Loading...
1/*
2 * drivers/rtc/rtc-pl031.c
3 *
4 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
5 *
6 * Author: Deepak Saxena <dsaxena@plexity.net>
7 *
8 * Copyright 2006 (c) MontaVista Software, Inc.
9 *
10 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
11 * Copyright 2010 (c) ST-Ericsson AB
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18#include <linux/module.h>
19#include <linux/rtc.h>
20#include <linux/init.h>
21#include <linux/interrupt.h>
22#include <linux/amba/bus.h>
23#include <linux/io.h>
24#include <linux/bcd.h>
25#include <linux/delay.h>
26#include <linux/slab.h>
27
28/*
29 * Register definitions
30 */
31#define RTC_DR 0x00 /* Data read register */
32#define RTC_MR 0x04 /* Match register */
33#define RTC_LR 0x08 /* Data load register */
34#define RTC_CR 0x0c /* Control register */
35#define RTC_IMSC 0x10 /* Interrupt mask and set register */
36#define RTC_RIS 0x14 /* Raw interrupt status register */
37#define RTC_MIS 0x18 /* Masked interrupt status register */
38#define RTC_ICR 0x1c /* Interrupt clear register */
39/* ST variants have additional timer functionality */
40#define RTC_TDR 0x20 /* Timer data read register */
41#define RTC_TLR 0x24 /* Timer data load register */
42#define RTC_TCR 0x28 /* Timer control register */
43#define RTC_YDR 0x30 /* Year data read register */
44#define RTC_YMR 0x34 /* Year match register */
45#define RTC_YLR 0x38 /* Year data load register */
46
47#define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
48
49#define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
50
51/* Common bit definitions for Interrupt status and control registers */
52#define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
53#define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
54
55/* Common bit definations for ST v2 for reading/writing time */
56#define RTC_SEC_SHIFT 0
57#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
58#define RTC_MIN_SHIFT 6
59#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
60#define RTC_HOUR_SHIFT 12
61#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
62#define RTC_WDAY_SHIFT 17
63#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
64#define RTC_MDAY_SHIFT 20
65#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
66#define RTC_MON_SHIFT 25
67#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
68
69#define RTC_TIMER_FREQ 32768
70
71struct pl031_local {
72 struct rtc_device *rtc;
73 void __iomem *base;
74 u8 hw_designer;
75 u8 hw_revision:4;
76};
77
78static int pl031_alarm_irq_enable(struct device *dev,
79 unsigned int enabled)
80{
81 struct pl031_local *ldata = dev_get_drvdata(dev);
82 unsigned long imsc;
83
84 /* Clear any pending alarm interrupts. */
85 writel(RTC_BIT_AI, ldata->base + RTC_ICR);
86
87 imsc = readl(ldata->base + RTC_IMSC);
88
89 if (enabled == 1)
90 writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
91 else
92 writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
93
94 return 0;
95}
96
97/*
98 * Convert Gregorian date to ST v2 RTC format.
99 */
100static int pl031_stv2_tm_to_time(struct device *dev,
101 struct rtc_time *tm, unsigned long *st_time,
102 unsigned long *bcd_year)
103{
104 int year = tm->tm_year + 1900;
105 int wday = tm->tm_wday;
106
107 /* wday masking is not working in hardware so wday must be valid */
108 if (wday < -1 || wday > 6) {
109 dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
110 return -EINVAL;
111 } else if (wday == -1) {
112 /* wday is not provided, calculate it here */
113 unsigned long time;
114 struct rtc_time calc_tm;
115
116 rtc_tm_to_time(tm, &time);
117 rtc_time_to_tm(time, &calc_tm);
118 wday = calc_tm.tm_wday;
119 }
120
121 *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
122
123 *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
124 | (tm->tm_mday << RTC_MDAY_SHIFT)
125 | ((wday + 1) << RTC_WDAY_SHIFT)
126 | (tm->tm_hour << RTC_HOUR_SHIFT)
127 | (tm->tm_min << RTC_MIN_SHIFT)
128 | (tm->tm_sec << RTC_SEC_SHIFT);
129
130 return 0;
131}
132
133/*
134 * Convert ST v2 RTC format to Gregorian date.
135 */
136static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
137 struct rtc_time *tm)
138{
139 tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
140 tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
141 tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
142 tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
143 tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
144 tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
145 tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
146
147 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
148 tm->tm_year -= 1900;
149
150 return 0;
151}
152
153static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
154{
155 struct pl031_local *ldata = dev_get_drvdata(dev);
156
157 pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
158 readl(ldata->base + RTC_YDR), tm);
159
160 return 0;
161}
162
163static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
164{
165 unsigned long time;
166 unsigned long bcd_year;
167 struct pl031_local *ldata = dev_get_drvdata(dev);
168 int ret;
169
170 ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
171 if (ret == 0) {
172 writel(bcd_year, ldata->base + RTC_YLR);
173 writel(time, ldata->base + RTC_LR);
174 }
175
176 return ret;
177}
178
179static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
180{
181 struct pl031_local *ldata = dev_get_drvdata(dev);
182 int ret;
183
184 ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
185 readl(ldata->base + RTC_YMR), &alarm->time);
186
187 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
188 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
189
190 return ret;
191}
192
193static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
194{
195 struct pl031_local *ldata = dev_get_drvdata(dev);
196 unsigned long time;
197 unsigned long bcd_year;
198 int ret;
199
200 /* At the moment, we can only deal with non-wildcarded alarm times. */
201 ret = rtc_valid_tm(&alarm->time);
202 if (ret == 0) {
203 ret = pl031_stv2_tm_to_time(dev, &alarm->time,
204 &time, &bcd_year);
205 if (ret == 0) {
206 writel(bcd_year, ldata->base + RTC_YMR);
207 writel(time, ldata->base + RTC_MR);
208
209 pl031_alarm_irq_enable(dev, alarm->enabled);
210 }
211 }
212
213 return ret;
214}
215
216static irqreturn_t pl031_interrupt(int irq, void *dev_id)
217{
218 struct pl031_local *ldata = dev_id;
219 unsigned long rtcmis;
220 unsigned long events = 0;
221
222 rtcmis = readl(ldata->base + RTC_MIS);
223 if (rtcmis & RTC_BIT_AI) {
224 writel(RTC_BIT_AI, ldata->base + RTC_ICR);
225 events |= (RTC_AF | RTC_IRQF);
226 rtc_update_irq(ldata->rtc, 1, events);
227
228 return IRQ_HANDLED;
229 }
230
231 return IRQ_NONE;
232}
233
234static int pl031_read_time(struct device *dev, struct rtc_time *tm)
235{
236 struct pl031_local *ldata = dev_get_drvdata(dev);
237
238 rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
239
240 return 0;
241}
242
243static int pl031_set_time(struct device *dev, struct rtc_time *tm)
244{
245 unsigned long time;
246 struct pl031_local *ldata = dev_get_drvdata(dev);
247 int ret;
248
249 ret = rtc_tm_to_time(tm, &time);
250
251 if (ret == 0)
252 writel(time, ldata->base + RTC_LR);
253
254 return ret;
255}
256
257static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
258{
259 struct pl031_local *ldata = dev_get_drvdata(dev);
260
261 rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
262
263 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
264 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
265
266 return 0;
267}
268
269static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
270{
271 struct pl031_local *ldata = dev_get_drvdata(dev);
272 unsigned long time;
273 int ret;
274
275 /* At the moment, we can only deal with non-wildcarded alarm times. */
276 ret = rtc_valid_tm(&alarm->time);
277 if (ret == 0) {
278 ret = rtc_tm_to_time(&alarm->time, &time);
279 if (ret == 0) {
280 writel(time, ldata->base + RTC_MR);
281 pl031_alarm_irq_enable(dev, alarm->enabled);
282 }
283 }
284
285 return ret;
286}
287
288static int pl031_remove(struct amba_device *adev)
289{
290 struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
291
292 amba_set_drvdata(adev, NULL);
293 free_irq(adev->irq[0], ldata->rtc);
294 rtc_device_unregister(ldata->rtc);
295 iounmap(ldata->base);
296 kfree(ldata);
297 amba_release_regions(adev);
298
299 return 0;
300}
301
302static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
303{
304 int ret;
305 struct pl031_local *ldata;
306 struct rtc_class_ops *ops = id->data;
307 unsigned long time;
308
309 ret = amba_request_regions(adev, NULL);
310 if (ret)
311 goto err_req;
312
313 ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
314 if (!ldata) {
315 ret = -ENOMEM;
316 goto out;
317 }
318
319 ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
320
321 if (!ldata->base) {
322 ret = -ENOMEM;
323 goto out_no_remap;
324 }
325
326 amba_set_drvdata(adev, ldata);
327
328 ldata->hw_designer = amba_manf(adev);
329 ldata->hw_revision = amba_rev(adev);
330
331 dev_dbg(&adev->dev, "designer ID = 0x%02x\n", ldata->hw_designer);
332 dev_dbg(&adev->dev, "revision = 0x%01x\n", ldata->hw_revision);
333
334 /* Enable the clockwatch on ST Variants */
335 if (ldata->hw_designer == AMBA_VENDOR_ST)
336 writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN,
337 ldata->base + RTC_CR);
338
339 /*
340 * On ST PL031 variants, the RTC reset value does not provide correct
341 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
342 */
343 if (ldata->hw_designer == AMBA_VENDOR_ST) {
344 if (readl(ldata->base + RTC_YDR) == 0x2000) {
345 time = readl(ldata->base + RTC_DR);
346 if ((time &
347 (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
348 == 0x02120000) {
349 time = time | (0x7 << RTC_WDAY_SHIFT);
350 writel(0x2000, ldata->base + RTC_YLR);
351 writel(time, ldata->base + RTC_LR);
352 }
353 }
354 }
355
356 ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
357 THIS_MODULE);
358 if (IS_ERR(ldata->rtc)) {
359 ret = PTR_ERR(ldata->rtc);
360 goto out_no_rtc;
361 }
362
363 if (request_irq(adev->irq[0], pl031_interrupt,
364 0, "rtc-pl031", ldata)) {
365 ret = -EIO;
366 goto out_no_irq;
367 }
368
369 return 0;
370
371out_no_irq:
372 rtc_device_unregister(ldata->rtc);
373out_no_rtc:
374 iounmap(ldata->base);
375 amba_set_drvdata(adev, NULL);
376out_no_remap:
377 kfree(ldata);
378out:
379 amba_release_regions(adev);
380err_req:
381
382 return ret;
383}
384
385/* Operations for the original ARM version */
386static struct rtc_class_ops arm_pl031_ops = {
387 .read_time = pl031_read_time,
388 .set_time = pl031_set_time,
389 .read_alarm = pl031_read_alarm,
390 .set_alarm = pl031_set_alarm,
391 .alarm_irq_enable = pl031_alarm_irq_enable,
392};
393
394/* The First ST derivative */
395static struct rtc_class_ops stv1_pl031_ops = {
396 .read_time = pl031_read_time,
397 .set_time = pl031_set_time,
398 .read_alarm = pl031_read_alarm,
399 .set_alarm = pl031_set_alarm,
400 .alarm_irq_enable = pl031_alarm_irq_enable,
401};
402
403/* And the second ST derivative */
404static struct rtc_class_ops stv2_pl031_ops = {
405 .read_time = pl031_stv2_read_time,
406 .set_time = pl031_stv2_set_time,
407 .read_alarm = pl031_stv2_read_alarm,
408 .set_alarm = pl031_stv2_set_alarm,
409 .alarm_irq_enable = pl031_alarm_irq_enable,
410};
411
412static struct amba_id pl031_ids[] = {
413 {
414 .id = 0x00041031,
415 .mask = 0x000fffff,
416 .data = &arm_pl031_ops,
417 },
418 /* ST Micro variants */
419 {
420 .id = 0x00180031,
421 .mask = 0x00ffffff,
422 .data = &stv1_pl031_ops,
423 },
424 {
425 .id = 0x00280031,
426 .mask = 0x00ffffff,
427 .data = &stv2_pl031_ops,
428 },
429 {0, 0},
430};
431
432MODULE_DEVICE_TABLE(amba, pl031_ids);
433
434static struct amba_driver pl031_driver = {
435 .drv = {
436 .name = "rtc-pl031",
437 },
438 .id_table = pl031_ids,
439 .probe = pl031_probe,
440 .remove = pl031_remove,
441};
442
443module_amba_driver(pl031_driver);
444
445MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
446MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
447MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * drivers/rtc/rtc-pl031.c
4 *
5 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
6 *
7 * Author: Deepak Saxena <dsaxena@plexity.net>
8 *
9 * Copyright 2006 (c) MontaVista Software, Inc.
10 *
11 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
12 * Copyright 2010 (c) ST-Ericsson AB
13 */
14#include <linux/module.h>
15#include <linux/rtc.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/amba/bus.h>
19#include <linux/io.h>
20#include <linux/bcd.h>
21#include <linux/delay.h>
22#include <linux/pm_wakeirq.h>
23#include <linux/slab.h>
24
25/*
26 * Register definitions
27 */
28#define RTC_DR 0x00 /* Data read register */
29#define RTC_MR 0x04 /* Match register */
30#define RTC_LR 0x08 /* Data load register */
31#define RTC_CR 0x0c /* Control register */
32#define RTC_IMSC 0x10 /* Interrupt mask and set register */
33#define RTC_RIS 0x14 /* Raw interrupt status register */
34#define RTC_MIS 0x18 /* Masked interrupt status register */
35#define RTC_ICR 0x1c /* Interrupt clear register */
36/* ST variants have additional timer functionality */
37#define RTC_TDR 0x20 /* Timer data read register */
38#define RTC_TLR 0x24 /* Timer data load register */
39#define RTC_TCR 0x28 /* Timer control register */
40#define RTC_YDR 0x30 /* Year data read register */
41#define RTC_YMR 0x34 /* Year match register */
42#define RTC_YLR 0x38 /* Year data load register */
43
44#define RTC_CR_EN (1 << 0) /* counter enable bit */
45#define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
46
47#define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
48
49/* Common bit definitions for Interrupt status and control registers */
50#define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
51#define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
52
53/* Common bit definations for ST v2 for reading/writing time */
54#define RTC_SEC_SHIFT 0
55#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
56#define RTC_MIN_SHIFT 6
57#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
58#define RTC_HOUR_SHIFT 12
59#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
60#define RTC_WDAY_SHIFT 17
61#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
62#define RTC_MDAY_SHIFT 20
63#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
64#define RTC_MON_SHIFT 25
65#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
66
67#define RTC_TIMER_FREQ 32768
68
69/**
70 * struct pl031_vendor_data - per-vendor variations
71 * @ops: the vendor-specific operations used on this silicon version
72 * @clockwatch: if this is an ST Microelectronics silicon version with a
73 * clockwatch function
74 * @st_weekday: if this is an ST Microelectronics silicon version that need
75 * the weekday fix
76 * @irqflags: special IRQ flags per variant
77 */
78struct pl031_vendor_data {
79 struct rtc_class_ops ops;
80 bool clockwatch;
81 bool st_weekday;
82 unsigned long irqflags;
83 time64_t range_min;
84 timeu64_t range_max;
85};
86
87struct pl031_local {
88 struct pl031_vendor_data *vendor;
89 struct rtc_device *rtc;
90 void __iomem *base;
91};
92
93static int pl031_alarm_irq_enable(struct device *dev,
94 unsigned int enabled)
95{
96 struct pl031_local *ldata = dev_get_drvdata(dev);
97 unsigned long imsc;
98
99 /* Clear any pending alarm interrupts. */
100 writel(RTC_BIT_AI, ldata->base + RTC_ICR);
101
102 imsc = readl(ldata->base + RTC_IMSC);
103
104 if (enabled == 1)
105 writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
106 else
107 writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
108
109 return 0;
110}
111
112/*
113 * Convert Gregorian date to ST v2 RTC format.
114 */
115static int pl031_stv2_tm_to_time(struct device *dev,
116 struct rtc_time *tm, unsigned long *st_time,
117 unsigned long *bcd_year)
118{
119 int year = tm->tm_year + 1900;
120 int wday = tm->tm_wday;
121
122 /* wday masking is not working in hardware so wday must be valid */
123 if (wday < -1 || wday > 6) {
124 dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
125 return -EINVAL;
126 } else if (wday == -1) {
127 /* wday is not provided, calculate it here */
128 struct rtc_time calc_tm;
129
130 rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm);
131 wday = calc_tm.tm_wday;
132 }
133
134 *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
135
136 *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
137 | (tm->tm_mday << RTC_MDAY_SHIFT)
138 | ((wday + 1) << RTC_WDAY_SHIFT)
139 | (tm->tm_hour << RTC_HOUR_SHIFT)
140 | (tm->tm_min << RTC_MIN_SHIFT)
141 | (tm->tm_sec << RTC_SEC_SHIFT);
142
143 return 0;
144}
145
146/*
147 * Convert ST v2 RTC format to Gregorian date.
148 */
149static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
150 struct rtc_time *tm)
151{
152 tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
153 tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
154 tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
155 tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
156 tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
157 tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
158 tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
159
160 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
161 tm->tm_year -= 1900;
162
163 return 0;
164}
165
166static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
167{
168 struct pl031_local *ldata = dev_get_drvdata(dev);
169
170 pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
171 readl(ldata->base + RTC_YDR), tm);
172
173 return 0;
174}
175
176static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
177{
178 unsigned long time;
179 unsigned long bcd_year;
180 struct pl031_local *ldata = dev_get_drvdata(dev);
181 int ret;
182
183 ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
184 if (ret == 0) {
185 writel(bcd_year, ldata->base + RTC_YLR);
186 writel(time, ldata->base + RTC_LR);
187 }
188
189 return ret;
190}
191
192static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
193{
194 struct pl031_local *ldata = dev_get_drvdata(dev);
195 int ret;
196
197 ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
198 readl(ldata->base + RTC_YMR), &alarm->time);
199
200 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
201 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
202
203 return ret;
204}
205
206static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
207{
208 struct pl031_local *ldata = dev_get_drvdata(dev);
209 unsigned long time;
210 unsigned long bcd_year;
211 int ret;
212
213 ret = pl031_stv2_tm_to_time(dev, &alarm->time,
214 &time, &bcd_year);
215 if (ret == 0) {
216 writel(bcd_year, ldata->base + RTC_YMR);
217 writel(time, ldata->base + RTC_MR);
218
219 pl031_alarm_irq_enable(dev, alarm->enabled);
220 }
221
222 return ret;
223}
224
225static irqreturn_t pl031_interrupt(int irq, void *dev_id)
226{
227 struct pl031_local *ldata = dev_id;
228 unsigned long rtcmis;
229 unsigned long events = 0;
230
231 rtcmis = readl(ldata->base + RTC_MIS);
232 if (rtcmis & RTC_BIT_AI) {
233 writel(RTC_BIT_AI, ldata->base + RTC_ICR);
234 events |= (RTC_AF | RTC_IRQF);
235 rtc_update_irq(ldata->rtc, 1, events);
236
237 return IRQ_HANDLED;
238 }
239
240 return IRQ_NONE;
241}
242
243static int pl031_read_time(struct device *dev, struct rtc_time *tm)
244{
245 struct pl031_local *ldata = dev_get_drvdata(dev);
246
247 rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm);
248
249 return 0;
250}
251
252static int pl031_set_time(struct device *dev, struct rtc_time *tm)
253{
254 struct pl031_local *ldata = dev_get_drvdata(dev);
255
256 writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR);
257
258 return 0;
259}
260
261static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
262{
263 struct pl031_local *ldata = dev_get_drvdata(dev);
264
265 rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
266
267 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
268 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
269
270 return 0;
271}
272
273static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
274{
275 struct pl031_local *ldata = dev_get_drvdata(dev);
276
277 writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR);
278 pl031_alarm_irq_enable(dev, alarm->enabled);
279
280 return 0;
281}
282
283static void pl031_remove(struct amba_device *adev)
284{
285 struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
286
287 dev_pm_clear_wake_irq(&adev->dev);
288 device_init_wakeup(&adev->dev, false);
289 if (adev->irq[0])
290 free_irq(adev->irq[0], ldata);
291 amba_release_regions(adev);
292}
293
294static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
295{
296 int ret;
297 struct pl031_local *ldata;
298 struct pl031_vendor_data *vendor = id->data;
299 struct rtc_class_ops *ops;
300 unsigned long time, data;
301
302 ret = amba_request_regions(adev, NULL);
303 if (ret)
304 goto err_req;
305
306 ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local),
307 GFP_KERNEL);
308 ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops),
309 GFP_KERNEL);
310 if (!ldata || !ops) {
311 ret = -ENOMEM;
312 goto out;
313 }
314
315 ldata->vendor = vendor;
316 ldata->base = devm_ioremap(&adev->dev, adev->res.start,
317 resource_size(&adev->res));
318 if (!ldata->base) {
319 ret = -ENOMEM;
320 goto out;
321 }
322
323 amba_set_drvdata(adev, ldata);
324
325 dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
326 dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
327
328 data = readl(ldata->base + RTC_CR);
329 /* Enable the clockwatch on ST Variants */
330 if (vendor->clockwatch)
331 data |= RTC_CR_CWEN;
332 else
333 data |= RTC_CR_EN;
334 writel(data, ldata->base + RTC_CR);
335
336 /*
337 * On ST PL031 variants, the RTC reset value does not provide correct
338 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
339 */
340 if (vendor->st_weekday) {
341 if (readl(ldata->base + RTC_YDR) == 0x2000) {
342 time = readl(ldata->base + RTC_DR);
343 if ((time &
344 (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
345 == 0x02120000) {
346 time = time | (0x7 << RTC_WDAY_SHIFT);
347 writel(0x2000, ldata->base + RTC_YLR);
348 writel(time, ldata->base + RTC_LR);
349 }
350 }
351 }
352
353 device_init_wakeup(&adev->dev, true);
354 ldata->rtc = devm_rtc_allocate_device(&adev->dev);
355 if (IS_ERR(ldata->rtc)) {
356 ret = PTR_ERR(ldata->rtc);
357 goto out;
358 }
359
360 if (!adev->irq[0])
361 clear_bit(RTC_FEATURE_ALARM, ldata->rtc->features);
362
363 ldata->rtc->ops = ops;
364 ldata->rtc->range_min = vendor->range_min;
365 ldata->rtc->range_max = vendor->range_max;
366
367 ret = devm_rtc_register_device(ldata->rtc);
368 if (ret)
369 goto out;
370
371 if (adev->irq[0]) {
372 ret = request_irq(adev->irq[0], pl031_interrupt,
373 vendor->irqflags, "rtc-pl031", ldata);
374 if (ret)
375 goto out;
376 dev_pm_set_wake_irq(&adev->dev, adev->irq[0]);
377 }
378 return 0;
379
380out:
381 amba_release_regions(adev);
382err_req:
383
384 return ret;
385}
386
387/* Operations for the original ARM version */
388static struct pl031_vendor_data arm_pl031 = {
389 .ops = {
390 .read_time = pl031_read_time,
391 .set_time = pl031_set_time,
392 .read_alarm = pl031_read_alarm,
393 .set_alarm = pl031_set_alarm,
394 .alarm_irq_enable = pl031_alarm_irq_enable,
395 },
396 .range_max = U32_MAX,
397};
398
399/* The First ST derivative */
400static struct pl031_vendor_data stv1_pl031 = {
401 .ops = {
402 .read_time = pl031_read_time,
403 .set_time = pl031_set_time,
404 .read_alarm = pl031_read_alarm,
405 .set_alarm = pl031_set_alarm,
406 .alarm_irq_enable = pl031_alarm_irq_enable,
407 },
408 .clockwatch = true,
409 .st_weekday = true,
410 .range_max = U32_MAX,
411};
412
413/* And the second ST derivative */
414static struct pl031_vendor_data stv2_pl031 = {
415 .ops = {
416 .read_time = pl031_stv2_read_time,
417 .set_time = pl031_stv2_set_time,
418 .read_alarm = pl031_stv2_read_alarm,
419 .set_alarm = pl031_stv2_set_alarm,
420 .alarm_irq_enable = pl031_alarm_irq_enable,
421 },
422 .clockwatch = true,
423 .st_weekday = true,
424 /*
425 * This variant shares the IRQ with another block and must not
426 * suspend that IRQ line.
427 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
428 * remove IRQF_COND_SUSPEND
429 */
430 .irqflags = IRQF_SHARED | IRQF_COND_SUSPEND,
431 .range_min = RTC_TIMESTAMP_BEGIN_0000,
432 .range_max = RTC_TIMESTAMP_END_9999,
433};
434
435static const struct amba_id pl031_ids[] = {
436 {
437 .id = 0x00041031,
438 .mask = 0x000fffff,
439 .data = &arm_pl031,
440 },
441 /* ST Micro variants */
442 {
443 .id = 0x00180031,
444 .mask = 0x00ffffff,
445 .data = &stv1_pl031,
446 },
447 {
448 .id = 0x00280031,
449 .mask = 0x00ffffff,
450 .data = &stv2_pl031,
451 },
452 {0, 0},
453};
454
455MODULE_DEVICE_TABLE(amba, pl031_ids);
456
457static struct amba_driver pl031_driver = {
458 .drv = {
459 .name = "rtc-pl031",
460 },
461 .id_table = pl031_ids,
462 .probe = pl031_probe,
463 .remove = pl031_remove,
464};
465
466module_amba_driver(pl031_driver);
467
468MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
469MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
470MODULE_LICENSE("GPL");