Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30
  31static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  32static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  33static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
  34static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  35static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
  36static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  37					  u16 *data, bool read, bool page_set);
  38static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  39static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  40                                          u16 *data, bool read);
  41
  42/* Cable length tables */
  43static const u16 e1000_m88_cable_length_table[] = {
  44	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
 
 
  45#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  46		ARRAY_SIZE(e1000_m88_cable_length_table)
  47
  48static const u16 e1000_igp_2_cable_length_table[] = {
  49	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  50	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  51	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  52	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  53	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  54	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  55	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  56	124};
 
 
  57#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  58		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  59
  60#define BM_PHY_REG_PAGE(offset) \
  61	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
  62#define BM_PHY_REG_NUM(offset) \
  63	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
  64	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
  65		~MAX_PHY_REG_ADDRESS)))
  66
  67#define HV_INTC_FC_PAGE_START             768
  68#define I82578_ADDR_REG                   29
  69#define I82577_ADDR_REG                   16
  70#define I82577_CFG_REG                    22
  71#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
  72#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
  73#define I82577_CTRL_REG                   23
  74
  75/* 82577 specific PHY registers */
  76#define I82577_PHY_CTRL_2            18
  77#define I82577_PHY_STATUS_2          26
  78#define I82577_PHY_DIAG_STATUS       31
  79
  80/* I82577 PHY Status 2 */
  81#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
  82#define I82577_PHY_STATUS2_MDIX           0x0800
  83#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
  84#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
  85
  86/* I82577 PHY Control 2 */
  87#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
  88#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
  89
  90/* I82577 PHY Diagnostics Status */
  91#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
  92#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
  93
  94/* BM PHY Copper Specific Control 1 */
  95#define BM_CS_CTRL1                       16
  96
  97#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
  98#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
  99#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
 100
 101/**
 102 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 103 *  @hw: pointer to the HW structure
 104 *
 105 *  Read the PHY management control register and check whether a PHY reset
 106 *  is blocked.  If a reset is not blocked return 0, otherwise
 107 *  return E1000_BLK_PHY_RESET (12).
 108 **/
 109s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
 110{
 111	u32 manc;
 112
 113	manc = er32(MANC);
 114
 115	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
 116	       E1000_BLK_PHY_RESET : 0;
 117}
 118
 119/**
 120 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 121 *  @hw: pointer to the HW structure
 122 *
 123 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 124 *  revision in the hardware structure.
 125 **/
 126s32 e1000e_get_phy_id(struct e1000_hw *hw)
 127{
 128	struct e1000_phy_info *phy = &hw->phy;
 129	s32 ret_val = 0;
 130	u16 phy_id;
 131	u16 retry_count = 0;
 132
 133	if (!phy->ops.read_reg)
 134		return 0;
 135
 136	while (retry_count < 2) {
 137		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
 138		if (ret_val)
 139			return ret_val;
 140
 141		phy->id = (u32)(phy_id << 16);
 142		udelay(20);
 143		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
 144		if (ret_val)
 145			return ret_val;
 146
 147		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 148		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 149
 150		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 151			return 0;
 152
 153		retry_count++;
 154	}
 155
 156	return 0;
 157}
 158
 159/**
 160 *  e1000e_phy_reset_dsp - Reset PHY DSP
 161 *  @hw: pointer to the HW structure
 162 *
 163 *  Reset the digital signal processor.
 164 **/
 165s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 166{
 167	s32 ret_val;
 168
 169	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 170	if (ret_val)
 171		return ret_val;
 172
 173	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 174}
 175
 176/**
 177 *  e1000e_read_phy_reg_mdic - Read MDI control register
 178 *  @hw: pointer to the HW structure
 179 *  @offset: register offset to be read
 180 *  @data: pointer to the read data
 181 *
 182 *  Reads the MDI control register in the PHY at offset and stores the
 183 *  information read to data.
 184 **/
 185s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 186{
 187	struct e1000_phy_info *phy = &hw->phy;
 188	u32 i, mdic = 0;
 189
 190	if (offset > MAX_PHY_REG_ADDRESS) {
 191		e_dbg("PHY Address %d is out of range\n", offset);
 192		return -E1000_ERR_PARAM;
 193	}
 194
 195	/*
 196	 * Set up Op-code, Phy Address, and register offset in the MDI
 197	 * Control register.  The MAC will take care of interfacing with the
 198	 * PHY to retrieve the desired data.
 199	 */
 200	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 201		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 202		(E1000_MDIC_OP_READ));
 203
 204	ew32(MDIC, mdic);
 205
 206	/*
 207	 * Poll the ready bit to see if the MDI read completed
 208	 * Increasing the time out as testing showed failures with
 209	 * the lower time out
 210	 */
 211	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 212		udelay(50);
 213		mdic = er32(MDIC);
 214		if (mdic & E1000_MDIC_READY)
 215			break;
 216	}
 217	if (!(mdic & E1000_MDIC_READY)) {
 218		e_dbg("MDI Read did not complete\n");
 219		return -E1000_ERR_PHY;
 220	}
 221	if (mdic & E1000_MDIC_ERROR) {
 222		e_dbg("MDI Error\n");
 
 
 
 
 
 
 223		return -E1000_ERR_PHY;
 224	}
 225	*data = (u16) mdic;
 226
 227	/*
 228	 * Allow some time after each MDIC transaction to avoid
 229	 * reading duplicate data in the next MDIC transaction.
 230	 */
 231	if (hw->mac.type == e1000_pch2lan)
 232		udelay(100);
 233
 234	return 0;
 235}
 236
 237/**
 238 *  e1000e_write_phy_reg_mdic - Write MDI control register
 239 *  @hw: pointer to the HW structure
 240 *  @offset: register offset to write to
 241 *  @data: data to write to register at offset
 242 *
 243 *  Writes data to MDI control register in the PHY at offset.
 244 **/
 245s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 246{
 247	struct e1000_phy_info *phy = &hw->phy;
 248	u32 i, mdic = 0;
 249
 250	if (offset > MAX_PHY_REG_ADDRESS) {
 251		e_dbg("PHY Address %d is out of range\n", offset);
 252		return -E1000_ERR_PARAM;
 253	}
 254
 255	/*
 256	 * Set up Op-code, Phy Address, and register offset in the MDI
 257	 * Control register.  The MAC will take care of interfacing with the
 258	 * PHY to retrieve the desired data.
 259	 */
 260	mdic = (((u32)data) |
 261		(offset << E1000_MDIC_REG_SHIFT) |
 262		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 263		(E1000_MDIC_OP_WRITE));
 264
 265	ew32(MDIC, mdic);
 266
 267	/*
 268	 * Poll the ready bit to see if the MDI read completed
 269	 * Increasing the time out as testing showed failures with
 270	 * the lower time out
 271	 */
 272	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 273		udelay(50);
 274		mdic = er32(MDIC);
 275		if (mdic & E1000_MDIC_READY)
 276			break;
 277	}
 278	if (!(mdic & E1000_MDIC_READY)) {
 279		e_dbg("MDI Write did not complete\n");
 280		return -E1000_ERR_PHY;
 281	}
 282	if (mdic & E1000_MDIC_ERROR) {
 283		e_dbg("MDI Error\n");
 
 
 
 
 
 
 284		return -E1000_ERR_PHY;
 285	}
 286
 287	/*
 288	 * Allow some time after each MDIC transaction to avoid
 289	 * reading duplicate data in the next MDIC transaction.
 290	 */
 291	if (hw->mac.type == e1000_pch2lan)
 292		udelay(100);
 293
 294	return 0;
 295}
 296
 297/**
 298 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 299 *  @hw: pointer to the HW structure
 300 *  @offset: register offset to be read
 301 *  @data: pointer to the read data
 302 *
 303 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 304 *  and storing the retrieved information in data.  Release any acquired
 305 *  semaphores before exiting.
 306 **/
 307s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 308{
 309	s32 ret_val;
 310
 311	ret_val = hw->phy.ops.acquire(hw);
 312	if (ret_val)
 313		return ret_val;
 314
 315	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 316					   data);
 317
 318	hw->phy.ops.release(hw);
 319
 320	return ret_val;
 321}
 322
 323/**
 324 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 325 *  @hw: pointer to the HW structure
 326 *  @offset: register offset to write to
 327 *  @data: data to write at register offset
 328 *
 329 *  Acquires semaphore, if necessary, then writes the data to PHY register
 330 *  at the offset.  Release any acquired semaphores before exiting.
 331 **/
 332s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 333{
 334	s32 ret_val;
 335
 336	ret_val = hw->phy.ops.acquire(hw);
 337	if (ret_val)
 338		return ret_val;
 339
 340	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 341					    data);
 342
 343	hw->phy.ops.release(hw);
 344
 345	return ret_val;
 346}
 347
 348/**
 349 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 350 *  @hw: pointer to the HW structure
 351 *  @page: page to set (shifted left when necessary)
 352 *
 353 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 354 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 355 *  must set it appropriately (if necessary) after this function returns.
 356 **/
 357s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 358{
 359	e_dbg("Setting page 0x%x\n", page);
 360
 361	hw->phy.addr = 1;
 362
 363	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 364}
 365
 366/**
 367 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 368 *  @hw: pointer to the HW structure
 369 *  @offset: register offset to be read
 370 *  @data: pointer to the read data
 371 *  @locked: semaphore has already been acquired or not
 372 *
 373 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 374 *  and stores the retrieved information in data.  Release any acquired
 375 *  semaphores before exiting.
 376 **/
 377static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 378                                    bool locked)
 379{
 380	s32 ret_val = 0;
 381
 382	if (!locked) {
 383		if (!hw->phy.ops.acquire)
 384			return 0;
 385
 386		ret_val = hw->phy.ops.acquire(hw);
 387		if (ret_val)
 388			return ret_val;
 389	}
 390
 391	if (offset > MAX_PHY_MULTI_PAGE_REG)
 392		ret_val = e1000e_write_phy_reg_mdic(hw,
 393						    IGP01E1000_PHY_PAGE_SELECT,
 394						    (u16)offset);
 395	if (!ret_val)
 396		ret_val = e1000e_read_phy_reg_mdic(hw,
 397						   MAX_PHY_REG_ADDRESS & offset,
 398						   data);
 399	if (!locked)
 400		hw->phy.ops.release(hw);
 401
 402	return ret_val;
 403}
 404
 405/**
 406 *  e1000e_read_phy_reg_igp - Read igp PHY register
 407 *  @hw: pointer to the HW structure
 408 *  @offset: register offset to be read
 409 *  @data: pointer to the read data
 410 *
 411 *  Acquires semaphore then reads the PHY register at offset and stores the
 412 *  retrieved information in data.
 413 *  Release the acquired semaphore before exiting.
 414 **/
 415s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 416{
 417	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 418}
 419
 420/**
 421 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 422 *  @hw: pointer to the HW structure
 423 *  @offset: register offset to be read
 424 *  @data: pointer to the read data
 425 *
 426 *  Reads the PHY register at offset and stores the retrieved information
 427 *  in data.  Assumes semaphore already acquired.
 428 **/
 429s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 430{
 431	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 432}
 433
 434/**
 435 *  e1000e_write_phy_reg_igp - Write igp PHY register
 436 *  @hw: pointer to the HW structure
 437 *  @offset: register offset to write to
 438 *  @data: data to write at register offset
 439 *  @locked: semaphore has already been acquired or not
 440 *
 441 *  Acquires semaphore, if necessary, then writes the data to PHY register
 442 *  at the offset.  Release any acquired semaphores before exiting.
 443 **/
 444static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 445                                     bool locked)
 446{
 447	s32 ret_val = 0;
 448
 449	if (!locked) {
 450		if (!hw->phy.ops.acquire)
 451			return 0;
 452
 453		ret_val = hw->phy.ops.acquire(hw);
 454		if (ret_val)
 455			return ret_val;
 456	}
 457
 458	if (offset > MAX_PHY_MULTI_PAGE_REG)
 459		ret_val = e1000e_write_phy_reg_mdic(hw,
 460						    IGP01E1000_PHY_PAGE_SELECT,
 461						    (u16)offset);
 462	if (!ret_val)
 463		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 464							offset,
 465						    data);
 466	if (!locked)
 467		hw->phy.ops.release(hw);
 468
 469	return ret_val;
 470}
 471
 472/**
 473 *  e1000e_write_phy_reg_igp - Write igp PHY register
 474 *  @hw: pointer to the HW structure
 475 *  @offset: register offset to write to
 476 *  @data: data to write at register offset
 477 *
 478 *  Acquires semaphore then writes the data to PHY register
 479 *  at the offset.  Release any acquired semaphores before exiting.
 480 **/
 481s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 482{
 483	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 484}
 485
 486/**
 487 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 488 *  @hw: pointer to the HW structure
 489 *  @offset: register offset to write to
 490 *  @data: data to write at register offset
 491 *
 492 *  Writes the data to PHY register at the offset.
 493 *  Assumes semaphore already acquired.
 494 **/
 495s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 496{
 497	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 498}
 499
 500/**
 501 *  __e1000_read_kmrn_reg - Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *  @locked: semaphore has already been acquired or not
 506 *
 507 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 508 *  using the kumeran interface.  The information retrieved is stored in data.
 509 *  Release any acquired semaphores before exiting.
 510 **/
 511static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 512                                 bool locked)
 513{
 514	u32 kmrnctrlsta;
 515
 516	if (!locked) {
 517		s32 ret_val = 0;
 518
 519		if (!hw->phy.ops.acquire)
 520			return 0;
 521
 522		ret_val = hw->phy.ops.acquire(hw);
 523		if (ret_val)
 524			return ret_val;
 525	}
 526
 527	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 528		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 529	ew32(KMRNCTRLSTA, kmrnctrlsta);
 530	e1e_flush();
 531
 532	udelay(2);
 533
 534	kmrnctrlsta = er32(KMRNCTRLSTA);
 535	*data = (u16)kmrnctrlsta;
 536
 537	if (!locked)
 538		hw->phy.ops.release(hw);
 539
 540	return 0;
 541}
 542
 543/**
 544 *  e1000e_read_kmrn_reg -  Read kumeran register
 545 *  @hw: pointer to the HW structure
 546 *  @offset: register offset to be read
 547 *  @data: pointer to the read data
 548 *
 549 *  Acquires semaphore then reads the PHY register at offset using the
 550 *  kumeran interface.  The information retrieved is stored in data.
 551 *  Release the acquired semaphore before exiting.
 552 **/
 553s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 554{
 555	return __e1000_read_kmrn_reg(hw, offset, data, false);
 556}
 557
 558/**
 559 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 560 *  @hw: pointer to the HW structure
 561 *  @offset: register offset to be read
 562 *  @data: pointer to the read data
 563 *
 564 *  Reads the PHY register at offset using the kumeran interface.  The
 565 *  information retrieved is stored in data.
 566 *  Assumes semaphore already acquired.
 567 **/
 568s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 569{
 570	return __e1000_read_kmrn_reg(hw, offset, data, true);
 571}
 572
 573/**
 574 *  __e1000_write_kmrn_reg - Write kumeran register
 575 *  @hw: pointer to the HW structure
 576 *  @offset: register offset to write to
 577 *  @data: data to write at register offset
 578 *  @locked: semaphore has already been acquired or not
 579 *
 580 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 581 *  at the offset using the kumeran interface.  Release any acquired semaphores
 582 *  before exiting.
 583 **/
 584static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 585                                  bool locked)
 586{
 587	u32 kmrnctrlsta;
 588
 589	if (!locked) {
 590		s32 ret_val = 0;
 591
 592		if (!hw->phy.ops.acquire)
 593			return 0;
 594
 595		ret_val = hw->phy.ops.acquire(hw);
 596		if (ret_val)
 597			return ret_val;
 598	}
 599
 600	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 601		       E1000_KMRNCTRLSTA_OFFSET) | data;
 602	ew32(KMRNCTRLSTA, kmrnctrlsta);
 603	e1e_flush();
 604
 605	udelay(2);
 606
 607	if (!locked)
 608		hw->phy.ops.release(hw);
 609
 610	return 0;
 611}
 612
 613/**
 614 *  e1000e_write_kmrn_reg -  Write kumeran register
 615 *  @hw: pointer to the HW structure
 616 *  @offset: register offset to write to
 617 *  @data: data to write at register offset
 618 *
 619 *  Acquires semaphore then writes the data to the PHY register at the offset
 620 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 621 **/
 622s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 623{
 624	return __e1000_write_kmrn_reg(hw, offset, data, false);
 625}
 626
 627/**
 628 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 629 *  @hw: pointer to the HW structure
 630 *  @offset: register offset to write to
 631 *  @data: data to write at register offset
 632 *
 633 *  Write the data to PHY register at the offset using the kumeran interface.
 634 *  Assumes semaphore already acquired.
 635 **/
 636s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 637{
 638	return __e1000_write_kmrn_reg(hw, offset, data, true);
 639}
 640
 641/**
 642 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 643 *  @hw: pointer to the HW structure
 644 *
 645 *  Sets up Master/slave mode
 646 **/
 647static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 648{
 649	s32 ret_val;
 650	u16 phy_data;
 651
 652	/* Resolve Master/Slave mode */
 653	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
 654	if (ret_val)
 655		return ret_val;
 656
 657	/* load defaults for future use */
 658	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
 659	    ((phy_data & CR_1000T_MS_VALUE) ?
 660	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 661
 662	switch (hw->phy.ms_type) {
 663	case e1000_ms_force_master:
 664		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 665		break;
 666	case e1000_ms_force_slave:
 667		phy_data |= CR_1000T_MS_ENABLE;
 668		phy_data &= ~(CR_1000T_MS_VALUE);
 669		break;
 670	case e1000_ms_auto:
 671		phy_data &= ~CR_1000T_MS_ENABLE;
 672		/* fall-through */
 673	default:
 674		break;
 675	}
 676
 677	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
 678}
 679
 680/**
 681 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 682 *  @hw: pointer to the HW structure
 683 *
 684 *  Sets up Carrier-sense on Transmit and downshift values.
 685 **/
 686s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 687{
 688	s32 ret_val;
 689	u16 phy_data;
 690
 691	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 692	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 693	if (ret_val)
 694		return ret_val;
 695
 696	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 697
 698	/* Enable downshift */
 699	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 700
 701	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 702	if (ret_val)
 703		return ret_val;
 704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705	return e1000_set_master_slave_mode(hw);
 706}
 707
 708/**
 709 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 710 *  @hw: pointer to the HW structure
 711 *
 712 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 713 *  and downshift values are set also.
 714 **/
 715s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 716{
 717	struct e1000_phy_info *phy = &hw->phy;
 718	s32 ret_val;
 719	u16 phy_data;
 720
 721	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 722	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 723	if (ret_val)
 724		return ret_val;
 725
 726	/* For BM PHY this bit is downshift enable */
 727	if (phy->type != e1000_phy_bm)
 728		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 729
 730	/*
 731	 * Options:
 732	 *   MDI/MDI-X = 0 (default)
 733	 *   0 - Auto for all speeds
 734	 *   1 - MDI mode
 735	 *   2 - MDI-X mode
 736	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 737	 */
 738	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 739
 740	switch (phy->mdix) {
 741	case 1:
 742		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 743		break;
 744	case 2:
 745		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 746		break;
 747	case 3:
 748		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 749		break;
 750	case 0:
 751	default:
 752		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 753		break;
 754	}
 755
 756	/*
 757	 * Options:
 758	 *   disable_polarity_correction = 0 (default)
 759	 *       Automatic Correction for Reversed Cable Polarity
 760	 *   0 - Disabled
 761	 *   1 - Enabled
 762	 */
 763	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 764	if (phy->disable_polarity_correction)
 765		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 766
 767	/* Enable downshift on BM (disabled by default) */
 768	if (phy->type == e1000_phy_bm) {
 769		/* For 82574/82583, first disable then enable downshift */
 770		if (phy->id == BME1000_E_PHY_ID_R2) {
 771			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 772			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 773					   phy_data);
 774			if (ret_val)
 775				return ret_val;
 776			/* Commit the changes. */
 777			ret_val = e1000e_commit_phy(hw);
 778			if (ret_val) {
 779				e_dbg("Error committing the PHY changes\n");
 780				return ret_val;
 781			}
 782		}
 783
 784		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 785	}
 786
 787	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 788	if (ret_val)
 789		return ret_val;
 790
 791	if ((phy->type == e1000_phy_m88) &&
 792	    (phy->revision < E1000_REVISION_4) &&
 793	    (phy->id != BME1000_E_PHY_ID_R2)) {
 794		/*
 795		 * Force TX_CLK in the Extended PHY Specific Control Register
 796		 * to 25MHz clock.
 797		 */
 798		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 799		if (ret_val)
 800			return ret_val;
 801
 802		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 803
 804		if ((phy->revision == 2) &&
 805		    (phy->id == M88E1111_I_PHY_ID)) {
 806			/* 82573L PHY - set the downshift counter to 5x. */
 807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 809		} else {
 810			/* Configure Master and Slave downshift values */
 811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 815		}
 816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 817		if (ret_val)
 818			return ret_val;
 819	}
 820
 821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 822		/* Set PHY page 0, register 29 to 0x0003 */
 823		ret_val = e1e_wphy(hw, 29, 0x0003);
 824		if (ret_val)
 825			return ret_val;
 826
 827		/* Set PHY page 0, register 30 to 0x0000 */
 828		ret_val = e1e_wphy(hw, 30, 0x0000);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	/* Commit the changes. */
 834	ret_val = e1000e_commit_phy(hw);
 835	if (ret_val) {
 836		e_dbg("Error committing the PHY changes\n");
 837		return ret_val;
 
 
 838	}
 839
 840	if (phy->type == e1000_phy_82578) {
 841		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 842		if (ret_val)
 843			return ret_val;
 844
 845		/* 82578 PHY - set the downshift count to 1x. */
 846		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 847		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 848		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 849		if (ret_val)
 850			return ret_val;
 851	}
 852
 853	return 0;
 854}
 855
 856/**
 857 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 858 *  @hw: pointer to the HW structure
 859 *
 860 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 861 *  igp PHY's.
 862 **/
 863s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 864{
 865	struct e1000_phy_info *phy = &hw->phy;
 866	s32 ret_val;
 867	u16 data;
 868
 869	ret_val = e1000_phy_hw_reset(hw);
 870	if (ret_val) {
 871		e_dbg("Error resetting the PHY.\n");
 872		return ret_val;
 873	}
 874
 875	/*
 876	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 877	 * timeout issues when LFS is enabled.
 878	 */
 879	msleep(100);
 880
 881	/* disable lplu d0 during driver init */
 882	ret_val = e1000_set_d0_lplu_state(hw, false);
 883	if (ret_val) {
 884		e_dbg("Error Disabling LPLU D0\n");
 885		return ret_val;
 
 
 886	}
 887	/* Configure mdi-mdix settings */
 888	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 889	if (ret_val)
 890		return ret_val;
 891
 892	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 893
 894	switch (phy->mdix) {
 895	case 1:
 896		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 897		break;
 898	case 2:
 899		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 900		break;
 901	case 0:
 902	default:
 903		data |= IGP01E1000_PSCR_AUTO_MDIX;
 904		break;
 905	}
 906	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 907	if (ret_val)
 908		return ret_val;
 909
 910	/* set auto-master slave resolution settings */
 911	if (hw->mac.autoneg) {
 912		/*
 913		 * when autonegotiation advertisement is only 1000Mbps then we
 914		 * should disable SmartSpeed and enable Auto MasterSlave
 915		 * resolution as hardware default.
 916		 */
 917		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 918			/* Disable SmartSpeed */
 919			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 920					   &data);
 921			if (ret_val)
 922				return ret_val;
 923
 924			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 925			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 926					   data);
 927			if (ret_val)
 928				return ret_val;
 929
 930			/* Set auto Master/Slave resolution process */
 931			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 932			if (ret_val)
 933				return ret_val;
 934
 935			data &= ~CR_1000T_MS_ENABLE;
 936			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 937			if (ret_val)
 938				return ret_val;
 939		}
 940
 941		ret_val = e1000_set_master_slave_mode(hw);
 942	}
 943
 944	return ret_val;
 945}
 946
 947/**
 948 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 949 *  @hw: pointer to the HW structure
 950 *
 951 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 952 *  register and if the PHY is already setup for auto-negotiation, then
 953 *  return successful.  Otherwise, setup advertisement and flow control to
 954 *  the appropriate values for the wanted auto-negotiation.
 955 **/
 956static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 957{
 958	struct e1000_phy_info *phy = &hw->phy;
 959	s32 ret_val;
 960	u16 mii_autoneg_adv_reg;
 961	u16 mii_1000t_ctrl_reg = 0;
 962
 963	phy->autoneg_advertised &= phy->autoneg_mask;
 964
 965	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 966	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 967	if (ret_val)
 968		return ret_val;
 969
 970	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 971		/* Read the MII 1000Base-T Control Register (Address 9). */
 972		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
 973		if (ret_val)
 974			return ret_val;
 975	}
 976
 977	/*
 978	 * Need to parse both autoneg_advertised and fc and set up
 979	 * the appropriate PHY registers.  First we will parse for
 980	 * autoneg_advertised software override.  Since we can advertise
 981	 * a plethora of combinations, we need to check each bit
 982	 * individually.
 983	 */
 984
 985	/*
 986	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 988	 * the  1000Base-T Control Register (Address 9).
 989	 */
 990	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 991				 NWAY_AR_100TX_HD_CAPS |
 992				 NWAY_AR_10T_FD_CAPS   |
 993				 NWAY_AR_10T_HD_CAPS);
 994	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 995
 996	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 997
 998	/* Do we want to advertise 10 Mb Half Duplex? */
 999	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1000		e_dbg("Advertise 10mb Half duplex\n");
1001		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1002	}
1003
1004	/* Do we want to advertise 10 Mb Full Duplex? */
1005	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1006		e_dbg("Advertise 10mb Full duplex\n");
1007		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1008	}
1009
1010	/* Do we want to advertise 100 Mb Half Duplex? */
1011	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1012		e_dbg("Advertise 100mb Half duplex\n");
1013		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1014	}
1015
1016	/* Do we want to advertise 100 Mb Full Duplex? */
1017	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1018		e_dbg("Advertise 100mb Full duplex\n");
1019		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1020	}
1021
1022	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1023	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1024		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1025
1026	/* Do we want to advertise 1000 Mb Full Duplex? */
1027	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1028		e_dbg("Advertise 1000mb Full duplex\n");
1029		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1030	}
1031
1032	/*
1033	 * Check for a software override of the flow control settings, and
1034	 * setup the PHY advertisement registers accordingly.  If
1035	 * auto-negotiation is enabled, then software will have to set the
1036	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1037	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1038	 * negotiation.
1039	 *
1040	 * The possible values of the "fc" parameter are:
1041	 *      0:  Flow control is completely disabled
1042	 *      1:  Rx flow control is enabled (we can receive pause frames
1043	 *          but not send pause frames).
1044	 *      2:  Tx flow control is enabled (we can send pause frames
1045	 *          but we do not support receiving pause frames).
1046	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1047	 *  other:  No software override.  The flow control configuration
1048	 *          in the EEPROM is used.
1049	 */
1050	switch (hw->fc.current_mode) {
1051	case e1000_fc_none:
1052		/*
1053		 * Flow control (Rx & Tx) is completely disabled by a
1054		 * software over-ride.
1055		 */
1056		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
1057		break;
1058	case e1000_fc_rx_pause:
1059		/*
1060		 * Rx Flow control is enabled, and Tx Flow control is
1061		 * disabled, by a software over-ride.
1062		 *
1063		 * Since there really isn't a way to advertise that we are
1064		 * capable of Rx Pause ONLY, we will advertise that we
1065		 * support both symmetric and asymmetric Rx PAUSE.  Later
1066		 * (in e1000e_config_fc_after_link_up) we will disable the
1067		 * hw's ability to send PAUSE frames.
1068		 */
1069		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
1070		break;
1071	case e1000_fc_tx_pause:
1072		/*
1073		 * Tx Flow control is enabled, and Rx Flow control is
1074		 * disabled, by a software over-ride.
1075		 */
1076		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1077		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1078		break;
1079	case e1000_fc_full:
1080		/*
1081		 * Flow control (both Rx and Tx) is enabled by a software
1082		 * over-ride.
1083		 */
1084		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
1085		break;
1086	default:
1087		e_dbg("Flow control param set incorrectly\n");
1088		return -E1000_ERR_CONFIG;
1089	}
1090
1091	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1092	if (ret_val)
1093		return ret_val;
1094
1095	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1096
1097	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1098		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1099
1100	return ret_val;
1101}
1102
1103/**
1104 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1105 *  @hw: pointer to the HW structure
1106 *
1107 *  Performs initial bounds checking on autoneg advertisement parameter, then
1108 *  configure to advertise the full capability.  Setup the PHY to autoneg
1109 *  and restart the negotiation process between the link partner.  If
1110 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1111 **/
1112static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1113{
1114	struct e1000_phy_info *phy = &hw->phy;
1115	s32 ret_val;
1116	u16 phy_ctrl;
1117
1118	/*
1119	 * Perform some bounds checking on the autoneg advertisement
1120	 * parameter.
1121	 */
1122	phy->autoneg_advertised &= phy->autoneg_mask;
1123
1124	/*
1125	 * If autoneg_advertised is zero, we assume it was not defaulted
1126	 * by the calling code so we set to advertise full capability.
1127	 */
1128	if (!phy->autoneg_advertised)
1129		phy->autoneg_advertised = phy->autoneg_mask;
1130
1131	e_dbg("Reconfiguring auto-neg advertisement params\n");
1132	ret_val = e1000_phy_setup_autoneg(hw);
1133	if (ret_val) {
1134		e_dbg("Error Setting up Auto-Negotiation\n");
1135		return ret_val;
1136	}
1137	e_dbg("Restarting Auto-Neg\n");
1138
1139	/*
1140	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1141	 * the Auto Neg Restart bit in the PHY control register.
1142	 */
1143	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1144	if (ret_val)
1145		return ret_val;
1146
1147	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1148	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1149	if (ret_val)
1150		return ret_val;
1151
1152	/*
1153	 * Does the user want to wait for Auto-Neg to complete here, or
1154	 * check at a later time (for example, callback routine).
1155	 */
1156	if (phy->autoneg_wait_to_complete) {
1157		ret_val = e1000_wait_autoneg(hw);
1158		if (ret_val) {
1159			e_dbg("Error while waiting for autoneg to complete\n");
1160			return ret_val;
1161		}
1162	}
1163
1164	hw->mac.get_link_status = true;
1165
1166	return ret_val;
1167}
1168
1169/**
1170 *  e1000e_setup_copper_link - Configure copper link settings
1171 *  @hw: pointer to the HW structure
1172 *
1173 *  Calls the appropriate function to configure the link for auto-neg or forced
1174 *  speed and duplex.  Then we check for link, once link is established calls
1175 *  to configure collision distance and flow control are called.  If link is
1176 *  not established, we return -E1000_ERR_PHY (-2).
1177 **/
1178s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1179{
1180	s32 ret_val;
1181	bool link;
1182
1183	if (hw->mac.autoneg) {
1184		/*
1185		 * Setup autoneg and flow control advertisement and perform
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/*
1193		 * PHY will be set to 10H, 10F, 100H or 100F
1194		 * depending on user settings.
1195		 */
1196		e_dbg("Forcing Speed and Duplex\n");
1197		ret_val = e1000_phy_force_speed_duplex(hw);
1198		if (ret_val) {
1199			e_dbg("Error Forcing Speed and Duplex\n");
1200			return ret_val;
1201		}
1202	}
1203
1204	/*
1205	 * Check link status. Wait up to 100 microseconds for link to become
1206	 * valid.
1207	 */
1208	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1209					      &link);
1210	if (ret_val)
1211		return ret_val;
1212
1213	if (link) {
1214		e_dbg("Valid link established!!!\n");
1215		hw->mac.ops.config_collision_dist(hw);
1216		ret_val = e1000e_config_fc_after_link_up(hw);
1217	} else {
1218		e_dbg("Unable to establish link!!!\n");
1219	}
1220
1221	return ret_val;
1222}
1223
1224/**
1225 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1226 *  @hw: pointer to the HW structure
1227 *
1228 *  Calls the PHY setup function to force speed and duplex.  Clears the
1229 *  auto-crossover to force MDI manually.  Waits for link and returns
1230 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1231 **/
1232s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1233{
1234	struct e1000_phy_info *phy = &hw->phy;
1235	s32 ret_val;
1236	u16 phy_data;
1237	bool link;
1238
1239	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1240	if (ret_val)
1241		return ret_val;
1242
1243	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1244
1245	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1246	if (ret_val)
1247		return ret_val;
1248
1249	/*
1250	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1251	 * forced whenever speed and duplex are forced.
1252	 */
1253	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1254	if (ret_val)
1255		return ret_val;
1256
1257	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1258	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1259
1260	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("IGP PSCR: %X\n", phy_data);
1265
1266	udelay(1);
1267
1268	if (phy->autoneg_wait_to_complete) {
1269		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1270
1271		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1272						      100000, &link);
1273		if (ret_val)
1274			return ret_val;
1275
1276		if (!link)
1277			e_dbg("Link taking longer than expected.\n");
1278
1279		/* Try once more */
1280		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1281						      100000, &link);
1282	}
1283
1284	return ret_val;
1285}
1286
1287/**
1288 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1289 *  @hw: pointer to the HW structure
1290 *
1291 *  Calls the PHY setup function to force speed and duplex.  Clears the
1292 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1293 *  changes.  If time expires while waiting for link up, we reset the DSP.
1294 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1295 *  successful completion, else return corresponding error code.
1296 **/
1297s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1298{
1299	struct e1000_phy_info *phy = &hw->phy;
1300	s32 ret_val;
1301	u16 phy_data;
1302	bool link;
1303
1304	/*
1305	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1306	 * forced whenever speed and duplex are forced.
1307	 */
1308	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1309	if (ret_val)
1310		return ret_val;
1311
1312	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1313	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1314	if (ret_val)
1315		return ret_val;
1316
1317	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1318
1319	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1320	if (ret_val)
1321		return ret_val;
1322
1323	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1324
1325	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1326	if (ret_val)
1327		return ret_val;
1328
1329	/* Reset the phy to commit changes. */
1330	ret_val = e1000e_commit_phy(hw);
1331	if (ret_val)
1332		return ret_val;
 
 
1333
1334	if (phy->autoneg_wait_to_complete) {
1335		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1336
1337		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1338						     100000, &link);
1339		if (ret_val)
1340			return ret_val;
1341
1342		if (!link) {
1343			if (hw->phy.type != e1000_phy_m88) {
1344				e_dbg("Link taking longer than expected.\n");
1345			} else {
1346				/*
1347				 * We didn't get link.
1348				 * Reset the DSP and cross our fingers.
1349				 */
1350				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1351						   0x001d);
1352				if (ret_val)
1353					return ret_val;
1354				ret_val = e1000e_phy_reset_dsp(hw);
1355				if (ret_val)
1356					return ret_val;
1357			}
1358		}
1359
1360		/* Try once more */
1361		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1362						     100000, &link);
1363		if (ret_val)
1364			return ret_val;
1365	}
1366
1367	if (hw->phy.type != e1000_phy_m88)
1368		return 0;
1369
1370	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/*
1375	 * Resetting the phy means we need to re-force TX_CLK in the
1376	 * Extended PHY Specific Control Register to 25MHz clock from
1377	 * the reset value of 2.5MHz.
1378	 */
1379	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1380	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1381	if (ret_val)
1382		return ret_val;
1383
1384	/*
1385	 * In addition, we must re-enable CRS on Tx for both half and full
1386	 * duplex.
1387	 */
1388	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1389	if (ret_val)
1390		return ret_val;
1391
1392	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1393	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1394
1395	return ret_val;
1396}
1397
1398/**
1399 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1400 *  @hw: pointer to the HW structure
1401 *
1402 *  Forces the speed and duplex settings of the PHY.
1403 *  This is a function pointer entry point only called by
1404 *  PHY setup routines.
1405 **/
1406s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1407{
1408	struct e1000_phy_info *phy = &hw->phy;
1409	s32 ret_val;
1410	u16 data;
1411	bool link;
1412
1413	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1414	if (ret_val)
1415		return ret_val;
1416
1417	e1000e_phy_force_speed_duplex_setup(hw, &data);
1418
1419	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	/* Disable MDI-X support for 10/100 */
1424	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1425	if (ret_val)
1426		return ret_val;
1427
1428	data &= ~IFE_PMC_AUTO_MDIX;
1429	data &= ~IFE_PMC_FORCE_MDIX;
1430
1431	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1432	if (ret_val)
1433		return ret_val;
1434
1435	e_dbg("IFE PMC: %X\n", data);
1436
1437	udelay(1);
1438
1439	if (phy->autoneg_wait_to_complete) {
1440		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1441
1442		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1443						      100000, &link);
1444		if (ret_val)
1445			return ret_val;
1446
1447		if (!link)
1448			e_dbg("Link taking longer than expected.\n");
1449
1450		/* Try once more */
1451		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1452						      100000, &link);
1453		if (ret_val)
1454			return ret_val;
1455	}
1456
1457	return 0;
1458}
1459
1460/**
1461 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1462 *  @hw: pointer to the HW structure
1463 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1464 *
1465 *  Forces speed and duplex on the PHY by doing the following: disable flow
1466 *  control, force speed/duplex on the MAC, disable auto speed detection,
1467 *  disable auto-negotiation, configure duplex, configure speed, configure
1468 *  the collision distance, write configuration to CTRL register.  The
1469 *  caller must write to the PHY_CONTROL register for these settings to
1470 *  take affect.
1471 **/
1472void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1473{
1474	struct e1000_mac_info *mac = &hw->mac;
1475	u32 ctrl;
1476
1477	/* Turn off flow control when forcing speed/duplex */
1478	hw->fc.current_mode = e1000_fc_none;
1479
1480	/* Force speed/duplex on the mac */
1481	ctrl = er32(CTRL);
1482	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1483	ctrl &= ~E1000_CTRL_SPD_SEL;
1484
1485	/* Disable Auto Speed Detection */
1486	ctrl &= ~E1000_CTRL_ASDE;
1487
1488	/* Disable autoneg on the phy */
1489	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1490
1491	/* Forcing Full or Half Duplex? */
1492	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1493		ctrl &= ~E1000_CTRL_FD;
1494		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1495		e_dbg("Half Duplex\n");
1496	} else {
1497		ctrl |= E1000_CTRL_FD;
1498		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1499		e_dbg("Full Duplex\n");
1500	}
1501
1502	/* Forcing 10mb or 100mb? */
1503	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1504		ctrl |= E1000_CTRL_SPD_100;
1505		*phy_ctrl |= MII_CR_SPEED_100;
1506		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1507		e_dbg("Forcing 100mb\n");
1508	} else {
1509		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1510		*phy_ctrl |= MII_CR_SPEED_10;
1511		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1512		e_dbg("Forcing 10mb\n");
1513	}
1514
1515	hw->mac.ops.config_collision_dist(hw);
1516
1517	ew32(CTRL, ctrl);
1518}
1519
1520/**
1521 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1522 *  @hw: pointer to the HW structure
1523 *  @active: boolean used to enable/disable lplu
1524 *
1525 *  Success returns 0, Failure returns 1
1526 *
1527 *  The low power link up (lplu) state is set to the power management level D3
1528 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1529 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1530 *  is used during Dx states where the power conservation is most important.
1531 *  During driver activity, SmartSpeed should be enabled so performance is
1532 *  maintained.
1533 **/
1534s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1535{
1536	struct e1000_phy_info *phy = &hw->phy;
1537	s32 ret_val;
1538	u16 data;
1539
1540	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1541	if (ret_val)
1542		return ret_val;
1543
1544	if (!active) {
1545		data &= ~IGP02E1000_PM_D3_LPLU;
1546		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1547		if (ret_val)
1548			return ret_val;
1549		/*
1550		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1551		 * during Dx states where the power conservation is most
1552		 * important.  During driver activity we should enable
1553		 * SmartSpeed, so performance is maintained.
1554		 */
1555		if (phy->smart_speed == e1000_smart_speed_on) {
1556			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557					   &data);
1558			if (ret_val)
1559				return ret_val;
1560
1561			data |= IGP01E1000_PSCFR_SMART_SPEED;
1562			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1563					   data);
1564			if (ret_val)
1565				return ret_val;
1566		} else if (phy->smart_speed == e1000_smart_speed_off) {
1567			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568					   &data);
1569			if (ret_val)
1570				return ret_val;
1571
1572			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1573			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1574					   data);
1575			if (ret_val)
1576				return ret_val;
1577		}
1578	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1579		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1580		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1581		data |= IGP02E1000_PM_D3_LPLU;
1582		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1583		if (ret_val)
1584			return ret_val;
1585
1586		/* When LPLU is enabled, we should disable SmartSpeed */
1587		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1588		if (ret_val)
1589			return ret_val;
1590
1591		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1592		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1593	}
1594
1595	return ret_val;
1596}
1597
1598/**
1599 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1600 *  @hw: pointer to the HW structure
1601 *
1602 *  Success returns 0, Failure returns 1
1603 *
1604 *  A downshift is detected by querying the PHY link health.
1605 **/
1606s32 e1000e_check_downshift(struct e1000_hw *hw)
1607{
1608	struct e1000_phy_info *phy = &hw->phy;
1609	s32 ret_val;
1610	u16 phy_data, offset, mask;
1611
1612	switch (phy->type) {
1613	case e1000_phy_m88:
1614	case e1000_phy_gg82563:
1615	case e1000_phy_bm:
1616	case e1000_phy_82578:
1617		offset	= M88E1000_PHY_SPEC_STATUS;
1618		mask	= M88E1000_PSSR_DOWNSHIFT;
1619		break;
1620	case e1000_phy_igp_2:
1621	case e1000_phy_igp_3:
1622		offset	= IGP01E1000_PHY_LINK_HEALTH;
1623		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1624		break;
1625	default:
1626		/* speed downshift not supported */
1627		phy->speed_downgraded = false;
1628		return 0;
1629	}
1630
1631	ret_val = e1e_rphy(hw, offset, &phy_data);
1632
1633	if (!ret_val)
1634		phy->speed_downgraded = !!(phy_data & mask);
1635
1636	return ret_val;
1637}
1638
1639/**
1640 *  e1000_check_polarity_m88 - Checks the polarity.
1641 *  @hw: pointer to the HW structure
1642 *
1643 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1644 *
1645 *  Polarity is determined based on the PHY specific status register.
1646 **/
1647s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1648{
1649	struct e1000_phy_info *phy = &hw->phy;
1650	s32 ret_val;
1651	u16 data;
1652
1653	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1654
1655	if (!ret_val)
1656		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1657				      ? e1000_rev_polarity_reversed
1658				      : e1000_rev_polarity_normal;
1659
1660	return ret_val;
1661}
1662
1663/**
1664 *  e1000_check_polarity_igp - Checks the polarity.
1665 *  @hw: pointer to the HW structure
1666 *
1667 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1668 *
1669 *  Polarity is determined based on the PHY port status register, and the
1670 *  current speed (since there is no polarity at 100Mbps).
1671 **/
1672s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1673{
1674	struct e1000_phy_info *phy = &hw->phy;
1675	s32 ret_val;
1676	u16 data, offset, mask;
1677
1678	/*
1679	 * Polarity is determined based on the speed of
1680	 * our connection.
1681	 */
1682	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1683	if (ret_val)
1684		return ret_val;
1685
1686	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1687	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1688		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1689		mask	= IGP01E1000_PHY_POLARITY_MASK;
1690	} else {
1691		/*
1692		 * This really only applies to 10Mbps since
1693		 * there is no polarity for 100Mbps (always 0).
1694		 */
1695		offset	= IGP01E1000_PHY_PORT_STATUS;
1696		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1697	}
1698
1699	ret_val = e1e_rphy(hw, offset, &data);
1700
1701	if (!ret_val)
1702		phy->cable_polarity = (data & mask)
1703				      ? e1000_rev_polarity_reversed
1704				      : e1000_rev_polarity_normal;
1705
1706	return ret_val;
1707}
1708
1709/**
1710 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1711 *  @hw: pointer to the HW structure
1712 *
1713 *  Polarity is determined on the polarity reversal feature being enabled.
1714 **/
1715s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1716{
1717	struct e1000_phy_info *phy = &hw->phy;
1718	s32 ret_val;
1719	u16 phy_data, offset, mask;
1720
1721	/*
1722	 * Polarity is determined based on the reversal feature being enabled.
1723	 */
1724	if (phy->polarity_correction) {
1725		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1726		mask = IFE_PESC_POLARITY_REVERSED;
1727	} else {
1728		offset = IFE_PHY_SPECIAL_CONTROL;
1729		mask = IFE_PSC_FORCE_POLARITY;
1730	}
1731
1732	ret_val = e1e_rphy(hw, offset, &phy_data);
1733
1734	if (!ret_val)
1735		phy->cable_polarity = (phy_data & mask)
1736		                       ? e1000_rev_polarity_reversed
1737		                       : e1000_rev_polarity_normal;
1738
1739	return ret_val;
1740}
1741
1742/**
1743 *  e1000_wait_autoneg - Wait for auto-neg completion
1744 *  @hw: pointer to the HW structure
1745 *
1746 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1747 *  limit to expire, which ever happens first.
1748 **/
1749static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1750{
1751	s32 ret_val = 0;
1752	u16 i, phy_status;
1753
1754	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1755	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1756		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1757		if (ret_val)
1758			break;
1759		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1760		if (ret_val)
1761			break;
1762		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1763			break;
1764		msleep(100);
1765	}
1766
1767	/*
1768	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1769	 * has completed.
1770	 */
1771	return ret_val;
1772}
1773
1774/**
1775 *  e1000e_phy_has_link_generic - Polls PHY for link
1776 *  @hw: pointer to the HW structure
1777 *  @iterations: number of times to poll for link
1778 *  @usec_interval: delay between polling attempts
1779 *  @success: pointer to whether polling was successful or not
1780 *
1781 *  Polls the PHY status register for link, 'iterations' number of times.
1782 **/
1783s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1784			       u32 usec_interval, bool *success)
1785{
1786	s32 ret_val = 0;
1787	u16 i, phy_status;
1788
 
1789	for (i = 0; i < iterations; i++) {
1790		/*
1791		 * Some PHYs require the PHY_STATUS register to be read
1792		 * twice due to the link bit being sticky.  No harm doing
1793		 * it across the board.
1794		 */
1795		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1796		if (ret_val)
1797			/*
1798			 * If the first read fails, another entity may have
1799			 * ownership of the resources, wait and try again to
1800			 * see if they have relinquished the resources yet.
1801			 */
1802			udelay(usec_interval);
1803		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
 
 
 
 
1804		if (ret_val)
1805			break;
1806		if (phy_status & MII_SR_LINK_STATUS)
 
1807			break;
 
1808		if (usec_interval >= 1000)
1809			mdelay(usec_interval/1000);
1810		else
1811			udelay(usec_interval);
1812	}
1813
1814	*success = (i < iterations);
1815
1816	return ret_val;
1817}
1818
1819/**
1820 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1821 *  @hw: pointer to the HW structure
1822 *
1823 *  Reads the PHY specific status register to retrieve the cable length
1824 *  information.  The cable length is determined by averaging the minimum and
1825 *  maximum values to get the "average" cable length.  The m88 PHY has four
1826 *  possible cable length values, which are:
1827 *	Register Value		Cable Length
1828 *	0			< 50 meters
1829 *	1			50 - 80 meters
1830 *	2			80 - 110 meters
1831 *	3			110 - 140 meters
1832 *	4			> 140 meters
1833 **/
1834s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1835{
1836	struct e1000_phy_info *phy = &hw->phy;
1837	s32 ret_val;
1838	u16 phy_data, index;
1839
1840	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1841	if (ret_val)
1842		return ret_val;
1843
1844	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1845	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1846
1847	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1848		return -E1000_ERR_PHY;
1849
1850	phy->min_cable_length = e1000_m88_cable_length_table[index];
1851	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1852
1853	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1854
1855	return 0;
1856}
1857
1858/**
1859 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1860 *  @hw: pointer to the HW structure
1861 *
1862 *  The automatic gain control (agc) normalizes the amplitude of the
1863 *  received signal, adjusting for the attenuation produced by the
1864 *  cable.  By reading the AGC registers, which represent the
1865 *  combination of coarse and fine gain value, the value can be put
1866 *  into a lookup table to obtain the approximate cable length
1867 *  for each channel.
1868 **/
1869s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1870{
1871	struct e1000_phy_info *phy = &hw->phy;
1872	s32 ret_val;
1873	u16 phy_data, i, agc_value = 0;
1874	u16 cur_agc_index, max_agc_index = 0;
1875	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1876	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1877	       IGP02E1000_PHY_AGC_A,
1878	       IGP02E1000_PHY_AGC_B,
1879	       IGP02E1000_PHY_AGC_C,
1880	       IGP02E1000_PHY_AGC_D
1881	};
1882
1883	/* Read the AGC registers for all channels */
1884	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1885		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1886		if (ret_val)
1887			return ret_val;
1888
1889		/*
1890		 * Getting bits 15:9, which represent the combination of
1891		 * coarse and fine gain values.  The result is a number
1892		 * that can be put into the lookup table to obtain the
1893		 * approximate cable length.
1894		 */
1895		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1896				IGP02E1000_AGC_LENGTH_MASK;
1897
1898		/* Array index bound check. */
1899		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1900		    (cur_agc_index == 0))
1901			return -E1000_ERR_PHY;
1902
1903		/* Remove min & max AGC values from calculation. */
1904		if (e1000_igp_2_cable_length_table[min_agc_index] >
1905		    e1000_igp_2_cable_length_table[cur_agc_index])
1906			min_agc_index = cur_agc_index;
1907		if (e1000_igp_2_cable_length_table[max_agc_index] <
1908		    e1000_igp_2_cable_length_table[cur_agc_index])
1909			max_agc_index = cur_agc_index;
1910
1911		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1912	}
1913
1914	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1915		      e1000_igp_2_cable_length_table[max_agc_index]);
1916	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1917
1918	/* Calculate cable length with the error range of +/- 10 meters. */
1919	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1920				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1921	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1922
1923	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1924
1925	return 0;
1926}
1927
1928/**
1929 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1930 *  @hw: pointer to the HW structure
1931 *
1932 *  Valid for only copper links.  Read the PHY status register (sticky read)
1933 *  to verify that link is up.  Read the PHY special control register to
1934 *  determine the polarity and 10base-T extended distance.  Read the PHY
1935 *  special status register to determine MDI/MDIx and current speed.  If
1936 *  speed is 1000, then determine cable length, local and remote receiver.
1937 **/
1938s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1939{
1940	struct e1000_phy_info *phy = &hw->phy;
1941	s32  ret_val;
1942	u16 phy_data;
1943	bool link;
1944
1945	if (phy->media_type != e1000_media_type_copper) {
1946		e_dbg("Phy info is only valid for copper media\n");
1947		return -E1000_ERR_CONFIG;
1948	}
1949
1950	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1951	if (ret_val)
1952		return ret_val;
1953
1954	if (!link) {
1955		e_dbg("Phy info is only valid if link is up\n");
1956		return -E1000_ERR_CONFIG;
1957	}
1958
1959	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1960	if (ret_val)
1961		return ret_val;
1962
1963	phy->polarity_correction = !!(phy_data &
1964				      M88E1000_PSCR_POLARITY_REVERSAL);
1965
1966	ret_val = e1000_check_polarity_m88(hw);
1967	if (ret_val)
1968		return ret_val;
1969
1970	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1971	if (ret_val)
1972		return ret_val;
1973
1974	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1975
1976	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1977		ret_val = e1000_get_cable_length(hw);
1978		if (ret_val)
1979			return ret_val;
1980
1981		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1982		if (ret_val)
1983			return ret_val;
1984
1985		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1986				? e1000_1000t_rx_status_ok
1987				: e1000_1000t_rx_status_not_ok;
1988
1989		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1990				 ? e1000_1000t_rx_status_ok
1991				 : e1000_1000t_rx_status_not_ok;
1992	} else {
1993		/* Set values to "undefined" */
1994		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1995		phy->local_rx = e1000_1000t_rx_status_undefined;
1996		phy->remote_rx = e1000_1000t_rx_status_undefined;
1997	}
1998
1999	return ret_val;
2000}
2001
2002/**
2003 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2004 *  @hw: pointer to the HW structure
2005 *
2006 *  Read PHY status to determine if link is up.  If link is up, then
2007 *  set/determine 10base-T extended distance and polarity correction.  Read
2008 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2009 *  determine on the cable length, local and remote receiver.
2010 **/
2011s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2012{
2013	struct e1000_phy_info *phy = &hw->phy;
2014	s32 ret_val;
2015	u16 data;
2016	bool link;
2017
2018	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2019	if (ret_val)
2020		return ret_val;
2021
2022	if (!link) {
2023		e_dbg("Phy info is only valid if link is up\n");
2024		return -E1000_ERR_CONFIG;
2025	}
2026
2027	phy->polarity_correction = true;
2028
2029	ret_val = e1000_check_polarity_igp(hw);
2030	if (ret_val)
2031		return ret_val;
2032
2033	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2034	if (ret_val)
2035		return ret_val;
2036
2037	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2038
2039	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2040	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2041		ret_val = e1000_get_cable_length(hw);
2042		if (ret_val)
2043			return ret_val;
2044
2045		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2046		if (ret_val)
2047			return ret_val;
2048
2049		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2050				? e1000_1000t_rx_status_ok
2051				: e1000_1000t_rx_status_not_ok;
2052
2053		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2054				 ? e1000_1000t_rx_status_ok
2055				 : e1000_1000t_rx_status_not_ok;
2056	} else {
2057		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2058		phy->local_rx = e1000_1000t_rx_status_undefined;
2059		phy->remote_rx = e1000_1000t_rx_status_undefined;
2060	}
2061
2062	return ret_val;
2063}
2064
2065/**
2066 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Populates "phy" structure with various feature states.
2070 **/
2071s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2072{
2073	struct e1000_phy_info *phy = &hw->phy;
2074	s32 ret_val;
2075	u16 data;
2076	bool link;
2077
2078	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2079	if (ret_val)
2080		return ret_val;
2081
2082	if (!link) {
2083		e_dbg("Phy info is only valid if link is up\n");
2084		return -E1000_ERR_CONFIG;
2085	}
2086
2087	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2088	if (ret_val)
2089		return ret_val;
2090	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2091
2092	if (phy->polarity_correction) {
2093		ret_val = e1000_check_polarity_ife(hw);
2094		if (ret_val)
2095			return ret_val;
2096	} else {
2097		/* Polarity is forced */
2098		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2099		                      ? e1000_rev_polarity_reversed
2100		                      : e1000_rev_polarity_normal;
2101	}
2102
2103	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2104	if (ret_val)
2105		return ret_val;
2106
2107	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2108
2109	/* The following parameters are undefined for 10/100 operation. */
2110	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2111	phy->local_rx = e1000_1000t_rx_status_undefined;
2112	phy->remote_rx = e1000_1000t_rx_status_undefined;
2113
2114	return 0;
2115}
2116
2117/**
2118 *  e1000e_phy_sw_reset - PHY software reset
2119 *  @hw: pointer to the HW structure
2120 *
2121 *  Does a software reset of the PHY by reading the PHY control register and
2122 *  setting/write the control register reset bit to the PHY.
2123 **/
2124s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2125{
2126	s32 ret_val;
2127	u16 phy_ctrl;
2128
2129	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2130	if (ret_val)
2131		return ret_val;
2132
2133	phy_ctrl |= MII_CR_RESET;
2134	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2135	if (ret_val)
2136		return ret_val;
2137
2138	udelay(1);
2139
2140	return ret_val;
2141}
2142
2143/**
2144 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2145 *  @hw: pointer to the HW structure
2146 *
2147 *  Verify the reset block is not blocking us from resetting.  Acquire
2148 *  semaphore (if necessary) and read/set/write the device control reset
2149 *  bit in the PHY.  Wait the appropriate delay time for the device to
2150 *  reset and release the semaphore (if necessary).
2151 **/
2152s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2153{
2154	struct e1000_phy_info *phy = &hw->phy;
2155	s32 ret_val;
2156	u32 ctrl;
2157
2158	if (phy->ops.check_reset_block) {
2159		ret_val = phy->ops.check_reset_block(hw);
2160		if (ret_val)
2161			return 0;
2162	}
2163
2164	ret_val = phy->ops.acquire(hw);
2165	if (ret_val)
2166		return ret_val;
2167
2168	ctrl = er32(CTRL);
2169	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2170	e1e_flush();
2171
2172	udelay(phy->reset_delay_us);
2173
2174	ew32(CTRL, ctrl);
2175	e1e_flush();
2176
2177	udelay(150);
2178
2179	phy->ops.release(hw);
2180
2181	return e1000_get_phy_cfg_done(hw);
2182}
2183
2184/**
2185 *  e1000e_get_cfg_done - Generic configuration done
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Generic function to wait 10 milli-seconds for configuration to complete
2189 *  and return success.
2190 **/
2191s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2192{
2193	mdelay(10);
2194
2195	return 0;
2196}
2197
2198/**
2199 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2200 *  @hw: pointer to the HW structure
2201 *
2202 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2203 **/
2204s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2205{
2206	e_dbg("Running IGP 3 PHY init script\n");
2207
2208	/* PHY init IGP 3 */
2209	/* Enable rise/fall, 10-mode work in class-A */
2210	e1e_wphy(hw, 0x2F5B, 0x9018);
2211	/* Remove all caps from Replica path filter */
2212	e1e_wphy(hw, 0x2F52, 0x0000);
2213	/* Bias trimming for ADC, AFE and Driver (Default) */
2214	e1e_wphy(hw, 0x2FB1, 0x8B24);
2215	/* Increase Hybrid poly bias */
2216	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2217	/* Add 4% to Tx amplitude in Gig mode */
2218	e1e_wphy(hw, 0x2010, 0x10B0);
2219	/* Disable trimming (TTT) */
2220	e1e_wphy(hw, 0x2011, 0x0000);
2221	/* Poly DC correction to 94.6% + 2% for all channels */
2222	e1e_wphy(hw, 0x20DD, 0x249A);
2223	/* ABS DC correction to 95.9% */
2224	e1e_wphy(hw, 0x20DE, 0x00D3);
2225	/* BG temp curve trim */
2226	e1e_wphy(hw, 0x28B4, 0x04CE);
2227	/* Increasing ADC OPAMP stage 1 currents to max */
2228	e1e_wphy(hw, 0x2F70, 0x29E4);
2229	/* Force 1000 ( required for enabling PHY regs configuration) */
2230	e1e_wphy(hw, 0x0000, 0x0140);
2231	/* Set upd_freq to 6 */
2232	e1e_wphy(hw, 0x1F30, 0x1606);
2233	/* Disable NPDFE */
2234	e1e_wphy(hw, 0x1F31, 0xB814);
2235	/* Disable adaptive fixed FFE (Default) */
2236	e1e_wphy(hw, 0x1F35, 0x002A);
2237	/* Enable FFE hysteresis */
2238	e1e_wphy(hw, 0x1F3E, 0x0067);
2239	/* Fixed FFE for short cable lengths */
2240	e1e_wphy(hw, 0x1F54, 0x0065);
2241	/* Fixed FFE for medium cable lengths */
2242	e1e_wphy(hw, 0x1F55, 0x002A);
2243	/* Fixed FFE for long cable lengths */
2244	e1e_wphy(hw, 0x1F56, 0x002A);
2245	/* Enable Adaptive Clip Threshold */
2246	e1e_wphy(hw, 0x1F72, 0x3FB0);
2247	/* AHT reset limit to 1 */
2248	e1e_wphy(hw, 0x1F76, 0xC0FF);
2249	/* Set AHT master delay to 127 msec */
2250	e1e_wphy(hw, 0x1F77, 0x1DEC);
2251	/* Set scan bits for AHT */
2252	e1e_wphy(hw, 0x1F78, 0xF9EF);
2253	/* Set AHT Preset bits */
2254	e1e_wphy(hw, 0x1F79, 0x0210);
2255	/* Change integ_factor of channel A to 3 */
2256	e1e_wphy(hw, 0x1895, 0x0003);
2257	/* Change prop_factor of channels BCD to 8 */
2258	e1e_wphy(hw, 0x1796, 0x0008);
2259	/* Change cg_icount + enable integbp for channels BCD */
2260	e1e_wphy(hw, 0x1798, 0xD008);
2261	/*
2262	 * Change cg_icount + enable integbp + change prop_factor_master
2263	 * to 8 for channel A
2264	 */
2265	e1e_wphy(hw, 0x1898, 0xD918);
2266	/* Disable AHT in Slave mode on channel A */
2267	e1e_wphy(hw, 0x187A, 0x0800);
2268	/*
2269	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2270	 * Enable SPD+B2B
2271	 */
2272	e1e_wphy(hw, 0x0019, 0x008D);
2273	/* Enable restart AN on an1000_dis change */
2274	e1e_wphy(hw, 0x001B, 0x2080);
2275	/* Enable wh_fifo read clock in 10/100 modes */
2276	e1e_wphy(hw, 0x0014, 0x0045);
2277	/* Restart AN, Speed selection is 1000 */
2278	e1e_wphy(hw, 0x0000, 0x1340);
2279
2280	return 0;
2281}
2282
2283/* Internal function pointers */
2284
2285/**
2286 *  e1000_get_phy_cfg_done - Generic PHY configuration done
2287 *  @hw: pointer to the HW structure
2288 *
2289 *  Return success if silicon family did not implement a family specific
2290 *  get_cfg_done function.
2291 **/
2292static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2293{
2294	if (hw->phy.ops.get_cfg_done)
2295		return hw->phy.ops.get_cfg_done(hw);
2296
2297	return 0;
2298}
2299
2300/**
2301 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2302 *  @hw: pointer to the HW structure
2303 *
2304 *  When the silicon family has not implemented a forced speed/duplex
2305 *  function for the PHY, simply return 0.
2306 **/
2307static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2308{
2309	if (hw->phy.ops.force_speed_duplex)
2310		return hw->phy.ops.force_speed_duplex(hw);
2311
2312	return 0;
2313}
2314
2315/**
2316 *  e1000e_get_phy_type_from_id - Get PHY type from id
2317 *  @phy_id: phy_id read from the phy
2318 *
2319 *  Returns the phy type from the id.
2320 **/
2321enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2322{
2323	enum e1000_phy_type phy_type = e1000_phy_unknown;
2324
2325	switch (phy_id) {
2326	case M88E1000_I_PHY_ID:
2327	case M88E1000_E_PHY_ID:
2328	case M88E1111_I_PHY_ID:
2329	case M88E1011_I_PHY_ID:
2330		phy_type = e1000_phy_m88;
2331		break;
2332	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2333		phy_type = e1000_phy_igp_2;
2334		break;
2335	case GG82563_E_PHY_ID:
2336		phy_type = e1000_phy_gg82563;
2337		break;
2338	case IGP03E1000_E_PHY_ID:
2339		phy_type = e1000_phy_igp_3;
2340		break;
2341	case IFE_E_PHY_ID:
2342	case IFE_PLUS_E_PHY_ID:
2343	case IFE_C_E_PHY_ID:
2344		phy_type = e1000_phy_ife;
2345		break;
2346	case BME1000_E_PHY_ID:
2347	case BME1000_E_PHY_ID_R2:
2348		phy_type = e1000_phy_bm;
2349		break;
2350	case I82578_E_PHY_ID:
2351		phy_type = e1000_phy_82578;
2352		break;
2353	case I82577_E_PHY_ID:
2354		phy_type = e1000_phy_82577;
2355		break;
2356	case I82579_E_PHY_ID:
2357		phy_type = e1000_phy_82579;
2358		break;
2359	case I217_E_PHY_ID:
2360		phy_type = e1000_phy_i217;
2361		break;
2362	default:
2363		phy_type = e1000_phy_unknown;
2364		break;
2365	}
2366	return phy_type;
2367}
2368
2369/**
2370 *  e1000e_determine_phy_address - Determines PHY address.
2371 *  @hw: pointer to the HW structure
2372 *
2373 *  This uses a trial and error method to loop through possible PHY
2374 *  addresses. It tests each by reading the PHY ID registers and
2375 *  checking for a match.
2376 **/
2377s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2378{
2379	u32 phy_addr = 0;
2380	u32 i;
2381	enum e1000_phy_type phy_type = e1000_phy_unknown;
2382
2383	hw->phy.id = phy_type;
2384
2385	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2386		hw->phy.addr = phy_addr;
2387		i = 0;
2388
2389		do {
2390			e1000e_get_phy_id(hw);
2391			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2392
2393			/*
2394			 * If phy_type is valid, break - we found our
2395			 * PHY address
2396			 */
2397			if (phy_type  != e1000_phy_unknown)
2398				return 0;
2399
2400			usleep_range(1000, 2000);
2401			i++;
2402		} while (i < 10);
2403	}
2404
2405	return -E1000_ERR_PHY_TYPE;
2406}
2407
2408/**
2409 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2410 *  @page: page to access
 
2411 *
2412 *  Returns the phy address for the page requested.
2413 **/
2414static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2415{
2416	u32 phy_addr = 2;
2417
2418	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2419		phy_addr = 1;
2420
2421	return phy_addr;
2422}
2423
2424/**
2425 *  e1000e_write_phy_reg_bm - Write BM PHY register
2426 *  @hw: pointer to the HW structure
2427 *  @offset: register offset to write to
2428 *  @data: data to write at register offset
2429 *
2430 *  Acquires semaphore, if necessary, then writes the data to PHY register
2431 *  at the offset.  Release any acquired semaphores before exiting.
2432 **/
2433s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2434{
2435	s32 ret_val;
2436	u32 page = offset >> IGP_PAGE_SHIFT;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	/* Page 800 works differently than the rest so it has its own func */
2443	if (page == BM_WUC_PAGE) {
2444		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2445							 false, false);
2446		goto release;
2447	}
2448
2449	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2450
2451	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2452		u32 page_shift, page_select;
2453
2454		/*
2455		 * Page select is register 31 for phy address 1 and 22 for
2456		 * phy address 2 and 3. Page select is shifted only for
2457		 * phy address 1.
2458		 */
2459		if (hw->phy.addr == 1) {
2460			page_shift = IGP_PAGE_SHIFT;
2461			page_select = IGP01E1000_PHY_PAGE_SELECT;
2462		} else {
2463			page_shift = 0;
2464			page_select = BM_PHY_PAGE_SELECT;
2465		}
2466
2467		/* Page is shifted left, PHY expects (page x 32) */
2468		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2469		                                    (page << page_shift));
2470		if (ret_val)
2471			goto release;
2472	}
2473
2474	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2475	                                    data);
2476
2477release:
2478	hw->phy.ops.release(hw);
2479	return ret_val;
2480}
2481
2482/**
2483 *  e1000e_read_phy_reg_bm - Read BM PHY register
2484 *  @hw: pointer to the HW structure
2485 *  @offset: register offset to be read
2486 *  @data: pointer to the read data
2487 *
2488 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2489 *  and storing the retrieved information in data.  Release any acquired
2490 *  semaphores before exiting.
2491 **/
2492s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2493{
2494	s32 ret_val;
2495	u32 page = offset >> IGP_PAGE_SHIFT;
2496
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	/* Page 800 works differently than the rest so it has its own func */
2502	if (page == BM_WUC_PAGE) {
2503		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2504							 true, false);
2505		goto release;
2506	}
2507
2508	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2509
2510	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2511		u32 page_shift, page_select;
2512
2513		/*
2514		 * Page select is register 31 for phy address 1 and 22 for
2515		 * phy address 2 and 3. Page select is shifted only for
2516		 * phy address 1.
2517		 */
2518		if (hw->phy.addr == 1) {
2519			page_shift = IGP_PAGE_SHIFT;
2520			page_select = IGP01E1000_PHY_PAGE_SELECT;
2521		} else {
2522			page_shift = 0;
2523			page_select = BM_PHY_PAGE_SELECT;
2524		}
2525
2526		/* Page is shifted left, PHY expects (page x 32) */
2527		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2528		                                    (page << page_shift));
2529		if (ret_val)
2530			goto release;
2531	}
2532
2533	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2534	                                   data);
2535release:
2536	hw->phy.ops.release(hw);
2537	return ret_val;
2538}
2539
2540/**
2541 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2542 *  @hw: pointer to the HW structure
2543 *  @offset: register offset to be read
2544 *  @data: pointer to the read data
2545 *
2546 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2547 *  and storing the retrieved information in data.  Release any acquired
2548 *  semaphores before exiting.
2549 **/
2550s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2551{
2552	s32 ret_val;
2553	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2554
2555	ret_val = hw->phy.ops.acquire(hw);
2556	if (ret_val)
2557		return ret_val;
2558
2559	/* Page 800 works differently than the rest so it has its own func */
2560	if (page == BM_WUC_PAGE) {
2561		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2562							 true, false);
2563		goto release;
2564	}
2565
2566	hw->phy.addr = 1;
2567
2568	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2569
2570		/* Page is shifted left, PHY expects (page x 32) */
2571		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2572						    page);
2573
2574		if (ret_val)
2575			goto release;
2576	}
2577
2578	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2579					   data);
2580release:
2581	hw->phy.ops.release(hw);
2582	return ret_val;
2583}
2584
2585/**
2586 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2587 *  @hw: pointer to the HW structure
2588 *  @offset: register offset to write to
2589 *  @data: data to write at register offset
2590 *
2591 *  Acquires semaphore, if necessary, then writes the data to PHY register
2592 *  at the offset.  Release any acquired semaphores before exiting.
2593 **/
2594s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2595{
2596	s32 ret_val;
2597	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2598
2599	ret_val = hw->phy.ops.acquire(hw);
2600	if (ret_val)
2601		return ret_val;
2602
2603	/* Page 800 works differently than the rest so it has its own func */
2604	if (page == BM_WUC_PAGE) {
2605		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2606							 false, false);
2607		goto release;
2608	}
2609
2610	hw->phy.addr = 1;
2611
2612	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2613		/* Page is shifted left, PHY expects (page x 32) */
2614		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2615						    page);
2616
2617		if (ret_val)
2618			goto release;
2619	}
2620
2621	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2622					    data);
2623
2624release:
2625	hw->phy.ops.release(hw);
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2631 *  @hw: pointer to the HW structure
2632 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2633 *
2634 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2635 *  address to store contents of the BM_WUC_ENABLE_REG register.
2636 **/
2637s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2638{
2639	s32 ret_val;
2640	u16 temp;
2641
2642	/* All page select, port ctrl and wakeup registers use phy address 1 */
2643	hw->phy.addr = 1;
2644
2645	/* Select Port Control Registers page */
2646	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2647	if (ret_val) {
2648		e_dbg("Could not set Port Control page\n");
2649		return ret_val;
2650	}
2651
2652	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2653	if (ret_val) {
2654		e_dbg("Could not read PHY register %d.%d\n",
2655		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2656		return ret_val;
2657	}
2658
2659	/*
2660	 * Enable both PHY wakeup mode and Wakeup register page writes.
2661	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2662	 */
2663	temp = *phy_reg;
2664	temp |= BM_WUC_ENABLE_BIT;
2665	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2666
2667	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2668	if (ret_val) {
2669		e_dbg("Could not write PHY register %d.%d\n",
2670		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2671		return ret_val;
2672	}
2673
2674	/*
2675	 * Select Host Wakeup Registers page - caller now able to write
2676	 * registers on the Wakeup registers page
2677	 */
2678	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2679}
2680
2681/**
2682 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2683 *  @hw: pointer to the HW structure
2684 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2685 *
2686 *  Restore BM_WUC_ENABLE_REG to its original value.
2687 *
2688 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2689 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2690 *  caller.
2691 **/
2692s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2693{
2694	s32 ret_val = 0;
2695
2696	/* Select Port Control Registers page */
2697	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2698	if (ret_val) {
2699		e_dbg("Could not set Port Control page\n");
2700		return ret_val;
2701	}
2702
2703	/* Restore 769.17 to its original value */
2704	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2705	if (ret_val)
2706		e_dbg("Could not restore PHY register %d.%d\n",
2707		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2708
2709	return ret_val;
2710}
2711
2712/**
2713 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2714 *  @hw: pointer to the HW structure
2715 *  @offset: register offset to be read or written
2716 *  @data: pointer to the data to read or write
2717 *  @read: determines if operation is read or write
2718 *  @page_set: BM_WUC_PAGE already set and access enabled
2719 *
2720 *  Read the PHY register at offset and store the retrieved information in
2721 *  data, or write data to PHY register at offset.  Note the procedure to
2722 *  access the PHY wakeup registers is different than reading the other PHY
2723 *  registers. It works as such:
2724 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2725 *  2) Set page to 800 for host (801 if we were manageability)
2726 *  3) Write the address using the address opcode (0x11)
2727 *  4) Read or write the data using the data opcode (0x12)
2728 *  5) Restore 769.17.2 to its original value
2729 *
2730 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2731 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2732 *
2733 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2734 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2735 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2736 **/
2737static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2738					  u16 *data, bool read, bool page_set)
2739{
2740	s32 ret_val;
2741	u16 reg = BM_PHY_REG_NUM(offset);
2742	u16 page = BM_PHY_REG_PAGE(offset);
2743	u16 phy_reg = 0;
2744
2745	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2746	if ((hw->mac.type == e1000_pchlan) &&
2747	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2748		e_dbg("Attempting to access page %d while gig enabled.\n",
2749		      page);
2750
2751	if (!page_set) {
2752		/* Enable access to PHY wakeup registers */
2753		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2754		if (ret_val) {
2755			e_dbg("Could not enable PHY wakeup reg access\n");
2756			return ret_val;
2757		}
2758	}
2759
2760	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2761
2762	/* Write the Wakeup register page offset value using opcode 0x11 */
2763	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2764	if (ret_val) {
2765		e_dbg("Could not write address opcode to page %d\n", page);
2766		return ret_val;
2767	}
2768
2769	if (read) {
2770		/* Read the Wakeup register page value using opcode 0x12 */
2771		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2772		                                   data);
2773	} else {
2774		/* Write the Wakeup register page value using opcode 0x12 */
2775		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2776						    *data);
2777	}
2778
2779	if (ret_val) {
2780		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2781		return ret_val;
2782	}
2783
2784	if (!page_set)
2785		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2792 * @hw: pointer to the HW structure
2793 *
2794 * In the case of a PHY power down to save power, or to turn off link during a
2795 * driver unload, or wake on lan is not enabled, restore the link to previous
2796 * settings.
2797 **/
2798void e1000_power_up_phy_copper(struct e1000_hw *hw)
2799{
2800	u16 mii_reg = 0;
 
2801
2802	/* The PHY will retain its settings across a power down/up cycle */
2803	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2804	mii_reg &= ~MII_CR_POWER_DOWN;
2805	e1e_wphy(hw, PHY_CONTROL, mii_reg);
 
 
 
 
2806}
2807
2808/**
2809 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2810 * @hw: pointer to the HW structure
2811 *
2812 * In the case of a PHY power down to save power, or to turn off link during a
2813 * driver unload, or wake on lan is not enabled, restore the link to previous
2814 * settings.
2815 **/
2816void e1000_power_down_phy_copper(struct e1000_hw *hw)
2817{
2818	u16 mii_reg = 0;
 
2819
2820	/* The PHY will retain its settings across a power down/up cycle */
2821	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2822	mii_reg |= MII_CR_POWER_DOWN;
2823	e1e_wphy(hw, PHY_CONTROL, mii_reg);
 
 
 
 
2824	usleep_range(1000, 2000);
2825}
2826
2827/**
2828 *  e1000e_commit_phy - Soft PHY reset
2829 *  @hw: pointer to the HW structure
2830 *
2831 *  Performs a soft PHY reset on those that apply. This is a function pointer
2832 *  entry point called by drivers.
2833 **/
2834s32 e1000e_commit_phy(struct e1000_hw *hw)
2835{
2836	if (hw->phy.ops.commit)
2837		return hw->phy.ops.commit(hw);
2838
2839	return 0;
2840}
2841
2842/**
2843 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2844 *  @hw: pointer to the HW structure
2845 *  @active: boolean used to enable/disable lplu
2846 *
2847 *  Success returns 0, Failure returns 1
2848 *
2849 *  The low power link up (lplu) state is set to the power management level D0
2850 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2851 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2852 *  is used during Dx states where the power conservation is most important.
2853 *  During driver activity, SmartSpeed should be enabled so performance is
2854 *  maintained.  This is a function pointer entry point called by drivers.
2855 **/
2856static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2857{
2858	if (hw->phy.ops.set_d0_lplu_state)
2859		return hw->phy.ops.set_d0_lplu_state(hw, active);
2860
2861	return 0;
2862}
2863
2864/**
2865 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2866 *  @hw: pointer to the HW structure
2867 *  @offset: register offset to be read
2868 *  @data: pointer to the read data
2869 *  @locked: semaphore has already been acquired or not
 
2870 *
2871 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2872 *  and stores the retrieved information in data.  Release any acquired
2873 *  semaphore before exiting.
2874 **/
2875static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2876				   bool locked, bool page_set)
2877{
2878	s32 ret_val;
2879	u16 page = BM_PHY_REG_PAGE(offset);
2880	u16 reg = BM_PHY_REG_NUM(offset);
2881	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2882
2883	if (!locked) {
2884		ret_val = hw->phy.ops.acquire(hw);
2885		if (ret_val)
2886			return ret_val;
2887	}
2888
2889	/* Page 800 works differently than the rest so it has its own func */
2890	if (page == BM_WUC_PAGE) {
2891		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2892							 true, page_set);
2893		goto out;
2894	}
2895
2896	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2897		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2898		                                         data, true);
2899		goto out;
2900	}
2901
2902	if (!page_set) {
2903		if (page == HV_INTC_FC_PAGE_START)
2904			page = 0;
2905
2906		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2907			/* Page is shifted left, PHY expects (page x 32) */
2908			ret_val = e1000_set_page_igp(hw,
2909						     (page << IGP_PAGE_SHIFT));
2910
2911			hw->phy.addr = phy_addr;
2912
2913			if (ret_val)
2914				goto out;
2915		}
2916	}
2917
2918	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2919	      page << IGP_PAGE_SHIFT, reg);
2920
2921	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2922	                                  data);
2923out:
2924	if (!locked)
2925		hw->phy.ops.release(hw);
2926
2927	return ret_val;
2928}
2929
2930/**
2931 *  e1000_read_phy_reg_hv -  Read HV PHY register
2932 *  @hw: pointer to the HW structure
2933 *  @offset: register offset to be read
2934 *  @data: pointer to the read data
2935 *
2936 *  Acquires semaphore then reads the PHY register at offset and stores
2937 *  the retrieved information in data.  Release the acquired semaphore
2938 *  before exiting.
2939 **/
2940s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2941{
2942	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2943}
2944
2945/**
2946 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2947 *  @hw: pointer to the HW structure
2948 *  @offset: register offset to be read
2949 *  @data: pointer to the read data
2950 *
2951 *  Reads the PHY register at offset and stores the retrieved information
2952 *  in data.  Assumes semaphore already acquired.
2953 **/
2954s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2955{
2956	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2957}
2958
2959/**
2960 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2961 *  @hw: pointer to the HW structure
2962 *  @offset: register offset to write to
2963 *  @data: data to write at register offset
2964 *
2965 *  Reads the PHY register at offset and stores the retrieved information
2966 *  in data.  Assumes semaphore already acquired and page already set.
2967 **/
2968s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2969{
2970	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2971}
2972
2973/**
2974 *  __e1000_write_phy_reg_hv - Write HV PHY register
2975 *  @hw: pointer to the HW structure
2976 *  @offset: register offset to write to
2977 *  @data: data to write at register offset
2978 *  @locked: semaphore has already been acquired or not
 
2979 *
2980 *  Acquires semaphore, if necessary, then writes the data to PHY register
2981 *  at the offset.  Release any acquired semaphores before exiting.
2982 **/
2983static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2984				    bool locked, bool page_set)
2985{
2986	s32 ret_val;
2987	u16 page = BM_PHY_REG_PAGE(offset);
2988	u16 reg = BM_PHY_REG_NUM(offset);
2989	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2990
2991	if (!locked) {
2992		ret_val = hw->phy.ops.acquire(hw);
2993		if (ret_val)
2994			return ret_val;
2995	}
2996
2997	/* Page 800 works differently than the rest so it has its own func */
2998	if (page == BM_WUC_PAGE) {
2999		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3000							 false, page_set);
3001		goto out;
3002	}
3003
3004	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3005		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3006		                                         &data, false);
3007		goto out;
3008	}
3009
3010	if (!page_set) {
3011		if (page == HV_INTC_FC_PAGE_START)
3012			page = 0;
3013
3014		/*
3015		 * Workaround MDIO accesses being disabled after entering IEEE
3016		 * Power Down (when bit 11 of the PHY Control register is set)
3017		 */
3018		if ((hw->phy.type == e1000_phy_82578) &&
3019		    (hw->phy.revision >= 1) &&
3020		    (hw->phy.addr == 2) &&
3021		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3022			u16 data2 = 0x7EFF;
 
3023			ret_val = e1000_access_phy_debug_regs_hv(hw,
3024								 (1 << 6) | 0x3,
3025								 &data2, false);
3026			if (ret_val)
3027				goto out;
3028		}
3029
3030		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3031			/* Page is shifted left, PHY expects (page x 32) */
3032			ret_val = e1000_set_page_igp(hw,
3033						     (page << IGP_PAGE_SHIFT));
3034
3035			hw->phy.addr = phy_addr;
3036
3037			if (ret_val)
3038				goto out;
3039		}
3040	}
3041
3042	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3043	      page << IGP_PAGE_SHIFT, reg);
3044
3045	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3046	                                  data);
3047
3048out:
3049	if (!locked)
3050		hw->phy.ops.release(hw);
3051
3052	return ret_val;
3053}
3054
3055/**
3056 *  e1000_write_phy_reg_hv - Write HV PHY register
3057 *  @hw: pointer to the HW structure
3058 *  @offset: register offset to write to
3059 *  @data: data to write at register offset
3060 *
3061 *  Acquires semaphore then writes the data to PHY register at the offset.
3062 *  Release the acquired semaphores before exiting.
3063 **/
3064s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3065{
3066	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3067}
3068
3069/**
3070 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3071 *  @hw: pointer to the HW structure
3072 *  @offset: register offset to write to
3073 *  @data: data to write at register offset
3074 *
3075 *  Writes the data to PHY register at the offset.  Assumes semaphore
3076 *  already acquired.
3077 **/
3078s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3079{
3080	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3081}
3082
3083/**
3084 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3085 *  @hw: pointer to the HW structure
3086 *  @offset: register offset to write to
3087 *  @data: data to write at register offset
3088 *
3089 *  Writes the data to PHY register at the offset.  Assumes semaphore
3090 *  already acquired and page already set.
3091 **/
3092s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3093{
3094	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3095}
3096
3097/**
3098 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3099 *  @page: page to be accessed
3100 **/
3101static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3102{
3103	u32 phy_addr = 2;
3104
3105	if (page >= HV_INTC_FC_PAGE_START)
3106		phy_addr = 1;
3107
3108	return phy_addr;
3109}
3110
3111/**
3112 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3113 *  @hw: pointer to the HW structure
3114 *  @offset: register offset to be read or written
3115 *  @data: pointer to the data to be read or written
3116 *  @read: determines if operation is read or write
3117 *
3118 *  Reads the PHY register at offset and stores the retreived information
3119 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3120 *  to access these regs uses the address port and data port to read/write.
3121 *  These accesses done with PHY address 2 and without using pages.
3122 **/
3123static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3124                                          u16 *data, bool read)
3125{
3126	s32 ret_val;
3127	u32 addr_reg = 0;
3128	u32 data_reg = 0;
3129
3130	/* This takes care of the difference with desktop vs mobile phy */
3131	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3132	           I82578_ADDR_REG : I82577_ADDR_REG;
3133	data_reg = addr_reg + 1;
3134
3135	/* All operations in this function are phy address 2 */
3136	hw->phy.addr = 2;
3137
3138	/* masking with 0x3F to remove the page from offset */
3139	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3140	if (ret_val) {
3141		e_dbg("Could not write the Address Offset port register\n");
3142		return ret_val;
3143	}
3144
3145	/* Read or write the data value next */
3146	if (read)
3147		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3148	else
3149		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3150
3151	if (ret_val)
3152		e_dbg("Could not access the Data port register\n");
3153
3154	return ret_val;
3155}
3156
3157/**
3158 *  e1000_link_stall_workaround_hv - Si workaround
3159 *  @hw: pointer to the HW structure
3160 *
3161 *  This function works around a Si bug where the link partner can get
3162 *  a link up indication before the PHY does.  If small packets are sent
3163 *  by the link partner they can be placed in the packet buffer without
3164 *  being properly accounted for by the PHY and will stall preventing
3165 *  further packets from being received.  The workaround is to clear the
3166 *  packet buffer after the PHY detects link up.
3167 **/
3168s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3169{
3170	s32 ret_val = 0;
3171	u16 data;
3172
3173	if (hw->phy.type != e1000_phy_82578)
3174		return 0;
3175
3176	/* Do not apply workaround if in PHY loopback bit 14 set */
3177	e1e_rphy(hw, PHY_CONTROL, &data);
3178	if (data & PHY_CONTROL_LB)
 
 
 
 
3179		return 0;
3180
3181	/* check if link is up and at 1Gbps */
3182	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3183	if (ret_val)
3184		return ret_val;
3185
3186	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3187		BM_CS_STATUS_SPEED_MASK;
3188
3189	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3190		     BM_CS_STATUS_SPEED_1000))
3191		return 0;
3192
3193	msleep(200);
3194
3195	/* flush the packets in the fifo buffer */
3196	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3197			   HV_MUX_DATA_CTRL_FORCE_SPEED);
 
3198	if (ret_val)
3199		return ret_val;
3200
3201	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3202}
3203
3204/**
3205 *  e1000_check_polarity_82577 - Checks the polarity.
3206 *  @hw: pointer to the HW structure
3207 *
3208 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3209 *
3210 *  Polarity is determined based on the PHY specific status register.
3211 **/
3212s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3213{
3214	struct e1000_phy_info *phy = &hw->phy;
3215	s32 ret_val;
3216	u16 data;
3217
3218	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3219
3220	if (!ret_val)
3221		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3222		                      ? e1000_rev_polarity_reversed
3223		                      : e1000_rev_polarity_normal;
3224
3225	return ret_val;
3226}
3227
3228/**
3229 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3230 *  @hw: pointer to the HW structure
3231 *
3232 *  Calls the PHY setup function to force speed and duplex.
3233 **/
3234s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3235{
3236	struct e1000_phy_info *phy = &hw->phy;
3237	s32 ret_val;
3238	u16 phy_data;
3239	bool link;
3240
3241	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3242	if (ret_val)
3243		return ret_val;
3244
3245	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3246
3247	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3248	if (ret_val)
3249		return ret_val;
3250
3251	udelay(1);
3252
3253	if (phy->autoneg_wait_to_complete) {
3254		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3255
3256		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3257						      100000, &link);
3258		if (ret_val)
3259			return ret_val;
3260
3261		if (!link)
3262			e_dbg("Link taking longer than expected.\n");
3263
3264		/* Try once more */
3265		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3266						      100000, &link);
3267	}
3268
3269	return ret_val;
3270}
3271
3272/**
3273 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3274 *  @hw: pointer to the HW structure
3275 *
3276 *  Read PHY status to determine if link is up.  If link is up, then
3277 *  set/determine 10base-T extended distance and polarity correction.  Read
3278 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3279 *  determine on the cable length, local and remote receiver.
3280 **/
3281s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3282{
3283	struct e1000_phy_info *phy = &hw->phy;
3284	s32 ret_val;
3285	u16 data;
3286	bool link;
3287
3288	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3289	if (ret_val)
3290		return ret_val;
3291
3292	if (!link) {
3293		e_dbg("Phy info is only valid if link is up\n");
3294		return -E1000_ERR_CONFIG;
3295	}
3296
3297	phy->polarity_correction = true;
3298
3299	ret_val = e1000_check_polarity_82577(hw);
3300	if (ret_val)
3301		return ret_val;
3302
3303	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3304	if (ret_val)
3305		return ret_val;
3306
3307	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3308
3309	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3310	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3311		ret_val = hw->phy.ops.get_cable_length(hw);
3312		if (ret_val)
3313			return ret_val;
3314
3315		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3316		if (ret_val)
3317			return ret_val;
3318
3319		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3320		                ? e1000_1000t_rx_status_ok
3321		                : e1000_1000t_rx_status_not_ok;
3322
3323		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3324		                 ? e1000_1000t_rx_status_ok
3325		                 : e1000_1000t_rx_status_not_ok;
3326	} else {
3327		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3328		phy->local_rx = e1000_1000t_rx_status_undefined;
3329		phy->remote_rx = e1000_1000t_rx_status_undefined;
3330	}
3331
3332	return 0;
3333}
3334
3335/**
3336 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3337 *  @hw: pointer to the HW structure
3338 *
3339 * Reads the diagnostic status register and verifies result is valid before
3340 * placing it in the phy_cable_length field.
3341 **/
3342s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3343{
3344	struct e1000_phy_info *phy = &hw->phy;
3345	s32 ret_val;
3346	u16 phy_data, length;
3347
3348	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3349	if (ret_val)
3350		return ret_val;
3351
3352	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3353	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3354
3355	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3356		ret_val = -E1000_ERR_PHY;
3357
3358	phy->cable_length = length;
3359
3360	return 0;
3361}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5
 
 
 
   6static s32 e1000_wait_autoneg(struct e1000_hw *hw);
 
   7static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   8					  u16 *data, bool read, bool page_set);
   9static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  10static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  11					  u16 *data, bool read);
  12
  13/* Cable length tables */
  14static const u16 e1000_m88_cable_length_table[] = {
  15	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  16};
  17
  18#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_m88_cable_length_table)
  20
  21static const u16 e1000_igp_2_cable_length_table[] = {
  22	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  23	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  24	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  25	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  26	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  27	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  28	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  29	124
  30};
  31
  32#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  33		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35/**
  36 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  37 *  @hw: pointer to the HW structure
  38 *
  39 *  Read the PHY management control register and check whether a PHY reset
  40 *  is blocked.  If a reset is not blocked return 0, otherwise
  41 *  return E1000_BLK_PHY_RESET (12).
  42 **/
  43s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  44{
  45	u32 manc;
  46
  47	manc = er32(MANC);
  48
  49	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
 
  50}
  51
  52/**
  53 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  54 *  @hw: pointer to the HW structure
  55 *
  56 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  57 *  revision in the hardware structure.
  58 **/
  59s32 e1000e_get_phy_id(struct e1000_hw *hw)
  60{
  61	struct e1000_phy_info *phy = &hw->phy;
  62	s32 ret_val = 0;
  63	u16 phy_id;
  64	u16 retry_count = 0;
  65
  66	if (!phy->ops.read_reg)
  67		return 0;
  68
  69	while (retry_count < 2) {
  70		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  71		if (ret_val)
  72			return ret_val;
  73
  74		phy->id = (u32)(phy_id << 16);
  75		usleep_range(20, 40);
  76		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  77		if (ret_val)
  78			return ret_val;
  79
  80		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  81		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  82
  83		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  84			return 0;
  85
  86		retry_count++;
  87	}
  88
  89	return 0;
  90}
  91
  92/**
  93 *  e1000e_phy_reset_dsp - Reset PHY DSP
  94 *  @hw: pointer to the HW structure
  95 *
  96 *  Reset the digital signal processor.
  97 **/
  98s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
  99{
 100	s32 ret_val;
 101
 102	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 103	if (ret_val)
 104		return ret_val;
 105
 106	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 107}
 108
 109/**
 110 *  e1000e_read_phy_reg_mdic - Read MDI control register
 111 *  @hw: pointer to the HW structure
 112 *  @offset: register offset to be read
 113 *  @data: pointer to the read data
 114 *
 115 *  Reads the MDI control register in the PHY at offset and stores the
 116 *  information read to data.
 117 **/
 118s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 119{
 120	struct e1000_phy_info *phy = &hw->phy;
 121	u32 i, mdic = 0;
 122
 123	if (offset > MAX_PHY_REG_ADDRESS) {
 124		e_dbg("PHY Address %d is out of range\n", offset);
 125		return -E1000_ERR_PARAM;
 126	}
 127
 128	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 129	 * Control register.  The MAC will take care of interfacing with the
 130	 * PHY to retrieve the desired data.
 131	 */
 132	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 133		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 134		(E1000_MDIC_OP_READ));
 135
 136	ew32(MDIC, mdic);
 137
 138	/* Poll the ready bit to see if the MDI read completed
 
 139	 * Increasing the time out as testing showed failures with
 140	 * the lower time out
 141	 */
 142	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 143		udelay(50);
 144		mdic = er32(MDIC);
 145		if (mdic & E1000_MDIC_READY)
 146			break;
 147	}
 148	if (!(mdic & E1000_MDIC_READY)) {
 149		e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset);
 150		return -E1000_ERR_PHY;
 151	}
 152	if (mdic & E1000_MDIC_ERROR) {
 153		e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 154		return -E1000_ERR_PHY;
 155	}
 156	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 157		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 158		      offset,
 159		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 160		return -E1000_ERR_PHY;
 161	}
 162	*data = (u16)mdic;
 163
 164	/* Allow some time after each MDIC transaction to avoid
 
 165	 * reading duplicate data in the next MDIC transaction.
 166	 */
 167	if (hw->mac.type == e1000_pch2lan)
 168		udelay(100);
 169
 170	return 0;
 171}
 172
 173/**
 174 *  e1000e_write_phy_reg_mdic - Write MDI control register
 175 *  @hw: pointer to the HW structure
 176 *  @offset: register offset to write to
 177 *  @data: data to write to register at offset
 178 *
 179 *  Writes data to MDI control register in the PHY at offset.
 180 **/
 181s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 182{
 183	struct e1000_phy_info *phy = &hw->phy;
 184	u32 i, mdic = 0;
 185
 186	if (offset > MAX_PHY_REG_ADDRESS) {
 187		e_dbg("PHY Address %d is out of range\n", offset);
 188		return -E1000_ERR_PARAM;
 189	}
 190
 191	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 192	 * Control register.  The MAC will take care of interfacing with the
 193	 * PHY to retrieve the desired data.
 194	 */
 195	mdic = (((u32)data) |
 196		(offset << E1000_MDIC_REG_SHIFT) |
 197		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 198		(E1000_MDIC_OP_WRITE));
 199
 200	ew32(MDIC, mdic);
 201
 202	/* Poll the ready bit to see if the MDI read completed
 
 203	 * Increasing the time out as testing showed failures with
 204	 * the lower time out
 205	 */
 206	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 207		udelay(50);
 208		mdic = er32(MDIC);
 209		if (mdic & E1000_MDIC_READY)
 210			break;
 211	}
 212	if (!(mdic & E1000_MDIC_READY)) {
 213		e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset);
 214		return -E1000_ERR_PHY;
 215	}
 216	if (mdic & E1000_MDIC_ERROR) {
 217		e_dbg("MDI Write PHY Red Address %d Error\n", offset);
 218		return -E1000_ERR_PHY;
 219	}
 220	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 221		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 222		      offset,
 223		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 224		return -E1000_ERR_PHY;
 225	}
 226
 227	/* Allow some time after each MDIC transaction to avoid
 
 228	 * reading duplicate data in the next MDIC transaction.
 229	 */
 230	if (hw->mac.type == e1000_pch2lan)
 231		udelay(100);
 232
 233	return 0;
 234}
 235
 236/**
 237 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 238 *  @hw: pointer to the HW structure
 239 *  @offset: register offset to be read
 240 *  @data: pointer to the read data
 241 *
 242 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 243 *  and storing the retrieved information in data.  Release any acquired
 244 *  semaphores before exiting.
 245 **/
 246s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 247{
 248	s32 ret_val;
 249
 250	ret_val = hw->phy.ops.acquire(hw);
 251	if (ret_val)
 252		return ret_val;
 253
 254	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 255					   data);
 256
 257	hw->phy.ops.release(hw);
 258
 259	return ret_val;
 260}
 261
 262/**
 263 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 264 *  @hw: pointer to the HW structure
 265 *  @offset: register offset to write to
 266 *  @data: data to write at register offset
 267 *
 268 *  Acquires semaphore, if necessary, then writes the data to PHY register
 269 *  at the offset.  Release any acquired semaphores before exiting.
 270 **/
 271s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 272{
 273	s32 ret_val;
 274
 275	ret_val = hw->phy.ops.acquire(hw);
 276	if (ret_val)
 277		return ret_val;
 278
 279	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 280					    data);
 281
 282	hw->phy.ops.release(hw);
 283
 284	return ret_val;
 285}
 286
 287/**
 288 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 289 *  @hw: pointer to the HW structure
 290 *  @page: page to set (shifted left when necessary)
 291 *
 292 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 293 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 294 *  must set it appropriately (if necessary) after this function returns.
 295 **/
 296s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 297{
 298	e_dbg("Setting page 0x%x\n", page);
 299
 300	hw->phy.addr = 1;
 301
 302	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 303}
 304
 305/**
 306 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 307 *  @hw: pointer to the HW structure
 308 *  @offset: register offset to be read
 309 *  @data: pointer to the read data
 310 *  @locked: semaphore has already been acquired or not
 311 *
 312 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 313 *  and stores the retrieved information in data.  Release any acquired
 314 *  semaphores before exiting.
 315 **/
 316static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 317				     bool locked)
 318{
 319	s32 ret_val = 0;
 320
 321	if (!locked) {
 322		if (!hw->phy.ops.acquire)
 323			return 0;
 324
 325		ret_val = hw->phy.ops.acquire(hw);
 326		if (ret_val)
 327			return ret_val;
 328	}
 329
 330	if (offset > MAX_PHY_MULTI_PAGE_REG)
 331		ret_val = e1000e_write_phy_reg_mdic(hw,
 332						    IGP01E1000_PHY_PAGE_SELECT,
 333						    (u16)offset);
 334	if (!ret_val)
 335		ret_val = e1000e_read_phy_reg_mdic(hw,
 336						   MAX_PHY_REG_ADDRESS & offset,
 337						   data);
 338	if (!locked)
 339		hw->phy.ops.release(hw);
 340
 341	return ret_val;
 342}
 343
 344/**
 345 *  e1000e_read_phy_reg_igp - Read igp PHY register
 346 *  @hw: pointer to the HW structure
 347 *  @offset: register offset to be read
 348 *  @data: pointer to the read data
 349 *
 350 *  Acquires semaphore then reads the PHY register at offset and stores the
 351 *  retrieved information in data.
 352 *  Release the acquired semaphore before exiting.
 353 **/
 354s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 355{
 356	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 357}
 358
 359/**
 360 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 361 *  @hw: pointer to the HW structure
 362 *  @offset: register offset to be read
 363 *  @data: pointer to the read data
 364 *
 365 *  Reads the PHY register at offset and stores the retrieved information
 366 *  in data.  Assumes semaphore already acquired.
 367 **/
 368s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 369{
 370	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 371}
 372
 373/**
 374 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 375 *  @hw: pointer to the HW structure
 376 *  @offset: register offset to write to
 377 *  @data: data to write at register offset
 378 *  @locked: semaphore has already been acquired or not
 379 *
 380 *  Acquires semaphore, if necessary, then writes the data to PHY register
 381 *  at the offset.  Release any acquired semaphores before exiting.
 382 **/
 383static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 384				      bool locked)
 385{
 386	s32 ret_val = 0;
 387
 388	if (!locked) {
 389		if (!hw->phy.ops.acquire)
 390			return 0;
 391
 392		ret_val = hw->phy.ops.acquire(hw);
 393		if (ret_val)
 394			return ret_val;
 395	}
 396
 397	if (offset > MAX_PHY_MULTI_PAGE_REG)
 398		ret_val = e1000e_write_phy_reg_mdic(hw,
 399						    IGP01E1000_PHY_PAGE_SELECT,
 400						    (u16)offset);
 401	if (!ret_val)
 402		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 403						    offset, data);
 
 404	if (!locked)
 405		hw->phy.ops.release(hw);
 406
 407	return ret_val;
 408}
 409
 410/**
 411 *  e1000e_write_phy_reg_igp - Write igp PHY register
 412 *  @hw: pointer to the HW structure
 413 *  @offset: register offset to write to
 414 *  @data: data to write at register offset
 415 *
 416 *  Acquires semaphore then writes the data to PHY register
 417 *  at the offset.  Release any acquired semaphores before exiting.
 418 **/
 419s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 420{
 421	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 422}
 423
 424/**
 425 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 426 *  @hw: pointer to the HW structure
 427 *  @offset: register offset to write to
 428 *  @data: data to write at register offset
 429 *
 430 *  Writes the data to PHY register at the offset.
 431 *  Assumes semaphore already acquired.
 432 **/
 433s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 434{
 435	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 436}
 437
 438/**
 439 *  __e1000_read_kmrn_reg - Read kumeran register
 440 *  @hw: pointer to the HW structure
 441 *  @offset: register offset to be read
 442 *  @data: pointer to the read data
 443 *  @locked: semaphore has already been acquired or not
 444 *
 445 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 446 *  using the kumeran interface.  The information retrieved is stored in data.
 447 *  Release any acquired semaphores before exiting.
 448 **/
 449static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 450				 bool locked)
 451{
 452	u32 kmrnctrlsta;
 453
 454	if (!locked) {
 455		s32 ret_val = 0;
 456
 457		if (!hw->phy.ops.acquire)
 458			return 0;
 459
 460		ret_val = hw->phy.ops.acquire(hw);
 461		if (ret_val)
 462			return ret_val;
 463	}
 464
 465	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 466		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 467	ew32(KMRNCTRLSTA, kmrnctrlsta);
 468	e1e_flush();
 469
 470	udelay(2);
 471
 472	kmrnctrlsta = er32(KMRNCTRLSTA);
 473	*data = (u16)kmrnctrlsta;
 474
 475	if (!locked)
 476		hw->phy.ops.release(hw);
 477
 478	return 0;
 479}
 480
 481/**
 482 *  e1000e_read_kmrn_reg -  Read kumeran register
 483 *  @hw: pointer to the HW structure
 484 *  @offset: register offset to be read
 485 *  @data: pointer to the read data
 486 *
 487 *  Acquires semaphore then reads the PHY register at offset using the
 488 *  kumeran interface.  The information retrieved is stored in data.
 489 *  Release the acquired semaphore before exiting.
 490 **/
 491s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 492{
 493	return __e1000_read_kmrn_reg(hw, offset, data, false);
 494}
 495
 496/**
 497 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 498 *  @hw: pointer to the HW structure
 499 *  @offset: register offset to be read
 500 *  @data: pointer to the read data
 501 *
 502 *  Reads the PHY register at offset using the kumeran interface.  The
 503 *  information retrieved is stored in data.
 504 *  Assumes semaphore already acquired.
 505 **/
 506s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 507{
 508	return __e1000_read_kmrn_reg(hw, offset, data, true);
 509}
 510
 511/**
 512 *  __e1000_write_kmrn_reg - Write kumeran register
 513 *  @hw: pointer to the HW structure
 514 *  @offset: register offset to write to
 515 *  @data: data to write at register offset
 516 *  @locked: semaphore has already been acquired or not
 517 *
 518 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 519 *  at the offset using the kumeran interface.  Release any acquired semaphores
 520 *  before exiting.
 521 **/
 522static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 523				  bool locked)
 524{
 525	u32 kmrnctrlsta;
 526
 527	if (!locked) {
 528		s32 ret_val = 0;
 529
 530		if (!hw->phy.ops.acquire)
 531			return 0;
 532
 533		ret_val = hw->phy.ops.acquire(hw);
 534		if (ret_val)
 535			return ret_val;
 536	}
 537
 538	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 539		       E1000_KMRNCTRLSTA_OFFSET) | data;
 540	ew32(KMRNCTRLSTA, kmrnctrlsta);
 541	e1e_flush();
 542
 543	udelay(2);
 544
 545	if (!locked)
 546		hw->phy.ops.release(hw);
 547
 548	return 0;
 549}
 550
 551/**
 552 *  e1000e_write_kmrn_reg -  Write kumeran register
 553 *  @hw: pointer to the HW structure
 554 *  @offset: register offset to write to
 555 *  @data: data to write at register offset
 556 *
 557 *  Acquires semaphore then writes the data to the PHY register at the offset
 558 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 559 **/
 560s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 561{
 562	return __e1000_write_kmrn_reg(hw, offset, data, false);
 563}
 564
 565/**
 566 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 567 *  @hw: pointer to the HW structure
 568 *  @offset: register offset to write to
 569 *  @data: data to write at register offset
 570 *
 571 *  Write the data to PHY register at the offset using the kumeran interface.
 572 *  Assumes semaphore already acquired.
 573 **/
 574s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 575{
 576	return __e1000_write_kmrn_reg(hw, offset, data, true);
 577}
 578
 579/**
 580 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 581 *  @hw: pointer to the HW structure
 582 *
 583 *  Sets up Master/slave mode
 584 **/
 585static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 586{
 587	s32 ret_val;
 588	u16 phy_data;
 589
 590	/* Resolve Master/Slave mode */
 591	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 592	if (ret_val)
 593		return ret_val;
 594
 595	/* load defaults for future use */
 596	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 597	    ((phy_data & CTL1000_AS_MASTER) ?
 598	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 599
 600	switch (hw->phy.ms_type) {
 601	case e1000_ms_force_master:
 602		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 603		break;
 604	case e1000_ms_force_slave:
 605		phy_data |= CTL1000_ENABLE_MASTER;
 606		phy_data &= ~(CTL1000_AS_MASTER);
 607		break;
 608	case e1000_ms_auto:
 609		phy_data &= ~CTL1000_ENABLE_MASTER;
 610		fallthrough;
 611	default:
 612		break;
 613	}
 614
 615	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 616}
 617
 618/**
 619 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 620 *  @hw: pointer to the HW structure
 621 *
 622 *  Sets up Carrier-sense on Transmit and downshift values.
 623 **/
 624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 625{
 626	s32 ret_val;
 627	u16 phy_data;
 628
 629	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 630	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 631	if (ret_val)
 632		return ret_val;
 633
 634	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 635
 636	/* Enable downshift */
 637	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 638
 639	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 640	if (ret_val)
 641		return ret_val;
 642
 643	/* Set MDI/MDIX mode */
 644	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 645	if (ret_val)
 646		return ret_val;
 647	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 648	/* Options:
 649	 *   0 - Auto (default)
 650	 *   1 - MDI mode
 651	 *   2 - MDI-X mode
 652	 */
 653	switch (hw->phy.mdix) {
 654	case 1:
 655		break;
 656	case 2:
 657		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 658		break;
 659	case 0:
 660	default:
 661		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 662		break;
 663	}
 664	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 665	if (ret_val)
 666		return ret_val;
 667
 668	return e1000_set_master_slave_mode(hw);
 669}
 670
 671/**
 672 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 673 *  @hw: pointer to the HW structure
 674 *
 675 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 676 *  and downshift values are set also.
 677 **/
 678s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 679{
 680	struct e1000_phy_info *phy = &hw->phy;
 681	s32 ret_val;
 682	u16 phy_data;
 683
 684	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 685	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 686	if (ret_val)
 687		return ret_val;
 688
 689	/* For BM PHY this bit is downshift enable */
 690	if (phy->type != e1000_phy_bm)
 691		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 692
 693	/* Options:
 
 694	 *   MDI/MDI-X = 0 (default)
 695	 *   0 - Auto for all speeds
 696	 *   1 - MDI mode
 697	 *   2 - MDI-X mode
 698	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 699	 */
 700	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 701
 702	switch (phy->mdix) {
 703	case 1:
 704		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 705		break;
 706	case 2:
 707		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 708		break;
 709	case 3:
 710		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 711		break;
 712	case 0:
 713	default:
 714		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 715		break;
 716	}
 717
 718	/* Options:
 
 719	 *   disable_polarity_correction = 0 (default)
 720	 *       Automatic Correction for Reversed Cable Polarity
 721	 *   0 - Disabled
 722	 *   1 - Enabled
 723	 */
 724	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 725	if (phy->disable_polarity_correction)
 726		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 727
 728	/* Enable downshift on BM (disabled by default) */
 729	if (phy->type == e1000_phy_bm) {
 730		/* For 82574/82583, first disable then enable downshift */
 731		if (phy->id == BME1000_E_PHY_ID_R2) {
 732			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 733			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 734					   phy_data);
 735			if (ret_val)
 736				return ret_val;
 737			/* Commit the changes. */
 738			ret_val = phy->ops.commit(hw);
 739			if (ret_val) {
 740				e_dbg("Error committing the PHY changes\n");
 741				return ret_val;
 742			}
 743		}
 744
 745		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 746	}
 747
 748	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 749	if (ret_val)
 750		return ret_val;
 751
 752	if ((phy->type == e1000_phy_m88) &&
 753	    (phy->revision < E1000_REVISION_4) &&
 754	    (phy->id != BME1000_E_PHY_ID_R2)) {
 755		/* Force TX_CLK in the Extended PHY Specific Control Register
 
 756		 * to 25MHz clock.
 757		 */
 758		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 759		if (ret_val)
 760			return ret_val;
 761
 762		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 763
 764		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 
 765			/* 82573L PHY - set the downshift counter to 5x. */
 766			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 767			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 768		} else {
 769			/* Configure Master and Slave downshift values */
 770			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 771				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 772			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 773				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 774		}
 775		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 776		if (ret_val)
 777			return ret_val;
 778	}
 779
 780	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 781		/* Set PHY page 0, register 29 to 0x0003 */
 782		ret_val = e1e_wphy(hw, 29, 0x0003);
 783		if (ret_val)
 784			return ret_val;
 785
 786		/* Set PHY page 0, register 30 to 0x0000 */
 787		ret_val = e1e_wphy(hw, 30, 0x0000);
 788		if (ret_val)
 789			return ret_val;
 790	}
 791
 792	/* Commit the changes. */
 793	if (phy->ops.commit) {
 794		ret_val = phy->ops.commit(hw);
 795		if (ret_val) {
 796			e_dbg("Error committing the PHY changes\n");
 797			return ret_val;
 798		}
 799	}
 800
 801	if (phy->type == e1000_phy_82578) {
 802		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 803		if (ret_val)
 804			return ret_val;
 805
 806		/* 82578 PHY - set the downshift count to 1x. */
 807		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 808		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 809		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 810		if (ret_val)
 811			return ret_val;
 812	}
 813
 814	return 0;
 815}
 816
 817/**
 818 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 819 *  @hw: pointer to the HW structure
 820 *
 821 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 822 *  igp PHY's.
 823 **/
 824s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 825{
 826	struct e1000_phy_info *phy = &hw->phy;
 827	s32 ret_val;
 828	u16 data;
 829
 830	ret_val = e1000_phy_hw_reset(hw);
 831	if (ret_val) {
 832		e_dbg("Error resetting the PHY.\n");
 833		return ret_val;
 834	}
 835
 836	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 
 837	 * timeout issues when LFS is enabled.
 838	 */
 839	msleep(100);
 840
 841	/* disable lplu d0 during driver init */
 842	if (hw->phy.ops.set_d0_lplu_state) {
 843		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 844		if (ret_val) {
 845			e_dbg("Error Disabling LPLU D0\n");
 846			return ret_val;
 847		}
 848	}
 849	/* Configure mdi-mdix settings */
 850	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 851	if (ret_val)
 852		return ret_val;
 853
 854	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 855
 856	switch (phy->mdix) {
 857	case 1:
 858		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859		break;
 860	case 2:
 861		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 862		break;
 863	case 0:
 864	default:
 865		data |= IGP01E1000_PSCR_AUTO_MDIX;
 866		break;
 867	}
 868	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 869	if (ret_val)
 870		return ret_val;
 871
 872	/* set auto-master slave resolution settings */
 873	if (hw->mac.autoneg) {
 874		/* when autonegotiation advertisement is only 1000Mbps then we
 
 875		 * should disable SmartSpeed and enable Auto MasterSlave
 876		 * resolution as hardware default.
 877		 */
 878		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 879			/* Disable SmartSpeed */
 880			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 881					   &data);
 882			if (ret_val)
 883				return ret_val;
 884
 885			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 886			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 887					   data);
 888			if (ret_val)
 889				return ret_val;
 890
 891			/* Set auto Master/Slave resolution process */
 892			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 893			if (ret_val)
 894				return ret_val;
 895
 896			data &= ~CTL1000_ENABLE_MASTER;
 897			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 898			if (ret_val)
 899				return ret_val;
 900		}
 901
 902		ret_val = e1000_set_master_slave_mode(hw);
 903	}
 904
 905	return ret_val;
 906}
 907
 908/**
 909 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 910 *  @hw: pointer to the HW structure
 911 *
 912 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 913 *  register and if the PHY is already setup for auto-negotiation, then
 914 *  return successful.  Otherwise, setup advertisement and flow control to
 915 *  the appropriate values for the wanted auto-negotiation.
 916 **/
 917static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 918{
 919	struct e1000_phy_info *phy = &hw->phy;
 920	s32 ret_val;
 921	u16 mii_autoneg_adv_reg;
 922	u16 mii_1000t_ctrl_reg = 0;
 923
 924	phy->autoneg_advertised &= phy->autoneg_mask;
 925
 926	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 927	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 928	if (ret_val)
 929		return ret_val;
 930
 931	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 932		/* Read the MII 1000Base-T Control Register (Address 9). */
 933		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 934		if (ret_val)
 935			return ret_val;
 936	}
 937
 938	/* Need to parse both autoneg_advertised and fc and set up
 
 939	 * the appropriate PHY registers.  First we will parse for
 940	 * autoneg_advertised software override.  Since we can advertise
 941	 * a plethora of combinations, we need to check each bit
 942	 * individually.
 943	 */
 944
 945	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 
 946	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 947	 * the  1000Base-T Control Register (Address 9).
 948	 */
 949	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 950				 ADVERTISE_100HALF |
 951				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 952	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 
 953
 954	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 955
 956	/* Do we want to advertise 10 Mb Half Duplex? */
 957	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 958		e_dbg("Advertise 10mb Half duplex\n");
 959		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 960	}
 961
 962	/* Do we want to advertise 10 Mb Full Duplex? */
 963	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 964		e_dbg("Advertise 10mb Full duplex\n");
 965		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 966	}
 967
 968	/* Do we want to advertise 100 Mb Half Duplex? */
 969	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 970		e_dbg("Advertise 100mb Half duplex\n");
 971		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 972	}
 973
 974	/* Do we want to advertise 100 Mb Full Duplex? */
 975	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 976		e_dbg("Advertise 100mb Full duplex\n");
 977		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 978	}
 979
 980	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 981	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 982		e_dbg("Advertise 1000mb Half duplex request denied!\n");
 983
 984	/* Do we want to advertise 1000 Mb Full Duplex? */
 985	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 986		e_dbg("Advertise 1000mb Full duplex\n");
 987		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 988	}
 989
 990	/* Check for a software override of the flow control settings, and
 
 991	 * setup the PHY advertisement registers accordingly.  If
 992	 * auto-negotiation is enabled, then software will have to set the
 993	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 994	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
 995	 * negotiation.
 996	 *
 997	 * The possible values of the "fc" parameter are:
 998	 *      0:  Flow control is completely disabled
 999	 *      1:  Rx flow control is enabled (we can receive pause frames
1000	 *          but not send pause frames).
1001	 *      2:  Tx flow control is enabled (we can send pause frames
1002	 *          but we do not support receiving pause frames).
1003	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1004	 *  other:  No software override.  The flow control configuration
1005	 *          in the EEPROM is used.
1006	 */
1007	switch (hw->fc.current_mode) {
1008	case e1000_fc_none:
1009		/* Flow control (Rx & Tx) is completely disabled by a
 
1010		 * software over-ride.
1011		 */
1012		mii_autoneg_adv_reg &=
1013		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1014		break;
1015	case e1000_fc_rx_pause:
1016		/* Rx Flow control is enabled, and Tx Flow control is
 
1017		 * disabled, by a software over-ride.
1018		 *
1019		 * Since there really isn't a way to advertise that we are
1020		 * capable of Rx Pause ONLY, we will advertise that we
1021		 * support both symmetric and asymmetric Rx PAUSE.  Later
1022		 * (in e1000e_config_fc_after_link_up) we will disable the
1023		 * hw's ability to send PAUSE frames.
1024		 */
1025		mii_autoneg_adv_reg |=
1026		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1027		break;
1028	case e1000_fc_tx_pause:
1029		/* Tx Flow control is enabled, and Rx Flow control is
 
1030		 * disabled, by a software over-ride.
1031		 */
1032		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1033		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1034		break;
1035	case e1000_fc_full:
1036		/* Flow control (both Rx and Tx) is enabled by a software
 
1037		 * over-ride.
1038		 */
1039		mii_autoneg_adv_reg |=
1040		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1041		break;
1042	default:
1043		e_dbg("Flow control param set incorrectly\n");
1044		return -E1000_ERR_CONFIG;
1045	}
1046
1047	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1048	if (ret_val)
1049		return ret_val;
1050
1051	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1052
1053	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1054		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1055
1056	return ret_val;
1057}
1058
1059/**
1060 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1061 *  @hw: pointer to the HW structure
1062 *
1063 *  Performs initial bounds checking on autoneg advertisement parameter, then
1064 *  configure to advertise the full capability.  Setup the PHY to autoneg
1065 *  and restart the negotiation process between the link partner.  If
1066 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1067 **/
1068static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1069{
1070	struct e1000_phy_info *phy = &hw->phy;
1071	s32 ret_val;
1072	u16 phy_ctrl;
1073
1074	/* Perform some bounds checking on the autoneg advertisement
 
1075	 * parameter.
1076	 */
1077	phy->autoneg_advertised &= phy->autoneg_mask;
1078
1079	/* If autoneg_advertised is zero, we assume it was not defaulted
 
1080	 * by the calling code so we set to advertise full capability.
1081	 */
1082	if (!phy->autoneg_advertised)
1083		phy->autoneg_advertised = phy->autoneg_mask;
1084
1085	e_dbg("Reconfiguring auto-neg advertisement params\n");
1086	ret_val = e1000_phy_setup_autoneg(hw);
1087	if (ret_val) {
1088		e_dbg("Error Setting up Auto-Negotiation\n");
1089		return ret_val;
1090	}
1091	e_dbg("Restarting Auto-Neg\n");
1092
1093	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 
1094	 * the Auto Neg Restart bit in the PHY control register.
1095	 */
1096	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1097	if (ret_val)
1098		return ret_val;
1099
1100	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1101	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1102	if (ret_val)
1103		return ret_val;
1104
1105	/* Does the user want to wait for Auto-Neg to complete here, or
 
1106	 * check at a later time (for example, callback routine).
1107	 */
1108	if (phy->autoneg_wait_to_complete) {
1109		ret_val = e1000_wait_autoneg(hw);
1110		if (ret_val) {
1111			e_dbg("Error while waiting for autoneg to complete\n");
1112			return ret_val;
1113		}
1114	}
1115
1116	hw->mac.get_link_status = true;
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000e_setup_copper_link - Configure copper link settings
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Calls the appropriate function to configure the link for auto-neg or forced
1126 *  speed and duplex.  Then we check for link, once link is established calls
1127 *  to configure collision distance and flow control are called.  If link is
1128 *  not established, we return -E1000_ERR_PHY (-2).
1129 **/
1130s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1131{
1132	s32 ret_val;
1133	bool link;
1134
1135	if (hw->mac.autoneg) {
1136		/* Setup autoneg and flow control advertisement and perform
 
1137		 * autonegotiation.
1138		 */
1139		ret_val = e1000_copper_link_autoneg(hw);
1140		if (ret_val)
1141			return ret_val;
1142	} else {
1143		/* PHY will be set to 10H, 10F, 100H or 100F
 
1144		 * depending on user settings.
1145		 */
1146		e_dbg("Forcing Speed and Duplex\n");
1147		ret_val = hw->phy.ops.force_speed_duplex(hw);
1148		if (ret_val) {
1149			e_dbg("Error Forcing Speed and Duplex\n");
1150			return ret_val;
1151		}
1152	}
1153
1154	/* Check link status. Wait up to 100 microseconds for link to become
 
1155	 * valid.
1156	 */
1157	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1158					      &link);
1159	if (ret_val)
1160		return ret_val;
1161
1162	if (link) {
1163		e_dbg("Valid link established!!!\n");
1164		hw->mac.ops.config_collision_dist(hw);
1165		ret_val = e1000e_config_fc_after_link_up(hw);
1166	} else {
1167		e_dbg("Unable to establish link!!!\n");
1168	}
1169
1170	return ret_val;
1171}
1172
1173/**
1174 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  Calls the PHY setup function to force speed and duplex.  Clears the
1178 *  auto-crossover to force MDI manually.  Waits for link and returns
1179 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1180 **/
1181s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1182{
1183	struct e1000_phy_info *phy = &hw->phy;
1184	s32 ret_val;
1185	u16 phy_data;
1186	bool link;
1187
1188	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1189	if (ret_val)
1190		return ret_val;
1191
1192	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1193
1194	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1195	if (ret_val)
1196		return ret_val;
1197
1198	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
 
1199	 * forced whenever speed and duplex are forced.
1200	 */
1201	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1202	if (ret_val)
1203		return ret_val;
1204
1205	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1206	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1207
1208	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1209	if (ret_val)
1210		return ret_val;
1211
1212	e_dbg("IGP PSCR: %X\n", phy_data);
1213
1214	udelay(1);
1215
1216	if (phy->autoneg_wait_to_complete) {
1217		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1218
1219		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1220						      100000, &link);
1221		if (ret_val)
1222			return ret_val;
1223
1224		if (!link)
1225			e_dbg("Link taking longer than expected.\n");
1226
1227		/* Try once more */
1228		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1229						      100000, &link);
1230	}
1231
1232	return ret_val;
1233}
1234
1235/**
1236 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1237 *  @hw: pointer to the HW structure
1238 *
1239 *  Calls the PHY setup function to force speed and duplex.  Clears the
1240 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1241 *  changes.  If time expires while waiting for link up, we reset the DSP.
1242 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1243 *  successful completion, else return corresponding error code.
1244 **/
1245s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1246{
1247	struct e1000_phy_info *phy = &hw->phy;
1248	s32 ret_val;
1249	u16 phy_data;
1250	bool link;
1251
1252	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 
1253	 * forced whenever speed and duplex are forced.
1254	 */
1255	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1256	if (ret_val)
1257		return ret_val;
1258
1259	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1260	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1265
1266	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1267	if (ret_val)
1268		return ret_val;
1269
1270	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271
1272	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1273	if (ret_val)
1274		return ret_val;
1275
1276	/* Reset the phy to commit changes. */
1277	if (hw->phy.ops.commit) {
1278		ret_val = hw->phy.ops.commit(hw);
1279		if (ret_val)
1280			return ret_val;
1281	}
1282
1283	if (phy->autoneg_wait_to_complete) {
1284		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1285
1286		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1287						      100000, &link);
1288		if (ret_val)
1289			return ret_val;
1290
1291		if (!link) {
1292			if (hw->phy.type != e1000_phy_m88) {
1293				e_dbg("Link taking longer than expected.\n");
1294			} else {
1295				/* We didn't get link.
 
1296				 * Reset the DSP and cross our fingers.
1297				 */
1298				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1299						   0x001d);
1300				if (ret_val)
1301					return ret_val;
1302				ret_val = e1000e_phy_reset_dsp(hw);
1303				if (ret_val)
1304					return ret_val;
1305			}
1306		}
1307
1308		/* Try once more */
1309		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1310						      100000, &link);
1311		if (ret_val)
1312			return ret_val;
1313	}
1314
1315	if (hw->phy.type != e1000_phy_m88)
1316		return 0;
1317
1318	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1319	if (ret_val)
1320		return ret_val;
1321
1322	/* Resetting the phy means we need to re-force TX_CLK in the
 
1323	 * Extended PHY Specific Control Register to 25MHz clock from
1324	 * the reset value of 2.5MHz.
1325	 */
1326	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1327	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1328	if (ret_val)
1329		return ret_val;
1330
1331	/* In addition, we must re-enable CRS on Tx for both half and full
 
1332	 * duplex.
1333	 */
1334	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1335	if (ret_val)
1336		return ret_val;
1337
1338	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1339	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1340
1341	return ret_val;
1342}
1343
1344/**
1345 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1346 *  @hw: pointer to the HW structure
1347 *
1348 *  Forces the speed and duplex settings of the PHY.
1349 *  This is a function pointer entry point only called by
1350 *  PHY setup routines.
1351 **/
1352s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1353{
1354	struct e1000_phy_info *phy = &hw->phy;
1355	s32 ret_val;
1356	u16 data;
1357	bool link;
1358
1359	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1360	if (ret_val)
1361		return ret_val;
1362
1363	e1000e_phy_force_speed_duplex_setup(hw, &data);
1364
1365	ret_val = e1e_wphy(hw, MII_BMCR, data);
1366	if (ret_val)
1367		return ret_val;
1368
1369	/* Disable MDI-X support for 10/100 */
1370	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	data &= ~IFE_PMC_AUTO_MDIX;
1375	data &= ~IFE_PMC_FORCE_MDIX;
1376
1377	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1378	if (ret_val)
1379		return ret_val;
1380
1381	e_dbg("IFE PMC: %X\n", data);
1382
1383	udelay(1);
1384
1385	if (phy->autoneg_wait_to_complete) {
1386		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1387
1388		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389						      100000, &link);
1390		if (ret_val)
1391			return ret_val;
1392
1393		if (!link)
1394			e_dbg("Link taking longer than expected.\n");
1395
1396		/* Try once more */
1397		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1398						      100000, &link);
1399		if (ret_val)
1400			return ret_val;
1401	}
1402
1403	return 0;
1404}
1405
1406/**
1407 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1408 *  @hw: pointer to the HW structure
1409 *  @phy_ctrl: pointer to current value of MII_BMCR
1410 *
1411 *  Forces speed and duplex on the PHY by doing the following: disable flow
1412 *  control, force speed/duplex on the MAC, disable auto speed detection,
1413 *  disable auto-negotiation, configure duplex, configure speed, configure
1414 *  the collision distance, write configuration to CTRL register.  The
1415 *  caller must write to the MII_BMCR register for these settings to
1416 *  take affect.
1417 **/
1418void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1419{
1420	struct e1000_mac_info *mac = &hw->mac;
1421	u32 ctrl;
1422
1423	/* Turn off flow control when forcing speed/duplex */
1424	hw->fc.current_mode = e1000_fc_none;
1425
1426	/* Force speed/duplex on the mac */
1427	ctrl = er32(CTRL);
1428	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429	ctrl &= ~E1000_CTRL_SPD_SEL;
1430
1431	/* Disable Auto Speed Detection */
1432	ctrl &= ~E1000_CTRL_ASDE;
1433
1434	/* Disable autoneg on the phy */
1435	*phy_ctrl &= ~BMCR_ANENABLE;
1436
1437	/* Forcing Full or Half Duplex? */
1438	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1439		ctrl &= ~E1000_CTRL_FD;
1440		*phy_ctrl &= ~BMCR_FULLDPLX;
1441		e_dbg("Half Duplex\n");
1442	} else {
1443		ctrl |= E1000_CTRL_FD;
1444		*phy_ctrl |= BMCR_FULLDPLX;
1445		e_dbg("Full Duplex\n");
1446	}
1447
1448	/* Forcing 10mb or 100mb? */
1449	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1450		ctrl |= E1000_CTRL_SPD_100;
1451		*phy_ctrl |= BMCR_SPEED100;
1452		*phy_ctrl &= ~BMCR_SPEED1000;
1453		e_dbg("Forcing 100mb\n");
1454	} else {
1455		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1456		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
 
1457		e_dbg("Forcing 10mb\n");
1458	}
1459
1460	hw->mac.ops.config_collision_dist(hw);
1461
1462	ew32(CTRL, ctrl);
1463}
1464
1465/**
1466 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1467 *  @hw: pointer to the HW structure
1468 *  @active: boolean used to enable/disable lplu
1469 *
1470 *  Success returns 0, Failure returns 1
1471 *
1472 *  The low power link up (lplu) state is set to the power management level D3
1473 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1474 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1475 *  is used during Dx states where the power conservation is most important.
1476 *  During driver activity, SmartSpeed should be enabled so performance is
1477 *  maintained.
1478 **/
1479s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1480{
1481	struct e1000_phy_info *phy = &hw->phy;
1482	s32 ret_val;
1483	u16 data;
1484
1485	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1486	if (ret_val)
1487		return ret_val;
1488
1489	if (!active) {
1490		data &= ~IGP02E1000_PM_D3_LPLU;
1491		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1492		if (ret_val)
1493			return ret_val;
1494		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1495		 * during Dx states where the power conservation is most
1496		 * important.  During driver activity we should enable
1497		 * SmartSpeed, so performance is maintained.
1498		 */
1499		if (phy->smart_speed == e1000_smart_speed_on) {
1500			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1501					   &data);
1502			if (ret_val)
1503				return ret_val;
1504
1505			data |= IGP01E1000_PSCFR_SMART_SPEED;
1506			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1507					   data);
1508			if (ret_val)
1509				return ret_val;
1510		} else if (phy->smart_speed == e1000_smart_speed_off) {
1511			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512					   &data);
1513			if (ret_val)
1514				return ret_val;
1515
1516			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1517			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1518					   data);
1519			if (ret_val)
1520				return ret_val;
1521		}
1522	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1523		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1524		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1525		data |= IGP02E1000_PM_D3_LPLU;
1526		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1527		if (ret_val)
1528			return ret_val;
1529
1530		/* When LPLU is enabled, we should disable SmartSpeed */
1531		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1532		if (ret_val)
1533			return ret_val;
1534
1535		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1537	}
1538
1539	return ret_val;
1540}
1541
1542/**
1543 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  Success returns 0, Failure returns 1
1547 *
1548 *  A downshift is detected by querying the PHY link health.
1549 **/
1550s32 e1000e_check_downshift(struct e1000_hw *hw)
1551{
1552	struct e1000_phy_info *phy = &hw->phy;
1553	s32 ret_val;
1554	u16 phy_data, offset, mask;
1555
1556	switch (phy->type) {
1557	case e1000_phy_m88:
1558	case e1000_phy_gg82563:
1559	case e1000_phy_bm:
1560	case e1000_phy_82578:
1561		offset = M88E1000_PHY_SPEC_STATUS;
1562		mask = M88E1000_PSSR_DOWNSHIFT;
1563		break;
1564	case e1000_phy_igp_2:
1565	case e1000_phy_igp_3:
1566		offset = IGP01E1000_PHY_LINK_HEALTH;
1567		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1568		break;
1569	default:
1570		/* speed downshift not supported */
1571		phy->speed_downgraded = false;
1572		return 0;
1573	}
1574
1575	ret_val = e1e_rphy(hw, offset, &phy_data);
1576
1577	if (!ret_val)
1578		phy->speed_downgraded = !!(phy_data & mask);
1579
1580	return ret_val;
1581}
1582
1583/**
1584 *  e1000_check_polarity_m88 - Checks the polarity.
1585 *  @hw: pointer to the HW structure
1586 *
1587 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1588 *
1589 *  Polarity is determined based on the PHY specific status register.
1590 **/
1591s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1592{
1593	struct e1000_phy_info *phy = &hw->phy;
1594	s32 ret_val;
1595	u16 data;
1596
1597	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1598
1599	if (!ret_val)
1600		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1601				       ? e1000_rev_polarity_reversed
1602				       : e1000_rev_polarity_normal);
1603
1604	return ret_val;
1605}
1606
1607/**
1608 *  e1000_check_polarity_igp - Checks the polarity.
1609 *  @hw: pointer to the HW structure
1610 *
1611 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1612 *
1613 *  Polarity is determined based on the PHY port status register, and the
1614 *  current speed (since there is no polarity at 100Mbps).
1615 **/
1616s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1617{
1618	struct e1000_phy_info *phy = &hw->phy;
1619	s32 ret_val;
1620	u16 data, offset, mask;
1621
1622	/* Polarity is determined based on the speed of
 
1623	 * our connection.
1624	 */
1625	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1626	if (ret_val)
1627		return ret_val;
1628
1629	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1630	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1631		offset = IGP01E1000_PHY_PCS_INIT_REG;
1632		mask = IGP01E1000_PHY_POLARITY_MASK;
1633	} else {
1634		/* This really only applies to 10Mbps since
 
1635		 * there is no polarity for 100Mbps (always 0).
1636		 */
1637		offset = IGP01E1000_PHY_PORT_STATUS;
1638		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1639	}
1640
1641	ret_val = e1e_rphy(hw, offset, &data);
1642
1643	if (!ret_val)
1644		phy->cable_polarity = ((data & mask)
1645				       ? e1000_rev_polarity_reversed
1646				       : e1000_rev_polarity_normal);
1647
1648	return ret_val;
1649}
1650
1651/**
1652 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1653 *  @hw: pointer to the HW structure
1654 *
1655 *  Polarity is determined on the polarity reversal feature being enabled.
1656 **/
1657s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1658{
1659	struct e1000_phy_info *phy = &hw->phy;
1660	s32 ret_val;
1661	u16 phy_data, offset, mask;
1662
1663	/* Polarity is determined based on the reversal feature being enabled.
 
1664	 */
1665	if (phy->polarity_correction) {
1666		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1667		mask = IFE_PESC_POLARITY_REVERSED;
1668	} else {
1669		offset = IFE_PHY_SPECIAL_CONTROL;
1670		mask = IFE_PSC_FORCE_POLARITY;
1671	}
1672
1673	ret_val = e1e_rphy(hw, offset, &phy_data);
1674
1675	if (!ret_val)
1676		phy->cable_polarity = ((phy_data & mask)
1677				       ? e1000_rev_polarity_reversed
1678				       : e1000_rev_polarity_normal);
1679
1680	return ret_val;
1681}
1682
1683/**
1684 *  e1000_wait_autoneg - Wait for auto-neg completion
1685 *  @hw: pointer to the HW structure
1686 *
1687 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1688 *  limit to expire, which ever happens first.
1689 **/
1690static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1691{
1692	s32 ret_val = 0;
1693	u16 i, phy_status;
1694
1695	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1696	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1697		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1698		if (ret_val)
1699			break;
1700		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1701		if (ret_val)
1702			break;
1703		if (phy_status & BMSR_ANEGCOMPLETE)
1704			break;
1705		msleep(100);
1706	}
1707
1708	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
 
1709	 * has completed.
1710	 */
1711	return ret_val;
1712}
1713
1714/**
1715 *  e1000e_phy_has_link_generic - Polls PHY for link
1716 *  @hw: pointer to the HW structure
1717 *  @iterations: number of times to poll for link
1718 *  @usec_interval: delay between polling attempts
1719 *  @success: pointer to whether polling was successful or not
1720 *
1721 *  Polls the PHY status register for link, 'iterations' number of times.
1722 **/
1723s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1724				u32 usec_interval, bool *success)
1725{
1726	s32 ret_val = 0;
1727	u16 i, phy_status;
1728
1729	*success = false;
1730	for (i = 0; i < iterations; i++) {
1731		/* Some PHYs require the MII_BMSR register to be read
 
1732		 * twice due to the link bit being sticky.  No harm doing
1733		 * it across the board.
1734		 */
1735		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1736		if (ret_val) {
1737			/* If the first read fails, another entity may have
 
1738			 * ownership of the resources, wait and try again to
1739			 * see if they have relinquished the resources yet.
1740			 */
1741			if (usec_interval >= 1000)
1742				msleep(usec_interval / 1000);
1743			else
1744				udelay(usec_interval);
1745		}
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		if (phy_status & BMSR_LSTATUS) {
1750			*success = true;
1751			break;
1752		}
1753		if (usec_interval >= 1000)
1754			msleep(usec_interval / 1000);
1755		else
1756			udelay(usec_interval);
1757	}
1758
 
 
1759	return ret_val;
1760}
1761
1762/**
1763 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Reads the PHY specific status register to retrieve the cable length
1767 *  information.  The cable length is determined by averaging the minimum and
1768 *  maximum values to get the "average" cable length.  The m88 PHY has four
1769 *  possible cable length values, which are:
1770 *	Register Value		Cable Length
1771 *	0			< 50 meters
1772 *	1			50 - 80 meters
1773 *	2			80 - 110 meters
1774 *	3			110 - 140 meters
1775 *	4			> 140 meters
1776 **/
1777s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1778{
1779	struct e1000_phy_info *phy = &hw->phy;
1780	s32 ret_val;
1781	u16 phy_data, index;
1782
1783	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1784	if (ret_val)
1785		return ret_val;
1786
1787	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1788		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1789
1790	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1791		return -E1000_ERR_PHY;
1792
1793	phy->min_cable_length = e1000_m88_cable_length_table[index];
1794	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1795
1796	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1797
1798	return 0;
1799}
1800
1801/**
1802 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  The automatic gain control (agc) normalizes the amplitude of the
1806 *  received signal, adjusting for the attenuation produced by the
1807 *  cable.  By reading the AGC registers, which represent the
1808 *  combination of coarse and fine gain value, the value can be put
1809 *  into a lookup table to obtain the approximate cable length
1810 *  for each channel.
1811 **/
1812s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1813{
1814	struct e1000_phy_info *phy = &hw->phy;
1815	s32 ret_val;
1816	u16 phy_data, i, agc_value = 0;
1817	u16 cur_agc_index, max_agc_index = 0;
1818	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1819	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1820		IGP02E1000_PHY_AGC_A,
1821		IGP02E1000_PHY_AGC_B,
1822		IGP02E1000_PHY_AGC_C,
1823		IGP02E1000_PHY_AGC_D
1824	};
1825
1826	/* Read the AGC registers for all channels */
1827	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1828		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1829		if (ret_val)
1830			return ret_val;
1831
1832		/* Getting bits 15:9, which represent the combination of
 
1833		 * coarse and fine gain values.  The result is a number
1834		 * that can be put into the lookup table to obtain the
1835		 * approximate cable length.
1836		 */
1837		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1838				 IGP02E1000_AGC_LENGTH_MASK);
1839
1840		/* Array index bound check. */
1841		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1842		    (cur_agc_index == 0))
1843			return -E1000_ERR_PHY;
1844
1845		/* Remove min & max AGC values from calculation. */
1846		if (e1000_igp_2_cable_length_table[min_agc_index] >
1847		    e1000_igp_2_cable_length_table[cur_agc_index])
1848			min_agc_index = cur_agc_index;
1849		if (e1000_igp_2_cable_length_table[max_agc_index] <
1850		    e1000_igp_2_cable_length_table[cur_agc_index])
1851			max_agc_index = cur_agc_index;
1852
1853		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1854	}
1855
1856	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1857		      e1000_igp_2_cable_length_table[max_agc_index]);
1858	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1859
1860	/* Calculate cable length with the error range of +/- 10 meters. */
1861	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1862				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1863	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1864
1865	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1866
1867	return 0;
1868}
1869
1870/**
1871 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1872 *  @hw: pointer to the HW structure
1873 *
1874 *  Valid for only copper links.  Read the PHY status register (sticky read)
1875 *  to verify that link is up.  Read the PHY special control register to
1876 *  determine the polarity and 10base-T extended distance.  Read the PHY
1877 *  special status register to determine MDI/MDIx and current speed.  If
1878 *  speed is 1000, then determine cable length, local and remote receiver.
1879 **/
1880s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1881{
1882	struct e1000_phy_info *phy = &hw->phy;
1883	s32 ret_val;
1884	u16 phy_data;
1885	bool link;
1886
1887	if (phy->media_type != e1000_media_type_copper) {
1888		e_dbg("Phy info is only valid for copper media\n");
1889		return -E1000_ERR_CONFIG;
1890	}
1891
1892	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1893	if (ret_val)
1894		return ret_val;
1895
1896	if (!link) {
1897		e_dbg("Phy info is only valid if link is up\n");
1898		return -E1000_ERR_CONFIG;
1899	}
1900
1901	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1902	if (ret_val)
1903		return ret_val;
1904
1905	phy->polarity_correction = !!(phy_data &
1906				      M88E1000_PSCR_POLARITY_REVERSAL);
1907
1908	ret_val = e1000_check_polarity_m88(hw);
1909	if (ret_val)
1910		return ret_val;
1911
1912	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1913	if (ret_val)
1914		return ret_val;
1915
1916	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1917
1918	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1919		ret_val = hw->phy.ops.get_cable_length(hw);
1920		if (ret_val)
1921			return ret_val;
1922
1923		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1924		if (ret_val)
1925			return ret_val;
1926
1927		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1928		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1929
1930		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1931		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1932	} else {
1933		/* Set values to "undefined" */
1934		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1935		phy->local_rx = e1000_1000t_rx_status_undefined;
1936		phy->remote_rx = e1000_1000t_rx_status_undefined;
1937	}
1938
1939	return ret_val;
1940}
1941
1942/**
1943 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1944 *  @hw: pointer to the HW structure
1945 *
1946 *  Read PHY status to determine if link is up.  If link is up, then
1947 *  set/determine 10base-T extended distance and polarity correction.  Read
1948 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1949 *  determine on the cable length, local and remote receiver.
1950 **/
1951s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1952{
1953	struct e1000_phy_info *phy = &hw->phy;
1954	s32 ret_val;
1955	u16 data;
1956	bool link;
1957
1958	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1959	if (ret_val)
1960		return ret_val;
1961
1962	if (!link) {
1963		e_dbg("Phy info is only valid if link is up\n");
1964		return -E1000_ERR_CONFIG;
1965	}
1966
1967	phy->polarity_correction = true;
1968
1969	ret_val = e1000_check_polarity_igp(hw);
1970	if (ret_val)
1971		return ret_val;
1972
1973	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1974	if (ret_val)
1975		return ret_val;
1976
1977	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1978
1979	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1980	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1981		ret_val = phy->ops.get_cable_length(hw);
1982		if (ret_val)
1983			return ret_val;
1984
1985		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1986		if (ret_val)
1987			return ret_val;
1988
1989		phy->local_rx = (data & LPA_1000LOCALRXOK)
1990		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1991
1992		phy->remote_rx = (data & LPA_1000REMRXOK)
1993		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1994	} else {
1995		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1996		phy->local_rx = e1000_1000t_rx_status_undefined;
1997		phy->remote_rx = e1000_1000t_rx_status_undefined;
1998	}
1999
2000	return ret_val;
2001}
2002
2003/**
2004 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2005 *  @hw: pointer to the HW structure
2006 *
2007 *  Populates "phy" structure with various feature states.
2008 **/
2009s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2010{
2011	struct e1000_phy_info *phy = &hw->phy;
2012	s32 ret_val;
2013	u16 data;
2014	bool link;
2015
2016	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2017	if (ret_val)
2018		return ret_val;
2019
2020	if (!link) {
2021		e_dbg("Phy info is only valid if link is up\n");
2022		return -E1000_ERR_CONFIG;
2023	}
2024
2025	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2026	if (ret_val)
2027		return ret_val;
2028	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2029
2030	if (phy->polarity_correction) {
2031		ret_val = e1000_check_polarity_ife(hw);
2032		if (ret_val)
2033			return ret_val;
2034	} else {
2035		/* Polarity is forced */
2036		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2037				       ? e1000_rev_polarity_reversed
2038				       : e1000_rev_polarity_normal);
2039	}
2040
2041	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2042	if (ret_val)
2043		return ret_val;
2044
2045	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2046
2047	/* The following parameters are undefined for 10/100 operation. */
2048	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2049	phy->local_rx = e1000_1000t_rx_status_undefined;
2050	phy->remote_rx = e1000_1000t_rx_status_undefined;
2051
2052	return 0;
2053}
2054
2055/**
2056 *  e1000e_phy_sw_reset - PHY software reset
2057 *  @hw: pointer to the HW structure
2058 *
2059 *  Does a software reset of the PHY by reading the PHY control register and
2060 *  setting/write the control register reset bit to the PHY.
2061 **/
2062s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2063{
2064	s32 ret_val;
2065	u16 phy_ctrl;
2066
2067	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2068	if (ret_val)
2069		return ret_val;
2070
2071	phy_ctrl |= BMCR_RESET;
2072	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2073	if (ret_val)
2074		return ret_val;
2075
2076	udelay(1);
2077
2078	return ret_val;
2079}
2080
2081/**
2082 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2083 *  @hw: pointer to the HW structure
2084 *
2085 *  Verify the reset block is not blocking us from resetting.  Acquire
2086 *  semaphore (if necessary) and read/set/write the device control reset
2087 *  bit in the PHY.  Wait the appropriate delay time for the device to
2088 *  reset and release the semaphore (if necessary).
2089 **/
2090s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2091{
2092	struct e1000_phy_info *phy = &hw->phy;
2093	s32 ret_val;
2094	u32 ctrl;
2095
2096	if (phy->ops.check_reset_block) {
2097		ret_val = phy->ops.check_reset_block(hw);
2098		if (ret_val)
2099			return 0;
2100	}
2101
2102	ret_val = phy->ops.acquire(hw);
2103	if (ret_val)
2104		return ret_val;
2105
2106	ctrl = er32(CTRL);
2107	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2108	e1e_flush();
2109
2110	udelay(phy->reset_delay_us);
2111
2112	ew32(CTRL, ctrl);
2113	e1e_flush();
2114
2115	usleep_range(150, 300);
2116
2117	phy->ops.release(hw);
2118
2119	return phy->ops.get_cfg_done(hw);
2120}
2121
2122/**
2123 *  e1000e_get_cfg_done_generic - Generic configuration done
2124 *  @hw: pointer to the HW structure
2125 *
2126 *  Generic function to wait 10 milli-seconds for configuration to complete
2127 *  and return success.
2128 **/
2129s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2130{
2131	mdelay(10);
2132
2133	return 0;
2134}
2135
2136/**
2137 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2138 *  @hw: pointer to the HW structure
2139 *
2140 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2141 **/
2142s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2143{
2144	e_dbg("Running IGP 3 PHY init script\n");
2145
2146	/* PHY init IGP 3 */
2147	/* Enable rise/fall, 10-mode work in class-A */
2148	e1e_wphy(hw, 0x2F5B, 0x9018);
2149	/* Remove all caps from Replica path filter */
2150	e1e_wphy(hw, 0x2F52, 0x0000);
2151	/* Bias trimming for ADC, AFE and Driver (Default) */
2152	e1e_wphy(hw, 0x2FB1, 0x8B24);
2153	/* Increase Hybrid poly bias */
2154	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2155	/* Add 4% to Tx amplitude in Gig mode */
2156	e1e_wphy(hw, 0x2010, 0x10B0);
2157	/* Disable trimming (TTT) */
2158	e1e_wphy(hw, 0x2011, 0x0000);
2159	/* Poly DC correction to 94.6% + 2% for all channels */
2160	e1e_wphy(hw, 0x20DD, 0x249A);
2161	/* ABS DC correction to 95.9% */
2162	e1e_wphy(hw, 0x20DE, 0x00D3);
2163	/* BG temp curve trim */
2164	e1e_wphy(hw, 0x28B4, 0x04CE);
2165	/* Increasing ADC OPAMP stage 1 currents to max */
2166	e1e_wphy(hw, 0x2F70, 0x29E4);
2167	/* Force 1000 ( required for enabling PHY regs configuration) */
2168	e1e_wphy(hw, 0x0000, 0x0140);
2169	/* Set upd_freq to 6 */
2170	e1e_wphy(hw, 0x1F30, 0x1606);
2171	/* Disable NPDFE */
2172	e1e_wphy(hw, 0x1F31, 0xB814);
2173	/* Disable adaptive fixed FFE (Default) */
2174	e1e_wphy(hw, 0x1F35, 0x002A);
2175	/* Enable FFE hysteresis */
2176	e1e_wphy(hw, 0x1F3E, 0x0067);
2177	/* Fixed FFE for short cable lengths */
2178	e1e_wphy(hw, 0x1F54, 0x0065);
2179	/* Fixed FFE for medium cable lengths */
2180	e1e_wphy(hw, 0x1F55, 0x002A);
2181	/* Fixed FFE for long cable lengths */
2182	e1e_wphy(hw, 0x1F56, 0x002A);
2183	/* Enable Adaptive Clip Threshold */
2184	e1e_wphy(hw, 0x1F72, 0x3FB0);
2185	/* AHT reset limit to 1 */
2186	e1e_wphy(hw, 0x1F76, 0xC0FF);
2187	/* Set AHT master delay to 127 msec */
2188	e1e_wphy(hw, 0x1F77, 0x1DEC);
2189	/* Set scan bits for AHT */
2190	e1e_wphy(hw, 0x1F78, 0xF9EF);
2191	/* Set AHT Preset bits */
2192	e1e_wphy(hw, 0x1F79, 0x0210);
2193	/* Change integ_factor of channel A to 3 */
2194	e1e_wphy(hw, 0x1895, 0x0003);
2195	/* Change prop_factor of channels BCD to 8 */
2196	e1e_wphy(hw, 0x1796, 0x0008);
2197	/* Change cg_icount + enable integbp for channels BCD */
2198	e1e_wphy(hw, 0x1798, 0xD008);
2199	/* Change cg_icount + enable integbp + change prop_factor_master
 
2200	 * to 8 for channel A
2201	 */
2202	e1e_wphy(hw, 0x1898, 0xD918);
2203	/* Disable AHT in Slave mode on channel A */
2204	e1e_wphy(hw, 0x187A, 0x0800);
2205	/* Enable LPLU and disable AN to 1000 in non-D0a states,
 
2206	 * Enable SPD+B2B
2207	 */
2208	e1e_wphy(hw, 0x0019, 0x008D);
2209	/* Enable restart AN on an1000_dis change */
2210	e1e_wphy(hw, 0x001B, 0x2080);
2211	/* Enable wh_fifo read clock in 10/100 modes */
2212	e1e_wphy(hw, 0x0014, 0x0045);
2213	/* Restart AN, Speed selection is 1000 */
2214	e1e_wphy(hw, 0x0000, 0x1340);
2215
2216	return 0;
2217}
2218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219/**
2220 *  e1000e_get_phy_type_from_id - Get PHY type from id
2221 *  @phy_id: phy_id read from the phy
2222 *
2223 *  Returns the phy type from the id.
2224 **/
2225enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2226{
2227	enum e1000_phy_type phy_type = e1000_phy_unknown;
2228
2229	switch (phy_id) {
2230	case M88E1000_I_PHY_ID:
2231	case M88E1000_E_PHY_ID:
2232	case M88E1111_I_PHY_ID:
2233	case M88E1011_I_PHY_ID:
2234		phy_type = e1000_phy_m88;
2235		break;
2236	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2237		phy_type = e1000_phy_igp_2;
2238		break;
2239	case GG82563_E_PHY_ID:
2240		phy_type = e1000_phy_gg82563;
2241		break;
2242	case IGP03E1000_E_PHY_ID:
2243		phy_type = e1000_phy_igp_3;
2244		break;
2245	case IFE_E_PHY_ID:
2246	case IFE_PLUS_E_PHY_ID:
2247	case IFE_C_E_PHY_ID:
2248		phy_type = e1000_phy_ife;
2249		break;
2250	case BME1000_E_PHY_ID:
2251	case BME1000_E_PHY_ID_R2:
2252		phy_type = e1000_phy_bm;
2253		break;
2254	case I82578_E_PHY_ID:
2255		phy_type = e1000_phy_82578;
2256		break;
2257	case I82577_E_PHY_ID:
2258		phy_type = e1000_phy_82577;
2259		break;
2260	case I82579_E_PHY_ID:
2261		phy_type = e1000_phy_82579;
2262		break;
2263	case I217_E_PHY_ID:
2264		phy_type = e1000_phy_i217;
2265		break;
2266	default:
2267		phy_type = e1000_phy_unknown;
2268		break;
2269	}
2270	return phy_type;
2271}
2272
2273/**
2274 *  e1000e_determine_phy_address - Determines PHY address.
2275 *  @hw: pointer to the HW structure
2276 *
2277 *  This uses a trial and error method to loop through possible PHY
2278 *  addresses. It tests each by reading the PHY ID registers and
2279 *  checking for a match.
2280 **/
2281s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2282{
2283	u32 phy_addr = 0;
2284	u32 i;
2285	enum e1000_phy_type phy_type = e1000_phy_unknown;
2286
2287	hw->phy.id = phy_type;
2288
2289	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2290		hw->phy.addr = phy_addr;
2291		i = 0;
2292
2293		do {
2294			e1000e_get_phy_id(hw);
2295			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2296
2297			/* If phy_type is valid, break - we found our
 
2298			 * PHY address
2299			 */
2300			if (phy_type != e1000_phy_unknown)
2301				return 0;
2302
2303			usleep_range(1000, 2000);
2304			i++;
2305		} while (i < 10);
2306	}
2307
2308	return -E1000_ERR_PHY_TYPE;
2309}
2310
2311/**
2312 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2313 *  @page: page to access
2314 *  @reg: register to check
2315 *
2316 *  Returns the phy address for the page requested.
2317 **/
2318static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2319{
2320	u32 phy_addr = 2;
2321
2322	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2323		phy_addr = 1;
2324
2325	return phy_addr;
2326}
2327
2328/**
2329 *  e1000e_write_phy_reg_bm - Write BM PHY register
2330 *  @hw: pointer to the HW structure
2331 *  @offset: register offset to write to
2332 *  @data: data to write at register offset
2333 *
2334 *  Acquires semaphore, if necessary, then writes the data to PHY register
2335 *  at the offset.  Release any acquired semaphores before exiting.
2336 **/
2337s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2338{
2339	s32 ret_val;
2340	u32 page = offset >> IGP_PAGE_SHIFT;
2341
2342	ret_val = hw->phy.ops.acquire(hw);
2343	if (ret_val)
2344		return ret_val;
2345
2346	/* Page 800 works differently than the rest so it has its own func */
2347	if (page == BM_WUC_PAGE) {
2348		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2349							 false, false);
2350		goto release;
2351	}
2352
2353	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2354
2355	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2356		u32 page_shift, page_select;
2357
2358		/* Page select is register 31 for phy address 1 and 22 for
 
2359		 * phy address 2 and 3. Page select is shifted only for
2360		 * phy address 1.
2361		 */
2362		if (hw->phy.addr == 1) {
2363			page_shift = IGP_PAGE_SHIFT;
2364			page_select = IGP01E1000_PHY_PAGE_SELECT;
2365		} else {
2366			page_shift = 0;
2367			page_select = BM_PHY_PAGE_SELECT;
2368		}
2369
2370		/* Page is shifted left, PHY expects (page x 32) */
2371		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2372						    (page << page_shift));
2373		if (ret_val)
2374			goto release;
2375	}
2376
2377	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2378					    data);
2379
2380release:
2381	hw->phy.ops.release(hw);
2382	return ret_val;
2383}
2384
2385/**
2386 *  e1000e_read_phy_reg_bm - Read BM PHY register
2387 *  @hw: pointer to the HW structure
2388 *  @offset: register offset to be read
2389 *  @data: pointer to the read data
2390 *
2391 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2392 *  and storing the retrieved information in data.  Release any acquired
2393 *  semaphores before exiting.
2394 **/
2395s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2396{
2397	s32 ret_val;
2398	u32 page = offset >> IGP_PAGE_SHIFT;
2399
2400	ret_val = hw->phy.ops.acquire(hw);
2401	if (ret_val)
2402		return ret_val;
2403
2404	/* Page 800 works differently than the rest so it has its own func */
2405	if (page == BM_WUC_PAGE) {
2406		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2407							 true, false);
2408		goto release;
2409	}
2410
2411	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2412
2413	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2414		u32 page_shift, page_select;
2415
2416		/* Page select is register 31 for phy address 1 and 22 for
 
2417		 * phy address 2 and 3. Page select is shifted only for
2418		 * phy address 1.
2419		 */
2420		if (hw->phy.addr == 1) {
2421			page_shift = IGP_PAGE_SHIFT;
2422			page_select = IGP01E1000_PHY_PAGE_SELECT;
2423		} else {
2424			page_shift = 0;
2425			page_select = BM_PHY_PAGE_SELECT;
2426		}
2427
2428		/* Page is shifted left, PHY expects (page x 32) */
2429		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2430						    (page << page_shift));
2431		if (ret_val)
2432			goto release;
2433	}
2434
2435	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2436					   data);
2437release:
2438	hw->phy.ops.release(hw);
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2444 *  @hw: pointer to the HW structure
2445 *  @offset: register offset to be read
2446 *  @data: pointer to the read data
2447 *
2448 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2449 *  and storing the retrieved information in data.  Release any acquired
2450 *  semaphores before exiting.
2451 **/
2452s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2453{
2454	s32 ret_val;
2455	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2456
2457	ret_val = hw->phy.ops.acquire(hw);
2458	if (ret_val)
2459		return ret_val;
2460
2461	/* Page 800 works differently than the rest so it has its own func */
2462	if (page == BM_WUC_PAGE) {
2463		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2464							 true, false);
2465		goto release;
2466	}
2467
2468	hw->phy.addr = 1;
2469
2470	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 
2471		/* Page is shifted left, PHY expects (page x 32) */
2472		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2473						    page);
2474
2475		if (ret_val)
2476			goto release;
2477	}
2478
2479	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2480					   data);
2481release:
2482	hw->phy.ops.release(hw);
2483	return ret_val;
2484}
2485
2486/**
2487 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2488 *  @hw: pointer to the HW structure
2489 *  @offset: register offset to write to
2490 *  @data: data to write at register offset
2491 *
2492 *  Acquires semaphore, if necessary, then writes the data to PHY register
2493 *  at the offset.  Release any acquired semaphores before exiting.
2494 **/
2495s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2496{
2497	s32 ret_val;
2498	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2499
2500	ret_val = hw->phy.ops.acquire(hw);
2501	if (ret_val)
2502		return ret_val;
2503
2504	/* Page 800 works differently than the rest so it has its own func */
2505	if (page == BM_WUC_PAGE) {
2506		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2507							 false, false);
2508		goto release;
2509	}
2510
2511	hw->phy.addr = 1;
2512
2513	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2514		/* Page is shifted left, PHY expects (page x 32) */
2515		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2516						    page);
2517
2518		if (ret_val)
2519			goto release;
2520	}
2521
2522	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2523					    data);
2524
2525release:
2526	hw->phy.ops.release(hw);
2527	return ret_val;
2528}
2529
2530/**
2531 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2532 *  @hw: pointer to the HW structure
2533 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2534 *
2535 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2536 *  address to store contents of the BM_WUC_ENABLE_REG register.
2537 **/
2538s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2539{
2540	s32 ret_val;
2541	u16 temp;
2542
2543	/* All page select, port ctrl and wakeup registers use phy address 1 */
2544	hw->phy.addr = 1;
2545
2546	/* Select Port Control Registers page */
2547	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2548	if (ret_val) {
2549		e_dbg("Could not set Port Control page\n");
2550		return ret_val;
2551	}
2552
2553	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2554	if (ret_val) {
2555		e_dbg("Could not read PHY register %d.%d\n",
2556		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2557		return ret_val;
2558	}
2559
2560	/* Enable both PHY wakeup mode and Wakeup register page writes.
 
2561	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2562	 */
2563	temp = *phy_reg;
2564	temp |= BM_WUC_ENABLE_BIT;
2565	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2566
2567	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2568	if (ret_val) {
2569		e_dbg("Could not write PHY register %d.%d\n",
2570		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2571		return ret_val;
2572	}
2573
2574	/* Select Host Wakeup Registers page - caller now able to write
 
2575	 * registers on the Wakeup registers page
2576	 */
2577	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2578}
2579
2580/**
2581 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2582 *  @hw: pointer to the HW structure
2583 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2584 *
2585 *  Restore BM_WUC_ENABLE_REG to its original value.
2586 *
2587 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2588 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2589 *  caller.
2590 **/
2591s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2592{
2593	s32 ret_val;
2594
2595	/* Select Port Control Registers page */
2596	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2597	if (ret_val) {
2598		e_dbg("Could not set Port Control page\n");
2599		return ret_val;
2600	}
2601
2602	/* Restore 769.17 to its original value */
2603	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2604	if (ret_val)
2605		e_dbg("Could not restore PHY register %d.%d\n",
2606		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2607
2608	return ret_val;
2609}
2610
2611/**
2612 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2613 *  @hw: pointer to the HW structure
2614 *  @offset: register offset to be read or written
2615 *  @data: pointer to the data to read or write
2616 *  @read: determines if operation is read or write
2617 *  @page_set: BM_WUC_PAGE already set and access enabled
2618 *
2619 *  Read the PHY register at offset and store the retrieved information in
2620 *  data, or write data to PHY register at offset.  Note the procedure to
2621 *  access the PHY wakeup registers is different than reading the other PHY
2622 *  registers. It works as such:
2623 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2624 *  2) Set page to 800 for host (801 if we were manageability)
2625 *  3) Write the address using the address opcode (0x11)
2626 *  4) Read or write the data using the data opcode (0x12)
2627 *  5) Restore 769.17.2 to its original value
2628 *
2629 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2630 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2631 *
2632 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2633 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2634 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2635 **/
2636static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2637					  u16 *data, bool read, bool page_set)
2638{
2639	s32 ret_val;
2640	u16 reg = BM_PHY_REG_NUM(offset);
2641	u16 page = BM_PHY_REG_PAGE(offset);
2642	u16 phy_reg = 0;
2643
2644	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2645	if ((hw->mac.type == e1000_pchlan) &&
2646	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2647		e_dbg("Attempting to access page %d while gig enabled.\n",
2648		      page);
2649
2650	if (!page_set) {
2651		/* Enable access to PHY wakeup registers */
2652		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2653		if (ret_val) {
2654			e_dbg("Could not enable PHY wakeup reg access\n");
2655			return ret_val;
2656		}
2657	}
2658
2659	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2660
2661	/* Write the Wakeup register page offset value using opcode 0x11 */
2662	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2663	if (ret_val) {
2664		e_dbg("Could not write address opcode to page %d\n", page);
2665		return ret_val;
2666	}
2667
2668	if (read) {
2669		/* Read the Wakeup register page value using opcode 0x12 */
2670		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2671						   data);
2672	} else {
2673		/* Write the Wakeup register page value using opcode 0x12 */
2674		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2675						    *data);
2676	}
2677
2678	if (ret_val) {
2679		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2680		return ret_val;
2681	}
2682
2683	if (!page_set)
2684		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2685
2686	return ret_val;
2687}
2688
2689/**
2690 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2691 * @hw: pointer to the HW structure
2692 *
2693 * In the case of a PHY power down to save power, or to turn off link during a
2694 * driver unload, or wake on lan is not enabled, restore the link to previous
2695 * settings.
2696 **/
2697void e1000_power_up_phy_copper(struct e1000_hw *hw)
2698{
2699	u16 mii_reg = 0;
2700	int ret;
2701
2702	/* The PHY will retain its settings across a power down/up cycle */
2703	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2704	if (ret) {
2705		e_dbg("Error reading PHY register\n");
2706		return;
2707	}
2708	mii_reg &= ~BMCR_PDOWN;
2709	e1e_wphy(hw, MII_BMCR, mii_reg);
2710}
2711
2712/**
2713 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2714 * @hw: pointer to the HW structure
2715 *
2716 * In the case of a PHY power down to save power, or to turn off link during a
2717 * driver unload, or wake on lan is not enabled, restore the link to previous
2718 * settings.
2719 **/
2720void e1000_power_down_phy_copper(struct e1000_hw *hw)
2721{
2722	u16 mii_reg = 0;
2723	int ret;
2724
2725	/* The PHY will retain its settings across a power down/up cycle */
2726	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2727	if (ret) {
2728		e_dbg("Error reading PHY register\n");
2729		return;
2730	}
2731	mii_reg |= BMCR_PDOWN;
2732	e1e_wphy(hw, MII_BMCR, mii_reg);
2733	usleep_range(1000, 2000);
2734}
2735
2736/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2738 *  @hw: pointer to the HW structure
2739 *  @offset: register offset to be read
2740 *  @data: pointer to the read data
2741 *  @locked: semaphore has already been acquired or not
2742 *  @page_set: BM_WUC_PAGE already set and access enabled
2743 *
2744 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2745 *  and stores the retrieved information in data.  Release any acquired
2746 *  semaphore before exiting.
2747 **/
2748static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2749				   bool locked, bool page_set)
2750{
2751	s32 ret_val;
2752	u16 page = BM_PHY_REG_PAGE(offset);
2753	u16 reg = BM_PHY_REG_NUM(offset);
2754	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2755
2756	if (!locked) {
2757		ret_val = hw->phy.ops.acquire(hw);
2758		if (ret_val)
2759			return ret_val;
2760	}
2761
2762	/* Page 800 works differently than the rest so it has its own func */
2763	if (page == BM_WUC_PAGE) {
2764		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2765							 true, page_set);
2766		goto out;
2767	}
2768
2769	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2770		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2771							 data, true);
2772		goto out;
2773	}
2774
2775	if (!page_set) {
2776		if (page == HV_INTC_FC_PAGE_START)
2777			page = 0;
2778
2779		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2780			/* Page is shifted left, PHY expects (page x 32) */
2781			ret_val = e1000_set_page_igp(hw,
2782						     (page << IGP_PAGE_SHIFT));
2783
2784			hw->phy.addr = phy_addr;
2785
2786			if (ret_val)
2787				goto out;
2788		}
2789	}
2790
2791	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2792	      page << IGP_PAGE_SHIFT, reg);
2793
2794	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
 
2795out:
2796	if (!locked)
2797		hw->phy.ops.release(hw);
2798
2799	return ret_val;
2800}
2801
2802/**
2803 *  e1000_read_phy_reg_hv -  Read HV PHY register
2804 *  @hw: pointer to the HW structure
2805 *  @offset: register offset to be read
2806 *  @data: pointer to the read data
2807 *
2808 *  Acquires semaphore then reads the PHY register at offset and stores
2809 *  the retrieved information in data.  Release the acquired semaphore
2810 *  before exiting.
2811 **/
2812s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2813{
2814	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2815}
2816
2817/**
2818 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2819 *  @hw: pointer to the HW structure
2820 *  @offset: register offset to be read
2821 *  @data: pointer to the read data
2822 *
2823 *  Reads the PHY register at offset and stores the retrieved information
2824 *  in data.  Assumes semaphore already acquired.
2825 **/
2826s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2827{
2828	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2829}
2830
2831/**
2832 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2833 *  @hw: pointer to the HW structure
2834 *  @offset: register offset to write to
2835 *  @data: data to write at register offset
2836 *
2837 *  Reads the PHY register at offset and stores the retrieved information
2838 *  in data.  Assumes semaphore already acquired and page already set.
2839 **/
2840s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2841{
2842	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2843}
2844
2845/**
2846 *  __e1000_write_phy_reg_hv - Write HV PHY register
2847 *  @hw: pointer to the HW structure
2848 *  @offset: register offset to write to
2849 *  @data: data to write at register offset
2850 *  @locked: semaphore has already been acquired or not
2851 *  @page_set: BM_WUC_PAGE already set and access enabled
2852 *
2853 *  Acquires semaphore, if necessary, then writes the data to PHY register
2854 *  at the offset.  Release any acquired semaphores before exiting.
2855 **/
2856static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2857				    bool locked, bool page_set)
2858{
2859	s32 ret_val;
2860	u16 page = BM_PHY_REG_PAGE(offset);
2861	u16 reg = BM_PHY_REG_NUM(offset);
2862	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2863
2864	if (!locked) {
2865		ret_val = hw->phy.ops.acquire(hw);
2866		if (ret_val)
2867			return ret_val;
2868	}
2869
2870	/* Page 800 works differently than the rest so it has its own func */
2871	if (page == BM_WUC_PAGE) {
2872		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2873							 false, page_set);
2874		goto out;
2875	}
2876
2877	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2878		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2879							 &data, false);
2880		goto out;
2881	}
2882
2883	if (!page_set) {
2884		if (page == HV_INTC_FC_PAGE_START)
2885			page = 0;
2886
2887		/* Workaround MDIO accesses being disabled after entering IEEE
 
2888		 * Power Down (when bit 11 of the PHY Control register is set)
2889		 */
2890		if ((hw->phy.type == e1000_phy_82578) &&
2891		    (hw->phy.revision >= 1) &&
2892		    (hw->phy.addr == 2) &&
2893		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2894			u16 data2 = 0x7EFF;
2895
2896			ret_val = e1000_access_phy_debug_regs_hv(hw,
2897								 BIT(6) | 0x3,
2898								 &data2, false);
2899			if (ret_val)
2900				goto out;
2901		}
2902
2903		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2904			/* Page is shifted left, PHY expects (page x 32) */
2905			ret_val = e1000_set_page_igp(hw,
2906						     (page << IGP_PAGE_SHIFT));
2907
2908			hw->phy.addr = phy_addr;
2909
2910			if (ret_val)
2911				goto out;
2912		}
2913	}
2914
2915	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2916	      page << IGP_PAGE_SHIFT, reg);
2917
2918	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2919					    data);
2920
2921out:
2922	if (!locked)
2923		hw->phy.ops.release(hw);
2924
2925	return ret_val;
2926}
2927
2928/**
2929 *  e1000_write_phy_reg_hv - Write HV PHY register
2930 *  @hw: pointer to the HW structure
2931 *  @offset: register offset to write to
2932 *  @data: data to write at register offset
2933 *
2934 *  Acquires semaphore then writes the data to PHY register at the offset.
2935 *  Release the acquired semaphores before exiting.
2936 **/
2937s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2938{
2939	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2940}
2941
2942/**
2943 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2944 *  @hw: pointer to the HW structure
2945 *  @offset: register offset to write to
2946 *  @data: data to write at register offset
2947 *
2948 *  Writes the data to PHY register at the offset.  Assumes semaphore
2949 *  already acquired.
2950 **/
2951s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2952{
2953	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2954}
2955
2956/**
2957 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2958 *  @hw: pointer to the HW structure
2959 *  @offset: register offset to write to
2960 *  @data: data to write at register offset
2961 *
2962 *  Writes the data to PHY register at the offset.  Assumes semaphore
2963 *  already acquired and page already set.
2964 **/
2965s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2966{
2967	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2968}
2969
2970/**
2971 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2972 *  @page: page to be accessed
2973 **/
2974static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2975{
2976	u32 phy_addr = 2;
2977
2978	if (page >= HV_INTC_FC_PAGE_START)
2979		phy_addr = 1;
2980
2981	return phy_addr;
2982}
2983
2984/**
2985 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2986 *  @hw: pointer to the HW structure
2987 *  @offset: register offset to be read or written
2988 *  @data: pointer to the data to be read or written
2989 *  @read: determines if operation is read or write
2990 *
2991 *  Reads the PHY register at offset and stores the retrieved information
2992 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2993 *  to access these regs uses the address port and data port to read/write.
2994 *  These accesses done with PHY address 2 and without using pages.
2995 **/
2996static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2997					  u16 *data, bool read)
2998{
2999	s32 ret_val;
3000	u32 addr_reg;
3001	u32 data_reg;
3002
3003	/* This takes care of the difference with desktop vs mobile phy */
3004	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3005		    I82578_ADDR_REG : I82577_ADDR_REG);
3006	data_reg = addr_reg + 1;
3007
3008	/* All operations in this function are phy address 2 */
3009	hw->phy.addr = 2;
3010
3011	/* masking with 0x3F to remove the page from offset */
3012	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3013	if (ret_val) {
3014		e_dbg("Could not write the Address Offset port register\n");
3015		return ret_val;
3016	}
3017
3018	/* Read or write the data value next */
3019	if (read)
3020		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3021	else
3022		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3023
3024	if (ret_val)
3025		e_dbg("Could not access the Data port register\n");
3026
3027	return ret_val;
3028}
3029
3030/**
3031 *  e1000_link_stall_workaround_hv - Si workaround
3032 *  @hw: pointer to the HW structure
3033 *
3034 *  This function works around a Si bug where the link partner can get
3035 *  a link up indication before the PHY does.  If small packets are sent
3036 *  by the link partner they can be placed in the packet buffer without
3037 *  being properly accounted for by the PHY and will stall preventing
3038 *  further packets from being received.  The workaround is to clear the
3039 *  packet buffer after the PHY detects link up.
3040 **/
3041s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3042{
3043	s32 ret_val = 0;
3044	u16 data;
3045
3046	if (hw->phy.type != e1000_phy_82578)
3047		return 0;
3048
3049	/* Do not apply workaround if in PHY loopback bit 14 set */
3050	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3051	if (ret_val) {
3052		e_dbg("Error reading PHY register\n");
3053		return ret_val;
3054	}
3055	if (data & BMCR_LOOPBACK)
3056		return 0;
3057
3058	/* check if link is up and at 1Gbps */
3059	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3060	if (ret_val)
3061		return ret_val;
3062
3063	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3064		 BM_CS_STATUS_SPEED_MASK);
3065
3066	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3067		     BM_CS_STATUS_SPEED_1000))
3068		return 0;
3069
3070	msleep(200);
3071
3072	/* flush the packets in the fifo buffer */
3073	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3074			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3075			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3076	if (ret_val)
3077		return ret_val;
3078
3079	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3080}
3081
3082/**
3083 *  e1000_check_polarity_82577 - Checks the polarity.
3084 *  @hw: pointer to the HW structure
3085 *
3086 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3087 *
3088 *  Polarity is determined based on the PHY specific status register.
3089 **/
3090s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3091{
3092	struct e1000_phy_info *phy = &hw->phy;
3093	s32 ret_val;
3094	u16 data;
3095
3096	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3097
3098	if (!ret_val)
3099		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3100				       ? e1000_rev_polarity_reversed
3101				       : e1000_rev_polarity_normal);
3102
3103	return ret_val;
3104}
3105
3106/**
3107 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3108 *  @hw: pointer to the HW structure
3109 *
3110 *  Calls the PHY setup function to force speed and duplex.
3111 **/
3112s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3113{
3114	struct e1000_phy_info *phy = &hw->phy;
3115	s32 ret_val;
3116	u16 phy_data;
3117	bool link;
3118
3119	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3120	if (ret_val)
3121		return ret_val;
3122
3123	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3124
3125	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3126	if (ret_val)
3127		return ret_val;
3128
3129	udelay(1);
3130
3131	if (phy->autoneg_wait_to_complete) {
3132		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3133
3134		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3135						      100000, &link);
3136		if (ret_val)
3137			return ret_val;
3138
3139		if (!link)
3140			e_dbg("Link taking longer than expected.\n");
3141
3142		/* Try once more */
3143		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3144						      100000, &link);
3145	}
3146
3147	return ret_val;
3148}
3149
3150/**
3151 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3152 *  @hw: pointer to the HW structure
3153 *
3154 *  Read PHY status to determine if link is up.  If link is up, then
3155 *  set/determine 10base-T extended distance and polarity correction.  Read
3156 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3157 *  determine on the cable length, local and remote receiver.
3158 **/
3159s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3160{
3161	struct e1000_phy_info *phy = &hw->phy;
3162	s32 ret_val;
3163	u16 data;
3164	bool link;
3165
3166	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3167	if (ret_val)
3168		return ret_val;
3169
3170	if (!link) {
3171		e_dbg("Phy info is only valid if link is up\n");
3172		return -E1000_ERR_CONFIG;
3173	}
3174
3175	phy->polarity_correction = true;
3176
3177	ret_val = e1000_check_polarity_82577(hw);
3178	if (ret_val)
3179		return ret_val;
3180
3181	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3182	if (ret_val)
3183		return ret_val;
3184
3185	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3186
3187	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3188	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3189		ret_val = hw->phy.ops.get_cable_length(hw);
3190		if (ret_val)
3191			return ret_val;
3192
3193		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3194		if (ret_val)
3195			return ret_val;
3196
3197		phy->local_rx = (data & LPA_1000LOCALRXOK)
3198		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3199
3200		phy->remote_rx = (data & LPA_1000REMRXOK)
3201		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3202	} else {
3203		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3204		phy->local_rx = e1000_1000t_rx_status_undefined;
3205		phy->remote_rx = e1000_1000t_rx_status_undefined;
3206	}
3207
3208	return 0;
3209}
3210
3211/**
3212 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3213 *  @hw: pointer to the HW structure
3214 *
3215 * Reads the diagnostic status register and verifies result is valid before
3216 * placing it in the phy_cable_length field.
3217 **/
3218s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3219{
3220	struct e1000_phy_info *phy = &hw->phy;
3221	s32 ret_val;
3222	u16 phy_data, length;
3223
3224	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3225	if (ret_val)
3226		return ret_val;
3227
3228	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3229		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3230
3231	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3232		return -E1000_ERR_PHY;
3233
3234	phy->cable_length = length;
3235
3236	return 0;
3237}