Loading...
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 * e1000e_get_bus_info_pcie - Get PCIe bus information
33 * @hw: pointer to the HW structure
34 *
35 * Determines and stores the system bus information for a particular
36 * network interface. The following bus information is determined and stored:
37 * bus speed, bus width, type (PCIe), and PCIe function.
38 **/
39s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40{
41 struct e1000_mac_info *mac = &hw->mac;
42 struct e1000_bus_info *bus = &hw->bus;
43 struct e1000_adapter *adapter = hw->adapter;
44 u16 pcie_link_status, cap_offset;
45
46 cap_offset = adapter->pdev->pcie_cap;
47 if (!cap_offset) {
48 bus->width = e1000_bus_width_unknown;
49 } else {
50 pci_read_config_word(adapter->pdev,
51 cap_offset + PCIE_LINK_STATUS,
52 &pcie_link_status);
53 bus->width = (enum e1000_bus_width)((pcie_link_status &
54 PCIE_LINK_WIDTH_MASK) >>
55 PCIE_LINK_WIDTH_SHIFT);
56 }
57
58 mac->ops.set_lan_id(hw);
59
60 return 0;
61}
62
63/**
64 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65 *
66 * @hw: pointer to the HW structure
67 *
68 * Determines the LAN function id by reading memory-mapped registers
69 * and swaps the port value if requested.
70 **/
71void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72{
73 struct e1000_bus_info *bus = &hw->bus;
74 u32 reg;
75
76 /*
77 * The status register reports the correct function number
78 * for the device regardless of function swap state.
79 */
80 reg = er32(STATUS);
81 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
82}
83
84/**
85 * e1000_set_lan_id_single_port - Set LAN id for a single port device
86 * @hw: pointer to the HW structure
87 *
88 * Sets the LAN function id to zero for a single port device.
89 **/
90void e1000_set_lan_id_single_port(struct e1000_hw *hw)
91{
92 struct e1000_bus_info *bus = &hw->bus;
93
94 bus->func = 0;
95}
96
97/**
98 * e1000_clear_vfta_generic - Clear VLAN filter table
99 * @hw: pointer to the HW structure
100 *
101 * Clears the register array which contains the VLAN filter table by
102 * setting all the values to 0.
103 **/
104void e1000_clear_vfta_generic(struct e1000_hw *hw)
105{
106 u32 offset;
107
108 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110 e1e_flush();
111 }
112}
113
114/**
115 * e1000_write_vfta_generic - Write value to VLAN filter table
116 * @hw: pointer to the HW structure
117 * @offset: register offset in VLAN filter table
118 * @value: register value written to VLAN filter table
119 *
120 * Writes value at the given offset in the register array which stores
121 * the VLAN filter table.
122 **/
123void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124{
125 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126 e1e_flush();
127}
128
129/**
130 * e1000e_init_rx_addrs - Initialize receive address's
131 * @hw: pointer to the HW structure
132 * @rar_count: receive address registers
133 *
134 * Setup the receive address registers by setting the base receive address
135 * register to the devices MAC address and clearing all the other receive
136 * address registers to 0.
137 **/
138void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
139{
140 u32 i;
141 u8 mac_addr[ETH_ALEN] = { 0 };
142
143 /* Setup the receive address */
144 e_dbg("Programming MAC Address into RAR[0]\n");
145
146 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
147
148 /* Zero out the other (rar_entry_count - 1) receive addresses */
149 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150 for (i = 1; i < rar_count; i++)
151 hw->mac.ops.rar_set(hw, mac_addr, i);
152}
153
154/**
155 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 * @hw: pointer to the HW structure
157 *
158 * Checks the nvm for an alternate MAC address. An alternate MAC address
159 * can be setup by pre-boot software and must be treated like a permanent
160 * address and must override the actual permanent MAC address. If an
161 * alternate MAC address is found it is programmed into RAR0, replacing
162 * the permanent address that was installed into RAR0 by the Si on reset.
163 * This function will return SUCCESS unless it encounters an error while
164 * reading the EEPROM.
165 **/
166s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
167{
168 u32 i;
169 s32 ret_val = 0;
170 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171 u8 alt_mac_addr[ETH_ALEN];
172
173 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174 if (ret_val)
175 return ret_val;
176
177 /* not supported on 82573 */
178 if (hw->mac.type == e1000_82573)
179 return 0;
180
181 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182 &nvm_alt_mac_addr_offset);
183 if (ret_val) {
184 e_dbg("NVM Read Error\n");
185 return ret_val;
186 }
187
188 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189 (nvm_alt_mac_addr_offset == 0x0000))
190 /* There is no Alternate MAC Address */
191 return 0;
192
193 if (hw->bus.func == E1000_FUNC_1)
194 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195 for (i = 0; i < ETH_ALEN; i += 2) {
196 offset = nvm_alt_mac_addr_offset + (i >> 1);
197 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198 if (ret_val) {
199 e_dbg("NVM Read Error\n");
200 return ret_val;
201 }
202
203 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205 }
206
207 /* if multicast bit is set, the alternate address will not be used */
208 if (is_multicast_ether_addr(alt_mac_addr)) {
209 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210 return 0;
211 }
212
213 /*
214 * We have a valid alternate MAC address, and we want to treat it the
215 * same as the normal permanent MAC address stored by the HW into the
216 * RAR. Do this by mapping this address into RAR0.
217 */
218 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
219
220 return 0;
221}
222
223/**
224 * e1000e_rar_set_generic - Set receive address register
225 * @hw: pointer to the HW structure
226 * @addr: pointer to the receive address
227 * @index: receive address array register
228 *
229 * Sets the receive address array register at index to the address passed
230 * in by addr.
231 **/
232void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
233{
234 u32 rar_low, rar_high;
235
236 /*
237 * HW expects these in little endian so we reverse the byte order
238 * from network order (big endian) to little endian
239 */
240 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
241 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
242
243 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
244
245 /* If MAC address zero, no need to set the AV bit */
246 if (rar_low || rar_high)
247 rar_high |= E1000_RAH_AV;
248
249 /*
250 * Some bridges will combine consecutive 32-bit writes into
251 * a single burst write, which will malfunction on some parts.
252 * The flushes avoid this.
253 */
254 ew32(RAL(index), rar_low);
255 e1e_flush();
256 ew32(RAH(index), rar_high);
257 e1e_flush();
258}
259
260/**
261 * e1000_hash_mc_addr - Generate a multicast hash value
262 * @hw: pointer to the HW structure
263 * @mc_addr: pointer to a multicast address
264 *
265 * Generates a multicast address hash value which is used to determine
266 * the multicast filter table array address and new table value.
267 **/
268static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
269{
270 u32 hash_value, hash_mask;
271 u8 bit_shift = 0;
272
273 /* Register count multiplied by bits per register */
274 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
275
276 /*
277 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
278 * where 0xFF would still fall within the hash mask.
279 */
280 while (hash_mask >> bit_shift != 0xFF)
281 bit_shift++;
282
283 /*
284 * The portion of the address that is used for the hash table
285 * is determined by the mc_filter_type setting.
286 * The algorithm is such that there is a total of 8 bits of shifting.
287 * The bit_shift for a mc_filter_type of 0 represents the number of
288 * left-shifts where the MSB of mc_addr[5] would still fall within
289 * the hash_mask. Case 0 does this exactly. Since there are a total
290 * of 8 bits of shifting, then mc_addr[4] will shift right the
291 * remaining number of bits. Thus 8 - bit_shift. The rest of the
292 * cases are a variation of this algorithm...essentially raising the
293 * number of bits to shift mc_addr[5] left, while still keeping the
294 * 8-bit shifting total.
295 *
296 * For example, given the following Destination MAC Address and an
297 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
298 * we can see that the bit_shift for case 0 is 4. These are the hash
299 * values resulting from each mc_filter_type...
300 * [0] [1] [2] [3] [4] [5]
301 * 01 AA 00 12 34 56
302 * LSB MSB
303 *
304 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
305 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
306 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
307 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
308 */
309 switch (hw->mac.mc_filter_type) {
310 default:
311 case 0:
312 break;
313 case 1:
314 bit_shift += 1;
315 break;
316 case 2:
317 bit_shift += 2;
318 break;
319 case 3:
320 bit_shift += 4;
321 break;
322 }
323
324 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
325 (((u16)mc_addr[5]) << bit_shift)));
326
327 return hash_value;
328}
329
330/**
331 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
332 * @hw: pointer to the HW structure
333 * @mc_addr_list: array of multicast addresses to program
334 * @mc_addr_count: number of multicast addresses to program
335 *
336 * Updates entire Multicast Table Array.
337 * The caller must have a packed mc_addr_list of multicast addresses.
338 **/
339void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
340 u8 *mc_addr_list, u32 mc_addr_count)
341{
342 u32 hash_value, hash_bit, hash_reg;
343 int i;
344
345 /* clear mta_shadow */
346 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
347
348 /* update mta_shadow from mc_addr_list */
349 for (i = 0; (u32)i < mc_addr_count; i++) {
350 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
351
352 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
353 hash_bit = hash_value & 0x1F;
354
355 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
356 mc_addr_list += (ETH_ALEN);
357 }
358
359 /* replace the entire MTA table */
360 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
361 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
362 e1e_flush();
363}
364
365/**
366 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
367 * @hw: pointer to the HW structure
368 *
369 * Clears the base hardware counters by reading the counter registers.
370 **/
371void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
372{
373 er32(CRCERRS);
374 er32(SYMERRS);
375 er32(MPC);
376 er32(SCC);
377 er32(ECOL);
378 er32(MCC);
379 er32(LATECOL);
380 er32(COLC);
381 er32(DC);
382 er32(SEC);
383 er32(RLEC);
384 er32(XONRXC);
385 er32(XONTXC);
386 er32(XOFFRXC);
387 er32(XOFFTXC);
388 er32(FCRUC);
389 er32(GPRC);
390 er32(BPRC);
391 er32(MPRC);
392 er32(GPTC);
393 er32(GORCL);
394 er32(GORCH);
395 er32(GOTCL);
396 er32(GOTCH);
397 er32(RNBC);
398 er32(RUC);
399 er32(RFC);
400 er32(ROC);
401 er32(RJC);
402 er32(TORL);
403 er32(TORH);
404 er32(TOTL);
405 er32(TOTH);
406 er32(TPR);
407 er32(TPT);
408 er32(MPTC);
409 er32(BPTC);
410}
411
412/**
413 * e1000e_check_for_copper_link - Check for link (Copper)
414 * @hw: pointer to the HW structure
415 *
416 * Checks to see of the link status of the hardware has changed. If a
417 * change in link status has been detected, then we read the PHY registers
418 * to get the current speed/duplex if link exists.
419 **/
420s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
421{
422 struct e1000_mac_info *mac = &hw->mac;
423 s32 ret_val;
424 bool link;
425
426 /*
427 * We only want to go out to the PHY registers to see if Auto-Neg
428 * has completed and/or if our link status has changed. The
429 * get_link_status flag is set upon receiving a Link Status
430 * Change or Rx Sequence Error interrupt.
431 */
432 if (!mac->get_link_status)
433 return 0;
434
435 /*
436 * First we want to see if the MII Status Register reports
437 * link. If so, then we want to get the current speed/duplex
438 * of the PHY.
439 */
440 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
441 if (ret_val)
442 return ret_val;
443
444 if (!link)
445 return 0; /* No link detected */
446
447 mac->get_link_status = false;
448
449 /*
450 * Check if there was DownShift, must be checked
451 * immediately after link-up
452 */
453 e1000e_check_downshift(hw);
454
455 /*
456 * If we are forcing speed/duplex, then we simply return since
457 * we have already determined whether we have link or not.
458 */
459 if (!mac->autoneg)
460 return -E1000_ERR_CONFIG;
461
462 /*
463 * Auto-Neg is enabled. Auto Speed Detection takes care
464 * of MAC speed/duplex configuration. So we only need to
465 * configure Collision Distance in the MAC.
466 */
467 mac->ops.config_collision_dist(hw);
468
469 /*
470 * Configure Flow Control now that Auto-Neg has completed.
471 * First, we need to restore the desired flow control
472 * settings because we may have had to re-autoneg with a
473 * different link partner.
474 */
475 ret_val = e1000e_config_fc_after_link_up(hw);
476 if (ret_val)
477 e_dbg("Error configuring flow control\n");
478
479 return ret_val;
480}
481
482/**
483 * e1000e_check_for_fiber_link - Check for link (Fiber)
484 * @hw: pointer to the HW structure
485 *
486 * Checks for link up on the hardware. If link is not up and we have
487 * a signal, then we need to force link up.
488 **/
489s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
490{
491 struct e1000_mac_info *mac = &hw->mac;
492 u32 rxcw;
493 u32 ctrl;
494 u32 status;
495 s32 ret_val;
496
497 ctrl = er32(CTRL);
498 status = er32(STATUS);
499 rxcw = er32(RXCW);
500
501 /*
502 * If we don't have link (auto-negotiation failed or link partner
503 * cannot auto-negotiate), the cable is plugged in (we have signal),
504 * and our link partner is not trying to auto-negotiate with us (we
505 * are receiving idles or data), we need to force link up. We also
506 * need to give auto-negotiation time to complete, in case the cable
507 * was just plugged in. The autoneg_failed flag does this.
508 */
509 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
510 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
511 !(rxcw & E1000_RXCW_C)) {
512 if (!mac->autoneg_failed) {
513 mac->autoneg_failed = true;
514 return 0;
515 }
516 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
517
518 /* Disable auto-negotiation in the TXCW register */
519 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
520
521 /* Force link-up and also force full-duplex. */
522 ctrl = er32(CTRL);
523 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
524 ew32(CTRL, ctrl);
525
526 /* Configure Flow Control after forcing link up. */
527 ret_val = e1000e_config_fc_after_link_up(hw);
528 if (ret_val) {
529 e_dbg("Error configuring flow control\n");
530 return ret_val;
531 }
532 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
533 /*
534 * If we are forcing link and we are receiving /C/ ordered
535 * sets, re-enable auto-negotiation in the TXCW register
536 * and disable forced link in the Device Control register
537 * in an attempt to auto-negotiate with our link partner.
538 */
539 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
540 ew32(TXCW, mac->txcw);
541 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
542
543 mac->serdes_has_link = true;
544 }
545
546 return 0;
547}
548
549/**
550 * e1000e_check_for_serdes_link - Check for link (Serdes)
551 * @hw: pointer to the HW structure
552 *
553 * Checks for link up on the hardware. If link is not up and we have
554 * a signal, then we need to force link up.
555 **/
556s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
557{
558 struct e1000_mac_info *mac = &hw->mac;
559 u32 rxcw;
560 u32 ctrl;
561 u32 status;
562 s32 ret_val;
563
564 ctrl = er32(CTRL);
565 status = er32(STATUS);
566 rxcw = er32(RXCW);
567
568 /*
569 * If we don't have link (auto-negotiation failed or link partner
570 * cannot auto-negotiate), and our link partner is not trying to
571 * auto-negotiate with us (we are receiving idles or data),
572 * we need to force link up. We also need to give auto-negotiation
573 * time to complete.
574 */
575 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
576 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
577 if (!mac->autoneg_failed) {
578 mac->autoneg_failed = true;
579 return 0;
580 }
581 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
582
583 /* Disable auto-negotiation in the TXCW register */
584 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
585
586 /* Force link-up and also force full-duplex. */
587 ctrl = er32(CTRL);
588 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
589 ew32(CTRL, ctrl);
590
591 /* Configure Flow Control after forcing link up. */
592 ret_val = e1000e_config_fc_after_link_up(hw);
593 if (ret_val) {
594 e_dbg("Error configuring flow control\n");
595 return ret_val;
596 }
597 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
598 /*
599 * If we are forcing link and we are receiving /C/ ordered
600 * sets, re-enable auto-negotiation in the TXCW register
601 * and disable forced link in the Device Control register
602 * in an attempt to auto-negotiate with our link partner.
603 */
604 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
605 ew32(TXCW, mac->txcw);
606 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
607
608 mac->serdes_has_link = true;
609 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
610 /*
611 * If we force link for non-auto-negotiation switch, check
612 * link status based on MAC synchronization for internal
613 * serdes media type.
614 */
615 /* SYNCH bit and IV bit are sticky. */
616 udelay(10);
617 rxcw = er32(RXCW);
618 if (rxcw & E1000_RXCW_SYNCH) {
619 if (!(rxcw & E1000_RXCW_IV)) {
620 mac->serdes_has_link = true;
621 e_dbg("SERDES: Link up - forced.\n");
622 }
623 } else {
624 mac->serdes_has_link = false;
625 e_dbg("SERDES: Link down - force failed.\n");
626 }
627 }
628
629 if (E1000_TXCW_ANE & er32(TXCW)) {
630 status = er32(STATUS);
631 if (status & E1000_STATUS_LU) {
632 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
633 udelay(10);
634 rxcw = er32(RXCW);
635 if (rxcw & E1000_RXCW_SYNCH) {
636 if (!(rxcw & E1000_RXCW_IV)) {
637 mac->serdes_has_link = true;
638 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
639 } else {
640 mac->serdes_has_link = false;
641 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
642 }
643 } else {
644 mac->serdes_has_link = false;
645 e_dbg("SERDES: Link down - no sync.\n");
646 }
647 } else {
648 mac->serdes_has_link = false;
649 e_dbg("SERDES: Link down - autoneg failed\n");
650 }
651 }
652
653 return 0;
654}
655
656/**
657 * e1000_set_default_fc_generic - Set flow control default values
658 * @hw: pointer to the HW structure
659 *
660 * Read the EEPROM for the default values for flow control and store the
661 * values.
662 **/
663static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
664{
665 s32 ret_val;
666 u16 nvm_data;
667
668 /*
669 * Read and store word 0x0F of the EEPROM. This word contains bits
670 * that determine the hardware's default PAUSE (flow control) mode,
671 * a bit that determines whether the HW defaults to enabling or
672 * disabling auto-negotiation, and the direction of the
673 * SW defined pins. If there is no SW over-ride of the flow
674 * control setting, then the variable hw->fc will
675 * be initialized based on a value in the EEPROM.
676 */
677 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
678
679 if (ret_val) {
680 e_dbg("NVM Read Error\n");
681 return ret_val;
682 }
683
684 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
685 hw->fc.requested_mode = e1000_fc_none;
686 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
687 hw->fc.requested_mode = e1000_fc_tx_pause;
688 else
689 hw->fc.requested_mode = e1000_fc_full;
690
691 return 0;
692}
693
694/**
695 * e1000e_setup_link_generic - Setup flow control and link settings
696 * @hw: pointer to the HW structure
697 *
698 * Determines which flow control settings to use, then configures flow
699 * control. Calls the appropriate media-specific link configuration
700 * function. Assuming the adapter has a valid link partner, a valid link
701 * should be established. Assumes the hardware has previously been reset
702 * and the transmitter and receiver are not enabled.
703 **/
704s32 e1000e_setup_link_generic(struct e1000_hw *hw)
705{
706 s32 ret_val;
707
708 /*
709 * In the case of the phy reset being blocked, we already have a link.
710 * We do not need to set it up again.
711 */
712 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
713 return 0;
714
715 /*
716 * If requested flow control is set to default, set flow control
717 * based on the EEPROM flow control settings.
718 */
719 if (hw->fc.requested_mode == e1000_fc_default) {
720 ret_val = e1000_set_default_fc_generic(hw);
721 if (ret_val)
722 return ret_val;
723 }
724
725 /*
726 * Save off the requested flow control mode for use later. Depending
727 * on the link partner's capabilities, we may or may not use this mode.
728 */
729 hw->fc.current_mode = hw->fc.requested_mode;
730
731 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
732
733 /* Call the necessary media_type subroutine to configure the link. */
734 ret_val = hw->mac.ops.setup_physical_interface(hw);
735 if (ret_val)
736 return ret_val;
737
738 /*
739 * Initialize the flow control address, type, and PAUSE timer
740 * registers to their default values. This is done even if flow
741 * control is disabled, because it does not hurt anything to
742 * initialize these registers.
743 */
744 e_dbg("Initializing the Flow Control address, type and timer regs\n");
745 ew32(FCT, FLOW_CONTROL_TYPE);
746 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
747 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
748
749 ew32(FCTTV, hw->fc.pause_time);
750
751 return e1000e_set_fc_watermarks(hw);
752}
753
754/**
755 * e1000_commit_fc_settings_generic - Configure flow control
756 * @hw: pointer to the HW structure
757 *
758 * Write the flow control settings to the Transmit Config Word Register (TXCW)
759 * base on the flow control settings in e1000_mac_info.
760 **/
761static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
762{
763 struct e1000_mac_info *mac = &hw->mac;
764 u32 txcw;
765
766 /*
767 * Check for a software override of the flow control settings, and
768 * setup the device accordingly. If auto-negotiation is enabled, then
769 * software will have to set the "PAUSE" bits to the correct value in
770 * the Transmit Config Word Register (TXCW) and re-start auto-
771 * negotiation. However, if auto-negotiation is disabled, then
772 * software will have to manually configure the two flow control enable
773 * bits in the CTRL register.
774 *
775 * The possible values of the "fc" parameter are:
776 * 0: Flow control is completely disabled
777 * 1: Rx flow control is enabled (we can receive pause frames,
778 * but not send pause frames).
779 * 2: Tx flow control is enabled (we can send pause frames but we
780 * do not support receiving pause frames).
781 * 3: Both Rx and Tx flow control (symmetric) are enabled.
782 */
783 switch (hw->fc.current_mode) {
784 case e1000_fc_none:
785 /* Flow control completely disabled by a software over-ride. */
786 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
787 break;
788 case e1000_fc_rx_pause:
789 /*
790 * Rx Flow control is enabled and Tx Flow control is disabled
791 * by a software over-ride. Since there really isn't a way to
792 * advertise that we are capable of Rx Pause ONLY, we will
793 * advertise that we support both symmetric and asymmetric Rx
794 * PAUSE. Later, we will disable the adapter's ability to send
795 * PAUSE frames.
796 */
797 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
798 break;
799 case e1000_fc_tx_pause:
800 /*
801 * Tx Flow control is enabled, and Rx Flow control is disabled,
802 * by a software over-ride.
803 */
804 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
805 break;
806 case e1000_fc_full:
807 /*
808 * Flow control (both Rx and Tx) is enabled by a software
809 * over-ride.
810 */
811 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
812 break;
813 default:
814 e_dbg("Flow control param set incorrectly\n");
815 return -E1000_ERR_CONFIG;
816 break;
817 }
818
819 ew32(TXCW, txcw);
820 mac->txcw = txcw;
821
822 return 0;
823}
824
825/**
826 * e1000_poll_fiber_serdes_link_generic - Poll for link up
827 * @hw: pointer to the HW structure
828 *
829 * Polls for link up by reading the status register, if link fails to come
830 * up with auto-negotiation, then the link is forced if a signal is detected.
831 **/
832static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
833{
834 struct e1000_mac_info *mac = &hw->mac;
835 u32 i, status;
836 s32 ret_val;
837
838 /*
839 * If we have a signal (the cable is plugged in, or assumed true for
840 * serdes media) then poll for a "Link-Up" indication in the Device
841 * Status Register. Time-out if a link isn't seen in 500 milliseconds
842 * seconds (Auto-negotiation should complete in less than 500
843 * milliseconds even if the other end is doing it in SW).
844 */
845 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
846 usleep_range(10000, 20000);
847 status = er32(STATUS);
848 if (status & E1000_STATUS_LU)
849 break;
850 }
851 if (i == FIBER_LINK_UP_LIMIT) {
852 e_dbg("Never got a valid link from auto-neg!!!\n");
853 mac->autoneg_failed = true;
854 /*
855 * AutoNeg failed to achieve a link, so we'll call
856 * mac->check_for_link. This routine will force the
857 * link up if we detect a signal. This will allow us to
858 * communicate with non-autonegotiating link partners.
859 */
860 ret_val = mac->ops.check_for_link(hw);
861 if (ret_val) {
862 e_dbg("Error while checking for link\n");
863 return ret_val;
864 }
865 mac->autoneg_failed = false;
866 } else {
867 mac->autoneg_failed = false;
868 e_dbg("Valid Link Found\n");
869 }
870
871 return 0;
872}
873
874/**
875 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
876 * @hw: pointer to the HW structure
877 *
878 * Configures collision distance and flow control for fiber and serdes
879 * links. Upon successful setup, poll for link.
880 **/
881s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
882{
883 u32 ctrl;
884 s32 ret_val;
885
886 ctrl = er32(CTRL);
887
888 /* Take the link out of reset */
889 ctrl &= ~E1000_CTRL_LRST;
890
891 hw->mac.ops.config_collision_dist(hw);
892
893 ret_val = e1000_commit_fc_settings_generic(hw);
894 if (ret_val)
895 return ret_val;
896
897 /*
898 * Since auto-negotiation is enabled, take the link out of reset (the
899 * link will be in reset, because we previously reset the chip). This
900 * will restart auto-negotiation. If auto-negotiation is successful
901 * then the link-up status bit will be set and the flow control enable
902 * bits (RFCE and TFCE) will be set according to their negotiated value.
903 */
904 e_dbg("Auto-negotiation enabled\n");
905
906 ew32(CTRL, ctrl);
907 e1e_flush();
908 usleep_range(1000, 2000);
909
910 /*
911 * For these adapters, the SW definable pin 1 is set when the optics
912 * detect a signal. If we have a signal, then poll for a "Link-Up"
913 * indication.
914 */
915 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
916 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
917 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
918 } else {
919 e_dbg("No signal detected\n");
920 }
921
922 return ret_val;
923}
924
925/**
926 * e1000e_config_collision_dist_generic - Configure collision distance
927 * @hw: pointer to the HW structure
928 *
929 * Configures the collision distance to the default value and is used
930 * during link setup.
931 **/
932void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
933{
934 u32 tctl;
935
936 tctl = er32(TCTL);
937
938 tctl &= ~E1000_TCTL_COLD;
939 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
940
941 ew32(TCTL, tctl);
942 e1e_flush();
943}
944
945/**
946 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
947 * @hw: pointer to the HW structure
948 *
949 * Sets the flow control high/low threshold (watermark) registers. If
950 * flow control XON frame transmission is enabled, then set XON frame
951 * transmission as well.
952 **/
953s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
954{
955 u32 fcrtl = 0, fcrth = 0;
956
957 /*
958 * Set the flow control receive threshold registers. Normally,
959 * these registers will be set to a default threshold that may be
960 * adjusted later by the driver's runtime code. However, if the
961 * ability to transmit pause frames is not enabled, then these
962 * registers will be set to 0.
963 */
964 if (hw->fc.current_mode & e1000_fc_tx_pause) {
965 /*
966 * We need to set up the Receive Threshold high and low water
967 * marks as well as (optionally) enabling the transmission of
968 * XON frames.
969 */
970 fcrtl = hw->fc.low_water;
971 if (hw->fc.send_xon)
972 fcrtl |= E1000_FCRTL_XONE;
973
974 fcrth = hw->fc.high_water;
975 }
976 ew32(FCRTL, fcrtl);
977 ew32(FCRTH, fcrth);
978
979 return 0;
980}
981
982/**
983 * e1000e_force_mac_fc - Force the MAC's flow control settings
984 * @hw: pointer to the HW structure
985 *
986 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
987 * device control register to reflect the adapter settings. TFCE and RFCE
988 * need to be explicitly set by software when a copper PHY is used because
989 * autonegotiation is managed by the PHY rather than the MAC. Software must
990 * also configure these bits when link is forced on a fiber connection.
991 **/
992s32 e1000e_force_mac_fc(struct e1000_hw *hw)
993{
994 u32 ctrl;
995
996 ctrl = er32(CTRL);
997
998 /*
999 * Because we didn't get link via the internal auto-negotiation
1000 * mechanism (we either forced link or we got link via PHY
1001 * auto-neg), we have to manually enable/disable transmit an
1002 * receive flow control.
1003 *
1004 * The "Case" statement below enables/disable flow control
1005 * according to the "hw->fc.current_mode" parameter.
1006 *
1007 * The possible values of the "fc" parameter are:
1008 * 0: Flow control is completely disabled
1009 * 1: Rx flow control is enabled (we can receive pause
1010 * frames but not send pause frames).
1011 * 2: Tx flow control is enabled (we can send pause frames
1012 * frames but we do not receive pause frames).
1013 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1014 * other: No other values should be possible at this point.
1015 */
1016 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1017
1018 switch (hw->fc.current_mode) {
1019 case e1000_fc_none:
1020 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1021 break;
1022 case e1000_fc_rx_pause:
1023 ctrl &= (~E1000_CTRL_TFCE);
1024 ctrl |= E1000_CTRL_RFCE;
1025 break;
1026 case e1000_fc_tx_pause:
1027 ctrl &= (~E1000_CTRL_RFCE);
1028 ctrl |= E1000_CTRL_TFCE;
1029 break;
1030 case e1000_fc_full:
1031 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1032 break;
1033 default:
1034 e_dbg("Flow control param set incorrectly\n");
1035 return -E1000_ERR_CONFIG;
1036 }
1037
1038 ew32(CTRL, ctrl);
1039
1040 return 0;
1041}
1042
1043/**
1044 * e1000e_config_fc_after_link_up - Configures flow control after link
1045 * @hw: pointer to the HW structure
1046 *
1047 * Checks the status of auto-negotiation after link up to ensure that the
1048 * speed and duplex were not forced. If the link needed to be forced, then
1049 * flow control needs to be forced also. If auto-negotiation is enabled
1050 * and did not fail, then we configure flow control based on our link
1051 * partner.
1052 **/
1053s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1054{
1055 struct e1000_mac_info *mac = &hw->mac;
1056 s32 ret_val = 0;
1057 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1058 u16 speed, duplex;
1059
1060 /*
1061 * Check for the case where we have fiber media and auto-neg failed
1062 * so we had to force link. In this case, we need to force the
1063 * configuration of the MAC to match the "fc" parameter.
1064 */
1065 if (mac->autoneg_failed) {
1066 if (hw->phy.media_type == e1000_media_type_fiber ||
1067 hw->phy.media_type == e1000_media_type_internal_serdes)
1068 ret_val = e1000e_force_mac_fc(hw);
1069 } else {
1070 if (hw->phy.media_type == e1000_media_type_copper)
1071 ret_val = e1000e_force_mac_fc(hw);
1072 }
1073
1074 if (ret_val) {
1075 e_dbg("Error forcing flow control settings\n");
1076 return ret_val;
1077 }
1078
1079 /*
1080 * Check for the case where we have copper media and auto-neg is
1081 * enabled. In this case, we need to check and see if Auto-Neg
1082 * has completed, and if so, how the PHY and link partner has
1083 * flow control configured.
1084 */
1085 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1086 /*
1087 * Read the MII Status Register and check to see if AutoNeg
1088 * has completed. We read this twice because this reg has
1089 * some "sticky" (latched) bits.
1090 */
1091 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1092 if (ret_val)
1093 return ret_val;
1094 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1095 if (ret_val)
1096 return ret_val;
1097
1098 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1099 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1100 return ret_val;
1101 }
1102
1103 /*
1104 * The AutoNeg process has completed, so we now need to
1105 * read both the Auto Negotiation Advertisement
1106 * Register (Address 4) and the Auto_Negotiation Base
1107 * Page Ability Register (Address 5) to determine how
1108 * flow control was negotiated.
1109 */
1110 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1111 if (ret_val)
1112 return ret_val;
1113 ret_val =
1114 e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1115 if (ret_val)
1116 return ret_val;
1117
1118 /*
1119 * Two bits in the Auto Negotiation Advertisement Register
1120 * (Address 4) and two bits in the Auto Negotiation Base
1121 * Page Ability Register (Address 5) determine flow control
1122 * for both the PHY and the link partner. The following
1123 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1124 * 1999, describes these PAUSE resolution bits and how flow
1125 * control is determined based upon these settings.
1126 * NOTE: DC = Don't Care
1127 *
1128 * LOCAL DEVICE | LINK PARTNER
1129 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1130 *-------|---------|-------|---------|--------------------
1131 * 0 | 0 | DC | DC | e1000_fc_none
1132 * 0 | 1 | 0 | DC | e1000_fc_none
1133 * 0 | 1 | 1 | 0 | e1000_fc_none
1134 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1135 * 1 | 0 | 0 | DC | e1000_fc_none
1136 * 1 | DC | 1 | DC | e1000_fc_full
1137 * 1 | 1 | 0 | 0 | e1000_fc_none
1138 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1139 *
1140 * Are both PAUSE bits set to 1? If so, this implies
1141 * Symmetric Flow Control is enabled at both ends. The
1142 * ASM_DIR bits are irrelevant per the spec.
1143 *
1144 * For Symmetric Flow Control:
1145 *
1146 * LOCAL DEVICE | LINK PARTNER
1147 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148 *-------|---------|-------|---------|--------------------
1149 * 1 | DC | 1 | DC | E1000_fc_full
1150 *
1151 */
1152 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1153 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1154 /*
1155 * Now we need to check if the user selected Rx ONLY
1156 * of pause frames. In this case, we had to advertise
1157 * FULL flow control because we could not advertise Rx
1158 * ONLY. Hence, we must now check to see if we need to
1159 * turn OFF the TRANSMISSION of PAUSE frames.
1160 */
1161 if (hw->fc.requested_mode == e1000_fc_full) {
1162 hw->fc.current_mode = e1000_fc_full;
1163 e_dbg("Flow Control = FULL.\n");
1164 } else {
1165 hw->fc.current_mode = e1000_fc_rx_pause;
1166 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1167 }
1168 }
1169 /*
1170 * For receiving PAUSE frames ONLY.
1171 *
1172 * LOCAL DEVICE | LINK PARTNER
1173 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1174 *-------|---------|-------|---------|--------------------
1175 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1176 */
1177 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1178 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1179 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1180 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1181 hw->fc.current_mode = e1000_fc_tx_pause;
1182 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1183 }
1184 /*
1185 * For transmitting PAUSE frames ONLY.
1186 *
1187 * LOCAL DEVICE | LINK PARTNER
1188 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1189 *-------|---------|-------|---------|--------------------
1190 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1191 */
1192 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1193 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1194 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1195 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1196 hw->fc.current_mode = e1000_fc_rx_pause;
1197 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1198 } else {
1199 /*
1200 * Per the IEEE spec, at this point flow control
1201 * should be disabled.
1202 */
1203 hw->fc.current_mode = e1000_fc_none;
1204 e_dbg("Flow Control = NONE.\n");
1205 }
1206
1207 /*
1208 * Now we need to do one last check... If we auto-
1209 * negotiated to HALF DUPLEX, flow control should not be
1210 * enabled per IEEE 802.3 spec.
1211 */
1212 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1213 if (ret_val) {
1214 e_dbg("Error getting link speed and duplex\n");
1215 return ret_val;
1216 }
1217
1218 if (duplex == HALF_DUPLEX)
1219 hw->fc.current_mode = e1000_fc_none;
1220
1221 /*
1222 * Now we call a subroutine to actually force the MAC
1223 * controller to use the correct flow control settings.
1224 */
1225 ret_val = e1000e_force_mac_fc(hw);
1226 if (ret_val) {
1227 e_dbg("Error forcing flow control settings\n");
1228 return ret_val;
1229 }
1230 }
1231
1232 return 0;
1233}
1234
1235/**
1236 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1237 * @hw: pointer to the HW structure
1238 * @speed: stores the current speed
1239 * @duplex: stores the current duplex
1240 *
1241 * Read the status register for the current speed/duplex and store the current
1242 * speed and duplex for copper connections.
1243 **/
1244s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1245 u16 *duplex)
1246{
1247 u32 status;
1248
1249 status = er32(STATUS);
1250 if (status & E1000_STATUS_SPEED_1000)
1251 *speed = SPEED_1000;
1252 else if (status & E1000_STATUS_SPEED_100)
1253 *speed = SPEED_100;
1254 else
1255 *speed = SPEED_10;
1256
1257 if (status & E1000_STATUS_FD)
1258 *duplex = FULL_DUPLEX;
1259 else
1260 *duplex = HALF_DUPLEX;
1261
1262 e_dbg("%u Mbps, %s Duplex\n",
1263 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1264 *duplex == FULL_DUPLEX ? "Full" : "Half");
1265
1266 return 0;
1267}
1268
1269/**
1270 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1271 * @hw: pointer to the HW structure
1272 * @speed: stores the current speed
1273 * @duplex: stores the current duplex
1274 *
1275 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1276 * for fiber/serdes links.
1277 **/
1278s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1279 u16 *duplex)
1280{
1281 *speed = SPEED_1000;
1282 *duplex = FULL_DUPLEX;
1283
1284 return 0;
1285}
1286
1287/**
1288 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1289 * @hw: pointer to the HW structure
1290 *
1291 * Acquire the HW semaphore to access the PHY or NVM
1292 **/
1293s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1294{
1295 u32 swsm;
1296 s32 timeout = hw->nvm.word_size + 1;
1297 s32 i = 0;
1298
1299 /* Get the SW semaphore */
1300 while (i < timeout) {
1301 swsm = er32(SWSM);
1302 if (!(swsm & E1000_SWSM_SMBI))
1303 break;
1304
1305 udelay(50);
1306 i++;
1307 }
1308
1309 if (i == timeout) {
1310 e_dbg("Driver can't access device - SMBI bit is set.\n");
1311 return -E1000_ERR_NVM;
1312 }
1313
1314 /* Get the FW semaphore. */
1315 for (i = 0; i < timeout; i++) {
1316 swsm = er32(SWSM);
1317 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1318
1319 /* Semaphore acquired if bit latched */
1320 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1321 break;
1322
1323 udelay(50);
1324 }
1325
1326 if (i == timeout) {
1327 /* Release semaphores */
1328 e1000e_put_hw_semaphore(hw);
1329 e_dbg("Driver can't access the NVM\n");
1330 return -E1000_ERR_NVM;
1331 }
1332
1333 return 0;
1334}
1335
1336/**
1337 * e1000e_put_hw_semaphore - Release hardware semaphore
1338 * @hw: pointer to the HW structure
1339 *
1340 * Release hardware semaphore used to access the PHY or NVM
1341 **/
1342void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1343{
1344 u32 swsm;
1345
1346 swsm = er32(SWSM);
1347 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1348 ew32(SWSM, swsm);
1349}
1350
1351/**
1352 * e1000e_get_auto_rd_done - Check for auto read completion
1353 * @hw: pointer to the HW structure
1354 *
1355 * Check EEPROM for Auto Read done bit.
1356 **/
1357s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1358{
1359 s32 i = 0;
1360
1361 while (i < AUTO_READ_DONE_TIMEOUT) {
1362 if (er32(EECD) & E1000_EECD_AUTO_RD)
1363 break;
1364 usleep_range(1000, 2000);
1365 i++;
1366 }
1367
1368 if (i == AUTO_READ_DONE_TIMEOUT) {
1369 e_dbg("Auto read by HW from NVM has not completed.\n");
1370 return -E1000_ERR_RESET;
1371 }
1372
1373 return 0;
1374}
1375
1376/**
1377 * e1000e_valid_led_default - Verify a valid default LED config
1378 * @hw: pointer to the HW structure
1379 * @data: pointer to the NVM (EEPROM)
1380 *
1381 * Read the EEPROM for the current default LED configuration. If the
1382 * LED configuration is not valid, set to a valid LED configuration.
1383 **/
1384s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1385{
1386 s32 ret_val;
1387
1388 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1389 if (ret_val) {
1390 e_dbg("NVM Read Error\n");
1391 return ret_val;
1392 }
1393
1394 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1395 *data = ID_LED_DEFAULT;
1396
1397 return 0;
1398}
1399
1400/**
1401 * e1000e_id_led_init_generic -
1402 * @hw: pointer to the HW structure
1403 *
1404 **/
1405s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1406{
1407 struct e1000_mac_info *mac = &hw->mac;
1408 s32 ret_val;
1409 const u32 ledctl_mask = 0x000000FF;
1410 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1411 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1412 u16 data, i, temp;
1413 const u16 led_mask = 0x0F;
1414
1415 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1416 if (ret_val)
1417 return ret_val;
1418
1419 mac->ledctl_default = er32(LEDCTL);
1420 mac->ledctl_mode1 = mac->ledctl_default;
1421 mac->ledctl_mode2 = mac->ledctl_default;
1422
1423 for (i = 0; i < 4; i++) {
1424 temp = (data >> (i << 2)) & led_mask;
1425 switch (temp) {
1426 case ID_LED_ON1_DEF2:
1427 case ID_LED_ON1_ON2:
1428 case ID_LED_ON1_OFF2:
1429 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1430 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1431 break;
1432 case ID_LED_OFF1_DEF2:
1433 case ID_LED_OFF1_ON2:
1434 case ID_LED_OFF1_OFF2:
1435 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1436 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1437 break;
1438 default:
1439 /* Do nothing */
1440 break;
1441 }
1442 switch (temp) {
1443 case ID_LED_DEF1_ON2:
1444 case ID_LED_ON1_ON2:
1445 case ID_LED_OFF1_ON2:
1446 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1447 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1448 break;
1449 case ID_LED_DEF1_OFF2:
1450 case ID_LED_ON1_OFF2:
1451 case ID_LED_OFF1_OFF2:
1452 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1453 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1454 break;
1455 default:
1456 /* Do nothing */
1457 break;
1458 }
1459 }
1460
1461 return 0;
1462}
1463
1464/**
1465 * e1000e_setup_led_generic - Configures SW controllable LED
1466 * @hw: pointer to the HW structure
1467 *
1468 * This prepares the SW controllable LED for use and saves the current state
1469 * of the LED so it can be later restored.
1470 **/
1471s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1472{
1473 u32 ledctl;
1474
1475 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1476 return -E1000_ERR_CONFIG;
1477
1478 if (hw->phy.media_type == e1000_media_type_fiber) {
1479 ledctl = er32(LEDCTL);
1480 hw->mac.ledctl_default = ledctl;
1481 /* Turn off LED0 */
1482 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1483 E1000_LEDCTL_LED0_MODE_MASK);
1484 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1485 E1000_LEDCTL_LED0_MODE_SHIFT);
1486 ew32(LEDCTL, ledctl);
1487 } else if (hw->phy.media_type == e1000_media_type_copper) {
1488 ew32(LEDCTL, hw->mac.ledctl_mode1);
1489 }
1490
1491 return 0;
1492}
1493
1494/**
1495 * e1000e_cleanup_led_generic - Set LED config to default operation
1496 * @hw: pointer to the HW structure
1497 *
1498 * Remove the current LED configuration and set the LED configuration
1499 * to the default value, saved from the EEPROM.
1500 **/
1501s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1502{
1503 ew32(LEDCTL, hw->mac.ledctl_default);
1504 return 0;
1505}
1506
1507/**
1508 * e1000e_blink_led_generic - Blink LED
1509 * @hw: pointer to the HW structure
1510 *
1511 * Blink the LEDs which are set to be on.
1512 **/
1513s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1514{
1515 u32 ledctl_blink = 0;
1516 u32 i;
1517
1518 if (hw->phy.media_type == e1000_media_type_fiber) {
1519 /* always blink LED0 for PCI-E fiber */
1520 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1521 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1522 } else {
1523 /*
1524 * set the blink bit for each LED that's "on" (0x0E)
1525 * in ledctl_mode2
1526 */
1527 ledctl_blink = hw->mac.ledctl_mode2;
1528 for (i = 0; i < 4; i++)
1529 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1530 E1000_LEDCTL_MODE_LED_ON)
1531 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1532 (i * 8));
1533 }
1534
1535 ew32(LEDCTL, ledctl_blink);
1536
1537 return 0;
1538}
1539
1540/**
1541 * e1000e_led_on_generic - Turn LED on
1542 * @hw: pointer to the HW structure
1543 *
1544 * Turn LED on.
1545 **/
1546s32 e1000e_led_on_generic(struct e1000_hw *hw)
1547{
1548 u32 ctrl;
1549
1550 switch (hw->phy.media_type) {
1551 case e1000_media_type_fiber:
1552 ctrl = er32(CTRL);
1553 ctrl &= ~E1000_CTRL_SWDPIN0;
1554 ctrl |= E1000_CTRL_SWDPIO0;
1555 ew32(CTRL, ctrl);
1556 break;
1557 case e1000_media_type_copper:
1558 ew32(LEDCTL, hw->mac.ledctl_mode2);
1559 break;
1560 default:
1561 break;
1562 }
1563
1564 return 0;
1565}
1566
1567/**
1568 * e1000e_led_off_generic - Turn LED off
1569 * @hw: pointer to the HW structure
1570 *
1571 * Turn LED off.
1572 **/
1573s32 e1000e_led_off_generic(struct e1000_hw *hw)
1574{
1575 u32 ctrl;
1576
1577 switch (hw->phy.media_type) {
1578 case e1000_media_type_fiber:
1579 ctrl = er32(CTRL);
1580 ctrl |= E1000_CTRL_SWDPIN0;
1581 ctrl |= E1000_CTRL_SWDPIO0;
1582 ew32(CTRL, ctrl);
1583 break;
1584 case e1000_media_type_copper:
1585 ew32(LEDCTL, hw->mac.ledctl_mode1);
1586 break;
1587 default:
1588 break;
1589 }
1590
1591 return 0;
1592}
1593
1594/**
1595 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1596 * @hw: pointer to the HW structure
1597 * @no_snoop: bitmap of snoop events
1598 *
1599 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1600 **/
1601void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1602{
1603 u32 gcr;
1604
1605 if (no_snoop) {
1606 gcr = er32(GCR);
1607 gcr &= ~(PCIE_NO_SNOOP_ALL);
1608 gcr |= no_snoop;
1609 ew32(GCR, gcr);
1610 }
1611}
1612
1613/**
1614 * e1000e_disable_pcie_master - Disables PCI-express master access
1615 * @hw: pointer to the HW structure
1616 *
1617 * Returns 0 if successful, else returns -10
1618 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1619 * the master requests to be disabled.
1620 *
1621 * Disables PCI-Express master access and verifies there are no pending
1622 * requests.
1623 **/
1624s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1625{
1626 u32 ctrl;
1627 s32 timeout = MASTER_DISABLE_TIMEOUT;
1628
1629 ctrl = er32(CTRL);
1630 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1631 ew32(CTRL, ctrl);
1632
1633 while (timeout) {
1634 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1635 break;
1636 udelay(100);
1637 timeout--;
1638 }
1639
1640 if (!timeout) {
1641 e_dbg("Master requests are pending.\n");
1642 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1643 }
1644
1645 return 0;
1646}
1647
1648/**
1649 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1650 * @hw: pointer to the HW structure
1651 *
1652 * Reset the Adaptive Interframe Spacing throttle to default values.
1653 **/
1654void e1000e_reset_adaptive(struct e1000_hw *hw)
1655{
1656 struct e1000_mac_info *mac = &hw->mac;
1657
1658 if (!mac->adaptive_ifs) {
1659 e_dbg("Not in Adaptive IFS mode!\n");
1660 return;
1661 }
1662
1663 mac->current_ifs_val = 0;
1664 mac->ifs_min_val = IFS_MIN;
1665 mac->ifs_max_val = IFS_MAX;
1666 mac->ifs_step_size = IFS_STEP;
1667 mac->ifs_ratio = IFS_RATIO;
1668
1669 mac->in_ifs_mode = false;
1670 ew32(AIT, 0);
1671}
1672
1673/**
1674 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1675 * @hw: pointer to the HW structure
1676 *
1677 * Update the Adaptive Interframe Spacing Throttle value based on the
1678 * time between transmitted packets and time between collisions.
1679 **/
1680void e1000e_update_adaptive(struct e1000_hw *hw)
1681{
1682 struct e1000_mac_info *mac = &hw->mac;
1683
1684 if (!mac->adaptive_ifs) {
1685 e_dbg("Not in Adaptive IFS mode!\n");
1686 return;
1687 }
1688
1689 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1690 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1691 mac->in_ifs_mode = true;
1692 if (mac->current_ifs_val < mac->ifs_max_val) {
1693 if (!mac->current_ifs_val)
1694 mac->current_ifs_val = mac->ifs_min_val;
1695 else
1696 mac->current_ifs_val +=
1697 mac->ifs_step_size;
1698 ew32(AIT, mac->current_ifs_val);
1699 }
1700 }
1701 } else {
1702 if (mac->in_ifs_mode &&
1703 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1704 mac->current_ifs_val = 0;
1705 mac->in_ifs_mode = false;
1706 ew32(AIT, 0);
1707 }
1708 }
1709}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include "e1000.h"
5
6/**
7 * e1000e_get_bus_info_pcie - Get PCIe bus information
8 * @hw: pointer to the HW structure
9 *
10 * Determines and stores the system bus information for a particular
11 * network interface. The following bus information is determined and stored:
12 * bus speed, bus width, type (PCIe), and PCIe function.
13 **/
14s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
15{
16 struct e1000_mac_info *mac = &hw->mac;
17 struct e1000_bus_info *bus = &hw->bus;
18 struct e1000_adapter *adapter = hw->adapter;
19 u16 pcie_link_status, cap_offset;
20
21 cap_offset = adapter->pdev->pcie_cap;
22 if (!cap_offset) {
23 bus->width = e1000_bus_width_unknown;
24 } else {
25 pci_read_config_word(adapter->pdev,
26 cap_offset + PCIE_LINK_STATUS,
27 &pcie_link_status);
28 bus->width = (enum e1000_bus_width)((pcie_link_status &
29 PCIE_LINK_WIDTH_MASK) >>
30 PCIE_LINK_WIDTH_SHIFT);
31 }
32
33 mac->ops.set_lan_id(hw);
34
35 return 0;
36}
37
38/**
39 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
40 *
41 * @hw: pointer to the HW structure
42 *
43 * Determines the LAN function id by reading memory-mapped registers
44 * and swaps the port value if requested.
45 **/
46void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
47{
48 struct e1000_bus_info *bus = &hw->bus;
49 u32 reg;
50
51 /* The status register reports the correct function number
52 * for the device regardless of function swap state.
53 */
54 reg = er32(STATUS);
55 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
56}
57
58/**
59 * e1000_set_lan_id_single_port - Set LAN id for a single port device
60 * @hw: pointer to the HW structure
61 *
62 * Sets the LAN function id to zero for a single port device.
63 **/
64void e1000_set_lan_id_single_port(struct e1000_hw *hw)
65{
66 struct e1000_bus_info *bus = &hw->bus;
67
68 bus->func = 0;
69}
70
71/**
72 * e1000_clear_vfta_generic - Clear VLAN filter table
73 * @hw: pointer to the HW structure
74 *
75 * Clears the register array which contains the VLAN filter table by
76 * setting all the values to 0.
77 **/
78void e1000_clear_vfta_generic(struct e1000_hw *hw)
79{
80 u32 offset;
81
82 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
83 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
84 e1e_flush();
85 }
86}
87
88/**
89 * e1000_write_vfta_generic - Write value to VLAN filter table
90 * @hw: pointer to the HW structure
91 * @offset: register offset in VLAN filter table
92 * @value: register value written to VLAN filter table
93 *
94 * Writes value at the given offset in the register array which stores
95 * the VLAN filter table.
96 **/
97void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
98{
99 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
100 e1e_flush();
101}
102
103/**
104 * e1000e_init_rx_addrs - Initialize receive address's
105 * @hw: pointer to the HW structure
106 * @rar_count: receive address registers
107 *
108 * Setup the receive address registers by setting the base receive address
109 * register to the devices MAC address and clearing all the other receive
110 * address registers to 0.
111 **/
112void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
113{
114 u32 i;
115 u8 mac_addr[ETH_ALEN] = { 0 };
116
117 /* Setup the receive address */
118 e_dbg("Programming MAC Address into RAR[0]\n");
119
120 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
121
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
124 for (i = 1; i < rar_count; i++)
125 hw->mac.ops.rar_set(hw, mac_addr, i);
126}
127
128/**
129 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
130 * @hw: pointer to the HW structure
131 *
132 * Checks the nvm for an alternate MAC address. An alternate MAC address
133 * can be setup by pre-boot software and must be treated like a permanent
134 * address and must override the actual permanent MAC address. If an
135 * alternate MAC address is found it is programmed into RAR0, replacing
136 * the permanent address that was installed into RAR0 by the Si on reset.
137 * This function will return SUCCESS unless it encounters an error while
138 * reading the EEPROM.
139 **/
140s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
141{
142 u32 i;
143 s32 ret_val;
144 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
145 u8 alt_mac_addr[ETH_ALEN];
146
147 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
148 if (ret_val)
149 return ret_val;
150
151 /* not supported on 82573 */
152 if (hw->mac.type == e1000_82573)
153 return 0;
154
155 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
156 &nvm_alt_mac_addr_offset);
157 if (ret_val) {
158 e_dbg("NVM Read Error\n");
159 return ret_val;
160 }
161
162 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
163 (nvm_alt_mac_addr_offset == 0x0000))
164 /* There is no Alternate MAC Address */
165 return 0;
166
167 if (hw->bus.func == E1000_FUNC_1)
168 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
169 for (i = 0; i < ETH_ALEN; i += 2) {
170 offset = nvm_alt_mac_addr_offset + (i >> 1);
171 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
172 if (ret_val) {
173 e_dbg("NVM Read Error\n");
174 return ret_val;
175 }
176
177 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
178 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
179 }
180
181 /* if multicast bit is set, the alternate address will not be used */
182 if (is_multicast_ether_addr(alt_mac_addr)) {
183 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
184 return 0;
185 }
186
187 /* We have a valid alternate MAC address, and we want to treat it the
188 * same as the normal permanent MAC address stored by the HW into the
189 * RAR. Do this by mapping this address into RAR0.
190 */
191 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
192
193 return 0;
194}
195
196u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
197{
198 return hw->mac.rar_entry_count;
199}
200
201/**
202 * e1000e_rar_set_generic - Set receive address register
203 * @hw: pointer to the HW structure
204 * @addr: pointer to the receive address
205 * @index: receive address array register
206 *
207 * Sets the receive address array register at index to the address passed
208 * in by addr.
209 **/
210int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
211{
212 u32 rar_low, rar_high;
213
214 /* HW expects these in little endian so we reverse the byte order
215 * from network order (big endian) to little endian
216 */
217 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
218 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
219
220 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
221
222 /* If MAC address zero, no need to set the AV bit */
223 if (rar_low || rar_high)
224 rar_high |= E1000_RAH_AV;
225
226 /* Some bridges will combine consecutive 32-bit writes into
227 * a single burst write, which will malfunction on some parts.
228 * The flushes avoid this.
229 */
230 ew32(RAL(index), rar_low);
231 e1e_flush();
232 ew32(RAH(index), rar_high);
233 e1e_flush();
234
235 return 0;
236}
237
238/**
239 * e1000_hash_mc_addr - Generate a multicast hash value
240 * @hw: pointer to the HW structure
241 * @mc_addr: pointer to a multicast address
242 *
243 * Generates a multicast address hash value which is used to determine
244 * the multicast filter table array address and new table value.
245 **/
246static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
247{
248 u32 hash_value, hash_mask;
249 u8 bit_shift = 0;
250
251 /* Register count multiplied by bits per register */
252 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
253
254 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
255 * where 0xFF would still fall within the hash mask.
256 */
257 while (hash_mask >> bit_shift != 0xFF)
258 bit_shift++;
259
260 /* The portion of the address that is used for the hash table
261 * is determined by the mc_filter_type setting.
262 * The algorithm is such that there is a total of 8 bits of shifting.
263 * The bit_shift for a mc_filter_type of 0 represents the number of
264 * left-shifts where the MSB of mc_addr[5] would still fall within
265 * the hash_mask. Case 0 does this exactly. Since there are a total
266 * of 8 bits of shifting, then mc_addr[4] will shift right the
267 * remaining number of bits. Thus 8 - bit_shift. The rest of the
268 * cases are a variation of this algorithm...essentially raising the
269 * number of bits to shift mc_addr[5] left, while still keeping the
270 * 8-bit shifting total.
271 *
272 * For example, given the following Destination MAC Address and an
273 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
274 * we can see that the bit_shift for case 0 is 4. These are the hash
275 * values resulting from each mc_filter_type...
276 * [0] [1] [2] [3] [4] [5]
277 * 01 AA 00 12 34 56
278 * LSB MSB
279 *
280 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
281 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
282 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
283 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
284 */
285 switch (hw->mac.mc_filter_type) {
286 default:
287 case 0:
288 break;
289 case 1:
290 bit_shift += 1;
291 break;
292 case 2:
293 bit_shift += 2;
294 break;
295 case 3:
296 bit_shift += 4;
297 break;
298 }
299
300 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
301 (((u16)mc_addr[5]) << bit_shift)));
302
303 return hash_value;
304}
305
306/**
307 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
308 * @hw: pointer to the HW structure
309 * @mc_addr_list: array of multicast addresses to program
310 * @mc_addr_count: number of multicast addresses to program
311 *
312 * Updates entire Multicast Table Array.
313 * The caller must have a packed mc_addr_list of multicast addresses.
314 **/
315void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
316 u8 *mc_addr_list, u32 mc_addr_count)
317{
318 u32 hash_value, hash_bit, hash_reg;
319 int i;
320
321 /* clear mta_shadow */
322 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
323
324 /* update mta_shadow from mc_addr_list */
325 for (i = 0; (u32)i < mc_addr_count; i++) {
326 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
327
328 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
329 hash_bit = hash_value & 0x1F;
330
331 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
332 mc_addr_list += (ETH_ALEN);
333 }
334
335 /* replace the entire MTA table */
336 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
337 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
338 e1e_flush();
339}
340
341/**
342 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
343 * @hw: pointer to the HW structure
344 *
345 * Clears the base hardware counters by reading the counter registers.
346 **/
347void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
348{
349 er32(CRCERRS);
350 er32(SYMERRS);
351 er32(MPC);
352 er32(SCC);
353 er32(ECOL);
354 er32(MCC);
355 er32(LATECOL);
356 er32(COLC);
357 er32(DC);
358 er32(SEC);
359 er32(RLEC);
360 er32(XONRXC);
361 er32(XONTXC);
362 er32(XOFFRXC);
363 er32(XOFFTXC);
364 er32(FCRUC);
365 er32(GPRC);
366 er32(BPRC);
367 er32(MPRC);
368 er32(GPTC);
369 er32(GORCL);
370 er32(GORCH);
371 er32(GOTCL);
372 er32(GOTCH);
373 er32(RNBC);
374 er32(RUC);
375 er32(RFC);
376 er32(ROC);
377 er32(RJC);
378 er32(TORL);
379 er32(TORH);
380 er32(TOTL);
381 er32(TOTH);
382 er32(TPR);
383 er32(TPT);
384 er32(MPTC);
385 er32(BPTC);
386}
387
388/**
389 * e1000e_check_for_copper_link - Check for link (Copper)
390 * @hw: pointer to the HW structure
391 *
392 * Checks to see of the link status of the hardware has changed. If a
393 * change in link status has been detected, then we read the PHY registers
394 * to get the current speed/duplex if link exists.
395 **/
396s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
397{
398 struct e1000_mac_info *mac = &hw->mac;
399 s32 ret_val;
400 bool link;
401
402 /* We only want to go out to the PHY registers to see if Auto-Neg
403 * has completed and/or if our link status has changed. The
404 * get_link_status flag is set upon receiving a Link Status
405 * Change or Rx Sequence Error interrupt.
406 */
407 if (!mac->get_link_status)
408 return 0;
409 mac->get_link_status = false;
410
411 /* First we want to see if the MII Status Register reports
412 * link. If so, then we want to get the current speed/duplex
413 * of the PHY.
414 */
415 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
416 if (ret_val || !link)
417 goto out;
418
419 /* Check if there was DownShift, must be checked
420 * immediately after link-up
421 */
422 e1000e_check_downshift(hw);
423
424 /* If we are forcing speed/duplex, then we simply return since
425 * we have already determined whether we have link or not.
426 */
427 if (!mac->autoneg)
428 return -E1000_ERR_CONFIG;
429
430 /* Auto-Neg is enabled. Auto Speed Detection takes care
431 * of MAC speed/duplex configuration. So we only need to
432 * configure Collision Distance in the MAC.
433 */
434 mac->ops.config_collision_dist(hw);
435
436 /* Configure Flow Control now that Auto-Neg has completed.
437 * First, we need to restore the desired flow control
438 * settings because we may have had to re-autoneg with a
439 * different link partner.
440 */
441 ret_val = e1000e_config_fc_after_link_up(hw);
442 if (ret_val)
443 e_dbg("Error configuring flow control\n");
444
445 return ret_val;
446
447out:
448 mac->get_link_status = true;
449 return ret_val;
450}
451
452/**
453 * e1000e_check_for_fiber_link - Check for link (Fiber)
454 * @hw: pointer to the HW structure
455 *
456 * Checks for link up on the hardware. If link is not up and we have
457 * a signal, then we need to force link up.
458 **/
459s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
460{
461 struct e1000_mac_info *mac = &hw->mac;
462 u32 rxcw;
463 u32 ctrl;
464 u32 status;
465 s32 ret_val;
466
467 ctrl = er32(CTRL);
468 status = er32(STATUS);
469 rxcw = er32(RXCW);
470
471 /* If we don't have link (auto-negotiation failed or link partner
472 * cannot auto-negotiate), the cable is plugged in (we have signal),
473 * and our link partner is not trying to auto-negotiate with us (we
474 * are receiving idles or data), we need to force link up. We also
475 * need to give auto-negotiation time to complete, in case the cable
476 * was just plugged in. The autoneg_failed flag does this.
477 */
478 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
479 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
480 !(rxcw & E1000_RXCW_C)) {
481 if (!mac->autoneg_failed) {
482 mac->autoneg_failed = true;
483 return 0;
484 }
485 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
486
487 /* Disable auto-negotiation in the TXCW register */
488 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
489
490 /* Force link-up and also force full-duplex. */
491 ctrl = er32(CTRL);
492 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
493 ew32(CTRL, ctrl);
494
495 /* Configure Flow Control after forcing link up. */
496 ret_val = e1000e_config_fc_after_link_up(hw);
497 if (ret_val) {
498 e_dbg("Error configuring flow control\n");
499 return ret_val;
500 }
501 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
502 /* If we are forcing link and we are receiving /C/ ordered
503 * sets, re-enable auto-negotiation in the TXCW register
504 * and disable forced link in the Device Control register
505 * in an attempt to auto-negotiate with our link partner.
506 */
507 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
508 ew32(TXCW, mac->txcw);
509 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
510
511 mac->serdes_has_link = true;
512 }
513
514 return 0;
515}
516
517/**
518 * e1000e_check_for_serdes_link - Check for link (Serdes)
519 * @hw: pointer to the HW structure
520 *
521 * Checks for link up on the hardware. If link is not up and we have
522 * a signal, then we need to force link up.
523 **/
524s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
525{
526 struct e1000_mac_info *mac = &hw->mac;
527 u32 rxcw;
528 u32 ctrl;
529 u32 status;
530 s32 ret_val;
531
532 ctrl = er32(CTRL);
533 status = er32(STATUS);
534 rxcw = er32(RXCW);
535
536 /* If we don't have link (auto-negotiation failed or link partner
537 * cannot auto-negotiate), and our link partner is not trying to
538 * auto-negotiate with us (we are receiving idles or data),
539 * we need to force link up. We also need to give auto-negotiation
540 * time to complete.
541 */
542 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
543 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
544 if (!mac->autoneg_failed) {
545 mac->autoneg_failed = true;
546 return 0;
547 }
548 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
549
550 /* Disable auto-negotiation in the TXCW register */
551 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
552
553 /* Force link-up and also force full-duplex. */
554 ctrl = er32(CTRL);
555 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
556 ew32(CTRL, ctrl);
557
558 /* Configure Flow Control after forcing link up. */
559 ret_val = e1000e_config_fc_after_link_up(hw);
560 if (ret_val) {
561 e_dbg("Error configuring flow control\n");
562 return ret_val;
563 }
564 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
565 /* If we are forcing link and we are receiving /C/ ordered
566 * sets, re-enable auto-negotiation in the TXCW register
567 * and disable forced link in the Device Control register
568 * in an attempt to auto-negotiate with our link partner.
569 */
570 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
571 ew32(TXCW, mac->txcw);
572 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
573
574 mac->serdes_has_link = true;
575 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
576 /* If we force link for non-auto-negotiation switch, check
577 * link status based on MAC synchronization for internal
578 * serdes media type.
579 */
580 /* SYNCH bit and IV bit are sticky. */
581 usleep_range(10, 20);
582 rxcw = er32(RXCW);
583 if (rxcw & E1000_RXCW_SYNCH) {
584 if (!(rxcw & E1000_RXCW_IV)) {
585 mac->serdes_has_link = true;
586 e_dbg("SERDES: Link up - forced.\n");
587 }
588 } else {
589 mac->serdes_has_link = false;
590 e_dbg("SERDES: Link down - force failed.\n");
591 }
592 }
593
594 if (E1000_TXCW_ANE & er32(TXCW)) {
595 status = er32(STATUS);
596 if (status & E1000_STATUS_LU) {
597 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
598 usleep_range(10, 20);
599 rxcw = er32(RXCW);
600 if (rxcw & E1000_RXCW_SYNCH) {
601 if (!(rxcw & E1000_RXCW_IV)) {
602 mac->serdes_has_link = true;
603 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
604 } else {
605 mac->serdes_has_link = false;
606 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
607 }
608 } else {
609 mac->serdes_has_link = false;
610 e_dbg("SERDES: Link down - no sync.\n");
611 }
612 } else {
613 mac->serdes_has_link = false;
614 e_dbg("SERDES: Link down - autoneg failed\n");
615 }
616 }
617
618 return 0;
619}
620
621/**
622 * e1000_set_default_fc_generic - Set flow control default values
623 * @hw: pointer to the HW structure
624 *
625 * Read the EEPROM for the default values for flow control and store the
626 * values.
627 **/
628static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
629{
630 s32 ret_val;
631 u16 nvm_data;
632
633 /* Read and store word 0x0F of the EEPROM. This word contains bits
634 * that determine the hardware's default PAUSE (flow control) mode,
635 * a bit that determines whether the HW defaults to enabling or
636 * disabling auto-negotiation, and the direction of the
637 * SW defined pins. If there is no SW over-ride of the flow
638 * control setting, then the variable hw->fc will
639 * be initialized based on a value in the EEPROM.
640 */
641 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
642
643 if (ret_val) {
644 e_dbg("NVM Read Error\n");
645 return ret_val;
646 }
647
648 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
649 hw->fc.requested_mode = e1000_fc_none;
650 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
651 hw->fc.requested_mode = e1000_fc_tx_pause;
652 else
653 hw->fc.requested_mode = e1000_fc_full;
654
655 return 0;
656}
657
658/**
659 * e1000e_setup_link_generic - Setup flow control and link settings
660 * @hw: pointer to the HW structure
661 *
662 * Determines which flow control settings to use, then configures flow
663 * control. Calls the appropriate media-specific link configuration
664 * function. Assuming the adapter has a valid link partner, a valid link
665 * should be established. Assumes the hardware has previously been reset
666 * and the transmitter and receiver are not enabled.
667 **/
668s32 e1000e_setup_link_generic(struct e1000_hw *hw)
669{
670 s32 ret_val;
671
672 /* In the case of the phy reset being blocked, we already have a link.
673 * We do not need to set it up again.
674 */
675 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
676 return 0;
677
678 /* If requested flow control is set to default, set flow control
679 * based on the EEPROM flow control settings.
680 */
681 if (hw->fc.requested_mode == e1000_fc_default) {
682 ret_val = e1000_set_default_fc_generic(hw);
683 if (ret_val)
684 return ret_val;
685 }
686
687 /* Save off the requested flow control mode for use later. Depending
688 * on the link partner's capabilities, we may or may not use this mode.
689 */
690 hw->fc.current_mode = hw->fc.requested_mode;
691
692 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
693
694 /* Call the necessary media_type subroutine to configure the link. */
695 ret_val = hw->mac.ops.setup_physical_interface(hw);
696 if (ret_val)
697 return ret_val;
698
699 /* Initialize the flow control address, type, and PAUSE timer
700 * registers to their default values. This is done even if flow
701 * control is disabled, because it does not hurt anything to
702 * initialize these registers.
703 */
704 e_dbg("Initializing the Flow Control address, type and timer regs\n");
705 ew32(FCT, FLOW_CONTROL_TYPE);
706 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
707 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
708
709 ew32(FCTTV, hw->fc.pause_time);
710
711 return e1000e_set_fc_watermarks(hw);
712}
713
714/**
715 * e1000_commit_fc_settings_generic - Configure flow control
716 * @hw: pointer to the HW structure
717 *
718 * Write the flow control settings to the Transmit Config Word Register (TXCW)
719 * base on the flow control settings in e1000_mac_info.
720 **/
721static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
722{
723 struct e1000_mac_info *mac = &hw->mac;
724 u32 txcw;
725
726 /* Check for a software override of the flow control settings, and
727 * setup the device accordingly. If auto-negotiation is enabled, then
728 * software will have to set the "PAUSE" bits to the correct value in
729 * the Transmit Config Word Register (TXCW) and re-start auto-
730 * negotiation. However, if auto-negotiation is disabled, then
731 * software will have to manually configure the two flow control enable
732 * bits in the CTRL register.
733 *
734 * The possible values of the "fc" parameter are:
735 * 0: Flow control is completely disabled
736 * 1: Rx flow control is enabled (we can receive pause frames,
737 * but not send pause frames).
738 * 2: Tx flow control is enabled (we can send pause frames but we
739 * do not support receiving pause frames).
740 * 3: Both Rx and Tx flow control (symmetric) are enabled.
741 */
742 switch (hw->fc.current_mode) {
743 case e1000_fc_none:
744 /* Flow control completely disabled by a software over-ride. */
745 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
746 break;
747 case e1000_fc_rx_pause:
748 /* Rx Flow control is enabled and Tx Flow control is disabled
749 * by a software over-ride. Since there really isn't a way to
750 * advertise that we are capable of Rx Pause ONLY, we will
751 * advertise that we support both symmetric and asymmetric Rx
752 * PAUSE. Later, we will disable the adapter's ability to send
753 * PAUSE frames.
754 */
755 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
756 break;
757 case e1000_fc_tx_pause:
758 /* Tx Flow control is enabled, and Rx Flow control is disabled,
759 * by a software over-ride.
760 */
761 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
762 break;
763 case e1000_fc_full:
764 /* Flow control (both Rx and Tx) is enabled by a software
765 * over-ride.
766 */
767 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
768 break;
769 default:
770 e_dbg("Flow control param set incorrectly\n");
771 return -E1000_ERR_CONFIG;
772 }
773
774 ew32(TXCW, txcw);
775 mac->txcw = txcw;
776
777 return 0;
778}
779
780/**
781 * e1000_poll_fiber_serdes_link_generic - Poll for link up
782 * @hw: pointer to the HW structure
783 *
784 * Polls for link up by reading the status register, if link fails to come
785 * up with auto-negotiation, then the link is forced if a signal is detected.
786 **/
787static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
788{
789 struct e1000_mac_info *mac = &hw->mac;
790 u32 i, status;
791 s32 ret_val;
792
793 /* If we have a signal (the cable is plugged in, or assumed true for
794 * serdes media) then poll for a "Link-Up" indication in the Device
795 * Status Register. Time-out if a link isn't seen in 500 milliseconds
796 * seconds (Auto-negotiation should complete in less than 500
797 * milliseconds even if the other end is doing it in SW).
798 */
799 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
800 usleep_range(10000, 11000);
801 status = er32(STATUS);
802 if (status & E1000_STATUS_LU)
803 break;
804 }
805 if (i == FIBER_LINK_UP_LIMIT) {
806 e_dbg("Never got a valid link from auto-neg!!!\n");
807 mac->autoneg_failed = true;
808 /* AutoNeg failed to achieve a link, so we'll call
809 * mac->check_for_link. This routine will force the
810 * link up if we detect a signal. This will allow us to
811 * communicate with non-autonegotiating link partners.
812 */
813 ret_val = mac->ops.check_for_link(hw);
814 if (ret_val) {
815 e_dbg("Error while checking for link\n");
816 return ret_val;
817 }
818 mac->autoneg_failed = false;
819 } else {
820 mac->autoneg_failed = false;
821 e_dbg("Valid Link Found\n");
822 }
823
824 return 0;
825}
826
827/**
828 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
829 * @hw: pointer to the HW structure
830 *
831 * Configures collision distance and flow control for fiber and serdes
832 * links. Upon successful setup, poll for link.
833 **/
834s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
835{
836 u32 ctrl;
837 s32 ret_val;
838
839 ctrl = er32(CTRL);
840
841 /* Take the link out of reset */
842 ctrl &= ~E1000_CTRL_LRST;
843
844 hw->mac.ops.config_collision_dist(hw);
845
846 ret_val = e1000_commit_fc_settings_generic(hw);
847 if (ret_val)
848 return ret_val;
849
850 /* Since auto-negotiation is enabled, take the link out of reset (the
851 * link will be in reset, because we previously reset the chip). This
852 * will restart auto-negotiation. If auto-negotiation is successful
853 * then the link-up status bit will be set and the flow control enable
854 * bits (RFCE and TFCE) will be set according to their negotiated value.
855 */
856 e_dbg("Auto-negotiation enabled\n");
857
858 ew32(CTRL, ctrl);
859 e1e_flush();
860 usleep_range(1000, 2000);
861
862 /* For these adapters, the SW definable pin 1 is set when the optics
863 * detect a signal. If we have a signal, then poll for a "Link-Up"
864 * indication.
865 */
866 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
867 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
868 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
869 } else {
870 e_dbg("No signal detected\n");
871 }
872
873 return ret_val;
874}
875
876/**
877 * e1000e_config_collision_dist_generic - Configure collision distance
878 * @hw: pointer to the HW structure
879 *
880 * Configures the collision distance to the default value and is used
881 * during link setup.
882 **/
883void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
884{
885 u32 tctl;
886
887 tctl = er32(TCTL);
888
889 tctl &= ~E1000_TCTL_COLD;
890 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
891
892 ew32(TCTL, tctl);
893 e1e_flush();
894}
895
896/**
897 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
898 * @hw: pointer to the HW structure
899 *
900 * Sets the flow control high/low threshold (watermark) registers. If
901 * flow control XON frame transmission is enabled, then set XON frame
902 * transmission as well.
903 **/
904s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
905{
906 u32 fcrtl = 0, fcrth = 0;
907
908 /* Set the flow control receive threshold registers. Normally,
909 * these registers will be set to a default threshold that may be
910 * adjusted later by the driver's runtime code. However, if the
911 * ability to transmit pause frames is not enabled, then these
912 * registers will be set to 0.
913 */
914 if (hw->fc.current_mode & e1000_fc_tx_pause) {
915 /* We need to set up the Receive Threshold high and low water
916 * marks as well as (optionally) enabling the transmission of
917 * XON frames.
918 */
919 fcrtl = hw->fc.low_water;
920 if (hw->fc.send_xon)
921 fcrtl |= E1000_FCRTL_XONE;
922
923 fcrth = hw->fc.high_water;
924 }
925 ew32(FCRTL, fcrtl);
926 ew32(FCRTH, fcrth);
927
928 return 0;
929}
930
931/**
932 * e1000e_force_mac_fc - Force the MAC's flow control settings
933 * @hw: pointer to the HW structure
934 *
935 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
936 * device control register to reflect the adapter settings. TFCE and RFCE
937 * need to be explicitly set by software when a copper PHY is used because
938 * autonegotiation is managed by the PHY rather than the MAC. Software must
939 * also configure these bits when link is forced on a fiber connection.
940 **/
941s32 e1000e_force_mac_fc(struct e1000_hw *hw)
942{
943 u32 ctrl;
944
945 ctrl = er32(CTRL);
946
947 /* Because we didn't get link via the internal auto-negotiation
948 * mechanism (we either forced link or we got link via PHY
949 * auto-neg), we have to manually enable/disable transmit an
950 * receive flow control.
951 *
952 * The "Case" statement below enables/disable flow control
953 * according to the "hw->fc.current_mode" parameter.
954 *
955 * The possible values of the "fc" parameter are:
956 * 0: Flow control is completely disabled
957 * 1: Rx flow control is enabled (we can receive pause
958 * frames but not send pause frames).
959 * 2: Tx flow control is enabled (we can send pause frames
960 * but we do not receive pause frames).
961 * 3: Both Rx and Tx flow control (symmetric) is enabled.
962 * other: No other values should be possible at this point.
963 */
964 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
965
966 switch (hw->fc.current_mode) {
967 case e1000_fc_none:
968 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
969 break;
970 case e1000_fc_rx_pause:
971 ctrl &= (~E1000_CTRL_TFCE);
972 ctrl |= E1000_CTRL_RFCE;
973 break;
974 case e1000_fc_tx_pause:
975 ctrl &= (~E1000_CTRL_RFCE);
976 ctrl |= E1000_CTRL_TFCE;
977 break;
978 case e1000_fc_full:
979 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
980 break;
981 default:
982 e_dbg("Flow control param set incorrectly\n");
983 return -E1000_ERR_CONFIG;
984 }
985
986 ew32(CTRL, ctrl);
987
988 return 0;
989}
990
991/**
992 * e1000e_config_fc_after_link_up - Configures flow control after link
993 * @hw: pointer to the HW structure
994 *
995 * Checks the status of auto-negotiation after link up to ensure that the
996 * speed and duplex were not forced. If the link needed to be forced, then
997 * flow control needs to be forced also. If auto-negotiation is enabled
998 * and did not fail, then we configure flow control based on our link
999 * partner.
1000 **/
1001s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1002{
1003 struct e1000_mac_info *mac = &hw->mac;
1004 s32 ret_val = 0;
1005 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1006 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1007 u16 speed, duplex;
1008
1009 /* Check for the case where we have fiber media and auto-neg failed
1010 * so we had to force link. In this case, we need to force the
1011 * configuration of the MAC to match the "fc" parameter.
1012 */
1013 if (mac->autoneg_failed) {
1014 if (hw->phy.media_type == e1000_media_type_fiber ||
1015 hw->phy.media_type == e1000_media_type_internal_serdes)
1016 ret_val = e1000e_force_mac_fc(hw);
1017 } else {
1018 if (hw->phy.media_type == e1000_media_type_copper)
1019 ret_val = e1000e_force_mac_fc(hw);
1020 }
1021
1022 if (ret_val) {
1023 e_dbg("Error forcing flow control settings\n");
1024 return ret_val;
1025 }
1026
1027 /* Check for the case where we have copper media and auto-neg is
1028 * enabled. In this case, we need to check and see if Auto-Neg
1029 * has completed, and if so, how the PHY and link partner has
1030 * flow control configured.
1031 */
1032 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1033 /* Read the MII Status Register and check to see if AutoNeg
1034 * has completed. We read this twice because this reg has
1035 * some "sticky" (latched) bits.
1036 */
1037 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1038 if (ret_val)
1039 return ret_val;
1040 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1041 if (ret_val)
1042 return ret_val;
1043
1044 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1045 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1046 return ret_val;
1047 }
1048
1049 /* The AutoNeg process has completed, so we now need to
1050 * read both the Auto Negotiation Advertisement
1051 * Register (Address 4) and the Auto_Negotiation Base
1052 * Page Ability Register (Address 5) to determine how
1053 * flow control was negotiated.
1054 */
1055 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1056 if (ret_val)
1057 return ret_val;
1058 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1059 if (ret_val)
1060 return ret_val;
1061
1062 /* Two bits in the Auto Negotiation Advertisement Register
1063 * (Address 4) and two bits in the Auto Negotiation Base
1064 * Page Ability Register (Address 5) determine flow control
1065 * for both the PHY and the link partner. The following
1066 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067 * 1999, describes these PAUSE resolution bits and how flow
1068 * control is determined based upon these settings.
1069 * NOTE: DC = Don't Care
1070 *
1071 * LOCAL DEVICE | LINK PARTNER
1072 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073 *-------|---------|-------|---------|--------------------
1074 * 0 | 0 | DC | DC | e1000_fc_none
1075 * 0 | 1 | 0 | DC | e1000_fc_none
1076 * 0 | 1 | 1 | 0 | e1000_fc_none
1077 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1078 * 1 | 0 | 0 | DC | e1000_fc_none
1079 * 1 | DC | 1 | DC | e1000_fc_full
1080 * 1 | 1 | 0 | 0 | e1000_fc_none
1081 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1082 *
1083 * Are both PAUSE bits set to 1? If so, this implies
1084 * Symmetric Flow Control is enabled at both ends. The
1085 * ASM_DIR bits are irrelevant per the spec.
1086 *
1087 * For Symmetric Flow Control:
1088 *
1089 * LOCAL DEVICE | LINK PARTNER
1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091 *-------|---------|-------|---------|--------------------
1092 * 1 | DC | 1 | DC | E1000_fc_full
1093 *
1094 */
1095 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1096 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1097 /* Now we need to check if the user selected Rx ONLY
1098 * of pause frames. In this case, we had to advertise
1099 * FULL flow control because we could not advertise Rx
1100 * ONLY. Hence, we must now check to see if we need to
1101 * turn OFF the TRANSMISSION of PAUSE frames.
1102 */
1103 if (hw->fc.requested_mode == e1000_fc_full) {
1104 hw->fc.current_mode = e1000_fc_full;
1105 e_dbg("Flow Control = FULL.\n");
1106 } else {
1107 hw->fc.current_mode = e1000_fc_rx_pause;
1108 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1109 }
1110 }
1111 /* For receiving PAUSE frames ONLY.
1112 *
1113 * LOCAL DEVICE | LINK PARTNER
1114 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1115 *-------|---------|-------|---------|--------------------
1116 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1117 */
1118 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1119 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1120 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1121 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1122 hw->fc.current_mode = e1000_fc_tx_pause;
1123 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1124 }
1125 /* For transmitting PAUSE frames ONLY.
1126 *
1127 * LOCAL DEVICE | LINK PARTNER
1128 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1129 *-------|---------|-------|---------|--------------------
1130 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1131 */
1132 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1133 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1134 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1135 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1136 hw->fc.current_mode = e1000_fc_rx_pause;
1137 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1138 } else {
1139 /* Per the IEEE spec, at this point flow control
1140 * should be disabled.
1141 */
1142 hw->fc.current_mode = e1000_fc_none;
1143 e_dbg("Flow Control = NONE.\n");
1144 }
1145
1146 /* Now we need to do one last check... If we auto-
1147 * negotiated to HALF DUPLEX, flow control should not be
1148 * enabled per IEEE 802.3 spec.
1149 */
1150 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1151 if (ret_val) {
1152 e_dbg("Error getting link speed and duplex\n");
1153 return ret_val;
1154 }
1155
1156 if (duplex == HALF_DUPLEX)
1157 hw->fc.current_mode = e1000_fc_none;
1158
1159 /* Now we call a subroutine to actually force the MAC
1160 * controller to use the correct flow control settings.
1161 */
1162 ret_val = e1000e_force_mac_fc(hw);
1163 if (ret_val) {
1164 e_dbg("Error forcing flow control settings\n");
1165 return ret_val;
1166 }
1167 }
1168
1169 /* Check for the case where we have SerDes media and auto-neg is
1170 * enabled. In this case, we need to check and see if Auto-Neg
1171 * has completed, and if so, how the PHY and link partner has
1172 * flow control configured.
1173 */
1174 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1175 mac->autoneg) {
1176 /* Read the PCS_LSTS and check to see if AutoNeg
1177 * has completed.
1178 */
1179 pcs_status_reg = er32(PCS_LSTAT);
1180
1181 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1182 e_dbg("PCS Auto Neg has not completed.\n");
1183 return ret_val;
1184 }
1185
1186 /* The AutoNeg process has completed, so we now need to
1187 * read both the Auto Negotiation Advertisement
1188 * Register (PCS_ANADV) and the Auto_Negotiation Base
1189 * Page Ability Register (PCS_LPAB) to determine how
1190 * flow control was negotiated.
1191 */
1192 pcs_adv_reg = er32(PCS_ANADV);
1193 pcs_lp_ability_reg = er32(PCS_LPAB);
1194
1195 /* Two bits in the Auto Negotiation Advertisement Register
1196 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1197 * Page Ability Register (PCS_LPAB) determine flow control
1198 * for both the PHY and the link partner. The following
1199 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1200 * 1999, describes these PAUSE resolution bits and how flow
1201 * control is determined based upon these settings.
1202 * NOTE: DC = Don't Care
1203 *
1204 * LOCAL DEVICE | LINK PARTNER
1205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1206 *-------|---------|-------|---------|--------------------
1207 * 0 | 0 | DC | DC | e1000_fc_none
1208 * 0 | 1 | 0 | DC | e1000_fc_none
1209 * 0 | 1 | 1 | 0 | e1000_fc_none
1210 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1211 * 1 | 0 | 0 | DC | e1000_fc_none
1212 * 1 | DC | 1 | DC | e1000_fc_full
1213 * 1 | 1 | 0 | 0 | e1000_fc_none
1214 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1215 *
1216 * Are both PAUSE bits set to 1? If so, this implies
1217 * Symmetric Flow Control is enabled at both ends. The
1218 * ASM_DIR bits are irrelevant per the spec.
1219 *
1220 * For Symmetric Flow Control:
1221 *
1222 * LOCAL DEVICE | LINK PARTNER
1223 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1224 *-------|---------|-------|---------|--------------------
1225 * 1 | DC | 1 | DC | e1000_fc_full
1226 *
1227 */
1228 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1229 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1230 /* Now we need to check if the user selected Rx ONLY
1231 * of pause frames. In this case, we had to advertise
1232 * FULL flow control because we could not advertise Rx
1233 * ONLY. Hence, we must now check to see if we need to
1234 * turn OFF the TRANSMISSION of PAUSE frames.
1235 */
1236 if (hw->fc.requested_mode == e1000_fc_full) {
1237 hw->fc.current_mode = e1000_fc_full;
1238 e_dbg("Flow Control = FULL.\n");
1239 } else {
1240 hw->fc.current_mode = e1000_fc_rx_pause;
1241 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1242 }
1243 }
1244 /* For receiving PAUSE frames ONLY.
1245 *
1246 * LOCAL DEVICE | LINK PARTNER
1247 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1248 *-------|---------|-------|---------|--------------------
1249 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1250 */
1251 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1252 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1253 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1254 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1255 hw->fc.current_mode = e1000_fc_tx_pause;
1256 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1257 }
1258 /* For transmitting PAUSE frames ONLY.
1259 *
1260 * LOCAL DEVICE | LINK PARTNER
1261 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1262 *-------|---------|-------|---------|--------------------
1263 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1264 */
1265 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1266 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1267 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1268 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1269 hw->fc.current_mode = e1000_fc_rx_pause;
1270 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1271 } else {
1272 /* Per the IEEE spec, at this point flow control
1273 * should be disabled.
1274 */
1275 hw->fc.current_mode = e1000_fc_none;
1276 e_dbg("Flow Control = NONE.\n");
1277 }
1278
1279 /* Now we call a subroutine to actually force the MAC
1280 * controller to use the correct flow control settings.
1281 */
1282 pcs_ctrl_reg = er32(PCS_LCTL);
1283 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1284 ew32(PCS_LCTL, pcs_ctrl_reg);
1285
1286 ret_val = e1000e_force_mac_fc(hw);
1287 if (ret_val) {
1288 e_dbg("Error forcing flow control settings\n");
1289 return ret_val;
1290 }
1291 }
1292
1293 return 0;
1294}
1295
1296/**
1297 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1298 * @hw: pointer to the HW structure
1299 * @speed: stores the current speed
1300 * @duplex: stores the current duplex
1301 *
1302 * Read the status register for the current speed/duplex and store the current
1303 * speed and duplex for copper connections.
1304 **/
1305s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1306 u16 *duplex)
1307{
1308 u32 status;
1309
1310 status = er32(STATUS);
1311 if (status & E1000_STATUS_SPEED_1000)
1312 *speed = SPEED_1000;
1313 else if (status & E1000_STATUS_SPEED_100)
1314 *speed = SPEED_100;
1315 else
1316 *speed = SPEED_10;
1317
1318 if (status & E1000_STATUS_FD)
1319 *duplex = FULL_DUPLEX;
1320 else
1321 *duplex = HALF_DUPLEX;
1322
1323 e_dbg("%u Mbps, %s Duplex\n",
1324 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1325 *duplex == FULL_DUPLEX ? "Full" : "Half");
1326
1327 return 0;
1328}
1329
1330/**
1331 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1332 * @hw: pointer to the HW structure
1333 * @speed: stores the current speed
1334 * @duplex: stores the current duplex
1335 *
1336 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1337 * for fiber/serdes links.
1338 **/
1339s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1340 *hw, u16 *speed, u16 *duplex)
1341{
1342 *speed = SPEED_1000;
1343 *duplex = FULL_DUPLEX;
1344
1345 return 0;
1346}
1347
1348/**
1349 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1350 * @hw: pointer to the HW structure
1351 *
1352 * Acquire the HW semaphore to access the PHY or NVM
1353 **/
1354s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1355{
1356 u32 swsm;
1357 s32 timeout = hw->nvm.word_size + 1;
1358 s32 i = 0;
1359
1360 /* Get the SW semaphore */
1361 while (i < timeout) {
1362 swsm = er32(SWSM);
1363 if (!(swsm & E1000_SWSM_SMBI))
1364 break;
1365
1366 udelay(100);
1367 i++;
1368 }
1369
1370 if (i == timeout) {
1371 e_dbg("Driver can't access device - SMBI bit is set.\n");
1372 return -E1000_ERR_NVM;
1373 }
1374
1375 /* Get the FW semaphore. */
1376 for (i = 0; i < timeout; i++) {
1377 swsm = er32(SWSM);
1378 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1379
1380 /* Semaphore acquired if bit latched */
1381 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1382 break;
1383
1384 udelay(100);
1385 }
1386
1387 if (i == timeout) {
1388 /* Release semaphores */
1389 e1000e_put_hw_semaphore(hw);
1390 e_dbg("Driver can't access the NVM\n");
1391 return -E1000_ERR_NVM;
1392 }
1393
1394 return 0;
1395}
1396
1397/**
1398 * e1000e_put_hw_semaphore - Release hardware semaphore
1399 * @hw: pointer to the HW structure
1400 *
1401 * Release hardware semaphore used to access the PHY or NVM
1402 **/
1403void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1404{
1405 u32 swsm;
1406
1407 swsm = er32(SWSM);
1408 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1409 ew32(SWSM, swsm);
1410}
1411
1412/**
1413 * e1000e_get_auto_rd_done - Check for auto read completion
1414 * @hw: pointer to the HW structure
1415 *
1416 * Check EEPROM for Auto Read done bit.
1417 **/
1418s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1419{
1420 s32 i = 0;
1421
1422 while (i < AUTO_READ_DONE_TIMEOUT) {
1423 if (er32(EECD) & E1000_EECD_AUTO_RD)
1424 break;
1425 usleep_range(1000, 2000);
1426 i++;
1427 }
1428
1429 if (i == AUTO_READ_DONE_TIMEOUT) {
1430 e_dbg("Auto read by HW from NVM has not completed.\n");
1431 return -E1000_ERR_RESET;
1432 }
1433
1434 return 0;
1435}
1436
1437/**
1438 * e1000e_valid_led_default - Verify a valid default LED config
1439 * @hw: pointer to the HW structure
1440 * @data: pointer to the NVM (EEPROM)
1441 *
1442 * Read the EEPROM for the current default LED configuration. If the
1443 * LED configuration is not valid, set to a valid LED configuration.
1444 **/
1445s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1446{
1447 s32 ret_val;
1448
1449 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1450 if (ret_val) {
1451 e_dbg("NVM Read Error\n");
1452 return ret_val;
1453 }
1454
1455 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1456 *data = ID_LED_DEFAULT;
1457
1458 return 0;
1459}
1460
1461/**
1462 * e1000e_id_led_init_generic -
1463 * @hw: pointer to the HW structure
1464 *
1465 **/
1466s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1467{
1468 struct e1000_mac_info *mac = &hw->mac;
1469 s32 ret_val;
1470 const u32 ledctl_mask = 0x000000FF;
1471 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1472 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1473 u16 data, i, temp;
1474 const u16 led_mask = 0x0F;
1475
1476 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1477 if (ret_val)
1478 return ret_val;
1479
1480 mac->ledctl_default = er32(LEDCTL);
1481 mac->ledctl_mode1 = mac->ledctl_default;
1482 mac->ledctl_mode2 = mac->ledctl_default;
1483
1484 for (i = 0; i < 4; i++) {
1485 temp = (data >> (i << 2)) & led_mask;
1486 switch (temp) {
1487 case ID_LED_ON1_DEF2:
1488 case ID_LED_ON1_ON2:
1489 case ID_LED_ON1_OFF2:
1490 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1491 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1492 break;
1493 case ID_LED_OFF1_DEF2:
1494 case ID_LED_OFF1_ON2:
1495 case ID_LED_OFF1_OFF2:
1496 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1497 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1498 break;
1499 default:
1500 /* Do nothing */
1501 break;
1502 }
1503 switch (temp) {
1504 case ID_LED_DEF1_ON2:
1505 case ID_LED_ON1_ON2:
1506 case ID_LED_OFF1_ON2:
1507 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1508 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1509 break;
1510 case ID_LED_DEF1_OFF2:
1511 case ID_LED_ON1_OFF2:
1512 case ID_LED_OFF1_OFF2:
1513 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1514 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1515 break;
1516 default:
1517 /* Do nothing */
1518 break;
1519 }
1520 }
1521
1522 return 0;
1523}
1524
1525/**
1526 * e1000e_setup_led_generic - Configures SW controllable LED
1527 * @hw: pointer to the HW structure
1528 *
1529 * This prepares the SW controllable LED for use and saves the current state
1530 * of the LED so it can be later restored.
1531 **/
1532s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1533{
1534 u32 ledctl;
1535
1536 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1537 return -E1000_ERR_CONFIG;
1538
1539 if (hw->phy.media_type == e1000_media_type_fiber) {
1540 ledctl = er32(LEDCTL);
1541 hw->mac.ledctl_default = ledctl;
1542 /* Turn off LED0 */
1543 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1544 E1000_LEDCTL_LED0_MODE_MASK);
1545 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1546 E1000_LEDCTL_LED0_MODE_SHIFT);
1547 ew32(LEDCTL, ledctl);
1548 } else if (hw->phy.media_type == e1000_media_type_copper) {
1549 ew32(LEDCTL, hw->mac.ledctl_mode1);
1550 }
1551
1552 return 0;
1553}
1554
1555/**
1556 * e1000e_cleanup_led_generic - Set LED config to default operation
1557 * @hw: pointer to the HW structure
1558 *
1559 * Remove the current LED configuration and set the LED configuration
1560 * to the default value, saved from the EEPROM.
1561 **/
1562s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1563{
1564 ew32(LEDCTL, hw->mac.ledctl_default);
1565 return 0;
1566}
1567
1568/**
1569 * e1000e_blink_led_generic - Blink LED
1570 * @hw: pointer to the HW structure
1571 *
1572 * Blink the LEDs which are set to be on.
1573 **/
1574s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1575{
1576 u32 ledctl_blink = 0;
1577 u32 i;
1578
1579 if (hw->phy.media_type == e1000_media_type_fiber) {
1580 /* always blink LED0 for PCI-E fiber */
1581 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1582 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1583 } else {
1584 /* Set the blink bit for each LED that's "on" (0x0E)
1585 * (or "off" if inverted) in ledctl_mode2. The blink
1586 * logic in hardware only works when mode is set to "on"
1587 * so it must be changed accordingly when the mode is
1588 * "off" and inverted.
1589 */
1590 ledctl_blink = hw->mac.ledctl_mode2;
1591 for (i = 0; i < 32; i += 8) {
1592 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1593 E1000_LEDCTL_LED0_MODE_MASK;
1594 u32 led_default = hw->mac.ledctl_default >> i;
1595
1596 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1597 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1598 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1599 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1600 ledctl_blink &=
1601 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1602 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1603 E1000_LEDCTL_MODE_LED_ON) << i;
1604 }
1605 }
1606 }
1607
1608 ew32(LEDCTL, ledctl_blink);
1609
1610 return 0;
1611}
1612
1613/**
1614 * e1000e_led_on_generic - Turn LED on
1615 * @hw: pointer to the HW structure
1616 *
1617 * Turn LED on.
1618 **/
1619s32 e1000e_led_on_generic(struct e1000_hw *hw)
1620{
1621 u32 ctrl;
1622
1623 switch (hw->phy.media_type) {
1624 case e1000_media_type_fiber:
1625 ctrl = er32(CTRL);
1626 ctrl &= ~E1000_CTRL_SWDPIN0;
1627 ctrl |= E1000_CTRL_SWDPIO0;
1628 ew32(CTRL, ctrl);
1629 break;
1630 case e1000_media_type_copper:
1631 ew32(LEDCTL, hw->mac.ledctl_mode2);
1632 break;
1633 default:
1634 break;
1635 }
1636
1637 return 0;
1638}
1639
1640/**
1641 * e1000e_led_off_generic - Turn LED off
1642 * @hw: pointer to the HW structure
1643 *
1644 * Turn LED off.
1645 **/
1646s32 e1000e_led_off_generic(struct e1000_hw *hw)
1647{
1648 u32 ctrl;
1649
1650 switch (hw->phy.media_type) {
1651 case e1000_media_type_fiber:
1652 ctrl = er32(CTRL);
1653 ctrl |= E1000_CTRL_SWDPIN0;
1654 ctrl |= E1000_CTRL_SWDPIO0;
1655 ew32(CTRL, ctrl);
1656 break;
1657 case e1000_media_type_copper:
1658 ew32(LEDCTL, hw->mac.ledctl_mode1);
1659 break;
1660 default:
1661 break;
1662 }
1663
1664 return 0;
1665}
1666
1667/**
1668 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1669 * @hw: pointer to the HW structure
1670 * @no_snoop: bitmap of snoop events
1671 *
1672 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1673 **/
1674void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1675{
1676 u32 gcr;
1677
1678 if (no_snoop) {
1679 gcr = er32(GCR);
1680 gcr &= ~(PCIE_NO_SNOOP_ALL);
1681 gcr |= no_snoop;
1682 ew32(GCR, gcr);
1683 }
1684}
1685
1686/**
1687 * e1000e_disable_pcie_master - Disables PCI-express master access
1688 * @hw: pointer to the HW structure
1689 *
1690 * Returns 0 if successful, else returns -10
1691 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1692 * the master requests to be disabled.
1693 *
1694 * Disables PCI-Express master access and verifies there are no pending
1695 * requests.
1696 **/
1697s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1698{
1699 u32 ctrl;
1700 s32 timeout = MASTER_DISABLE_TIMEOUT;
1701
1702 ctrl = er32(CTRL);
1703 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1704 ew32(CTRL, ctrl);
1705
1706 while (timeout) {
1707 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1708 break;
1709 usleep_range(100, 200);
1710 timeout--;
1711 }
1712
1713 if (!timeout) {
1714 e_dbg("Master requests are pending.\n");
1715 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1716 }
1717
1718 return 0;
1719}
1720
1721/**
1722 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1723 * @hw: pointer to the HW structure
1724 *
1725 * Reset the Adaptive Interframe Spacing throttle to default values.
1726 **/
1727void e1000e_reset_adaptive(struct e1000_hw *hw)
1728{
1729 struct e1000_mac_info *mac = &hw->mac;
1730
1731 if (!mac->adaptive_ifs) {
1732 e_dbg("Not in Adaptive IFS mode!\n");
1733 return;
1734 }
1735
1736 mac->current_ifs_val = 0;
1737 mac->ifs_min_val = IFS_MIN;
1738 mac->ifs_max_val = IFS_MAX;
1739 mac->ifs_step_size = IFS_STEP;
1740 mac->ifs_ratio = IFS_RATIO;
1741
1742 mac->in_ifs_mode = false;
1743 ew32(AIT, 0);
1744}
1745
1746/**
1747 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1748 * @hw: pointer to the HW structure
1749 *
1750 * Update the Adaptive Interframe Spacing Throttle value based on the
1751 * time between transmitted packets and time between collisions.
1752 **/
1753void e1000e_update_adaptive(struct e1000_hw *hw)
1754{
1755 struct e1000_mac_info *mac = &hw->mac;
1756
1757 if (!mac->adaptive_ifs) {
1758 e_dbg("Not in Adaptive IFS mode!\n");
1759 return;
1760 }
1761
1762 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1763 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1764 mac->in_ifs_mode = true;
1765 if (mac->current_ifs_val < mac->ifs_max_val) {
1766 if (!mac->current_ifs_val)
1767 mac->current_ifs_val = mac->ifs_min_val;
1768 else
1769 mac->current_ifs_val +=
1770 mac->ifs_step_size;
1771 ew32(AIT, mac->current_ifs_val);
1772 }
1773 }
1774 } else {
1775 if (mac->in_ifs_mode &&
1776 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1777 mac->current_ifs_val = 0;
1778 mac->in_ifs_mode = false;
1779 ew32(AIT, 0);
1780 }
1781 }
1782}