Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * SuperH On-Chip RTC Support
  3 *
  4 * Copyright (C) 2006 - 2009  Paul Mundt
  5 * Copyright (C) 2006  Jamie Lenehan
  6 * Copyright (C) 2008  Angelo Castello
  7 *
  8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  9 *
 10 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 11 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 12 *
 13 * This file is subject to the terms and conditions of the GNU General Public
 14 * License.  See the file "COPYING" in the main directory of this archive
 15 * for more details.
 16 */
 17#include <linux/module.h>
 
 18#include <linux/kernel.h>
 19#include <linux/bcd.h>
 20#include <linux/rtc.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/seq_file.h>
 24#include <linux/interrupt.h>
 25#include <linux/spinlock.h>
 26#include <linux/io.h>
 27#include <linux/log2.h>
 28#include <linux/clk.h>
 29#include <linux/slab.h>
 
 30#include <asm/rtc.h>
 
 
 
 
 
 
 
 31
 32#define DRV_NAME	"sh-rtc"
 33#define DRV_VERSION	"0.2.3"
 34
 35#define RTC_REG(r)	((r) * rtc_reg_size)
 36
 37#define R64CNT		RTC_REG(0)
 38
 39#define RSECCNT		RTC_REG(1)	/* RTC sec */
 40#define RMINCNT		RTC_REG(2)	/* RTC min */
 41#define RHRCNT		RTC_REG(3)	/* RTC hour */
 42#define RWKCNT		RTC_REG(4)	/* RTC week */
 43#define RDAYCNT		RTC_REG(5)	/* RTC day */
 44#define RMONCNT		RTC_REG(6)	/* RTC month */
 45#define RYRCNT		RTC_REG(7)	/* RTC year */
 46#define RSECAR		RTC_REG(8)	/* ALARM sec */
 47#define RMINAR		RTC_REG(9)	/* ALARM min */
 48#define RHRAR		RTC_REG(10)	/* ALARM hour */
 49#define RWKAR		RTC_REG(11)	/* ALARM week */
 50#define RDAYAR		RTC_REG(12)	/* ALARM day */
 51#define RMONAR		RTC_REG(13)	/* ALARM month */
 52#define RCR1		RTC_REG(14)	/* Control */
 53#define RCR2		RTC_REG(15)	/* Control */
 54
 55/*
 56 * Note on RYRAR and RCR3: Up until this point most of the register
 57 * definitions are consistent across all of the available parts. However,
 58 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 59 * register used to control RYRCNT/RYRAR compare) varies considerably
 60 * across various parts, occasionally being mapped in to a completely
 61 * unrelated address space. For proper RYRAR support a separate resource
 62 * would have to be handed off, but as this is purely optional in
 63 * practice, we simply opt not to support it, thereby keeping the code
 64 * quite a bit more simplified.
 65 */
 66
 67/* ALARM Bits - or with BCD encoded value */
 68#define AR_ENB		0x80	/* Enable for alarm cmp   */
 69
 70/* Period Bits */
 71#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 72#define PF_COUNT	0x200	/* Half periodic counter */
 73#define PF_OXS		0x400	/* Periodic One x Second */
 74#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 75#define PF_MASK		0xf00
 76
 77/* RCR1 Bits */
 78#define RCR1_CF		0x80	/* Carry Flag             */
 79#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 80#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 81#define RCR1_AF		0x01	/* Alarm Flag             */
 82
 83/* RCR2 Bits */
 84#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 85#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 86#define RCR2_RTCEN	0x08	/* ENable RTC              */
 87#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 88#define RCR2_RESET	0x02	/* Reset bit               */
 89#define RCR2_START	0x01	/* Start bit               */
 90
 91struct sh_rtc {
 92	void __iomem		*regbase;
 93	unsigned long		regsize;
 94	struct resource		*res;
 95	int			alarm_irq;
 96	int			periodic_irq;
 97	int			carry_irq;
 98	struct clk		*clk;
 99	struct rtc_device	*rtc_dev;
100	spinlock_t		lock;
101	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
102	unsigned short		periodic_freq;
103};
104
105static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106{
107	unsigned int tmp, pending;
108
109	tmp = readb(rtc->regbase + RCR1);
110	pending = tmp & RCR1_CF;
111	tmp &= ~RCR1_CF;
112	writeb(tmp, rtc->regbase + RCR1);
113
114	/* Users have requested One x Second IRQ */
115	if (pending && rtc->periodic_freq & PF_OXS)
116		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117
118	return pending;
119}
120
121static int __sh_rtc_alarm(struct sh_rtc *rtc)
122{
123	unsigned int tmp, pending;
124
125	tmp = readb(rtc->regbase + RCR1);
126	pending = tmp & RCR1_AF;
127	tmp &= ~(RCR1_AF | RCR1_AIE);
128	writeb(tmp, rtc->regbase + RCR1);
129
130	if (pending)
131		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132
133	return pending;
134}
135
136static int __sh_rtc_periodic(struct sh_rtc *rtc)
137{
138	struct rtc_device *rtc_dev = rtc->rtc_dev;
139	struct rtc_task *irq_task;
140	unsigned int tmp, pending;
141
142	tmp = readb(rtc->regbase + RCR2);
143	pending = tmp & RCR2_PEF;
144	tmp &= ~RCR2_PEF;
145	writeb(tmp, rtc->regbase + RCR2);
146
147	if (!pending)
148		return 0;
149
150	/* Half period enabled than one skipped and the next notified */
151	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152		rtc->periodic_freq &= ~PF_COUNT;
153	else {
154		if (rtc->periodic_freq & PF_HP)
155			rtc->periodic_freq |= PF_COUNT;
156		if (rtc->periodic_freq & PF_KOU) {
157			spin_lock(&rtc_dev->irq_task_lock);
158			irq_task = rtc_dev->irq_task;
159			if (irq_task)
160				irq_task->func(irq_task->private_data);
161			spin_unlock(&rtc_dev->irq_task_lock);
162		} else
163			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164	}
165
166	return pending;
167}
168
169static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170{
171	struct sh_rtc *rtc = dev_id;
172	int ret;
173
174	spin_lock(&rtc->lock);
175	ret = __sh_rtc_interrupt(rtc);
176	spin_unlock(&rtc->lock);
177
178	return IRQ_RETVAL(ret);
179}
180
181static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182{
183	struct sh_rtc *rtc = dev_id;
184	int ret;
185
186	spin_lock(&rtc->lock);
187	ret = __sh_rtc_alarm(rtc);
188	spin_unlock(&rtc->lock);
189
190	return IRQ_RETVAL(ret);
191}
192
193static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194{
195	struct sh_rtc *rtc = dev_id;
196	int ret;
197
198	spin_lock(&rtc->lock);
199	ret = __sh_rtc_periodic(rtc);
200	spin_unlock(&rtc->lock);
201
202	return IRQ_RETVAL(ret);
203}
204
205static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206{
207	struct sh_rtc *rtc = dev_id;
208	int ret;
209
210	spin_lock(&rtc->lock);
211	ret = __sh_rtc_interrupt(rtc);
212	ret |= __sh_rtc_alarm(rtc);
213	ret |= __sh_rtc_periodic(rtc);
214	spin_unlock(&rtc->lock);
215
216	return IRQ_RETVAL(ret);
217}
218
219static int sh_rtc_irq_set_state(struct device *dev, int enable)
220{
221	struct sh_rtc *rtc = dev_get_drvdata(dev);
222	unsigned int tmp;
223
224	spin_lock_irq(&rtc->lock);
225
226	tmp = readb(rtc->regbase + RCR2);
227
228	if (enable) {
229		rtc->periodic_freq |= PF_KOU;
230		tmp &= ~RCR2_PEF;	/* Clear PES bit */
231		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
232	} else {
233		rtc->periodic_freq &= ~PF_KOU;
234		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
235	}
236
237	writeb(tmp, rtc->regbase + RCR2);
238
239	spin_unlock_irq(&rtc->lock);
240
241	return 0;
242}
243
244static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245{
246	struct sh_rtc *rtc = dev_get_drvdata(dev);
247	int tmp, ret = 0;
248
249	spin_lock_irq(&rtc->lock);
250	tmp = rtc->periodic_freq & PF_MASK;
251
252	switch (freq) {
253	case 0:
254		rtc->periodic_freq = 0x00;
255		break;
256	case 1:
257		rtc->periodic_freq = 0x60;
258		break;
259	case 2:
260		rtc->periodic_freq = 0x50;
261		break;
262	case 4:
263		rtc->periodic_freq = 0x40;
264		break;
265	case 8:
266		rtc->periodic_freq = 0x30 | PF_HP;
267		break;
268	case 16:
269		rtc->periodic_freq = 0x30;
270		break;
271	case 32:
272		rtc->periodic_freq = 0x20 | PF_HP;
273		break;
274	case 64:
275		rtc->periodic_freq = 0x20;
276		break;
277	case 128:
278		rtc->periodic_freq = 0x10 | PF_HP;
279		break;
280	case 256:
281		rtc->periodic_freq = 0x10;
282		break;
283	default:
284		ret = -ENOTSUPP;
285	}
286
287	if (ret == 0)
288		rtc->periodic_freq |= tmp;
289
290	spin_unlock_irq(&rtc->lock);
291	return ret;
292}
293
294static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295{
296	struct sh_rtc *rtc = dev_get_drvdata(dev);
297	unsigned int tmp;
298
299	spin_lock_irq(&rtc->lock);
300
301	tmp = readb(rtc->regbase + RCR1);
302
303	if (enable)
304		tmp |= RCR1_AIE;
305	else
306		tmp &= ~RCR1_AIE;
307
308	writeb(tmp, rtc->regbase + RCR1);
309
310	spin_unlock_irq(&rtc->lock);
311}
312
313static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314{
315	struct sh_rtc *rtc = dev_get_drvdata(dev);
316	unsigned int tmp;
317
318	tmp = readb(rtc->regbase + RCR1);
319	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320
321	tmp = readb(rtc->regbase + RCR2);
322	seq_printf(seq, "periodic_IRQ\t: %s\n",
323		   (tmp & RCR2_PESMASK) ? "yes" : "no");
324
325	return 0;
326}
327
328static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329{
330	struct sh_rtc *rtc = dev_get_drvdata(dev);
331	unsigned int tmp;
332
333	spin_lock_irq(&rtc->lock);
334
335	tmp = readb(rtc->regbase + RCR1);
336
337	if (!enable)
338		tmp &= ~RCR1_CIE;
339	else
340		tmp |= RCR1_CIE;
341
342	writeb(tmp, rtc->regbase + RCR1);
343
344	spin_unlock_irq(&rtc->lock);
345}
346
347static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
348{
349	sh_rtc_setaie(dev, enabled);
350	return 0;
351}
352
353static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
354{
355	struct platform_device *pdev = to_platform_device(dev);
356	struct sh_rtc *rtc = platform_get_drvdata(pdev);
357	unsigned int sec128, sec2, yr, yr100, cf_bit;
358
 
 
 
359	do {
360		unsigned int tmp;
361
362		spin_lock_irq(&rtc->lock);
363
364		tmp = readb(rtc->regbase + RCR1);
365		tmp &= ~RCR1_CF; /* Clear CF-bit */
366		tmp |= RCR1_CIE;
367		writeb(tmp, rtc->regbase + RCR1);
368
369		sec128 = readb(rtc->regbase + R64CNT);
370
371		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
372		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
373		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
374		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
375		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
376		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
377
378		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
379			yr  = readw(rtc->regbase + RYRCNT);
380			yr100 = bcd2bin(yr >> 8);
381			yr &= 0xff;
382		} else {
383			yr  = readb(rtc->regbase + RYRCNT);
384			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
385		}
386
387		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
388
389		sec2 = readb(rtc->regbase + R64CNT);
390		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
391
392		spin_unlock_irq(&rtc->lock);
393	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
394
395#if RTC_BIT_INVERTED != 0
396	if ((sec128 & RTC_BIT_INVERTED))
397		tm->tm_sec--;
398#endif
399
400	/* only keep the carry interrupt enabled if UIE is on */
401	if (!(rtc->periodic_freq & PF_OXS))
402		sh_rtc_setcie(dev, 0);
403
404	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
405		"mday=%d, mon=%d, year=%d, wday=%d\n",
406		__func__,
407		tm->tm_sec, tm->tm_min, tm->tm_hour,
408		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
409
410	return rtc_valid_tm(tm);
411}
412
413static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415	struct platform_device *pdev = to_platform_device(dev);
416	struct sh_rtc *rtc = platform_get_drvdata(pdev);
417	unsigned int tmp;
418	int year;
419
420	spin_lock_irq(&rtc->lock);
421
422	/* Reset pre-scaler & stop RTC */
423	tmp = readb(rtc->regbase + RCR2);
424	tmp |= RCR2_RESET;
425	tmp &= ~RCR2_START;
426	writeb(tmp, rtc->regbase + RCR2);
427
428	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
429	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
430	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
431	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
432	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
433	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
434
435	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
436		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
437			bin2bcd(tm->tm_year % 100);
438		writew(year, rtc->regbase + RYRCNT);
439	} else {
440		year = tm->tm_year % 100;
441		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
442	}
443
444	/* Start RTC */
445	tmp = readb(rtc->regbase + RCR2);
446	tmp &= ~RCR2_RESET;
447	tmp |= RCR2_RTCEN | RCR2_START;
448	writeb(tmp, rtc->regbase + RCR2);
449
450	spin_unlock_irq(&rtc->lock);
451
452	return 0;
453}
454
455static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
456{
457	unsigned int byte;
458	int value = 0xff;	/* return 0xff for ignored values */
459
460	byte = readb(rtc->regbase + reg_off);
461	if (byte & AR_ENB) {
462		byte &= ~AR_ENB;	/* strip the enable bit */
463		value = bcd2bin(byte);
464	}
465
466	return value;
467}
468
469static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
470{
471	struct platform_device *pdev = to_platform_device(dev);
472	struct sh_rtc *rtc = platform_get_drvdata(pdev);
473	struct rtc_time *tm = &wkalrm->time;
474
475	spin_lock_irq(&rtc->lock);
476
477	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
478	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
479	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
480	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
481	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
482	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
483	if (tm->tm_mon > 0)
484		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
485	tm->tm_year     = 0xffff;
486
487	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
488
489	spin_unlock_irq(&rtc->lock);
490
491	return 0;
492}
493
494static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
495					    int value, int reg_off)
496{
497	/* < 0 for a value that is ignored */
498	if (value < 0)
499		writeb(0, rtc->regbase + reg_off);
500	else
501		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
502}
503
504static int sh_rtc_check_alarm(struct rtc_time *tm)
505{
506	/*
507	 * The original rtc says anything > 0xc0 is "don't care" or "match
508	 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
509	 * The original rtc doesn't support years - some things use -1 and
510	 * some 0xffff. We use -1 to make out tests easier.
511	 */
512	if (tm->tm_year == 0xffff)
513		tm->tm_year = -1;
514	if (tm->tm_mon >= 0xff)
515		tm->tm_mon = -1;
516	if (tm->tm_mday >= 0xff)
517		tm->tm_mday = -1;
518	if (tm->tm_wday >= 0xff)
519		tm->tm_wday = -1;
520	if (tm->tm_hour >= 0xff)
521		tm->tm_hour = -1;
522	if (tm->tm_min >= 0xff)
523		tm->tm_min = -1;
524	if (tm->tm_sec >= 0xff)
525		tm->tm_sec = -1;
526
527	if (tm->tm_year > 9999 ||
528		tm->tm_mon >= 12 ||
529		tm->tm_mday == 0 || tm->tm_mday >= 32 ||
530		tm->tm_wday >= 7 ||
531		tm->tm_hour >= 24 ||
532		tm->tm_min >= 60 ||
533		tm->tm_sec >= 60)
534		return -EINVAL;
535
536	return 0;
537}
538
539static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
540{
541	struct platform_device *pdev = to_platform_device(dev);
542	struct sh_rtc *rtc = platform_get_drvdata(pdev);
543	unsigned int rcr1;
544	struct rtc_time *tm = &wkalrm->time;
545	int mon, err;
546
547	err = sh_rtc_check_alarm(tm);
548	if (unlikely(err < 0))
549		return err;
550
551	spin_lock_irq(&rtc->lock);
552
553	/* disable alarm interrupt and clear the alarm flag */
554	rcr1 = readb(rtc->regbase + RCR1);
555	rcr1 &= ~(RCR1_AF | RCR1_AIE);
556	writeb(rcr1, rtc->regbase + RCR1);
557
558	/* set alarm time */
559	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
560	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
561	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
562	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
563	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
564	mon = tm->tm_mon;
565	if (mon >= 0)
566		mon += 1;
567	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
568
569	if (wkalrm->enabled) {
570		rcr1 |= RCR1_AIE;
571		writeb(rcr1, rtc->regbase + RCR1);
572	}
573
574	spin_unlock_irq(&rtc->lock);
575
576	return 0;
577}
578
579static struct rtc_class_ops sh_rtc_ops = {
580	.read_time	= sh_rtc_read_time,
581	.set_time	= sh_rtc_set_time,
582	.read_alarm	= sh_rtc_read_alarm,
583	.set_alarm	= sh_rtc_set_alarm,
584	.proc		= sh_rtc_proc,
585	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
586};
587
588static int __init sh_rtc_probe(struct platform_device *pdev)
589{
590	struct sh_rtc *rtc;
591	struct resource *res;
592	struct rtc_time r;
593	char clk_name[6];
594	int clk_id, ret;
595
596	rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
597	if (unlikely(!rtc))
598		return -ENOMEM;
599
600	spin_lock_init(&rtc->lock);
601
602	/* get periodic/carry/alarm irqs */
603	ret = platform_get_irq(pdev, 0);
604	if (unlikely(ret <= 0)) {
605		ret = -ENOENT;
606		dev_err(&pdev->dev, "No IRQ resource\n");
607		goto err_badres;
608	}
609
610	rtc->periodic_irq = ret;
611	rtc->carry_irq = platform_get_irq(pdev, 1);
612	rtc->alarm_irq = platform_get_irq(pdev, 2);
613
614	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
 
 
615	if (unlikely(res == NULL)) {
616		ret = -ENOENT;
617		dev_err(&pdev->dev, "No IO resource\n");
618		goto err_badres;
619	}
620
621	rtc->regsize = resource_size(res);
622
623	rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
624	if (unlikely(!rtc->res)) {
625		ret = -EBUSY;
626		goto err_badres;
627	}
628
629	rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
630	if (unlikely(!rtc->regbase)) {
631		ret = -EINVAL;
632		goto err_badmap;
633	}
634
635	clk_id = pdev->id;
636	/* With a single device, the clock id is still "rtc0" */
637	if (clk_id < 0)
638		clk_id = 0;
639
640	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
 
 
 
 
 
 
 
 
641
642	rtc->clk = clk_get(&pdev->dev, clk_name);
643	if (IS_ERR(rtc->clk)) {
644		/*
645		 * No error handling for rtc->clk intentionally, not all
646		 * platforms will have a unique clock for the RTC, and
647		 * the clk API can handle the struct clk pointer being
648		 * NULL.
649		 */
650		rtc->clk = NULL;
651	}
652
 
 
 
 
653	clk_enable(rtc->clk);
654
655	rtc->capabilities = RTC_DEF_CAPABILITIES;
656	if (pdev->dev.platform_data) {
657		struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
 
 
 
658
659		/*
660		 * Some CPUs have special capabilities in addition to the
661		 * default set. Add those in here.
662		 */
663		rtc->capabilities |= pinfo->capabilities;
664	}
 
665
666	if (rtc->carry_irq <= 0) {
667		/* register shared periodic/carry/alarm irq */
668		ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
669				  0, "sh-rtc", rtc);
670		if (unlikely(ret)) {
671			dev_err(&pdev->dev,
672				"request IRQ failed with %d, IRQ %d\n", ret,
673				rtc->periodic_irq);
674			goto err_unmap;
675		}
676	} else {
677		/* register periodic/carry/alarm irqs */
678		ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
679				  0, "sh-rtc period", rtc);
680		if (unlikely(ret)) {
681			dev_err(&pdev->dev,
682				"request period IRQ failed with %d, IRQ %d\n",
683				ret, rtc->periodic_irq);
684			goto err_unmap;
685		}
686
687		ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
688				  0, "sh-rtc carry", rtc);
689		if (unlikely(ret)) {
690			dev_err(&pdev->dev,
691				"request carry IRQ failed with %d, IRQ %d\n",
692				ret, rtc->carry_irq);
693			free_irq(rtc->periodic_irq, rtc);
694			goto err_unmap;
695		}
696
697		ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
698				  0, "sh-rtc alarm", rtc);
699		if (unlikely(ret)) {
700			dev_err(&pdev->dev,
701				"request alarm IRQ failed with %d, IRQ %d\n",
702				ret, rtc->alarm_irq);
703			free_irq(rtc->carry_irq, rtc);
704			free_irq(rtc->periodic_irq, rtc);
705			goto err_unmap;
706		}
707	}
708
709	platform_set_drvdata(pdev, rtc);
710
711	/* everything disabled by default */
712	sh_rtc_irq_set_freq(&pdev->dev, 0);
713	sh_rtc_irq_set_state(&pdev->dev, 0);
714	sh_rtc_setaie(&pdev->dev, 0);
715	sh_rtc_setcie(&pdev->dev, 0);
716
717	rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
718					   &sh_rtc_ops, THIS_MODULE);
719	if (IS_ERR(rtc->rtc_dev)) {
720		ret = PTR_ERR(rtc->rtc_dev);
721		free_irq(rtc->periodic_irq, rtc);
722		free_irq(rtc->carry_irq, rtc);
723		free_irq(rtc->alarm_irq, rtc);
724		goto err_unmap;
725	}
726
727	rtc->rtc_dev->max_user_freq = 256;
728
729	/* reset rtc to epoch 0 if time is invalid */
730	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
731		rtc_time_to_tm(0, &r);
732		rtc_set_time(rtc->rtc_dev, &r);
 
 
733	}
734
 
 
 
 
735	device_init_wakeup(&pdev->dev, 1);
736	return 0;
737
738err_unmap:
739	clk_disable(rtc->clk);
740	clk_put(rtc->clk);
741	iounmap(rtc->regbase);
742err_badmap:
743	release_mem_region(rtc->res->start, rtc->regsize);
744err_badres:
745	kfree(rtc);
746
747	return ret;
748}
749
750static int __exit sh_rtc_remove(struct platform_device *pdev)
751{
752	struct sh_rtc *rtc = platform_get_drvdata(pdev);
753
754	rtc_device_unregister(rtc->rtc_dev);
755	sh_rtc_irq_set_state(&pdev->dev, 0);
756
757	sh_rtc_setaie(&pdev->dev, 0);
758	sh_rtc_setcie(&pdev->dev, 0);
759
760	free_irq(rtc->periodic_irq, rtc);
761
762	if (rtc->carry_irq > 0) {
763		free_irq(rtc->carry_irq, rtc);
764		free_irq(rtc->alarm_irq, rtc);
765	}
766
767	iounmap(rtc->regbase);
768	release_mem_region(rtc->res->start, rtc->regsize);
769
770	clk_disable(rtc->clk);
771	clk_put(rtc->clk);
772
773	platform_set_drvdata(pdev, NULL);
774
775	kfree(rtc);
776
777	return 0;
778}
779
780static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
781{
782	struct platform_device *pdev = to_platform_device(dev);
783	struct sh_rtc *rtc = platform_get_drvdata(pdev);
784
785	irq_set_irq_wake(rtc->periodic_irq, enabled);
786
787	if (rtc->carry_irq > 0) {
788		irq_set_irq_wake(rtc->carry_irq, enabled);
789		irq_set_irq_wake(rtc->alarm_irq, enabled);
790	}
791}
792
793static int sh_rtc_suspend(struct device *dev)
794{
795	if (device_may_wakeup(dev))
796		sh_rtc_set_irq_wake(dev, 1);
797
798	return 0;
799}
800
801static int sh_rtc_resume(struct device *dev)
802{
803	if (device_may_wakeup(dev))
804		sh_rtc_set_irq_wake(dev, 0);
805
806	return 0;
807}
808
809static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
810	.suspend = sh_rtc_suspend,
811	.resume = sh_rtc_resume,
 
 
812};
 
813
814static struct platform_driver sh_rtc_platform_driver = {
815	.driver		= {
816		.name	= DRV_NAME,
817		.owner	= THIS_MODULE,
818		.pm	= &sh_rtc_dev_pm_ops,
819	},
820	.remove		= __exit_p(sh_rtc_remove),
821};
822
823static int __init sh_rtc_init(void)
824{
825	return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
826}
827
828static void __exit sh_rtc_exit(void)
829{
830	platform_driver_unregister(&sh_rtc_platform_driver);
831}
832
833module_init(sh_rtc_init);
834module_exit(sh_rtc_exit);
835
836MODULE_DESCRIPTION("SuperH on-chip RTC driver");
837MODULE_VERSION(DRV_VERSION);
838MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
839	      "Jamie Lenehan <lenehan@twibble.org>, "
840	      "Angelo Castello <angelo.castello@st.com>");
841MODULE_LICENSE("GPL");
842MODULE_ALIAS("platform:" DRV_NAME);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * SuperH On-Chip RTC Support
  4 *
  5 * Copyright (C) 2006 - 2009  Paul Mundt
  6 * Copyright (C) 2006  Jamie Lenehan
  7 * Copyright (C) 2008  Angelo Castello
  8 *
  9 * Based on the old arch/sh/kernel/cpu/rtc.c by:
 10 *
 11 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 12 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 
 
 
 
 13 */
 14#include <linux/module.h>
 15#include <linux/mod_devicetable.h>
 16#include <linux/kernel.h>
 17#include <linux/bcd.h>
 18#include <linux/rtc.h>
 19#include <linux/init.h>
 20#include <linux/platform_device.h>
 21#include <linux/seq_file.h>
 22#include <linux/interrupt.h>
 23#include <linux/spinlock.h>
 24#include <linux/io.h>
 25#include <linux/log2.h>
 26#include <linux/clk.h>
 27#include <linux/slab.h>
 28#ifdef CONFIG_SUPERH
 29#include <asm/rtc.h>
 30#else
 31/* Default values for RZ/A RTC */
 32#define rtc_reg_size		sizeof(u16)
 33#define RTC_BIT_INVERTED        0	/* no chip bugs */
 34#define RTC_CAP_4_DIGIT_YEAR    (1 << 0)
 35#define RTC_DEF_CAPABILITIES    RTC_CAP_4_DIGIT_YEAR
 36#endif
 37
 38#define DRV_NAME	"sh-rtc"
 
 39
 40#define RTC_REG(r)	((r) * rtc_reg_size)
 41
 42#define R64CNT		RTC_REG(0)
 43
 44#define RSECCNT		RTC_REG(1)	/* RTC sec */
 45#define RMINCNT		RTC_REG(2)	/* RTC min */
 46#define RHRCNT		RTC_REG(3)	/* RTC hour */
 47#define RWKCNT		RTC_REG(4)	/* RTC week */
 48#define RDAYCNT		RTC_REG(5)	/* RTC day */
 49#define RMONCNT		RTC_REG(6)	/* RTC month */
 50#define RYRCNT		RTC_REG(7)	/* RTC year */
 51#define RSECAR		RTC_REG(8)	/* ALARM sec */
 52#define RMINAR		RTC_REG(9)	/* ALARM min */
 53#define RHRAR		RTC_REG(10)	/* ALARM hour */
 54#define RWKAR		RTC_REG(11)	/* ALARM week */
 55#define RDAYAR		RTC_REG(12)	/* ALARM day */
 56#define RMONAR		RTC_REG(13)	/* ALARM month */
 57#define RCR1		RTC_REG(14)	/* Control */
 58#define RCR2		RTC_REG(15)	/* Control */
 59
 60/*
 61 * Note on RYRAR and RCR3: Up until this point most of the register
 62 * definitions are consistent across all of the available parts. However,
 63 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 64 * register used to control RYRCNT/RYRAR compare) varies considerably
 65 * across various parts, occasionally being mapped in to a completely
 66 * unrelated address space. For proper RYRAR support a separate resource
 67 * would have to be handed off, but as this is purely optional in
 68 * practice, we simply opt not to support it, thereby keeping the code
 69 * quite a bit more simplified.
 70 */
 71
 72/* ALARM Bits - or with BCD encoded value */
 73#define AR_ENB		0x80	/* Enable for alarm cmp   */
 74
 75/* Period Bits */
 76#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
 77#define PF_COUNT	0x200	/* Half periodic counter */
 78#define PF_OXS		0x400	/* Periodic One x Second */
 79#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
 80#define PF_MASK		0xf00
 81
 82/* RCR1 Bits */
 83#define RCR1_CF		0x80	/* Carry Flag             */
 84#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
 85#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
 86#define RCR1_AF		0x01	/* Alarm Flag             */
 87
 88/* RCR2 Bits */
 89#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
 90#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
 91#define RCR2_RTCEN	0x08	/* ENable RTC              */
 92#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
 93#define RCR2_RESET	0x02	/* Reset bit               */
 94#define RCR2_START	0x01	/* Start bit               */
 95
 96struct sh_rtc {
 97	void __iomem		*regbase;
 98	unsigned long		regsize;
 99	struct resource		*res;
100	int			alarm_irq;
101	int			periodic_irq;
102	int			carry_irq;
103	struct clk		*clk;
104	struct rtc_device	*rtc_dev;
105	spinlock_t		lock;
106	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
107	unsigned short		periodic_freq;
108};
109
110static int __sh_rtc_interrupt(struct sh_rtc *rtc)
111{
112	unsigned int tmp, pending;
113
114	tmp = readb(rtc->regbase + RCR1);
115	pending = tmp & RCR1_CF;
116	tmp &= ~RCR1_CF;
117	writeb(tmp, rtc->regbase + RCR1);
118
119	/* Users have requested One x Second IRQ */
120	if (pending && rtc->periodic_freq & PF_OXS)
121		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
122
123	return pending;
124}
125
126static int __sh_rtc_alarm(struct sh_rtc *rtc)
127{
128	unsigned int tmp, pending;
129
130	tmp = readb(rtc->regbase + RCR1);
131	pending = tmp & RCR1_AF;
132	tmp &= ~(RCR1_AF | RCR1_AIE);
133	writeb(tmp, rtc->regbase + RCR1);
134
135	if (pending)
136		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
137
138	return pending;
139}
140
141static int __sh_rtc_periodic(struct sh_rtc *rtc)
142{
 
 
143	unsigned int tmp, pending;
144
145	tmp = readb(rtc->regbase + RCR2);
146	pending = tmp & RCR2_PEF;
147	tmp &= ~RCR2_PEF;
148	writeb(tmp, rtc->regbase + RCR2);
149
150	if (!pending)
151		return 0;
152
153	/* Half period enabled than one skipped and the next notified */
154	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
155		rtc->periodic_freq &= ~PF_COUNT;
156	else {
157		if (rtc->periodic_freq & PF_HP)
158			rtc->periodic_freq |= PF_COUNT;
159		rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
 
 
 
 
 
 
 
160	}
161
162	return pending;
163}
164
165static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
166{
167	struct sh_rtc *rtc = dev_id;
168	int ret;
169
170	spin_lock(&rtc->lock);
171	ret = __sh_rtc_interrupt(rtc);
172	spin_unlock(&rtc->lock);
173
174	return IRQ_RETVAL(ret);
175}
176
177static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
178{
179	struct sh_rtc *rtc = dev_id;
180	int ret;
181
182	spin_lock(&rtc->lock);
183	ret = __sh_rtc_alarm(rtc);
184	spin_unlock(&rtc->lock);
185
186	return IRQ_RETVAL(ret);
187}
188
189static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
190{
191	struct sh_rtc *rtc = dev_id;
192	int ret;
193
194	spin_lock(&rtc->lock);
195	ret = __sh_rtc_periodic(rtc);
196	spin_unlock(&rtc->lock);
197
198	return IRQ_RETVAL(ret);
199}
200
201static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
202{
203	struct sh_rtc *rtc = dev_id;
204	int ret;
205
206	spin_lock(&rtc->lock);
207	ret = __sh_rtc_interrupt(rtc);
208	ret |= __sh_rtc_alarm(rtc);
209	ret |= __sh_rtc_periodic(rtc);
210	spin_unlock(&rtc->lock);
211
212	return IRQ_RETVAL(ret);
213}
214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
216{
217	struct sh_rtc *rtc = dev_get_drvdata(dev);
218	unsigned int tmp;
219
220	spin_lock_irq(&rtc->lock);
221
222	tmp = readb(rtc->regbase + RCR1);
223
224	if (enable)
225		tmp |= RCR1_AIE;
226	else
227		tmp &= ~RCR1_AIE;
228
229	writeb(tmp, rtc->regbase + RCR1);
230
231	spin_unlock_irq(&rtc->lock);
232}
233
234static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
235{
236	struct sh_rtc *rtc = dev_get_drvdata(dev);
237	unsigned int tmp;
238
239	tmp = readb(rtc->regbase + RCR1);
240	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
241
242	tmp = readb(rtc->regbase + RCR2);
243	seq_printf(seq, "periodic_IRQ\t: %s\n",
244		   (tmp & RCR2_PESMASK) ? "yes" : "no");
245
246	return 0;
247}
248
249static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
250{
251	struct sh_rtc *rtc = dev_get_drvdata(dev);
252	unsigned int tmp;
253
254	spin_lock_irq(&rtc->lock);
255
256	tmp = readb(rtc->regbase + RCR1);
257
258	if (!enable)
259		tmp &= ~RCR1_CIE;
260	else
261		tmp |= RCR1_CIE;
262
263	writeb(tmp, rtc->regbase + RCR1);
264
265	spin_unlock_irq(&rtc->lock);
266}
267
268static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
269{
270	sh_rtc_setaie(dev, enabled);
271	return 0;
272}
273
274static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
275{
276	struct sh_rtc *rtc = dev_get_drvdata(dev);
 
277	unsigned int sec128, sec2, yr, yr100, cf_bit;
278
279	if (!(readb(rtc->regbase + RCR2) & RCR2_RTCEN))
280		return -EINVAL;
281
282	do {
283		unsigned int tmp;
284
285		spin_lock_irq(&rtc->lock);
286
287		tmp = readb(rtc->regbase + RCR1);
288		tmp &= ~RCR1_CF; /* Clear CF-bit */
289		tmp |= RCR1_CIE;
290		writeb(tmp, rtc->regbase + RCR1);
291
292		sec128 = readb(rtc->regbase + R64CNT);
293
294		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
295		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
296		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
297		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
298		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
299		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
300
301		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
302			yr  = readw(rtc->regbase + RYRCNT);
303			yr100 = bcd2bin(yr >> 8);
304			yr &= 0xff;
305		} else {
306			yr  = readb(rtc->regbase + RYRCNT);
307			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
308		}
309
310		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
311
312		sec2 = readb(rtc->regbase + R64CNT);
313		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
314
315		spin_unlock_irq(&rtc->lock);
316	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
317
318#if RTC_BIT_INVERTED != 0
319	if ((sec128 & RTC_BIT_INVERTED))
320		tm->tm_sec--;
321#endif
322
323	/* only keep the carry interrupt enabled if UIE is on */
324	if (!(rtc->periodic_freq & PF_OXS))
325		sh_rtc_setcie(dev, 0);
326
327	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
328		"mday=%d, mon=%d, year=%d, wday=%d\n",
329		__func__,
330		tm->tm_sec, tm->tm_min, tm->tm_hour,
331		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
332
333	return 0;
334}
335
336static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
337{
338	struct sh_rtc *rtc = dev_get_drvdata(dev);
 
339	unsigned int tmp;
340	int year;
341
342	spin_lock_irq(&rtc->lock);
343
344	/* Reset pre-scaler & stop RTC */
345	tmp = readb(rtc->regbase + RCR2);
346	tmp |= RCR2_RESET;
347	tmp &= ~RCR2_START;
348	writeb(tmp, rtc->regbase + RCR2);
349
350	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
351	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
352	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
353	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
354	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
355	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
356
357	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
358		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
359			bin2bcd(tm->tm_year % 100);
360		writew(year, rtc->regbase + RYRCNT);
361	} else {
362		year = tm->tm_year % 100;
363		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
364	}
365
366	/* Start RTC */
367	tmp = readb(rtc->regbase + RCR2);
368	tmp &= ~RCR2_RESET;
369	tmp |= RCR2_RTCEN | RCR2_START;
370	writeb(tmp, rtc->regbase + RCR2);
371
372	spin_unlock_irq(&rtc->lock);
373
374	return 0;
375}
376
377static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
378{
379	unsigned int byte;
380	int value = -1;			/* return -1 for ignored values */
381
382	byte = readb(rtc->regbase + reg_off);
383	if (byte & AR_ENB) {
384		byte &= ~AR_ENB;	/* strip the enable bit */
385		value = bcd2bin(byte);
386	}
387
388	return value;
389}
390
391static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
392{
393	struct sh_rtc *rtc = dev_get_drvdata(dev);
 
394	struct rtc_time *tm = &wkalrm->time;
395
396	spin_lock_irq(&rtc->lock);
397
398	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
399	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
400	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
401	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
402	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
403	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
404	if (tm->tm_mon > 0)
405		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
 
406
407	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
408
409	spin_unlock_irq(&rtc->lock);
410
411	return 0;
412}
413
414static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
415					    int value, int reg_off)
416{
417	/* < 0 for a value that is ignored */
418	if (value < 0)
419		writeb(0, rtc->regbase + reg_off);
420	else
421		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
422}
423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
425{
426	struct sh_rtc *rtc = dev_get_drvdata(dev);
 
427	unsigned int rcr1;
428	struct rtc_time *tm = &wkalrm->time;
429	int mon;
 
 
 
 
430
431	spin_lock_irq(&rtc->lock);
432
433	/* disable alarm interrupt and clear the alarm flag */
434	rcr1 = readb(rtc->regbase + RCR1);
435	rcr1 &= ~(RCR1_AF | RCR1_AIE);
436	writeb(rcr1, rtc->regbase + RCR1);
437
438	/* set alarm time */
439	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
440	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
441	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
442	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
443	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
444	mon = tm->tm_mon;
445	if (mon >= 0)
446		mon += 1;
447	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
448
449	if (wkalrm->enabled) {
450		rcr1 |= RCR1_AIE;
451		writeb(rcr1, rtc->regbase + RCR1);
452	}
453
454	spin_unlock_irq(&rtc->lock);
455
456	return 0;
457}
458
459static const struct rtc_class_ops sh_rtc_ops = {
460	.read_time	= sh_rtc_read_time,
461	.set_time	= sh_rtc_set_time,
462	.read_alarm	= sh_rtc_read_alarm,
463	.set_alarm	= sh_rtc_set_alarm,
464	.proc		= sh_rtc_proc,
465	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
466};
467
468static int __init sh_rtc_probe(struct platform_device *pdev)
469{
470	struct sh_rtc *rtc;
471	struct resource *res;
 
472	char clk_name[6];
473	int clk_id, ret;
474
475	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
476	if (unlikely(!rtc))
477		return -ENOMEM;
478
479	spin_lock_init(&rtc->lock);
480
481	/* get periodic/carry/alarm irqs */
482	ret = platform_get_irq(pdev, 0);
483	if (unlikely(ret <= 0)) {
 
484		dev_err(&pdev->dev, "No IRQ resource\n");
485		return -ENOENT;
486	}
487
488	rtc->periodic_irq = ret;
489	rtc->carry_irq = platform_get_irq(pdev, 1);
490	rtc->alarm_irq = platform_get_irq(pdev, 2);
491
492	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
493	if (!res)
494		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495	if (unlikely(res == NULL)) {
 
496		dev_err(&pdev->dev, "No IO resource\n");
497		return -ENOENT;
498	}
499
500	rtc->regsize = resource_size(res);
501
502	rtc->res = devm_request_mem_region(&pdev->dev, res->start,
503					rtc->regsize, pdev->name);
504	if (unlikely(!rtc->res))
505		return -EBUSY;
 
 
 
 
 
 
 
506
507	rtc->regbase = devm_ioremap(&pdev->dev, rtc->res->start, rtc->regsize);
508	if (unlikely(!rtc->regbase))
509		return -EINVAL;
 
510
511	if (!pdev->dev.of_node) {
512		clk_id = pdev->id;
513		/* With a single device, the clock id is still "rtc0" */
514		if (clk_id < 0)
515			clk_id = 0;
516
517		snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
518	} else
519		snprintf(clk_name, sizeof(clk_name), "fck");
520
521	rtc->clk = devm_clk_get(&pdev->dev, clk_name);
522	if (IS_ERR(rtc->clk)) {
523		/*
524		 * No error handling for rtc->clk intentionally, not all
525		 * platforms will have a unique clock for the RTC, and
526		 * the clk API can handle the struct clk pointer being
527		 * NULL.
528		 */
529		rtc->clk = NULL;
530	}
531
532	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
533	if (IS_ERR(rtc->rtc_dev))
534		return PTR_ERR(rtc->rtc_dev);
535
536	clk_enable(rtc->clk);
537
538	rtc->capabilities = RTC_DEF_CAPABILITIES;
539
540#ifdef CONFIG_SUPERH
541	if (dev_get_platdata(&pdev->dev)) {
542		struct sh_rtc_platform_info *pinfo =
543			dev_get_platdata(&pdev->dev);
544
545		/*
546		 * Some CPUs have special capabilities in addition to the
547		 * default set. Add those in here.
548		 */
549		rtc->capabilities |= pinfo->capabilities;
550	}
551#endif
552
553	if (rtc->carry_irq <= 0) {
554		/* register shared periodic/carry/alarm irq */
555		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
556				sh_rtc_shared, 0, "sh-rtc", rtc);
557		if (unlikely(ret)) {
558			dev_err(&pdev->dev,
559				"request IRQ failed with %d, IRQ %d\n", ret,
560				rtc->periodic_irq);
561			goto err_unmap;
562		}
563	} else {
564		/* register periodic/carry/alarm irqs */
565		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
566				sh_rtc_periodic, 0, "sh-rtc period", rtc);
567		if (unlikely(ret)) {
568			dev_err(&pdev->dev,
569				"request period IRQ failed with %d, IRQ %d\n",
570				ret, rtc->periodic_irq);
571			goto err_unmap;
572		}
573
574		ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
575				sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
576		if (unlikely(ret)) {
577			dev_err(&pdev->dev,
578				"request carry IRQ failed with %d, IRQ %d\n",
579				ret, rtc->carry_irq);
 
580			goto err_unmap;
581		}
582
583		ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
584				sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
585		if (unlikely(ret)) {
586			dev_err(&pdev->dev,
587				"request alarm IRQ failed with %d, IRQ %d\n",
588				ret, rtc->alarm_irq);
 
 
589			goto err_unmap;
590		}
591	}
592
593	platform_set_drvdata(pdev, rtc);
594
595	/* everything disabled by default */
 
 
596	sh_rtc_setaie(&pdev->dev, 0);
597	sh_rtc_setcie(&pdev->dev, 0);
598
599	rtc->rtc_dev->ops = &sh_rtc_ops;
 
 
 
 
 
 
 
 
 
600	rtc->rtc_dev->max_user_freq = 256;
601
602	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
603		rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
604		rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
605	} else {
606		rtc->rtc_dev->range_min = mktime64(1999, 1, 1, 0, 0, 0);
607		rtc->rtc_dev->range_max = mktime64(2098, 12, 31, 23, 59, 59);
608	}
609
610	ret = devm_rtc_register_device(rtc->rtc_dev);
611	if (ret)
612		goto err_unmap;
613
614	device_init_wakeup(&pdev->dev, 1);
615	return 0;
616
617err_unmap:
618	clk_disable(rtc->clk);
 
 
 
 
 
 
619
620	return ret;
621}
622
623static int __exit sh_rtc_remove(struct platform_device *pdev)
624{
625	struct sh_rtc *rtc = platform_get_drvdata(pdev);
626
 
 
 
627	sh_rtc_setaie(&pdev->dev, 0);
628	sh_rtc_setcie(&pdev->dev, 0);
629
 
 
 
 
 
 
 
 
 
 
630	clk_disable(rtc->clk);
 
 
 
 
 
631
632	return 0;
633}
634
635static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
636{
637	struct sh_rtc *rtc = dev_get_drvdata(dev);
 
638
639	irq_set_irq_wake(rtc->periodic_irq, enabled);
640
641	if (rtc->carry_irq > 0) {
642		irq_set_irq_wake(rtc->carry_irq, enabled);
643		irq_set_irq_wake(rtc->alarm_irq, enabled);
644	}
645}
646
647static int __maybe_unused sh_rtc_suspend(struct device *dev)
648{
649	if (device_may_wakeup(dev))
650		sh_rtc_set_irq_wake(dev, 1);
651
652	return 0;
653}
654
655static int __maybe_unused sh_rtc_resume(struct device *dev)
656{
657	if (device_may_wakeup(dev))
658		sh_rtc_set_irq_wake(dev, 0);
659
660	return 0;
661}
662
663static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
664
665static const struct of_device_id sh_rtc_of_match[] = {
666	{ .compatible = "renesas,sh-rtc", },
667	{ /* sentinel */ }
668};
669MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
670
671static struct platform_driver sh_rtc_platform_driver = {
672	.driver		= {
673		.name	= DRV_NAME,
674		.pm	= &sh_rtc_pm_ops,
675		.of_match_table = sh_rtc_of_match,
676	},
677	.remove		= __exit_p(sh_rtc_remove),
678};
679
680module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
 
 
 
 
 
 
 
 
 
 
 
681
682MODULE_DESCRIPTION("SuperH on-chip RTC driver");
 
683MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
684	      "Jamie Lenehan <lenehan@twibble.org>, "
685	      "Angelo Castello <angelo.castello@st.com>");
686MODULE_LICENSE("GPL v2");
687MODULE_ALIAS("platform:" DRV_NAME);