skb->dst->neighbour != neigh :( */
1203 if (dst && (n2 = dst_get_neighbour_noref(dst)) != NULL)
1204 n1 = n2;
1205 n1->output(n1, skb);
1206 rcu_read_unlock();
1207
1208 write_lock_bh(&neigh->lock);
1209 }
1210 skb_queue_purge(&neigh->arp_queue);
1211 neigh->arp_queue_len_bytes = 0;
1212 }
1213out:
1214 if (update_isrouter) {
1215 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1216 (neigh->flags | NTF_ROUTER) :
1217 (neigh->flags & ~NTF_ROUTER);
1218 }
1219 write_unlock_bh(&neigh->lock);
1220
1221 if (notify)
1222 neigh_update_notify(neigh);
1223
1224 return err;
1225}
1226EXPORT_SYMBOL(neigh_update);
1227
1228struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1229 u8 *lladdr, void *saddr,
1230 struct net_device *dev)
1231{
1232 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1233 lladdr || !dev->addr_len);
1234 if (neigh)
1235 neigh_update(neigh, lladdr, NUD_STALE,
1236 NEIGH_UPDATE_F_OVERRIDE);
1237 return neigh;
1238}
1239EXPORT_SYMBOL(neigh_event_ns);
1240
1241/* called with read_lock_bh(&n->lock); */
1242static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1243{
1244 struct net_device *dev = dst->dev;
1245 __be16 prot = dst->ops->protocol;
1246 struct hh_cache *hh = &n->hh;
1247
1248 write_lock_bh(&n->lock);
1249
1250 /* Only one thread can come in here and initialize the
1251 * hh_cache entry.
1252 */
1253 if (!hh->hh_len)
1254 dev->header_ops->cache(n, hh, prot);
1255
1256 write_unlock_bh(&n->lock);
1257}
1258
1259/* This function can be used in contexts, where only old dev_queue_xmit
1260 * worked, f.e. if you want to override normal output path (eql, shaper),
1261 * but resolution is not made yet.
1262 */
1263
1264int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1265{
1266 struct net_device *dev = skb->dev;
1267
1268 __skb_pull(skb, skb_network_offset(skb));
1269
1270 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1271 skb->len) < 0 &&
1272 dev->header_ops->rebuild(skb))
1273 return 0;
1274
1275 return dev_queue_xmit(skb);
1276}
1277EXPORT_SYMBOL(neigh_compat_output);
1278
1279/* Slow and careful. */
1280
1281int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1282{
1283 struct dst_entry *dst = skb_dst(skb);
1284 int rc = 0;
1285
1286 if (!dst)
1287 goto discard;
1288
1289 __skb_pull(skb, skb_network_offset(skb));
1290
1291 if (!neigh_event_send(neigh, skb)) {
1292 int err;
1293 struct net_device *dev = neigh->dev;
1294 unsigned int seq;
1295
1296 if (dev->header_ops->cache && !neigh->hh.hh_len)
1297 neigh_hh_init(neigh, dst);
1298
1299 do {
1300 seq = read_seqbegin(&neigh->ha_lock);
1301 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1302 neigh->ha, NULL, skb->len);
1303 } while (read_seqretry(&neigh->ha_lock, seq));
1304
1305 if (err >= 0)
1306 rc = dev_queue_xmit(skb);
1307 else
1308 goto out_kfree_skb;
1309 }
1310out:
1311 return rc;
1312discard:
1313 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1314 dst, neigh);
1315out_kfree_skb:
1316 rc = -EINVAL;
1317 kfree_skb(skb);
1318 goto out;
1319}
1320EXPORT_SYMBOL(neigh_resolve_output);
1321
1322/* As fast as possible without hh cache */
1323
1324int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1325{
1326 struct net_device *dev = neigh->dev;
1327 unsigned int seq;
1328 int err;
1329
1330 __skb_pull(skb, skb_network_offset(skb));
1331
1332 do {
1333 seq = read_seqbegin(&neigh->ha_lock);
1334 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1335 neigh->ha, NULL, skb->len);
1336 } while (read_seqretry(&neigh->ha_lock, seq));
1337
1338 if (err >= 0)
1339 err = dev_queue_xmit(skb);
1340 else {
1341 err = -EINVAL;
1342 kfree_skb(skb);
1343 }
1344 return err;
1345}
1346EXPORT_SYMBOL(neigh_connected_output);
1347
1348int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1349{
1350 return dev_queue_xmit(skb);
1351}
1352EXPORT_SYMBOL(neigh_direct_output);
1353
1354static void neigh_proxy_process(unsigned long arg)
1355{
1356 struct neigh_table *tbl = (struct neigh_table *)arg;
1357 long sched_next = 0;
1358 unsigned long now = jiffies;
1359 struct sk_buff *skb, *n;
1360
1361 spin_lock(&tbl->proxy_queue.lock);
1362
1363 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1364 long tdif = NEIGH_CB(skb)->sched_next - now;
1365
1366 if (tdif <= 0) {
1367 struct net_device *dev = skb->dev;
1368
1369 __skb_unlink(skb, &tbl->proxy_queue);
1370 if (tbl->proxy_redo && netif_running(dev)) {
1371 rcu_read_lock();
1372 tbl->proxy_redo(skb);
1373 rcu_read_unlock();
1374 } else {
1375 kfree_skb(skb);
1376 }
1377
1378 dev_put(dev);
1379 } else if (!sched_next || tdif < sched_next)
1380 sched_next = tdif;
1381 }
1382 del_timer(&tbl->proxy_timer);
1383 if (sched_next)
1384 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1385 spin_unlock(&tbl->proxy_queue.lock);
1386}
1387
1388void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1389 struct sk_buff *skb)
1390{
1391 unsigned long now = jiffies;
1392 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1393
1394 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1395 kfree_skb(skb);
1396 return;
1397 }
1398
1399 NEIGH_CB(skb)->sched_next = sched_next;
1400 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1401
1402 spin_lock(&tbl->proxy_queue.lock);
1403 if (del_timer(&tbl->proxy_timer)) {
1404 if (time_before(tbl->proxy_timer.expires, sched_next))
1405 sched_next = tbl->proxy_timer.expires;
1406 }
1407 skb_dst_drop(skb);
1408 dev_hold(skb->dev);
1409 __skb_queue_tail(&tbl->proxy_queue, skb);
1410 mod_timer(&tbl->proxy_timer, sched_next);
1411 spin_unlock(&tbl->proxy_queue.lock);
1412}
1413EXPORT_SYMBOL(pneigh_enqueue);
1414
1415static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1416 struct net *net, int ifindex)
1417{
1418 struct neigh_parms *p;
1419
1420 for (p = &tbl->parms; p; p = p->next) {
1421 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1422 (!p->dev && !ifindex))
1423 return p;
1424 }
1425
1426 return NULL;
1427}
1428
1429struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1430 struct neigh_table *tbl)
1431{
1432 struct neigh_parms *p, *ref;
1433 struct net *net = dev_net(dev);
1434 const struct net_device_ops *ops = dev->netdev_ops;
1435
1436 ref = lookup_neigh_parms(tbl, net, 0);
1437 if (!ref)
1438 return NULL;
1439
1440 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1441 if (p) {
1442 p->tbl = tbl;
1443 atomic_set(&p->refcnt, 1);
1444 p->reachable_time =
1445 neigh_rand_reach_time(p->base_reachable_time);
1446
1447 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1448 kfree(p);
1449 return NULL;
1450 }
1451
1452 dev_hold(dev);
1453 p->dev = dev;
1454 write_pnet(&p->net, hold_net(net));
1455 p->sysctl_table = NULL;
1456 write_lock_bh(&tbl->lock);
1457 p->next = tbl->parms.next;
1458 tbl->parms.next = p;
1459 write_unlock_bh(&tbl->lock);
1460 }
1461 return p;
1462}
1463EXPORT_SYMBOL(neigh_parms_alloc);
1464
1465static void neigh_rcu_free_parms(struct rcu_head *head)
1466{
1467 struct neigh_parms *parms =
1468 container_of(head, struct neigh_parms, rcu_head);
1469
1470 neigh_parms_put(parms);
1471}
1472
1473void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1474{
1475 struct neigh_parms **p;
1476
1477 if (!parms || parms == &tbl->parms)
1478 return;
1479 write_lock_bh(&tbl->lock);
1480 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1481 if (*p == parms) {
1482 *p = parms->next;
1483 parms->dead = 1;
1484 write_unlock_bh(&tbl->lock);
1485 if (parms->dev)
1486 dev_put(parms->dev);
1487 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1488 return;
1489 }
1490 }
1491 write_unlock_bh(&tbl->lock);
1492 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1493}
1494EXPORT_SYMBOL(neigh_parms_release);
1495
1496static void neigh_parms_destroy(struct neigh_parms *parms)
1497{
1498 release_net(neigh_parms_net(parms));
1499 kfree(parms);
1500}
1501
1502static struct lock_class_key neigh_table_proxy_queue_class;
1503
1504static void neigh_table_init_no_netlink(struct neigh_table *tbl)
1505{
1506 unsigned long now = jiffies;
1507 unsigned long phsize;
1508
1509 write_pnet(&tbl->parms.net, &init_net);
1510 atomic_set(&tbl->parms.refcnt, 1);
1511 tbl->parms.reachable_time =
1512 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1513
1514 tbl->stats = alloc_percpu(struct neigh_statistics);
1515 if (!tbl->stats)
1516 panic("cannot create neighbour cache statistics");
1517
1518#ifdef CONFIG_PROC_FS
1519 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1520 &neigh_stat_seq_fops, tbl))
1521 panic("cannot create neighbour proc dir entry");
1522#endif
1523
1524 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1525
1526 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1527 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1528
1529 if (!tbl->nht || !tbl->phash_buckets)
1530 panic("cannot allocate neighbour cache hashes");
1531
1532 rwlock_init(&tbl->lock);
1533 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1534 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1535 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1536 skb_queue_head_init_class(&tbl->proxy_queue,
1537 &neigh_table_proxy_queue_class);
1538
1539 tbl->last_flush = now;
1540 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1541}
1542
1543void neigh_table_init(struct neigh_table *tbl)
1544{
1545 struct neigh_table *tmp;
1546
1547 neigh_table_init_no_netlink(tbl);
1548 write_lock(&neigh_tbl_lock);
1549 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1550 if (tmp->family == tbl->family)
1551 break;
1552 }
1553 tbl->next = neigh_tables;
1554 neigh_tables = tbl;
1555 write_unlock(&neigh_tbl_lock);
1556
1557 if (unlikely(tmp)) {
1558 pr_err("Registering multiple tables for family %d\n",
1559 tbl->family);
1560 dump_stack();
1561 }
1562}
1563EXPORT_SYMBOL(neigh_table_init);
1564
1565int neigh_table_clear(struct neigh_table *tbl)
1566{
1567 struct neigh_table **tp;
1568
1569 /* It is not clean... Fix it to unload IPv6 module safely */
1570 cancel_delayed_work_sync(&tbl->gc_work);
1571 del_timer_sync(&tbl->proxy_timer);
1572 pneigh_queue_purge(&tbl->proxy_queue);
1573 neigh_ifdown(tbl, NULL);
1574 if (atomic_read(&tbl->entries))
1575 pr_crit("neighbour leakage\n");
1576 write_lock(&neigh_tbl_lock);
1577 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1578 if (*tp == tbl) {
1579 *tp = tbl->next;
1580 break;
1581 }
1582 }
1583 write_unlock(&neigh_tbl_lock);
1584
1585 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1586 neigh_hash_free_rcu);
1587 tbl->nht = NULL;
1588
1589 kfree(tbl->phash_buckets);
1590 tbl->phash_buckets = NULL;
1591
1592 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1593
1594 free_percpu(tbl->stats);
1595 tbl->stats = NULL;
1596
1597 return 0;
1598}
1599EXPORT_SYMBOL(neigh_table_clear);
1600
1601static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1602{
1603 struct net *net = sock_net(skb->sk);
1604 struct ndmsg *ndm;
1605 struct nlattr *dst_attr;
1606 struct neigh_table *tbl;
1607 struct net_device *dev = NULL;
1608 int err = -EINVAL;
1609
1610 ASSERT_RTNL();
1611 if (nlmsg_len(nlh) < sizeof(*ndm))
1612 goto out;
1613
1614 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1615 if (dst_attr == NULL)
1616 goto out;
1617
1618 ndm = nlmsg_data(nlh);
1619 if (ndm->ndm_ifindex) {
1620 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1621 if (dev == NULL) {
1622 err = -ENODEV;
1623 goto out;
1624 }
1625 }
1626
1627 read_lock(&neigh_tbl_lock);
1628 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1629 struct neighbour *neigh;
1630
1631 if (tbl->family != ndm->ndm_family)
1632 continue;
1633 read_unlock(&neigh_tbl_lock);
1634
1635 if (nla_len(dst_attr) < tbl->key_len)
1636 goto out;
1637
1638 if (ndm->ndm_flags & NTF_PROXY) {
1639 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1640 goto out;
1641 }
1642
1643 if (dev == NULL)
1644 goto out;
1645
1646 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1647 if (neigh == NULL) {
1648 err = -ENOENT;
1649 goto out;
1650 }
1651
1652 err = neigh_update(neigh, NULL, NUD_FAILED,
1653 NEIGH_UPDATE_F_OVERRIDE |
1654 NEIGH_UPDATE_F_ADMIN);
1655 neigh_release(neigh);
1656 goto out;
1657 }
1658 read_unlock(&neigh_tbl_lock);
1659 err = -EAFNOSUPPORT;
1660
1661out:
1662 return err;
1663}
1664
1665static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1666{
1667 struct net *net = sock_net(skb->sk);
1668 struct ndmsg *ndm;
1669 struct nlattr *tb[NDA_MAX+1];
1670 struct neigh_table *tbl;
1671 struct net_device *dev = NULL;
1672 int err;
1673
1674 ASSERT_RTNL();
1675 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1676 if (err < 0)
1677 goto out;
1678
1679 err = -EINVAL;
1680 if (tb[NDA_DST] == NULL)
1681 goto out;
1682
1683 ndm = nlmsg_data(nlh);
1684 if (ndm->ndm_ifindex) {
1685 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1686 if (dev == NULL) {
1687 err = -ENODEV;
1688 goto out;
1689 }
1690
1691 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1692 goto out;
1693 }
1694
1695 read_lock(&neigh_tbl_lock);
1696 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1697 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1698 struct neighbour *neigh;
1699 void *dst, *lladdr;
1700
1701 if (tbl->family != ndm->ndm_family)
1702 continue;
1703 read_unlock(&neigh_tbl_lock);
1704
1705 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1706 goto out;
1707 dst = nla_data(tb[NDA_DST]);
1708 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1709
1710 if (ndm->ndm_flags & NTF_PROXY) {
1711 struct pneigh_entry *pn;
1712
1713 err = -ENOBUFS;
1714 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1715 if (pn) {
1716 pn->flags = ndm->ndm_flags;
1717 err = 0;
1718 }
1719 goto out;
1720 }
1721
1722 if (dev == NULL)
1723 goto out;
1724
1725 neigh = neigh_lookup(tbl, dst, dev);
1726 if (neigh == NULL) {
1727 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1728 err = -ENOENT;
1729 goto out;
1730 }
1731
1732 neigh = __neigh_lookup_errno(tbl, dst, dev);
1733 if (IS_ERR(neigh)) {
1734 err = PTR_ERR(neigh);
1735 goto out;
1736 }
1737 } else {
1738 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1739 err = -EEXIST;
1740 neigh_release(neigh);
1741 goto out;
1742 }
1743
1744 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1745 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1746 }
1747
1748 if (ndm->ndm_flags & NTF_USE) {
1749 neigh_event_send(neigh, NULL);
1750 err = 0;
1751 } else
1752 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1753 neigh_release(neigh);
1754 goto out;
1755 }
1756
1757 read_unlock(&neigh_tbl_lock);
1758 err = -EAFNOSUPPORT;
1759out:
1760 return err;
1761}
1762
1763static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1764{
1765 struct nlattr *nest;
1766
1767 nest = nla_nest_start(skb, NDTA_PARMS);
1768 if (nest == NULL)
1769 return -ENOBUFS;
1770
1771 if ((parms->dev &&
1772 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1773 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1774 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) ||
1775 /* approximative value for deprecated QUEUE_LEN (in packets) */
1776 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1777 DIV_ROUND_UP(parms->queue_len_bytes,
1778 SKB_TRUESIZE(ETH_FRAME_LEN))) ||
1779 nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) ||
1780 nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) ||
1781 nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) ||
1782 nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) ||
1783 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1784 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1785 parms->base_reachable_time) ||
1786 nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) ||
1787 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1788 parms->delay_probe_time) ||
1789 nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) ||
1790 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) ||
1791 nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) ||
1792 nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime))
1793 goto nla_put_failure;
1794 return nla_nest_end(skb, nest);
1795
1796nla_put_failure:
1797 nla_nest_cancel(skb, nest);
1798 return -EMSGSIZE;
1799}
1800
1801static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1802 u32 pid, u32 seq, int type, int flags)
1803{
1804 struct nlmsghdr *nlh;
1805 struct ndtmsg *ndtmsg;
1806
1807 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1808 if (nlh == NULL)
1809 return -EMSGSIZE;
1810
1811 ndtmsg = nlmsg_data(nlh);
1812
1813 read_lock_bh(&tbl->lock);
1814 ndtmsg->ndtm_family = tbl->family;
1815 ndtmsg->ndtm_pad1 = 0;
1816 ndtmsg->ndtm_pad2 = 0;
1817
1818 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1819 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1820 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1821 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1822 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1823 goto nla_put_failure;
1824 {
1825 unsigned long now = jiffies;
1826 unsigned int flush_delta = now - tbl->last_flush;
1827 unsigned int rand_delta = now - tbl->last_rand;
1828 struct neigh_hash_table *nht;
1829 struct ndt_config ndc = {
1830 .ndtc_key_len = tbl->key_len,
1831 .ndtc_entry_size = tbl->entry_size,
1832 .ndtc_entries = atomic_read(&tbl->entries),
1833 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1834 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1835 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1836 };
1837
1838 rcu_read_lock_bh();
1839 nht = rcu_dereference_bh(tbl->nht);
1840 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1841 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1842 rcu_read_unlock_bh();
1843
1844 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1845 goto nla_put_failure;
1846 }
1847
1848 {
1849 int cpu;
1850 struct ndt_stats ndst;
1851
1852 memset(&ndst, 0, sizeof(ndst));
1853
1854 for_each_possible_cpu(cpu) {
1855 struct neigh_statistics *st;
1856
1857 st = per_cpu_ptr(tbl->stats, cpu);
1858 ndst.ndts_allocs += st->allocs;
1859 ndst.ndts_destroys += st->destroys;
1860 ndst.ndts_hash_grows += st->hash_grows;
1861 ndst.ndts_res_failed += st->res_failed;
1862 ndst.ndts_lookups += st->lookups;
1863 ndst.ndts_hits += st->hits;
1864 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1865 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1866 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1867 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1868 }
1869
1870 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1871 goto nla_put_failure;
1872 }
1873
1874 BUG_ON(tbl->parms.dev);
1875 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1876 goto nla_put_failure;
1877
1878 read_unlock_bh(&tbl->lock);
1879 return nlmsg_end(skb, nlh);
1880
1881nla_put_failure:
1882 read_unlock_bh(&tbl->lock);
1883 nlmsg_cancel(skb, nlh);
1884 return -EMSGSIZE;
1885}
1886
1887static int neightbl_fill_param_info(struct sk_buff *skb,
1888 struct neigh_table *tbl,
1889 struct neigh_parms *parms,
1890 u32 pid, u32 seq, int type,
1891 unsigned int flags)
1892{
1893 struct ndtmsg *ndtmsg;
1894 struct nlmsghdr *nlh;
1895
1896 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1897 if (nlh == NULL)
1898 return -EMSGSIZE;
1899
1900 ndtmsg = nlmsg_data(nlh);
1901
1902 read_lock_bh(&tbl->lock);
1903 ndtmsg->ndtm_family = tbl->family;
1904 ndtmsg->ndtm_pad1 = 0;
1905 ndtmsg->ndtm_pad2 = 0;
1906
1907 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1908 neightbl_fill_parms(skb, parms) < 0)
1909 goto errout;
1910
1911 read_unlock_bh(&tbl->lock);
1912 return nlmsg_end(skb, nlh);
1913errout:
1914 read_unlock_bh(&tbl->lock);
1915 nlmsg_cancel(skb, nlh);
1916 return -EMSGSIZE;
1917}
1918
1919static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1920 [NDTA_NAME] = { .type = NLA_STRING },
1921 [NDTA_THRESH1] = { .type = NLA_U32 },
1922 [NDTA_THRESH2] = { .type = NLA_U32 },
1923 [NDTA_THRESH3] = { .type = NLA_U32 },
1924 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1925 [NDTA_PARMS] = { .type = NLA_NESTED },
1926};
1927
1928static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1929 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1930 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1931 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1932 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1933 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1934 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1935 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1936 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1937 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1938 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1939 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1940 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1941 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1942};
1943
1944static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1945{
1946 struct net *net = sock_net(skb->sk);
1947 struct neigh_table *tbl;
1948 struct ndtmsg *ndtmsg;
1949 struct nlattr *tb[NDTA_MAX+1];
1950 int err;
1951
1952 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1953 nl_neightbl_policy);
1954 if (err < 0)
1955 goto errout;
1956
1957 if (tb[NDTA_NAME] == NULL) {
1958 err = -EINVAL;
1959 goto errout;
1960 }
1961
1962 ndtmsg = nlmsg_data(nlh);
1963 read_lock(&neigh_tbl_lock);
1964 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1965 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1966 continue;
1967
1968 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1969 break;
1970 }
1971
1972 if (tbl == NULL) {
1973 err = -ENOENT;
1974 goto errout_locked;
1975 }
1976
1977 /*
1978 * We acquire tbl->lock to be nice to the periodic timers and
1979 * make sure they always see a consistent set of values.
1980 */
1981 write_lock_bh(&tbl->lock);
1982
1983 if (tb[NDTA_PARMS]) {
1984 struct nlattr *tbp[NDTPA_MAX+1];
1985 struct neigh_parms *p;
1986 int i, ifindex = 0;
1987
1988 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1989 nl_ntbl_parm_policy);
1990 if (err < 0)
1991 goto errout_tbl_lock;
1992
1993 if (tbp[NDTPA_IFINDEX])
1994 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1995
1996 p = lookup_neigh_parms(tbl, net, ifindex);
1997 if (p == NULL) {
1998 err = -ENOENT;
1999 goto errout_tbl_lock;
2000 }
2001
2002 for (i = 1; i <= NDTPA_MAX; i++) {
2003 if (tbp[i] == NULL)
2004 continue;
2005
2006 switch (i) {
2007 case NDTPA_QUEUE_LEN:
2008 p->queue_len_bytes = nla_get_u32(tbp[i]) *
2009 SKB_TRUESIZE(ETH_FRAME_LEN);
2010 break;
2011 case NDTPA_QUEUE_LENBYTES:
2012 p->queue_len_bytes = nla_get_u32(tbp[i]);
2013 break;
2014 case NDTPA_PROXY_QLEN:
2015 p->proxy_qlen = nla_get_u32(tbp[i]);
2016 break;
2017 case NDTPA_APP_PROBES:
2018 p->app_probes = nla_get_u32(tbp[i]);
2019 break;
2020 case NDTPA_UCAST_PROBES:
2021 p->ucast_probes = nla_get_u32(tbp[i]);
2022 break;
2023 case NDTPA_MCAST_PROBES:
2024 p->mcast_probes = nla_get_u32(tbp[i]);
2025 break;
2026 case NDTPA_BASE_REACHABLE_TIME:
2027 p->base_reachable_time = nla_get_msecs(tbp[i]);
2028 break;
2029 case NDTPA_GC_STALETIME:
2030 p->gc_staletime = nla_get_msecs(tbp[i]);
2031 break;
2032 case NDTPA_DELAY_PROBE_TIME:
2033 p->delay_probe_time = nla_get_msecs(tbp[i]);
2034 break;
2035 case NDTPA_RETRANS_TIME:
2036 p->retrans_time = nla_get_msecs(tbp[i]);
2037 break;
2038 case NDTPA_ANYCAST_DELAY:
2039 p->anycast_delay = nla_get_msecs(tbp[i]);
2040 break;
2041 case NDTPA_PROXY_DELAY:
2042 p->proxy_delay = nla_get_msecs(tbp[i]);
2043 break;
2044 case NDTPA_LOCKTIME:
2045 p->locktime = nla_get_msecs(tbp[i]);
2046 break;
2047 }
2048 }
2049 }
2050
2051 if (tb[NDTA_THRESH1])
2052 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2053
2054 if (tb[NDTA_THRESH2])
2055 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2056
2057 if (tb[NDTA_THRESH3])
2058 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2059
2060 if (tb[NDTA_GC_INTERVAL])
2061 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2062
2063 err = 0;
2064
2065errout_tbl_lock:
2066 write_unlock_bh(&tbl->lock);
2067errout_locked:
2068 read_unlock(&neigh_tbl_lock);
2069errout:
2070 return err;
2071}
2072
2073static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2074{
2075 struct net *net = sock_net(skb->sk);
2076 int family, tidx, nidx = 0;
2077 int tbl_skip = cb->args[0];
2078 int neigh_skip = cb->args[1];
2079 struct neigh_table *tbl;
2080
2081 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2082
2083 read_lock(&neigh_tbl_lock);
2084 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2085 struct neigh_parms *p;
2086
2087 if (tidx < tbl_skip || (family && tbl->family != family))
2088 continue;
2089
2090 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2091 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2092 NLM_F_MULTI) <= 0)
2093 break;
2094
2095 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2096 if (!net_eq(neigh_parms_net(p), net))
2097 continue;
2098
2099 if (nidx < neigh_skip)
2100 goto next;
2101
2102 if (neightbl_fill_param_info(skb, tbl, p,
2103 NETLINK_CB(cb->skb).pid,
2104 cb->nlh->nlmsg_seq,
2105 RTM_NEWNEIGHTBL,
2106 NLM_F_MULTI) <= 0)
2107 goto out;
2108 next:
2109 nidx++;
2110 }
2111
2112 neigh_skip = 0;
2113 }
2114out:
2115 read_unlock(&neigh_tbl_lock);
2116 cb->args[0] = tidx;
2117 cb->args[1] = nidx;
2118
2119 return skb->len;
2120}
2121
2122static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2123 u32 pid, u32 seq, int type, unsigned int flags)
2124{
2125 unsigned long now = jiffies;
2126 struct nda_cacheinfo ci;
2127 struct nlmsghdr *nlh;
2128 struct ndmsg *ndm;
2129
2130 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2131 if (nlh == NULL)
2132 return -EMSGSIZE;
2133
2134 ndm = nlmsg_data(nlh);
2135 ndm->ndm_family = neigh->ops->family;
2136 ndm->ndm_pad1 = 0;
2137 ndm->ndm_pad2 = 0;
2138 ndm->ndm_flags = neigh->flags;
2139 ndm->ndm_type = neigh->type;
2140 ndm->ndm_ifindex = neigh->dev->ifindex;
2141
2142 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2143 goto nla_put_failure;
2144
2145 read_lock_bh(&neigh->lock);
2146 ndm->ndm_state = neigh->nud_state;
2147 if (neigh->nud_state & NUD_VALID) {
2148 char haddr[MAX_ADDR_LEN];
2149
2150 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2151 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2152 read_unlock_bh(&neigh->lock);
2153 goto nla_put_failure;
2154 }
2155 }
2156
2157 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2158 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2159 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2160 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2161 read_unlock_bh(&neigh->lock);
2162
2163 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2164 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2165 goto nla_put_failure;
2166
2167 return nlmsg_end(skb, nlh);
2168
2169nla_put_failure:
2170 nlmsg_cancel(skb, nlh);
2171 return -EMSGSIZE;
2172}
2173
2174static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2175 u32 pid, u32 seq, int type, unsigned int flags,
2176 struct neigh_table *tbl)
2177{
2178 struct nlmsghdr *nlh;
2179 struct ndmsg *ndm;
2180
2181 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2182 if (nlh == NULL)
2183 return -EMSGSIZE;
2184
2185 ndm = nlmsg_data(nlh);
2186 ndm->ndm_family = tbl->family;
2187 ndm->ndm_pad1 = 0;
2188 ndm->ndm_pad2 = 0;
2189 ndm->ndm_flags = pn->flags | NTF_PROXY;
2190 ndm->ndm_type = NDA_DST;
2191 ndm->ndm_ifindex = pn->dev->ifindex;
2192 ndm->ndm_state = NUD_NONE;
2193
2194 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2195 goto nla_put_failure;
2196
2197 return nlmsg_end(skb, nlh);
2198
2199nla_put_failure:
2200 nlmsg_cancel(skb, nlh);
2201 return -EMSGSIZE;
2202}
2203
2204static void neigh_update_notify(struct neighbour *neigh)
2205{
2206 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2207 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2208}
2209
2210static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2211 struct netlink_callback *cb)
2212{
2213 struct net *net = sock_net(skb->sk);
2214 struct neighbour *n;
2215 int rc, h, s_h = cb->args[1];
2216 int idx, s_idx = idx = cb->args[2];
2217 struct neigh_hash_table *nht;
2218
2219 rcu_read_lock_bh();
2220 nht = rcu_dereference_bh(tbl->nht);
2221
2222 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2223 if (h > s_h)
2224 s_idx = 0;
2225 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2226 n != NULL;
2227 n = rcu_dereference_bh(n->next)) {
2228 if (!net_eq(dev_net(n->dev), net))
2229 continue;
2230 if (idx < s_idx)
2231 goto next;
2232 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2233 cb->nlh->nlmsg_seq,
2234 RTM_NEWNEIGH,
2235 NLM_F_MULTI) <= 0) {
2236 rc = -1;
2237 goto out;
2238 }
2239next:
2240 idx++;
2241 }
2242 }
2243 rc = skb->len;
2244out:
2245 rcu_read_unlock_bh();
2246 cb->args[1] = h;
2247 cb->args[2] = idx;
2248 return rc;
2249}
2250
2251static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2252 struct netlink_callback *cb)
2253{
2254 struct pneigh_entry *n;
2255 struct net *net = sock_net(skb->sk);
2256 int rc, h, s_h = cb->args[3];
2257 int idx, s_idx = idx = cb->args[4];
2258
2259 read_lock_bh(&tbl->lock);
2260
2261 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2262 if (h > s_h)
2263 s_idx = 0;
2264 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2265 if (dev_net(n->dev) != net)
2266 continue;
2267 if (idx < s_idx)
2268 goto next;
2269 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2270 cb->nlh->nlmsg_seq,
2271 RTM_NEWNEIGH,
2272 NLM_F_MULTI, tbl) <= 0) {
2273 read_unlock_bh(&tbl->lock);
2274 rc = -1;
2275 goto out;
2276 }
2277 next:
2278 idx++;
2279 }
2280 }
2281
2282 read_unlock_bh(&tbl->lock);
2283 rc = skb->len;
2284out:
2285 cb->args[3] = h;
2286 cb->args[4] = idx;
2287 return rc;
2288
2289}
2290
2291static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2292{
2293 struct neigh_table *tbl;
2294 int t, family, s_t;
2295 int proxy = 0;
2296 int err;
2297
2298 read_lock(&neigh_tbl_lock);
2299 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2300
2301 /* check for full ndmsg structure presence, family member is
2302 * the same for both structures
2303 */
2304 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2305 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2306 proxy = 1;
2307
2308 s_t = cb->args[0];
2309
2310 for (tbl = neigh_tables, t = 0; tbl;
2311 tbl = tbl->next, t++) {
2312 if (t < s_t || (family && tbl->family != family))
2313 continue;
2314 if (t > s_t)
2315 memset(&cb->args[1], 0, sizeof(cb->args) -
2316 sizeof(cb->args[0]));
2317 if (proxy)
2318 err = pneigh_dump_table(tbl, skb, cb);
2319 else
2320 err = neigh_dump_table(tbl, skb, cb);
2321 if (err < 0)
2322 break;
2323 }
2324 read_unlock(&neigh_tbl_lock);
2325
2326 cb->args[0] = t;
2327 return skb->len;
2328}
2329
2330void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2331{
2332 int chain;
2333 struct neigh_hash_table *nht;
2334
2335 rcu_read_lock_bh();
2336 nht = rcu_dereference_bh(tbl->nht);
2337
2338 read_lock(&tbl->lock); /* avoid resizes */
2339 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2340 struct neighbour *n;
2341
2342 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2343 n != NULL;
2344 n = rcu_dereference_bh(n->next))
2345 cb(n, cookie);
2346 }
2347 read_unlock(&tbl->lock);
2348 rcu_read_unlock_bh();
2349}
2350EXPORT_SYMBOL(neigh_for_each);
2351
2352/* The tbl->lock must be held as a writer and BH disabled. */
2353void __neigh_for_each_release(struct neigh_table *tbl,
2354 int (*cb)(struct neighbour *))
2355{
2356 int chain;
2357 struct neigh_hash_table *nht;
2358
2359 nht = rcu_dereference_protected(tbl->nht,
2360 lockdep_is_held(&tbl->lock));
2361 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2362 struct neighbour *n;
2363 struct neighbour __rcu **np;
2364
2365 np = &nht->hash_buckets[chain];
2366 while ((n = rcu_dereference_protected(*np,
2367 lockdep_is_held(&tbl->lock))) != NULL) {
2368 int release;
2369
2370 write_lock(&n->lock);
2371 release = cb(n);
2372 if (release) {
2373 rcu_assign_pointer(*np,
2374 rcu_dereference_protected(n->next,
2375 lockdep_is_held(&tbl->lock)));
2376 n->dead = 1;
2377 } else
2378 np = &n->next;
2379 write_unlock(&n->lock);
2380 if (release)
2381 neigh_cleanup_and_release(n);
2382 }
2383 }
2384}
2385EXPORT_SYMBOL(__neigh_for_each_release);
2386
2387#ifdef CONFIG_PROC_FS
2388
2389static struct neighbour *neigh_get_first(struct seq_file *seq)
2390{
2391 struct neigh_seq_state *state = seq->private;
2392 struct net *net = seq_file_net(seq);
2393 struct neigh_hash_table *nht = state->nht;
2394 struct neighbour *n = NULL;
2395 int bucket = state->bucket;
2396
2397 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2398 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2399 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2400
2401 while (n) {
2402 if (!net_eq(dev_net(n->dev), net))
2403 goto next;
2404 if (state->neigh_sub_iter) {
2405 loff_t fakep = 0;
2406 void *v;
2407
2408 v = state->neigh_sub_iter(state, n, &fakep);
2409 if (!v)
2410 goto next;
2411 }
2412 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2413 break;
2414 if (n->nud_state & ~NUD_NOARP)
2415 break;
2416next:
2417 n = rcu_dereference_bh(n->next);
2418 }
2419
2420 if (n)
2421 break;
2422 }
2423 state->bucket = bucket;
2424
2425 return n;
2426}
2427
2428static struct neighbour *neigh_get_next(struct seq_file *seq,
2429 struct neighbour *n,
2430 loff_t *pos)
2431{
2432 struct neigh_seq_state *state = seq->private;
2433 struct net *net = seq_file_net(seq);
2434 struct neigh_hash_table *nht = state->nht;
2435
2436 if (state->neigh_sub_iter) {
2437 void *v = state->neigh_sub_iter(state, n, pos);
2438 if (v)
2439 return n;
2440 }
2441 n = rcu_dereference_bh(n->next);
2442
2443 while (1) {
2444 while (n) {
2445 if (!net_eq(dev_net(n->dev), net))
2446 goto next;
2447 if (state->neigh_sub_iter) {
2448 void *v = state->neigh_sub_iter(state, n, pos);
2449 if (v)
2450 return n;
2451 goto next;
2452 }
2453 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2454 break;
2455
2456 if (n->nud_state & ~NUD_NOARP)
2457 break;
2458next:
2459 n = rcu_dereference_bh(n->next);
2460 }
2461
2462 if (n)
2463 break;
2464
2465 if (++state->bucket >= (1 << nht->hash_shift))
2466 break;
2467
2468 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2469 }
2470
2471 if (n && pos)
2472 --(*pos);
2473 return n;
2474}
2475
2476static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2477{
2478 struct neighbour *n = neigh_get_first(seq);
2479
2480 if (n) {
2481 --(*pos);
2482 while (*pos) {
2483 n = neigh_get_next(seq, n, pos);
2484 if (!n)
2485 break;
2486 }
2487 }
2488 return *pos ? NULL : n;
2489}
2490
2491static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2492{
2493 struct neigh_seq_state *state = seq->private;
2494 struct net *net = seq_file_net(seq);
2495 struct neigh_table *tbl = state->tbl;
2496 struct pneigh_entry *pn = NULL;
2497 int bucket = state->bucket;
2498
2499 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2500 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2501 pn = tbl->phash_buckets[bucket];
2502 while (pn && !net_eq(pneigh_net(pn), net))
2503 pn = pn->next;
2504 if (pn)
2505 break;
2506 }
2507 state->bucket = bucket;
2508
2509 return pn;
2510}
2511
2512static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2513 struct pneigh_entry *pn,
2514 loff_t *pos)
2515{
2516 struct neigh_seq_state *state = seq->private;
2517 struct net *net = seq_file_net(seq);
2518 struct neigh_table *tbl = state->tbl;
2519
2520 do {
2521 pn = pn->next;
2522 } while (pn && !net_eq(pneigh_net(pn), net));
2523
2524 while (!pn) {
2525 if (++state->bucket > PNEIGH_HASHMASK)
2526 break;
2527 pn = tbl->phash_buckets[state->bucket];
2528 while (pn && !net_eq(pneigh_net(pn), net))
2529 pn = pn->next;
2530 if (pn)
2531 break;
2532 }
2533
2534 if (pn && pos)
2535 --(*pos);
2536
2537 return pn;
2538}
2539
2540static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2541{
2542 struct pneigh_entry *pn = pneigh_get_first(seq);
2543
2544 if (pn) {
2545 --(*pos);
2546 while (*pos) {
2547 pn = pneigh_get_next(seq, pn, pos);
2548 if (!pn)
2549 break;
2550 }
2551 }
2552 return *pos ? NULL : pn;
2553}
2554
2555static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2556{
2557 struct neigh_seq_state *state = seq->private;
2558 void *rc;
2559 loff_t idxpos = *pos;
2560
2561 rc = neigh_get_idx(seq, &idxpos);
2562 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2563 rc = pneigh_get_idx(seq, &idxpos);
2564
2565 return rc;
2566}
2567
2568void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2569 __acquires(rcu_bh)
2570{
2571 struct neigh_seq_state *state = seq->private;
2572
2573 state->tbl = tbl;
2574 state->bucket = 0;
2575 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2576
2577 rcu_read_lock_bh();
2578 state->nht = rcu_dereference_bh(tbl->nht);
2579
2580 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2581}
2582EXPORT_SYMBOL(neigh_seq_start);
2583
2584void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2585{
2586 struct neigh_seq_state *state;
2587 void *rc;
2588
2589 if (v == SEQ_START_TOKEN) {
2590 rc = neigh_get_first(seq);
2591 goto out;
2592 }
2593
2594 state = seq->private;
2595 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2596 rc = neigh_get_next(seq, v, NULL);
2597 if (rc)
2598 goto out;
2599 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2600 rc = pneigh_get_first(seq);
2601 } else {
2602 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2603 rc = pneigh_get_next(seq, v, NULL);
2604 }
2605out:
2606 ++(*pos);
2607 return rc;
2608}
2609EXPORT_SYMBOL(neigh_seq_next);
2610
2611void neigh_seq_stop(struct seq_file *seq, void *v)
2612 __releases(rcu_bh)
2613{
2614 rcu_read_unlock_bh();
2615}
2616EXPORT_SYMBOL(neigh_seq_stop);
2617
2618/* statistics via seq_file */
2619
2620static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2621{
2622 struct neigh_table *tbl = seq->private;
2623 int cpu;
2624
2625 if (*pos == 0)
2626 return SEQ_START_TOKEN;
2627
2628 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2629 if (!cpu_possible(cpu))
2630 continue;
2631 *pos = cpu+1;
2632 return per_cpu_ptr(tbl->stats, cpu);
2633 }
2634 return NULL;
2635}
2636
2637static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2638{
2639 struct neigh_table *tbl = seq->private;
2640 int cpu;
2641
2642 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2643 if (!cpu_possible(cpu))
2644 continue;
2645 *pos = cpu+1;
2646 return per_cpu_ptr(tbl->stats, cpu);
2647 }
2648 return NULL;
2649}
2650
2651static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2652{
2653
2654}
2655
2656static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2657{
2658 struct neigh_table *tbl = seq->private;
2659 struct neigh_statistics *st = v;
2660
2661 if (v == SEQ_START_TOKEN) {
2662 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2663 return 0;
2664 }
2665
2666 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2667 "%08lx %08lx %08lx %08lx %08lx\n",
2668 atomic_read(&tbl->entries),
2669
2670 st->allocs,
2671 st->destroys,
2672 st->hash_grows,
2673
2674 st->lookups,
2675 st->hits,
2676
2677 st->res_failed,
2678
2679 st->rcv_probes_mcast,
2680 st->rcv_probes_ucast,
2681
2682 st->periodic_gc_runs,
2683 st->forced_gc_runs,
2684 st->unres_discards
2685 );
2686
2687 return 0;
2688}
2689
2690static const struct seq_operations neigh_stat_seq_ops = {
2691 .start = neigh_stat_seq_start,
2692 .next = neigh_stat_seq_next,
2693 .stop = neigh_stat_seq_stop,
2694 .show = neigh_stat_seq_show,
2695};
2696
2697static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2698{
2699 int ret = seq_open(file, &neigh_stat_seq_ops);
2700
2701 if (!ret) {
2702 struct seq_file *sf = file->private_data;
2703 sf->private = PDE(inode)->data;
2704 }
2705 return ret;
2706};
2707
2708static const struct file_operations neigh_stat_seq_fops = {
2709 .owner = THIS_MODULE,
2710 .open = neigh_stat_seq_open,
2711 .read = seq_read,
2712 .llseek = seq_lseek,
2713 .release = seq_release,
2714};
2715
2716#endif /* CONFIG_PROC_FS */
2717
2718static inline size_t neigh_nlmsg_size(void)
2719{
2720 return NLMSG_ALIGN(sizeof(struct ndmsg))
2721 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2722 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2723 + nla_total_size(sizeof(struct nda_cacheinfo))
2724 + nla_total_size(4); /* NDA_PROBES */
2725}
2726
2727static void __neigh_notify(struct neighbour *n, int type, int flags)
2728{
2729 struct net *net = dev_net(n->dev);
2730 struct sk_buff *skb;
2731 int err = -ENOBUFS;
2732
2733 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2734 if (skb == NULL)
2735 goto errout;
2736
2737 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2738 if (err < 0) {
2739 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2740 WARN_ON(err == -EMSGSIZE);
2741 kfree_skb(skb);
2742 goto errout;
2743 }
2744 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2745 return;
2746errout:
2747 if (err < 0)
2748 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2749}
2750
2751#ifdef CONFIG_ARPD
2752void neigh_app_ns(struct neighbour *n)
2753{
2754 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2755}
2756EXPORT_SYMBOL(neigh_app_ns);
2757#endif /* CONFIG_ARPD */
2758
2759#ifdef CONFIG_SYSCTL
2760
2761static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer,
2762 size_t *lenp, loff_t *ppos)
2763{
2764 int size, ret;
2765 ctl_table tmp = *ctl;
2766
2767 tmp.data = &size;
2768 size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN));
2769 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
2770 if (write && !ret)
2771 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2772 return ret;
2773}
2774
2775enum {
2776 NEIGH_VAR_MCAST_PROBE,
2777 NEIGH_VAR_UCAST_PROBE,
2778 NEIGH_VAR_APP_PROBE,
2779 NEIGH_VAR_RETRANS_TIME,
2780 NEIGH_VAR_BASE_REACHABLE_TIME,
2781 NEIGH_VAR_DELAY_PROBE_TIME,
2782 NEIGH_VAR_GC_STALETIME,
2783 NEIGH_VAR_QUEUE_LEN,
2784 NEIGH_VAR_QUEUE_LEN_BYTES,
2785 NEIGH_VAR_PROXY_QLEN,
2786 NEIGH_VAR_ANYCAST_DELAY,
2787 NEIGH_VAR_PROXY_DELAY,
2788 NEIGH_VAR_LOCKTIME,
2789 NEIGH_VAR_RETRANS_TIME_MS,
2790 NEIGH_VAR_BASE_REACHABLE_TIME_MS,
2791 NEIGH_VAR_GC_INTERVAL,
2792 NEIGH_VAR_GC_THRESH1,
2793 NEIGH_VAR_GC_THRESH2,
2794 NEIGH_VAR_GC_THRESH3,
2795 NEIGH_VAR_MAX
2796};
2797
2798static struct neigh_sysctl_table {
2799 struct ctl_table_header *sysctl_header;
2800 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2801} neigh_sysctl_template __read_mostly = {
2802 .neigh_vars = {
2803 [NEIGH_VAR_MCAST_PROBE] = {
2804 .procname = "mcast_solicit",
2805 .maxlen = sizeof(int),
2806 .mode = 0644,
2807 .proc_handler = proc_dointvec,
2808 },
2809 [NEIGH_VAR_UCAST_PROBE] = {
2810 .procname = "ucast_solicit",
2811 .maxlen = sizeof(int),
2812 .mode = 0644,
2813 .proc_handler = proc_dointvec,
2814 },
2815 [NEIGH_VAR_APP_PROBE] = {
2816 .procname = "app_solicit",
2817 .maxlen = sizeof(int),
2818 .mode = 0644,
2819 .proc_handler = proc_dointvec,
2820 },
2821 [NEIGH_VAR_RETRANS_TIME] = {
2822 .procname = "retrans_time",
2823 .maxlen = sizeof(int),
2824 .mode = 0644,
2825 .proc_handler = proc_dointvec_userhz_jiffies,
2826 },
2827 [NEIGH_VAR_BASE_REACHABLE_TIME] = {
2828 .procname = "base_reachable_time",
2829 .maxlen = sizeof(int),
2830 .mode = 0644,
2831 .proc_handler = proc_dointvec_jiffies,
2832 },
2833 [NEIGH_VAR_DELAY_PROBE_TIME] = {
2834 .procname = "delay_first_probe_time",
2835 .maxlen = sizeof(int),
2836 .mode = 0644,
2837 .proc_handler = proc_dointvec_jiffies,
2838 },
2839 [NEIGH_VAR_GC_STALETIME] = {
2840 .procname = "gc_stale_time",
2841 .maxlen = sizeof(int),
2842 .mode = 0644,
2843 .proc_handler = proc_dointvec_jiffies,
2844 },
2845 [NEIGH_VAR_QUEUE_LEN] = {
2846 .procname = "unres_qlen",
2847 .maxlen = sizeof(int),
2848 .mode = 0644,
2849 .proc_handler = proc_unres_qlen,
2850 },
2851 [NEIGH_VAR_QUEUE_LEN_BYTES] = {
2852 .procname = "unres_qlen_bytes",
2853 .maxlen = sizeof(int),
2854 .mode = 0644,
2855 .proc_handler = proc_dointvec,
2856 },
2857 [NEIGH_VAR_PROXY_QLEN] = {
2858 .procname = "proxy_qlen",
2859 .maxlen = sizeof(int),
2860 .mode = 0644,
2861 .proc_handler = proc_dointvec,
2862 },
2863 [NEIGH_VAR_ANYCAST_DELAY] = {
2864 .procname = "anycast_delay",
2865 .maxlen = sizeof(int),
2866 .mode = 0644,
2867 .proc_handler = proc_dointvec_userhz_jiffies,
2868 },
2869 [NEIGH_VAR_PROXY_DELAY] = {
2870 .procname = "proxy_delay",
2871 .maxlen = sizeof(int),
2872 .mode = 0644,
2873 .proc_handler = proc_dointvec_userhz_jiffies,
2874 },
2875 [NEIGH_VAR_LOCKTIME] = {
2876 .procname = "locktime",
2877 .maxlen = sizeof(int),
2878 .mode = 0644,
2879 .proc_handler = proc_dointvec_userhz_jiffies,
2880 },
2881 [NEIGH_VAR_RETRANS_TIME_MS] = {
2882 .procname = "retrans_time_ms",
2883 .maxlen = sizeof(int),
2884 .mode = 0644,
2885 .proc_handler = proc_dointvec_ms_jiffies,
2886 },
2887 [NEIGH_VAR_BASE_REACHABLE_TIME_MS] = {
2888 .procname = "base_reachable_time_ms",
2889 .maxlen = sizeof(int),
2890 .mode = 0644,
2891 .proc_handler = proc_dointvec_ms_jiffies,
2892 },
2893 [NEIGH_VAR_GC_INTERVAL] = {
2894 .procname = "gc_interval",
2895 .maxlen = sizeof(int),
2896 .mode = 0644,
2897 .proc_handler = proc_dointvec_jiffies,
2898 },
2899 [NEIGH_VAR_GC_THRESH1] = {
2900 .procname = "gc_thresh1",
2901 .maxlen = sizeof(int),
2902 .mode = 0644,
2903 .proc_handler = proc_dointvec,
2904 },
2905 [NEIGH_VAR_GC_THRESH2] = {
2906 .procname = "gc_thresh2",
2907 .maxlen = sizeof(int),
2908 .mode = 0644,
2909 .proc_handler = proc_dointvec,
2910 },
2911 [NEIGH_VAR_GC_THRESH3] = {
2912 .procname = "gc_thresh3",
2913 .maxlen = sizeof(int),
2914 .mode = 0644,
2915 .proc_handler = proc_dointvec,
2916 },
2917 {},
2918 },
2919};
2920
2921int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2922 char *p_name, proc_handler *handler)
2923{
2924 struct neigh_sysctl_table *t;
2925 const char *dev_name_source = NULL;
2926 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
2927
2928 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2929 if (!t)
2930 goto err;
2931
2932 t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data = &p->mcast_probes;
2933 t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data = &p->ucast_probes;
2934 t->neigh_vars[NEIGH_VAR_APP_PROBE].data = &p->app_probes;
2935 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data = &p->retrans_time;
2936 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data = &p->base_reachable_time;
2937 t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data = &p->delay_probe_time;
2938 t->neigh_vars[NEIGH_VAR_GC_STALETIME].data = &p->gc_staletime;
2939 t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data = &p->queue_len_bytes;
2940 t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data = &p->queue_len_bytes;
2941 t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data = &p->proxy_qlen;
2942 t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data = &p->anycast_delay;
2943 t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay;
2944 t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime;
2945 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data = &p->retrans_time;
2946 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data = &p->base_reachable_time;
2947
2948 if (dev) {
2949 dev_name_source = dev->name;
2950 /* Terminate the table early */
2951 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
2952 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
2953 } else {
2954 dev_name_source = "default";
2955 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
2956 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
2957 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
2958 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
2959 }
2960
2961
2962 if (handler) {
2963 /* RetransTime */
2964 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
2965 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev;
2966 /* ReachableTime */
2967 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
2968 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev;
2969 /* RetransTime (in milliseconds)*/
2970 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
2971 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev;
2972 /* ReachableTime (in milliseconds) */
2973 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
2974 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev;
2975 }
2976
2977 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
2978 p_name, dev_name_source);
2979 t->sysctl_header =
2980 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
2981 if (!t->sysctl_header)
2982 goto free;
2983
2984 p->sysctl_table = t;
2985 return 0;
2986
2987free:
2988 kfree(t);
2989err:
2990 return -ENOBUFS;
2991}
2992EXPORT_SYMBOL(neigh_sysctl_register);
2993
2994void neigh_sysctl_unregister(struct neigh_parms *p)
2995{
2996 if (p->sysctl_table) {
2997 struct neigh_sysctl_table *t = p->sysctl_table;
2998 p->sysctl_table = NULL;
2999 unregister_net_sysctl_table(t->sysctl_header);
3000 kfree(t);
3001 }
3002}
3003EXPORT_SYMBOL(neigh_sysctl_unregister);
3004
3005#endif /* CONFIG_SYSCTL */
3006
3007static int __init neigh_init(void)
3008{
3009 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3010 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3011 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3012
3013 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3014 NULL);
3015 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3016
3017 return 0;
3018}
3019
3020subsys_initcall(neigh_init);
3021
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Generic address resolution entity
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 *
9 * Fixes:
10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
11 * Harald Welte Add neighbour cache statistics like rtstat
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/slab.h>
17#include <linux/kmemleak.h>
18#include <linux/types.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/socket.h>
22#include <linux/netdevice.h>
23#include <linux/proc_fs.h>
24#ifdef CONFIG_SYSCTL
25#include <linux/sysctl.h>
26#endif
27#include <linux/times.h>
28#include <net/net_namespace.h>
29#include <net/neighbour.h>
30#include <net/arp.h>
31#include <net/dst.h>
32#include <net/sock.h>
33#include <net/netevent.h>
34#include <net/netlink.h>
35#include <linux/rtnetlink.h>
36#include <linux/random.h>
37#include <linux/string.h>
38#include <linux/log2.h>
39#include <linux/inetdevice.h>
40#include <net/addrconf.h>
41
42#include <trace/events/neigh.h>
43
44#define NEIGH_DEBUG 1
45#define neigh_dbg(level, fmt, ...) \
46do { \
47 if (level <= NEIGH_DEBUG) \
48 pr_debug(fmt, ##__VA_ARGS__); \
49} while (0)
50
51#define PNEIGH_HASHMASK 0xF
52
53static void neigh_timer_handler(struct timer_list *t);
54static void __neigh_notify(struct neighbour *n, int type, int flags,
55 u32 pid);
56static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
57static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
58 struct net_device *dev);
59
60#ifdef CONFIG_PROC_FS
61static const struct seq_operations neigh_stat_seq_ops;
62#endif
63
64/*
65 Neighbour hash table buckets are protected with rwlock tbl->lock.
66
67 - All the scans/updates to hash buckets MUST be made under this lock.
68 - NOTHING clever should be made under this lock: no callbacks
69 to protocol backends, no attempts to send something to network.
70 It will result in deadlocks, if backend/driver wants to use neighbour
71 cache.
72 - If the entry requires some non-trivial actions, increase
73 its reference count and release table lock.
74
75 Neighbour entries are protected:
76 - with reference count.
77 - with rwlock neigh->lock
78
79 Reference count prevents destruction.
80
81 neigh->lock mainly serializes ll address data and its validity state.
82 However, the same lock is used to protect another entry fields:
83 - timer
84 - resolution queue
85
86 Again, nothing clever shall be made under neigh->lock,
87 the most complicated procedure, which we allow is dev->hard_header.
88 It is supposed, that dev->hard_header is simplistic and does
89 not make callbacks to neighbour tables.
90 */
91
92static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
93{
94 kfree_skb(skb);
95 return -ENETDOWN;
96}
97
98static void neigh_cleanup_and_release(struct neighbour *neigh)
99{
100 trace_neigh_cleanup_and_release(neigh, 0);
101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
103 neigh_release(neigh);
104}
105
106/*
107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
108 * It corresponds to default IPv6 settings and is not overridable,
109 * because it is really reasonable choice.
110 */
111
112unsigned long neigh_rand_reach_time(unsigned long base)
113{
114 return base ? get_random_u32_below(base) + (base >> 1) : 0;
115}
116EXPORT_SYMBOL(neigh_rand_reach_time);
117
118static void neigh_mark_dead(struct neighbour *n)
119{
120 n->dead = 1;
121 if (!list_empty(&n->gc_list)) {
122 list_del_init(&n->gc_list);
123 atomic_dec(&n->tbl->gc_entries);
124 }
125 if (!list_empty(&n->managed_list))
126 list_del_init(&n->managed_list);
127}
128
129static void neigh_update_gc_list(struct neighbour *n)
130{
131 bool on_gc_list, exempt_from_gc;
132
133 write_lock_bh(&n->tbl->lock);
134 write_lock(&n->lock);
135 if (n->dead)
136 goto out;
137
138 /* remove from the gc list if new state is permanent or if neighbor
139 * is externally learned; otherwise entry should be on the gc list
140 */
141 exempt_from_gc = n->nud_state & NUD_PERMANENT ||
142 n->flags & NTF_EXT_LEARNED;
143 on_gc_list = !list_empty(&n->gc_list);
144
145 if (exempt_from_gc && on_gc_list) {
146 list_del_init(&n->gc_list);
147 atomic_dec(&n->tbl->gc_entries);
148 } else if (!exempt_from_gc && !on_gc_list) {
149 /* add entries to the tail; cleaning removes from the front */
150 list_add_tail(&n->gc_list, &n->tbl->gc_list);
151 atomic_inc(&n->tbl->gc_entries);
152 }
153out:
154 write_unlock(&n->lock);
155 write_unlock_bh(&n->tbl->lock);
156}
157
158static void neigh_update_managed_list(struct neighbour *n)
159{
160 bool on_managed_list, add_to_managed;
161
162 write_lock_bh(&n->tbl->lock);
163 write_lock(&n->lock);
164 if (n->dead)
165 goto out;
166
167 add_to_managed = n->flags & NTF_MANAGED;
168 on_managed_list = !list_empty(&n->managed_list);
169
170 if (!add_to_managed && on_managed_list)
171 list_del_init(&n->managed_list);
172 else if (add_to_managed && !on_managed_list)
173 list_add_tail(&n->managed_list, &n->tbl->managed_list);
174out:
175 write_unlock(&n->lock);
176 write_unlock_bh(&n->tbl->lock);
177}
178
179static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
180 bool *gc_update, bool *managed_update)
181{
182 u32 ndm_flags, old_flags = neigh->flags;
183
184 if (!(flags & NEIGH_UPDATE_F_ADMIN))
185 return;
186
187 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
188 ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
189
190 if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
191 if (ndm_flags & NTF_EXT_LEARNED)
192 neigh->flags |= NTF_EXT_LEARNED;
193 else
194 neigh->flags &= ~NTF_EXT_LEARNED;
195 *notify = 1;
196 *gc_update = true;
197 }
198 if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
199 if (ndm_flags & NTF_MANAGED)
200 neigh->flags |= NTF_MANAGED;
201 else
202 neigh->flags &= ~NTF_MANAGED;
203 *notify = 1;
204 *managed_update = true;
205 }
206}
207
208static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np,
209 struct neigh_table *tbl)
210{
211 bool retval = false;
212
213 write_lock(&n->lock);
214 if (refcount_read(&n->refcnt) == 1) {
215 struct neighbour *neigh;
216
217 neigh = rcu_dereference_protected(n->next,
218 lockdep_is_held(&tbl->lock));
219 rcu_assign_pointer(*np, neigh);
220 neigh_mark_dead(n);
221 retval = true;
222 }
223 write_unlock(&n->lock);
224 if (retval)
225 neigh_cleanup_and_release(n);
226 return retval;
227}
228
229bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl)
230{
231 struct neigh_hash_table *nht;
232 void *pkey = ndel->primary_key;
233 u32 hash_val;
234 struct neighbour *n;
235 struct neighbour __rcu **np;
236
237 nht = rcu_dereference_protected(tbl->nht,
238 lockdep_is_held(&tbl->lock));
239 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd);
240 hash_val = hash_val >> (32 - nht->hash_shift);
241
242 np = &nht->hash_buckets[hash_val];
243 while ((n = rcu_dereference_protected(*np,
244 lockdep_is_held(&tbl->lock)))) {
245 if (n == ndel)
246 return neigh_del(n, np, tbl);
247 np = &n->next;
248 }
249 return false;
250}
251
252static int neigh_forced_gc(struct neigh_table *tbl)
253{
254 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2;
255 unsigned long tref = jiffies - 5 * HZ;
256 struct neighbour *n, *tmp;
257 int shrunk = 0;
258
259 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
260
261 write_lock_bh(&tbl->lock);
262
263 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
264 if (refcount_read(&n->refcnt) == 1) {
265 bool remove = false;
266
267 write_lock(&n->lock);
268 if ((n->nud_state == NUD_FAILED) ||
269 (n->nud_state == NUD_NOARP) ||
270 (tbl->is_multicast &&
271 tbl->is_multicast(n->primary_key)) ||
272 !time_in_range(n->updated, tref, jiffies))
273 remove = true;
274 write_unlock(&n->lock);
275
276 if (remove && neigh_remove_one(n, tbl))
277 shrunk++;
278 if (shrunk >= max_clean)
279 break;
280 }
281 }
282
283 tbl->last_flush = jiffies;
284
285 write_unlock_bh(&tbl->lock);
286
287 return shrunk;
288}
289
290static void neigh_add_timer(struct neighbour *n, unsigned long when)
291{
292 /* Use safe distance from the jiffies - LONG_MAX point while timer
293 * is running in DELAY/PROBE state but still show to user space
294 * large times in the past.
295 */
296 unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
297
298 neigh_hold(n);
299 if (!time_in_range(n->confirmed, mint, jiffies))
300 n->confirmed = mint;
301 if (time_before(n->used, n->confirmed))
302 n->used = n->confirmed;
303 if (unlikely(mod_timer(&n->timer, when))) {
304 printk("NEIGH: BUG, double timer add, state is %x\n",
305 n->nud_state);
306 dump_stack();
307 }
308}
309
310static int neigh_del_timer(struct neighbour *n)
311{
312 if ((n->nud_state & NUD_IN_TIMER) &&
313 del_timer(&n->timer)) {
314 neigh_release(n);
315 return 1;
316 }
317 return 0;
318}
319
320static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
321 int family)
322{
323 switch (family) {
324 case AF_INET:
325 return __in_dev_arp_parms_get_rcu(dev);
326 case AF_INET6:
327 return __in6_dev_nd_parms_get_rcu(dev);
328 }
329 return NULL;
330}
331
332static void neigh_parms_qlen_dec(struct net_device *dev, int family)
333{
334 struct neigh_parms *p;
335
336 rcu_read_lock();
337 p = neigh_get_dev_parms_rcu(dev, family);
338 if (p)
339 p->qlen--;
340 rcu_read_unlock();
341}
342
343static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
344 int family)
345{
346 struct sk_buff_head tmp;
347 unsigned long flags;
348 struct sk_buff *skb;
349
350 skb_queue_head_init(&tmp);
351 spin_lock_irqsave(&list->lock, flags);
352 skb = skb_peek(list);
353 while (skb != NULL) {
354 struct sk_buff *skb_next = skb_peek_next(skb, list);
355 struct net_device *dev = skb->dev;
356
357 if (net == NULL || net_eq(dev_net(dev), net)) {
358 neigh_parms_qlen_dec(dev, family);
359 __skb_unlink(skb, list);
360 __skb_queue_tail(&tmp, skb);
361 }
362 skb = skb_next;
363 }
364 spin_unlock_irqrestore(&list->lock, flags);
365
366 while ((skb = __skb_dequeue(&tmp))) {
367 dev_put(skb->dev);
368 kfree_skb(skb);
369 }
370}
371
372static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
373 bool skip_perm)
374{
375 int i;
376 struct neigh_hash_table *nht;
377
378 nht = rcu_dereference_protected(tbl->nht,
379 lockdep_is_held(&tbl->lock));
380
381 for (i = 0; i < (1 << nht->hash_shift); i++) {
382 struct neighbour *n;
383 struct neighbour __rcu **np = &nht->hash_buckets[i];
384
385 while ((n = rcu_dereference_protected(*np,
386 lockdep_is_held(&tbl->lock))) != NULL) {
387 if (dev && n->dev != dev) {
388 np = &n->next;
389 continue;
390 }
391 if (skip_perm && n->nud_state & NUD_PERMANENT) {
392 np = &n->next;
393 continue;
394 }
395 rcu_assign_pointer(*np,
396 rcu_dereference_protected(n->next,
397 lockdep_is_held(&tbl->lock)));
398 write_lock(&n->lock);
399 neigh_del_timer(n);
400 neigh_mark_dead(n);
401 if (refcount_read(&n->refcnt) != 1) {
402 /* The most unpleasant situation.
403 We must destroy neighbour entry,
404 but someone still uses it.
405
406 The destroy will be delayed until
407 the last user releases us, but
408 we must kill timers etc. and move
409 it to safe state.
410 */
411 __skb_queue_purge(&n->arp_queue);
412 n->arp_queue_len_bytes = 0;
413 n->output = neigh_blackhole;
414 if (n->nud_state & NUD_VALID)
415 n->nud_state = NUD_NOARP;
416 else
417 n->nud_state = NUD_NONE;
418 neigh_dbg(2, "neigh %p is stray\n", n);
419 }
420 write_unlock(&n->lock);
421 neigh_cleanup_and_release(n);
422 }
423 }
424}
425
426void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
427{
428 write_lock_bh(&tbl->lock);
429 neigh_flush_dev(tbl, dev, false);
430 write_unlock_bh(&tbl->lock);
431}
432EXPORT_SYMBOL(neigh_changeaddr);
433
434static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
435 bool skip_perm)
436{
437 write_lock_bh(&tbl->lock);
438 neigh_flush_dev(tbl, dev, skip_perm);
439 pneigh_ifdown_and_unlock(tbl, dev);
440 pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
441 tbl->family);
442 if (skb_queue_empty_lockless(&tbl->proxy_queue))
443 del_timer_sync(&tbl->proxy_timer);
444 return 0;
445}
446
447int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
448{
449 __neigh_ifdown(tbl, dev, true);
450 return 0;
451}
452EXPORT_SYMBOL(neigh_carrier_down);
453
454int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
455{
456 __neigh_ifdown(tbl, dev, false);
457 return 0;
458}
459EXPORT_SYMBOL(neigh_ifdown);
460
461static struct neighbour *neigh_alloc(struct neigh_table *tbl,
462 struct net_device *dev,
463 u32 flags, bool exempt_from_gc)
464{
465 struct neighbour *n = NULL;
466 unsigned long now = jiffies;
467 int entries;
468
469 if (exempt_from_gc)
470 goto do_alloc;
471
472 entries = atomic_inc_return(&tbl->gc_entries) - 1;
473 if (entries >= tbl->gc_thresh3 ||
474 (entries >= tbl->gc_thresh2 &&
475 time_after(now, tbl->last_flush + 5 * HZ))) {
476 if (!neigh_forced_gc(tbl) &&
477 entries >= tbl->gc_thresh3) {
478 net_info_ratelimited("%s: neighbor table overflow!\n",
479 tbl->id);
480 NEIGH_CACHE_STAT_INC(tbl, table_fulls);
481 goto out_entries;
482 }
483 }
484
485do_alloc:
486 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
487 if (!n)
488 goto out_entries;
489
490 __skb_queue_head_init(&n->arp_queue);
491 rwlock_init(&n->lock);
492 seqlock_init(&n->ha_lock);
493 n->updated = n->used = now;
494 n->nud_state = NUD_NONE;
495 n->output = neigh_blackhole;
496 n->flags = flags;
497 seqlock_init(&n->hh.hh_lock);
498 n->parms = neigh_parms_clone(&tbl->parms);
499 timer_setup(&n->timer, neigh_timer_handler, 0);
500
501 NEIGH_CACHE_STAT_INC(tbl, allocs);
502 n->tbl = tbl;
503 refcount_set(&n->refcnt, 1);
504 n->dead = 1;
505 INIT_LIST_HEAD(&n->gc_list);
506 INIT_LIST_HEAD(&n->managed_list);
507
508 atomic_inc(&tbl->entries);
509out:
510 return n;
511
512out_entries:
513 if (!exempt_from_gc)
514 atomic_dec(&tbl->gc_entries);
515 goto out;
516}
517
518static void neigh_get_hash_rnd(u32 *x)
519{
520 *x = get_random_u32() | 1;
521}
522
523static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
524{
525 size_t size = (1 << shift) * sizeof(struct neighbour *);
526 struct neigh_hash_table *ret;
527 struct neighbour __rcu **buckets;
528 int i;
529
530 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
531 if (!ret)
532 return NULL;
533 if (size <= PAGE_SIZE) {
534 buckets = kzalloc(size, GFP_ATOMIC);
535 } else {
536 buckets = (struct neighbour __rcu **)
537 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
538 get_order(size));
539 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC);
540 }
541 if (!buckets) {
542 kfree(ret);
543 return NULL;
544 }
545 ret->hash_buckets = buckets;
546 ret->hash_shift = shift;
547 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
548 neigh_get_hash_rnd(&ret->hash_rnd[i]);
549 return ret;
550}
551
552static void neigh_hash_free_rcu(struct rcu_head *head)
553{
554 struct neigh_hash_table *nht = container_of(head,
555 struct neigh_hash_table,
556 rcu);
557 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
558 struct neighbour __rcu **buckets = nht->hash_buckets;
559
560 if (size <= PAGE_SIZE) {
561 kfree(buckets);
562 } else {
563 kmemleak_free(buckets);
564 free_pages((unsigned long)buckets, get_order(size));
565 }
566 kfree(nht);
567}
568
569static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
570 unsigned long new_shift)
571{
572 unsigned int i, hash;
573 struct neigh_hash_table *new_nht, *old_nht;
574
575 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
576
577 old_nht = rcu_dereference_protected(tbl->nht,
578 lockdep_is_held(&tbl->lock));
579 new_nht = neigh_hash_alloc(new_shift);
580 if (!new_nht)
581 return old_nht;
582
583 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
584 struct neighbour *n, *next;
585
586 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
587 lockdep_is_held(&tbl->lock));
588 n != NULL;
589 n = next) {
590 hash = tbl->hash(n->primary_key, n->dev,
591 new_nht->hash_rnd);
592
593 hash >>= (32 - new_nht->hash_shift);
594 next = rcu_dereference_protected(n->next,
595 lockdep_is_held(&tbl->lock));
596
597 rcu_assign_pointer(n->next,
598 rcu_dereference_protected(
599 new_nht->hash_buckets[hash],
600 lockdep_is_held(&tbl->lock)));
601 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
602 }
603 }
604
605 rcu_assign_pointer(tbl->nht, new_nht);
606 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
607 return new_nht;
608}
609
610struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
611 struct net_device *dev)
612{
613 struct neighbour *n;
614
615 NEIGH_CACHE_STAT_INC(tbl, lookups);
616
617 rcu_read_lock_bh();
618 n = __neigh_lookup_noref(tbl, pkey, dev);
619 if (n) {
620 if (!refcount_inc_not_zero(&n->refcnt))
621 n = NULL;
622 NEIGH_CACHE_STAT_INC(tbl, hits);
623 }
624
625 rcu_read_unlock_bh();
626 return n;
627}
628EXPORT_SYMBOL(neigh_lookup);
629
630struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
631 const void *pkey)
632{
633 struct neighbour *n;
634 unsigned int key_len = tbl->key_len;
635 u32 hash_val;
636 struct neigh_hash_table *nht;
637
638 NEIGH_CACHE_STAT_INC(tbl, lookups);
639
640 rcu_read_lock_bh();
641 nht = rcu_dereference_bh(tbl->nht);
642 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
643
644 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
645 n != NULL;
646 n = rcu_dereference_bh(n->next)) {
647 if (!memcmp(n->primary_key, pkey, key_len) &&
648 net_eq(dev_net(n->dev), net)) {
649 if (!refcount_inc_not_zero(&n->refcnt))
650 n = NULL;
651 NEIGH_CACHE_STAT_INC(tbl, hits);
652 break;
653 }
654 }
655
656 rcu_read_unlock_bh();
657 return n;
658}
659EXPORT_SYMBOL(neigh_lookup_nodev);
660
661static struct neighbour *
662___neigh_create(struct neigh_table *tbl, const void *pkey,
663 struct net_device *dev, u32 flags,
664 bool exempt_from_gc, bool want_ref)
665{
666 u32 hash_val, key_len = tbl->key_len;
667 struct neighbour *n1, *rc, *n;
668 struct neigh_hash_table *nht;
669 int error;
670
671 n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
672 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
673 if (!n) {
674 rc = ERR_PTR(-ENOBUFS);
675 goto out;
676 }
677
678 memcpy(n->primary_key, pkey, key_len);
679 n->dev = dev;
680 netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
681
682 /* Protocol specific setup. */
683 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
684 rc = ERR_PTR(error);
685 goto out_neigh_release;
686 }
687
688 if (dev->netdev_ops->ndo_neigh_construct) {
689 error = dev->netdev_ops->ndo_neigh_construct(dev, n);
690 if (error < 0) {
691 rc = ERR_PTR(error);
692 goto out_neigh_release;
693 }
694 }
695
696 /* Device specific setup. */
697 if (n->parms->neigh_setup &&
698 (error = n->parms->neigh_setup(n)) < 0) {
699 rc = ERR_PTR(error);
700 goto out_neigh_release;
701 }
702
703 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
704
705 write_lock_bh(&tbl->lock);
706 nht = rcu_dereference_protected(tbl->nht,
707 lockdep_is_held(&tbl->lock));
708
709 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
710 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
711
712 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
713
714 if (n->parms->dead) {
715 rc = ERR_PTR(-EINVAL);
716 goto out_tbl_unlock;
717 }
718
719 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
720 lockdep_is_held(&tbl->lock));
721 n1 != NULL;
722 n1 = rcu_dereference_protected(n1->next,
723 lockdep_is_held(&tbl->lock))) {
724 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
725 if (want_ref)
726 neigh_hold(n1);
727 rc = n1;
728 goto out_tbl_unlock;
729 }
730 }
731
732 n->dead = 0;
733 if (!exempt_from_gc)
734 list_add_tail(&n->gc_list, &n->tbl->gc_list);
735 if (n->flags & NTF_MANAGED)
736 list_add_tail(&n->managed_list, &n->tbl->managed_list);
737 if (want_ref)
738 neigh_hold(n);
739 rcu_assign_pointer(n->next,
740 rcu_dereference_protected(nht->hash_buckets[hash_val],
741 lockdep_is_held(&tbl->lock)));
742 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
743 write_unlock_bh(&tbl->lock);
744 neigh_dbg(2, "neigh %p is created\n", n);
745 rc = n;
746out:
747 return rc;
748out_tbl_unlock:
749 write_unlock_bh(&tbl->lock);
750out_neigh_release:
751 if (!exempt_from_gc)
752 atomic_dec(&tbl->gc_entries);
753 neigh_release(n);
754 goto out;
755}
756
757struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
758 struct net_device *dev, bool want_ref)
759{
760 return ___neigh_create(tbl, pkey, dev, 0, false, want_ref);
761}
762EXPORT_SYMBOL(__neigh_create);
763
764static u32 pneigh_hash(const void *pkey, unsigned int key_len)
765{
766 u32 hash_val = *(u32 *)(pkey + key_len - 4);
767 hash_val ^= (hash_val >> 16);
768 hash_val ^= hash_val >> 8;
769 hash_val ^= hash_val >> 4;
770 hash_val &= PNEIGH_HASHMASK;
771 return hash_val;
772}
773
774static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
775 struct net *net,
776 const void *pkey,
777 unsigned int key_len,
778 struct net_device *dev)
779{
780 while (n) {
781 if (!memcmp(n->key, pkey, key_len) &&
782 net_eq(pneigh_net(n), net) &&
783 (n->dev == dev || !n->dev))
784 return n;
785 n = n->next;
786 }
787 return NULL;
788}
789
790struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
791 struct net *net, const void *pkey, struct net_device *dev)
792{
793 unsigned int key_len = tbl->key_len;
794 u32 hash_val = pneigh_hash(pkey, key_len);
795
796 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
797 net, pkey, key_len, dev);
798}
799EXPORT_SYMBOL_GPL(__pneigh_lookup);
800
801struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
802 struct net *net, const void *pkey,
803 struct net_device *dev, int creat)
804{
805 struct pneigh_entry *n;
806 unsigned int key_len = tbl->key_len;
807 u32 hash_val = pneigh_hash(pkey, key_len);
808
809 read_lock_bh(&tbl->lock);
810 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
811 net, pkey, key_len, dev);
812 read_unlock_bh(&tbl->lock);
813
814 if (n || !creat)
815 goto out;
816
817 ASSERT_RTNL();
818
819 n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
820 if (!n)
821 goto out;
822
823 write_pnet(&n->net, net);
824 memcpy(n->key, pkey, key_len);
825 n->dev = dev;
826 netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
827
828 if (tbl->pconstructor && tbl->pconstructor(n)) {
829 netdev_put(dev, &n->dev_tracker);
830 kfree(n);
831 n = NULL;
832 goto out;
833 }
834
835 write_lock_bh(&tbl->lock);
836 n->next = tbl->phash_buckets[hash_val];
837 tbl->phash_buckets[hash_val] = n;
838 write_unlock_bh(&tbl->lock);
839out:
840 return n;
841}
842EXPORT_SYMBOL(pneigh_lookup);
843
844
845int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
846 struct net_device *dev)
847{
848 struct pneigh_entry *n, **np;
849 unsigned int key_len = tbl->key_len;
850 u32 hash_val = pneigh_hash(pkey, key_len);
851
852 write_lock_bh(&tbl->lock);
853 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
854 np = &n->next) {
855 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
856 net_eq(pneigh_net(n), net)) {
857 *np = n->next;
858 write_unlock_bh(&tbl->lock);
859 if (tbl->pdestructor)
860 tbl->pdestructor(n);
861 netdev_put(n->dev, &n->dev_tracker);
862 kfree(n);
863 return 0;
864 }
865 }
866 write_unlock_bh(&tbl->lock);
867 return -ENOENT;
868}
869
870static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
871 struct net_device *dev)
872{
873 struct pneigh_entry *n, **np, *freelist = NULL;
874 u32 h;
875
876 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
877 np = &tbl->phash_buckets[h];
878 while ((n = *np) != NULL) {
879 if (!dev || n->dev == dev) {
880 *np = n->next;
881 n->next = freelist;
882 freelist = n;
883 continue;
884 }
885 np = &n->next;
886 }
887 }
888 write_unlock_bh(&tbl->lock);
889 while ((n = freelist)) {
890 freelist = n->next;
891 n->next = NULL;
892 if (tbl->pdestructor)
893 tbl->pdestructor(n);
894 netdev_put(n->dev, &n->dev_tracker);
895 kfree(n);
896 }
897 return -ENOENT;
898}
899
900static void neigh_parms_destroy(struct neigh_parms *parms);
901
902static inline void neigh_parms_put(struct neigh_parms *parms)
903{
904 if (refcount_dec_and_test(&parms->refcnt))
905 neigh_parms_destroy(parms);
906}
907
908/*
909 * neighbour must already be out of the table;
910 *
911 */
912void neigh_destroy(struct neighbour *neigh)
913{
914 struct net_device *dev = neigh->dev;
915
916 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
917
918 if (!neigh->dead) {
919 pr_warn("Destroying alive neighbour %p\n", neigh);
920 dump_stack();
921 return;
922 }
923
924 if (neigh_del_timer(neigh))
925 pr_warn("Impossible event\n");
926
927 write_lock_bh(&neigh->lock);
928 __skb_queue_purge(&neigh->arp_queue);
929 write_unlock_bh(&neigh->lock);
930 neigh->arp_queue_len_bytes = 0;
931
932 if (dev->netdev_ops->ndo_neigh_destroy)
933 dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
934
935 netdev_put(dev, &neigh->dev_tracker);
936 neigh_parms_put(neigh->parms);
937
938 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
939
940 atomic_dec(&neigh->tbl->entries);
941 kfree_rcu(neigh, rcu);
942}
943EXPORT_SYMBOL(neigh_destroy);
944
945/* Neighbour state is suspicious;
946 disable fast path.
947
948 Called with write_locked neigh.
949 */
950static void neigh_suspect(struct neighbour *neigh)
951{
952 neigh_dbg(2, "neigh %p is suspected\n", neigh);
953
954 neigh->output = neigh->ops->output;
955}
956
957/* Neighbour state is OK;
958 enable fast path.
959
960 Called with write_locked neigh.
961 */
962static void neigh_connect(struct neighbour *neigh)
963{
964 neigh_dbg(2, "neigh %p is connected\n", neigh);
965
966 neigh->output = neigh->ops->connected_output;
967}
968
969static void neigh_periodic_work(struct work_struct *work)
970{
971 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
972 struct neighbour *n;
973 struct neighbour __rcu **np;
974 unsigned int i;
975 struct neigh_hash_table *nht;
976
977 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
978
979 write_lock_bh(&tbl->lock);
980 nht = rcu_dereference_protected(tbl->nht,
981 lockdep_is_held(&tbl->lock));
982
983 /*
984 * periodically recompute ReachableTime from random function
985 */
986
987 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
988 struct neigh_parms *p;
989 tbl->last_rand = jiffies;
990 list_for_each_entry(p, &tbl->parms_list, list)
991 p->reachable_time =
992 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
993 }
994
995 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
996 goto out;
997
998 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
999 np = &nht->hash_buckets[i];
1000
1001 while ((n = rcu_dereference_protected(*np,
1002 lockdep_is_held(&tbl->lock))) != NULL) {
1003 unsigned int state;
1004
1005 write_lock(&n->lock);
1006
1007 state = n->nud_state;
1008 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
1009 (n->flags & NTF_EXT_LEARNED)) {
1010 write_unlock(&n->lock);
1011 goto next_elt;
1012 }
1013
1014 if (time_before(n->used, n->confirmed) &&
1015 time_is_before_eq_jiffies(n->confirmed))
1016 n->used = n->confirmed;
1017
1018 if (refcount_read(&n->refcnt) == 1 &&
1019 (state == NUD_FAILED ||
1020 !time_in_range_open(jiffies, n->used,
1021 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
1022 *np = n->next;
1023 neigh_mark_dead(n);
1024 write_unlock(&n->lock);
1025 neigh_cleanup_and_release(n);
1026 continue;
1027 }
1028 write_unlock(&n->lock);
1029
1030next_elt:
1031 np = &n->next;
1032 }
1033 /*
1034 * It's fine to release lock here, even if hash table
1035 * grows while we are preempted.
1036 */
1037 write_unlock_bh(&tbl->lock);
1038 cond_resched();
1039 write_lock_bh(&tbl->lock);
1040 nht = rcu_dereference_protected(tbl->nht,
1041 lockdep_is_held(&tbl->lock));
1042 }
1043out:
1044 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
1045 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
1046 * BASE_REACHABLE_TIME.
1047 */
1048 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1049 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
1050 write_unlock_bh(&tbl->lock);
1051}
1052
1053static __inline__ int neigh_max_probes(struct neighbour *n)
1054{
1055 struct neigh_parms *p = n->parms;
1056 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
1057 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
1058 NEIGH_VAR(p, MCAST_PROBES));
1059}
1060
1061static void neigh_invalidate(struct neighbour *neigh)
1062 __releases(neigh->lock)
1063 __acquires(neigh->lock)
1064{
1065 struct sk_buff *skb;
1066
1067 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
1068 neigh_dbg(2, "neigh %p is failed\n", neigh);
1069 neigh->updated = jiffies;
1070
1071 /* It is very thin place. report_unreachable is very complicated
1072 routine. Particularly, it can hit the same neighbour entry!
1073
1074 So that, we try to be accurate and avoid dead loop. --ANK
1075 */
1076 while (neigh->nud_state == NUD_FAILED &&
1077 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1078 write_unlock(&neigh->lock);
1079 neigh->ops->error_report(neigh, skb);
1080 write_lock(&neigh->lock);
1081 }
1082 __skb_queue_purge(&neigh->arp_queue);
1083 neigh->arp_queue_len_bytes = 0;
1084}
1085
1086static void neigh_probe(struct neighbour *neigh)
1087 __releases(neigh->lock)
1088{
1089 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
1090 /* keep skb alive even if arp_queue overflows */
1091 if (skb)
1092 skb = skb_clone(skb, GFP_ATOMIC);
1093 write_unlock(&neigh->lock);
1094 if (neigh->ops->solicit)
1095 neigh->ops->solicit(neigh, skb);
1096 atomic_inc(&neigh->probes);
1097 consume_skb(skb);
1098}
1099
1100/* Called when a timer expires for a neighbour entry. */
1101
1102static void neigh_timer_handler(struct timer_list *t)
1103{
1104 unsigned long now, next;
1105 struct neighbour *neigh = from_timer(neigh, t, timer);
1106 unsigned int state;
1107 int notify = 0;
1108
1109 write_lock(&neigh->lock);
1110
1111 state = neigh->nud_state;
1112 now = jiffies;
1113 next = now + HZ;
1114
1115 if (!(state & NUD_IN_TIMER))
1116 goto out;
1117
1118 if (state & NUD_REACHABLE) {
1119 if (time_before_eq(now,
1120 neigh->confirmed + neigh->parms->reachable_time)) {
1121 neigh_dbg(2, "neigh %p is still alive\n", neigh);
1122 next = neigh->confirmed + neigh->parms->reachable_time;
1123 } else if (time_before_eq(now,
1124 neigh->used +
1125 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1126 neigh_dbg(2, "neigh %p is delayed\n", neigh);
1127 neigh->nud_state = NUD_DELAY;
1128 neigh->updated = jiffies;
1129 neigh_suspect(neigh);
1130 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
1131 } else {
1132 neigh_dbg(2, "neigh %p is suspected\n", neigh);
1133 neigh->nud_state = NUD_STALE;
1134 neigh->updated = jiffies;
1135 neigh_suspect(neigh);
1136 notify = 1;
1137 }
1138 } else if (state & NUD_DELAY) {
1139 if (time_before_eq(now,
1140 neigh->confirmed +
1141 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1142 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
1143 neigh->nud_state = NUD_REACHABLE;
1144 neigh->updated = jiffies;
1145 neigh_connect(neigh);
1146 notify = 1;
1147 next = neigh->confirmed + neigh->parms->reachable_time;
1148 } else {
1149 neigh_dbg(2, "neigh %p is probed\n", neigh);
1150 neigh->nud_state = NUD_PROBE;
1151 neigh->updated = jiffies;
1152 atomic_set(&neigh->probes, 0);
1153 notify = 1;
1154 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1155 HZ/100);
1156 }
1157 } else {
1158 /* NUD_PROBE|NUD_INCOMPLETE */
1159 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
1160 }
1161
1162 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
1163 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
1164 neigh->nud_state = NUD_FAILED;
1165 notify = 1;
1166 neigh_invalidate(neigh);
1167 goto out;
1168 }
1169
1170 if (neigh->nud_state & NUD_IN_TIMER) {
1171 if (time_before(next, jiffies + HZ/100))
1172 next = jiffies + HZ/100;
1173 if (!mod_timer(&neigh->timer, next))
1174 neigh_hold(neigh);
1175 }
1176 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
1177 neigh_probe(neigh);
1178 } else {
1179out:
1180 write_unlock(&neigh->lock);
1181 }
1182
1183 if (notify)
1184 neigh_update_notify(neigh, 0);
1185
1186 trace_neigh_timer_handler(neigh, 0);
1187
1188 neigh_release(neigh);
1189}
1190
1191int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
1192 const bool immediate_ok)
1193{
1194 int rc;
1195 bool immediate_probe = false;
1196
1197 write_lock_bh(&neigh->lock);
1198
1199 rc = 0;
1200 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1201 goto out_unlock_bh;
1202 if (neigh->dead)
1203 goto out_dead;
1204
1205 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1206 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1207 NEIGH_VAR(neigh->parms, APP_PROBES)) {
1208 unsigned long next, now = jiffies;
1209
1210 atomic_set(&neigh->probes,
1211 NEIGH_VAR(neigh->parms, UCAST_PROBES));
1212 neigh_del_timer(neigh);
1213 neigh->nud_state = NUD_INCOMPLETE;
1214 neigh->updated = now;
1215 if (!immediate_ok) {
1216 next = now + 1;
1217 } else {
1218 immediate_probe = true;
1219 next = now + max(NEIGH_VAR(neigh->parms,
1220 RETRANS_TIME),
1221 HZ / 100);
1222 }
1223 neigh_add_timer(neigh, next);
1224 } else {
1225 neigh->nud_state = NUD_FAILED;
1226 neigh->updated = jiffies;
1227 write_unlock_bh(&neigh->lock);
1228
1229 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
1230 return 1;
1231 }
1232 } else if (neigh->nud_state & NUD_STALE) {
1233 neigh_dbg(2, "neigh %p is delayed\n", neigh);
1234 neigh_del_timer(neigh);
1235 neigh->nud_state = NUD_DELAY;
1236 neigh->updated = jiffies;
1237 neigh_add_timer(neigh, jiffies +
1238 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1239 }
1240
1241 if (neigh->nud_state == NUD_INCOMPLETE) {
1242 if (skb) {
1243 while (neigh->arp_queue_len_bytes + skb->truesize >
1244 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1245 struct sk_buff *buff;
1246
1247 buff = __skb_dequeue(&neigh->arp_queue);
1248 if (!buff)
1249 break;
1250 neigh->arp_queue_len_bytes -= buff->truesize;
1251 kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
1252 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1253 }
1254 skb_dst_force(skb);
1255 __skb_queue_tail(&neigh->arp_queue, skb);
1256 neigh->arp_queue_len_bytes += skb->truesize;
1257 }
1258 rc = 1;
1259 }
1260out_unlock_bh:
1261 if (immediate_probe)
1262 neigh_probe(neigh);
1263 else
1264 write_unlock(&neigh->lock);
1265 local_bh_enable();
1266 trace_neigh_event_send_done(neigh, rc);
1267 return rc;
1268
1269out_dead:
1270 if (neigh->nud_state & NUD_STALE)
1271 goto out_unlock_bh;
1272 write_unlock_bh(&neigh->lock);
1273 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
1274 trace_neigh_event_send_dead(neigh, 1);
1275 return 1;
1276}
1277EXPORT_SYMBOL(__neigh_event_send);
1278
1279static void neigh_update_hhs(struct neighbour *neigh)
1280{
1281 struct hh_cache *hh;
1282 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1283 = NULL;
1284
1285 if (neigh->dev->header_ops)
1286 update = neigh->dev->header_ops->cache_update;
1287
1288 if (update) {
1289 hh = &neigh->hh;
1290 if (READ_ONCE(hh->hh_len)) {
1291 write_seqlock_bh(&hh->hh_lock);
1292 update(hh, neigh->dev, neigh->ha);
1293 write_sequnlock_bh(&hh->hh_lock);
1294 }
1295 }
1296}
1297
1298/* Generic update routine.
1299 -- lladdr is new lladdr or NULL, if it is not supplied.
1300 -- new is new state.
1301 -- flags
1302 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1303 if it is different.
1304 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1305 lladdr instead of overriding it
1306 if it is different.
1307 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1308 NEIGH_UPDATE_F_USE means that the entry is user triggered.
1309 NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed.
1310 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1311 NTF_ROUTER flag.
1312 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1313 a router.
1314
1315 Caller MUST hold reference count on the entry.
1316 */
1317static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
1318 u8 new, u32 flags, u32 nlmsg_pid,
1319 struct netlink_ext_ack *extack)
1320{
1321 bool gc_update = false, managed_update = false;
1322 int update_isrouter = 0;
1323 struct net_device *dev;
1324 int err, notify = 0;
1325 u8 old;
1326
1327 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
1328
1329 write_lock_bh(&neigh->lock);
1330
1331 dev = neigh->dev;
1332 old = neigh->nud_state;
1333 err = -EPERM;
1334
1335 if (neigh->dead) {
1336 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
1337 new = old;
1338 goto out;
1339 }
1340 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1341 (old & (NUD_NOARP | NUD_PERMANENT)))
1342 goto out;
1343
1344 neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update);
1345 if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
1346 new = old & ~NUD_PERMANENT;
1347 neigh->nud_state = new;
1348 err = 0;
1349 goto out;
1350 }
1351
1352 if (!(new & NUD_VALID)) {
1353 neigh_del_timer(neigh);
1354 if (old & NUD_CONNECTED)
1355 neigh_suspect(neigh);
1356 neigh->nud_state = new;
1357 err = 0;
1358 notify = old & NUD_VALID;
1359 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1360 (new & NUD_FAILED)) {
1361 neigh_invalidate(neigh);
1362 notify = 1;
1363 }
1364 goto out;
1365 }
1366
1367 /* Compare new lladdr with cached one */
1368 if (!dev->addr_len) {
1369 /* First case: device needs no address. */
1370 lladdr = neigh->ha;
1371 } else if (lladdr) {
1372 /* The second case: if something is already cached
1373 and a new address is proposed:
1374 - compare new & old
1375 - if they are different, check override flag
1376 */
1377 if ((old & NUD_VALID) &&
1378 !memcmp(lladdr, neigh->ha, dev->addr_len))
1379 lladdr = neigh->ha;
1380 } else {
1381 /* No address is supplied; if we know something,
1382 use it, otherwise discard the request.
1383 */
1384 err = -EINVAL;
1385 if (!(old & NUD_VALID)) {
1386 NL_SET_ERR_MSG(extack, "No link layer address given");
1387 goto out;
1388 }
1389 lladdr = neigh->ha;
1390 }
1391
1392 /* Update confirmed timestamp for neighbour entry after we
1393 * received ARP packet even if it doesn't change IP to MAC binding.
1394 */
1395 if (new & NUD_CONNECTED)
1396 neigh->confirmed = jiffies;
1397
1398 /* If entry was valid and address is not changed,
1399 do not change entry state, if new one is STALE.
1400 */
1401 err = 0;
1402 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1403 if (old & NUD_VALID) {
1404 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1405 update_isrouter = 0;
1406 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1407 (old & NUD_CONNECTED)) {
1408 lladdr = neigh->ha;
1409 new = NUD_STALE;
1410 } else
1411 goto out;
1412 } else {
1413 if (lladdr == neigh->ha && new == NUD_STALE &&
1414 !(flags & NEIGH_UPDATE_F_ADMIN))
1415 new = old;
1416 }
1417 }
1418
1419 /* Update timestamp only once we know we will make a change to the
1420 * neighbour entry. Otherwise we risk to move the locktime window with
1421 * noop updates and ignore relevant ARP updates.
1422 */
1423 if (new != old || lladdr != neigh->ha)
1424 neigh->updated = jiffies;
1425
1426 if (new != old) {
1427 neigh_del_timer(neigh);
1428 if (new & NUD_PROBE)
1429 atomic_set(&neigh->probes, 0);
1430 if (new & NUD_IN_TIMER)
1431 neigh_add_timer(neigh, (jiffies +
1432 ((new & NUD_REACHABLE) ?
1433 neigh->parms->reachable_time :
1434 0)));
1435 neigh->nud_state = new;
1436 notify = 1;
1437 }
1438
1439 if (lladdr != neigh->ha) {
1440 write_seqlock(&neigh->ha_lock);
1441 memcpy(&neigh->ha, lladdr, dev->addr_len);
1442 write_sequnlock(&neigh->ha_lock);
1443 neigh_update_hhs(neigh);
1444 if (!(new & NUD_CONNECTED))
1445 neigh->confirmed = jiffies -
1446 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1447 notify = 1;
1448 }
1449 if (new == old)
1450 goto out;
1451 if (new & NUD_CONNECTED)
1452 neigh_connect(neigh);
1453 else
1454 neigh_suspect(neigh);
1455 if (!(old & NUD_VALID)) {
1456 struct sk_buff *skb;
1457
1458 /* Again: avoid dead loop if something went wrong */
1459
1460 while (neigh->nud_state & NUD_VALID &&
1461 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1462 struct dst_entry *dst = skb_dst(skb);
1463 struct neighbour *n2, *n1 = neigh;
1464 write_unlock_bh(&neigh->lock);
1465
1466 rcu_read_lock();
1467
1468 /* Why not just use 'neigh' as-is? The problem is that
1469 * things such as shaper, eql, and sch_teql can end up
1470 * using alternative, different, neigh objects to output
1471 * the packet in the output path. So what we need to do
1472 * here is re-lookup the top-level neigh in the path so
1473 * we can reinject the packet there.
1474 */
1475 n2 = NULL;
1476 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
1477 n2 = dst_neigh_lookup_skb(dst, skb);
1478 if (n2)
1479 n1 = n2;
1480 }
1481 n1->output(n1, skb);
1482 if (n2)
1483 neigh_release(n2);
1484 rcu_read_unlock();
1485
1486 write_lock_bh(&neigh->lock);
1487 }
1488 __skb_queue_purge(&neigh->arp_queue);
1489 neigh->arp_queue_len_bytes = 0;
1490 }
1491out:
1492 if (update_isrouter)
1493 neigh_update_is_router(neigh, flags, ¬ify);
1494 write_unlock_bh(&neigh->lock);
1495 if (((new ^ old) & NUD_PERMANENT) || gc_update)
1496 neigh_update_gc_list(neigh);
1497 if (managed_update)
1498 neigh_update_managed_list(neigh);
1499 if (notify)
1500 neigh_update_notify(neigh, nlmsg_pid);
1501 trace_neigh_update_done(neigh, err);
1502 return err;
1503}
1504
1505int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1506 u32 flags, u32 nlmsg_pid)
1507{
1508 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
1509}
1510EXPORT_SYMBOL(neigh_update);
1511
1512/* Update the neigh to listen temporarily for probe responses, even if it is
1513 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1514 */
1515void __neigh_set_probe_once(struct neighbour *neigh)
1516{
1517 if (neigh->dead)
1518 return;
1519 neigh->updated = jiffies;
1520 if (!(neigh->nud_state & NUD_FAILED))
1521 return;
1522 neigh->nud_state = NUD_INCOMPLETE;
1523 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1524 neigh_add_timer(neigh,
1525 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1526 HZ/100));
1527}
1528EXPORT_SYMBOL(__neigh_set_probe_once);
1529
1530struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1531 u8 *lladdr, void *saddr,
1532 struct net_device *dev)
1533{
1534 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1535 lladdr || !dev->addr_len);
1536 if (neigh)
1537 neigh_update(neigh, lladdr, NUD_STALE,
1538 NEIGH_UPDATE_F_OVERRIDE, 0);
1539 return neigh;
1540}
1541EXPORT_SYMBOL(neigh_event_ns);
1542
1543/* called with read_lock_bh(&n->lock); */
1544static void neigh_hh_init(struct neighbour *n)
1545{
1546 struct net_device *dev = n->dev;
1547 __be16 prot = n->tbl->protocol;
1548 struct hh_cache *hh = &n->hh;
1549
1550 write_lock_bh(&n->lock);
1551
1552 /* Only one thread can come in here and initialize the
1553 * hh_cache entry.
1554 */
1555 if (!hh->hh_len)
1556 dev->header_ops->cache(n, hh, prot);
1557
1558 write_unlock_bh(&n->lock);
1559}
1560
1561/* Slow and careful. */
1562
1563int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1564{
1565 int rc = 0;
1566
1567 if (!neigh_event_send(neigh, skb)) {
1568 int err;
1569 struct net_device *dev = neigh->dev;
1570 unsigned int seq;
1571
1572 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
1573 neigh_hh_init(neigh);
1574
1575 do {
1576 __skb_pull(skb, skb_network_offset(skb));
1577 seq = read_seqbegin(&neigh->ha_lock);
1578 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1579 neigh->ha, NULL, skb->len);
1580 } while (read_seqretry(&neigh->ha_lock, seq));
1581
1582 if (err >= 0)
1583 rc = dev_queue_xmit(skb);
1584 else
1585 goto out_kfree_skb;
1586 }
1587out:
1588 return rc;
1589out_kfree_skb:
1590 rc = -EINVAL;
1591 kfree_skb(skb);
1592 goto out;
1593}
1594EXPORT_SYMBOL(neigh_resolve_output);
1595
1596/* As fast as possible without hh cache */
1597
1598int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1599{
1600 struct net_device *dev = neigh->dev;
1601 unsigned int seq;
1602 int err;
1603
1604 do {
1605 __skb_pull(skb, skb_network_offset(skb));
1606 seq = read_seqbegin(&neigh->ha_lock);
1607 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1608 neigh->ha, NULL, skb->len);
1609 } while (read_seqretry(&neigh->ha_lock, seq));
1610
1611 if (err >= 0)
1612 err = dev_queue_xmit(skb);
1613 else {
1614 err = -EINVAL;
1615 kfree_skb(skb);
1616 }
1617 return err;
1618}
1619EXPORT_SYMBOL(neigh_connected_output);
1620
1621int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1622{
1623 return dev_queue_xmit(skb);
1624}
1625EXPORT_SYMBOL(neigh_direct_output);
1626
1627static void neigh_managed_work(struct work_struct *work)
1628{
1629 struct neigh_table *tbl = container_of(work, struct neigh_table,
1630 managed_work.work);
1631 struct neighbour *neigh;
1632
1633 write_lock_bh(&tbl->lock);
1634 list_for_each_entry(neigh, &tbl->managed_list, managed_list)
1635 neigh_event_send_probe(neigh, NULL, false);
1636 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
1637 NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
1638 write_unlock_bh(&tbl->lock);
1639}
1640
1641static void neigh_proxy_process(struct timer_list *t)
1642{
1643 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1644 long sched_next = 0;
1645 unsigned long now = jiffies;
1646 struct sk_buff *skb, *n;
1647
1648 spin_lock(&tbl->proxy_queue.lock);
1649
1650 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1651 long tdif = NEIGH_CB(skb)->sched_next - now;
1652
1653 if (tdif <= 0) {
1654 struct net_device *dev = skb->dev;
1655
1656 neigh_parms_qlen_dec(dev, tbl->family);
1657 __skb_unlink(skb, &tbl->proxy_queue);
1658
1659 if (tbl->proxy_redo && netif_running(dev)) {
1660 rcu_read_lock();
1661 tbl->proxy_redo(skb);
1662 rcu_read_unlock();
1663 } else {
1664 kfree_skb(skb);
1665 }
1666
1667 dev_put(dev);
1668 } else if (!sched_next || tdif < sched_next)
1669 sched_next = tdif;
1670 }
1671 del_timer(&tbl->proxy_timer);
1672 if (sched_next)
1673 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1674 spin_unlock(&tbl->proxy_queue.lock);
1675}
1676
1677void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1678 struct sk_buff *skb)
1679{
1680 unsigned long sched_next = jiffies +
1681 get_random_u32_below(NEIGH_VAR(p, PROXY_DELAY));
1682
1683 if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1684 kfree_skb(skb);
1685 return;
1686 }
1687
1688 NEIGH_CB(skb)->sched_next = sched_next;
1689 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1690
1691 spin_lock(&tbl->proxy_queue.lock);
1692 if (del_timer(&tbl->proxy_timer)) {
1693 if (time_before(tbl->proxy_timer.expires, sched_next))
1694 sched_next = tbl->proxy_timer.expires;
1695 }
1696 skb_dst_drop(skb);
1697 dev_hold(skb->dev);
1698 __skb_queue_tail(&tbl->proxy_queue, skb);
1699 p->qlen++;
1700 mod_timer(&tbl->proxy_timer, sched_next);
1701 spin_unlock(&tbl->proxy_queue.lock);
1702}
1703EXPORT_SYMBOL(pneigh_enqueue);
1704
1705static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1706 struct net *net, int ifindex)
1707{
1708 struct neigh_parms *p;
1709
1710 list_for_each_entry(p, &tbl->parms_list, list) {
1711 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1712 (!p->dev && !ifindex && net_eq(net, &init_net)))
1713 return p;
1714 }
1715
1716 return NULL;
1717}
1718
1719struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1720 struct neigh_table *tbl)
1721{
1722 struct neigh_parms *p;
1723 struct net *net = dev_net(dev);
1724 const struct net_device_ops *ops = dev->netdev_ops;
1725
1726 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1727 if (p) {
1728 p->tbl = tbl;
1729 refcount_set(&p->refcnt, 1);
1730 p->reachable_time =
1731 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1732 p->qlen = 0;
1733 netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
1734 p->dev = dev;
1735 write_pnet(&p->net, net);
1736 p->sysctl_table = NULL;
1737
1738 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1739 netdev_put(dev, &p->dev_tracker);
1740 kfree(p);
1741 return NULL;
1742 }
1743
1744 write_lock_bh(&tbl->lock);
1745 list_add(&p->list, &tbl->parms.list);
1746 write_unlock_bh(&tbl->lock);
1747
1748 neigh_parms_data_state_cleanall(p);
1749 }
1750 return p;
1751}
1752EXPORT_SYMBOL(neigh_parms_alloc);
1753
1754static void neigh_rcu_free_parms(struct rcu_head *head)
1755{
1756 struct neigh_parms *parms =
1757 container_of(head, struct neigh_parms, rcu_head);
1758
1759 neigh_parms_put(parms);
1760}
1761
1762void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1763{
1764 if (!parms || parms == &tbl->parms)
1765 return;
1766 write_lock_bh(&tbl->lock);
1767 list_del(&parms->list);
1768 parms->dead = 1;
1769 write_unlock_bh(&tbl->lock);
1770 netdev_put(parms->dev, &parms->dev_tracker);
1771 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1772}
1773EXPORT_SYMBOL(neigh_parms_release);
1774
1775static void neigh_parms_destroy(struct neigh_parms *parms)
1776{
1777 kfree(parms);
1778}
1779
1780static struct lock_class_key neigh_table_proxy_queue_class;
1781
1782static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1783
1784void neigh_table_init(int index, struct neigh_table *tbl)
1785{
1786 unsigned long now = jiffies;
1787 unsigned long phsize;
1788
1789 INIT_LIST_HEAD(&tbl->parms_list);
1790 INIT_LIST_HEAD(&tbl->gc_list);
1791 INIT_LIST_HEAD(&tbl->managed_list);
1792
1793 list_add(&tbl->parms.list, &tbl->parms_list);
1794 write_pnet(&tbl->parms.net, &init_net);
1795 refcount_set(&tbl->parms.refcnt, 1);
1796 tbl->parms.reachable_time =
1797 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1798 tbl->parms.qlen = 0;
1799
1800 tbl->stats = alloc_percpu(struct neigh_statistics);
1801 if (!tbl->stats)
1802 panic("cannot create neighbour cache statistics");
1803
1804#ifdef CONFIG_PROC_FS
1805 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
1806 &neigh_stat_seq_ops, tbl))
1807 panic("cannot create neighbour proc dir entry");
1808#endif
1809
1810 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1811
1812 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1813 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1814
1815 if (!tbl->nht || !tbl->phash_buckets)
1816 panic("cannot allocate neighbour cache hashes");
1817
1818 if (!tbl->entry_size)
1819 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1820 tbl->key_len, NEIGH_PRIV_ALIGN);
1821 else
1822 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1823
1824 rwlock_init(&tbl->lock);
1825
1826 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1827 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1828 tbl->parms.reachable_time);
1829 INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
1830 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
1831
1832 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1833 skb_queue_head_init_class(&tbl->proxy_queue,
1834 &neigh_table_proxy_queue_class);
1835
1836 tbl->last_flush = now;
1837 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1838
1839 neigh_tables[index] = tbl;
1840}
1841EXPORT_SYMBOL(neigh_table_init);
1842
1843int neigh_table_clear(int index, struct neigh_table *tbl)
1844{
1845 neigh_tables[index] = NULL;
1846 /* It is not clean... Fix it to unload IPv6 module safely */
1847 cancel_delayed_work_sync(&tbl->managed_work);
1848 cancel_delayed_work_sync(&tbl->gc_work);
1849 del_timer_sync(&tbl->proxy_timer);
1850 pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
1851 neigh_ifdown(tbl, NULL);
1852 if (atomic_read(&tbl->entries))
1853 pr_crit("neighbour leakage\n");
1854
1855 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1856 neigh_hash_free_rcu);
1857 tbl->nht = NULL;
1858
1859 kfree(tbl->phash_buckets);
1860 tbl->phash_buckets = NULL;
1861
1862 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1863
1864 free_percpu(tbl->stats);
1865 tbl->stats = NULL;
1866
1867 return 0;
1868}
1869EXPORT_SYMBOL(neigh_table_clear);
1870
1871static struct neigh_table *neigh_find_table(int family)
1872{
1873 struct neigh_table *tbl = NULL;
1874
1875 switch (family) {
1876 case AF_INET:
1877 tbl = neigh_tables[NEIGH_ARP_TABLE];
1878 break;
1879 case AF_INET6:
1880 tbl = neigh_tables[NEIGH_ND_TABLE];
1881 break;
1882 }
1883
1884 return tbl;
1885}
1886
1887const struct nla_policy nda_policy[NDA_MAX+1] = {
1888 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID },
1889 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1890 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1891 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) },
1892 [NDA_PROBES] = { .type = NLA_U32 },
1893 [NDA_VLAN] = { .type = NLA_U16 },
1894 [NDA_PORT] = { .type = NLA_U16 },
1895 [NDA_VNI] = { .type = NLA_U32 },
1896 [NDA_IFINDEX] = { .type = NLA_U32 },
1897 [NDA_MASTER] = { .type = NLA_U32 },
1898 [NDA_PROTOCOL] = { .type = NLA_U8 },
1899 [NDA_NH_ID] = { .type = NLA_U32 },
1900 [NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
1901 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED },
1902};
1903
1904static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1905 struct netlink_ext_ack *extack)
1906{
1907 struct net *net = sock_net(skb->sk);
1908 struct ndmsg *ndm;
1909 struct nlattr *dst_attr;
1910 struct neigh_table *tbl;
1911 struct neighbour *neigh;
1912 struct net_device *dev = NULL;
1913 int err = -EINVAL;
1914
1915 ASSERT_RTNL();
1916 if (nlmsg_len(nlh) < sizeof(*ndm))
1917 goto out;
1918
1919 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1920 if (!dst_attr) {
1921 NL_SET_ERR_MSG(extack, "Network address not specified");
1922 goto out;
1923 }
1924
1925 ndm = nlmsg_data(nlh);
1926 if (ndm->ndm_ifindex) {
1927 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1928 if (dev == NULL) {
1929 err = -ENODEV;
1930 goto out;
1931 }
1932 }
1933
1934 tbl = neigh_find_table(ndm->ndm_family);
1935 if (tbl == NULL)
1936 return -EAFNOSUPPORT;
1937
1938 if (nla_len(dst_attr) < (int)tbl->key_len) {
1939 NL_SET_ERR_MSG(extack, "Invalid network address");
1940 goto out;
1941 }
1942
1943 if (ndm->ndm_flags & NTF_PROXY) {
1944 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1945 goto out;
1946 }
1947
1948 if (dev == NULL)
1949 goto out;
1950
1951 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1952 if (neigh == NULL) {
1953 err = -ENOENT;
1954 goto out;
1955 }
1956
1957 err = __neigh_update(neigh, NULL, NUD_FAILED,
1958 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
1959 NETLINK_CB(skb).portid, extack);
1960 write_lock_bh(&tbl->lock);
1961 neigh_release(neigh);
1962 neigh_remove_one(neigh, tbl);
1963 write_unlock_bh(&tbl->lock);
1964
1965out:
1966 return err;
1967}
1968
1969static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1970 struct netlink_ext_ack *extack)
1971{
1972 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
1973 NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1974 struct net *net = sock_net(skb->sk);
1975 struct ndmsg *ndm;
1976 struct nlattr *tb[NDA_MAX+1];
1977 struct neigh_table *tbl;
1978 struct net_device *dev = NULL;
1979 struct neighbour *neigh;
1980 void *dst, *lladdr;
1981 u8 protocol = 0;
1982 u32 ndm_flags;
1983 int err;
1984
1985 ASSERT_RTNL();
1986 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
1987 nda_policy, extack);
1988 if (err < 0)
1989 goto out;
1990
1991 err = -EINVAL;
1992 if (!tb[NDA_DST]) {
1993 NL_SET_ERR_MSG(extack, "Network address not specified");
1994 goto out;
1995 }
1996
1997 ndm = nlmsg_data(nlh);
1998 ndm_flags = ndm->ndm_flags;
1999 if (tb[NDA_FLAGS_EXT]) {
2000 u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
2001
2002 BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
2003 (sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
2004 hweight32(NTF_EXT_MASK)));
2005 ndm_flags |= (ext << NTF_EXT_SHIFT);
2006 }
2007 if (ndm->ndm_ifindex) {
2008 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
2009 if (dev == NULL) {
2010 err = -ENODEV;
2011 goto out;
2012 }
2013
2014 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
2015 NL_SET_ERR_MSG(extack, "Invalid link address");
2016 goto out;
2017 }
2018 }
2019
2020 tbl = neigh_find_table(ndm->ndm_family);
2021 if (tbl == NULL)
2022 return -EAFNOSUPPORT;
2023
2024 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
2025 NL_SET_ERR_MSG(extack, "Invalid network address");
2026 goto out;
2027 }
2028
2029 dst = nla_data(tb[NDA_DST]);
2030 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
2031
2032 if (tb[NDA_PROTOCOL])
2033 protocol = nla_get_u8(tb[NDA_PROTOCOL]);
2034 if (ndm_flags & NTF_PROXY) {
2035 struct pneigh_entry *pn;
2036
2037 if (ndm_flags & NTF_MANAGED) {
2038 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
2039 goto out;
2040 }
2041
2042 err = -ENOBUFS;
2043 pn = pneigh_lookup(tbl, net, dst, dev, 1);
2044 if (pn) {
2045 pn->flags = ndm_flags;
2046 if (protocol)
2047 pn->protocol = protocol;
2048 err = 0;
2049 }
2050 goto out;
2051 }
2052
2053 if (!dev) {
2054 NL_SET_ERR_MSG(extack, "Device not specified");
2055 goto out;
2056 }
2057
2058 if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
2059 err = -EINVAL;
2060 goto out;
2061 }
2062
2063 neigh = neigh_lookup(tbl, dst, dev);
2064 if (neigh == NULL) {
2065 bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT;
2066 bool exempt_from_gc = ndm_permanent ||
2067 ndm_flags & NTF_EXT_LEARNED;
2068
2069 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
2070 err = -ENOENT;
2071 goto out;
2072 }
2073 if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
2074 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
2075 err = -EINVAL;
2076 goto out;
2077 }
2078
2079 neigh = ___neigh_create(tbl, dst, dev,
2080 ndm_flags &
2081 (NTF_EXT_LEARNED | NTF_MANAGED),
2082 exempt_from_gc, true);
2083 if (IS_ERR(neigh)) {
2084 err = PTR_ERR(neigh);
2085 goto out;
2086 }
2087 } else {
2088 if (nlh->nlmsg_flags & NLM_F_EXCL) {
2089 err = -EEXIST;
2090 neigh_release(neigh);
2091 goto out;
2092 }
2093
2094 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
2095 flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
2096 NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
2097 }
2098
2099 if (protocol)
2100 neigh->protocol = protocol;
2101 if (ndm_flags & NTF_EXT_LEARNED)
2102 flags |= NEIGH_UPDATE_F_EXT_LEARNED;
2103 if (ndm_flags & NTF_ROUTER)
2104 flags |= NEIGH_UPDATE_F_ISROUTER;
2105 if (ndm_flags & NTF_MANAGED)
2106 flags |= NEIGH_UPDATE_F_MANAGED;
2107 if (ndm_flags & NTF_USE)
2108 flags |= NEIGH_UPDATE_F_USE;
2109
2110 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
2111 NETLINK_CB(skb).portid, extack);
2112 if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
2113 neigh_event_send(neigh, NULL);
2114 err = 0;
2115 }
2116 neigh_release(neigh);
2117out:
2118 return err;
2119}
2120
2121static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
2122{
2123 struct nlattr *nest;
2124
2125 nest = nla_nest_start_noflag(skb, NDTA_PARMS);
2126 if (nest == NULL)
2127 return -ENOBUFS;
2128
2129 if ((parms->dev &&
2130 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
2131 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
2132 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
2133 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
2134 /* approximative value for deprecated QUEUE_LEN (in packets) */
2135 nla_put_u32(skb, NDTPA_QUEUE_LEN,
2136 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
2137 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
2138 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
2139 nla_put_u32(skb, NDTPA_UCAST_PROBES,
2140 NEIGH_VAR(parms, UCAST_PROBES)) ||
2141 nla_put_u32(skb, NDTPA_MCAST_PROBES,
2142 NEIGH_VAR(parms, MCAST_PROBES)) ||
2143 nla_put_u32(skb, NDTPA_MCAST_REPROBES,
2144 NEIGH_VAR(parms, MCAST_REPROBES)) ||
2145 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
2146 NDTPA_PAD) ||
2147 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
2148 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
2149 nla_put_msecs(skb, NDTPA_GC_STALETIME,
2150 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
2151 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
2152 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
2153 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
2154 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
2155 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
2156 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
2157 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
2158 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
2159 nla_put_msecs(skb, NDTPA_LOCKTIME,
2160 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
2161 nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
2162 NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
2163 goto nla_put_failure;
2164 return nla_nest_end(skb, nest);
2165
2166nla_put_failure:
2167 nla_nest_cancel(skb, nest);
2168 return -EMSGSIZE;
2169}
2170
2171static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
2172 u32 pid, u32 seq, int type, int flags)
2173{
2174 struct nlmsghdr *nlh;
2175 struct ndtmsg *ndtmsg;
2176
2177 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2178 if (nlh == NULL)
2179 return -EMSGSIZE;
2180
2181 ndtmsg = nlmsg_data(nlh);
2182
2183 read_lock_bh(&tbl->lock);
2184 ndtmsg->ndtm_family = tbl->family;
2185 ndtmsg->ndtm_pad1 = 0;
2186 ndtmsg->ndtm_pad2 = 0;
2187
2188 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
2189 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) ||
2190 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
2191 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
2192 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
2193 goto nla_put_failure;
2194 {
2195 unsigned long now = jiffies;
2196 long flush_delta = now - tbl->last_flush;
2197 long rand_delta = now - tbl->last_rand;
2198 struct neigh_hash_table *nht;
2199 struct ndt_config ndc = {
2200 .ndtc_key_len = tbl->key_len,
2201 .ndtc_entry_size = tbl->entry_size,
2202 .ndtc_entries = atomic_read(&tbl->entries),
2203 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
2204 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
2205 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
2206 };
2207
2208 rcu_read_lock_bh();
2209 nht = rcu_dereference_bh(tbl->nht);
2210 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
2211 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
2212 rcu_read_unlock_bh();
2213
2214 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
2215 goto nla_put_failure;
2216 }
2217
2218 {
2219 int cpu;
2220 struct ndt_stats ndst;
2221
2222 memset(&ndst, 0, sizeof(ndst));
2223
2224 for_each_possible_cpu(cpu) {
2225 struct neigh_statistics *st;
2226
2227 st = per_cpu_ptr(tbl->stats, cpu);
2228 ndst.ndts_allocs += st->allocs;
2229 ndst.ndts_destroys += st->destroys;
2230 ndst.ndts_hash_grows += st->hash_grows;
2231 ndst.ndts_res_failed += st->res_failed;
2232 ndst.ndts_lookups += st->lookups;
2233 ndst.ndts_hits += st->hits;
2234 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
2235 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
2236 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
2237 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
2238 ndst.ndts_table_fulls += st->table_fulls;
2239 }
2240
2241 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
2242 NDTA_PAD))
2243 goto nla_put_failure;
2244 }
2245
2246 BUG_ON(tbl->parms.dev);
2247 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
2248 goto nla_put_failure;
2249
2250 read_unlock_bh(&tbl->lock);
2251 nlmsg_end(skb, nlh);
2252 return 0;
2253
2254nla_put_failure:
2255 read_unlock_bh(&tbl->lock);
2256 nlmsg_cancel(skb, nlh);
2257 return -EMSGSIZE;
2258}
2259
2260static int neightbl_fill_param_info(struct sk_buff *skb,
2261 struct neigh_table *tbl,
2262 struct neigh_parms *parms,
2263 u32 pid, u32 seq, int type,
2264 unsigned int flags)
2265{
2266 struct ndtmsg *ndtmsg;
2267 struct nlmsghdr *nlh;
2268
2269 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2270 if (nlh == NULL)
2271 return -EMSGSIZE;
2272
2273 ndtmsg = nlmsg_data(nlh);
2274
2275 read_lock_bh(&tbl->lock);
2276 ndtmsg->ndtm_family = tbl->family;
2277 ndtmsg->ndtm_pad1 = 0;
2278 ndtmsg->ndtm_pad2 = 0;
2279
2280 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
2281 neightbl_fill_parms(skb, parms) < 0)
2282 goto errout;
2283
2284 read_unlock_bh(&tbl->lock);
2285 nlmsg_end(skb, nlh);
2286 return 0;
2287errout:
2288 read_unlock_bh(&tbl->lock);
2289 nlmsg_cancel(skb, nlh);
2290 return -EMSGSIZE;
2291}
2292
2293static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
2294 [NDTA_NAME] = { .type = NLA_STRING },
2295 [NDTA_THRESH1] = { .type = NLA_U32 },
2296 [NDTA_THRESH2] = { .type = NLA_U32 },
2297 [NDTA_THRESH3] = { .type = NLA_U32 },
2298 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
2299 [NDTA_PARMS] = { .type = NLA_NESTED },
2300};
2301
2302static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
2303 [NDTPA_IFINDEX] = { .type = NLA_U32 },
2304 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
2305 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
2306 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
2307 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
2308 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
2309 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 },
2310 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
2311 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
2312 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
2313 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
2314 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
2315 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
2316 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
2317 [NDTPA_INTERVAL_PROBE_TIME_MS] = { .type = NLA_U64, .min = 1 },
2318};
2319
2320static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
2321 struct netlink_ext_ack *extack)
2322{
2323 struct net *net = sock_net(skb->sk);
2324 struct neigh_table *tbl;
2325 struct ndtmsg *ndtmsg;
2326 struct nlattr *tb[NDTA_MAX+1];
2327 bool found = false;
2328 int err, tidx;
2329
2330 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
2331 nl_neightbl_policy, extack);
2332 if (err < 0)
2333 goto errout;
2334
2335 if (tb[NDTA_NAME] == NULL) {
2336 err = -EINVAL;
2337 goto errout;
2338 }
2339
2340 ndtmsg = nlmsg_data(nlh);
2341
2342 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2343 tbl = neigh_tables[tidx];
2344 if (!tbl)
2345 continue;
2346 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2347 continue;
2348 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2349 found = true;
2350 break;
2351 }
2352 }
2353
2354 if (!found)
2355 return -ENOENT;
2356
2357 /*
2358 * We acquire tbl->lock to be nice to the periodic timers and
2359 * make sure they always see a consistent set of values.
2360 */
2361 write_lock_bh(&tbl->lock);
2362
2363 if (tb[NDTA_PARMS]) {
2364 struct nlattr *tbp[NDTPA_MAX+1];
2365 struct neigh_parms *p;
2366 int i, ifindex = 0;
2367
2368 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
2369 tb[NDTA_PARMS],
2370 nl_ntbl_parm_policy, extack);
2371 if (err < 0)
2372 goto errout_tbl_lock;
2373
2374 if (tbp[NDTPA_IFINDEX])
2375 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2376
2377 p = lookup_neigh_parms(tbl, net, ifindex);
2378 if (p == NULL) {
2379 err = -ENOENT;
2380 goto errout_tbl_lock;
2381 }
2382
2383 for (i = 1; i <= NDTPA_MAX; i++) {
2384 if (tbp[i] == NULL)
2385 continue;
2386
2387 switch (i) {
2388 case NDTPA_QUEUE_LEN:
2389 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2390 nla_get_u32(tbp[i]) *
2391 SKB_TRUESIZE(ETH_FRAME_LEN));
2392 break;
2393 case NDTPA_QUEUE_LENBYTES:
2394 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2395 nla_get_u32(tbp[i]));
2396 break;
2397 case NDTPA_PROXY_QLEN:
2398 NEIGH_VAR_SET(p, PROXY_QLEN,
2399 nla_get_u32(tbp[i]));
2400 break;
2401 case NDTPA_APP_PROBES:
2402 NEIGH_VAR_SET(p, APP_PROBES,
2403 nla_get_u32(tbp[i]));
2404 break;
2405 case NDTPA_UCAST_PROBES:
2406 NEIGH_VAR_SET(p, UCAST_PROBES,
2407 nla_get_u32(tbp[i]));
2408 break;
2409 case NDTPA_MCAST_PROBES:
2410 NEIGH_VAR_SET(p, MCAST_PROBES,
2411 nla_get_u32(tbp[i]));
2412 break;
2413 case NDTPA_MCAST_REPROBES:
2414 NEIGH_VAR_SET(p, MCAST_REPROBES,
2415 nla_get_u32(tbp[i]));
2416 break;
2417 case NDTPA_BASE_REACHABLE_TIME:
2418 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2419 nla_get_msecs(tbp[i]));
2420 /* update reachable_time as well, otherwise, the change will
2421 * only be effective after the next time neigh_periodic_work
2422 * decides to recompute it (can be multiple minutes)
2423 */
2424 p->reachable_time =
2425 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2426 break;
2427 case NDTPA_GC_STALETIME:
2428 NEIGH_VAR_SET(p, GC_STALETIME,
2429 nla_get_msecs(tbp[i]));
2430 break;
2431 case NDTPA_DELAY_PROBE_TIME:
2432 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2433 nla_get_msecs(tbp[i]));
2434 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2435 break;
2436 case NDTPA_INTERVAL_PROBE_TIME_MS:
2437 NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
2438 nla_get_msecs(tbp[i]));
2439 break;
2440 case NDTPA_RETRANS_TIME:
2441 NEIGH_VAR_SET(p, RETRANS_TIME,
2442 nla_get_msecs(tbp[i]));
2443 break;
2444 case NDTPA_ANYCAST_DELAY:
2445 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2446 nla_get_msecs(tbp[i]));
2447 break;
2448 case NDTPA_PROXY_DELAY:
2449 NEIGH_VAR_SET(p, PROXY_DELAY,
2450 nla_get_msecs(tbp[i]));
2451 break;
2452 case NDTPA_LOCKTIME:
2453 NEIGH_VAR_SET(p, LOCKTIME,
2454 nla_get_msecs(tbp[i]));
2455 break;
2456 }
2457 }
2458 }
2459
2460 err = -ENOENT;
2461 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2462 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2463 !net_eq(net, &init_net))
2464 goto errout_tbl_lock;
2465
2466 if (tb[NDTA_THRESH1])
2467 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2468
2469 if (tb[NDTA_THRESH2])
2470 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2471
2472 if (tb[NDTA_THRESH3])
2473 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2474
2475 if (tb[NDTA_GC_INTERVAL])
2476 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2477
2478 err = 0;
2479
2480errout_tbl_lock:
2481 write_unlock_bh(&tbl->lock);
2482errout:
2483 return err;
2484}
2485
2486static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
2487 struct netlink_ext_ack *extack)
2488{
2489 struct ndtmsg *ndtm;
2490
2491 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
2492 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
2493 return -EINVAL;
2494 }
2495
2496 ndtm = nlmsg_data(nlh);
2497 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) {
2498 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
2499 return -EINVAL;
2500 }
2501
2502 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
2503 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
2504 return -EINVAL;
2505 }
2506
2507 return 0;
2508}
2509
2510static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2511{
2512 const struct nlmsghdr *nlh = cb->nlh;
2513 struct net *net = sock_net(skb->sk);
2514 int family, tidx, nidx = 0;
2515 int tbl_skip = cb->args[0];
2516 int neigh_skip = cb->args[1];
2517 struct neigh_table *tbl;
2518
2519 if (cb->strict_check) {
2520 int err = neightbl_valid_dump_info(nlh, cb->extack);
2521
2522 if (err < 0)
2523 return err;
2524 }
2525
2526 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2527
2528 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2529 struct neigh_parms *p;
2530
2531 tbl = neigh_tables[tidx];
2532 if (!tbl)
2533 continue;
2534
2535 if (tidx < tbl_skip || (family && tbl->family != family))
2536 continue;
2537
2538 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2539 nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2540 NLM_F_MULTI) < 0)
2541 break;
2542
2543 nidx = 0;
2544 p = list_next_entry(&tbl->parms, list);
2545 list_for_each_entry_from(p, &tbl->parms_list, list) {
2546 if (!net_eq(neigh_parms_net(p), net))
2547 continue;
2548
2549 if (nidx < neigh_skip)
2550 goto next;
2551
2552 if (neightbl_fill_param_info(skb, tbl, p,
2553 NETLINK_CB(cb->skb).portid,
2554 nlh->nlmsg_seq,
2555 RTM_NEWNEIGHTBL,
2556 NLM_F_MULTI) < 0)
2557 goto out;
2558 next:
2559 nidx++;
2560 }
2561
2562 neigh_skip = 0;
2563 }
2564out:
2565 cb->args[0] = tidx;
2566 cb->args[1] = nidx;
2567
2568 return skb->len;
2569}
2570
2571static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2572 u32 pid, u32 seq, int type, unsigned int flags)
2573{
2574 u32 neigh_flags, neigh_flags_ext;
2575 unsigned long now = jiffies;
2576 struct nda_cacheinfo ci;
2577 struct nlmsghdr *nlh;
2578 struct ndmsg *ndm;
2579
2580 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2581 if (nlh == NULL)
2582 return -EMSGSIZE;
2583
2584 neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
2585 neigh_flags = neigh->flags & NTF_OLD_MASK;
2586
2587 ndm = nlmsg_data(nlh);
2588 ndm->ndm_family = neigh->ops->family;
2589 ndm->ndm_pad1 = 0;
2590 ndm->ndm_pad2 = 0;
2591 ndm->ndm_flags = neigh_flags;
2592 ndm->ndm_type = neigh->type;
2593 ndm->ndm_ifindex = neigh->dev->ifindex;
2594
2595 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2596 goto nla_put_failure;
2597
2598 read_lock_bh(&neigh->lock);
2599 ndm->ndm_state = neigh->nud_state;
2600 if (neigh->nud_state & NUD_VALID) {
2601 char haddr[MAX_ADDR_LEN];
2602
2603 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2604 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2605 read_unlock_bh(&neigh->lock);
2606 goto nla_put_failure;
2607 }
2608 }
2609
2610 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2611 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2612 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2613 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1;
2614 read_unlock_bh(&neigh->lock);
2615
2616 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2617 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2618 goto nla_put_failure;
2619
2620 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
2621 goto nla_put_failure;
2622 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2623 goto nla_put_failure;
2624
2625 nlmsg_end(skb, nlh);
2626 return 0;
2627
2628nla_put_failure:
2629 nlmsg_cancel(skb, nlh);
2630 return -EMSGSIZE;
2631}
2632
2633static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2634 u32 pid, u32 seq, int type, unsigned int flags,
2635 struct neigh_table *tbl)
2636{
2637 u32 neigh_flags, neigh_flags_ext;
2638 struct nlmsghdr *nlh;
2639 struct ndmsg *ndm;
2640
2641 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2642 if (nlh == NULL)
2643 return -EMSGSIZE;
2644
2645 neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
2646 neigh_flags = pn->flags & NTF_OLD_MASK;
2647
2648 ndm = nlmsg_data(nlh);
2649 ndm->ndm_family = tbl->family;
2650 ndm->ndm_pad1 = 0;
2651 ndm->ndm_pad2 = 0;
2652 ndm->ndm_flags = neigh_flags | NTF_PROXY;
2653 ndm->ndm_type = RTN_UNICAST;
2654 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2655 ndm->ndm_state = NUD_NONE;
2656
2657 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2658 goto nla_put_failure;
2659
2660 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
2661 goto nla_put_failure;
2662 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2663 goto nla_put_failure;
2664
2665 nlmsg_end(skb, nlh);
2666 return 0;
2667
2668nla_put_failure:
2669 nlmsg_cancel(skb, nlh);
2670 return -EMSGSIZE;
2671}
2672
2673static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2674{
2675 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2676 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2677}
2678
2679static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2680{
2681 struct net_device *master;
2682
2683 if (!master_idx)
2684 return false;
2685
2686 master = dev ? netdev_master_upper_dev_get(dev) : NULL;
2687
2688 /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
2689 * invalid value for ifindex to denote "no master".
2690 */
2691 if (master_idx == -1)
2692 return !!master;
2693
2694 if (!master || master->ifindex != master_idx)
2695 return true;
2696
2697 return false;
2698}
2699
2700static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2701{
2702 if (filter_idx && (!dev || dev->ifindex != filter_idx))
2703 return true;
2704
2705 return false;
2706}
2707
2708struct neigh_dump_filter {
2709 int master_idx;
2710 int dev_idx;
2711};
2712
2713static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2714 struct netlink_callback *cb,
2715 struct neigh_dump_filter *filter)
2716{
2717 struct net *net = sock_net(skb->sk);
2718 struct neighbour *n;
2719 int rc, h, s_h = cb->args[1];
2720 int idx, s_idx = idx = cb->args[2];
2721 struct neigh_hash_table *nht;
2722 unsigned int flags = NLM_F_MULTI;
2723
2724 if (filter->dev_idx || filter->master_idx)
2725 flags |= NLM_F_DUMP_FILTERED;
2726
2727 rcu_read_lock_bh();
2728 nht = rcu_dereference_bh(tbl->nht);
2729
2730 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2731 if (h > s_h)
2732 s_idx = 0;
2733 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2734 n != NULL;
2735 n = rcu_dereference_bh(n->next)) {
2736 if (idx < s_idx || !net_eq(dev_net(n->dev), net))
2737 goto next;
2738 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2739 neigh_master_filtered(n->dev, filter->master_idx))
2740 goto next;
2741 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2742 cb->nlh->nlmsg_seq,
2743 RTM_NEWNEIGH,
2744 flags) < 0) {
2745 rc = -1;
2746 goto out;
2747 }
2748next:
2749 idx++;
2750 }
2751 }
2752 rc = skb->len;
2753out:
2754 rcu_read_unlock_bh();
2755 cb->args[1] = h;
2756 cb->args[2] = idx;
2757 return rc;
2758}
2759
2760static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2761 struct netlink_callback *cb,
2762 struct neigh_dump_filter *filter)
2763{
2764 struct pneigh_entry *n;
2765 struct net *net = sock_net(skb->sk);
2766 int rc, h, s_h = cb->args[3];
2767 int idx, s_idx = idx = cb->args[4];
2768 unsigned int flags = NLM_F_MULTI;
2769
2770 if (filter->dev_idx || filter->master_idx)
2771 flags |= NLM_F_DUMP_FILTERED;
2772
2773 read_lock_bh(&tbl->lock);
2774
2775 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2776 if (h > s_h)
2777 s_idx = 0;
2778 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2779 if (idx < s_idx || pneigh_net(n) != net)
2780 goto next;
2781 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2782 neigh_master_filtered(n->dev, filter->master_idx))
2783 goto next;
2784 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2785 cb->nlh->nlmsg_seq,
2786 RTM_NEWNEIGH, flags, tbl) < 0) {
2787 read_unlock_bh(&tbl->lock);
2788 rc = -1;
2789 goto out;
2790 }
2791 next:
2792 idx++;
2793 }
2794 }
2795
2796 read_unlock_bh(&tbl->lock);
2797 rc = skb->len;
2798out:
2799 cb->args[3] = h;
2800 cb->args[4] = idx;
2801 return rc;
2802
2803}
2804
2805static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
2806 bool strict_check,
2807 struct neigh_dump_filter *filter,
2808 struct netlink_ext_ack *extack)
2809{
2810 struct nlattr *tb[NDA_MAX + 1];
2811 int err, i;
2812
2813 if (strict_check) {
2814 struct ndmsg *ndm;
2815
2816 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2817 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
2818 return -EINVAL;
2819 }
2820
2821 ndm = nlmsg_data(nlh);
2822 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex ||
2823 ndm->ndm_state || ndm->ndm_type) {
2824 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
2825 return -EINVAL;
2826 }
2827
2828 if (ndm->ndm_flags & ~NTF_PROXY) {
2829 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
2830 return -EINVAL;
2831 }
2832
2833 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
2834 tb, NDA_MAX, nda_policy,
2835 extack);
2836 } else {
2837 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
2838 NDA_MAX, nda_policy, extack);
2839 }
2840 if (err < 0)
2841 return err;
2842
2843 for (i = 0; i <= NDA_MAX; ++i) {
2844 if (!tb[i])
2845 continue;
2846
2847 /* all new attributes should require strict_check */
2848 switch (i) {
2849 case NDA_IFINDEX:
2850 filter->dev_idx = nla_get_u32(tb[i]);
2851 break;
2852 case NDA_MASTER:
2853 filter->master_idx = nla_get_u32(tb[i]);
2854 break;
2855 default:
2856 if (strict_check) {
2857 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
2858 return -EINVAL;
2859 }
2860 }
2861 }
2862
2863 return 0;
2864}
2865
2866static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2867{
2868 const struct nlmsghdr *nlh = cb->nlh;
2869 struct neigh_dump_filter filter = {};
2870 struct neigh_table *tbl;
2871 int t, family, s_t;
2872 int proxy = 0;
2873 int err;
2874
2875 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2876
2877 /* check for full ndmsg structure presence, family member is
2878 * the same for both structures
2879 */
2880 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
2881 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
2882 proxy = 1;
2883
2884 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
2885 if (err < 0 && cb->strict_check)
2886 return err;
2887
2888 s_t = cb->args[0];
2889
2890 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2891 tbl = neigh_tables[t];
2892
2893 if (!tbl)
2894 continue;
2895 if (t < s_t || (family && tbl->family != family))
2896 continue;
2897 if (t > s_t)
2898 memset(&cb->args[1], 0, sizeof(cb->args) -
2899 sizeof(cb->args[0]));
2900 if (proxy)
2901 err = pneigh_dump_table(tbl, skb, cb, &filter);
2902 else
2903 err = neigh_dump_table(tbl, skb, cb, &filter);
2904 if (err < 0)
2905 break;
2906 }
2907
2908 cb->args[0] = t;
2909 return skb->len;
2910}
2911
2912static int neigh_valid_get_req(const struct nlmsghdr *nlh,
2913 struct neigh_table **tbl,
2914 void **dst, int *dev_idx, u8 *ndm_flags,
2915 struct netlink_ext_ack *extack)
2916{
2917 struct nlattr *tb[NDA_MAX + 1];
2918 struct ndmsg *ndm;
2919 int err, i;
2920
2921 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2922 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
2923 return -EINVAL;
2924 }
2925
2926 ndm = nlmsg_data(nlh);
2927 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state ||
2928 ndm->ndm_type) {
2929 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
2930 return -EINVAL;
2931 }
2932
2933 if (ndm->ndm_flags & ~NTF_PROXY) {
2934 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
2935 return -EINVAL;
2936 }
2937
2938 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
2939 NDA_MAX, nda_policy, extack);
2940 if (err < 0)
2941 return err;
2942
2943 *ndm_flags = ndm->ndm_flags;
2944 *dev_idx = ndm->ndm_ifindex;
2945 *tbl = neigh_find_table(ndm->ndm_family);
2946 if (*tbl == NULL) {
2947 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
2948 return -EAFNOSUPPORT;
2949 }
2950
2951 for (i = 0; i <= NDA_MAX; ++i) {
2952 if (!tb[i])
2953 continue;
2954
2955 switch (i) {
2956 case NDA_DST:
2957 if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
2958 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
2959 return -EINVAL;
2960 }
2961 *dst = nla_data(tb[i]);
2962 break;
2963 default:
2964 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
2965 return -EINVAL;
2966 }
2967 }
2968
2969 return 0;
2970}
2971
2972static inline size_t neigh_nlmsg_size(void)
2973{
2974 return NLMSG_ALIGN(sizeof(struct ndmsg))
2975 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2976 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2977 + nla_total_size(sizeof(struct nda_cacheinfo))
2978 + nla_total_size(4) /* NDA_PROBES */
2979 + nla_total_size(4) /* NDA_FLAGS_EXT */
2980 + nla_total_size(1); /* NDA_PROTOCOL */
2981}
2982
2983static int neigh_get_reply(struct net *net, struct neighbour *neigh,
2984 u32 pid, u32 seq)
2985{
2986 struct sk_buff *skb;
2987 int err = 0;
2988
2989 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
2990 if (!skb)
2991 return -ENOBUFS;
2992
2993 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
2994 if (err) {
2995 kfree_skb(skb);
2996 goto errout;
2997 }
2998
2999 err = rtnl_unicast(skb, net, pid);
3000errout:
3001 return err;
3002}
3003
3004static inline size_t pneigh_nlmsg_size(void)
3005{
3006 return NLMSG_ALIGN(sizeof(struct ndmsg))
3007 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
3008 + nla_total_size(4) /* NDA_FLAGS_EXT */
3009 + nla_total_size(1); /* NDA_PROTOCOL */
3010}
3011
3012static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
3013 u32 pid, u32 seq, struct neigh_table *tbl)
3014{
3015 struct sk_buff *skb;
3016 int err = 0;
3017
3018 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
3019 if (!skb)
3020 return -ENOBUFS;
3021
3022 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
3023 if (err) {
3024 kfree_skb(skb);
3025 goto errout;
3026 }
3027
3028 err = rtnl_unicast(skb, net, pid);
3029errout:
3030 return err;
3031}
3032
3033static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
3034 struct netlink_ext_ack *extack)
3035{
3036 struct net *net = sock_net(in_skb->sk);
3037 struct net_device *dev = NULL;
3038 struct neigh_table *tbl = NULL;
3039 struct neighbour *neigh;
3040 void *dst = NULL;
3041 u8 ndm_flags = 0;
3042 int dev_idx = 0;
3043 int err;
3044
3045 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
3046 extack);
3047 if (err < 0)
3048 return err;
3049
3050 if (dev_idx) {
3051 dev = __dev_get_by_index(net, dev_idx);
3052 if (!dev) {
3053 NL_SET_ERR_MSG(extack, "Unknown device ifindex");
3054 return -ENODEV;
3055 }
3056 }
3057
3058 if (!dst) {
3059 NL_SET_ERR_MSG(extack, "Network address not specified");
3060 return -EINVAL;
3061 }
3062
3063 if (ndm_flags & NTF_PROXY) {
3064 struct pneigh_entry *pn;
3065
3066 pn = pneigh_lookup(tbl, net, dst, dev, 0);
3067 if (!pn) {
3068 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
3069 return -ENOENT;
3070 }
3071 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
3072 nlh->nlmsg_seq, tbl);
3073 }
3074
3075 if (!dev) {
3076 NL_SET_ERR_MSG(extack, "No device specified");
3077 return -EINVAL;
3078 }
3079
3080 neigh = neigh_lookup(tbl, dst, dev);
3081 if (!neigh) {
3082 NL_SET_ERR_MSG(extack, "Neighbour entry not found");
3083 return -ENOENT;
3084 }
3085
3086 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
3087 nlh->nlmsg_seq);
3088
3089 neigh_release(neigh);
3090
3091 return err;
3092}
3093
3094void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
3095{
3096 int chain;
3097 struct neigh_hash_table *nht;
3098
3099 rcu_read_lock_bh();
3100 nht = rcu_dereference_bh(tbl->nht);
3101
3102 read_lock(&tbl->lock); /* avoid resizes */
3103 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3104 struct neighbour *n;
3105
3106 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
3107 n != NULL;
3108 n = rcu_dereference_bh(n->next))
3109 cb(n, cookie);
3110 }
3111 read_unlock(&tbl->lock);
3112 rcu_read_unlock_bh();
3113}
3114EXPORT_SYMBOL(neigh_for_each);
3115
3116/* The tbl->lock must be held as a writer and BH disabled. */
3117void __neigh_for_each_release(struct neigh_table *tbl,
3118 int (*cb)(struct neighbour *))
3119{
3120 int chain;
3121 struct neigh_hash_table *nht;
3122
3123 nht = rcu_dereference_protected(tbl->nht,
3124 lockdep_is_held(&tbl->lock));
3125 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3126 struct neighbour *n;
3127 struct neighbour __rcu **np;
3128
3129 np = &nht->hash_buckets[chain];
3130 while ((n = rcu_dereference_protected(*np,
3131 lockdep_is_held(&tbl->lock))) != NULL) {
3132 int release;
3133
3134 write_lock(&n->lock);
3135 release = cb(n);
3136 if (release) {
3137 rcu_assign_pointer(*np,
3138 rcu_dereference_protected(n->next,
3139 lockdep_is_held(&tbl->lock)));
3140 neigh_mark_dead(n);
3141 } else
3142 np = &n->next;
3143 write_unlock(&n->lock);
3144 if (release)
3145 neigh_cleanup_and_release(n);
3146 }
3147 }
3148}
3149EXPORT_SYMBOL(__neigh_for_each_release);
3150
3151int neigh_xmit(int index, struct net_device *dev,
3152 const void *addr, struct sk_buff *skb)
3153{
3154 int err = -EAFNOSUPPORT;
3155 if (likely(index < NEIGH_NR_TABLES)) {
3156 struct neigh_table *tbl;
3157 struct neighbour *neigh;
3158
3159 tbl = neigh_tables[index];
3160 if (!tbl)
3161 goto out;
3162 rcu_read_lock_bh();
3163 if (index == NEIGH_ARP_TABLE) {
3164 u32 key = *((u32 *)addr);
3165
3166 neigh = __ipv4_neigh_lookup_noref(dev, key);
3167 } else {
3168 neigh = __neigh_lookup_noref(tbl, addr, dev);
3169 }
3170 if (!neigh)
3171 neigh = __neigh_create(tbl, addr, dev, false);
3172 err = PTR_ERR(neigh);
3173 if (IS_ERR(neigh)) {
3174 rcu_read_unlock_bh();
3175 goto out_kfree_skb;
3176 }
3177 err = neigh->output(neigh, skb);
3178 rcu_read_unlock_bh();
3179 }
3180 else if (index == NEIGH_LINK_TABLE) {
3181 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
3182 addr, NULL, skb->len);
3183 if (err < 0)
3184 goto out_kfree_skb;
3185 err = dev_queue_xmit(skb);
3186 }
3187out:
3188 return err;
3189out_kfree_skb:
3190 kfree_skb(skb);
3191 goto out;
3192}
3193EXPORT_SYMBOL(neigh_xmit);
3194
3195#ifdef CONFIG_PROC_FS
3196
3197static struct neighbour *neigh_get_first(struct seq_file *seq)
3198{
3199 struct neigh_seq_state *state = seq->private;
3200 struct net *net = seq_file_net(seq);
3201 struct neigh_hash_table *nht = state->nht;
3202 struct neighbour *n = NULL;
3203 int bucket;
3204
3205 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
3206 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
3207 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
3208
3209 while (n) {
3210 if (!net_eq(dev_net(n->dev), net))
3211 goto next;
3212 if (state->neigh_sub_iter) {
3213 loff_t fakep = 0;
3214 void *v;
3215
3216 v = state->neigh_sub_iter(state, n, &fakep);
3217 if (!v)
3218 goto next;
3219 }
3220 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3221 break;
3222 if (n->nud_state & ~NUD_NOARP)
3223 break;
3224next:
3225 n = rcu_dereference_bh(n->next);
3226 }
3227
3228 if (n)
3229 break;
3230 }
3231 state->bucket = bucket;
3232
3233 return n;
3234}
3235
3236static struct neighbour *neigh_get_next(struct seq_file *seq,
3237 struct neighbour *n,
3238 loff_t *pos)
3239{
3240 struct neigh_seq_state *state = seq->private;
3241 struct net *net = seq_file_net(seq);
3242 struct neigh_hash_table *nht = state->nht;
3243
3244 if (state->neigh_sub_iter) {
3245 void *v = state->neigh_sub_iter(state, n, pos);
3246 if (v)
3247 return n;
3248 }
3249 n = rcu_dereference_bh(n->next);
3250
3251 while (1) {
3252 while (n) {
3253 if (!net_eq(dev_net(n->dev), net))
3254 goto next;
3255 if (state->neigh_sub_iter) {
3256 void *v = state->neigh_sub_iter(state, n, pos);
3257 if (v)
3258 return n;
3259 goto next;
3260 }
3261 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3262 break;
3263
3264 if (n->nud_state & ~NUD_NOARP)
3265 break;
3266next:
3267 n = rcu_dereference_bh(n->next);
3268 }
3269
3270 if (n)
3271 break;
3272
3273 if (++state->bucket >= (1 << nht->hash_shift))
3274 break;
3275
3276 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
3277 }
3278
3279 if (n && pos)
3280 --(*pos);
3281 return n;
3282}
3283
3284static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
3285{
3286 struct neighbour *n = neigh_get_first(seq);
3287
3288 if (n) {
3289 --(*pos);
3290 while (*pos) {
3291 n = neigh_get_next(seq, n, pos);
3292 if (!n)
3293 break;
3294 }
3295 }
3296 return *pos ? NULL : n;
3297}
3298
3299static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
3300{
3301 struct neigh_seq_state *state = seq->private;
3302 struct net *net = seq_file_net(seq);
3303 struct neigh_table *tbl = state->tbl;
3304 struct pneigh_entry *pn = NULL;
3305 int bucket;
3306
3307 state->flags |= NEIGH_SEQ_IS_PNEIGH;
3308 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
3309 pn = tbl->phash_buckets[bucket];
3310 while (pn && !net_eq(pneigh_net(pn), net))
3311 pn = pn->next;
3312 if (pn)
3313 break;
3314 }
3315 state->bucket = bucket;
3316
3317 return pn;
3318}
3319
3320static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
3321 struct pneigh_entry *pn,
3322 loff_t *pos)
3323{
3324 struct neigh_seq_state *state = seq->private;
3325 struct net *net = seq_file_net(seq);
3326 struct neigh_table *tbl = state->tbl;
3327
3328 do {
3329 pn = pn->next;
3330 } while (pn && !net_eq(pneigh_net(pn), net));
3331
3332 while (!pn) {
3333 if (++state->bucket > PNEIGH_HASHMASK)
3334 break;
3335 pn = tbl->phash_buckets[state->bucket];
3336 while (pn && !net_eq(pneigh_net(pn), net))
3337 pn = pn->next;
3338 if (pn)
3339 break;
3340 }
3341
3342 if (pn && pos)
3343 --(*pos);
3344
3345 return pn;
3346}
3347
3348static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
3349{
3350 struct pneigh_entry *pn = pneigh_get_first(seq);
3351
3352 if (pn) {
3353 --(*pos);
3354 while (*pos) {
3355 pn = pneigh_get_next(seq, pn, pos);
3356 if (!pn)
3357 break;
3358 }
3359 }
3360 return *pos ? NULL : pn;
3361}
3362
3363static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
3364{
3365 struct neigh_seq_state *state = seq->private;
3366 void *rc;
3367 loff_t idxpos = *pos;
3368
3369 rc = neigh_get_idx(seq, &idxpos);
3370 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3371 rc = pneigh_get_idx(seq, &idxpos);
3372
3373 return rc;
3374}
3375
3376void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
3377 __acquires(tbl->lock)
3378 __acquires(rcu_bh)
3379{
3380 struct neigh_seq_state *state = seq->private;
3381
3382 state->tbl = tbl;
3383 state->bucket = 0;
3384 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
3385
3386 rcu_read_lock_bh();
3387 state->nht = rcu_dereference_bh(tbl->nht);
3388 read_lock(&tbl->lock);
3389
3390 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
3391}
3392EXPORT_SYMBOL(neigh_seq_start);
3393
3394void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3395{
3396 struct neigh_seq_state *state;
3397 void *rc;
3398
3399 if (v == SEQ_START_TOKEN) {
3400 rc = neigh_get_first(seq);
3401 goto out;
3402 }
3403
3404 state = seq->private;
3405 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
3406 rc = neigh_get_next(seq, v, NULL);
3407 if (rc)
3408 goto out;
3409 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3410 rc = pneigh_get_first(seq);
3411 } else {
3412 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
3413 rc = pneigh_get_next(seq, v, NULL);
3414 }
3415out:
3416 ++(*pos);
3417 return rc;
3418}
3419EXPORT_SYMBOL(neigh_seq_next);
3420
3421void neigh_seq_stop(struct seq_file *seq, void *v)
3422 __releases(tbl->lock)
3423 __releases(rcu_bh)
3424{
3425 struct neigh_seq_state *state = seq->private;
3426 struct neigh_table *tbl = state->tbl;
3427
3428 read_unlock(&tbl->lock);
3429 rcu_read_unlock_bh();
3430}
3431EXPORT_SYMBOL(neigh_seq_stop);
3432
3433/* statistics via seq_file */
3434
3435static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
3436{
3437 struct neigh_table *tbl = pde_data(file_inode(seq->file));
3438 int cpu;
3439
3440 if (*pos == 0)
3441 return SEQ_START_TOKEN;
3442
3443 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
3444 if (!cpu_possible(cpu))
3445 continue;
3446 *pos = cpu+1;
3447 return per_cpu_ptr(tbl->stats, cpu);
3448 }
3449 return NULL;
3450}
3451
3452static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3453{
3454 struct neigh_table *tbl = pde_data(file_inode(seq->file));
3455 int cpu;
3456
3457 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
3458 if (!cpu_possible(cpu))
3459 continue;
3460 *pos = cpu+1;
3461 return per_cpu_ptr(tbl->stats, cpu);
3462 }
3463 (*pos)++;
3464 return NULL;
3465}
3466
3467static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
3468{
3469
3470}
3471
3472static int neigh_stat_seq_show(struct seq_file *seq, void *v)
3473{
3474 struct neigh_table *tbl = pde_data(file_inode(seq->file));
3475 struct neigh_statistics *st = v;
3476
3477 if (v == SEQ_START_TOKEN) {
3478 seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
3479 return 0;
3480 }
3481
3482 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
3483 "%08lx %08lx %08lx "
3484 "%08lx %08lx %08lx\n",
3485 atomic_read(&tbl->entries),
3486
3487 st->allocs,
3488 st->destroys,
3489 st->hash_grows,
3490
3491 st->lookups,
3492 st->hits,
3493
3494 st->res_failed,
3495
3496 st->rcv_probes_mcast,
3497 st->rcv_probes_ucast,
3498
3499 st->periodic_gc_runs,
3500 st->forced_gc_runs,
3501 st->unres_discards,
3502 st->table_fulls
3503 );
3504
3505 return 0;
3506}
3507
3508static const struct seq_operations neigh_stat_seq_ops = {
3509 .start = neigh_stat_seq_start,
3510 .next = neigh_stat_seq_next,
3511 .stop = neigh_stat_seq_stop,
3512 .show = neigh_stat_seq_show,
3513};
3514#endif /* CONFIG_PROC_FS */
3515
3516static void __neigh_notify(struct neighbour *n, int type, int flags,
3517 u32 pid)
3518{
3519 struct net *net = dev_net(n->dev);
3520 struct sk_buff *skb;
3521 int err = -ENOBUFS;
3522
3523 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
3524 if (skb == NULL)
3525 goto errout;
3526
3527 err = neigh_fill_info(skb, n, pid, 0, type, flags);
3528 if (err < 0) {
3529 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
3530 WARN_ON(err == -EMSGSIZE);
3531 kfree_skb(skb);
3532 goto errout;
3533 }
3534 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
3535 return;
3536errout:
3537 if (err < 0)
3538 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
3539}
3540
3541void neigh_app_ns(struct neighbour *n)
3542{
3543 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
3544}
3545EXPORT_SYMBOL(neigh_app_ns);
3546
3547#ifdef CONFIG_SYSCTL
3548static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
3549
3550static int proc_unres_qlen(struct ctl_table *ctl, int write,
3551 void *buffer, size_t *lenp, loff_t *ppos)
3552{
3553 int size, ret;
3554 struct ctl_table tmp = *ctl;
3555
3556 tmp.extra1 = SYSCTL_ZERO;
3557 tmp.extra2 = &unres_qlen_max;
3558 tmp.data = &size;
3559
3560 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
3561 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3562
3563 if (write && !ret)
3564 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
3565 return ret;
3566}
3567
3568static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
3569 int index)
3570{
3571 struct net_device *dev;
3572 int family = neigh_parms_family(p);
3573
3574 rcu_read_lock();
3575 for_each_netdev_rcu(net, dev) {
3576 struct neigh_parms *dst_p =
3577 neigh_get_dev_parms_rcu(dev, family);
3578
3579 if (dst_p && !test_bit(index, dst_p->data_state))
3580 dst_p->data[index] = p->data[index];
3581 }
3582 rcu_read_unlock();
3583}
3584
3585static void neigh_proc_update(struct ctl_table *ctl, int write)
3586{
3587 struct net_device *dev = ctl->extra1;
3588 struct neigh_parms *p = ctl->extra2;
3589 struct net *net = neigh_parms_net(p);
3590 int index = (int *) ctl->data - p->data;
3591
3592 if (!write)
3593 return;
3594
3595 set_bit(index, p->data_state);
3596 if (index == NEIGH_VAR_DELAY_PROBE_TIME)
3597 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
3598 if (!dev) /* NULL dev means this is default value */
3599 neigh_copy_dflt_parms(net, p, index);
3600}
3601
3602static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
3603 void *buffer, size_t *lenp,
3604 loff_t *ppos)
3605{
3606 struct ctl_table tmp = *ctl;
3607 int ret;
3608
3609 tmp.extra1 = SYSCTL_ZERO;
3610 tmp.extra2 = SYSCTL_INT_MAX;
3611
3612 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3613 neigh_proc_update(ctl, write);
3614 return ret;
3615}
3616
3617static int neigh_proc_dointvec_ms_jiffies_positive(struct ctl_table *ctl, int write,
3618 void *buffer, size_t *lenp, loff_t *ppos)
3619{
3620 struct ctl_table tmp = *ctl;
3621 int ret;
3622
3623 int min = msecs_to_jiffies(1);
3624
3625 tmp.extra1 = &min;
3626 tmp.extra2 = NULL;
3627
3628 ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
3629 neigh_proc_update(ctl, write);
3630 return ret;
3631}
3632
3633int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer,
3634 size_t *lenp, loff_t *ppos)
3635{
3636 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3637
3638 neigh_proc_update(ctl, write);
3639 return ret;
3640}
3641EXPORT_SYMBOL(neigh_proc_dointvec);
3642
3643int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer,
3644 size_t *lenp, loff_t *ppos)
3645{
3646 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3647
3648 neigh_proc_update(ctl, write);
3649 return ret;
3650}
3651EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3652
3653static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
3654 void *buffer, size_t *lenp,
3655 loff_t *ppos)
3656{
3657 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3658
3659 neigh_proc_update(ctl, write);
3660 return ret;
3661}
3662
3663int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
3664 void *buffer, size_t *lenp, loff_t *ppos)
3665{
3666 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3667
3668 neigh_proc_update(ctl, write);
3669 return ret;
3670}
3671EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3672
3673static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
3674 void *buffer, size_t *lenp,
3675 loff_t *ppos)
3676{
3677 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3678
3679 neigh_proc_update(ctl, write);
3680 return ret;
3681}
3682
3683static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
3684 void *buffer, size_t *lenp,
3685 loff_t *ppos)
3686{
3687 struct neigh_parms *p = ctl->extra2;
3688 int ret;
3689
3690 if (strcmp(ctl->procname, "base_reachable_time") == 0)
3691 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3692 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3693 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3694 else
3695 ret = -1;
3696
3697 if (write && ret == 0) {
3698 /* update reachable_time as well, otherwise, the change will
3699 * only be effective after the next time neigh_periodic_work
3700 * decides to recompute it
3701 */
3702 p->reachable_time =
3703 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3704 }
3705 return ret;
3706}
3707
3708#define NEIGH_PARMS_DATA_OFFSET(index) \
3709 (&((struct neigh_parms *) 0)->data[index])
3710
3711#define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3712 [NEIGH_VAR_ ## attr] = { \
3713 .procname = name, \
3714 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3715 .maxlen = sizeof(int), \
3716 .mode = mval, \
3717 .proc_handler = proc, \
3718 }
3719
3720#define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3721 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3722
3723#define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3724 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3725
3726#define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3727 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3728
3729#define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
3730 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
3731
3732#define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3733 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3734
3735#define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3736 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3737
3738static struct neigh_sysctl_table {
3739 struct ctl_table_header *sysctl_header;
3740 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
3741} neigh_sysctl_template __read_mostly = {
3742 .neigh_vars = {
3743 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3744 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3745 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3746 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3747 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3748 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3749 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3750 NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
3751 "interval_probe_time_ms"),
3752 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3753 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3754 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3755 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3756 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3757 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3758 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3759 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3760 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3761 [NEIGH_VAR_GC_INTERVAL] = {
3762 .procname = "gc_interval",
3763 .maxlen = sizeof(int),
3764 .mode = 0644,
3765 .proc_handler = proc_dointvec_jiffies,
3766 },
3767 [NEIGH_VAR_GC_THRESH1] = {
3768 .procname = "gc_thresh1",
3769 .maxlen = sizeof(int),
3770 .mode = 0644,
3771 .extra1 = SYSCTL_ZERO,
3772 .extra2 = SYSCTL_INT_MAX,
3773 .proc_handler = proc_dointvec_minmax,
3774 },
3775 [NEIGH_VAR_GC_THRESH2] = {
3776 .procname = "gc_thresh2",
3777 .maxlen = sizeof(int),
3778 .mode = 0644,
3779 .extra1 = SYSCTL_ZERO,
3780 .extra2 = SYSCTL_INT_MAX,
3781 .proc_handler = proc_dointvec_minmax,
3782 },
3783 [NEIGH_VAR_GC_THRESH3] = {
3784 .procname = "gc_thresh3",
3785 .maxlen = sizeof(int),
3786 .mode = 0644,
3787 .extra1 = SYSCTL_ZERO,
3788 .extra2 = SYSCTL_INT_MAX,
3789 .proc_handler = proc_dointvec_minmax,
3790 },
3791 {},
3792 },
3793};
3794
3795int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3796 proc_handler *handler)
3797{
3798 int i;
3799 struct neigh_sysctl_table *t;
3800 const char *dev_name_source;
3801 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3802 char *p_name;
3803
3804 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
3805 if (!t)
3806 goto err;
3807
3808 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3809 t->neigh_vars[i].data += (long) p;
3810 t->neigh_vars[i].extra1 = dev;
3811 t->neigh_vars[i].extra2 = p;
3812 }
3813
3814 if (dev) {
3815 dev_name_source = dev->name;
3816 /* Terminate the table early */
3817 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3818 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3819 } else {
3820 struct neigh_table *tbl = p->tbl;
3821 dev_name_source = "default";
3822 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3823 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3824 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3825 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3826 }
3827
3828 if (handler) {
3829 /* RetransTime */
3830 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3831 /* ReachableTime */
3832 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3833 /* RetransTime (in milliseconds)*/
3834 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3835 /* ReachableTime (in milliseconds) */
3836 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3837 } else {
3838 /* Those handlers will update p->reachable_time after
3839 * base_reachable_time(_ms) is set to ensure the new timer starts being
3840 * applied after the next neighbour update instead of waiting for
3841 * neigh_periodic_work to update its value (can be multiple minutes)
3842 * So any handler that replaces them should do this as well
3843 */
3844 /* ReachableTime */
3845 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3846 neigh_proc_base_reachable_time;
3847 /* ReachableTime (in milliseconds) */
3848 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3849 neigh_proc_base_reachable_time;
3850 }
3851
3852 switch (neigh_parms_family(p)) {
3853 case AF_INET:
3854 p_name = "ipv4";
3855 break;
3856 case AF_INET6:
3857 p_name = "ipv6";
3858 break;
3859 default:
3860 BUG();
3861 }
3862
3863 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3864 p_name, dev_name_source);
3865 t->sysctl_header =
3866 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3867 if (!t->sysctl_header)
3868 goto free;
3869
3870 p->sysctl_table = t;
3871 return 0;
3872
3873free:
3874 kfree(t);
3875err:
3876 return -ENOBUFS;
3877}
3878EXPORT_SYMBOL(neigh_sysctl_register);
3879
3880void neigh_sysctl_unregister(struct neigh_parms *p)
3881{
3882 if (p->sysctl_table) {
3883 struct neigh_sysctl_table *t = p->sysctl_table;
3884 p->sysctl_table = NULL;
3885 unregister_net_sysctl_table(t->sysctl_header);
3886 kfree(t);
3887 }
3888}
3889EXPORT_SYMBOL(neigh_sysctl_unregister);
3890
3891#endif /* CONFIG_SYSCTL */
3892
3893static int __init neigh_init(void)
3894{
3895 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0);
3896 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0);
3897 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0);
3898
3899 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3900 0);
3901 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);
3902
3903 return 0;
3904}
3905
3906subsys_initcall(neigh_init);