Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30
  31/**
  32 *  e1000e_get_bus_info_pcie - Get PCIe bus information
  33 *  @hw: pointer to the HW structure
  34 *
  35 *  Determines and stores the system bus information for a particular
  36 *  network interface.  The following bus information is determined and stored:
  37 *  bus speed, bus width, type (PCIe), and PCIe function.
  38 **/
  39s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  40{
  41	struct e1000_mac_info *mac = &hw->mac;
  42	struct e1000_bus_info *bus = &hw->bus;
  43	struct e1000_adapter *adapter = hw->adapter;
  44	u16 pcie_link_status, cap_offset;
  45
  46	cap_offset = adapter->pdev->pcie_cap;
  47	if (!cap_offset) {
  48		bus->width = e1000_bus_width_unknown;
  49	} else {
  50		pci_read_config_word(adapter->pdev,
  51				     cap_offset + PCIE_LINK_STATUS,
  52				     &pcie_link_status);
  53		bus->width = (enum e1000_bus_width)((pcie_link_status &
  54						     PCIE_LINK_WIDTH_MASK) >>
  55						    PCIE_LINK_WIDTH_SHIFT);
  56	}
  57
  58	mac->ops.set_lan_id(hw);
  59
  60	return 0;
  61}
  62
  63/**
  64 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  65 *
  66 *  @hw: pointer to the HW structure
  67 *
  68 *  Determines the LAN function id by reading memory-mapped registers
  69 *  and swaps the port value if requested.
  70 **/
  71void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  72{
  73	struct e1000_bus_info *bus = &hw->bus;
  74	u32 reg;
  75
  76	/*
  77	 * The status register reports the correct function number
  78	 * for the device regardless of function swap state.
  79	 */
  80	reg = er32(STATUS);
  81	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  82}
  83
  84/**
  85 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  86 *  @hw: pointer to the HW structure
  87 *
  88 *  Sets the LAN function id to zero for a single port device.
  89 **/
  90void e1000_set_lan_id_single_port(struct e1000_hw *hw)
  91{
  92	struct e1000_bus_info *bus = &hw->bus;
  93
  94	bus->func = 0;
  95}
  96
  97/**
  98 *  e1000_clear_vfta_generic - Clear VLAN filter table
  99 *  @hw: pointer to the HW structure
 100 *
 101 *  Clears the register array which contains the VLAN filter table by
 102 *  setting all the values to 0.
 103 **/
 104void e1000_clear_vfta_generic(struct e1000_hw *hw)
 105{
 106	u32 offset;
 107
 108	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 109		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
 110		e1e_flush();
 111	}
 112}
 113
 114/**
 115 *  e1000_write_vfta_generic - Write value to VLAN filter table
 116 *  @hw: pointer to the HW structure
 117 *  @offset: register offset in VLAN filter table
 118 *  @value: register value written to VLAN filter table
 119 *
 120 *  Writes value at the given offset in the register array which stores
 121 *  the VLAN filter table.
 122 **/
 123void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
 124{
 125	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 126	e1e_flush();
 127}
 128
 129/**
 130 *  e1000e_init_rx_addrs - Initialize receive address's
 131 *  @hw: pointer to the HW structure
 132 *  @rar_count: receive address registers
 133 *
 134 *  Setup the receive address registers by setting the base receive address
 135 *  register to the devices MAC address and clearing all the other receive
 136 *  address registers to 0.
 137 **/
 138void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 139{
 140	u32 i;
 141	u8 mac_addr[ETH_ALEN] = { 0 };
 142
 143	/* Setup the receive address */
 144	e_dbg("Programming MAC Address into RAR[0]\n");
 145
 146	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 147
 148	/* Zero out the other (rar_entry_count - 1) receive addresses */
 149	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
 150	for (i = 1; i < rar_count; i++)
 151		hw->mac.ops.rar_set(hw, mac_addr, i);
 152}
 153
 154/**
 155 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 156 *  @hw: pointer to the HW structure
 157 *
 158 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 159 *  can be setup by pre-boot software and must be treated like a permanent
 160 *  address and must override the actual permanent MAC address. If an
 161 *  alternate MAC address is found it is programmed into RAR0, replacing
 162 *  the permanent address that was installed into RAR0 by the Si on reset.
 163 *  This function will return SUCCESS unless it encounters an error while
 164 *  reading the EEPROM.
 165 **/
 166s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 167{
 168	u32 i;
 169	s32 ret_val = 0;
 170	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 171	u8 alt_mac_addr[ETH_ALEN];
 172
 173	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 174	if (ret_val)
 175		return ret_val;
 176
 177	/* not supported on 82573 */
 178	if (hw->mac.type == e1000_82573)
 179		return 0;
 180
 181	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 182				 &nvm_alt_mac_addr_offset);
 183	if (ret_val) {
 184		e_dbg("NVM Read Error\n");
 185		return ret_val;
 186	}
 187
 188	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 189	    (nvm_alt_mac_addr_offset == 0x0000))
 190		/* There is no Alternate MAC Address */
 191		return 0;
 192
 193	if (hw->bus.func == E1000_FUNC_1)
 194		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 195	for (i = 0; i < ETH_ALEN; i += 2) {
 196		offset = nvm_alt_mac_addr_offset + (i >> 1);
 197		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 198		if (ret_val) {
 199			e_dbg("NVM Read Error\n");
 200			return ret_val;
 201		}
 202
 203		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 204		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 205	}
 206
 207	/* if multicast bit is set, the alternate address will not be used */
 208	if (is_multicast_ether_addr(alt_mac_addr)) {
 209		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 210		return 0;
 211	}
 212
 213	/*
 214	 * We have a valid alternate MAC address, and we want to treat it the
 215	 * same as the normal permanent MAC address stored by the HW into the
 216	 * RAR. Do this by mapping this address into RAR0.
 217	 */
 218	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 219
 220	return 0;
 221}
 222
 
 
 
 
 
 223/**
 224 *  e1000e_rar_set_generic - Set receive address register
 225 *  @hw: pointer to the HW structure
 226 *  @addr: pointer to the receive address
 227 *  @index: receive address array register
 228 *
 229 *  Sets the receive address array register at index to the address passed
 230 *  in by addr.
 231 **/
 232void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
 233{
 234	u32 rar_low, rar_high;
 235
 236	/*
 237	 * HW expects these in little endian so we reverse the byte order
 238	 * from network order (big endian) to little endian
 239	 */
 240	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
 241		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
 242
 243	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 244
 245	/* If MAC address zero, no need to set the AV bit */
 246	if (rar_low || rar_high)
 247		rar_high |= E1000_RAH_AV;
 248
 249	/*
 250	 * Some bridges will combine consecutive 32-bit writes into
 251	 * a single burst write, which will malfunction on some parts.
 252	 * The flushes avoid this.
 253	 */
 254	ew32(RAL(index), rar_low);
 255	e1e_flush();
 256	ew32(RAH(index), rar_high);
 257	e1e_flush();
 
 
 258}
 259
 260/**
 261 *  e1000_hash_mc_addr - Generate a multicast hash value
 262 *  @hw: pointer to the HW structure
 263 *  @mc_addr: pointer to a multicast address
 264 *
 265 *  Generates a multicast address hash value which is used to determine
 266 *  the multicast filter table array address and new table value.
 267 **/
 268static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 269{
 270	u32 hash_value, hash_mask;
 271	u8 bit_shift = 0;
 272
 273	/* Register count multiplied by bits per register */
 274	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 275
 276	/*
 277	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
 278	 * where 0xFF would still fall within the hash mask.
 279	 */
 280	while (hash_mask >> bit_shift != 0xFF)
 281		bit_shift++;
 282
 283	/*
 284	 * The portion of the address that is used for the hash table
 285	 * is determined by the mc_filter_type setting.
 286	 * The algorithm is such that there is a total of 8 bits of shifting.
 287	 * The bit_shift for a mc_filter_type of 0 represents the number of
 288	 * left-shifts where the MSB of mc_addr[5] would still fall within
 289	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 290	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 291	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 292	 * cases are a variation of this algorithm...essentially raising the
 293	 * number of bits to shift mc_addr[5] left, while still keeping the
 294	 * 8-bit shifting total.
 295	 *
 296	 * For example, given the following Destination MAC Address and an
 297	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 298	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 299	 * values resulting from each mc_filter_type...
 300	 * [0] [1] [2] [3] [4] [5]
 301	 * 01  AA  00  12  34  56
 302	 * LSB           MSB
 303	 *
 304	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 305	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 306	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 307	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 308	 */
 309	switch (hw->mac.mc_filter_type) {
 310	default:
 311	case 0:
 312		break;
 313	case 1:
 314		bit_shift += 1;
 315		break;
 316	case 2:
 317		bit_shift += 2;
 318		break;
 319	case 3:
 320		bit_shift += 4;
 321		break;
 322	}
 323
 324	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 325				   (((u16)mc_addr[5]) << bit_shift)));
 326
 327	return hash_value;
 328}
 329
 330/**
 331 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 332 *  @hw: pointer to the HW structure
 333 *  @mc_addr_list: array of multicast addresses to program
 334 *  @mc_addr_count: number of multicast addresses to program
 335 *
 336 *  Updates entire Multicast Table Array.
 337 *  The caller must have a packed mc_addr_list of multicast addresses.
 338 **/
 339void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 340					u8 *mc_addr_list, u32 mc_addr_count)
 341{
 342	u32 hash_value, hash_bit, hash_reg;
 343	int i;
 344
 345	/* clear mta_shadow */
 346	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 347
 348	/* update mta_shadow from mc_addr_list */
 349	for (i = 0; (u32)i < mc_addr_count; i++) {
 350		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 351
 352		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 353		hash_bit = hash_value & 0x1F;
 354
 355		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 356		mc_addr_list += (ETH_ALEN);
 357	}
 358
 359	/* replace the entire MTA table */
 360	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 361		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 362	e1e_flush();
 363}
 364
 365/**
 366 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 367 *  @hw: pointer to the HW structure
 368 *
 369 *  Clears the base hardware counters by reading the counter registers.
 370 **/
 371void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 372{
 373	er32(CRCERRS);
 374	er32(SYMERRS);
 375	er32(MPC);
 376	er32(SCC);
 377	er32(ECOL);
 378	er32(MCC);
 379	er32(LATECOL);
 380	er32(COLC);
 381	er32(DC);
 382	er32(SEC);
 383	er32(RLEC);
 384	er32(XONRXC);
 385	er32(XONTXC);
 386	er32(XOFFRXC);
 387	er32(XOFFTXC);
 388	er32(FCRUC);
 389	er32(GPRC);
 390	er32(BPRC);
 391	er32(MPRC);
 392	er32(GPTC);
 393	er32(GORCL);
 394	er32(GORCH);
 395	er32(GOTCL);
 396	er32(GOTCH);
 397	er32(RNBC);
 398	er32(RUC);
 399	er32(RFC);
 400	er32(ROC);
 401	er32(RJC);
 402	er32(TORL);
 403	er32(TORH);
 404	er32(TOTL);
 405	er32(TOTH);
 406	er32(TPR);
 407	er32(TPT);
 408	er32(MPTC);
 409	er32(BPTC);
 410}
 411
 412/**
 413 *  e1000e_check_for_copper_link - Check for link (Copper)
 414 *  @hw: pointer to the HW structure
 415 *
 416 *  Checks to see of the link status of the hardware has changed.  If a
 417 *  change in link status has been detected, then we read the PHY registers
 418 *  to get the current speed/duplex if link exists.
 419 **/
 420s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 421{
 422	struct e1000_mac_info *mac = &hw->mac;
 423	s32 ret_val;
 424	bool link;
 425
 426	/*
 427	 * We only want to go out to the PHY registers to see if Auto-Neg
 428	 * has completed and/or if our link status has changed.  The
 429	 * get_link_status flag is set upon receiving a Link Status
 430	 * Change or Rx Sequence Error interrupt.
 431	 */
 432	if (!mac->get_link_status)
 433		return 0;
 
 434
 435	/*
 436	 * First we want to see if the MII Status Register reports
 437	 * link.  If so, then we want to get the current speed/duplex
 438	 * of the PHY.
 439	 */
 440	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 441	if (ret_val)
 442		return ret_val;
 443
 444	if (!link)
 445		return 0;	/* No link detected */
 446
 447	mac->get_link_status = false;
 448
 449	/*
 450	 * Check if there was DownShift, must be checked
 451	 * immediately after link-up
 452	 */
 453	e1000e_check_downshift(hw);
 454
 455	/*
 456	 * If we are forcing speed/duplex, then we simply return since
 457	 * we have already determined whether we have link or not.
 458	 */
 459	if (!mac->autoneg)
 460		return -E1000_ERR_CONFIG;
 461
 462	/*
 463	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 464	 * of MAC speed/duplex configuration.  So we only need to
 465	 * configure Collision Distance in the MAC.
 466	 */
 467	mac->ops.config_collision_dist(hw);
 468
 469	/*
 470	 * Configure Flow Control now that Auto-Neg has completed.
 471	 * First, we need to restore the desired flow control
 472	 * settings because we may have had to re-autoneg with a
 473	 * different link partner.
 474	 */
 475	ret_val = e1000e_config_fc_after_link_up(hw);
 476	if (ret_val)
 477		e_dbg("Error configuring flow control\n");
 478
 479	return ret_val;
 
 
 
 
 480}
 481
 482/**
 483 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 484 *  @hw: pointer to the HW structure
 485 *
 486 *  Checks for link up on the hardware.  If link is not up and we have
 487 *  a signal, then we need to force link up.
 488 **/
 489s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 490{
 491	struct e1000_mac_info *mac = &hw->mac;
 492	u32 rxcw;
 493	u32 ctrl;
 494	u32 status;
 495	s32 ret_val;
 496
 497	ctrl = er32(CTRL);
 498	status = er32(STATUS);
 499	rxcw = er32(RXCW);
 500
 501	/*
 502	 * If we don't have link (auto-negotiation failed or link partner
 503	 * cannot auto-negotiate), the cable is plugged in (we have signal),
 504	 * and our link partner is not trying to auto-negotiate with us (we
 505	 * are receiving idles or data), we need to force link up. We also
 506	 * need to give auto-negotiation time to complete, in case the cable
 507	 * was just plugged in. The autoneg_failed flag does this.
 508	 */
 509	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 510	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
 511	    !(rxcw & E1000_RXCW_C)) {
 512		if (!mac->autoneg_failed) {
 513			mac->autoneg_failed = true;
 514			return 0;
 515		}
 516		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 517
 518		/* Disable auto-negotiation in the TXCW register */
 519		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 520
 521		/* Force link-up and also force full-duplex. */
 522		ctrl = er32(CTRL);
 523		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 524		ew32(CTRL, ctrl);
 525
 526		/* Configure Flow Control after forcing link up. */
 527		ret_val = e1000e_config_fc_after_link_up(hw);
 528		if (ret_val) {
 529			e_dbg("Error configuring flow control\n");
 530			return ret_val;
 531		}
 532	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 533		/*
 534		 * If we are forcing link and we are receiving /C/ ordered
 535		 * sets, re-enable auto-negotiation in the TXCW register
 536		 * and disable forced link in the Device Control register
 537		 * in an attempt to auto-negotiate with our link partner.
 538		 */
 539		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 540		ew32(TXCW, mac->txcw);
 541		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 542
 543		mac->serdes_has_link = true;
 544	}
 545
 546	return 0;
 547}
 548
 549/**
 550 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 551 *  @hw: pointer to the HW structure
 552 *
 553 *  Checks for link up on the hardware.  If link is not up and we have
 554 *  a signal, then we need to force link up.
 555 **/
 556s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 557{
 558	struct e1000_mac_info *mac = &hw->mac;
 559	u32 rxcw;
 560	u32 ctrl;
 561	u32 status;
 562	s32 ret_val;
 563
 564	ctrl = er32(CTRL);
 565	status = er32(STATUS);
 566	rxcw = er32(RXCW);
 567
 568	/*
 569	 * If we don't have link (auto-negotiation failed or link partner
 570	 * cannot auto-negotiate), and our link partner is not trying to
 571	 * auto-negotiate with us (we are receiving idles or data),
 572	 * we need to force link up. We also need to give auto-negotiation
 573	 * time to complete.
 574	 */
 575	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 576	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
 577		if (!mac->autoneg_failed) {
 578			mac->autoneg_failed = true;
 579			return 0;
 580		}
 581		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 582
 583		/* Disable auto-negotiation in the TXCW register */
 584		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 585
 586		/* Force link-up and also force full-duplex. */
 587		ctrl = er32(CTRL);
 588		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 589		ew32(CTRL, ctrl);
 590
 591		/* Configure Flow Control after forcing link up. */
 592		ret_val = e1000e_config_fc_after_link_up(hw);
 593		if (ret_val) {
 594			e_dbg("Error configuring flow control\n");
 595			return ret_val;
 596		}
 597	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 598		/*
 599		 * If we are forcing link and we are receiving /C/ ordered
 600		 * sets, re-enable auto-negotiation in the TXCW register
 601		 * and disable forced link in the Device Control register
 602		 * in an attempt to auto-negotiate with our link partner.
 603		 */
 604		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 605		ew32(TXCW, mac->txcw);
 606		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 607
 608		mac->serdes_has_link = true;
 609	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 610		/*
 611		 * If we force link for non-auto-negotiation switch, check
 612		 * link status based on MAC synchronization for internal
 613		 * serdes media type.
 614		 */
 615		/* SYNCH bit and IV bit are sticky. */
 616		udelay(10);
 617		rxcw = er32(RXCW);
 618		if (rxcw & E1000_RXCW_SYNCH) {
 619			if (!(rxcw & E1000_RXCW_IV)) {
 620				mac->serdes_has_link = true;
 621				e_dbg("SERDES: Link up - forced.\n");
 622			}
 623		} else {
 624			mac->serdes_has_link = false;
 625			e_dbg("SERDES: Link down - force failed.\n");
 626		}
 627	}
 628
 629	if (E1000_TXCW_ANE & er32(TXCW)) {
 630		status = er32(STATUS);
 631		if (status & E1000_STATUS_LU) {
 632			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
 633			udelay(10);
 634			rxcw = er32(RXCW);
 635			if (rxcw & E1000_RXCW_SYNCH) {
 636				if (!(rxcw & E1000_RXCW_IV)) {
 637					mac->serdes_has_link = true;
 638					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
 639				} else {
 640					mac->serdes_has_link = false;
 641					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
 642				}
 643			} else {
 644				mac->serdes_has_link = false;
 645				e_dbg("SERDES: Link down - no sync.\n");
 646			}
 647		} else {
 648			mac->serdes_has_link = false;
 649			e_dbg("SERDES: Link down - autoneg failed\n");
 650		}
 651	}
 652
 653	return 0;
 654}
 655
 656/**
 657 *  e1000_set_default_fc_generic - Set flow control default values
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Read the EEPROM for the default values for flow control and store the
 661 *  values.
 662 **/
 663static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 664{
 665	s32 ret_val;
 666	u16 nvm_data;
 667
 668	/*
 669	 * Read and store word 0x0F of the EEPROM. This word contains bits
 670	 * that determine the hardware's default PAUSE (flow control) mode,
 671	 * a bit that determines whether the HW defaults to enabling or
 672	 * disabling auto-negotiation, and the direction of the
 673	 * SW defined pins. If there is no SW over-ride of the flow
 674	 * control setting, then the variable hw->fc will
 675	 * be initialized based on a value in the EEPROM.
 676	 */
 677	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 678
 679	if (ret_val) {
 680		e_dbg("NVM Read Error\n");
 681		return ret_val;
 682	}
 683
 684	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
 685		hw->fc.requested_mode = e1000_fc_none;
 686	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 687		hw->fc.requested_mode = e1000_fc_tx_pause;
 688	else
 689		hw->fc.requested_mode = e1000_fc_full;
 690
 691	return 0;
 692}
 693
 694/**
 695 *  e1000e_setup_link_generic - Setup flow control and link settings
 696 *  @hw: pointer to the HW structure
 697 *
 698 *  Determines which flow control settings to use, then configures flow
 699 *  control.  Calls the appropriate media-specific link configuration
 700 *  function.  Assuming the adapter has a valid link partner, a valid link
 701 *  should be established.  Assumes the hardware has previously been reset
 702 *  and the transmitter and receiver are not enabled.
 703 **/
 704s32 e1000e_setup_link_generic(struct e1000_hw *hw)
 705{
 706	s32 ret_val;
 707
 708	/*
 709	 * In the case of the phy reset being blocked, we already have a link.
 710	 * We do not need to set it up again.
 711	 */
 712	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
 713		return 0;
 714
 715	/*
 716	 * If requested flow control is set to default, set flow control
 717	 * based on the EEPROM flow control settings.
 718	 */
 719	if (hw->fc.requested_mode == e1000_fc_default) {
 720		ret_val = e1000_set_default_fc_generic(hw);
 721		if (ret_val)
 722			return ret_val;
 723	}
 724
 725	/*
 726	 * Save off the requested flow control mode for use later.  Depending
 727	 * on the link partner's capabilities, we may or may not use this mode.
 728	 */
 729	hw->fc.current_mode = hw->fc.requested_mode;
 730
 731	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 732
 733	/* Call the necessary media_type subroutine to configure the link. */
 734	ret_val = hw->mac.ops.setup_physical_interface(hw);
 735	if (ret_val)
 736		return ret_val;
 737
 738	/*
 739	 * Initialize the flow control address, type, and PAUSE timer
 740	 * registers to their default values.  This is done even if flow
 741	 * control is disabled, because it does not hurt anything to
 742	 * initialize these registers.
 743	 */
 744	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 745	ew32(FCT, FLOW_CONTROL_TYPE);
 746	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 747	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 748
 749	ew32(FCTTV, hw->fc.pause_time);
 750
 751	return e1000e_set_fc_watermarks(hw);
 752}
 753
 754/**
 755 *  e1000_commit_fc_settings_generic - Configure flow control
 756 *  @hw: pointer to the HW structure
 757 *
 758 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 759 *  base on the flow control settings in e1000_mac_info.
 760 **/
 761static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 762{
 763	struct e1000_mac_info *mac = &hw->mac;
 764	u32 txcw;
 765
 766	/*
 767	 * Check for a software override of the flow control settings, and
 768	 * setup the device accordingly.  If auto-negotiation is enabled, then
 769	 * software will have to set the "PAUSE" bits to the correct value in
 770	 * the Transmit Config Word Register (TXCW) and re-start auto-
 771	 * negotiation.  However, if auto-negotiation is disabled, then
 772	 * software will have to manually configure the two flow control enable
 773	 * bits in the CTRL register.
 774	 *
 775	 * The possible values of the "fc" parameter are:
 776	 *      0:  Flow control is completely disabled
 777	 *      1:  Rx flow control is enabled (we can receive pause frames,
 778	 *          but not send pause frames).
 779	 *      2:  Tx flow control is enabled (we can send pause frames but we
 780	 *          do not support receiving pause frames).
 781	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 782	 */
 783	switch (hw->fc.current_mode) {
 784	case e1000_fc_none:
 785		/* Flow control completely disabled by a software over-ride. */
 786		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 787		break;
 788	case e1000_fc_rx_pause:
 789		/*
 790		 * Rx Flow control is enabled and Tx Flow control is disabled
 791		 * by a software over-ride. Since there really isn't a way to
 792		 * advertise that we are capable of Rx Pause ONLY, we will
 793		 * advertise that we support both symmetric and asymmetric Rx
 794		 * PAUSE.  Later, we will disable the adapter's ability to send
 795		 * PAUSE frames.
 796		 */
 797		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 798		break;
 799	case e1000_fc_tx_pause:
 800		/*
 801		 * Tx Flow control is enabled, and Rx Flow control is disabled,
 802		 * by a software over-ride.
 803		 */
 804		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 805		break;
 806	case e1000_fc_full:
 807		/*
 808		 * Flow control (both Rx and Tx) is enabled by a software
 809		 * over-ride.
 810		 */
 811		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 812		break;
 813	default:
 814		e_dbg("Flow control param set incorrectly\n");
 815		return -E1000_ERR_CONFIG;
 816		break;
 817	}
 818
 819	ew32(TXCW, txcw);
 820	mac->txcw = txcw;
 821
 822	return 0;
 823}
 824
 825/**
 826 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 827 *  @hw: pointer to the HW structure
 828 *
 829 *  Polls for link up by reading the status register, if link fails to come
 830 *  up with auto-negotiation, then the link is forced if a signal is detected.
 831 **/
 832static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 833{
 834	struct e1000_mac_info *mac = &hw->mac;
 835	u32 i, status;
 836	s32 ret_val;
 837
 838	/*
 839	 * If we have a signal (the cable is plugged in, or assumed true for
 840	 * serdes media) then poll for a "Link-Up" indication in the Device
 841	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 842	 * seconds (Auto-negotiation should complete in less than 500
 843	 * milliseconds even if the other end is doing it in SW).
 844	 */
 845	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 846		usleep_range(10000, 20000);
 847		status = er32(STATUS);
 848		if (status & E1000_STATUS_LU)
 849			break;
 850	}
 851	if (i == FIBER_LINK_UP_LIMIT) {
 852		e_dbg("Never got a valid link from auto-neg!!!\n");
 853		mac->autoneg_failed = true;
 854		/*
 855		 * AutoNeg failed to achieve a link, so we'll call
 856		 * mac->check_for_link. This routine will force the
 857		 * link up if we detect a signal. This will allow us to
 858		 * communicate with non-autonegotiating link partners.
 859		 */
 860		ret_val = mac->ops.check_for_link(hw);
 861		if (ret_val) {
 862			e_dbg("Error while checking for link\n");
 863			return ret_val;
 864		}
 865		mac->autoneg_failed = false;
 866	} else {
 867		mac->autoneg_failed = false;
 868		e_dbg("Valid Link Found\n");
 869	}
 870
 871	return 0;
 872}
 873
 874/**
 875 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 876 *  @hw: pointer to the HW structure
 877 *
 878 *  Configures collision distance and flow control for fiber and serdes
 879 *  links.  Upon successful setup, poll for link.
 880 **/
 881s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 882{
 883	u32 ctrl;
 884	s32 ret_val;
 885
 886	ctrl = er32(CTRL);
 887
 888	/* Take the link out of reset */
 889	ctrl &= ~E1000_CTRL_LRST;
 890
 891	hw->mac.ops.config_collision_dist(hw);
 892
 893	ret_val = e1000_commit_fc_settings_generic(hw);
 894	if (ret_val)
 895		return ret_val;
 896
 897	/*
 898	 * Since auto-negotiation is enabled, take the link out of reset (the
 899	 * link will be in reset, because we previously reset the chip). This
 900	 * will restart auto-negotiation.  If auto-negotiation is successful
 901	 * then the link-up status bit will be set and the flow control enable
 902	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 903	 */
 904	e_dbg("Auto-negotiation enabled\n");
 905
 906	ew32(CTRL, ctrl);
 907	e1e_flush();
 908	usleep_range(1000, 2000);
 909
 910	/*
 911	 * For these adapters, the SW definable pin 1 is set when the optics
 912	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
 913	 * indication.
 914	 */
 915	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 916	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 917		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 918	} else {
 919		e_dbg("No signal detected\n");
 920	}
 921
 922	return ret_val;
 923}
 924
 925/**
 926 *  e1000e_config_collision_dist_generic - Configure collision distance
 927 *  @hw: pointer to the HW structure
 928 *
 929 *  Configures the collision distance to the default value and is used
 930 *  during link setup.
 931 **/
 932void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
 933{
 934	u32 tctl;
 935
 936	tctl = er32(TCTL);
 937
 938	tctl &= ~E1000_TCTL_COLD;
 939	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 940
 941	ew32(TCTL, tctl);
 942	e1e_flush();
 943}
 944
 945/**
 946 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 947 *  @hw: pointer to the HW structure
 948 *
 949 *  Sets the flow control high/low threshold (watermark) registers.  If
 950 *  flow control XON frame transmission is enabled, then set XON frame
 951 *  transmission as well.
 952 **/
 953s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 954{
 955	u32 fcrtl = 0, fcrth = 0;
 956
 957	/*
 958	 * Set the flow control receive threshold registers.  Normally,
 959	 * these registers will be set to a default threshold that may be
 960	 * adjusted later by the driver's runtime code.  However, if the
 961	 * ability to transmit pause frames is not enabled, then these
 962	 * registers will be set to 0.
 963	 */
 964	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 965		/*
 966		 * We need to set up the Receive Threshold high and low water
 967		 * marks as well as (optionally) enabling the transmission of
 968		 * XON frames.
 969		 */
 970		fcrtl = hw->fc.low_water;
 971		if (hw->fc.send_xon)
 972			fcrtl |= E1000_FCRTL_XONE;
 973
 974		fcrth = hw->fc.high_water;
 975	}
 976	ew32(FCRTL, fcrtl);
 977	ew32(FCRTH, fcrth);
 978
 979	return 0;
 980}
 981
 982/**
 983 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 984 *  @hw: pointer to the HW structure
 985 *
 986 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 987 *  device control register to reflect the adapter settings.  TFCE and RFCE
 988 *  need to be explicitly set by software when a copper PHY is used because
 989 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 990 *  also configure these bits when link is forced on a fiber connection.
 991 **/
 992s32 e1000e_force_mac_fc(struct e1000_hw *hw)
 993{
 994	u32 ctrl;
 995
 996	ctrl = er32(CTRL);
 997
 998	/*
 999	 * Because we didn't get link via the internal auto-negotiation
1000	 * mechanism (we either forced link or we got link via PHY
1001	 * auto-neg), we have to manually enable/disable transmit an
1002	 * receive flow control.
1003	 *
1004	 * The "Case" statement below enables/disable flow control
1005	 * according to the "hw->fc.current_mode" parameter.
1006	 *
1007	 * The possible values of the "fc" parameter are:
1008	 *      0:  Flow control is completely disabled
1009	 *      1:  Rx flow control is enabled (we can receive pause
1010	 *          frames but not send pause frames).
1011	 *      2:  Tx flow control is enabled (we can send pause frames
1012	 *          frames but we do not receive pause frames).
1013	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1014	 *  other:  No other values should be possible at this point.
1015	 */
1016	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1017
1018	switch (hw->fc.current_mode) {
1019	case e1000_fc_none:
1020		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1021		break;
1022	case e1000_fc_rx_pause:
1023		ctrl &= (~E1000_CTRL_TFCE);
1024		ctrl |= E1000_CTRL_RFCE;
1025		break;
1026	case e1000_fc_tx_pause:
1027		ctrl &= (~E1000_CTRL_RFCE);
1028		ctrl |= E1000_CTRL_TFCE;
1029		break;
1030	case e1000_fc_full:
1031		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1032		break;
1033	default:
1034		e_dbg("Flow control param set incorrectly\n");
1035		return -E1000_ERR_CONFIG;
1036	}
1037
1038	ew32(CTRL, ctrl);
1039
1040	return 0;
1041}
1042
1043/**
1044 *  e1000e_config_fc_after_link_up - Configures flow control after link
1045 *  @hw: pointer to the HW structure
1046 *
1047 *  Checks the status of auto-negotiation after link up to ensure that the
1048 *  speed and duplex were not forced.  If the link needed to be forced, then
1049 *  flow control needs to be forced also.  If auto-negotiation is enabled
1050 *  and did not fail, then we configure flow control based on our link
1051 *  partner.
1052 **/
1053s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1054{
1055	struct e1000_mac_info *mac = &hw->mac;
1056	s32 ret_val = 0;
 
1057	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1058	u16 speed, duplex;
1059
1060	/*
1061	 * Check for the case where we have fiber media and auto-neg failed
1062	 * so we had to force link.  In this case, we need to force the
1063	 * configuration of the MAC to match the "fc" parameter.
1064	 */
1065	if (mac->autoneg_failed) {
1066		if (hw->phy.media_type == e1000_media_type_fiber ||
1067		    hw->phy.media_type == e1000_media_type_internal_serdes)
1068			ret_val = e1000e_force_mac_fc(hw);
1069	} else {
1070		if (hw->phy.media_type == e1000_media_type_copper)
1071			ret_val = e1000e_force_mac_fc(hw);
1072	}
1073
1074	if (ret_val) {
1075		e_dbg("Error forcing flow control settings\n");
1076		return ret_val;
1077	}
1078
1079	/*
1080	 * Check for the case where we have copper media and auto-neg is
1081	 * enabled.  In this case, we need to check and see if Auto-Neg
1082	 * has completed, and if so, how the PHY and link partner has
1083	 * flow control configured.
1084	 */
1085	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1086		/*
1087		 * Read the MII Status Register and check to see if AutoNeg
1088		 * has completed.  We read this twice because this reg has
1089		 * some "sticky" (latched) bits.
1090		 */
1091		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1092		if (ret_val)
1093			return ret_val;
1094		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1095		if (ret_val)
1096			return ret_val;
1097
1098		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1099			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1100			return ret_val;
1101		}
1102
1103		/*
1104		 * The AutoNeg process has completed, so we now need to
1105		 * read both the Auto Negotiation Advertisement
1106		 * Register (Address 4) and the Auto_Negotiation Base
1107		 * Page Ability Register (Address 5) to determine how
1108		 * flow control was negotiated.
1109		 */
1110		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1111		if (ret_val)
1112			return ret_val;
1113		ret_val =
1114		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1115		if (ret_val)
1116			return ret_val;
1117
1118		/*
1119		 * Two bits in the Auto Negotiation Advertisement Register
1120		 * (Address 4) and two bits in the Auto Negotiation Base
1121		 * Page Ability Register (Address 5) determine flow control
1122		 * for both the PHY and the link partner.  The following
1123		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1124		 * 1999, describes these PAUSE resolution bits and how flow
1125		 * control is determined based upon these settings.
1126		 * NOTE:  DC = Don't Care
1127		 *
1128		 *   LOCAL DEVICE  |   LINK PARTNER
1129		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1130		 *-------|---------|-------|---------|--------------------
1131		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1132		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1133		 *   0   |    1    |   1   |    0    | e1000_fc_none
1134		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1136		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1137		 *   1   |    1    |   0   |    0    | e1000_fc_none
1138		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1139		 *
1140		 * Are both PAUSE bits set to 1?  If so, this implies
1141		 * Symmetric Flow Control is enabled at both ends.  The
1142		 * ASM_DIR bits are irrelevant per the spec.
1143		 *
1144		 * For Symmetric Flow Control:
1145		 *
1146		 *   LOCAL DEVICE  |   LINK PARTNER
1147		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148		 *-------|---------|-------|---------|--------------------
1149		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1150		 *
1151		 */
1152		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1153		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1154			/*
1155			 * Now we need to check if the user selected Rx ONLY
1156			 * of pause frames.  In this case, we had to advertise
1157			 * FULL flow control because we could not advertise Rx
1158			 * ONLY. Hence, we must now check to see if we need to
1159			 * turn OFF the TRANSMISSION of PAUSE frames.
1160			 */
1161			if (hw->fc.requested_mode == e1000_fc_full) {
1162				hw->fc.current_mode = e1000_fc_full;
1163				e_dbg("Flow Control = FULL.\n");
1164			} else {
1165				hw->fc.current_mode = e1000_fc_rx_pause;
1166				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1167			}
1168		}
1169		/*
1170		 * For receiving PAUSE frames ONLY.
1171		 *
1172		 *   LOCAL DEVICE  |   LINK PARTNER
1173		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1174		 *-------|---------|-------|---------|--------------------
1175		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1176		 */
1177		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1178			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1179			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1180			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1181			hw->fc.current_mode = e1000_fc_tx_pause;
1182			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1183		}
1184		/*
1185		 * For transmitting PAUSE frames ONLY.
1186		 *
1187		 *   LOCAL DEVICE  |   LINK PARTNER
1188		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1189		 *-------|---------|-------|---------|--------------------
1190		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1191		 */
1192		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1193			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1194			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1195			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1196			hw->fc.current_mode = e1000_fc_rx_pause;
1197			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1198		} else {
1199			/*
1200			 * Per the IEEE spec, at this point flow control
1201			 * should be disabled.
1202			 */
1203			hw->fc.current_mode = e1000_fc_none;
1204			e_dbg("Flow Control = NONE.\n");
1205		}
1206
1207		/*
1208		 * Now we need to do one last check...  If we auto-
1209		 * negotiated to HALF DUPLEX, flow control should not be
1210		 * enabled per IEEE 802.3 spec.
1211		 */
1212		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1213		if (ret_val) {
1214			e_dbg("Error getting link speed and duplex\n");
1215			return ret_val;
1216		}
1217
1218		if (duplex == HALF_DUPLEX)
1219			hw->fc.current_mode = e1000_fc_none;
1220
1221		/*
1222		 * Now we call a subroutine to actually force the MAC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223		 * controller to use the correct flow control settings.
1224		 */
 
 
 
 
1225		ret_val = e1000e_force_mac_fc(hw);
1226		if (ret_val) {
1227			e_dbg("Error forcing flow control settings\n");
1228			return ret_val;
1229		}
1230	}
1231
1232	return 0;
1233}
1234
1235/**
1236 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1237 *  @hw: pointer to the HW structure
1238 *  @speed: stores the current speed
1239 *  @duplex: stores the current duplex
1240 *
1241 *  Read the status register for the current speed/duplex and store the current
1242 *  speed and duplex for copper connections.
1243 **/
1244s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1245				       u16 *duplex)
1246{
1247	u32 status;
1248
1249	status = er32(STATUS);
1250	if (status & E1000_STATUS_SPEED_1000)
1251		*speed = SPEED_1000;
1252	else if (status & E1000_STATUS_SPEED_100)
1253		*speed = SPEED_100;
1254	else
1255		*speed = SPEED_10;
1256
1257	if (status & E1000_STATUS_FD)
1258		*duplex = FULL_DUPLEX;
1259	else
1260		*duplex = HALF_DUPLEX;
1261
1262	e_dbg("%u Mbps, %s Duplex\n",
1263	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1264	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1265
1266	return 0;
1267}
1268
1269/**
1270 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1271 *  @hw: pointer to the HW structure
1272 *  @speed: stores the current speed
1273 *  @duplex: stores the current duplex
1274 *
1275 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1276 *  for fiber/serdes links.
1277 **/
1278s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1279					     u16 *duplex)
1280{
1281	*speed = SPEED_1000;
1282	*duplex = FULL_DUPLEX;
1283
1284	return 0;
1285}
1286
1287/**
1288 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1289 *  @hw: pointer to the HW structure
1290 *
1291 *  Acquire the HW semaphore to access the PHY or NVM
1292 **/
1293s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1294{
1295	u32 swsm;
1296	s32 timeout = hw->nvm.word_size + 1;
1297	s32 i = 0;
1298
1299	/* Get the SW semaphore */
1300	while (i < timeout) {
1301		swsm = er32(SWSM);
1302		if (!(swsm & E1000_SWSM_SMBI))
1303			break;
1304
1305		udelay(50);
1306		i++;
1307	}
1308
1309	if (i == timeout) {
1310		e_dbg("Driver can't access device - SMBI bit is set.\n");
1311		return -E1000_ERR_NVM;
1312	}
1313
1314	/* Get the FW semaphore. */
1315	for (i = 0; i < timeout; i++) {
1316		swsm = er32(SWSM);
1317		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1318
1319		/* Semaphore acquired if bit latched */
1320		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1321			break;
1322
1323		udelay(50);
1324	}
1325
1326	if (i == timeout) {
1327		/* Release semaphores */
1328		e1000e_put_hw_semaphore(hw);
1329		e_dbg("Driver can't access the NVM\n");
1330		return -E1000_ERR_NVM;
1331	}
1332
1333	return 0;
1334}
1335
1336/**
1337 *  e1000e_put_hw_semaphore - Release hardware semaphore
1338 *  @hw: pointer to the HW structure
1339 *
1340 *  Release hardware semaphore used to access the PHY or NVM
1341 **/
1342void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1343{
1344	u32 swsm;
1345
1346	swsm = er32(SWSM);
1347	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1348	ew32(SWSM, swsm);
1349}
1350
1351/**
1352 *  e1000e_get_auto_rd_done - Check for auto read completion
1353 *  @hw: pointer to the HW structure
1354 *
1355 *  Check EEPROM for Auto Read done bit.
1356 **/
1357s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1358{
1359	s32 i = 0;
1360
1361	while (i < AUTO_READ_DONE_TIMEOUT) {
1362		if (er32(EECD) & E1000_EECD_AUTO_RD)
1363			break;
1364		usleep_range(1000, 2000);
1365		i++;
1366	}
1367
1368	if (i == AUTO_READ_DONE_TIMEOUT) {
1369		e_dbg("Auto read by HW from NVM has not completed.\n");
1370		return -E1000_ERR_RESET;
1371	}
1372
1373	return 0;
1374}
1375
1376/**
1377 *  e1000e_valid_led_default - Verify a valid default LED config
1378 *  @hw: pointer to the HW structure
1379 *  @data: pointer to the NVM (EEPROM)
1380 *
1381 *  Read the EEPROM for the current default LED configuration.  If the
1382 *  LED configuration is not valid, set to a valid LED configuration.
1383 **/
1384s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1385{
1386	s32 ret_val;
1387
1388	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1389	if (ret_val) {
1390		e_dbg("NVM Read Error\n");
1391		return ret_val;
1392	}
1393
1394	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1395		*data = ID_LED_DEFAULT;
1396
1397	return 0;
1398}
1399
1400/**
1401 *  e1000e_id_led_init_generic -
1402 *  @hw: pointer to the HW structure
1403 *
1404 **/
1405s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1406{
1407	struct e1000_mac_info *mac = &hw->mac;
1408	s32 ret_val;
1409	const u32 ledctl_mask = 0x000000FF;
1410	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1411	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1412	u16 data, i, temp;
1413	const u16 led_mask = 0x0F;
1414
1415	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1416	if (ret_val)
1417		return ret_val;
1418
1419	mac->ledctl_default = er32(LEDCTL);
1420	mac->ledctl_mode1 = mac->ledctl_default;
1421	mac->ledctl_mode2 = mac->ledctl_default;
1422
1423	for (i = 0; i < 4; i++) {
1424		temp = (data >> (i << 2)) & led_mask;
1425		switch (temp) {
1426		case ID_LED_ON1_DEF2:
1427		case ID_LED_ON1_ON2:
1428		case ID_LED_ON1_OFF2:
1429			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1430			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1431			break;
1432		case ID_LED_OFF1_DEF2:
1433		case ID_LED_OFF1_ON2:
1434		case ID_LED_OFF1_OFF2:
1435			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1436			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1437			break;
1438		default:
1439			/* Do nothing */
1440			break;
1441		}
1442		switch (temp) {
1443		case ID_LED_DEF1_ON2:
1444		case ID_LED_ON1_ON2:
1445		case ID_LED_OFF1_ON2:
1446			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1447			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1448			break;
1449		case ID_LED_DEF1_OFF2:
1450		case ID_LED_ON1_OFF2:
1451		case ID_LED_OFF1_OFF2:
1452			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1453			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1454			break;
1455		default:
1456			/* Do nothing */
1457			break;
1458		}
1459	}
1460
1461	return 0;
1462}
1463
1464/**
1465 *  e1000e_setup_led_generic - Configures SW controllable LED
1466 *  @hw: pointer to the HW structure
1467 *
1468 *  This prepares the SW controllable LED for use and saves the current state
1469 *  of the LED so it can be later restored.
1470 **/
1471s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1472{
1473	u32 ledctl;
1474
1475	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1476		return -E1000_ERR_CONFIG;
1477
1478	if (hw->phy.media_type == e1000_media_type_fiber) {
1479		ledctl = er32(LEDCTL);
1480		hw->mac.ledctl_default = ledctl;
1481		/* Turn off LED0 */
1482		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1483			    E1000_LEDCTL_LED0_MODE_MASK);
1484		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1485			   E1000_LEDCTL_LED0_MODE_SHIFT);
1486		ew32(LEDCTL, ledctl);
1487	} else if (hw->phy.media_type == e1000_media_type_copper) {
1488		ew32(LEDCTL, hw->mac.ledctl_mode1);
1489	}
1490
1491	return 0;
1492}
1493
1494/**
1495 *  e1000e_cleanup_led_generic - Set LED config to default operation
1496 *  @hw: pointer to the HW structure
1497 *
1498 *  Remove the current LED configuration and set the LED configuration
1499 *  to the default value, saved from the EEPROM.
1500 **/
1501s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1502{
1503	ew32(LEDCTL, hw->mac.ledctl_default);
1504	return 0;
1505}
1506
1507/**
1508 *  e1000e_blink_led_generic - Blink LED
1509 *  @hw: pointer to the HW structure
1510 *
1511 *  Blink the LEDs which are set to be on.
1512 **/
1513s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1514{
1515	u32 ledctl_blink = 0;
1516	u32 i;
1517
1518	if (hw->phy.media_type == e1000_media_type_fiber) {
1519		/* always blink LED0 for PCI-E fiber */
1520		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1521		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1522	} else {
1523		/*
1524		 * set the blink bit for each LED that's "on" (0x0E)
1525		 * in ledctl_mode2
 
 
1526		 */
1527		ledctl_blink = hw->mac.ledctl_mode2;
1528		for (i = 0; i < 4; i++)
1529			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1530			    E1000_LEDCTL_MODE_LED_ON)
1531				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1532						 (i * 8));
 
 
 
 
 
 
 
 
 
 
1533	}
1534
1535	ew32(LEDCTL, ledctl_blink);
1536
1537	return 0;
1538}
1539
1540/**
1541 *  e1000e_led_on_generic - Turn LED on
1542 *  @hw: pointer to the HW structure
1543 *
1544 *  Turn LED on.
1545 **/
1546s32 e1000e_led_on_generic(struct e1000_hw *hw)
1547{
1548	u32 ctrl;
1549
1550	switch (hw->phy.media_type) {
1551	case e1000_media_type_fiber:
1552		ctrl = er32(CTRL);
1553		ctrl &= ~E1000_CTRL_SWDPIN0;
1554		ctrl |= E1000_CTRL_SWDPIO0;
1555		ew32(CTRL, ctrl);
1556		break;
1557	case e1000_media_type_copper:
1558		ew32(LEDCTL, hw->mac.ledctl_mode2);
1559		break;
1560	default:
1561		break;
1562	}
1563
1564	return 0;
1565}
1566
1567/**
1568 *  e1000e_led_off_generic - Turn LED off
1569 *  @hw: pointer to the HW structure
1570 *
1571 *  Turn LED off.
1572 **/
1573s32 e1000e_led_off_generic(struct e1000_hw *hw)
1574{
1575	u32 ctrl;
1576
1577	switch (hw->phy.media_type) {
1578	case e1000_media_type_fiber:
1579		ctrl = er32(CTRL);
1580		ctrl |= E1000_CTRL_SWDPIN0;
1581		ctrl |= E1000_CTRL_SWDPIO0;
1582		ew32(CTRL, ctrl);
1583		break;
1584	case e1000_media_type_copper:
1585		ew32(LEDCTL, hw->mac.ledctl_mode1);
1586		break;
1587	default:
1588		break;
1589	}
1590
1591	return 0;
1592}
1593
1594/**
1595 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1596 *  @hw: pointer to the HW structure
1597 *  @no_snoop: bitmap of snoop events
1598 *
1599 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1600 **/
1601void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1602{
1603	u32 gcr;
1604
1605	if (no_snoop) {
1606		gcr = er32(GCR);
1607		gcr &= ~(PCIE_NO_SNOOP_ALL);
1608		gcr |= no_snoop;
1609		ew32(GCR, gcr);
1610	}
1611}
1612
1613/**
1614 *  e1000e_disable_pcie_master - Disables PCI-express master access
1615 *  @hw: pointer to the HW structure
1616 *
1617 *  Returns 0 if successful, else returns -10
1618 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1619 *  the master requests to be disabled.
1620 *
1621 *  Disables PCI-Express master access and verifies there are no pending
1622 *  requests.
1623 **/
1624s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1625{
1626	u32 ctrl;
1627	s32 timeout = MASTER_DISABLE_TIMEOUT;
1628
1629	ctrl = er32(CTRL);
1630	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1631	ew32(CTRL, ctrl);
1632
1633	while (timeout) {
1634		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1635			break;
1636		udelay(100);
1637		timeout--;
1638	}
1639
1640	if (!timeout) {
1641		e_dbg("Master requests are pending.\n");
1642		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1643	}
1644
1645	return 0;
1646}
1647
1648/**
1649 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1650 *  @hw: pointer to the HW structure
1651 *
1652 *  Reset the Adaptive Interframe Spacing throttle to default values.
1653 **/
1654void e1000e_reset_adaptive(struct e1000_hw *hw)
1655{
1656	struct e1000_mac_info *mac = &hw->mac;
1657
1658	if (!mac->adaptive_ifs) {
1659		e_dbg("Not in Adaptive IFS mode!\n");
1660		return;
1661	}
1662
1663	mac->current_ifs_val = 0;
1664	mac->ifs_min_val = IFS_MIN;
1665	mac->ifs_max_val = IFS_MAX;
1666	mac->ifs_step_size = IFS_STEP;
1667	mac->ifs_ratio = IFS_RATIO;
1668
1669	mac->in_ifs_mode = false;
1670	ew32(AIT, 0);
1671}
1672
1673/**
1674 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1675 *  @hw: pointer to the HW structure
1676 *
1677 *  Update the Adaptive Interframe Spacing Throttle value based on the
1678 *  time between transmitted packets and time between collisions.
1679 **/
1680void e1000e_update_adaptive(struct e1000_hw *hw)
1681{
1682	struct e1000_mac_info *mac = &hw->mac;
1683
1684	if (!mac->adaptive_ifs) {
1685		e_dbg("Not in Adaptive IFS mode!\n");
1686		return;
1687	}
1688
1689	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1690		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1691			mac->in_ifs_mode = true;
1692			if (mac->current_ifs_val < mac->ifs_max_val) {
1693				if (!mac->current_ifs_val)
1694					mac->current_ifs_val = mac->ifs_min_val;
1695				else
1696					mac->current_ifs_val +=
1697					    mac->ifs_step_size;
1698				ew32(AIT, mac->current_ifs_val);
1699			}
1700		}
1701	} else {
1702		if (mac->in_ifs_mode &&
1703		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1704			mac->current_ifs_val = 0;
1705			mac->in_ifs_mode = false;
1706			ew32(AIT, 0);
1707		}
1708	}
1709}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5
   6/**
   7 *  e1000e_get_bus_info_pcie - Get PCIe bus information
   8 *  @hw: pointer to the HW structure
   9 *
  10 *  Determines and stores the system bus information for a particular
  11 *  network interface.  The following bus information is determined and stored:
  12 *  bus speed, bus width, type (PCIe), and PCIe function.
  13 **/
  14s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  15{
  16	struct e1000_mac_info *mac = &hw->mac;
  17	struct e1000_bus_info *bus = &hw->bus;
  18	struct e1000_adapter *adapter = hw->adapter;
  19	u16 pcie_link_status, cap_offset;
  20
  21	cap_offset = adapter->pdev->pcie_cap;
  22	if (!cap_offset) {
  23		bus->width = e1000_bus_width_unknown;
  24	} else {
  25		pci_read_config_word(adapter->pdev,
  26				     cap_offset + PCIE_LINK_STATUS,
  27				     &pcie_link_status);
  28		bus->width = (enum e1000_bus_width)((pcie_link_status &
  29						     PCIE_LINK_WIDTH_MASK) >>
  30						    PCIE_LINK_WIDTH_SHIFT);
  31	}
  32
  33	mac->ops.set_lan_id(hw);
  34
  35	return 0;
  36}
  37
  38/**
  39 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  40 *
  41 *  @hw: pointer to the HW structure
  42 *
  43 *  Determines the LAN function id by reading memory-mapped registers
  44 *  and swaps the port value if requested.
  45 **/
  46void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  47{
  48	struct e1000_bus_info *bus = &hw->bus;
  49	u32 reg;
  50
  51	/* The status register reports the correct function number
 
  52	 * for the device regardless of function swap state.
  53	 */
  54	reg = er32(STATUS);
  55	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  56}
  57
  58/**
  59 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  60 *  @hw: pointer to the HW structure
  61 *
  62 *  Sets the LAN function id to zero for a single port device.
  63 **/
  64void e1000_set_lan_id_single_port(struct e1000_hw *hw)
  65{
  66	struct e1000_bus_info *bus = &hw->bus;
  67
  68	bus->func = 0;
  69}
  70
  71/**
  72 *  e1000_clear_vfta_generic - Clear VLAN filter table
  73 *  @hw: pointer to the HW structure
  74 *
  75 *  Clears the register array which contains the VLAN filter table by
  76 *  setting all the values to 0.
  77 **/
  78void e1000_clear_vfta_generic(struct e1000_hw *hw)
  79{
  80	u32 offset;
  81
  82	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
  83		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
  84		e1e_flush();
  85	}
  86}
  87
  88/**
  89 *  e1000_write_vfta_generic - Write value to VLAN filter table
  90 *  @hw: pointer to the HW structure
  91 *  @offset: register offset in VLAN filter table
  92 *  @value: register value written to VLAN filter table
  93 *
  94 *  Writes value at the given offset in the register array which stores
  95 *  the VLAN filter table.
  96 **/
  97void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
  98{
  99	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 100	e1e_flush();
 101}
 102
 103/**
 104 *  e1000e_init_rx_addrs - Initialize receive address's
 105 *  @hw: pointer to the HW structure
 106 *  @rar_count: receive address registers
 107 *
 108 *  Setup the receive address registers by setting the base receive address
 109 *  register to the devices MAC address and clearing all the other receive
 110 *  address registers to 0.
 111 **/
 112void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 113{
 114	u32 i;
 115	u8 mac_addr[ETH_ALEN] = { 0 };
 116
 117	/* Setup the receive address */
 118	e_dbg("Programming MAC Address into RAR[0]\n");
 119
 120	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 121
 122	/* Zero out the other (rar_entry_count - 1) receive addresses */
 123	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
 124	for (i = 1; i < rar_count; i++)
 125		hw->mac.ops.rar_set(hw, mac_addr, i);
 126}
 127
 128/**
 129 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 130 *  @hw: pointer to the HW structure
 131 *
 132 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 133 *  can be setup by pre-boot software and must be treated like a permanent
 134 *  address and must override the actual permanent MAC address. If an
 135 *  alternate MAC address is found it is programmed into RAR0, replacing
 136 *  the permanent address that was installed into RAR0 by the Si on reset.
 137 *  This function will return SUCCESS unless it encounters an error while
 138 *  reading the EEPROM.
 139 **/
 140s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 141{
 142	u32 i;
 143	s32 ret_val;
 144	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 145	u8 alt_mac_addr[ETH_ALEN];
 146
 147	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 148	if (ret_val)
 149		return ret_val;
 150
 151	/* not supported on 82573 */
 152	if (hw->mac.type == e1000_82573)
 153		return 0;
 154
 155	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 156				 &nvm_alt_mac_addr_offset);
 157	if (ret_val) {
 158		e_dbg("NVM Read Error\n");
 159		return ret_val;
 160	}
 161
 162	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 163	    (nvm_alt_mac_addr_offset == 0x0000))
 164		/* There is no Alternate MAC Address */
 165		return 0;
 166
 167	if (hw->bus.func == E1000_FUNC_1)
 168		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 169	for (i = 0; i < ETH_ALEN; i += 2) {
 170		offset = nvm_alt_mac_addr_offset + (i >> 1);
 171		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 172		if (ret_val) {
 173			e_dbg("NVM Read Error\n");
 174			return ret_val;
 175		}
 176
 177		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 178		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 179	}
 180
 181	/* if multicast bit is set, the alternate address will not be used */
 182	if (is_multicast_ether_addr(alt_mac_addr)) {
 183		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 184		return 0;
 185	}
 186
 187	/* We have a valid alternate MAC address, and we want to treat it the
 
 188	 * same as the normal permanent MAC address stored by the HW into the
 189	 * RAR. Do this by mapping this address into RAR0.
 190	 */
 191	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 192
 193	return 0;
 194}
 195
 196u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
 197{
 198	return hw->mac.rar_entry_count;
 199}
 200
 201/**
 202 *  e1000e_rar_set_generic - Set receive address register
 203 *  @hw: pointer to the HW structure
 204 *  @addr: pointer to the receive address
 205 *  @index: receive address array register
 206 *
 207 *  Sets the receive address array register at index to the address passed
 208 *  in by addr.
 209 **/
 210int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
 211{
 212	u32 rar_low, rar_high;
 213
 214	/* HW expects these in little endian so we reverse the byte order
 
 215	 * from network order (big endian) to little endian
 216	 */
 217	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
 218		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
 219
 220	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 221
 222	/* If MAC address zero, no need to set the AV bit */
 223	if (rar_low || rar_high)
 224		rar_high |= E1000_RAH_AV;
 225
 226	/* Some bridges will combine consecutive 32-bit writes into
 
 227	 * a single burst write, which will malfunction on some parts.
 228	 * The flushes avoid this.
 229	 */
 230	ew32(RAL(index), rar_low);
 231	e1e_flush();
 232	ew32(RAH(index), rar_high);
 233	e1e_flush();
 234
 235	return 0;
 236}
 237
 238/**
 239 *  e1000_hash_mc_addr - Generate a multicast hash value
 240 *  @hw: pointer to the HW structure
 241 *  @mc_addr: pointer to a multicast address
 242 *
 243 *  Generates a multicast address hash value which is used to determine
 244 *  the multicast filter table array address and new table value.
 245 **/
 246static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 247{
 248	u32 hash_value, hash_mask;
 249	u8 bit_shift = 0;
 250
 251	/* Register count multiplied by bits per register */
 252	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 253
 254	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 
 255	 * where 0xFF would still fall within the hash mask.
 256	 */
 257	while (hash_mask >> bit_shift != 0xFF)
 258		bit_shift++;
 259
 260	/* The portion of the address that is used for the hash table
 
 261	 * is determined by the mc_filter_type setting.
 262	 * The algorithm is such that there is a total of 8 bits of shifting.
 263	 * The bit_shift for a mc_filter_type of 0 represents the number of
 264	 * left-shifts where the MSB of mc_addr[5] would still fall within
 265	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 266	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 267	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 268	 * cases are a variation of this algorithm...essentially raising the
 269	 * number of bits to shift mc_addr[5] left, while still keeping the
 270	 * 8-bit shifting total.
 271	 *
 272	 * For example, given the following Destination MAC Address and an
 273	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 274	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 275	 * values resulting from each mc_filter_type...
 276	 * [0] [1] [2] [3] [4] [5]
 277	 * 01  AA  00  12  34  56
 278	 * LSB           MSB
 279	 *
 280	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 281	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 282	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 283	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 284	 */
 285	switch (hw->mac.mc_filter_type) {
 286	default:
 287	case 0:
 288		break;
 289	case 1:
 290		bit_shift += 1;
 291		break;
 292	case 2:
 293		bit_shift += 2;
 294		break;
 295	case 3:
 296		bit_shift += 4;
 297		break;
 298	}
 299
 300	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 301				   (((u16)mc_addr[5]) << bit_shift)));
 302
 303	return hash_value;
 304}
 305
 306/**
 307 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 308 *  @hw: pointer to the HW structure
 309 *  @mc_addr_list: array of multicast addresses to program
 310 *  @mc_addr_count: number of multicast addresses to program
 311 *
 312 *  Updates entire Multicast Table Array.
 313 *  The caller must have a packed mc_addr_list of multicast addresses.
 314 **/
 315void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 316					u8 *mc_addr_list, u32 mc_addr_count)
 317{
 318	u32 hash_value, hash_bit, hash_reg;
 319	int i;
 320
 321	/* clear mta_shadow */
 322	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 323
 324	/* update mta_shadow from mc_addr_list */
 325	for (i = 0; (u32)i < mc_addr_count; i++) {
 326		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 327
 328		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 329		hash_bit = hash_value & 0x1F;
 330
 331		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 332		mc_addr_list += (ETH_ALEN);
 333	}
 334
 335	/* replace the entire MTA table */
 336	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 337		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 338	e1e_flush();
 339}
 340
 341/**
 342 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 343 *  @hw: pointer to the HW structure
 344 *
 345 *  Clears the base hardware counters by reading the counter registers.
 346 **/
 347void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 348{
 349	er32(CRCERRS);
 350	er32(SYMERRS);
 351	er32(MPC);
 352	er32(SCC);
 353	er32(ECOL);
 354	er32(MCC);
 355	er32(LATECOL);
 356	er32(COLC);
 357	er32(DC);
 358	er32(SEC);
 359	er32(RLEC);
 360	er32(XONRXC);
 361	er32(XONTXC);
 362	er32(XOFFRXC);
 363	er32(XOFFTXC);
 364	er32(FCRUC);
 365	er32(GPRC);
 366	er32(BPRC);
 367	er32(MPRC);
 368	er32(GPTC);
 369	er32(GORCL);
 370	er32(GORCH);
 371	er32(GOTCL);
 372	er32(GOTCH);
 373	er32(RNBC);
 374	er32(RUC);
 375	er32(RFC);
 376	er32(ROC);
 377	er32(RJC);
 378	er32(TORL);
 379	er32(TORH);
 380	er32(TOTL);
 381	er32(TOTH);
 382	er32(TPR);
 383	er32(TPT);
 384	er32(MPTC);
 385	er32(BPTC);
 386}
 387
 388/**
 389 *  e1000e_check_for_copper_link - Check for link (Copper)
 390 *  @hw: pointer to the HW structure
 391 *
 392 *  Checks to see of the link status of the hardware has changed.  If a
 393 *  change in link status has been detected, then we read the PHY registers
 394 *  to get the current speed/duplex if link exists.
 395 **/
 396s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 397{
 398	struct e1000_mac_info *mac = &hw->mac;
 399	s32 ret_val;
 400	bool link;
 401
 402	/* We only want to go out to the PHY registers to see if Auto-Neg
 
 403	 * has completed and/or if our link status has changed.  The
 404	 * get_link_status flag is set upon receiving a Link Status
 405	 * Change or Rx Sequence Error interrupt.
 406	 */
 407	if (!mac->get_link_status)
 408		return 0;
 409	mac->get_link_status = false;
 410
 411	/* First we want to see if the MII Status Register reports
 
 412	 * link.  If so, then we want to get the current speed/duplex
 413	 * of the PHY.
 414	 */
 415	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 416	if (ret_val || !link)
 417		goto out;
 
 
 
 
 
 418
 419	/* Check if there was DownShift, must be checked
 
 420	 * immediately after link-up
 421	 */
 422	e1000e_check_downshift(hw);
 423
 424	/* If we are forcing speed/duplex, then we simply return since
 
 425	 * we have already determined whether we have link or not.
 426	 */
 427	if (!mac->autoneg)
 428		return -E1000_ERR_CONFIG;
 429
 430	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 
 431	 * of MAC speed/duplex configuration.  So we only need to
 432	 * configure Collision Distance in the MAC.
 433	 */
 434	mac->ops.config_collision_dist(hw);
 435
 436	/* Configure Flow Control now that Auto-Neg has completed.
 
 437	 * First, we need to restore the desired flow control
 438	 * settings because we may have had to re-autoneg with a
 439	 * different link partner.
 440	 */
 441	ret_val = e1000e_config_fc_after_link_up(hw);
 442	if (ret_val)
 443		e_dbg("Error configuring flow control\n");
 444
 445	return ret_val;
 446
 447out:
 448	mac->get_link_status = true;
 449	return ret_val;
 450}
 451
 452/**
 453 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 454 *  @hw: pointer to the HW structure
 455 *
 456 *  Checks for link up on the hardware.  If link is not up and we have
 457 *  a signal, then we need to force link up.
 458 **/
 459s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 460{
 461	struct e1000_mac_info *mac = &hw->mac;
 462	u32 rxcw;
 463	u32 ctrl;
 464	u32 status;
 465	s32 ret_val;
 466
 467	ctrl = er32(CTRL);
 468	status = er32(STATUS);
 469	rxcw = er32(RXCW);
 470
 471	/* If we don't have link (auto-negotiation failed or link partner
 
 472	 * cannot auto-negotiate), the cable is plugged in (we have signal),
 473	 * and our link partner is not trying to auto-negotiate with us (we
 474	 * are receiving idles or data), we need to force link up. We also
 475	 * need to give auto-negotiation time to complete, in case the cable
 476	 * was just plugged in. The autoneg_failed flag does this.
 477	 */
 478	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 479	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
 480	    !(rxcw & E1000_RXCW_C)) {
 481		if (!mac->autoneg_failed) {
 482			mac->autoneg_failed = true;
 483			return 0;
 484		}
 485		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 486
 487		/* Disable auto-negotiation in the TXCW register */
 488		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 489
 490		/* Force link-up and also force full-duplex. */
 491		ctrl = er32(CTRL);
 492		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 493		ew32(CTRL, ctrl);
 494
 495		/* Configure Flow Control after forcing link up. */
 496		ret_val = e1000e_config_fc_after_link_up(hw);
 497		if (ret_val) {
 498			e_dbg("Error configuring flow control\n");
 499			return ret_val;
 500		}
 501	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 502		/* If we are forcing link and we are receiving /C/ ordered
 
 503		 * sets, re-enable auto-negotiation in the TXCW register
 504		 * and disable forced link in the Device Control register
 505		 * in an attempt to auto-negotiate with our link partner.
 506		 */
 507		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 508		ew32(TXCW, mac->txcw);
 509		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 510
 511		mac->serdes_has_link = true;
 512	}
 513
 514	return 0;
 515}
 516
 517/**
 518 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 519 *  @hw: pointer to the HW structure
 520 *
 521 *  Checks for link up on the hardware.  If link is not up and we have
 522 *  a signal, then we need to force link up.
 523 **/
 524s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 525{
 526	struct e1000_mac_info *mac = &hw->mac;
 527	u32 rxcw;
 528	u32 ctrl;
 529	u32 status;
 530	s32 ret_val;
 531
 532	ctrl = er32(CTRL);
 533	status = er32(STATUS);
 534	rxcw = er32(RXCW);
 535
 536	/* If we don't have link (auto-negotiation failed or link partner
 
 537	 * cannot auto-negotiate), and our link partner is not trying to
 538	 * auto-negotiate with us (we are receiving idles or data),
 539	 * we need to force link up. We also need to give auto-negotiation
 540	 * time to complete.
 541	 */
 542	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 543	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
 544		if (!mac->autoneg_failed) {
 545			mac->autoneg_failed = true;
 546			return 0;
 547		}
 548		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 549
 550		/* Disable auto-negotiation in the TXCW register */
 551		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 552
 553		/* Force link-up and also force full-duplex. */
 554		ctrl = er32(CTRL);
 555		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 556		ew32(CTRL, ctrl);
 557
 558		/* Configure Flow Control after forcing link up. */
 559		ret_val = e1000e_config_fc_after_link_up(hw);
 560		if (ret_val) {
 561			e_dbg("Error configuring flow control\n");
 562			return ret_val;
 563		}
 564	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 565		/* If we are forcing link and we are receiving /C/ ordered
 
 566		 * sets, re-enable auto-negotiation in the TXCW register
 567		 * and disable forced link in the Device Control register
 568		 * in an attempt to auto-negotiate with our link partner.
 569		 */
 570		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 571		ew32(TXCW, mac->txcw);
 572		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 573
 574		mac->serdes_has_link = true;
 575	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 576		/* If we force link for non-auto-negotiation switch, check
 
 577		 * link status based on MAC synchronization for internal
 578		 * serdes media type.
 579		 */
 580		/* SYNCH bit and IV bit are sticky. */
 581		usleep_range(10, 20);
 582		rxcw = er32(RXCW);
 583		if (rxcw & E1000_RXCW_SYNCH) {
 584			if (!(rxcw & E1000_RXCW_IV)) {
 585				mac->serdes_has_link = true;
 586				e_dbg("SERDES: Link up - forced.\n");
 587			}
 588		} else {
 589			mac->serdes_has_link = false;
 590			e_dbg("SERDES: Link down - force failed.\n");
 591		}
 592	}
 593
 594	if (E1000_TXCW_ANE & er32(TXCW)) {
 595		status = er32(STATUS);
 596		if (status & E1000_STATUS_LU) {
 597			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
 598			usleep_range(10, 20);
 599			rxcw = er32(RXCW);
 600			if (rxcw & E1000_RXCW_SYNCH) {
 601				if (!(rxcw & E1000_RXCW_IV)) {
 602					mac->serdes_has_link = true;
 603					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
 604				} else {
 605					mac->serdes_has_link = false;
 606					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
 607				}
 608			} else {
 609				mac->serdes_has_link = false;
 610				e_dbg("SERDES: Link down - no sync.\n");
 611			}
 612		} else {
 613			mac->serdes_has_link = false;
 614			e_dbg("SERDES: Link down - autoneg failed\n");
 615		}
 616	}
 617
 618	return 0;
 619}
 620
 621/**
 622 *  e1000_set_default_fc_generic - Set flow control default values
 623 *  @hw: pointer to the HW structure
 624 *
 625 *  Read the EEPROM for the default values for flow control and store the
 626 *  values.
 627 **/
 628static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 629{
 630	s32 ret_val;
 631	u16 nvm_data;
 632
 633	/* Read and store word 0x0F of the EEPROM. This word contains bits
 
 634	 * that determine the hardware's default PAUSE (flow control) mode,
 635	 * a bit that determines whether the HW defaults to enabling or
 636	 * disabling auto-negotiation, and the direction of the
 637	 * SW defined pins. If there is no SW over-ride of the flow
 638	 * control setting, then the variable hw->fc will
 639	 * be initialized based on a value in the EEPROM.
 640	 */
 641	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 642
 643	if (ret_val) {
 644		e_dbg("NVM Read Error\n");
 645		return ret_val;
 646	}
 647
 648	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
 649		hw->fc.requested_mode = e1000_fc_none;
 650	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 651		hw->fc.requested_mode = e1000_fc_tx_pause;
 652	else
 653		hw->fc.requested_mode = e1000_fc_full;
 654
 655	return 0;
 656}
 657
 658/**
 659 *  e1000e_setup_link_generic - Setup flow control and link settings
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Determines which flow control settings to use, then configures flow
 663 *  control.  Calls the appropriate media-specific link configuration
 664 *  function.  Assuming the adapter has a valid link partner, a valid link
 665 *  should be established.  Assumes the hardware has previously been reset
 666 *  and the transmitter and receiver are not enabled.
 667 **/
 668s32 e1000e_setup_link_generic(struct e1000_hw *hw)
 669{
 670	s32 ret_val;
 671
 672	/* In the case of the phy reset being blocked, we already have a link.
 
 673	 * We do not need to set it up again.
 674	 */
 675	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
 676		return 0;
 677
 678	/* If requested flow control is set to default, set flow control
 
 679	 * based on the EEPROM flow control settings.
 680	 */
 681	if (hw->fc.requested_mode == e1000_fc_default) {
 682		ret_val = e1000_set_default_fc_generic(hw);
 683		if (ret_val)
 684			return ret_val;
 685	}
 686
 687	/* Save off the requested flow control mode for use later.  Depending
 
 688	 * on the link partner's capabilities, we may or may not use this mode.
 689	 */
 690	hw->fc.current_mode = hw->fc.requested_mode;
 691
 692	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 693
 694	/* Call the necessary media_type subroutine to configure the link. */
 695	ret_val = hw->mac.ops.setup_physical_interface(hw);
 696	if (ret_val)
 697		return ret_val;
 698
 699	/* Initialize the flow control address, type, and PAUSE timer
 
 700	 * registers to their default values.  This is done even if flow
 701	 * control is disabled, because it does not hurt anything to
 702	 * initialize these registers.
 703	 */
 704	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 705	ew32(FCT, FLOW_CONTROL_TYPE);
 706	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 707	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 708
 709	ew32(FCTTV, hw->fc.pause_time);
 710
 711	return e1000e_set_fc_watermarks(hw);
 712}
 713
 714/**
 715 *  e1000_commit_fc_settings_generic - Configure flow control
 716 *  @hw: pointer to the HW structure
 717 *
 718 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 719 *  base on the flow control settings in e1000_mac_info.
 720 **/
 721static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 722{
 723	struct e1000_mac_info *mac = &hw->mac;
 724	u32 txcw;
 725
 726	/* Check for a software override of the flow control settings, and
 
 727	 * setup the device accordingly.  If auto-negotiation is enabled, then
 728	 * software will have to set the "PAUSE" bits to the correct value in
 729	 * the Transmit Config Word Register (TXCW) and re-start auto-
 730	 * negotiation.  However, if auto-negotiation is disabled, then
 731	 * software will have to manually configure the two flow control enable
 732	 * bits in the CTRL register.
 733	 *
 734	 * The possible values of the "fc" parameter are:
 735	 *      0:  Flow control is completely disabled
 736	 *      1:  Rx flow control is enabled (we can receive pause frames,
 737	 *          but not send pause frames).
 738	 *      2:  Tx flow control is enabled (we can send pause frames but we
 739	 *          do not support receiving pause frames).
 740	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 741	 */
 742	switch (hw->fc.current_mode) {
 743	case e1000_fc_none:
 744		/* Flow control completely disabled by a software over-ride. */
 745		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 746		break;
 747	case e1000_fc_rx_pause:
 748		/* Rx Flow control is enabled and Tx Flow control is disabled
 
 749		 * by a software over-ride. Since there really isn't a way to
 750		 * advertise that we are capable of Rx Pause ONLY, we will
 751		 * advertise that we support both symmetric and asymmetric Rx
 752		 * PAUSE.  Later, we will disable the adapter's ability to send
 753		 * PAUSE frames.
 754		 */
 755		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 756		break;
 757	case e1000_fc_tx_pause:
 758		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 
 759		 * by a software over-ride.
 760		 */
 761		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 762		break;
 763	case e1000_fc_full:
 764		/* Flow control (both Rx and Tx) is enabled by a software
 
 765		 * over-ride.
 766		 */
 767		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 768		break;
 769	default:
 770		e_dbg("Flow control param set incorrectly\n");
 771		return -E1000_ERR_CONFIG;
 
 772	}
 773
 774	ew32(TXCW, txcw);
 775	mac->txcw = txcw;
 776
 777	return 0;
 778}
 779
 780/**
 781 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 782 *  @hw: pointer to the HW structure
 783 *
 784 *  Polls for link up by reading the status register, if link fails to come
 785 *  up with auto-negotiation, then the link is forced if a signal is detected.
 786 **/
 787static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 788{
 789	struct e1000_mac_info *mac = &hw->mac;
 790	u32 i, status;
 791	s32 ret_val;
 792
 793	/* If we have a signal (the cable is plugged in, or assumed true for
 
 794	 * serdes media) then poll for a "Link-Up" indication in the Device
 795	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 796	 * seconds (Auto-negotiation should complete in less than 500
 797	 * milliseconds even if the other end is doing it in SW).
 798	 */
 799	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 800		usleep_range(10000, 11000);
 801		status = er32(STATUS);
 802		if (status & E1000_STATUS_LU)
 803			break;
 804	}
 805	if (i == FIBER_LINK_UP_LIMIT) {
 806		e_dbg("Never got a valid link from auto-neg!!!\n");
 807		mac->autoneg_failed = true;
 808		/* AutoNeg failed to achieve a link, so we'll call
 
 809		 * mac->check_for_link. This routine will force the
 810		 * link up if we detect a signal. This will allow us to
 811		 * communicate with non-autonegotiating link partners.
 812		 */
 813		ret_val = mac->ops.check_for_link(hw);
 814		if (ret_val) {
 815			e_dbg("Error while checking for link\n");
 816			return ret_val;
 817		}
 818		mac->autoneg_failed = false;
 819	} else {
 820		mac->autoneg_failed = false;
 821		e_dbg("Valid Link Found\n");
 822	}
 823
 824	return 0;
 825}
 826
 827/**
 828 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 829 *  @hw: pointer to the HW structure
 830 *
 831 *  Configures collision distance and flow control for fiber and serdes
 832 *  links.  Upon successful setup, poll for link.
 833 **/
 834s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 835{
 836	u32 ctrl;
 837	s32 ret_val;
 838
 839	ctrl = er32(CTRL);
 840
 841	/* Take the link out of reset */
 842	ctrl &= ~E1000_CTRL_LRST;
 843
 844	hw->mac.ops.config_collision_dist(hw);
 845
 846	ret_val = e1000_commit_fc_settings_generic(hw);
 847	if (ret_val)
 848		return ret_val;
 849
 850	/* Since auto-negotiation is enabled, take the link out of reset (the
 
 851	 * link will be in reset, because we previously reset the chip). This
 852	 * will restart auto-negotiation.  If auto-negotiation is successful
 853	 * then the link-up status bit will be set and the flow control enable
 854	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 855	 */
 856	e_dbg("Auto-negotiation enabled\n");
 857
 858	ew32(CTRL, ctrl);
 859	e1e_flush();
 860	usleep_range(1000, 2000);
 861
 862	/* For these adapters, the SW definable pin 1 is set when the optics
 
 863	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
 864	 * indication.
 865	 */
 866	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 867	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 868		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 869	} else {
 870		e_dbg("No signal detected\n");
 871	}
 872
 873	return ret_val;
 874}
 875
 876/**
 877 *  e1000e_config_collision_dist_generic - Configure collision distance
 878 *  @hw: pointer to the HW structure
 879 *
 880 *  Configures the collision distance to the default value and is used
 881 *  during link setup.
 882 **/
 883void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
 884{
 885	u32 tctl;
 886
 887	tctl = er32(TCTL);
 888
 889	tctl &= ~E1000_TCTL_COLD;
 890	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 891
 892	ew32(TCTL, tctl);
 893	e1e_flush();
 894}
 895
 896/**
 897 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 898 *  @hw: pointer to the HW structure
 899 *
 900 *  Sets the flow control high/low threshold (watermark) registers.  If
 901 *  flow control XON frame transmission is enabled, then set XON frame
 902 *  transmission as well.
 903 **/
 904s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 905{
 906	u32 fcrtl = 0, fcrth = 0;
 907
 908	/* Set the flow control receive threshold registers.  Normally,
 
 909	 * these registers will be set to a default threshold that may be
 910	 * adjusted later by the driver's runtime code.  However, if the
 911	 * ability to transmit pause frames is not enabled, then these
 912	 * registers will be set to 0.
 913	 */
 914	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 915		/* We need to set up the Receive Threshold high and low water
 
 916		 * marks as well as (optionally) enabling the transmission of
 917		 * XON frames.
 918		 */
 919		fcrtl = hw->fc.low_water;
 920		if (hw->fc.send_xon)
 921			fcrtl |= E1000_FCRTL_XONE;
 922
 923		fcrth = hw->fc.high_water;
 924	}
 925	ew32(FCRTL, fcrtl);
 926	ew32(FCRTH, fcrth);
 927
 928	return 0;
 929}
 930
 931/**
 932 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 933 *  @hw: pointer to the HW structure
 934 *
 935 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 936 *  device control register to reflect the adapter settings.  TFCE and RFCE
 937 *  need to be explicitly set by software when a copper PHY is used because
 938 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 939 *  also configure these bits when link is forced on a fiber connection.
 940 **/
 941s32 e1000e_force_mac_fc(struct e1000_hw *hw)
 942{
 943	u32 ctrl;
 944
 945	ctrl = er32(CTRL);
 946
 947	/* Because we didn't get link via the internal auto-negotiation
 
 948	 * mechanism (we either forced link or we got link via PHY
 949	 * auto-neg), we have to manually enable/disable transmit an
 950	 * receive flow control.
 951	 *
 952	 * The "Case" statement below enables/disable flow control
 953	 * according to the "hw->fc.current_mode" parameter.
 954	 *
 955	 * The possible values of the "fc" parameter are:
 956	 *      0:  Flow control is completely disabled
 957	 *      1:  Rx flow control is enabled (we can receive pause
 958	 *          frames but not send pause frames).
 959	 *      2:  Tx flow control is enabled (we can send pause frames
 960	 *          but we do not receive pause frames).
 961	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
 962	 *  other:  No other values should be possible at this point.
 963	 */
 964	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 965
 966	switch (hw->fc.current_mode) {
 967	case e1000_fc_none:
 968		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 969		break;
 970	case e1000_fc_rx_pause:
 971		ctrl &= (~E1000_CTRL_TFCE);
 972		ctrl |= E1000_CTRL_RFCE;
 973		break;
 974	case e1000_fc_tx_pause:
 975		ctrl &= (~E1000_CTRL_RFCE);
 976		ctrl |= E1000_CTRL_TFCE;
 977		break;
 978	case e1000_fc_full:
 979		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 980		break;
 981	default:
 982		e_dbg("Flow control param set incorrectly\n");
 983		return -E1000_ERR_CONFIG;
 984	}
 985
 986	ew32(CTRL, ctrl);
 987
 988	return 0;
 989}
 990
 991/**
 992 *  e1000e_config_fc_after_link_up - Configures flow control after link
 993 *  @hw: pointer to the HW structure
 994 *
 995 *  Checks the status of auto-negotiation after link up to ensure that the
 996 *  speed and duplex were not forced.  If the link needed to be forced, then
 997 *  flow control needs to be forced also.  If auto-negotiation is enabled
 998 *  and did not fail, then we configure flow control based on our link
 999 *  partner.
1000 **/
1001s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1002{
1003	struct e1000_mac_info *mac = &hw->mac;
1004	s32 ret_val = 0;
1005	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1006	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1007	u16 speed, duplex;
1008
1009	/* Check for the case where we have fiber media and auto-neg failed
 
1010	 * so we had to force link.  In this case, we need to force the
1011	 * configuration of the MAC to match the "fc" parameter.
1012	 */
1013	if (mac->autoneg_failed) {
1014		if (hw->phy.media_type == e1000_media_type_fiber ||
1015		    hw->phy.media_type == e1000_media_type_internal_serdes)
1016			ret_val = e1000e_force_mac_fc(hw);
1017	} else {
1018		if (hw->phy.media_type == e1000_media_type_copper)
1019			ret_val = e1000e_force_mac_fc(hw);
1020	}
1021
1022	if (ret_val) {
1023		e_dbg("Error forcing flow control settings\n");
1024		return ret_val;
1025	}
1026
1027	/* Check for the case where we have copper media and auto-neg is
 
1028	 * enabled.  In this case, we need to check and see if Auto-Neg
1029	 * has completed, and if so, how the PHY and link partner has
1030	 * flow control configured.
1031	 */
1032	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1033		/* Read the MII Status Register and check to see if AutoNeg
 
1034		 * has completed.  We read this twice because this reg has
1035		 * some "sticky" (latched) bits.
1036		 */
1037		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1038		if (ret_val)
1039			return ret_val;
1040		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1041		if (ret_val)
1042			return ret_val;
1043
1044		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1045			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1046			return ret_val;
1047		}
1048
1049		/* The AutoNeg process has completed, so we now need to
 
1050		 * read both the Auto Negotiation Advertisement
1051		 * Register (Address 4) and the Auto_Negotiation Base
1052		 * Page Ability Register (Address 5) to determine how
1053		 * flow control was negotiated.
1054		 */
1055		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1056		if (ret_val)
1057			return ret_val;
1058		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
 
1059		if (ret_val)
1060			return ret_val;
1061
1062		/* Two bits in the Auto Negotiation Advertisement Register
 
1063		 * (Address 4) and two bits in the Auto Negotiation Base
1064		 * Page Ability Register (Address 5) determine flow control
1065		 * for both the PHY and the link partner.  The following
1066		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067		 * 1999, describes these PAUSE resolution bits and how flow
1068		 * control is determined based upon these settings.
1069		 * NOTE:  DC = Don't Care
1070		 *
1071		 *   LOCAL DEVICE  |   LINK PARTNER
1072		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073		 *-------|---------|-------|---------|--------------------
1074		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1075		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1076		 *   0   |    1    |   1   |    0    | e1000_fc_none
1077		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1078		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1079		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1080		 *   1   |    1    |   0   |    0    | e1000_fc_none
1081		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1082		 *
1083		 * Are both PAUSE bits set to 1?  If so, this implies
1084		 * Symmetric Flow Control is enabled at both ends.  The
1085		 * ASM_DIR bits are irrelevant per the spec.
1086		 *
1087		 * For Symmetric Flow Control:
1088		 *
1089		 *   LOCAL DEVICE  |   LINK PARTNER
1090		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091		 *-------|---------|-------|---------|--------------------
1092		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1093		 *
1094		 */
1095		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1096		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1097			/* Now we need to check if the user selected Rx ONLY
 
1098			 * of pause frames.  In this case, we had to advertise
1099			 * FULL flow control because we could not advertise Rx
1100			 * ONLY. Hence, we must now check to see if we need to
1101			 * turn OFF the TRANSMISSION of PAUSE frames.
1102			 */
1103			if (hw->fc.requested_mode == e1000_fc_full) {
1104				hw->fc.current_mode = e1000_fc_full;
1105				e_dbg("Flow Control = FULL.\n");
1106			} else {
1107				hw->fc.current_mode = e1000_fc_rx_pause;
1108				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1109			}
1110		}
1111		/* For receiving PAUSE frames ONLY.
 
1112		 *
1113		 *   LOCAL DEVICE  |   LINK PARTNER
1114		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1115		 *-------|---------|-------|---------|--------------------
1116		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1117		 */
1118		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1119			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1120			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1121			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1122			hw->fc.current_mode = e1000_fc_tx_pause;
1123			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1124		}
1125		/* For transmitting PAUSE frames ONLY.
 
1126		 *
1127		 *   LOCAL DEVICE  |   LINK PARTNER
1128		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1129		 *-------|---------|-------|---------|--------------------
1130		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1131		 */
1132		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1133			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1134			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1135			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1136			hw->fc.current_mode = e1000_fc_rx_pause;
1137			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1138		} else {
1139			/* Per the IEEE spec, at this point flow control
 
1140			 * should be disabled.
1141			 */
1142			hw->fc.current_mode = e1000_fc_none;
1143			e_dbg("Flow Control = NONE.\n");
1144		}
1145
1146		/* Now we need to do one last check...  If we auto-
 
1147		 * negotiated to HALF DUPLEX, flow control should not be
1148		 * enabled per IEEE 802.3 spec.
1149		 */
1150		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1151		if (ret_val) {
1152			e_dbg("Error getting link speed and duplex\n");
1153			return ret_val;
1154		}
1155
1156		if (duplex == HALF_DUPLEX)
1157			hw->fc.current_mode = e1000_fc_none;
1158
1159		/* Now we call a subroutine to actually force the MAC
1160		 * controller to use the correct flow control settings.
1161		 */
1162		ret_val = e1000e_force_mac_fc(hw);
1163		if (ret_val) {
1164			e_dbg("Error forcing flow control settings\n");
1165			return ret_val;
1166		}
1167	}
1168
1169	/* Check for the case where we have SerDes media and auto-neg is
1170	 * enabled.  In this case, we need to check and see if Auto-Neg
1171	 * has completed, and if so, how the PHY and link partner has
1172	 * flow control configured.
1173	 */
1174	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1175	    mac->autoneg) {
1176		/* Read the PCS_LSTS and check to see if AutoNeg
1177		 * has completed.
1178		 */
1179		pcs_status_reg = er32(PCS_LSTAT);
1180
1181		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1182			e_dbg("PCS Auto Neg has not completed.\n");
1183			return ret_val;
1184		}
1185
1186		/* The AutoNeg process has completed, so we now need to
1187		 * read both the Auto Negotiation Advertisement
1188		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1189		 * Page Ability Register (PCS_LPAB) to determine how
1190		 * flow control was negotiated.
1191		 */
1192		pcs_adv_reg = er32(PCS_ANADV);
1193		pcs_lp_ability_reg = er32(PCS_LPAB);
1194
1195		/* Two bits in the Auto Negotiation Advertisement Register
1196		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1197		 * Page Ability Register (PCS_LPAB) determine flow control
1198		 * for both the PHY and the link partner.  The following
1199		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1200		 * 1999, describes these PAUSE resolution bits and how flow
1201		 * control is determined based upon these settings.
1202		 * NOTE:  DC = Don't Care
1203		 *
1204		 *   LOCAL DEVICE  |   LINK PARTNER
1205		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1206		 *-------|---------|-------|---------|--------------------
1207		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1208		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1209		 *   0   |    1    |   1   |    0    | e1000_fc_none
1210		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1211		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1212		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1213		 *   1   |    1    |   0   |    0    | e1000_fc_none
1214		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1215		 *
1216		 * Are both PAUSE bits set to 1?  If so, this implies
1217		 * Symmetric Flow Control is enabled at both ends.  The
1218		 * ASM_DIR bits are irrelevant per the spec.
1219		 *
1220		 * For Symmetric Flow Control:
1221		 *
1222		 *   LOCAL DEVICE  |   LINK PARTNER
1223		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1224		 *-------|---------|-------|---------|--------------------
1225		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1226		 *
1227		 */
1228		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1229		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1230			/* Now we need to check if the user selected Rx ONLY
1231			 * of pause frames.  In this case, we had to advertise
1232			 * FULL flow control because we could not advertise Rx
1233			 * ONLY. Hence, we must now check to see if we need to
1234			 * turn OFF the TRANSMISSION of PAUSE frames.
1235			 */
1236			if (hw->fc.requested_mode == e1000_fc_full) {
1237				hw->fc.current_mode = e1000_fc_full;
1238				e_dbg("Flow Control = FULL.\n");
1239			} else {
1240				hw->fc.current_mode = e1000_fc_rx_pause;
1241				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1242			}
1243		}
1244		/* For receiving PAUSE frames ONLY.
1245		 *
1246		 *   LOCAL DEVICE  |   LINK PARTNER
1247		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1248		 *-------|---------|-------|---------|--------------------
1249		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1250		 */
1251		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1252			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1253			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1254			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1255			hw->fc.current_mode = e1000_fc_tx_pause;
1256			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1257		}
1258		/* For transmitting PAUSE frames ONLY.
1259		 *
1260		 *   LOCAL DEVICE  |   LINK PARTNER
1261		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1262		 *-------|---------|-------|---------|--------------------
1263		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1264		 */
1265		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1266			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1267			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1268			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1269			hw->fc.current_mode = e1000_fc_rx_pause;
1270			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1271		} else {
1272			/* Per the IEEE spec, at this point flow control
1273			 * should be disabled.
1274			 */
1275			hw->fc.current_mode = e1000_fc_none;
1276			e_dbg("Flow Control = NONE.\n");
1277		}
1278
1279		/* Now we call a subroutine to actually force the MAC
1280		 * controller to use the correct flow control settings.
1281		 */
1282		pcs_ctrl_reg = er32(PCS_LCTL);
1283		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1284		ew32(PCS_LCTL, pcs_ctrl_reg);
1285
1286		ret_val = e1000e_force_mac_fc(hw);
1287		if (ret_val) {
1288			e_dbg("Error forcing flow control settings\n");
1289			return ret_val;
1290		}
1291	}
1292
1293	return 0;
1294}
1295
1296/**
1297 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1298 *  @hw: pointer to the HW structure
1299 *  @speed: stores the current speed
1300 *  @duplex: stores the current duplex
1301 *
1302 *  Read the status register for the current speed/duplex and store the current
1303 *  speed and duplex for copper connections.
1304 **/
1305s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1306				       u16 *duplex)
1307{
1308	u32 status;
1309
1310	status = er32(STATUS);
1311	if (status & E1000_STATUS_SPEED_1000)
1312		*speed = SPEED_1000;
1313	else if (status & E1000_STATUS_SPEED_100)
1314		*speed = SPEED_100;
1315	else
1316		*speed = SPEED_10;
1317
1318	if (status & E1000_STATUS_FD)
1319		*duplex = FULL_DUPLEX;
1320	else
1321		*duplex = HALF_DUPLEX;
1322
1323	e_dbg("%u Mbps, %s Duplex\n",
1324	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1325	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1326
1327	return 0;
1328}
1329
1330/**
1331 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1332 *  @hw: pointer to the HW structure
1333 *  @speed: stores the current speed
1334 *  @duplex: stores the current duplex
1335 *
1336 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1337 *  for fiber/serdes links.
1338 **/
1339s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1340					     *hw, u16 *speed, u16 *duplex)
1341{
1342	*speed = SPEED_1000;
1343	*duplex = FULL_DUPLEX;
1344
1345	return 0;
1346}
1347
1348/**
1349 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1350 *  @hw: pointer to the HW structure
1351 *
1352 *  Acquire the HW semaphore to access the PHY or NVM
1353 **/
1354s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1355{
1356	u32 swsm;
1357	s32 timeout = hw->nvm.word_size + 1;
1358	s32 i = 0;
1359
1360	/* Get the SW semaphore */
1361	while (i < timeout) {
1362		swsm = er32(SWSM);
1363		if (!(swsm & E1000_SWSM_SMBI))
1364			break;
1365
1366		udelay(100);
1367		i++;
1368	}
1369
1370	if (i == timeout) {
1371		e_dbg("Driver can't access device - SMBI bit is set.\n");
1372		return -E1000_ERR_NVM;
1373	}
1374
1375	/* Get the FW semaphore. */
1376	for (i = 0; i < timeout; i++) {
1377		swsm = er32(SWSM);
1378		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1379
1380		/* Semaphore acquired if bit latched */
1381		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1382			break;
1383
1384		udelay(100);
1385	}
1386
1387	if (i == timeout) {
1388		/* Release semaphores */
1389		e1000e_put_hw_semaphore(hw);
1390		e_dbg("Driver can't access the NVM\n");
1391		return -E1000_ERR_NVM;
1392	}
1393
1394	return 0;
1395}
1396
1397/**
1398 *  e1000e_put_hw_semaphore - Release hardware semaphore
1399 *  @hw: pointer to the HW structure
1400 *
1401 *  Release hardware semaphore used to access the PHY or NVM
1402 **/
1403void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1404{
1405	u32 swsm;
1406
1407	swsm = er32(SWSM);
1408	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1409	ew32(SWSM, swsm);
1410}
1411
1412/**
1413 *  e1000e_get_auto_rd_done - Check for auto read completion
1414 *  @hw: pointer to the HW structure
1415 *
1416 *  Check EEPROM for Auto Read done bit.
1417 **/
1418s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1419{
1420	s32 i = 0;
1421
1422	while (i < AUTO_READ_DONE_TIMEOUT) {
1423		if (er32(EECD) & E1000_EECD_AUTO_RD)
1424			break;
1425		usleep_range(1000, 2000);
1426		i++;
1427	}
1428
1429	if (i == AUTO_READ_DONE_TIMEOUT) {
1430		e_dbg("Auto read by HW from NVM has not completed.\n");
1431		return -E1000_ERR_RESET;
1432	}
1433
1434	return 0;
1435}
1436
1437/**
1438 *  e1000e_valid_led_default - Verify a valid default LED config
1439 *  @hw: pointer to the HW structure
1440 *  @data: pointer to the NVM (EEPROM)
1441 *
1442 *  Read the EEPROM for the current default LED configuration.  If the
1443 *  LED configuration is not valid, set to a valid LED configuration.
1444 **/
1445s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1446{
1447	s32 ret_val;
1448
1449	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1450	if (ret_val) {
1451		e_dbg("NVM Read Error\n");
1452		return ret_val;
1453	}
1454
1455	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1456		*data = ID_LED_DEFAULT;
1457
1458	return 0;
1459}
1460
1461/**
1462 *  e1000e_id_led_init_generic -
1463 *  @hw: pointer to the HW structure
1464 *
1465 **/
1466s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1467{
1468	struct e1000_mac_info *mac = &hw->mac;
1469	s32 ret_val;
1470	const u32 ledctl_mask = 0x000000FF;
1471	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1472	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1473	u16 data, i, temp;
1474	const u16 led_mask = 0x0F;
1475
1476	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1477	if (ret_val)
1478		return ret_val;
1479
1480	mac->ledctl_default = er32(LEDCTL);
1481	mac->ledctl_mode1 = mac->ledctl_default;
1482	mac->ledctl_mode2 = mac->ledctl_default;
1483
1484	for (i = 0; i < 4; i++) {
1485		temp = (data >> (i << 2)) & led_mask;
1486		switch (temp) {
1487		case ID_LED_ON1_DEF2:
1488		case ID_LED_ON1_ON2:
1489		case ID_LED_ON1_OFF2:
1490			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1491			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1492			break;
1493		case ID_LED_OFF1_DEF2:
1494		case ID_LED_OFF1_ON2:
1495		case ID_LED_OFF1_OFF2:
1496			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1497			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1498			break;
1499		default:
1500			/* Do nothing */
1501			break;
1502		}
1503		switch (temp) {
1504		case ID_LED_DEF1_ON2:
1505		case ID_LED_ON1_ON2:
1506		case ID_LED_OFF1_ON2:
1507			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1508			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1509			break;
1510		case ID_LED_DEF1_OFF2:
1511		case ID_LED_ON1_OFF2:
1512		case ID_LED_OFF1_OFF2:
1513			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1514			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1515			break;
1516		default:
1517			/* Do nothing */
1518			break;
1519		}
1520	}
1521
1522	return 0;
1523}
1524
1525/**
1526 *  e1000e_setup_led_generic - Configures SW controllable LED
1527 *  @hw: pointer to the HW structure
1528 *
1529 *  This prepares the SW controllable LED for use and saves the current state
1530 *  of the LED so it can be later restored.
1531 **/
1532s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1533{
1534	u32 ledctl;
1535
1536	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1537		return -E1000_ERR_CONFIG;
1538
1539	if (hw->phy.media_type == e1000_media_type_fiber) {
1540		ledctl = er32(LEDCTL);
1541		hw->mac.ledctl_default = ledctl;
1542		/* Turn off LED0 */
1543		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1544			    E1000_LEDCTL_LED0_MODE_MASK);
1545		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1546			   E1000_LEDCTL_LED0_MODE_SHIFT);
1547		ew32(LEDCTL, ledctl);
1548	} else if (hw->phy.media_type == e1000_media_type_copper) {
1549		ew32(LEDCTL, hw->mac.ledctl_mode1);
1550	}
1551
1552	return 0;
1553}
1554
1555/**
1556 *  e1000e_cleanup_led_generic - Set LED config to default operation
1557 *  @hw: pointer to the HW structure
1558 *
1559 *  Remove the current LED configuration and set the LED configuration
1560 *  to the default value, saved from the EEPROM.
1561 **/
1562s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1563{
1564	ew32(LEDCTL, hw->mac.ledctl_default);
1565	return 0;
1566}
1567
1568/**
1569 *  e1000e_blink_led_generic - Blink LED
1570 *  @hw: pointer to the HW structure
1571 *
1572 *  Blink the LEDs which are set to be on.
1573 **/
1574s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1575{
1576	u32 ledctl_blink = 0;
1577	u32 i;
1578
1579	if (hw->phy.media_type == e1000_media_type_fiber) {
1580		/* always blink LED0 for PCI-E fiber */
1581		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1582		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1583	} else {
1584		/* Set the blink bit for each LED that's "on" (0x0E)
1585		 * (or "off" if inverted) in ledctl_mode2.  The blink
1586		 * logic in hardware only works when mode is set to "on"
1587		 * so it must be changed accordingly when the mode is
1588		 * "off" and inverted.
1589		 */
1590		ledctl_blink = hw->mac.ledctl_mode2;
1591		for (i = 0; i < 32; i += 8) {
1592			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1593			    E1000_LEDCTL_LED0_MODE_MASK;
1594			u32 led_default = hw->mac.ledctl_default >> i;
1595
1596			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1597			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1598			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1599			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1600				ledctl_blink &=
1601				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1602				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1603						 E1000_LEDCTL_MODE_LED_ON) << i;
1604			}
1605		}
1606	}
1607
1608	ew32(LEDCTL, ledctl_blink);
1609
1610	return 0;
1611}
1612
1613/**
1614 *  e1000e_led_on_generic - Turn LED on
1615 *  @hw: pointer to the HW structure
1616 *
1617 *  Turn LED on.
1618 **/
1619s32 e1000e_led_on_generic(struct e1000_hw *hw)
1620{
1621	u32 ctrl;
1622
1623	switch (hw->phy.media_type) {
1624	case e1000_media_type_fiber:
1625		ctrl = er32(CTRL);
1626		ctrl &= ~E1000_CTRL_SWDPIN0;
1627		ctrl |= E1000_CTRL_SWDPIO0;
1628		ew32(CTRL, ctrl);
1629		break;
1630	case e1000_media_type_copper:
1631		ew32(LEDCTL, hw->mac.ledctl_mode2);
1632		break;
1633	default:
1634		break;
1635	}
1636
1637	return 0;
1638}
1639
1640/**
1641 *  e1000e_led_off_generic - Turn LED off
1642 *  @hw: pointer to the HW structure
1643 *
1644 *  Turn LED off.
1645 **/
1646s32 e1000e_led_off_generic(struct e1000_hw *hw)
1647{
1648	u32 ctrl;
1649
1650	switch (hw->phy.media_type) {
1651	case e1000_media_type_fiber:
1652		ctrl = er32(CTRL);
1653		ctrl |= E1000_CTRL_SWDPIN0;
1654		ctrl |= E1000_CTRL_SWDPIO0;
1655		ew32(CTRL, ctrl);
1656		break;
1657	case e1000_media_type_copper:
1658		ew32(LEDCTL, hw->mac.ledctl_mode1);
1659		break;
1660	default:
1661		break;
1662	}
1663
1664	return 0;
1665}
1666
1667/**
1668 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1669 *  @hw: pointer to the HW structure
1670 *  @no_snoop: bitmap of snoop events
1671 *
1672 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1673 **/
1674void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1675{
1676	u32 gcr;
1677
1678	if (no_snoop) {
1679		gcr = er32(GCR);
1680		gcr &= ~(PCIE_NO_SNOOP_ALL);
1681		gcr |= no_snoop;
1682		ew32(GCR, gcr);
1683	}
1684}
1685
1686/**
1687 *  e1000e_disable_pcie_master - Disables PCI-express master access
1688 *  @hw: pointer to the HW structure
1689 *
1690 *  Returns 0 if successful, else returns -10
1691 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1692 *  the master requests to be disabled.
1693 *
1694 *  Disables PCI-Express master access and verifies there are no pending
1695 *  requests.
1696 **/
1697s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1698{
1699	u32 ctrl;
1700	s32 timeout = MASTER_DISABLE_TIMEOUT;
1701
1702	ctrl = er32(CTRL);
1703	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1704	ew32(CTRL, ctrl);
1705
1706	while (timeout) {
1707		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1708			break;
1709		usleep_range(100, 200);
1710		timeout--;
1711	}
1712
1713	if (!timeout) {
1714		e_dbg("Master requests are pending.\n");
1715		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1716	}
1717
1718	return 0;
1719}
1720
1721/**
1722 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1723 *  @hw: pointer to the HW structure
1724 *
1725 *  Reset the Adaptive Interframe Spacing throttle to default values.
1726 **/
1727void e1000e_reset_adaptive(struct e1000_hw *hw)
1728{
1729	struct e1000_mac_info *mac = &hw->mac;
1730
1731	if (!mac->adaptive_ifs) {
1732		e_dbg("Not in Adaptive IFS mode!\n");
1733		return;
1734	}
1735
1736	mac->current_ifs_val = 0;
1737	mac->ifs_min_val = IFS_MIN;
1738	mac->ifs_max_val = IFS_MAX;
1739	mac->ifs_step_size = IFS_STEP;
1740	mac->ifs_ratio = IFS_RATIO;
1741
1742	mac->in_ifs_mode = false;
1743	ew32(AIT, 0);
1744}
1745
1746/**
1747 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1748 *  @hw: pointer to the HW structure
1749 *
1750 *  Update the Adaptive Interframe Spacing Throttle value based on the
1751 *  time between transmitted packets and time between collisions.
1752 **/
1753void e1000e_update_adaptive(struct e1000_hw *hw)
1754{
1755	struct e1000_mac_info *mac = &hw->mac;
1756
1757	if (!mac->adaptive_ifs) {
1758		e_dbg("Not in Adaptive IFS mode!\n");
1759		return;
1760	}
1761
1762	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1763		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1764			mac->in_ifs_mode = true;
1765			if (mac->current_ifs_val < mac->ifs_max_val) {
1766				if (!mac->current_ifs_val)
1767					mac->current_ifs_val = mac->ifs_min_val;
1768				else
1769					mac->current_ifs_val +=
1770					    mac->ifs_step_size;
1771				ew32(AIT, mac->current_ifs_val);
1772			}
1773		}
1774	} else {
1775		if (mac->in_ifs_mode &&
1776		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1777			mac->current_ifs_val = 0;
1778			mac->in_ifs_mode = false;
1779			ew32(AIT, 0);
1780		}
1781	}
1782}