Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * SPI_PPC4XX SPI controller driver.
  3 *
  4 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  5 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  6 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  7 *
  8 * Based in part on drivers/spi/spi_s3c24xx.c
  9 *
 10 * Copyright (c) 2006 Ben Dooks
 11 * Copyright (c) 2006 Simtec Electronics
 12 *	Ben Dooks <ben@simtec.co.uk>
 13 *
 14 * This program is free software; you can redistribute  it and/or modify it
 15 * under the terms of the GNU General Public License version 2 as published
 16 * by the Free Software Foundation.
 17 */
 18
 19/*
 20 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 21 * generate an interrupt to the CPU. This can cause high CPU utilization.
 22 * This driver allows platforms to reduce the interrupt load on the CPU
 23 * during SPI transfers by setting max_speed_hz via the device tree.
 24 */
 25
 26#include <linux/module.h>
 27#include <linux/init.h>
 28#include <linux/sched.h>
 29#include <linux/slab.h>
 30#include <linux/errno.h>
 31#include <linux/wait.h>
 
 
 32#include <linux/of_platform.h>
 33#include <linux/of_gpio.h>
 34#include <linux/interrupt.h>
 35#include <linux/delay.h>
 36
 37#include <linux/gpio.h>
 38#include <linux/spi/spi.h>
 39#include <linux/spi/spi_bitbang.h>
 40
 41#include <asm/io.h>
 42#include <asm/dcr.h>
 43#include <asm/dcr-regs.h>
 44
 45/* bits in mode register - bit 0 is MSb */
 46
 47/*
 48 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 49 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 50 * Note: This is the inverse of CPHA.
 51 */
 52#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 53
 54/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 55#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 56
 57/*
 58 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 59 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 60 * Note: This is identical to SPI_LSB_FIRST.
 61 */
 62#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 63
 64/*
 65 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 66 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 67 * Note: This is identical to CPOL.
 68 */
 69#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 70
 71/*
 72 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 73 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 74 */
 75#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 76
 77/* bits in control register */
 78/* starts a transfer when set */
 79#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 80
 81/* bits in status register */
 82/* port is busy with a transfer */
 83#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 84/* RxD ready */
 85#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 86
 87/* clock settings (SCP and CI) for various SPI modes */
 88#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 89#define SPI_CLK_MODE1	(0 | 0)
 90#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 91#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 92
 93#define DRIVER_NAME	"spi_ppc4xx_of"
 94
 95struct spi_ppc4xx_regs {
 96	u8 mode;
 97	u8 rxd;
 98	u8 txd;
 99	u8 cr;
100	u8 sr;
101	u8 dummy;
102	/*
103	 * Clock divisor modulus register
104	 * This uses the follwing formula:
105	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
106	 * or
107	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
108	 * bit 0 is the MSb!
109	 */
110	u8 cdm;
111};
112
113/* SPI Controller driver's private data. */
114struct ppc4xx_spi {
115	/* bitbang has to be first */
116	struct spi_bitbang bitbang;
117	struct completion done;
118
119	u64 mapbase;
120	u64 mapsize;
121	int irqnum;
122	/* need this to set the SPI clock */
123	unsigned int opb_freq;
124
125	/* for transfers */
126	int len;
127	int count;
128	/* data buffers */
129	const unsigned char *tx;
130	unsigned char *rx;
131
132	int *gpios;
133
134	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
135	struct spi_master *master;
136	struct device *dev;
137};
138
139/* need this so we can set the clock in the chipselect routine */
140struct spi_ppc4xx_cs {
141	u8 mode;
142};
143
144static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
145{
146	struct ppc4xx_spi *hw;
147	u8 data;
148
149	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
150		t->tx_buf, t->rx_buf, t->len);
151
152	hw = spi_master_get_devdata(spi->master);
153
154	hw->tx = t->tx_buf;
155	hw->rx = t->rx_buf;
156	hw->len = t->len;
157	hw->count = 0;
158
159	/* send the first byte */
160	data = hw->tx ? hw->tx[0] : 0;
161	out_8(&hw->regs->txd, data);
162	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
163	wait_for_completion(&hw->done);
164
165	return hw->count;
166}
167
168static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
169{
170	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
171	struct spi_ppc4xx_cs *cs = spi->controller_state;
172	int scr;
173	u8 cdm = 0;
174	u32 speed;
175	u8 bits_per_word;
176
177	/* Start with the generic configuration for this device. */
178	bits_per_word = spi->bits_per_word;
179	speed = spi->max_speed_hz;
180
181	/*
182	 * Modify the configuration if the transfer overrides it.  Do not allow
183	 * the transfer to overwrite the generic configuration with zeros.
184	 */
185	if (t) {
186		if (t->bits_per_word)
187			bits_per_word = t->bits_per_word;
188
189		if (t->speed_hz)
190			speed = min(t->speed_hz, spi->max_speed_hz);
191	}
192
193	if (bits_per_word != 8) {
194		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
195				bits_per_word);
196		return -EINVAL;
197	}
198
199	if (!speed || (speed > spi->max_speed_hz)) {
200		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
201		return -EINVAL;
202	}
203
204	/* Write new configration */
205	out_8(&hw->regs->mode, cs->mode);
206
207	/* Set the clock */
208	/* opb_freq was already divided by 4 */
209	scr = (hw->opb_freq / speed) - 1;
210	if (scr > 0)
211		cdm = min(scr, 0xff);
212
213	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
214
215	if (in_8(&hw->regs->cdm) != cdm)
216		out_8(&hw->regs->cdm, cdm);
217
218	spin_lock(&hw->bitbang.lock);
219	if (!hw->bitbang.busy) {
220		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
221		/* Need to ndelay here? */
222	}
223	spin_unlock(&hw->bitbang.lock);
224
225	return 0;
226}
227
228static int spi_ppc4xx_setup(struct spi_device *spi)
229{
230	struct spi_ppc4xx_cs *cs = spi->controller_state;
231
232	if (spi->bits_per_word != 8) {
233		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
234			spi->bits_per_word);
235		return -EINVAL;
236	}
237
238	if (!spi->max_speed_hz) {
239		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
240		return -EINVAL;
241	}
242
243	if (cs == NULL) {
244		cs = kzalloc(sizeof *cs, GFP_KERNEL);
245		if (!cs)
246			return -ENOMEM;
247		spi->controller_state = cs;
248	}
249
250	/*
251	 * We set all bits of the SPI0_MODE register, so,
252	 * no need to read-modify-write
253	 */
254	cs->mode = SPI_PPC4XX_MODE_SPE;
255
256	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
257	case SPI_MODE_0:
258		cs->mode |= SPI_CLK_MODE0;
259		break;
260	case SPI_MODE_1:
261		cs->mode |= SPI_CLK_MODE1;
262		break;
263	case SPI_MODE_2:
264		cs->mode |= SPI_CLK_MODE2;
265		break;
266	case SPI_MODE_3:
267		cs->mode |= SPI_CLK_MODE3;
268		break;
269	}
270
271	if (spi->mode & SPI_LSB_FIRST)
272		cs->mode |= SPI_PPC4XX_MODE_RD;
273
274	return 0;
275}
276
277static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
278{
279	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
280	unsigned int cs = spi->chip_select;
281	unsigned int cspol;
282
283	/*
284	 * If there are no chip selects at all, or if this is the special
285	 * case of a non-existent (dummy) chip select, do nothing.
286	 */
287
288	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
289		return;
290
291	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
292	if (value == BITBANG_CS_INACTIVE)
293		cspol = !cspol;
294
295	gpio_set_value(hw->gpios[cs], cspol);
296}
297
298static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
299{
300	struct ppc4xx_spi *hw;
301	u8 status;
302	u8 data;
303	unsigned int count;
304
305	hw = (struct ppc4xx_spi *)dev_id;
306
307	status = in_8(&hw->regs->sr);
308	if (!status)
309		return IRQ_NONE;
310
311	/*
312	 * BSY de-asserts one cycle after the transfer is complete.  The
313	 * interrupt is asserted after the transfer is complete.  The exact
314	 * relationship is not documented, hence this code.
315	 */
316
317	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
318		u8 lstatus;
319		int cnt = 0;
320
321		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
322		do {
323			ndelay(10);
324			lstatus = in_8(&hw->regs->sr);
325		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
326
327		if (cnt >= 100) {
328			dev_err(hw->dev, "busywait: too many loops!\n");
329			complete(&hw->done);
330			return IRQ_HANDLED;
331		} else {
332			/* status is always 1 (RBR) here */
333			status = in_8(&hw->regs->sr);
334			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
335		}
336	}
337
338	count = hw->count;
339	hw->count++;
340
341	/* RBR triggered this interrupt.  Therefore, data must be ready. */
342	data = in_8(&hw->regs->rxd);
343	if (hw->rx)
344		hw->rx[count] = data;
345
346	count++;
347
348	if (count < hw->len) {
349		data = hw->tx ? hw->tx[count] : 0;
350		out_8(&hw->regs->txd, data);
351		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
352	} else {
353		complete(&hw->done);
354	}
355
356	return IRQ_HANDLED;
357}
358
359static void spi_ppc4xx_cleanup(struct spi_device *spi)
360{
361	kfree(spi->controller_state);
362}
363
364static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
365{
366	/*
367	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
368	 * the 2nd I2C bus. We need to enable the the SPI bus before
369	 * using it.
370	 */
371
372	/* need to clear bit 14 to enable SPC */
373	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
374}
375
376static void free_gpios(struct ppc4xx_spi *hw)
377{
378	if (hw->master->num_chipselect) {
379		int i;
380		for (i = 0; i < hw->master->num_chipselect; i++)
381			if (gpio_is_valid(hw->gpios[i]))
382				gpio_free(hw->gpios[i]);
383
384		kfree(hw->gpios);
385		hw->gpios = NULL;
386	}
387}
388
389/*
390 * platform_device layer stuff...
391 */
392static int __init spi_ppc4xx_of_probe(struct platform_device *op)
393{
394	struct ppc4xx_spi *hw;
395	struct spi_master *master;
396	struct spi_bitbang *bbp;
397	struct resource resource;
398	struct device_node *np = op->dev.of_node;
399	struct device *dev = &op->dev;
400	struct device_node *opbnp;
401	int ret;
402	int num_gpios;
403	const unsigned int *clk;
404
405	master = spi_alloc_master(dev, sizeof *hw);
406	if (master == NULL)
407		return -ENOMEM;
408	master->dev.of_node = np;
409	dev_set_drvdata(dev, master);
410	hw = spi_master_get_devdata(master);
411	hw->master = spi_master_get(master);
412	hw->dev = dev;
413
414	init_completion(&hw->done);
415
416	/*
417	 * A count of zero implies a single SPI device without any chip-select.
418	 * Note that of_gpio_count counts all gpios assigned to this spi master.
419	 * This includes both "null" gpio's and real ones.
420	 */
421	num_gpios = of_gpio_count(np);
422	if (num_gpios) {
423		int i;
424
425		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
426		if (!hw->gpios) {
427			ret = -ENOMEM;
428			goto free_master;
429		}
430
431		for (i = 0; i < num_gpios; i++) {
432			int gpio;
433			enum of_gpio_flags flags;
434
435			gpio = of_get_gpio_flags(np, i, &flags);
436			hw->gpios[i] = gpio;
437
438			if (gpio_is_valid(gpio)) {
439				/* Real CS - set the initial state. */
440				ret = gpio_request(gpio, np->name);
441				if (ret < 0) {
442					dev_err(dev, "can't request gpio "
443							"#%d: %d\n", i, ret);
444					goto free_gpios;
445				}
446
447				gpio_direction_output(gpio,
448						!!(flags & OF_GPIO_ACTIVE_LOW));
449			} else if (gpio == -EEXIST) {
450				; /* No CS, but that's OK. */
451			} else {
452				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
453				ret = -EINVAL;
454				goto free_gpios;
455			}
456		}
457	}
458
459	/* Setup the state for the bitbang driver */
460	bbp = &hw->bitbang;
461	bbp->master = hw->master;
462	bbp->setup_transfer = spi_ppc4xx_setupxfer;
463	bbp->chipselect = spi_ppc4xx_chipsel;
464	bbp->txrx_bufs = spi_ppc4xx_txrx;
465	bbp->use_dma = 0;
466	bbp->master->setup = spi_ppc4xx_setup;
467	bbp->master->cleanup = spi_ppc4xx_cleanup;
 
 
 
 
 
 
 
468
469	/* the spi->mode bits understood by this driver: */
470	bbp->master->mode_bits =
471		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
472
473	/* this many pins in all GPIO controllers */
474	bbp->master->num_chipselect = num_gpios;
475
476	/* Get the clock for the OPB */
477	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
478	if (opbnp == NULL) {
479		dev_err(dev, "OPB: cannot find node\n");
480		ret = -ENODEV;
481		goto free_gpios;
482	}
483	/* Get the clock (Hz) for the OPB */
484	clk = of_get_property(opbnp, "clock-frequency", NULL);
485	if (clk == NULL) {
486		dev_err(dev, "OPB: no clock-frequency property set\n");
487		of_node_put(opbnp);
488		ret = -ENODEV;
489		goto free_gpios;
490	}
491	hw->opb_freq = *clk;
492	hw->opb_freq >>= 2;
493	of_node_put(opbnp);
494
495	ret = of_address_to_resource(np, 0, &resource);
496	if (ret) {
497		dev_err(dev, "error while parsing device node resource\n");
498		goto free_gpios;
499	}
500	hw->mapbase = resource.start;
501	hw->mapsize = resource_size(&resource);
502
503	/* Sanity check */
504	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
505		dev_err(dev, "too small to map registers\n");
506		ret = -EINVAL;
507		goto free_gpios;
508	}
509
510	/* Request IRQ */
511	hw->irqnum = irq_of_parse_and_map(np, 0);
512	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
513			  0, "spi_ppc4xx_of", (void *)hw);
514	if (ret) {
515		dev_err(dev, "unable to allocate interrupt\n");
516		goto free_gpios;
517	}
518
519	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
520		dev_err(dev, "resource unavailable\n");
521		ret = -EBUSY;
522		goto request_mem_error;
523	}
524
525	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
526
527	if (!hw->regs) {
528		dev_err(dev, "unable to memory map registers\n");
529		ret = -ENXIO;
530		goto map_io_error;
531	}
532
533	spi_ppc4xx_enable(hw);
534
535	/* Finally register our spi controller */
536	dev->dma_mask = 0;
537	ret = spi_bitbang_start(bbp);
538	if (ret) {
539		dev_err(dev, "failed to register SPI master\n");
540		goto unmap_regs;
541	}
542
543	dev_info(dev, "driver initialized\n");
544
545	return 0;
546
547unmap_regs:
548	iounmap(hw->regs);
549map_io_error:
550	release_mem_region(hw->mapbase, hw->mapsize);
551request_mem_error:
552	free_irq(hw->irqnum, hw);
553free_gpios:
554	free_gpios(hw);
555free_master:
556	dev_set_drvdata(dev, NULL);
557	spi_master_put(master);
558
559	dev_err(dev, "initialization failed\n");
560	return ret;
561}
562
563static int __exit spi_ppc4xx_of_remove(struct platform_device *op)
564{
565	struct spi_master *master = dev_get_drvdata(&op->dev);
566	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
567
568	spi_bitbang_stop(&hw->bitbang);
569	dev_set_drvdata(&op->dev, NULL);
570	release_mem_region(hw->mapbase, hw->mapsize);
571	free_irq(hw->irqnum, hw);
572	iounmap(hw->regs);
573	free_gpios(hw);
574	return 0;
575}
576
577static const struct of_device_id spi_ppc4xx_of_match[] = {
578	{ .compatible = "ibm,ppc4xx-spi", },
579	{},
580};
581
582MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
583
584static struct platform_driver spi_ppc4xx_of_driver = {
585	.probe = spi_ppc4xx_of_probe,
586	.remove = __exit_p(spi_ppc4xx_of_remove),
587	.driver = {
588		.name = DRIVER_NAME,
589		.owner = THIS_MODULE,
590		.of_match_table = spi_ppc4xx_of_match,
591	},
592};
593module_platform_driver(spi_ppc4xx_of_driver);
594
595MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
596MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
597MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SPI_PPC4XX SPI controller driver.
  4 *
  5 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  6 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  7 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  8 *
  9 * Based in part on drivers/spi/spi_s3c24xx.c
 10 *
 11 * Copyright (c) 2006 Ben Dooks
 12 * Copyright (c) 2006 Simtec Electronics
 13 *	Ben Dooks <ben@simtec.co.uk>
 
 
 
 
 14 */
 15
 16/*
 17 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 18 * generate an interrupt to the CPU. This can cause high CPU utilization.
 19 * This driver allows platforms to reduce the interrupt load on the CPU
 20 * during SPI transfers by setting max_speed_hz via the device tree.
 21 */
 22
 23#include <linux/module.h>
 
 24#include <linux/sched.h>
 25#include <linux/slab.h>
 26#include <linux/errno.h>
 27#include <linux/wait.h>
 28#include <linux/of_address.h>
 29#include <linux/of_irq.h>
 30#include <linux/of_platform.h>
 
 31#include <linux/interrupt.h>
 32#include <linux/delay.h>
 33
 
 34#include <linux/spi/spi.h>
 35#include <linux/spi/spi_bitbang.h>
 36
 37#include <linux/io.h>
 38#include <asm/dcr.h>
 39#include <asm/dcr-regs.h>
 40
 41/* bits in mode register - bit 0 is MSb */
 42
 43/*
 44 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 45 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 46 * Note: This is the inverse of CPHA.
 47 */
 48#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 49
 50/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 51#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 52
 53/*
 54 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 55 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 56 * Note: This is identical to SPI_LSB_FIRST.
 57 */
 58#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 59
 60/*
 61 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 62 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 63 * Note: This is identical to CPOL.
 64 */
 65#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 66
 67/*
 68 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 69 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 70 */
 71#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 72
 73/* bits in control register */
 74/* starts a transfer when set */
 75#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 76
 77/* bits in status register */
 78/* port is busy with a transfer */
 79#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 80/* RxD ready */
 81#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 82
 83/* clock settings (SCP and CI) for various SPI modes */
 84#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 85#define SPI_CLK_MODE1	(0 | 0)
 86#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 87#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 88
 89#define DRIVER_NAME	"spi_ppc4xx_of"
 90
 91struct spi_ppc4xx_regs {
 92	u8 mode;
 93	u8 rxd;
 94	u8 txd;
 95	u8 cr;
 96	u8 sr;
 97	u8 dummy;
 98	/*
 99	 * Clock divisor modulus register
100	 * This uses the following formula:
101	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
102	 * or
103	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
104	 * bit 0 is the MSb!
105	 */
106	u8 cdm;
107};
108
109/* SPI Controller driver's private data. */
110struct ppc4xx_spi {
111	/* bitbang has to be first */
112	struct spi_bitbang bitbang;
113	struct completion done;
114
115	u64 mapbase;
116	u64 mapsize;
117	int irqnum;
118	/* need this to set the SPI clock */
119	unsigned int opb_freq;
120
121	/* for transfers */
122	int len;
123	int count;
124	/* data buffers */
125	const unsigned char *tx;
126	unsigned char *rx;
127
 
 
128	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
129	struct spi_master *master;
130	struct device *dev;
131};
132
133/* need this so we can set the clock in the chipselect routine */
134struct spi_ppc4xx_cs {
135	u8 mode;
136};
137
138static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
139{
140	struct ppc4xx_spi *hw;
141	u8 data;
142
143	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
144		t->tx_buf, t->rx_buf, t->len);
145
146	hw = spi_master_get_devdata(spi->master);
147
148	hw->tx = t->tx_buf;
149	hw->rx = t->rx_buf;
150	hw->len = t->len;
151	hw->count = 0;
152
153	/* send the first byte */
154	data = hw->tx ? hw->tx[0] : 0;
155	out_8(&hw->regs->txd, data);
156	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
157	wait_for_completion(&hw->done);
158
159	return hw->count;
160}
161
162static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
163{
164	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
165	struct spi_ppc4xx_cs *cs = spi->controller_state;
166	int scr;
167	u8 cdm = 0;
168	u32 speed;
169	u8 bits_per_word;
170
171	/* Start with the generic configuration for this device. */
172	bits_per_word = spi->bits_per_word;
173	speed = spi->max_speed_hz;
174
175	/*
176	 * Modify the configuration if the transfer overrides it.  Do not allow
177	 * the transfer to overwrite the generic configuration with zeros.
178	 */
179	if (t) {
180		if (t->bits_per_word)
181			bits_per_word = t->bits_per_word;
182
183		if (t->speed_hz)
184			speed = min(t->speed_hz, spi->max_speed_hz);
185	}
186
 
 
 
 
 
 
187	if (!speed || (speed > spi->max_speed_hz)) {
188		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
189		return -EINVAL;
190	}
191
192	/* Write new configuration */
193	out_8(&hw->regs->mode, cs->mode);
194
195	/* Set the clock */
196	/* opb_freq was already divided by 4 */
197	scr = (hw->opb_freq / speed) - 1;
198	if (scr > 0)
199		cdm = min(scr, 0xff);
200
201	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
202
203	if (in_8(&hw->regs->cdm) != cdm)
204		out_8(&hw->regs->cdm, cdm);
205
206	mutex_lock(&hw->bitbang.lock);
207	if (!hw->bitbang.busy) {
208		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
209		/* Need to ndelay here? */
210	}
211	mutex_unlock(&hw->bitbang.lock);
212
213	return 0;
214}
215
216static int spi_ppc4xx_setup(struct spi_device *spi)
217{
218	struct spi_ppc4xx_cs *cs = spi->controller_state;
219
 
 
 
 
 
 
220	if (!spi->max_speed_hz) {
221		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
222		return -EINVAL;
223	}
224
225	if (cs == NULL) {
226		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
227		if (!cs)
228			return -ENOMEM;
229		spi->controller_state = cs;
230	}
231
232	/*
233	 * We set all bits of the SPI0_MODE register, so,
234	 * no need to read-modify-write
235	 */
236	cs->mode = SPI_PPC4XX_MODE_SPE;
237
238	switch (spi->mode & SPI_MODE_X_MASK) {
239	case SPI_MODE_0:
240		cs->mode |= SPI_CLK_MODE0;
241		break;
242	case SPI_MODE_1:
243		cs->mode |= SPI_CLK_MODE1;
244		break;
245	case SPI_MODE_2:
246		cs->mode |= SPI_CLK_MODE2;
247		break;
248	case SPI_MODE_3:
249		cs->mode |= SPI_CLK_MODE3;
250		break;
251	}
252
253	if (spi->mode & SPI_LSB_FIRST)
254		cs->mode |= SPI_PPC4XX_MODE_RD;
255
256	return 0;
257}
258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
260{
261	struct ppc4xx_spi *hw;
262	u8 status;
263	u8 data;
264	unsigned int count;
265
266	hw = (struct ppc4xx_spi *)dev_id;
267
268	status = in_8(&hw->regs->sr);
269	if (!status)
270		return IRQ_NONE;
271
272	/*
273	 * BSY de-asserts one cycle after the transfer is complete.  The
274	 * interrupt is asserted after the transfer is complete.  The exact
275	 * relationship is not documented, hence this code.
276	 */
277
278	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
279		u8 lstatus;
280		int cnt = 0;
281
282		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
283		do {
284			ndelay(10);
285			lstatus = in_8(&hw->regs->sr);
286		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
287
288		if (cnt >= 100) {
289			dev_err(hw->dev, "busywait: too many loops!\n");
290			complete(&hw->done);
291			return IRQ_HANDLED;
292		} else {
293			/* status is always 1 (RBR) here */
294			status = in_8(&hw->regs->sr);
295			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
296		}
297	}
298
299	count = hw->count;
300	hw->count++;
301
302	/* RBR triggered this interrupt.  Therefore, data must be ready. */
303	data = in_8(&hw->regs->rxd);
304	if (hw->rx)
305		hw->rx[count] = data;
306
307	count++;
308
309	if (count < hw->len) {
310		data = hw->tx ? hw->tx[count] : 0;
311		out_8(&hw->regs->txd, data);
312		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
313	} else {
314		complete(&hw->done);
315	}
316
317	return IRQ_HANDLED;
318}
319
320static void spi_ppc4xx_cleanup(struct spi_device *spi)
321{
322	kfree(spi->controller_state);
323}
324
325static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
326{
327	/*
328	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
329	 * the 2nd I2C bus. We need to enable the SPI bus before
330	 * using it.
331	 */
332
333	/* need to clear bit 14 to enable SPC */
334	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
335}
336
 
 
 
 
 
 
 
 
 
 
 
 
 
337/*
338 * platform_device layer stuff...
339 */
340static int spi_ppc4xx_of_probe(struct platform_device *op)
341{
342	struct ppc4xx_spi *hw;
343	struct spi_master *master;
344	struct spi_bitbang *bbp;
345	struct resource resource;
346	struct device_node *np = op->dev.of_node;
347	struct device *dev = &op->dev;
348	struct device_node *opbnp;
349	int ret;
 
350	const unsigned int *clk;
351
352	master = spi_alloc_master(dev, sizeof(*hw));
353	if (master == NULL)
354		return -ENOMEM;
355	master->dev.of_node = np;
356	platform_set_drvdata(op, master);
357	hw = spi_master_get_devdata(master);
358	hw->master = master;
359	hw->dev = dev;
360
361	init_completion(&hw->done);
362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363	/* Setup the state for the bitbang driver */
364	bbp = &hw->bitbang;
365	bbp->master = hw->master;
366	bbp->setup_transfer = spi_ppc4xx_setupxfer;
 
367	bbp->txrx_bufs = spi_ppc4xx_txrx;
368	bbp->use_dma = 0;
369	bbp->master->setup = spi_ppc4xx_setup;
370	bbp->master->cleanup = spi_ppc4xx_cleanup;
371	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
372	bbp->master->use_gpio_descriptors = true;
373	/*
374	 * The SPI core will count the number of GPIO descriptors to figure
375	 * out the number of chip selects available on the platform.
376	 */
377	bbp->master->num_chipselect = 0;
378
379	/* the spi->mode bits understood by this driver: */
380	bbp->master->mode_bits =
381		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
382
 
 
 
383	/* Get the clock for the OPB */
384	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
385	if (opbnp == NULL) {
386		dev_err(dev, "OPB: cannot find node\n");
387		ret = -ENODEV;
388		goto free_master;
389	}
390	/* Get the clock (Hz) for the OPB */
391	clk = of_get_property(opbnp, "clock-frequency", NULL);
392	if (clk == NULL) {
393		dev_err(dev, "OPB: no clock-frequency property set\n");
394		of_node_put(opbnp);
395		ret = -ENODEV;
396		goto free_master;
397	}
398	hw->opb_freq = *clk;
399	hw->opb_freq >>= 2;
400	of_node_put(opbnp);
401
402	ret = of_address_to_resource(np, 0, &resource);
403	if (ret) {
404		dev_err(dev, "error while parsing device node resource\n");
405		goto free_master;
406	}
407	hw->mapbase = resource.start;
408	hw->mapsize = resource_size(&resource);
409
410	/* Sanity check */
411	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
412		dev_err(dev, "too small to map registers\n");
413		ret = -EINVAL;
414		goto free_master;
415	}
416
417	/* Request IRQ */
418	hw->irqnum = irq_of_parse_and_map(np, 0);
419	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
420			  0, "spi_ppc4xx_of", (void *)hw);
421	if (ret) {
422		dev_err(dev, "unable to allocate interrupt\n");
423		goto free_master;
424	}
425
426	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
427		dev_err(dev, "resource unavailable\n");
428		ret = -EBUSY;
429		goto request_mem_error;
430	}
431
432	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
433
434	if (!hw->regs) {
435		dev_err(dev, "unable to memory map registers\n");
436		ret = -ENXIO;
437		goto map_io_error;
438	}
439
440	spi_ppc4xx_enable(hw);
441
442	/* Finally register our spi controller */
443	dev->dma_mask = 0;
444	ret = spi_bitbang_start(bbp);
445	if (ret) {
446		dev_err(dev, "failed to register SPI master\n");
447		goto unmap_regs;
448	}
449
450	dev_info(dev, "driver initialized\n");
451
452	return 0;
453
454unmap_regs:
455	iounmap(hw->regs);
456map_io_error:
457	release_mem_region(hw->mapbase, hw->mapsize);
458request_mem_error:
459	free_irq(hw->irqnum, hw);
 
 
460free_master:
 
461	spi_master_put(master);
462
463	dev_err(dev, "initialization failed\n");
464	return ret;
465}
466
467static int spi_ppc4xx_of_remove(struct platform_device *op)
468{
469	struct spi_master *master = platform_get_drvdata(op);
470	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
471
472	spi_bitbang_stop(&hw->bitbang);
 
473	release_mem_region(hw->mapbase, hw->mapsize);
474	free_irq(hw->irqnum, hw);
475	iounmap(hw->regs);
476	spi_master_put(master);
477	return 0;
478}
479
480static const struct of_device_id spi_ppc4xx_of_match[] = {
481	{ .compatible = "ibm,ppc4xx-spi", },
482	{},
483};
484
485MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
486
487static struct platform_driver spi_ppc4xx_of_driver = {
488	.probe = spi_ppc4xx_of_probe,
489	.remove = spi_ppc4xx_of_remove,
490	.driver = {
491		.name = DRIVER_NAME,
 
492		.of_match_table = spi_ppc4xx_of_match,
493	},
494};
495module_platform_driver(spi_ppc4xx_of_driver);
496
497MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
498MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
499MODULE_LICENSE("GPL");