Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27 */
  28
  29/* e1000_hw.c
  30 * Shared functions for accessing and configuring the MAC
  31 */
  32
  33#include "e1000.h"
  34
  35static s32 e1000_check_downshift(struct e1000_hw *hw);
  36static s32 e1000_check_polarity(struct e1000_hw *hw,
  37				e1000_rev_polarity *polarity);
  38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  39static void e1000_clear_vfta(struct e1000_hw *hw);
  40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  41					      bool link_up);
  42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  46				  u16 *max_length);
  47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  48static s32 e1000_id_led_init(struct e1000_hw *hw);
  49static void e1000_init_rx_addrs(struct e1000_hw *hw);
  50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  51				  struct e1000_phy_info *phy_info);
  52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  53				  struct e1000_phy_info *phy_info);
  54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  57static s32 e1000_set_phy_type(struct e1000_hw *hw);
  58static void e1000_phy_init_script(struct e1000_hw *hw);
  59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  70				  u16 words, u16 *data);
  71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  72					u16 words, u16 *data);
  73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  78				  u16 phy_data);
  79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  80				 u16 *phy_data);
  81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  83static void e1000_release_eeprom(struct e1000_hw *hw);
  84static void e1000_standby_eeprom(struct e1000_hw *hw);
  85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  89				u16 *data);
  90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  91				 u16 *data);
  92
  93/* IGP cable length table */
  94static const
  95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  96	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  98	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  99	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
 100	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
 101	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 102	    100,
 103	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
 104	    110, 110,
 105	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
 106	    120, 120
 107};
 108
 109static DEFINE_SPINLOCK(e1000_eeprom_lock);
 
 110
 111/**
 112 * e1000_set_phy_type - Set the phy type member in the hw struct.
 113 * @hw: Struct containing variables accessed by shared code
 114 */
 115static s32 e1000_set_phy_type(struct e1000_hw *hw)
 116{
 117	e_dbg("e1000_set_phy_type");
 118
 119	if (hw->mac_type == e1000_undefined)
 120		return -E1000_ERR_PHY_TYPE;
 121
 122	switch (hw->phy_id) {
 123	case M88E1000_E_PHY_ID:
 124	case M88E1000_I_PHY_ID:
 125	case M88E1011_I_PHY_ID:
 126	case M88E1111_I_PHY_ID:
 127	case M88E1118_E_PHY_ID:
 128		hw->phy_type = e1000_phy_m88;
 129		break;
 130	case IGP01E1000_I_PHY_ID:
 131		if (hw->mac_type == e1000_82541 ||
 132		    hw->mac_type == e1000_82541_rev_2 ||
 133		    hw->mac_type == e1000_82547 ||
 134		    hw->mac_type == e1000_82547_rev_2)
 135			hw->phy_type = e1000_phy_igp;
 136		break;
 137	case RTL8211B_PHY_ID:
 138		hw->phy_type = e1000_phy_8211;
 139		break;
 140	case RTL8201N_PHY_ID:
 141		hw->phy_type = e1000_phy_8201;
 142		break;
 143	default:
 144		/* Should never have loaded on this device */
 145		hw->phy_type = e1000_phy_undefined;
 146		return -E1000_ERR_PHY_TYPE;
 147	}
 148
 149	return E1000_SUCCESS;
 150}
 151
 152/**
 153 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 154 * @hw: Struct containing variables accessed by shared code
 155 */
 156static void e1000_phy_init_script(struct e1000_hw *hw)
 157{
 158	u32 ret_val;
 159	u16 phy_saved_data;
 160
 161	e_dbg("e1000_phy_init_script");
 162
 163	if (hw->phy_init_script) {
 164		msleep(20);
 165
 166		/* Save off the current value of register 0x2F5B to be restored at
 167		 * the end of this routine. */
 168		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 
 169
 170		/* Disabled the PHY transmitter */
 171		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 172		msleep(20);
 173
 174		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 175		msleep(5);
 176
 177		switch (hw->mac_type) {
 178		case e1000_82541:
 179		case e1000_82547:
 180			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 181			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 182			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 183			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 184			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 185			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 186			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 187			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 188			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 189			break;
 190
 191		case e1000_82541_rev_2:
 192		case e1000_82547_rev_2:
 193			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 194			break;
 195		default:
 196			break;
 197		}
 198
 199		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 200		msleep(20);
 201
 202		/* Now enable the transmitter */
 203		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 204
 205		if (hw->mac_type == e1000_82547) {
 206			u16 fused, fine, coarse;
 207
 208			/* Move to analog registers page */
 209			e1000_read_phy_reg(hw,
 210					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 211					   &fused);
 212
 213			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 214				e1000_read_phy_reg(hw,
 215						   IGP01E1000_ANALOG_FUSE_STATUS,
 216						   &fused);
 217
 218				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 219				coarse =
 220				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 221
 222				if (coarse >
 223				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 224					coarse -=
 225					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 226					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 227				} else if (coarse ==
 228					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 229					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 230
 231				fused =
 232				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 233				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 234				    (coarse &
 235				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 236
 237				e1000_write_phy_reg(hw,
 238						    IGP01E1000_ANALOG_FUSE_CONTROL,
 239						    fused);
 240				e1000_write_phy_reg(hw,
 241						    IGP01E1000_ANALOG_FUSE_BYPASS,
 242						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 243			}
 244		}
 245	}
 246}
 247
 248/**
 249 * e1000_set_mac_type - Set the mac type member in the hw struct.
 250 * @hw: Struct containing variables accessed by shared code
 251 */
 252s32 e1000_set_mac_type(struct e1000_hw *hw)
 253{
 254	e_dbg("e1000_set_mac_type");
 255
 256	switch (hw->device_id) {
 257	case E1000_DEV_ID_82542:
 258		switch (hw->revision_id) {
 259		case E1000_82542_2_0_REV_ID:
 260			hw->mac_type = e1000_82542_rev2_0;
 261			break;
 262		case E1000_82542_2_1_REV_ID:
 263			hw->mac_type = e1000_82542_rev2_1;
 264			break;
 265		default:
 266			/* Invalid 82542 revision ID */
 267			return -E1000_ERR_MAC_TYPE;
 268		}
 269		break;
 270	case E1000_DEV_ID_82543GC_FIBER:
 271	case E1000_DEV_ID_82543GC_COPPER:
 272		hw->mac_type = e1000_82543;
 273		break;
 274	case E1000_DEV_ID_82544EI_COPPER:
 275	case E1000_DEV_ID_82544EI_FIBER:
 276	case E1000_DEV_ID_82544GC_COPPER:
 277	case E1000_DEV_ID_82544GC_LOM:
 278		hw->mac_type = e1000_82544;
 279		break;
 280	case E1000_DEV_ID_82540EM:
 281	case E1000_DEV_ID_82540EM_LOM:
 282	case E1000_DEV_ID_82540EP:
 283	case E1000_DEV_ID_82540EP_LOM:
 284	case E1000_DEV_ID_82540EP_LP:
 285		hw->mac_type = e1000_82540;
 286		break;
 287	case E1000_DEV_ID_82545EM_COPPER:
 288	case E1000_DEV_ID_82545EM_FIBER:
 289		hw->mac_type = e1000_82545;
 290		break;
 291	case E1000_DEV_ID_82545GM_COPPER:
 292	case E1000_DEV_ID_82545GM_FIBER:
 293	case E1000_DEV_ID_82545GM_SERDES:
 294		hw->mac_type = e1000_82545_rev_3;
 295		break;
 296	case E1000_DEV_ID_82546EB_COPPER:
 297	case E1000_DEV_ID_82546EB_FIBER:
 298	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 299		hw->mac_type = e1000_82546;
 300		break;
 301	case E1000_DEV_ID_82546GB_COPPER:
 302	case E1000_DEV_ID_82546GB_FIBER:
 303	case E1000_DEV_ID_82546GB_SERDES:
 304	case E1000_DEV_ID_82546GB_PCIE:
 305	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 306	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 307		hw->mac_type = e1000_82546_rev_3;
 308		break;
 309	case E1000_DEV_ID_82541EI:
 310	case E1000_DEV_ID_82541EI_MOBILE:
 311	case E1000_DEV_ID_82541ER_LOM:
 312		hw->mac_type = e1000_82541;
 313		break;
 314	case E1000_DEV_ID_82541ER:
 315	case E1000_DEV_ID_82541GI:
 316	case E1000_DEV_ID_82541GI_LF:
 317	case E1000_DEV_ID_82541GI_MOBILE:
 318		hw->mac_type = e1000_82541_rev_2;
 319		break;
 320	case E1000_DEV_ID_82547EI:
 321	case E1000_DEV_ID_82547EI_MOBILE:
 322		hw->mac_type = e1000_82547;
 323		break;
 324	case E1000_DEV_ID_82547GI:
 325		hw->mac_type = e1000_82547_rev_2;
 326		break;
 327	case E1000_DEV_ID_INTEL_CE4100_GBE:
 328		hw->mac_type = e1000_ce4100;
 329		break;
 330	default:
 331		/* Should never have loaded on this device */
 332		return -E1000_ERR_MAC_TYPE;
 333	}
 334
 335	switch (hw->mac_type) {
 336	case e1000_82541:
 337	case e1000_82547:
 338	case e1000_82541_rev_2:
 339	case e1000_82547_rev_2:
 340		hw->asf_firmware_present = true;
 341		break;
 342	default:
 343		break;
 344	}
 345
 346	/* The 82543 chip does not count tx_carrier_errors properly in
 347	 * FD mode
 348	 */
 349	if (hw->mac_type == e1000_82543)
 350		hw->bad_tx_carr_stats_fd = true;
 351
 352	if (hw->mac_type > e1000_82544)
 353		hw->has_smbus = true;
 354
 355	return E1000_SUCCESS;
 356}
 357
 358/**
 359 * e1000_set_media_type - Set media type and TBI compatibility.
 360 * @hw: Struct containing variables accessed by shared code
 361 */
 362void e1000_set_media_type(struct e1000_hw *hw)
 363{
 364	u32 status;
 365
 366	e_dbg("e1000_set_media_type");
 367
 368	if (hw->mac_type != e1000_82543) {
 369		/* tbi_compatibility is only valid on 82543 */
 370		hw->tbi_compatibility_en = false;
 371	}
 372
 373	switch (hw->device_id) {
 374	case E1000_DEV_ID_82545GM_SERDES:
 375	case E1000_DEV_ID_82546GB_SERDES:
 376		hw->media_type = e1000_media_type_internal_serdes;
 377		break;
 378	default:
 379		switch (hw->mac_type) {
 380		case e1000_82542_rev2_0:
 381		case e1000_82542_rev2_1:
 382			hw->media_type = e1000_media_type_fiber;
 383			break;
 384		case e1000_ce4100:
 385			hw->media_type = e1000_media_type_copper;
 386			break;
 387		default:
 388			status = er32(STATUS);
 389			if (status & E1000_STATUS_TBIMODE) {
 390				hw->media_type = e1000_media_type_fiber;
 391				/* tbi_compatibility not valid on fiber */
 392				hw->tbi_compatibility_en = false;
 393			} else {
 394				hw->media_type = e1000_media_type_copper;
 395			}
 396			break;
 397		}
 398	}
 399}
 400
 401/**
 402 * e1000_reset_hw: reset the hardware completely
 403 * @hw: Struct containing variables accessed by shared code
 404 *
 405 * Reset the transmit and receive units; mask and clear all interrupts.
 406 */
 407s32 e1000_reset_hw(struct e1000_hw *hw)
 408{
 409	u32 ctrl;
 410	u32 ctrl_ext;
 411	u32 icr;
 412	u32 manc;
 413	u32 led_ctrl;
 414	s32 ret_val;
 415
 416	e_dbg("e1000_reset_hw");
 417
 418	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 419	if (hw->mac_type == e1000_82542_rev2_0) {
 420		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 421		e1000_pci_clear_mwi(hw);
 422	}
 423
 424	/* Clear interrupt mask to stop board from generating interrupts */
 425	e_dbg("Masking off all interrupts\n");
 426	ew32(IMC, 0xffffffff);
 427
 428	/* Disable the Transmit and Receive units.  Then delay to allow
 429	 * any pending transactions to complete before we hit the MAC with
 430	 * the global reset.
 431	 */
 432	ew32(RCTL, 0);
 433	ew32(TCTL, E1000_TCTL_PSP);
 434	E1000_WRITE_FLUSH();
 435
 436	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 437	hw->tbi_compatibility_on = false;
 438
 439	/* Delay to allow any outstanding PCI transactions to complete before
 440	 * resetting the device
 441	 */
 442	msleep(10);
 443
 444	ctrl = er32(CTRL);
 445
 446	/* Must reset the PHY before resetting the MAC */
 447	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 448		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 449		E1000_WRITE_FLUSH();
 450		msleep(5);
 451	}
 452
 453	/* Issue a global reset to the MAC.  This will reset the chip's
 454	 * transmit, receive, DMA, and link units.  It will not effect
 455	 * the current PCI configuration.  The global reset bit is self-
 456	 * clearing, and should clear within a microsecond.
 457	 */
 458	e_dbg("Issuing a global reset to MAC\n");
 459
 460	switch (hw->mac_type) {
 461	case e1000_82544:
 462	case e1000_82540:
 463	case e1000_82545:
 464	case e1000_82546:
 465	case e1000_82541:
 466	case e1000_82541_rev_2:
 467		/* These controllers can't ack the 64-bit write when issuing the
 468		 * reset, so use IO-mapping as a workaround to issue the reset */
 
 469		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 470		break;
 471	case e1000_82545_rev_3:
 472	case e1000_82546_rev_3:
 473		/* Reset is performed on a shadow of the control register */
 474		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 475		break;
 476	case e1000_ce4100:
 477	default:
 478		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 479		break;
 480	}
 481
 482	/* After MAC reset, force reload of EEPROM to restore power-on settings to
 483	 * device.  Later controllers reload the EEPROM automatically, so just wait
 484	 * for reload to complete.
 485	 */
 486	switch (hw->mac_type) {
 487	case e1000_82542_rev2_0:
 488	case e1000_82542_rev2_1:
 489	case e1000_82543:
 490	case e1000_82544:
 491		/* Wait for reset to complete */
 492		udelay(10);
 493		ctrl_ext = er32(CTRL_EXT);
 494		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 495		ew32(CTRL_EXT, ctrl_ext);
 496		E1000_WRITE_FLUSH();
 497		/* Wait for EEPROM reload */
 498		msleep(2);
 499		break;
 500	case e1000_82541:
 501	case e1000_82541_rev_2:
 502	case e1000_82547:
 503	case e1000_82547_rev_2:
 504		/* Wait for EEPROM reload */
 505		msleep(20);
 506		break;
 507	default:
 508		/* Auto read done will delay 5ms or poll based on mac type */
 509		ret_val = e1000_get_auto_rd_done(hw);
 510		if (ret_val)
 511			return ret_val;
 512		break;
 513	}
 514
 515	/* Disable HW ARPs on ASF enabled adapters */
 516	if (hw->mac_type >= e1000_82540) {
 517		manc = er32(MANC);
 518		manc &= ~(E1000_MANC_ARP_EN);
 519		ew32(MANC, manc);
 520	}
 521
 522	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 523		e1000_phy_init_script(hw);
 524
 525		/* Configure activity LED after PHY reset */
 526		led_ctrl = er32(LEDCTL);
 527		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 528		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 529		ew32(LEDCTL, led_ctrl);
 530	}
 531
 532	/* Clear interrupt mask to stop board from generating interrupts */
 533	e_dbg("Masking off all interrupts\n");
 534	ew32(IMC, 0xffffffff);
 535
 536	/* Clear any pending interrupt events. */
 537	icr = er32(ICR);
 538
 539	/* If MWI was previously enabled, reenable it. */
 540	if (hw->mac_type == e1000_82542_rev2_0) {
 541		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 542			e1000_pci_set_mwi(hw);
 543	}
 544
 545	return E1000_SUCCESS;
 546}
 547
 548/**
 549 * e1000_init_hw: Performs basic configuration of the adapter.
 550 * @hw: Struct containing variables accessed by shared code
 551 *
 552 * Assumes that the controller has previously been reset and is in a
 553 * post-reset uninitialized state. Initializes the receive address registers,
 554 * multicast table, and VLAN filter table. Calls routines to setup link
 555 * configuration and flow control settings. Clears all on-chip counters. Leaves
 556 * the transmit and receive units disabled and uninitialized.
 557 */
 558s32 e1000_init_hw(struct e1000_hw *hw)
 559{
 560	u32 ctrl;
 561	u32 i;
 562	s32 ret_val;
 563	u32 mta_size;
 564	u32 ctrl_ext;
 565
 566	e_dbg("e1000_init_hw");
 567
 568	/* Initialize Identification LED */
 569	ret_val = e1000_id_led_init(hw);
 570	if (ret_val) {
 571		e_dbg("Error Initializing Identification LED\n");
 572		return ret_val;
 573	}
 574
 575	/* Set the media type and TBI compatibility */
 576	e1000_set_media_type(hw);
 577
 578	/* Disabling VLAN filtering. */
 579	e_dbg("Initializing the IEEE VLAN\n");
 580	if (hw->mac_type < e1000_82545_rev_3)
 581		ew32(VET, 0);
 582	e1000_clear_vfta(hw);
 583
 584	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 585	if (hw->mac_type == e1000_82542_rev2_0) {
 586		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 587		e1000_pci_clear_mwi(hw);
 588		ew32(RCTL, E1000_RCTL_RST);
 589		E1000_WRITE_FLUSH();
 590		msleep(5);
 591	}
 592
 593	/* Setup the receive address. This involves initializing all of the Receive
 594	 * Address Registers (RARs 0 - 15).
 595	 */
 596	e1000_init_rx_addrs(hw);
 597
 598	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 599	if (hw->mac_type == e1000_82542_rev2_0) {
 600		ew32(RCTL, 0);
 601		E1000_WRITE_FLUSH();
 602		msleep(1);
 603		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 604			e1000_pci_set_mwi(hw);
 605	}
 606
 607	/* Zero out the Multicast HASH table */
 608	e_dbg("Zeroing the MTA\n");
 609	mta_size = E1000_MC_TBL_SIZE;
 610	for (i = 0; i < mta_size; i++) {
 611		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 612		/* use write flush to prevent Memory Write Block (MWB) from
 613		 * occurring when accessing our register space */
 
 614		E1000_WRITE_FLUSH();
 615	}
 616
 617	/* Set the PCI priority bit correctly in the CTRL register.  This
 618	 * determines if the adapter gives priority to receives, or if it
 619	 * gives equal priority to transmits and receives.  Valid only on
 620	 * 82542 and 82543 silicon.
 621	 */
 622	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 623		ctrl = er32(CTRL);
 624		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 625	}
 626
 627	switch (hw->mac_type) {
 628	case e1000_82545_rev_3:
 629	case e1000_82546_rev_3:
 630		break;
 631	default:
 632		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
 633		if (hw->bus_type == e1000_bus_type_pcix
 634		    && e1000_pcix_get_mmrbc(hw) > 2048)
 
 
 635			e1000_pcix_set_mmrbc(hw, 2048);
 636		break;
 637	}
 638
 639	/* Call a subroutine to configure the link and setup flow control. */
 640	ret_val = e1000_setup_link(hw);
 641
 642	/* Set the transmit descriptor write-back policy */
 643	if (hw->mac_type > e1000_82544) {
 644		ctrl = er32(TXDCTL);
 645		ctrl =
 646		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 647		    E1000_TXDCTL_FULL_TX_DESC_WB;
 648		ew32(TXDCTL, ctrl);
 649	}
 650
 651	/* Clear all of the statistics registers (clear on read).  It is
 652	 * important that we do this after we have tried to establish link
 653	 * because the symbol error count will increment wildly if there
 654	 * is no link.
 655	 */
 656	e1000_clear_hw_cntrs(hw);
 657
 658	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 659	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 660		ctrl_ext = er32(CTRL_EXT);
 661		/* Relaxed ordering must be disabled to avoid a parity
 662		 * error crash in a PCI slot. */
 
 663		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 664		ew32(CTRL_EXT, ctrl_ext);
 665	}
 666
 667	return ret_val;
 668}
 669
 670/**
 671 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 672 * @hw: Struct containing variables accessed by shared code.
 673 */
 674static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 675{
 676	u16 eeprom_data;
 677	s32 ret_val;
 678
 679	e_dbg("e1000_adjust_serdes_amplitude");
 680
 681	if (hw->media_type != e1000_media_type_internal_serdes)
 682		return E1000_SUCCESS;
 683
 684	switch (hw->mac_type) {
 685	case e1000_82545_rev_3:
 686	case e1000_82546_rev_3:
 687		break;
 688	default:
 689		return E1000_SUCCESS;
 690	}
 691
 692	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 693	                            &eeprom_data);
 694	if (ret_val) {
 695		return ret_val;
 696	}
 697
 698	if (eeprom_data != EEPROM_RESERVED_WORD) {
 699		/* Adjust SERDES output amplitude only. */
 700		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 701		ret_val =
 702		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 703		if (ret_val)
 704			return ret_val;
 705	}
 706
 707	return E1000_SUCCESS;
 708}
 709
 710/**
 711 * e1000_setup_link - Configures flow control and link settings.
 712 * @hw: Struct containing variables accessed by shared code
 713 *
 714 * Determines which flow control settings to use. Calls the appropriate media-
 715 * specific link configuration function. Configures the flow control settings.
 716 * Assuming the adapter has a valid link partner, a valid link should be
 717 * established. Assumes the hardware has previously been reset and the
 718 * transmitter and receiver are not enabled.
 719 */
 720s32 e1000_setup_link(struct e1000_hw *hw)
 721{
 722	u32 ctrl_ext;
 723	s32 ret_val;
 724	u16 eeprom_data;
 725
 726	e_dbg("e1000_setup_link");
 727
 728	/* Read and store word 0x0F of the EEPROM. This word contains bits
 729	 * that determine the hardware's default PAUSE (flow control) mode,
 730	 * a bit that determines whether the HW defaults to enabling or
 731	 * disabling auto-negotiation, and the direction of the
 732	 * SW defined pins. If there is no SW over-ride of the flow
 733	 * control setting, then the variable hw->fc will
 734	 * be initialized based on a value in the EEPROM.
 735	 */
 736	if (hw->fc == E1000_FC_DEFAULT) {
 737		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 738					    1, &eeprom_data);
 739		if (ret_val) {
 740			e_dbg("EEPROM Read Error\n");
 741			return -E1000_ERR_EEPROM;
 742		}
 743		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 744			hw->fc = E1000_FC_NONE;
 745		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 746			 EEPROM_WORD0F_ASM_DIR)
 747			hw->fc = E1000_FC_TX_PAUSE;
 748		else
 749			hw->fc = E1000_FC_FULL;
 750	}
 751
 752	/* We want to save off the original Flow Control configuration just
 753	 * in case we get disconnected and then reconnected into a different
 754	 * hub or switch with different Flow Control capabilities.
 755	 */
 756	if (hw->mac_type == e1000_82542_rev2_0)
 757		hw->fc &= (~E1000_FC_TX_PAUSE);
 758
 759	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 760		hw->fc &= (~E1000_FC_RX_PAUSE);
 761
 762	hw->original_fc = hw->fc;
 763
 764	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 765
 766	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 767	 * polarity value for the SW controlled pins, and setup the
 768	 * Extended Device Control reg with that info.
 769	 * This is needed because one of the SW controlled pins is used for
 770	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 771	 * or e1000_phy_setup() is called.
 772	 */
 773	if (hw->mac_type == e1000_82543) {
 774		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 775					    1, &eeprom_data);
 776		if (ret_val) {
 777			e_dbg("EEPROM Read Error\n");
 778			return -E1000_ERR_EEPROM;
 779		}
 780		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 781			    SWDPIO__EXT_SHIFT);
 782		ew32(CTRL_EXT, ctrl_ext);
 783	}
 784
 785	/* Call the necessary subroutine to configure the link. */
 786	ret_val = (hw->media_type == e1000_media_type_copper) ?
 787	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 788
 789	/* Initialize the flow control address, type, and PAUSE timer
 790	 * registers to their default values.  This is done even if flow
 791	 * control is disabled, because it does not hurt anything to
 792	 * initialize these registers.
 793	 */
 794	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 795
 796	ew32(FCT, FLOW_CONTROL_TYPE);
 797	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 798	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 799
 800	ew32(FCTTV, hw->fc_pause_time);
 801
 802	/* Set the flow control receive threshold registers.  Normally,
 803	 * these registers will be set to a default threshold that may be
 804	 * adjusted later by the driver's runtime code.  However, if the
 805	 * ability to transmit pause frames in not enabled, then these
 806	 * registers will be set to 0.
 807	 */
 808	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 809		ew32(FCRTL, 0);
 810		ew32(FCRTH, 0);
 811	} else {
 812		/* We need to set up the Receive Threshold high and low water marks
 813		 * as well as (optionally) enabling the transmission of XON frames.
 
 814		 */
 815		if (hw->fc_send_xon) {
 816			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 817			ew32(FCRTH, hw->fc_high_water);
 818		} else {
 819			ew32(FCRTL, hw->fc_low_water);
 820			ew32(FCRTH, hw->fc_high_water);
 821		}
 822	}
 823	return ret_val;
 824}
 825
 826/**
 827 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 828 * @hw: Struct containing variables accessed by shared code
 829 *
 830 * Manipulates Physical Coding Sublayer functions in order to configure
 831 * link. Assumes the hardware has been previously reset and the transmitter
 832 * and receiver are not enabled.
 833 */
 834static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 835{
 836	u32 ctrl;
 837	u32 status;
 838	u32 txcw = 0;
 839	u32 i;
 840	u32 signal = 0;
 841	s32 ret_val;
 842
 843	e_dbg("e1000_setup_fiber_serdes_link");
 844
 845	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 846	 * set when the optics detect a signal. On older adapters, it will be
 847	 * cleared when there is a signal.  This applies to fiber media only.
 848	 * If we're on serdes media, adjust the output amplitude to value
 849	 * set in the EEPROM.
 850	 */
 851	ctrl = er32(CTRL);
 852	if (hw->media_type == e1000_media_type_fiber)
 853		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 854
 855	ret_val = e1000_adjust_serdes_amplitude(hw);
 856	if (ret_val)
 857		return ret_val;
 858
 859	/* Take the link out of reset */
 860	ctrl &= ~(E1000_CTRL_LRST);
 861
 862	/* Adjust VCO speed to improve BER performance */
 863	ret_val = e1000_set_vco_speed(hw);
 864	if (ret_val)
 865		return ret_val;
 866
 867	e1000_config_collision_dist(hw);
 868
 869	/* Check for a software override of the flow control settings, and setup
 870	 * the device accordingly.  If auto-negotiation is enabled, then software
 871	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
 872	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
 873	 * auto-negotiation is disabled, then software will have to manually
 874	 * configure the two flow control enable bits in the CTRL register.
 
 875	 *
 876	 * The possible values of the "fc" parameter are:
 877	 *      0:  Flow control is completely disabled
 878	 *      1:  Rx flow control is enabled (we can receive pause frames, but
 879	 *          not send pause frames).
 880	 *      2:  Tx flow control is enabled (we can send pause frames but we do
 881	 *          not support receiving pause frames).
 882	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
 883	 */
 884	switch (hw->fc) {
 885	case E1000_FC_NONE:
 886		/* Flow control is completely disabled by a software over-ride. */
 887		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 888		break;
 889	case E1000_FC_RX_PAUSE:
 890		/* RX Flow control is enabled and TX Flow control is disabled by a
 891		 * software over-ride. Since there really isn't a way to advertise
 892		 * that we are capable of RX Pause ONLY, we will advertise that we
 893		 * support both symmetric and asymmetric RX PAUSE. Later, we will
 894		 *  disable the adapter's ability to send PAUSE frames.
 
 895		 */
 896		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 897		break;
 898	case E1000_FC_TX_PAUSE:
 899		/* TX Flow control is enabled, and RX Flow control is disabled, by a
 900		 * software over-ride.
 901		 */
 902		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 903		break;
 904	case E1000_FC_FULL:
 905		/* Flow control (both RX and TX) is enabled by a software over-ride. */
 
 
 906		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 907		break;
 908	default:
 909		e_dbg("Flow control param set incorrectly\n");
 910		return -E1000_ERR_CONFIG;
 911		break;
 912	}
 913
 914	/* Since auto-negotiation is enabled, take the link out of reset (the link
 915	 * will be in reset, because we previously reset the chip). This will
 916	 * restart auto-negotiation.  If auto-negotiation is successful then the
 917	 * link-up status bit will be set and the flow control enable bits (RFCE
 918	 * and TFCE) will be set according to their negotiated value.
 919	 */
 920	e_dbg("Auto-negotiation enabled\n");
 921
 922	ew32(TXCW, txcw);
 923	ew32(CTRL, ctrl);
 924	E1000_WRITE_FLUSH();
 925
 926	hw->txcw = txcw;
 927	msleep(1);
 928
 929	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
 930	 * indication in the Device Status Register.  Time-out if a link isn't
 931	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
 932	 * less than 500 milliseconds even if the other end is doing it in SW).
 933	 * For internal serdes, we just assume a signal is present, then poll.
 
 934	 */
 935	if (hw->media_type == e1000_media_type_internal_serdes ||
 936	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 937		e_dbg("Looking for Link\n");
 938		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 939			msleep(10);
 940			status = er32(STATUS);
 941			if (status & E1000_STATUS_LU)
 942				break;
 943		}
 944		if (i == (LINK_UP_TIMEOUT / 10)) {
 945			e_dbg("Never got a valid link from auto-neg!!!\n");
 946			hw->autoneg_failed = 1;
 947			/* AutoNeg failed to achieve a link, so we'll call
 948			 * e1000_check_for_link. This routine will force the link up if
 949			 * we detect a signal. This will allow us to communicate with
 950			 * non-autonegotiating link partners.
 951			 */
 952			ret_val = e1000_check_for_link(hw);
 953			if (ret_val) {
 954				e_dbg("Error while checking for link\n");
 955				return ret_val;
 956			}
 957			hw->autoneg_failed = 0;
 958		} else {
 959			hw->autoneg_failed = 0;
 960			e_dbg("Valid Link Found\n");
 961		}
 962	} else {
 963		e_dbg("No Signal Detected\n");
 964	}
 965	return E1000_SUCCESS;
 966}
 967
 968/**
 969 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 970 * @hw: Struct containing variables accessed by shared code
 971 *
 972 * Commits changes to PHY configuration by calling e1000_phy_reset().
 973 */
 974static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 975{
 976	s32 ret_val;
 977
 978	/* SW reset the PHY so all changes take effect */
 979	ret_val = e1000_phy_reset(hw);
 980	if (ret_val) {
 981		e_dbg("Error Resetting the PHY\n");
 982		return ret_val;
 983	}
 984
 985	return E1000_SUCCESS;
 986}
 987
 988static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 989{
 990	s32 ret_val;
 991	u32 ctrl_aux;
 992
 993	switch (hw->phy_type) {
 994	case e1000_phy_8211:
 995		ret_val = e1000_copper_link_rtl_setup(hw);
 996		if (ret_val) {
 997			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 998			return ret_val;
 999		}
1000		break;
1001	case e1000_phy_8201:
1002		/* Set RMII mode */
1003		ctrl_aux = er32(CTL_AUX);
1004		ctrl_aux |= E1000_CTL_AUX_RMII;
1005		ew32(CTL_AUX, ctrl_aux);
1006		E1000_WRITE_FLUSH();
1007
1008		/* Disable the J/K bits required for receive */
1009		ctrl_aux = er32(CTL_AUX);
1010		ctrl_aux |= 0x4;
1011		ctrl_aux &= ~0x2;
1012		ew32(CTL_AUX, ctrl_aux);
1013		E1000_WRITE_FLUSH();
1014		ret_val = e1000_copper_link_rtl_setup(hw);
1015
1016		if (ret_val) {
1017			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1018			return ret_val;
1019		}
1020		break;
1021	default:
1022		e_dbg("Error Resetting the PHY\n");
1023		return E1000_ERR_PHY_TYPE;
1024	}
1025
1026	return E1000_SUCCESS;
1027}
1028
1029/**
1030 * e1000_copper_link_preconfig - early configuration for copper
1031 * @hw: Struct containing variables accessed by shared code
1032 *
1033 * Make sure we have a valid PHY and change PHY mode before link setup.
1034 */
1035static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1036{
1037	u32 ctrl;
1038	s32 ret_val;
1039	u16 phy_data;
1040
1041	e_dbg("e1000_copper_link_preconfig");
1042
1043	ctrl = er32(CTRL);
1044	/* With 82543, we need to force speed and duplex on the MAC equal to what
1045	 * the PHY speed and duplex configuration is. In addition, we need to
1046	 * perform a hardware reset on the PHY to take it out of reset.
1047	 */
1048	if (hw->mac_type > e1000_82543) {
1049		ctrl |= E1000_CTRL_SLU;
1050		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1051		ew32(CTRL, ctrl);
1052	} else {
1053		ctrl |=
1054		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1055		ew32(CTRL, ctrl);
1056		ret_val = e1000_phy_hw_reset(hw);
1057		if (ret_val)
1058			return ret_val;
1059	}
1060
1061	/* Make sure we have a valid PHY */
1062	ret_val = e1000_detect_gig_phy(hw);
1063	if (ret_val) {
1064		e_dbg("Error, did not detect valid phy.\n");
1065		return ret_val;
1066	}
1067	e_dbg("Phy ID = %x\n", hw->phy_id);
1068
1069	/* Set PHY to class A mode (if necessary) */
1070	ret_val = e1000_set_phy_mode(hw);
1071	if (ret_val)
1072		return ret_val;
1073
1074	if ((hw->mac_type == e1000_82545_rev_3) ||
1075	    (hw->mac_type == e1000_82546_rev_3)) {
1076		ret_val =
1077		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1078		phy_data |= 0x00000008;
1079		ret_val =
1080		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1081	}
1082
1083	if (hw->mac_type <= e1000_82543 ||
1084	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1085	    hw->mac_type == e1000_82541_rev_2
1086	    || hw->mac_type == e1000_82547_rev_2)
1087		hw->phy_reset_disable = false;
1088
1089	return E1000_SUCCESS;
1090}
1091
1092/**
1093 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1094 * @hw: Struct containing variables accessed by shared code
1095 */
1096static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1097{
1098	u32 led_ctrl;
1099	s32 ret_val;
1100	u16 phy_data;
1101
1102	e_dbg("e1000_copper_link_igp_setup");
1103
1104	if (hw->phy_reset_disable)
1105		return E1000_SUCCESS;
1106
1107	ret_val = e1000_phy_reset(hw);
1108	if (ret_val) {
1109		e_dbg("Error Resetting the PHY\n");
1110		return ret_val;
1111	}
1112
1113	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1114	msleep(15);
1115	/* Configure activity LED after PHY reset */
1116	led_ctrl = er32(LEDCTL);
1117	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1118	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1119	ew32(LEDCTL, led_ctrl);
1120
1121	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1122	if (hw->phy_type == e1000_phy_igp) {
1123		/* disable lplu d3 during driver init */
1124		ret_val = e1000_set_d3_lplu_state(hw, false);
1125		if (ret_val) {
1126			e_dbg("Error Disabling LPLU D3\n");
1127			return ret_val;
1128		}
1129	}
1130
1131	/* Configure mdi-mdix settings */
1132	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1133	if (ret_val)
1134		return ret_val;
1135
1136	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1137		hw->dsp_config_state = e1000_dsp_config_disabled;
1138		/* Force MDI for earlier revs of the IGP PHY */
1139		phy_data &=
1140		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1141		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1142		hw->mdix = 1;
1143
1144	} else {
1145		hw->dsp_config_state = e1000_dsp_config_enabled;
1146		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1147
1148		switch (hw->mdix) {
1149		case 1:
1150			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1151			break;
1152		case 2:
1153			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1154			break;
1155		case 0:
1156		default:
1157			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1158			break;
1159		}
1160	}
1161	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1162	if (ret_val)
1163		return ret_val;
1164
1165	/* set auto-master slave resolution settings */
1166	if (hw->autoneg) {
1167		e1000_ms_type phy_ms_setting = hw->master_slave;
1168
1169		if (hw->ffe_config_state == e1000_ffe_config_active)
1170			hw->ffe_config_state = e1000_ffe_config_enabled;
1171
1172		if (hw->dsp_config_state == e1000_dsp_config_activated)
1173			hw->dsp_config_state = e1000_dsp_config_enabled;
1174
1175		/* when autonegotiation advertisement is only 1000Mbps then we
1176		 * should disable SmartSpeed and enable Auto MasterSlave
1177		 * resolution as hardware default. */
 
1178		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1179			/* Disable SmartSpeed */
1180			ret_val =
1181			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1182					       &phy_data);
1183			if (ret_val)
1184				return ret_val;
1185			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1186			ret_val =
1187			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1188						phy_data);
1189			if (ret_val)
1190				return ret_val;
1191			/* Set auto Master/Slave resolution process */
1192			ret_val =
1193			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194			if (ret_val)
1195				return ret_val;
1196			phy_data &= ~CR_1000T_MS_ENABLE;
1197			ret_val =
1198			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1199			if (ret_val)
1200				return ret_val;
1201		}
1202
1203		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1204		if (ret_val)
1205			return ret_val;
1206
1207		/* load defaults for future use */
1208		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1209		    ((phy_data & CR_1000T_MS_VALUE) ?
1210		     e1000_ms_force_master :
1211		     e1000_ms_force_slave) : e1000_ms_auto;
1212
1213		switch (phy_ms_setting) {
1214		case e1000_ms_force_master:
1215			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1216			break;
1217		case e1000_ms_force_slave:
1218			phy_data |= CR_1000T_MS_ENABLE;
1219			phy_data &= ~(CR_1000T_MS_VALUE);
1220			break;
1221		case e1000_ms_auto:
1222			phy_data &= ~CR_1000T_MS_ENABLE;
 
1223		default:
1224			break;
1225		}
1226		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1227		if (ret_val)
1228			return ret_val;
1229	}
1230
1231	return E1000_SUCCESS;
1232}
1233
1234/**
1235 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1236 * @hw: Struct containing variables accessed by shared code
1237 */
1238static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1239{
1240	s32 ret_val;
1241	u16 phy_data;
1242
1243	e_dbg("e1000_copper_link_mgp_setup");
1244
1245	if (hw->phy_reset_disable)
1246		return E1000_SUCCESS;
1247
1248	/* Enable CRS on TX. This must be set for half-duplex operation. */
1249	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1250	if (ret_val)
1251		return ret_val;
1252
1253	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1254
1255	/* Options:
1256	 *   MDI/MDI-X = 0 (default)
1257	 *   0 - Auto for all speeds
1258	 *   1 - MDI mode
1259	 *   2 - MDI-X mode
1260	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1261	 */
1262	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1263
1264	switch (hw->mdix) {
1265	case 1:
1266		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1267		break;
1268	case 2:
1269		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1270		break;
1271	case 3:
1272		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1273		break;
1274	case 0:
1275	default:
1276		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1277		break;
1278	}
1279
1280	/* Options:
1281	 *   disable_polarity_correction = 0 (default)
1282	 *       Automatic Correction for Reversed Cable Polarity
1283	 *   0 - Disabled
1284	 *   1 - Enabled
1285	 */
1286	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1287	if (hw->disable_polarity_correction == 1)
1288		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1289	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1290	if (ret_val)
1291		return ret_val;
1292
1293	if (hw->phy_revision < M88E1011_I_REV_4) {
1294		/* Force TX_CLK in the Extended PHY Specific Control Register
1295		 * to 25MHz clock.
1296		 */
1297		ret_val =
1298		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1299				       &phy_data);
1300		if (ret_val)
1301			return ret_val;
1302
1303		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1304
1305		if ((hw->phy_revision == E1000_REVISION_2) &&
1306		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1307			/* Vidalia Phy, set the downshift counter to 5x */
1308			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1309			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1310			ret_val = e1000_write_phy_reg(hw,
1311						      M88E1000_EXT_PHY_SPEC_CTRL,
1312						      phy_data);
1313			if (ret_val)
1314				return ret_val;
1315		} else {
1316			/* Configure Master and Slave downshift values */
1317			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1318				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1319			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1320				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1321			ret_val = e1000_write_phy_reg(hw,
1322						      M88E1000_EXT_PHY_SPEC_CTRL,
1323						      phy_data);
1324			if (ret_val)
1325				return ret_val;
1326		}
1327	}
1328
1329	/* SW Reset the PHY so all changes take effect */
1330	ret_val = e1000_phy_reset(hw);
1331	if (ret_val) {
1332		e_dbg("Error Resetting the PHY\n");
1333		return ret_val;
1334	}
1335
1336	return E1000_SUCCESS;
1337}
1338
1339/**
1340 * e1000_copper_link_autoneg - setup auto-neg
1341 * @hw: Struct containing variables accessed by shared code
1342 *
1343 * Setup auto-negotiation and flow control advertisements,
1344 * and then perform auto-negotiation.
1345 */
1346static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1347{
1348	s32 ret_val;
1349	u16 phy_data;
1350
1351	e_dbg("e1000_copper_link_autoneg");
1352
1353	/* Perform some bounds checking on the hw->autoneg_advertised
1354	 * parameter.  If this variable is zero, then set it to the default.
1355	 */
1356	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1357
1358	/* If autoneg_advertised is zero, we assume it was not defaulted
1359	 * by the calling code so we set to advertise full capability.
1360	 */
1361	if (hw->autoneg_advertised == 0)
1362		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1363
1364	/* IFE/RTL8201N PHY only supports 10/100 */
1365	if (hw->phy_type == e1000_phy_8201)
1366		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1367
1368	e_dbg("Reconfiguring auto-neg advertisement params\n");
1369	ret_val = e1000_phy_setup_autoneg(hw);
1370	if (ret_val) {
1371		e_dbg("Error Setting up Auto-Negotiation\n");
1372		return ret_val;
1373	}
1374	e_dbg("Restarting Auto-Neg\n");
1375
1376	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1377	 * the Auto Neg Restart bit in the PHY control register.
1378	 */
1379	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1380	if (ret_val)
1381		return ret_val;
1382
1383	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1384	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1385	if (ret_val)
1386		return ret_val;
1387
1388	/* Does the user want to wait for Auto-Neg to complete here, or
1389	 * check at a later time (for example, callback routine).
1390	 */
1391	if (hw->wait_autoneg_complete) {
1392		ret_val = e1000_wait_autoneg(hw);
1393		if (ret_val) {
1394			e_dbg
1395			    ("Error while waiting for autoneg to complete\n");
1396			return ret_val;
1397		}
1398	}
1399
1400	hw->get_link_status = true;
1401
1402	return E1000_SUCCESS;
1403}
1404
1405/**
1406 * e1000_copper_link_postconfig - post link setup
1407 * @hw: Struct containing variables accessed by shared code
1408 *
1409 * Config the MAC and the PHY after link is up.
1410 *   1) Set up the MAC to the current PHY speed/duplex
1411 *      if we are on 82543.  If we
1412 *      are on newer silicon, we only need to configure
1413 *      collision distance in the Transmit Control Register.
1414 *   2) Set up flow control on the MAC to that established with
1415 *      the link partner.
1416 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1417 */
1418static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1419{
1420	s32 ret_val;
1421	e_dbg("e1000_copper_link_postconfig");
1422
1423	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1424		e1000_config_collision_dist(hw);
1425	} else {
1426		ret_val = e1000_config_mac_to_phy(hw);
1427		if (ret_val) {
1428			e_dbg("Error configuring MAC to PHY settings\n");
1429			return ret_val;
1430		}
1431	}
1432	ret_val = e1000_config_fc_after_link_up(hw);
1433	if (ret_val) {
1434		e_dbg("Error Configuring Flow Control\n");
1435		return ret_val;
1436	}
1437
1438	/* Config DSP to improve Giga link quality */
1439	if (hw->phy_type == e1000_phy_igp) {
1440		ret_val = e1000_config_dsp_after_link_change(hw, true);
1441		if (ret_val) {
1442			e_dbg("Error Configuring DSP after link up\n");
1443			return ret_val;
1444		}
1445	}
1446
1447	return E1000_SUCCESS;
1448}
1449
1450/**
1451 * e1000_setup_copper_link - phy/speed/duplex setting
1452 * @hw: Struct containing variables accessed by shared code
1453 *
1454 * Detects which PHY is present and sets up the speed and duplex
1455 */
1456static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1457{
1458	s32 ret_val;
1459	u16 i;
1460	u16 phy_data;
1461
1462	e_dbg("e1000_setup_copper_link");
1463
1464	/* Check if it is a valid PHY and set PHY mode if necessary. */
1465	ret_val = e1000_copper_link_preconfig(hw);
1466	if (ret_val)
1467		return ret_val;
1468
1469	if (hw->phy_type == e1000_phy_igp) {
1470		ret_val = e1000_copper_link_igp_setup(hw);
1471		if (ret_val)
1472			return ret_val;
1473	} else if (hw->phy_type == e1000_phy_m88) {
1474		ret_val = e1000_copper_link_mgp_setup(hw);
1475		if (ret_val)
1476			return ret_val;
1477	} else {
1478		ret_val = gbe_dhg_phy_setup(hw);
1479		if (ret_val) {
1480			e_dbg("gbe_dhg_phy_setup failed!\n");
1481			return ret_val;
1482		}
1483	}
1484
1485	if (hw->autoneg) {
1486		/* Setup autoneg and flow control advertisement
1487		 * and perform autonegotiation */
 
1488		ret_val = e1000_copper_link_autoneg(hw);
1489		if (ret_val)
1490			return ret_val;
1491	} else {
1492		/* PHY will be set to 10H, 10F, 100H,or 100F
1493		 * depending on value from forced_speed_duplex. */
 
1494		e_dbg("Forcing speed and duplex\n");
1495		ret_val = e1000_phy_force_speed_duplex(hw);
1496		if (ret_val) {
1497			e_dbg("Error Forcing Speed and Duplex\n");
1498			return ret_val;
1499		}
1500	}
1501
1502	/* Check link status. Wait up to 100 microseconds for link to become
1503	 * valid.
1504	 */
1505	for (i = 0; i < 10; i++) {
1506		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1507		if (ret_val)
1508			return ret_val;
1509		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1510		if (ret_val)
1511			return ret_val;
1512
1513		if (phy_data & MII_SR_LINK_STATUS) {
1514			/* Config the MAC and PHY after link is up */
1515			ret_val = e1000_copper_link_postconfig(hw);
1516			if (ret_val)
1517				return ret_val;
1518
1519			e_dbg("Valid link established!!!\n");
1520			return E1000_SUCCESS;
1521		}
1522		udelay(10);
1523	}
1524
1525	e_dbg("Unable to establish link!!!\n");
1526	return E1000_SUCCESS;
1527}
1528
1529/**
1530 * e1000_phy_setup_autoneg - phy settings
1531 * @hw: Struct containing variables accessed by shared code
1532 *
1533 * Configures PHY autoneg and flow control advertisement settings
1534 */
1535s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1536{
1537	s32 ret_val;
1538	u16 mii_autoneg_adv_reg;
1539	u16 mii_1000t_ctrl_reg;
1540
1541	e_dbg("e1000_phy_setup_autoneg");
1542
1543	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1544	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1545	if (ret_val)
1546		return ret_val;
1547
1548	/* Read the MII 1000Base-T Control Register (Address 9). */
1549	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1550	if (ret_val)
1551		return ret_val;
1552	else if (hw->phy_type == e1000_phy_8201)
1553		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1554
1555	/* Need to parse both autoneg_advertised and fc and set up
1556	 * the appropriate PHY registers.  First we will parse for
1557	 * autoneg_advertised software override.  Since we can advertise
1558	 * a plethora of combinations, we need to check each bit
1559	 * individually.
1560	 */
1561
1562	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1563	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1564	 * the  1000Base-T Control Register (Address 9).
1565	 */
1566	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1567	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1568
1569	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1570
1571	/* Do we want to advertise 10 Mb Half Duplex? */
1572	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1573		e_dbg("Advertise 10mb Half duplex\n");
1574		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1575	}
1576
1577	/* Do we want to advertise 10 Mb Full Duplex? */
1578	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1579		e_dbg("Advertise 10mb Full duplex\n");
1580		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1581	}
1582
1583	/* Do we want to advertise 100 Mb Half Duplex? */
1584	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1585		e_dbg("Advertise 100mb Half duplex\n");
1586		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1587	}
1588
1589	/* Do we want to advertise 100 Mb Full Duplex? */
1590	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1591		e_dbg("Advertise 100mb Full duplex\n");
1592		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1593	}
1594
1595	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1596	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1597		e_dbg
1598		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1599	}
1600
1601	/* Do we want to advertise 1000 Mb Full Duplex? */
1602	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1603		e_dbg("Advertise 1000mb Full duplex\n");
1604		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1605	}
1606
1607	/* Check for a software override of the flow control settings, and
1608	 * setup the PHY advertisement registers accordingly.  If
1609	 * auto-negotiation is enabled, then software will have to set the
1610	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1611	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
 
1612	 *
1613	 * The possible values of the "fc" parameter are:
1614	 *      0:  Flow control is completely disabled
1615	 *      1:  Rx flow control is enabled (we can receive pause frames
1616	 *          but not send pause frames).
1617	 *      2:  Tx flow control is enabled (we can send pause frames
1618	 *          but we do not support receiving pause frames).
1619	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1620	 *  other:  No software override.  The flow control configuration
1621	 *          in the EEPROM is used.
1622	 */
1623	switch (hw->fc) {
1624	case E1000_FC_NONE:	/* 0 */
1625		/* Flow control (RX & TX) is completely disabled by a
1626		 * software over-ride.
1627		 */
1628		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1629		break;
1630	case E1000_FC_RX_PAUSE:	/* 1 */
1631		/* RX Flow control is enabled, and TX Flow control is
1632		 * disabled, by a software over-ride.
1633		 */
1634		/* Since there really isn't a way to advertise that we are
1635		 * capable of RX Pause ONLY, we will advertise that we
1636		 * support both symmetric and asymmetric RX PAUSE.  Later
1637		 * (in e1000_config_fc_after_link_up) we will disable the
1638		 *hw's ability to send PAUSE frames.
1639		 */
1640		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1641		break;
1642	case E1000_FC_TX_PAUSE:	/* 2 */
1643		/* TX Flow control is enabled, and RX Flow control is
1644		 * disabled, by a software over-ride.
1645		 */
1646		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1647		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1648		break;
1649	case E1000_FC_FULL:	/* 3 */
1650		/* Flow control (both RX and TX) is enabled by a software
1651		 * over-ride.
1652		 */
1653		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1654		break;
1655	default:
1656		e_dbg("Flow control param set incorrectly\n");
1657		return -E1000_ERR_CONFIG;
1658	}
1659
1660	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1661	if (ret_val)
1662		return ret_val;
1663
1664	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1665
1666	if (hw->phy_type == e1000_phy_8201) {
1667		mii_1000t_ctrl_reg = 0;
1668	} else {
1669		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1670		                              mii_1000t_ctrl_reg);
1671		if (ret_val)
1672			return ret_val;
1673	}
1674
1675	return E1000_SUCCESS;
1676}
1677
1678/**
1679 * e1000_phy_force_speed_duplex - force link settings
1680 * @hw: Struct containing variables accessed by shared code
1681 *
1682 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1683 */
1684static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1685{
1686	u32 ctrl;
1687	s32 ret_val;
1688	u16 mii_ctrl_reg;
1689	u16 mii_status_reg;
1690	u16 phy_data;
1691	u16 i;
1692
1693	e_dbg("e1000_phy_force_speed_duplex");
1694
1695	/* Turn off Flow control if we are forcing speed and duplex. */
1696	hw->fc = E1000_FC_NONE;
1697
1698	e_dbg("hw->fc = %d\n", hw->fc);
1699
1700	/* Read the Device Control Register. */
1701	ctrl = er32(CTRL);
1702
1703	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1704	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1705	ctrl &= ~(DEVICE_SPEED_MASK);
1706
1707	/* Clear the Auto Speed Detect Enable bit. */
1708	ctrl &= ~E1000_CTRL_ASDE;
1709
1710	/* Read the MII Control Register. */
1711	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1712	if (ret_val)
1713		return ret_val;
1714
1715	/* We need to disable autoneg in order to force link and duplex. */
1716
1717	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1718
1719	/* Are we forcing Full or Half Duplex? */
1720	if (hw->forced_speed_duplex == e1000_100_full ||
1721	    hw->forced_speed_duplex == e1000_10_full) {
1722		/* We want to force full duplex so we SET the full duplex bits in the
1723		 * Device and MII Control Registers.
1724		 */
1725		ctrl |= E1000_CTRL_FD;
1726		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1727		e_dbg("Full Duplex\n");
1728	} else {
1729		/* We want to force half duplex so we CLEAR the full duplex bits in
1730		 * the Device and MII Control Registers.
1731		 */
1732		ctrl &= ~E1000_CTRL_FD;
1733		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1734		e_dbg("Half Duplex\n");
1735	}
1736
1737	/* Are we forcing 100Mbps??? */
1738	if (hw->forced_speed_duplex == e1000_100_full ||
1739	    hw->forced_speed_duplex == e1000_100_half) {
1740		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1741		ctrl |= E1000_CTRL_SPD_100;
1742		mii_ctrl_reg |= MII_CR_SPEED_100;
1743		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1744		e_dbg("Forcing 100mb ");
1745	} else {
1746		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1747		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1748		mii_ctrl_reg |= MII_CR_SPEED_10;
1749		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1750		e_dbg("Forcing 10mb ");
1751	}
1752
1753	e1000_config_collision_dist(hw);
1754
1755	/* Write the configured values back to the Device Control Reg. */
1756	ew32(CTRL, ctrl);
1757
1758	if (hw->phy_type == e1000_phy_m88) {
1759		ret_val =
1760		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1761		if (ret_val)
1762			return ret_val;
1763
1764		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1765		 * forced whenever speed are duplex are forced.
1766		 */
1767		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1768		ret_val =
1769		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1770		if (ret_val)
1771			return ret_val;
1772
1773		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1774
1775		/* Need to reset the PHY or these changes will be ignored */
1776		mii_ctrl_reg |= MII_CR_RESET;
1777
1778		/* Disable MDI-X support for 10/100 */
1779	} else {
1780		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1781		 * forced whenever speed or duplex are forced.
1782		 */
1783		ret_val =
1784		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1785		if (ret_val)
1786			return ret_val;
1787
1788		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1789		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1790
1791		ret_val =
1792		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1793		if (ret_val)
1794			return ret_val;
1795	}
1796
1797	/* Write back the modified PHY MII control register. */
1798	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1799	if (ret_val)
1800		return ret_val;
1801
1802	udelay(1);
1803
1804	/* The wait_autoneg_complete flag may be a little misleading here.
1805	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1806	 * But we do want to delay for a period while forcing only so we
1807	 * don't generate false No Link messages.  So we will wait here
1808	 * only if the user has set wait_autoneg_complete to 1, which is
1809	 * the default.
1810	 */
1811	if (hw->wait_autoneg_complete) {
1812		/* We will wait for autoneg to complete. */
1813		e_dbg("Waiting for forced speed/duplex link.\n");
1814		mii_status_reg = 0;
1815
1816		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
1817		for (i = PHY_FORCE_TIME; i > 0; i--) {
1818			/* Read the MII Status Register and wait for Auto-Neg Complete bit
1819			 * to be set.
1820			 */
1821			ret_val =
1822			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1823			if (ret_val)
1824				return ret_val;
1825
1826			ret_val =
1827			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1828			if (ret_val)
1829				return ret_val;
1830
1831			if (mii_status_reg & MII_SR_LINK_STATUS)
1832				break;
1833			msleep(100);
1834		}
1835		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1836			/* We didn't get link.  Reset the DSP and wait again for link. */
 
 
1837			ret_val = e1000_phy_reset_dsp(hw);
1838			if (ret_val) {
1839				e_dbg("Error Resetting PHY DSP\n");
1840				return ret_val;
1841			}
1842		}
1843		/* This loop will early-out if the link condition has been met.  */
 
 
1844		for (i = PHY_FORCE_TIME; i > 0; i--) {
1845			if (mii_status_reg & MII_SR_LINK_STATUS)
1846				break;
1847			msleep(100);
1848			/* Read the MII Status Register and wait for Auto-Neg Complete bit
1849			 * to be set.
1850			 */
1851			ret_val =
1852			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1853			if (ret_val)
1854				return ret_val;
1855
1856			ret_val =
1857			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1858			if (ret_val)
1859				return ret_val;
1860		}
1861	}
1862
1863	if (hw->phy_type == e1000_phy_m88) {
1864		/* Because we reset the PHY above, we need to re-force TX_CLK in the
1865		 * Extended PHY Specific Control Register to 25MHz clock.  This value
1866		 * defaults back to a 2.5MHz clock when the PHY is reset.
 
1867		 */
1868		ret_val =
1869		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1870				       &phy_data);
1871		if (ret_val)
1872			return ret_val;
1873
1874		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1875		ret_val =
1876		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1877					phy_data);
1878		if (ret_val)
1879			return ret_val;
1880
1881		/* In addition, because of the s/w reset above, we need to enable CRS on
1882		 * TX.  This must be set for both full and half duplex operation.
 
1883		 */
1884		ret_val =
1885		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1886		if (ret_val)
1887			return ret_val;
1888
1889		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1890		ret_val =
1891		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1892		if (ret_val)
1893			return ret_val;
1894
1895		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1896		    && (!hw->autoneg)
1897		    && (hw->forced_speed_duplex == e1000_10_full
1898			|| hw->forced_speed_duplex == e1000_10_half)) {
 
1899			ret_val = e1000_polarity_reversal_workaround(hw);
1900			if (ret_val)
1901				return ret_val;
1902		}
1903	}
1904	return E1000_SUCCESS;
1905}
1906
1907/**
1908 * e1000_config_collision_dist - set collision distance register
1909 * @hw: Struct containing variables accessed by shared code
1910 *
1911 * Sets the collision distance in the Transmit Control register.
1912 * Link should have been established previously. Reads the speed and duplex
1913 * information from the Device Status register.
1914 */
1915void e1000_config_collision_dist(struct e1000_hw *hw)
1916{
1917	u32 tctl, coll_dist;
1918
1919	e_dbg("e1000_config_collision_dist");
1920
1921	if (hw->mac_type < e1000_82543)
1922		coll_dist = E1000_COLLISION_DISTANCE_82542;
1923	else
1924		coll_dist = E1000_COLLISION_DISTANCE;
1925
1926	tctl = er32(TCTL);
1927
1928	tctl &= ~E1000_TCTL_COLD;
1929	tctl |= coll_dist << E1000_COLD_SHIFT;
1930
1931	ew32(TCTL, tctl);
1932	E1000_WRITE_FLUSH();
1933}
1934
1935/**
1936 * e1000_config_mac_to_phy - sync phy and mac settings
1937 * @hw: Struct containing variables accessed by shared code
1938 * @mii_reg: data to write to the MII control register
1939 *
1940 * Sets MAC speed and duplex settings to reflect the those in the PHY
1941 * The contents of the PHY register containing the needed information need to
1942 * be passed in.
1943 */
1944static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1945{
1946	u32 ctrl;
1947	s32 ret_val;
1948	u16 phy_data;
1949
1950	e_dbg("e1000_config_mac_to_phy");
1951
1952	/* 82544 or newer MAC, Auto Speed Detection takes care of
1953	 * MAC speed/duplex configuration.*/
 
1954	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1955		return E1000_SUCCESS;
1956
1957	/* Read the Device Control Register and set the bits to Force Speed
1958	 * and Duplex.
1959	 */
1960	ctrl = er32(CTRL);
1961	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1962	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1963
1964	switch (hw->phy_type) {
1965	case e1000_phy_8201:
1966		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1967		if (ret_val)
1968			return ret_val;
1969
1970		if (phy_data & RTL_PHY_CTRL_FD)
1971			ctrl |= E1000_CTRL_FD;
1972		else
1973			ctrl &= ~E1000_CTRL_FD;
1974
1975		if (phy_data & RTL_PHY_CTRL_SPD_100)
1976			ctrl |= E1000_CTRL_SPD_100;
1977		else
1978			ctrl |= E1000_CTRL_SPD_10;
1979
1980		e1000_config_collision_dist(hw);
1981		break;
1982	default:
1983		/* Set up duplex in the Device Control and Transmit Control
1984		 * registers depending on negotiated values.
1985		 */
1986		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1987		                             &phy_data);
1988		if (ret_val)
1989			return ret_val;
1990
1991		if (phy_data & M88E1000_PSSR_DPLX)
1992			ctrl |= E1000_CTRL_FD;
1993		else
1994			ctrl &= ~E1000_CTRL_FD;
1995
1996		e1000_config_collision_dist(hw);
1997
1998		/* Set up speed in the Device Control register depending on
1999		 * negotiated values.
2000		 */
2001		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2002			ctrl |= E1000_CTRL_SPD_1000;
2003		else if ((phy_data & M88E1000_PSSR_SPEED) ==
2004		         M88E1000_PSSR_100MBS)
2005			ctrl |= E1000_CTRL_SPD_100;
2006	}
2007
2008	/* Write the configured values back to the Device Control Reg. */
2009	ew32(CTRL, ctrl);
2010	return E1000_SUCCESS;
2011}
2012
2013/**
2014 * e1000_force_mac_fc - force flow control settings
2015 * @hw: Struct containing variables accessed by shared code
2016 *
2017 * Forces the MAC's flow control settings.
2018 * Sets the TFCE and RFCE bits in the device control register to reflect
2019 * the adapter settings. TFCE and RFCE need to be explicitly set by
2020 * software when a Copper PHY is used because autonegotiation is managed
2021 * by the PHY rather than the MAC. Software must also configure these
2022 * bits when link is forced on a fiber connection.
2023 */
2024s32 e1000_force_mac_fc(struct e1000_hw *hw)
2025{
2026	u32 ctrl;
2027
2028	e_dbg("e1000_force_mac_fc");
2029
2030	/* Get the current configuration of the Device Control Register */
2031	ctrl = er32(CTRL);
2032
2033	/* Because we didn't get link via the internal auto-negotiation
2034	 * mechanism (we either forced link or we got link via PHY
2035	 * auto-neg), we have to manually enable/disable transmit an
2036	 * receive flow control.
2037	 *
2038	 * The "Case" statement below enables/disable flow control
2039	 * according to the "hw->fc" parameter.
2040	 *
2041	 * The possible values of the "fc" parameter are:
2042	 *      0:  Flow control is completely disabled
2043	 *      1:  Rx flow control is enabled (we can receive pause
2044	 *          frames but not send pause frames).
2045	 *      2:  Tx flow control is enabled (we can send pause frames
2046	 *          frames but we do not receive pause frames).
2047	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2048	 *  other:  No other values should be possible at this point.
2049	 */
2050
2051	switch (hw->fc) {
2052	case E1000_FC_NONE:
2053		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2054		break;
2055	case E1000_FC_RX_PAUSE:
2056		ctrl &= (~E1000_CTRL_TFCE);
2057		ctrl |= E1000_CTRL_RFCE;
2058		break;
2059	case E1000_FC_TX_PAUSE:
2060		ctrl &= (~E1000_CTRL_RFCE);
2061		ctrl |= E1000_CTRL_TFCE;
2062		break;
2063	case E1000_FC_FULL:
2064		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2065		break;
2066	default:
2067		e_dbg("Flow control param set incorrectly\n");
2068		return -E1000_ERR_CONFIG;
2069	}
2070
2071	/* Disable TX Flow Control for 82542 (rev 2.0) */
2072	if (hw->mac_type == e1000_82542_rev2_0)
2073		ctrl &= (~E1000_CTRL_TFCE);
2074
2075	ew32(CTRL, ctrl);
2076	return E1000_SUCCESS;
2077}
2078
2079/**
2080 * e1000_config_fc_after_link_up - configure flow control after autoneg
2081 * @hw: Struct containing variables accessed by shared code
2082 *
2083 * Configures flow control settings after link is established
2084 * Should be called immediately after a valid link has been established.
2085 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2086 * and autonegotiation is enabled, the MAC flow control settings will be set
2087 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2088 * and RFCE bits will be automatically set to the negotiated flow control mode.
2089 */
2090static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2091{
2092	s32 ret_val;
2093	u16 mii_status_reg;
2094	u16 mii_nway_adv_reg;
2095	u16 mii_nway_lp_ability_reg;
2096	u16 speed;
2097	u16 duplex;
2098
2099	e_dbg("e1000_config_fc_after_link_up");
2100
2101	/* Check for the case where we have fiber media and auto-neg failed
2102	 * so we had to force link.  In this case, we need to force the
2103	 * configuration of the MAC to match the "fc" parameter.
2104	 */
2105	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2106	    || ((hw->media_type == e1000_media_type_internal_serdes)
2107		&& (hw->autoneg_failed))
2108	    || ((hw->media_type == e1000_media_type_copper)
2109		&& (!hw->autoneg))) {
 
2110		ret_val = e1000_force_mac_fc(hw);
2111		if (ret_val) {
2112			e_dbg("Error forcing flow control settings\n");
2113			return ret_val;
2114		}
2115	}
2116
2117	/* Check for the case where we have copper media and auto-neg is
2118	 * enabled.  In this case, we need to check and see if Auto-Neg
2119	 * has completed, and if so, how the PHY and link partner has
2120	 * flow control configured.
2121	 */
2122	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2123		/* Read the MII Status Register and check to see if AutoNeg
2124		 * has completed.  We read this twice because this reg has
2125		 * some "sticky" (latched) bits.
2126		 */
2127		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2128		if (ret_val)
2129			return ret_val;
2130		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2131		if (ret_val)
2132			return ret_val;
2133
2134		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2135			/* The AutoNeg process has completed, so we now need to
2136			 * read both the Auto Negotiation Advertisement Register
2137			 * (Address 4) and the Auto_Negotiation Base Page Ability
2138			 * Register (Address 5) to determine how flow control was
2139			 * negotiated.
2140			 */
2141			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2142						     &mii_nway_adv_reg);
2143			if (ret_val)
2144				return ret_val;
2145			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2146						     &mii_nway_lp_ability_reg);
2147			if (ret_val)
2148				return ret_val;
2149
2150			/* Two bits in the Auto Negotiation Advertisement Register
2151			 * (Address 4) and two bits in the Auto Negotiation Base
2152			 * Page Ability Register (Address 5) determine flow control
2153			 * for both the PHY and the link partner.  The following
2154			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2155			 * 1999, describes these PAUSE resolution bits and how flow
2156			 * control is determined based upon these settings.
 
2157			 * NOTE:  DC = Don't Care
2158			 *
2159			 *   LOCAL DEVICE  |   LINK PARTNER
2160			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2161			 *-------|---------|-------|---------|--------------------
2162			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2163			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2164			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2165			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2166			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2167			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2168			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2169			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2170			 *
2171			 */
2172			/* Are both PAUSE bits set to 1?  If so, this implies
2173			 * Symmetric Flow Control is enabled at both ends.  The
2174			 * ASM_DIR bits are irrelevant per the spec.
2175			 *
2176			 * For Symmetric Flow Control:
2177			 *
2178			 *   LOCAL DEVICE  |   LINK PARTNER
2179			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180			 *-------|---------|-------|---------|--------------------
2181			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2182			 *
2183			 */
2184			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2186				/* Now we need to check if the user selected RX ONLY
2187				 * of pause frames.  In this case, we had to advertise
2188				 * FULL flow control because we could not advertise RX
2189				 * ONLY. Hence, we must now check to see if we need to
2190				 * turn OFF  the TRANSMISSION of PAUSE frames.
 
2191				 */
2192				if (hw->original_fc == E1000_FC_FULL) {
2193					hw->fc = E1000_FC_FULL;
2194					e_dbg("Flow Control = FULL.\n");
2195				} else {
2196					hw->fc = E1000_FC_RX_PAUSE;
2197					e_dbg
2198					    ("Flow Control = RX PAUSE frames only.\n");
2199				}
2200			}
2201			/* For receiving PAUSE frames ONLY.
2202			 *
2203			 *   LOCAL DEVICE  |   LINK PARTNER
2204			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2205			 *-------|---------|-------|---------|--------------------
2206			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2207			 *
2208			 */
2209			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2210				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2211				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2212				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2213			{
2214				hw->fc = E1000_FC_TX_PAUSE;
2215				e_dbg
2216				    ("Flow Control = TX PAUSE frames only.\n");
2217			}
2218			/* For transmitting PAUSE frames ONLY.
2219			 *
2220			 *   LOCAL DEVICE  |   LINK PARTNER
2221			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2222			 *-------|---------|-------|---------|--------------------
2223			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2224			 *
2225			 */
2226			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2227				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2228				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2229				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2230			{
2231				hw->fc = E1000_FC_RX_PAUSE;
2232				e_dbg
2233				    ("Flow Control = RX PAUSE frames only.\n");
2234			}
2235			/* Per the IEEE spec, at this point flow control should be
2236			 * disabled.  However, we want to consider that we could
2237			 * be connected to a legacy switch that doesn't advertise
2238			 * desired flow control, but can be forced on the link
2239			 * partner.  So if we advertised no flow control, that is
2240			 * what we will resolve to.  If we advertised some kind of
2241			 * receive capability (Rx Pause Only or Full Flow Control)
2242			 * and the link partner advertised none, we will configure
2243			 * ourselves to enable Rx Flow Control only.  We can do
2244			 * this safely for two reasons:  If the link partner really
2245			 * didn't want flow control enabled, and we enable Rx, no
2246			 * harm done since we won't be receiving any PAUSE frames
2247			 * anyway.  If the intent on the link partner was to have
2248			 * flow control enabled, then by us enabling RX only, we
2249			 * can at least receive pause frames and process them.
2250			 * This is a good idea because in most cases, since we are
2251			 * predominantly a server NIC, more times than not we will
2252			 * be asked to delay transmission of packets than asking
2253			 * our link partner to pause transmission of frames.
 
 
2254			 */
2255			else if ((hw->original_fc == E1000_FC_NONE ||
2256				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2257				 hw->fc_strict_ieee) {
2258				hw->fc = E1000_FC_NONE;
2259				e_dbg("Flow Control = NONE.\n");
2260			} else {
2261				hw->fc = E1000_FC_RX_PAUSE;
2262				e_dbg
2263				    ("Flow Control = RX PAUSE frames only.\n");
2264			}
2265
2266			/* Now we need to do one last check...  If we auto-
2267			 * negotiated to HALF DUPLEX, flow control should not be
2268			 * enabled per IEEE 802.3 spec.
2269			 */
2270			ret_val =
2271			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2272			if (ret_val) {
2273				e_dbg
2274				    ("Error getting link speed and duplex\n");
2275				return ret_val;
2276			}
2277
2278			if (duplex == HALF_DUPLEX)
2279				hw->fc = E1000_FC_NONE;
2280
2281			/* Now we call a subroutine to actually force the MAC
2282			 * controller to use the correct flow control settings.
2283			 */
2284			ret_val = e1000_force_mac_fc(hw);
2285			if (ret_val) {
2286				e_dbg
2287				    ("Error forcing flow control settings\n");
2288				return ret_val;
2289			}
2290		} else {
2291			e_dbg
2292			    ("Copper PHY and Auto Neg has not completed.\n");
2293		}
2294	}
2295	return E1000_SUCCESS;
2296}
2297
2298/**
2299 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2300 * @hw: pointer to the HW structure
2301 *
2302 * Checks for link up on the hardware.  If link is not up and we have
2303 * a signal, then we need to force link up.
2304 */
2305static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2306{
2307	u32 rxcw;
2308	u32 ctrl;
2309	u32 status;
2310	s32 ret_val = E1000_SUCCESS;
2311
2312	e_dbg("e1000_check_for_serdes_link_generic");
2313
2314	ctrl = er32(CTRL);
2315	status = er32(STATUS);
2316	rxcw = er32(RXCW);
2317
2318	/*
2319	 * If we don't have link (auto-negotiation failed or link partner
2320	 * cannot auto-negotiate), and our link partner is not trying to
2321	 * auto-negotiate with us (we are receiving idles or data),
2322	 * we need to force link up. We also need to give auto-negotiation
2323	 * time to complete.
2324	 */
2325	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2326	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2327		if (hw->autoneg_failed == 0) {
2328			hw->autoneg_failed = 1;
2329			goto out;
2330		}
2331		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2332
2333		/* Disable auto-negotiation in the TXCW register */
2334		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2335
2336		/* Force link-up and also force full-duplex. */
2337		ctrl = er32(CTRL);
2338		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2339		ew32(CTRL, ctrl);
2340
2341		/* Configure Flow Control after forcing link up. */
2342		ret_val = e1000_config_fc_after_link_up(hw);
2343		if (ret_val) {
2344			e_dbg("Error configuring flow control\n");
2345			goto out;
2346		}
2347	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2348		/*
2349		 * If we are forcing link and we are receiving /C/ ordered
2350		 * sets, re-enable auto-negotiation in the TXCW register
2351		 * and disable forced link in the Device Control register
2352		 * in an attempt to auto-negotiate with our link partner.
2353		 */
2354		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2355		ew32(TXCW, hw->txcw);
2356		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2357
2358		hw->serdes_has_link = true;
2359	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2360		/*
2361		 * If we force link for non-auto-negotiation switch, check
2362		 * link status based on MAC synchronization for internal
2363		 * serdes media type.
2364		 */
2365		/* SYNCH bit and IV bit are sticky. */
2366		udelay(10);
2367		rxcw = er32(RXCW);
2368		if (rxcw & E1000_RXCW_SYNCH) {
2369			if (!(rxcw & E1000_RXCW_IV)) {
2370				hw->serdes_has_link = true;
2371				e_dbg("SERDES: Link up - forced.\n");
2372			}
2373		} else {
2374			hw->serdes_has_link = false;
2375			e_dbg("SERDES: Link down - force failed.\n");
2376		}
2377	}
2378
2379	if (E1000_TXCW_ANE & er32(TXCW)) {
2380		status = er32(STATUS);
2381		if (status & E1000_STATUS_LU) {
2382			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2383			udelay(10);
2384			rxcw = er32(RXCW);
2385			if (rxcw & E1000_RXCW_SYNCH) {
2386				if (!(rxcw & E1000_RXCW_IV)) {
2387					hw->serdes_has_link = true;
2388					e_dbg("SERDES: Link up - autoneg "
2389						 "completed successfully.\n");
2390				} else {
2391					hw->serdes_has_link = false;
2392					e_dbg("SERDES: Link down - invalid"
2393						 "codewords detected in autoneg.\n");
2394				}
2395			} else {
2396				hw->serdes_has_link = false;
2397				e_dbg("SERDES: Link down - no sync.\n");
2398			}
2399		} else {
2400			hw->serdes_has_link = false;
2401			e_dbg("SERDES: Link down - autoneg failed\n");
2402		}
2403	}
2404
2405      out:
2406	return ret_val;
2407}
2408
2409/**
2410 * e1000_check_for_link
2411 * @hw: Struct containing variables accessed by shared code
2412 *
2413 * Checks to see if the link status of the hardware has changed.
2414 * Called by any function that needs to check the link status of the adapter.
2415 */
2416s32 e1000_check_for_link(struct e1000_hw *hw)
2417{
2418	u32 rxcw = 0;
2419	u32 ctrl;
2420	u32 status;
2421	u32 rctl;
2422	u32 icr;
2423	u32 signal = 0;
2424	s32 ret_val;
2425	u16 phy_data;
2426
2427	e_dbg("e1000_check_for_link");
2428
2429	ctrl = er32(CTRL);
2430	status = er32(STATUS);
2431
2432	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2433	 * set when the optics detect a signal. On older adapters, it will be
2434	 * cleared when there is a signal.  This applies to fiber media only.
2435	 */
2436	if ((hw->media_type == e1000_media_type_fiber) ||
2437	    (hw->media_type == e1000_media_type_internal_serdes)) {
2438		rxcw = er32(RXCW);
2439
2440		if (hw->media_type == e1000_media_type_fiber) {
2441			signal =
2442			    (hw->mac_type >
2443			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2444			if (status & E1000_STATUS_LU)
2445				hw->get_link_status = false;
2446		}
2447	}
2448
2449	/* If we have a copper PHY then we only want to go out to the PHY
2450	 * registers to see if Auto-Neg has completed and/or if our link
2451	 * status has changed.  The get_link_status flag will be set if we
2452	 * receive a Link Status Change interrupt or we have Rx Sequence
2453	 * Errors.
2454	 */
2455	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2456		/* First we want to see if the MII Status Register reports
2457		 * link.  If so, then we want to get the current speed/duplex
2458		 * of the PHY.
2459		 * Read the register twice since the link bit is sticky.
2460		 */
2461		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2462		if (ret_val)
2463			return ret_val;
2464		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2465		if (ret_val)
2466			return ret_val;
2467
2468		if (phy_data & MII_SR_LINK_STATUS) {
2469			hw->get_link_status = false;
2470			/* Check if there was DownShift, must be checked immediately after
2471			 * link-up */
 
2472			e1000_check_downshift(hw);
2473
2474			/* If we are on 82544 or 82543 silicon and speed/duplex
2475			 * are forced to 10H or 10F, then we will implement the polarity
2476			 * reversal workaround.  We disable interrupts first, and upon
2477			 * returning, place the devices interrupt state to its previous
2478			 * value except for the link status change interrupt which will
 
2479			 * happen due to the execution of this workaround.
2480			 */
2481
2482			if ((hw->mac_type == e1000_82544
2483			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
2484			    && (hw->forced_speed_duplex == e1000_10_full
2485				|| hw->forced_speed_duplex == e1000_10_half)) {
 
2486				ew32(IMC, 0xffffffff);
2487				ret_val =
2488				    e1000_polarity_reversal_workaround(hw);
2489				icr = er32(ICR);
2490				ew32(ICS, (icr & ~E1000_ICS_LSC));
2491				ew32(IMS, IMS_ENABLE_MASK);
2492			}
2493
2494		} else {
2495			/* No link detected */
2496			e1000_config_dsp_after_link_change(hw, false);
2497			return 0;
2498		}
2499
2500		/* If we are forcing speed/duplex, then we simply return since
2501		 * we have already determined whether we have link or not.
2502		 */
2503		if (!hw->autoneg)
2504			return -E1000_ERR_CONFIG;
2505
2506		/* optimize the dsp settings for the igp phy */
2507		e1000_config_dsp_after_link_change(hw, true);
2508
2509		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2510		 * have Si on board that is 82544 or newer, Auto
2511		 * Speed Detection takes care of MAC speed/duplex
2512		 * configuration.  So we only need to configure Collision
2513		 * Distance in the MAC.  Otherwise, we need to force
2514		 * speed/duplex on the MAC to the current PHY speed/duplex
2515		 * settings.
2516		 */
2517		if ((hw->mac_type >= e1000_82544) &&
2518		    (hw->mac_type != e1000_ce4100))
2519			e1000_config_collision_dist(hw);
2520		else {
2521			ret_val = e1000_config_mac_to_phy(hw);
2522			if (ret_val) {
2523				e_dbg
2524				    ("Error configuring MAC to PHY settings\n");
2525				return ret_val;
2526			}
2527		}
2528
2529		/* Configure Flow Control now that Auto-Neg has completed. First, we
2530		 * need to restore the desired flow control settings because we may
2531		 * have had to re-autoneg with a different link partner.
 
2532		 */
2533		ret_val = e1000_config_fc_after_link_up(hw);
2534		if (ret_val) {
2535			e_dbg("Error configuring flow control\n");
2536			return ret_val;
2537		}
2538
2539		/* At this point we know that we are on copper and we have
2540		 * auto-negotiated link.  These are conditions for checking the link
2541		 * partner capability register.  We use the link speed to determine if
2542		 * TBI compatibility needs to be turned on or off.  If the link is not
2543		 * at gigabit speed, then TBI compatibility is not needed.  If we are
2544		 * at gigabit speed, we turn on TBI compatibility.
 
2545		 */
2546		if (hw->tbi_compatibility_en) {
2547			u16 speed, duplex;
 
2548			ret_val =
2549			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
 
2550			if (ret_val) {
2551				e_dbg
2552				    ("Error getting link speed and duplex\n");
2553				return ret_val;
2554			}
2555			if (speed != SPEED_1000) {
2556				/* If link speed is not set to gigabit speed, we do not need
2557				 * to enable TBI compatibility.
2558				 */
2559				if (hw->tbi_compatibility_on) {
2560					/* If we previously were in the mode, turn it off. */
 
 
2561					rctl = er32(RCTL);
2562					rctl &= ~E1000_RCTL_SBP;
2563					ew32(RCTL, rctl);
2564					hw->tbi_compatibility_on = false;
2565				}
2566			} else {
2567				/* If TBI compatibility is was previously off, turn it on. For
2568				 * compatibility with a TBI link partner, we will store bad
2569				 * packets. Some frames have an additional byte on the end and
2570				 * will look like CRC errors to to the hardware.
 
2571				 */
2572				if (!hw->tbi_compatibility_on) {
2573					hw->tbi_compatibility_on = true;
2574					rctl = er32(RCTL);
2575					rctl |= E1000_RCTL_SBP;
2576					ew32(RCTL, rctl);
2577				}
2578			}
2579		}
2580	}
2581
2582	if ((hw->media_type == e1000_media_type_fiber) ||
2583	    (hw->media_type == e1000_media_type_internal_serdes))
2584		e1000_check_for_serdes_link_generic(hw);
2585
2586	return E1000_SUCCESS;
2587}
2588
2589/**
2590 * e1000_get_speed_and_duplex
2591 * @hw: Struct containing variables accessed by shared code
2592 * @speed: Speed of the connection
2593 * @duplex: Duplex setting of the connection
2594
2595 * Detects the current speed and duplex settings of the hardware.
2596 */
2597s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2598{
2599	u32 status;
2600	s32 ret_val;
2601	u16 phy_data;
2602
2603	e_dbg("e1000_get_speed_and_duplex");
2604
2605	if (hw->mac_type >= e1000_82543) {
2606		status = er32(STATUS);
2607		if (status & E1000_STATUS_SPEED_1000) {
2608			*speed = SPEED_1000;
2609			e_dbg("1000 Mbs, ");
2610		} else if (status & E1000_STATUS_SPEED_100) {
2611			*speed = SPEED_100;
2612			e_dbg("100 Mbs, ");
2613		} else {
2614			*speed = SPEED_10;
2615			e_dbg("10 Mbs, ");
2616		}
2617
2618		if (status & E1000_STATUS_FD) {
2619			*duplex = FULL_DUPLEX;
2620			e_dbg("Full Duplex\n");
2621		} else {
2622			*duplex = HALF_DUPLEX;
2623			e_dbg(" Half Duplex\n");
2624		}
2625	} else {
2626		e_dbg("1000 Mbs, Full Duplex\n");
2627		*speed = SPEED_1000;
2628		*duplex = FULL_DUPLEX;
2629	}
2630
2631	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
2632	 * if it is operating at half duplex.  Here we set the duplex settings to
2633	 * match the duplex in the link partner's capabilities.
2634	 */
2635	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2636		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2637		if (ret_val)
2638			return ret_val;
2639
2640		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2641			*duplex = HALF_DUPLEX;
2642		else {
2643			ret_val =
2644			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2645			if (ret_val)
2646				return ret_val;
2647			if ((*speed == SPEED_100
2648			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2649			    || (*speed == SPEED_10
2650				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2651				*duplex = HALF_DUPLEX;
2652		}
2653	}
2654
2655	return E1000_SUCCESS;
2656}
2657
2658/**
2659 * e1000_wait_autoneg
2660 * @hw: Struct containing variables accessed by shared code
2661 *
2662 * Blocks until autoneg completes or times out (~4.5 seconds)
2663 */
2664static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2665{
2666	s32 ret_val;
2667	u16 i;
2668	u16 phy_data;
2669
2670	e_dbg("e1000_wait_autoneg");
2671	e_dbg("Waiting for Auto-Neg to complete.\n");
2672
2673	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2674	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2675		/* Read the MII Status Register and wait for Auto-Neg
2676		 * Complete bit to be set.
2677		 */
2678		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2679		if (ret_val)
2680			return ret_val;
2681		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2682		if (ret_val)
2683			return ret_val;
2684		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2685			return E1000_SUCCESS;
2686		}
2687		msleep(100);
2688	}
2689	return E1000_SUCCESS;
2690}
2691
2692/**
2693 * e1000_raise_mdi_clk - Raises the Management Data Clock
2694 * @hw: Struct containing variables accessed by shared code
2695 * @ctrl: Device control register's current value
2696 */
2697static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698{
2699	/* Raise the clock input to the Management Data Clock (by setting the MDC
2700	 * bit), and then delay 10 microseconds.
2701	 */
2702	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2703	E1000_WRITE_FLUSH();
2704	udelay(10);
2705}
2706
2707/**
2708 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2709 * @hw: Struct containing variables accessed by shared code
2710 * @ctrl: Device control register's current value
2711 */
2712static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2713{
2714	/* Lower the clock input to the Management Data Clock (by clearing the MDC
2715	 * bit), and then delay 10 microseconds.
2716	 */
2717	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2718	E1000_WRITE_FLUSH();
2719	udelay(10);
2720}
2721
2722/**
2723 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2724 * @hw: Struct containing variables accessed by shared code
2725 * @data: Data to send out to the PHY
2726 * @count: Number of bits to shift out
2727 *
2728 * Bits are shifted out in MSB to LSB order.
2729 */
2730static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2731{
2732	u32 ctrl;
2733	u32 mask;
2734
2735	/* We need to shift "count" number of bits out to the PHY. So, the value
2736	 * in the "data" parameter will be shifted out to the PHY one bit at a
2737	 * time. In order to do this, "data" must be broken down into bits.
2738	 */
2739	mask = 0x01;
2740	mask <<= (count - 1);
2741
2742	ctrl = er32(CTRL);
2743
2744	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2745	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2746
2747	while (mask) {
2748		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2749		 * then raising and lowering the Management Data Clock. A "0" is
2750		 * shifted out to the PHY by setting the MDIO bit to "0" and then
2751		 * raising and lowering the clock.
2752		 */
2753		if (data & mask)
2754			ctrl |= E1000_CTRL_MDIO;
2755		else
2756			ctrl &= ~E1000_CTRL_MDIO;
2757
2758		ew32(CTRL, ctrl);
2759		E1000_WRITE_FLUSH();
2760
2761		udelay(10);
2762
2763		e1000_raise_mdi_clk(hw, &ctrl);
2764		e1000_lower_mdi_clk(hw, &ctrl);
2765
2766		mask = mask >> 1;
2767	}
2768}
2769
2770/**
2771 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2772 * @hw: Struct containing variables accessed by shared code
2773 *
2774 * Bits are shifted in in MSB to LSB order.
2775 */
2776static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2777{
2778	u32 ctrl;
2779	u16 data = 0;
2780	u8 i;
2781
2782	/* In order to read a register from the PHY, we need to shift in a total
2783	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2784	 * to avoid contention on the MDIO pin when a read operation is performed.
2785	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2786	 * by raising the input to the Management Data Clock (setting the MDC bit),
2787	 * and then reading the value of the MDIO bit.
2788	 */
2789	ctrl = er32(CTRL);
2790
2791	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
 
 
2792	ctrl &= ~E1000_CTRL_MDIO_DIR;
2793	ctrl &= ~E1000_CTRL_MDIO;
2794
2795	ew32(CTRL, ctrl);
2796	E1000_WRITE_FLUSH();
2797
2798	/* Raise and Lower the clock before reading in the data. This accounts for
2799	 * the turnaround bits. The first clock occurred when we clocked out the
2800	 * last bit of the Register Address.
2801	 */
2802	e1000_raise_mdi_clk(hw, &ctrl);
2803	e1000_lower_mdi_clk(hw, &ctrl);
2804
2805	for (data = 0, i = 0; i < 16; i++) {
2806		data = data << 1;
2807		e1000_raise_mdi_clk(hw, &ctrl);
2808		ctrl = er32(CTRL);
2809		/* Check to see if we shifted in a "1". */
2810		if (ctrl & E1000_CTRL_MDIO)
2811			data |= 1;
2812		e1000_lower_mdi_clk(hw, &ctrl);
2813	}
2814
2815	e1000_raise_mdi_clk(hw, &ctrl);
2816	e1000_lower_mdi_clk(hw, &ctrl);
2817
2818	return data;
2819}
2820
2821
2822/**
2823 * e1000_read_phy_reg - read a phy register
2824 * @hw: Struct containing variables accessed by shared code
2825 * @reg_addr: address of the PHY register to read
 
2826 *
2827 * Reads the value from a PHY register, if the value is on a specific non zero
2828 * page, sets the page first.
2829 */
2830s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2831{
2832	u32 ret_val;
 
2833
2834	e_dbg("e1000_read_phy_reg");
2835
2836	if ((hw->phy_type == e1000_phy_igp) &&
2837	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2838		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2839						 (u16) reg_addr);
2840		if (ret_val)
2841			return ret_val;
2842	}
2843
2844	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2845					phy_data);
 
 
2846
2847	return ret_val;
2848}
2849
2850static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2851				 u16 *phy_data)
2852{
2853	u32 i;
2854	u32 mdic = 0;
2855	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2856
2857	e_dbg("e1000_read_phy_reg_ex");
2858
2859	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2860		e_dbg("PHY Address %d is out of range\n", reg_addr);
2861		return -E1000_ERR_PARAM;
2862	}
2863
2864	if (hw->mac_type > e1000_82543) {
2865		/* Set up Op-code, Phy Address, and register address in the MDI
2866		 * Control register.  The MAC will take care of interfacing with the
2867		 * PHY to retrieve the desired data.
2868		 */
2869		if (hw->mac_type == e1000_ce4100) {
2870			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2871				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2872				(INTEL_CE_GBE_MDIC_OP_READ) |
2873				(INTEL_CE_GBE_MDIC_GO));
2874
2875			writel(mdic, E1000_MDIO_CMD);
2876
2877			/* Poll the ready bit to see if the MDI read
2878			 * completed
2879			 */
2880			for (i = 0; i < 64; i++) {
2881				udelay(50);
2882				mdic = readl(E1000_MDIO_CMD);
2883				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2884					break;
2885			}
2886
2887			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2888				e_dbg("MDI Read did not complete\n");
2889				return -E1000_ERR_PHY;
2890			}
2891
2892			mdic = readl(E1000_MDIO_STS);
2893			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2894				e_dbg("MDI Read Error\n");
2895				return -E1000_ERR_PHY;
2896			}
2897			*phy_data = (u16) mdic;
2898		} else {
2899			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2900				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2901				(E1000_MDIC_OP_READ));
2902
2903			ew32(MDIC, mdic);
2904
2905			/* Poll the ready bit to see if the MDI read
2906			 * completed
2907			 */
2908			for (i = 0; i < 64; i++) {
2909				udelay(50);
2910				mdic = er32(MDIC);
2911				if (mdic & E1000_MDIC_READY)
2912					break;
2913			}
2914			if (!(mdic & E1000_MDIC_READY)) {
2915				e_dbg("MDI Read did not complete\n");
2916				return -E1000_ERR_PHY;
2917			}
2918			if (mdic & E1000_MDIC_ERROR) {
2919				e_dbg("MDI Error\n");
2920				return -E1000_ERR_PHY;
2921			}
2922			*phy_data = (u16) mdic;
2923		}
2924	} else {
2925		/* We must first send a preamble through the MDIO pin to signal the
2926		 * beginning of an MII instruction.  This is done by sending 32
2927		 * consecutive "1" bits.
2928		 */
2929		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2930
2931		/* Now combine the next few fields that are required for a read
2932		 * operation.  We use this method instead of calling the
2933		 * e1000_shift_out_mdi_bits routine five different times. The format of
2934		 * a MII read instruction consists of a shift out of 14 bits and is
2935		 * defined as follows:
2936		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2937		 * followed by a shift in of 18 bits.  This first two bits shifted in
2938		 * are TurnAround bits used to avoid contention on the MDIO pin when a
2939		 * READ operation is performed.  These two bits are thrown away
2940		 * followed by a shift in of 16 bits which contains the desired data.
 
2941		 */
2942		mdic = ((reg_addr) | (phy_addr << 5) |
2943			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2944
2945		e1000_shift_out_mdi_bits(hw, mdic, 14);
2946
2947		/* Now that we've shifted out the read command to the MII, we need to
2948		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2949		 * register address.
2950		 */
2951		*phy_data = e1000_shift_in_mdi_bits(hw);
2952	}
2953	return E1000_SUCCESS;
2954}
2955
2956/**
2957 * e1000_write_phy_reg - write a phy register
2958 *
2959 * @hw: Struct containing variables accessed by shared code
2960 * @reg_addr: address of the PHY register to write
2961 * @data: data to write to the PHY
2962
2963 * Writes a value to a PHY register
2964 */
2965s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2966{
2967	u32 ret_val;
 
2968
2969	e_dbg("e1000_write_phy_reg");
2970
2971	if ((hw->phy_type == e1000_phy_igp) &&
2972	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2973		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2974						 (u16) reg_addr);
2975		if (ret_val)
 
2976			return ret_val;
 
2977	}
2978
2979	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2980					 phy_data);
 
2981
2982	return ret_val;
2983}
2984
2985static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2986				  u16 phy_data)
2987{
2988	u32 i;
2989	u32 mdic = 0;
2990	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2991
2992	e_dbg("e1000_write_phy_reg_ex");
2993
2994	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2995		e_dbg("PHY Address %d is out of range\n", reg_addr);
2996		return -E1000_ERR_PARAM;
2997	}
2998
2999	if (hw->mac_type > e1000_82543) {
3000		/* Set up Op-code, Phy Address, register address, and data
3001		 * intended for the PHY register in the MDI Control register.
3002		 * The MAC will take care of interfacing with the PHY to send
3003		 * the desired data.
3004		 */
3005		if (hw->mac_type == e1000_ce4100) {
3006			mdic = (((u32) phy_data) |
3007				(reg_addr << E1000_MDIC_REG_SHIFT) |
3008				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3009				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3010				(INTEL_CE_GBE_MDIC_GO));
3011
3012			writel(mdic, E1000_MDIO_CMD);
3013
3014			/* Poll the ready bit to see if the MDI read
3015			 * completed
3016			 */
3017			for (i = 0; i < 640; i++) {
3018				udelay(5);
3019				mdic = readl(E1000_MDIO_CMD);
3020				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3021					break;
3022			}
3023			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3024				e_dbg("MDI Write did not complete\n");
3025				return -E1000_ERR_PHY;
3026			}
3027		} else {
3028			mdic = (((u32) phy_data) |
3029				(reg_addr << E1000_MDIC_REG_SHIFT) |
3030				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3031				(E1000_MDIC_OP_WRITE));
3032
3033			ew32(MDIC, mdic);
3034
3035			/* Poll the ready bit to see if the MDI read
3036			 * completed
3037			 */
3038			for (i = 0; i < 641; i++) {
3039				udelay(5);
3040				mdic = er32(MDIC);
3041				if (mdic & E1000_MDIC_READY)
3042					break;
3043			}
3044			if (!(mdic & E1000_MDIC_READY)) {
3045				e_dbg("MDI Write did not complete\n");
3046				return -E1000_ERR_PHY;
3047			}
3048		}
3049	} else {
3050		/* We'll need to use the SW defined pins to shift the write command
3051		 * out to the PHY. We first send a preamble to the PHY to signal the
3052		 * beginning of the MII instruction.  This is done by sending 32
3053		 * consecutive "1" bits.
3054		 */
3055		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3056
3057		/* Now combine the remaining required fields that will indicate a
3058		 * write operation. We use this method instead of calling the
3059		 * e1000_shift_out_mdi_bits routine for each field in the command. The
3060		 * format of a MII write instruction is as follows:
3061		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3062		 */
3063		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3064			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3065		mdic <<= 16;
3066		mdic |= (u32) phy_data;
3067
3068		e1000_shift_out_mdi_bits(hw, mdic, 32);
3069	}
3070
3071	return E1000_SUCCESS;
3072}
3073
3074/**
3075 * e1000_phy_hw_reset - reset the phy, hardware style
3076 * @hw: Struct containing variables accessed by shared code
3077 *
3078 * Returns the PHY to the power-on reset state
3079 */
3080s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3081{
3082	u32 ctrl, ctrl_ext;
3083	u32 led_ctrl;
3084
3085	e_dbg("e1000_phy_hw_reset");
3086
3087	e_dbg("Resetting Phy...\n");
3088
3089	if (hw->mac_type > e1000_82543) {
3090		/* Read the device control register and assert the E1000_CTRL_PHY_RST
3091		 * bit. Then, take it out of reset.
3092		 * For e1000 hardware, we delay for 10ms between the assert
3093		 * and deassert.
3094		 */
3095		ctrl = er32(CTRL);
3096		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3097		E1000_WRITE_FLUSH();
3098
3099		msleep(10);
3100
3101		ew32(CTRL, ctrl);
3102		E1000_WRITE_FLUSH();
3103
3104	} else {
3105		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3106		 * bit to put the PHY into reset. Then, take it out of reset.
 
3107		 */
3108		ctrl_ext = er32(CTRL_EXT);
3109		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3110		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3111		ew32(CTRL_EXT, ctrl_ext);
3112		E1000_WRITE_FLUSH();
3113		msleep(10);
3114		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3115		ew32(CTRL_EXT, ctrl_ext);
3116		E1000_WRITE_FLUSH();
3117	}
3118	udelay(150);
3119
3120	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3121		/* Configure activity LED after PHY reset */
3122		led_ctrl = er32(LEDCTL);
3123		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3124		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3125		ew32(LEDCTL, led_ctrl);
3126	}
3127
3128	/* Wait for FW to finish PHY configuration. */
3129	return e1000_get_phy_cfg_done(hw);
3130}
3131
3132/**
3133 * e1000_phy_reset - reset the phy to commit settings
3134 * @hw: Struct containing variables accessed by shared code
3135 *
3136 * Resets the PHY
3137 * Sets bit 15 of the MII Control register
3138 */
3139s32 e1000_phy_reset(struct e1000_hw *hw)
3140{
3141	s32 ret_val;
3142	u16 phy_data;
3143
3144	e_dbg("e1000_phy_reset");
3145
3146	switch (hw->phy_type) {
3147	case e1000_phy_igp:
3148		ret_val = e1000_phy_hw_reset(hw);
3149		if (ret_val)
3150			return ret_val;
3151		break;
3152	default:
3153		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3154		if (ret_val)
3155			return ret_val;
3156
3157		phy_data |= MII_CR_RESET;
3158		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3159		if (ret_val)
3160			return ret_val;
3161
3162		udelay(1);
3163		break;
3164	}
3165
3166	if (hw->phy_type == e1000_phy_igp)
3167		e1000_phy_init_script(hw);
3168
3169	return E1000_SUCCESS;
3170}
3171
3172/**
3173 * e1000_detect_gig_phy - check the phy type
3174 * @hw: Struct containing variables accessed by shared code
3175 *
3176 * Probes the expected PHY address for known PHY IDs
3177 */
3178static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3179{
3180	s32 phy_init_status, ret_val;
3181	u16 phy_id_high, phy_id_low;
3182	bool match = false;
3183
3184	e_dbg("e1000_detect_gig_phy");
3185
3186	if (hw->phy_id != 0)
3187		return E1000_SUCCESS;
3188
3189	/* Read the PHY ID Registers to identify which PHY is onboard. */
3190	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3191	if (ret_val)
3192		return ret_val;
3193
3194	hw->phy_id = (u32) (phy_id_high << 16);
3195	udelay(20);
3196	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3197	if (ret_val)
3198		return ret_val;
3199
3200	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3201	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3202
3203	switch (hw->mac_type) {
3204	case e1000_82543:
3205		if (hw->phy_id == M88E1000_E_PHY_ID)
3206			match = true;
3207		break;
3208	case e1000_82544:
3209		if (hw->phy_id == M88E1000_I_PHY_ID)
3210			match = true;
3211		break;
3212	case e1000_82540:
3213	case e1000_82545:
3214	case e1000_82545_rev_3:
3215	case e1000_82546:
3216	case e1000_82546_rev_3:
3217		if (hw->phy_id == M88E1011_I_PHY_ID)
3218			match = true;
3219		break;
3220	case e1000_ce4100:
3221		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3222		    (hw->phy_id == RTL8201N_PHY_ID) ||
3223		    (hw->phy_id == M88E1118_E_PHY_ID))
3224			match = true;
3225		break;
3226	case e1000_82541:
3227	case e1000_82541_rev_2:
3228	case e1000_82547:
3229	case e1000_82547_rev_2:
3230		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3231			match = true;
3232		break;
3233	default:
3234		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3235		return -E1000_ERR_CONFIG;
3236	}
3237	phy_init_status = e1000_set_phy_type(hw);
3238
3239	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3240		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3241		return E1000_SUCCESS;
3242	}
3243	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3244	return -E1000_ERR_PHY;
3245}
3246
3247/**
3248 * e1000_phy_reset_dsp - reset DSP
3249 * @hw: Struct containing variables accessed by shared code
3250 *
3251 * Resets the PHY's DSP
3252 */
3253static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3254{
3255	s32 ret_val;
3256	e_dbg("e1000_phy_reset_dsp");
3257
3258	do {
3259		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3260		if (ret_val)
3261			break;
3262		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3263		if (ret_val)
3264			break;
3265		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3266		if (ret_val)
3267			break;
3268		ret_val = E1000_SUCCESS;
3269	} while (0);
3270
3271	return ret_val;
3272}
3273
3274/**
3275 * e1000_phy_igp_get_info - get igp specific registers
3276 * @hw: Struct containing variables accessed by shared code
3277 * @phy_info: PHY information structure
3278 *
3279 * Get PHY information from various PHY registers for igp PHY only.
3280 */
3281static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3282				  struct e1000_phy_info *phy_info)
3283{
3284	s32 ret_val;
3285	u16 phy_data, min_length, max_length, average;
3286	e1000_rev_polarity polarity;
3287
3288	e_dbg("e1000_phy_igp_get_info");
3289
3290	/* The downshift status is checked only once, after link is established,
3291	 * and it stored in the hw->speed_downgraded parameter. */
 
3292	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3293
3294	/* IGP01E1000 does not need to support it. */
3295	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3296
3297	/* IGP01E1000 always correct polarity reversal */
3298	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3299
3300	/* Check polarity status */
3301	ret_val = e1000_check_polarity(hw, &polarity);
3302	if (ret_val)
3303		return ret_val;
3304
3305	phy_info->cable_polarity = polarity;
3306
3307	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3308	if (ret_val)
3309		return ret_val;
3310
3311	phy_info->mdix_mode =
3312	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3313				 IGP01E1000_PSSR_MDIX_SHIFT);
3314
3315	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3316	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3317		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
 
 
3318		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3319		if (ret_val)
3320			return ret_val;
3321
3322		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3323				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3324		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3325		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3326				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3327		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3328
3329		/* Get cable length */
3330		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3331		if (ret_val)
3332			return ret_val;
3333
3334		/* Translate to old method */
3335		average = (max_length + min_length) / 2;
3336
3337		if (average <= e1000_igp_cable_length_50)
3338			phy_info->cable_length = e1000_cable_length_50;
3339		else if (average <= e1000_igp_cable_length_80)
3340			phy_info->cable_length = e1000_cable_length_50_80;
3341		else if (average <= e1000_igp_cable_length_110)
3342			phy_info->cable_length = e1000_cable_length_80_110;
3343		else if (average <= e1000_igp_cable_length_140)
3344			phy_info->cable_length = e1000_cable_length_110_140;
3345		else
3346			phy_info->cable_length = e1000_cable_length_140;
3347	}
3348
3349	return E1000_SUCCESS;
3350}
3351
3352/**
3353 * e1000_phy_m88_get_info - get m88 specific registers
3354 * @hw: Struct containing variables accessed by shared code
3355 * @phy_info: PHY information structure
3356 *
3357 * Get PHY information from various PHY registers for m88 PHY only.
3358 */
3359static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3360				  struct e1000_phy_info *phy_info)
3361{
3362	s32 ret_val;
3363	u16 phy_data;
3364	e1000_rev_polarity polarity;
3365
3366	e_dbg("e1000_phy_m88_get_info");
3367
3368	/* The downshift status is checked only once, after link is established,
3369	 * and it stored in the hw->speed_downgraded parameter. */
 
3370	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3371
3372	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3373	if (ret_val)
3374		return ret_val;
3375
3376	phy_info->extended_10bt_distance =
3377	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3378	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3379	    e1000_10bt_ext_dist_enable_lower :
3380	    e1000_10bt_ext_dist_enable_normal;
3381
3382	phy_info->polarity_correction =
3383	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3384	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3385	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3386
3387	/* Check polarity status */
3388	ret_val = e1000_check_polarity(hw, &polarity);
3389	if (ret_val)
3390		return ret_val;
3391	phy_info->cable_polarity = polarity;
3392
3393	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3394	if (ret_val)
3395		return ret_val;
3396
3397	phy_info->mdix_mode =
3398	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3399				 M88E1000_PSSR_MDIX_SHIFT);
3400
3401	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3402		/* Cable Length Estimation and Local/Remote Receiver Information
3403		 * are only valid at 1000 Mbps.
3404		 */
3405		phy_info->cable_length =
3406		    (e1000_cable_length) ((phy_data &
3407					   M88E1000_PSSR_CABLE_LENGTH) >>
3408					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3409
3410		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3411		if (ret_val)
3412			return ret_val;
3413
3414		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3415				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3416		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3417		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3418				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3419		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3420
3421	}
3422
3423	return E1000_SUCCESS;
3424}
3425
3426/**
3427 * e1000_phy_get_info - request phy info
3428 * @hw: Struct containing variables accessed by shared code
3429 * @phy_info: PHY information structure
3430 *
3431 * Get PHY information from various PHY registers
3432 */
3433s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3434{
3435	s32 ret_val;
3436	u16 phy_data;
3437
3438	e_dbg("e1000_phy_get_info");
3439
3440	phy_info->cable_length = e1000_cable_length_undefined;
3441	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3442	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3443	phy_info->downshift = e1000_downshift_undefined;
3444	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3445	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3446	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3447	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3448
3449	if (hw->media_type != e1000_media_type_copper) {
3450		e_dbg("PHY info is only valid for copper media\n");
3451		return -E1000_ERR_CONFIG;
3452	}
3453
3454	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3455	if (ret_val)
3456		return ret_val;
3457
3458	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3459	if (ret_val)
3460		return ret_val;
3461
3462	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3463		e_dbg("PHY info is only valid if link is up\n");
3464		return -E1000_ERR_CONFIG;
3465	}
3466
3467	if (hw->phy_type == e1000_phy_igp)
3468		return e1000_phy_igp_get_info(hw, phy_info);
3469	else if ((hw->phy_type == e1000_phy_8211) ||
3470	         (hw->phy_type == e1000_phy_8201))
3471		return E1000_SUCCESS;
3472	else
3473		return e1000_phy_m88_get_info(hw, phy_info);
3474}
3475
3476s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3477{
3478	e_dbg("e1000_validate_mdi_settings");
3479
3480	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3481		e_dbg("Invalid MDI setting detected\n");
3482		hw->mdix = 1;
3483		return -E1000_ERR_CONFIG;
3484	}
3485	return E1000_SUCCESS;
3486}
3487
3488/**
3489 * e1000_init_eeprom_params - initialize sw eeprom vars
3490 * @hw: Struct containing variables accessed by shared code
3491 *
3492 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3493 * is configured.
3494 */
3495s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3496{
3497	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3498	u32 eecd = er32(EECD);
3499	s32 ret_val = E1000_SUCCESS;
3500	u16 eeprom_size;
3501
3502	e_dbg("e1000_init_eeprom_params");
3503
3504	switch (hw->mac_type) {
3505	case e1000_82542_rev2_0:
3506	case e1000_82542_rev2_1:
3507	case e1000_82543:
3508	case e1000_82544:
3509		eeprom->type = e1000_eeprom_microwire;
3510		eeprom->word_size = 64;
3511		eeprom->opcode_bits = 3;
3512		eeprom->address_bits = 6;
3513		eeprom->delay_usec = 50;
3514		break;
3515	case e1000_82540:
3516	case e1000_82545:
3517	case e1000_82545_rev_3:
3518	case e1000_82546:
3519	case e1000_82546_rev_3:
3520		eeprom->type = e1000_eeprom_microwire;
3521		eeprom->opcode_bits = 3;
3522		eeprom->delay_usec = 50;
3523		if (eecd & E1000_EECD_SIZE) {
3524			eeprom->word_size = 256;
3525			eeprom->address_bits = 8;
3526		} else {
3527			eeprom->word_size = 64;
3528			eeprom->address_bits = 6;
3529		}
3530		break;
3531	case e1000_82541:
3532	case e1000_82541_rev_2:
3533	case e1000_82547:
3534	case e1000_82547_rev_2:
3535		if (eecd & E1000_EECD_TYPE) {
3536			eeprom->type = e1000_eeprom_spi;
3537			eeprom->opcode_bits = 8;
3538			eeprom->delay_usec = 1;
3539			if (eecd & E1000_EECD_ADDR_BITS) {
3540				eeprom->page_size = 32;
3541				eeprom->address_bits = 16;
3542			} else {
3543				eeprom->page_size = 8;
3544				eeprom->address_bits = 8;
3545			}
3546		} else {
3547			eeprom->type = e1000_eeprom_microwire;
3548			eeprom->opcode_bits = 3;
3549			eeprom->delay_usec = 50;
3550			if (eecd & E1000_EECD_ADDR_BITS) {
3551				eeprom->word_size = 256;
3552				eeprom->address_bits = 8;
3553			} else {
3554				eeprom->word_size = 64;
3555				eeprom->address_bits = 6;
3556			}
3557		}
3558		break;
3559	default:
3560		break;
3561	}
3562
3563	if (eeprom->type == e1000_eeprom_spi) {
3564		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3565		 * 32KB (incremented by powers of 2).
3566		 */
3567		/* Set to default value for initial eeprom read. */
3568		eeprom->word_size = 64;
3569		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3570		if (ret_val)
3571			return ret_val;
3572		eeprom_size =
3573		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3574		/* 256B eeprom size was not supported in earlier hardware, so we
3575		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3576		 * is never the result used in the shifting logic below. */
 
3577		if (eeprom_size)
3578			eeprom_size++;
3579
3580		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3581	}
3582	return ret_val;
3583}
3584
3585/**
3586 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3587 * @hw: Struct containing variables accessed by shared code
3588 * @eecd: EECD's current value
3589 */
3590static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3591{
3592	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3593	 * wait <delay> microseconds.
3594	 */
3595	*eecd = *eecd | E1000_EECD_SK;
3596	ew32(EECD, *eecd);
3597	E1000_WRITE_FLUSH();
3598	udelay(hw->eeprom.delay_usec);
3599}
3600
3601/**
3602 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3603 * @hw: Struct containing variables accessed by shared code
3604 * @eecd: EECD's current value
3605 */
3606static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3607{
3608	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3609	 * wait 50 microseconds.
3610	 */
3611	*eecd = *eecd & ~E1000_EECD_SK;
3612	ew32(EECD, *eecd);
3613	E1000_WRITE_FLUSH();
3614	udelay(hw->eeprom.delay_usec);
3615}
3616
3617/**
3618 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3619 * @hw: Struct containing variables accessed by shared code
3620 * @data: data to send to the EEPROM
3621 * @count: number of bits to shift out
3622 */
3623static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3624{
3625	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3626	u32 eecd;
3627	u32 mask;
3628
3629	/* We need to shift "count" bits out to the EEPROM. So, value in the
3630	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3631	 * In order to do this, "data" must be broken down into bits.
3632	 */
3633	mask = 0x01 << (count - 1);
3634	eecd = er32(EECD);
3635	if (eeprom->type == e1000_eeprom_microwire) {
3636		eecd &= ~E1000_EECD_DO;
3637	} else if (eeprom->type == e1000_eeprom_spi) {
3638		eecd |= E1000_EECD_DO;
3639	}
3640	do {
3641		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3642		 * and then raising and then lowering the clock (the SK bit controls
3643		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
3644		 * by setting "DI" to "0" and then raising and then lowering the clock.
 
3645		 */
3646		eecd &= ~E1000_EECD_DI;
3647
3648		if (data & mask)
3649			eecd |= E1000_EECD_DI;
3650
3651		ew32(EECD, eecd);
3652		E1000_WRITE_FLUSH();
3653
3654		udelay(eeprom->delay_usec);
3655
3656		e1000_raise_ee_clk(hw, &eecd);
3657		e1000_lower_ee_clk(hw, &eecd);
3658
3659		mask = mask >> 1;
3660
3661	} while (mask);
3662
3663	/* We leave the "DI" bit set to "0" when we leave this routine. */
3664	eecd &= ~E1000_EECD_DI;
3665	ew32(EECD, eecd);
3666}
3667
3668/**
3669 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3670 * @hw: Struct containing variables accessed by shared code
3671 * @count: number of bits to shift in
3672 */
3673static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3674{
3675	u32 eecd;
3676	u32 i;
3677	u16 data;
3678
3679	/* In order to read a register from the EEPROM, we need to shift 'count'
3680	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3681	 * input to the EEPROM (setting the SK bit), and then reading the value of
3682	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
3683	 * always be clear.
3684	 */
3685
3686	eecd = er32(EECD);
3687
3688	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3689	data = 0;
3690
3691	for (i = 0; i < count; i++) {
3692		data = data << 1;
3693		e1000_raise_ee_clk(hw, &eecd);
3694
3695		eecd = er32(EECD);
3696
3697		eecd &= ~(E1000_EECD_DI);
3698		if (eecd & E1000_EECD_DO)
3699			data |= 1;
3700
3701		e1000_lower_ee_clk(hw, &eecd);
3702	}
3703
3704	return data;
3705}
3706
3707/**
3708 * e1000_acquire_eeprom - Prepares EEPROM for access
3709 * @hw: Struct containing variables accessed by shared code
3710 *
3711 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3712 * function should be called before issuing a command to the EEPROM.
3713 */
3714static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3715{
3716	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3717	u32 eecd, i = 0;
3718
3719	e_dbg("e1000_acquire_eeprom");
3720
3721	eecd = er32(EECD);
3722
3723	/* Request EEPROM Access */
3724	if (hw->mac_type > e1000_82544) {
3725		eecd |= E1000_EECD_REQ;
3726		ew32(EECD, eecd);
3727		eecd = er32(EECD);
3728		while ((!(eecd & E1000_EECD_GNT)) &&
3729		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3730			i++;
3731			udelay(5);
3732			eecd = er32(EECD);
3733		}
3734		if (!(eecd & E1000_EECD_GNT)) {
3735			eecd &= ~E1000_EECD_REQ;
3736			ew32(EECD, eecd);
3737			e_dbg("Could not acquire EEPROM grant\n");
3738			return -E1000_ERR_EEPROM;
3739		}
3740	}
3741
3742	/* Setup EEPROM for Read/Write */
3743
3744	if (eeprom->type == e1000_eeprom_microwire) {
3745		/* Clear SK and DI */
3746		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3747		ew32(EECD, eecd);
3748
3749		/* Set CS */
3750		eecd |= E1000_EECD_CS;
3751		ew32(EECD, eecd);
3752	} else if (eeprom->type == e1000_eeprom_spi) {
3753		/* Clear SK and CS */
3754		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3755		ew32(EECD, eecd);
3756		E1000_WRITE_FLUSH();
3757		udelay(1);
3758	}
3759
3760	return E1000_SUCCESS;
3761}
3762
3763/**
3764 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3765 * @hw: Struct containing variables accessed by shared code
3766 */
3767static void e1000_standby_eeprom(struct e1000_hw *hw)
3768{
3769	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3770	u32 eecd;
3771
3772	eecd = er32(EECD);
3773
3774	if (eeprom->type == e1000_eeprom_microwire) {
3775		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3776		ew32(EECD, eecd);
3777		E1000_WRITE_FLUSH();
3778		udelay(eeprom->delay_usec);
3779
3780		/* Clock high */
3781		eecd |= E1000_EECD_SK;
3782		ew32(EECD, eecd);
3783		E1000_WRITE_FLUSH();
3784		udelay(eeprom->delay_usec);
3785
3786		/* Select EEPROM */
3787		eecd |= E1000_EECD_CS;
3788		ew32(EECD, eecd);
3789		E1000_WRITE_FLUSH();
3790		udelay(eeprom->delay_usec);
3791
3792		/* Clock low */
3793		eecd &= ~E1000_EECD_SK;
3794		ew32(EECD, eecd);
3795		E1000_WRITE_FLUSH();
3796		udelay(eeprom->delay_usec);
3797	} else if (eeprom->type == e1000_eeprom_spi) {
3798		/* Toggle CS to flush commands */
3799		eecd |= E1000_EECD_CS;
3800		ew32(EECD, eecd);
3801		E1000_WRITE_FLUSH();
3802		udelay(eeprom->delay_usec);
3803		eecd &= ~E1000_EECD_CS;
3804		ew32(EECD, eecd);
3805		E1000_WRITE_FLUSH();
3806		udelay(eeprom->delay_usec);
3807	}
3808}
3809
3810/**
3811 * e1000_release_eeprom - drop chip select
3812 * @hw: Struct containing variables accessed by shared code
3813 *
3814 * Terminates a command by inverting the EEPROM's chip select pin
3815 */
3816static void e1000_release_eeprom(struct e1000_hw *hw)
3817{
3818	u32 eecd;
3819
3820	e_dbg("e1000_release_eeprom");
3821
3822	eecd = er32(EECD);
3823
3824	if (hw->eeprom.type == e1000_eeprom_spi) {
3825		eecd |= E1000_EECD_CS;	/* Pull CS high */
3826		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3827
3828		ew32(EECD, eecd);
3829		E1000_WRITE_FLUSH();
3830
3831		udelay(hw->eeprom.delay_usec);
3832	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3833		/* cleanup eeprom */
3834
3835		/* CS on Microwire is active-high */
3836		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3837
3838		ew32(EECD, eecd);
3839
3840		/* Rising edge of clock */
3841		eecd |= E1000_EECD_SK;
3842		ew32(EECD, eecd);
3843		E1000_WRITE_FLUSH();
3844		udelay(hw->eeprom.delay_usec);
3845
3846		/* Falling edge of clock */
3847		eecd &= ~E1000_EECD_SK;
3848		ew32(EECD, eecd);
3849		E1000_WRITE_FLUSH();
3850		udelay(hw->eeprom.delay_usec);
3851	}
3852
3853	/* Stop requesting EEPROM access */
3854	if (hw->mac_type > e1000_82544) {
3855		eecd &= ~E1000_EECD_REQ;
3856		ew32(EECD, eecd);
3857	}
3858}
3859
3860/**
3861 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3862 * @hw: Struct containing variables accessed by shared code
3863 */
3864static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3865{
3866	u16 retry_count = 0;
3867	u8 spi_stat_reg;
3868
3869	e_dbg("e1000_spi_eeprom_ready");
3870
3871	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3872	 * EEPROM will signal that the command has been completed by clearing
3873	 * bit 0 of the internal status register.  If it's not cleared within
3874	 * 5 milliseconds, then error out.
3875	 */
3876	retry_count = 0;
3877	do {
3878		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3879					hw->eeprom.opcode_bits);
3880		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3881		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3882			break;
3883
3884		udelay(5);
3885		retry_count += 5;
3886
3887		e1000_standby_eeprom(hw);
3888	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3889
3890	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3891	 * only 0-5mSec on 5V devices)
3892	 */
3893	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3894		e_dbg("SPI EEPROM Status error\n");
3895		return -E1000_ERR_EEPROM;
3896	}
3897
3898	return E1000_SUCCESS;
3899}
3900
3901/**
3902 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3903 * @hw: Struct containing variables accessed by shared code
3904 * @offset: offset of  word in the EEPROM to read
3905 * @data: word read from the EEPROM
3906 * @words: number of words to read
3907 */
3908s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3909{
3910	s32 ret;
3911	spin_lock(&e1000_eeprom_lock);
 
3912	ret = e1000_do_read_eeprom(hw, offset, words, data);
3913	spin_unlock(&e1000_eeprom_lock);
3914	return ret;
3915}
3916
3917static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3918				u16 *data)
3919{
3920	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3921	u32 i = 0;
3922
3923	e_dbg("e1000_read_eeprom");
3924
3925	if (hw->mac_type == e1000_ce4100) {
3926		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3927		                      data);
3928		return E1000_SUCCESS;
3929	}
3930
3931	/* If eeprom is not yet detected, do so now */
3932	if (eeprom->word_size == 0)
3933		e1000_init_eeprom_params(hw);
3934
3935	/* A check for invalid values:  offset too large, too many words, and not
3936	 * enough words.
3937	 */
3938	if ((offset >= eeprom->word_size)
3939	    || (words > eeprom->word_size - offset) || (words == 0)) {
 
3940		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3941		      "size = %d\n", offset, eeprom->word_size);
3942		return -E1000_ERR_EEPROM;
3943	}
3944
3945	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3946	 * directly. In this case, we need to acquire the EEPROM so that
3947	 * FW or other port software does not interrupt.
3948	 */
3949	/* Prepare the EEPROM for bit-bang reading */
3950	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3951		return -E1000_ERR_EEPROM;
3952
3953	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3954	 * acquired the EEPROM at this point, so any returns should release it */
 
3955	if (eeprom->type == e1000_eeprom_spi) {
3956		u16 word_in;
3957		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3958
3959		if (e1000_spi_eeprom_ready(hw)) {
3960			e1000_release_eeprom(hw);
3961			return -E1000_ERR_EEPROM;
3962		}
3963
3964		e1000_standby_eeprom(hw);
3965
3966		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
 
 
3967		if ((eeprom->address_bits == 8) && (offset >= 128))
3968			read_opcode |= EEPROM_A8_OPCODE_SPI;
3969
3970		/* Send the READ command (opcode + addr)  */
3971		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3972		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3973					eeprom->address_bits);
3974
3975		/* Read the data.  The address of the eeprom internally increments with
3976		 * each byte (spi) being read, saving on the overhead of eeprom setup
3977		 * and tear-down.  The address counter will roll over if reading beyond
3978		 * the size of the eeprom, thus allowing the entire memory to be read
3979		 * starting from any offset. */
 
 
3980		for (i = 0; i < words; i++) {
3981			word_in = e1000_shift_in_ee_bits(hw, 16);
3982			data[i] = (word_in >> 8) | (word_in << 8);
3983		}
3984	} else if (eeprom->type == e1000_eeprom_microwire) {
3985		for (i = 0; i < words; i++) {
3986			/* Send the READ command (opcode + addr)  */
3987			e1000_shift_out_ee_bits(hw,
3988						EEPROM_READ_OPCODE_MICROWIRE,
3989						eeprom->opcode_bits);
3990			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3991						eeprom->address_bits);
3992
3993			/* Read the data.  For microwire, each word requires the overhead
3994			 * of eeprom setup and tear-down. */
 
3995			data[i] = e1000_shift_in_ee_bits(hw, 16);
3996			e1000_standby_eeprom(hw);
 
3997		}
3998	}
3999
4000	/* End this read operation */
4001	e1000_release_eeprom(hw);
4002
4003	return E1000_SUCCESS;
4004}
4005
4006/**
4007 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
4008 * @hw: Struct containing variables accessed by shared code
4009 *
4010 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4011 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4012 * valid.
4013 */
4014s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4015{
4016	u16 checksum = 0;
4017	u16 i, eeprom_data;
4018
4019	e_dbg("e1000_validate_eeprom_checksum");
4020
4021	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4022		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4023			e_dbg("EEPROM Read Error\n");
4024			return -E1000_ERR_EEPROM;
4025		}
4026		checksum += eeprom_data;
4027	}
4028
4029#ifdef CONFIG_PARISC
4030	/* This is a signature and not a checksum on HP c8000 */
4031	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4032		return E1000_SUCCESS;
4033
4034#endif
4035	if (checksum == (u16) EEPROM_SUM)
4036		return E1000_SUCCESS;
4037	else {
4038		e_dbg("EEPROM Checksum Invalid\n");
4039		return -E1000_ERR_EEPROM;
4040	}
4041}
4042
4043/**
4044 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4045 * @hw: Struct containing variables accessed by shared code
4046 *
4047 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4048 * Writes the difference to word offset 63 of the EEPROM.
4049 */
4050s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4051{
4052	u16 checksum = 0;
4053	u16 i, eeprom_data;
4054
4055	e_dbg("e1000_update_eeprom_checksum");
4056
4057	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4058		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4059			e_dbg("EEPROM Read Error\n");
4060			return -E1000_ERR_EEPROM;
4061		}
4062		checksum += eeprom_data;
4063	}
4064	checksum = (u16) EEPROM_SUM - checksum;
4065	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4066		e_dbg("EEPROM Write Error\n");
4067		return -E1000_ERR_EEPROM;
4068	}
4069	return E1000_SUCCESS;
4070}
4071
4072/**
4073 * e1000_write_eeprom - write words to the different EEPROM types.
4074 * @hw: Struct containing variables accessed by shared code
4075 * @offset: offset within the EEPROM to be written to
4076 * @words: number of words to write
4077 * @data: 16 bit word to be written to the EEPROM
4078 *
4079 * If e1000_update_eeprom_checksum is not called after this function, the
4080 * EEPROM will most likely contain an invalid checksum.
4081 */
4082s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4083{
4084	s32 ret;
4085	spin_lock(&e1000_eeprom_lock);
 
4086	ret = e1000_do_write_eeprom(hw, offset, words, data);
4087	spin_unlock(&e1000_eeprom_lock);
4088	return ret;
4089}
4090
4091static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4092				 u16 *data)
4093{
4094	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4095	s32 status = 0;
4096
4097	e_dbg("e1000_write_eeprom");
4098
4099	if (hw->mac_type == e1000_ce4100) {
4100		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4101		                       data);
4102		return E1000_SUCCESS;
4103	}
4104
4105	/* If eeprom is not yet detected, do so now */
4106	if (eeprom->word_size == 0)
4107		e1000_init_eeprom_params(hw);
4108
4109	/* A check for invalid values:  offset too large, too many words, and not
4110	 * enough words.
4111	 */
4112	if ((offset >= eeprom->word_size)
4113	    || (words > eeprom->word_size - offset) || (words == 0)) {
 
4114		e_dbg("\"words\" parameter out of bounds\n");
4115		return -E1000_ERR_EEPROM;
4116	}
4117
4118	/* Prepare the EEPROM for writing  */
4119	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4120		return -E1000_ERR_EEPROM;
4121
4122	if (eeprom->type == e1000_eeprom_microwire) {
4123		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4124	} else {
4125		status = e1000_write_eeprom_spi(hw, offset, words, data);
4126		msleep(10);
4127	}
4128
4129	/* Done with writing */
4130	e1000_release_eeprom(hw);
4131
4132	return status;
4133}
4134
4135/**
4136 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4137 * @hw: Struct containing variables accessed by shared code
4138 * @offset: offset within the EEPROM to be written to
4139 * @words: number of words to write
4140 * @data: pointer to array of 8 bit words to be written to the EEPROM
4141 */
4142static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4143				  u16 *data)
4144{
4145	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4146	u16 widx = 0;
4147
4148	e_dbg("e1000_write_eeprom_spi");
4149
4150	while (widx < words) {
4151		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4152
4153		if (e1000_spi_eeprom_ready(hw))
4154			return -E1000_ERR_EEPROM;
4155
4156		e1000_standby_eeprom(hw);
 
4157
4158		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4159		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4160					eeprom->opcode_bits);
4161
4162		e1000_standby_eeprom(hw);
4163
4164		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
 
 
4165		if ((eeprom->address_bits == 8) && (offset >= 128))
4166			write_opcode |= EEPROM_A8_OPCODE_SPI;
4167
4168		/* Send the Write command (8-bit opcode + addr) */
4169		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4170
4171		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4172					eeprom->address_bits);
4173
4174		/* Send the data */
4175
4176		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
 
 
4177		while (widx < words) {
4178			u16 word_out = data[widx];
 
4179			word_out = (word_out >> 8) | (word_out << 8);
4180			e1000_shift_out_ee_bits(hw, word_out, 16);
4181			widx++;
4182
4183			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4184			 * operation, while the smaller eeproms are capable of an 8-byte
4185			 * PAGE WRITE operation.  Break the inner loop to pass new address
 
4186			 */
4187			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4188				e1000_standby_eeprom(hw);
4189				break;
4190			}
4191		}
4192	}
4193
4194	return E1000_SUCCESS;
4195}
4196
4197/**
4198 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4199 * @hw: Struct containing variables accessed by shared code
4200 * @offset: offset within the EEPROM to be written to
4201 * @words: number of words to write
4202 * @data: pointer to array of 8 bit words to be written to the EEPROM
4203 */
4204static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4205					u16 words, u16 *data)
4206{
4207	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4208	u32 eecd;
4209	u16 words_written = 0;
4210	u16 i = 0;
4211
4212	e_dbg("e1000_write_eeprom_microwire");
4213
4214	/* Send the write enable command to the EEPROM (3-bit opcode plus
4215	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4216	 * the 11 of the dummy address as part of the opcode than it is to shift
4217	 * it over the correct number of bits for the address.  This puts the
4218	 * EEPROM into write/erase mode.
4219	 */
4220	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4221				(u16) (eeprom->opcode_bits + 2));
4222
4223	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4224
4225	/* Prepare the EEPROM */
4226	e1000_standby_eeprom(hw);
4227
4228	while (words_written < words) {
4229		/* Send the Write command (3-bit opcode + addr) */
4230		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4231					eeprom->opcode_bits);
4232
4233		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4234					eeprom->address_bits);
4235
4236		/* Send the data */
4237		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4238
4239		/* Toggle the CS line.  This in effect tells the EEPROM to execute
4240		 * the previous command.
4241		 */
4242		e1000_standby_eeprom(hw);
4243
4244		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
4245		 * signal that the command has been completed by raising the DO signal.
4246		 * If DO does not go high in 10 milliseconds, then error out.
 
4247		 */
4248		for (i = 0; i < 200; i++) {
4249			eecd = er32(EECD);
4250			if (eecd & E1000_EECD_DO)
4251				break;
4252			udelay(50);
4253		}
4254		if (i == 200) {
4255			e_dbg("EEPROM Write did not complete\n");
4256			return -E1000_ERR_EEPROM;
4257		}
4258
4259		/* Recover from write */
4260		e1000_standby_eeprom(hw);
 
4261
4262		words_written++;
4263	}
4264
4265	/* Send the write disable command to the EEPROM (3-bit opcode plus
4266	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4267	 * the 10 of the dummy address as part of the opcode than it is to shift
4268	 * it over the correct number of bits for the address.  This takes the
4269	 * EEPROM out of write/erase mode.
4270	 */
4271	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4272				(u16) (eeprom->opcode_bits + 2));
4273
4274	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4275
4276	return E1000_SUCCESS;
4277}
4278
4279/**
4280 * e1000_read_mac_addr - read the adapters MAC from eeprom
4281 * @hw: Struct containing variables accessed by shared code
4282 *
4283 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4284 * second function of dual function devices
4285 */
4286s32 e1000_read_mac_addr(struct e1000_hw *hw)
4287{
4288	u16 offset;
4289	u16 eeprom_data, i;
4290
4291	e_dbg("e1000_read_mac_addr");
4292
4293	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4294		offset = i >> 1;
4295		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4296			e_dbg("EEPROM Read Error\n");
4297			return -E1000_ERR_EEPROM;
4298		}
4299		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4300		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4301	}
4302
4303	switch (hw->mac_type) {
4304	default:
4305		break;
4306	case e1000_82546:
4307	case e1000_82546_rev_3:
4308		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4309			hw->perm_mac_addr[5] ^= 0x01;
4310		break;
4311	}
4312
4313	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4314		hw->mac_addr[i] = hw->perm_mac_addr[i];
4315	return E1000_SUCCESS;
4316}
4317
4318/**
4319 * e1000_init_rx_addrs - Initializes receive address filters.
4320 * @hw: Struct containing variables accessed by shared code
4321 *
4322 * Places the MAC address in receive address register 0 and clears the rest
4323 * of the receive address registers. Clears the multicast table. Assumes
4324 * the receiver is in reset when the routine is called.
4325 */
4326static void e1000_init_rx_addrs(struct e1000_hw *hw)
4327{
4328	u32 i;
4329	u32 rar_num;
4330
4331	e_dbg("e1000_init_rx_addrs");
4332
4333	/* Setup the receive address. */
4334	e_dbg("Programming MAC Address into RAR[0]\n");
4335
4336	e1000_rar_set(hw, hw->mac_addr, 0);
4337
4338	rar_num = E1000_RAR_ENTRIES;
4339
4340	/* Zero out the other 15 receive addresses. */
4341	e_dbg("Clearing RAR[1-15]\n");
 
 
4342	for (i = 1; i < rar_num; i++) {
4343		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4344		E1000_WRITE_FLUSH();
4345		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4346		E1000_WRITE_FLUSH();
4347	}
4348}
4349
4350/**
4351 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4352 * @hw: Struct containing variables accessed by shared code
4353 * @mc_addr: the multicast address to hash
4354 */
4355u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4356{
4357	u32 hash_value = 0;
4358
4359	/* The portion of the address that is used for the hash table is
4360	 * determined by the mc_filter_type setting.
4361	 */
4362	switch (hw->mc_filter_type) {
4363		/* [0] [1] [2] [3] [4] [5]
4364		 * 01  AA  00  12  34  56
4365		 * LSB                 MSB
4366		 */
4367	case 0:
4368		/* [47:36] i.e. 0x563 for above example address */
4369		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4370		break;
4371	case 1:
4372		/* [46:35] i.e. 0xAC6 for above example address */
4373		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4374		break;
4375	case 2:
4376		/* [45:34] i.e. 0x5D8 for above example address */
4377		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4378		break;
4379	case 3:
4380		/* [43:32] i.e. 0x634 for above example address */
4381		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4382		break;
4383	}
4384
4385	hash_value &= 0xFFF;
4386	return hash_value;
4387}
4388
4389/**
4390 * e1000_rar_set - Puts an ethernet address into a receive address register.
4391 * @hw: Struct containing variables accessed by shared code
4392 * @addr: Address to put into receive address register
4393 * @index: Receive address register to write
4394 */
4395void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4396{
4397	u32 rar_low, rar_high;
4398
4399	/* HW expects these in little endian so we reverse the byte order
4400	 * from network order (big endian) to little endian
4401	 */
4402	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4403		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4404	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4405
4406	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4407	 * unit hang.
4408	 *
4409	 * Description:
4410	 * If there are any Rx frames queued up or otherwise present in the HW
4411	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4412	 * hang.  To work around this issue, we have to disable receives and
4413	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4414	 * redirect all Rx traffic to manageability and then reset the HW.
4415	 * This flushes away Rx frames, and (since the redirections to
4416	 * manageability persists across resets) keeps new ones from coming in
4417	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4418	 * addresses and undo the re-direction to manageability.
4419	 * Now, frames are coming in again, but the MAC won't accept them, so
4420	 * far so good.  We now proceed to initialize RSS (if necessary) and
4421	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4422	 * on our merry way.
4423	 */
4424	switch (hw->mac_type) {
4425	default:
4426		/* Indicate to hardware the Address is Valid. */
4427		rar_high |= E1000_RAH_AV;
4428		break;
4429	}
4430
4431	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4432	E1000_WRITE_FLUSH();
4433	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4434	E1000_WRITE_FLUSH();
4435}
4436
4437/**
4438 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4439 * @hw: Struct containing variables accessed by shared code
4440 * @offset: Offset in VLAN filer table to write
4441 * @value: Value to write into VLAN filter table
4442 */
4443void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4444{
4445	u32 temp;
4446
4447	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4448		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4449		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4450		E1000_WRITE_FLUSH();
4451		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4452		E1000_WRITE_FLUSH();
4453	} else {
4454		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4455		E1000_WRITE_FLUSH();
4456	}
4457}
4458
4459/**
4460 * e1000_clear_vfta - Clears the VLAN filer table
4461 * @hw: Struct containing variables accessed by shared code
4462 */
4463static void e1000_clear_vfta(struct e1000_hw *hw)
4464{
4465	u32 offset;
4466	u32 vfta_value = 0;
4467	u32 vfta_offset = 0;
4468	u32 vfta_bit_in_reg = 0;
4469
4470	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4471		/* If the offset we want to clear is the same offset of the
4472		 * manageability VLAN ID, then clear all bits except that of the
4473		 * manageability unit */
4474		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4475		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4476		E1000_WRITE_FLUSH();
4477	}
4478}
4479
4480static s32 e1000_id_led_init(struct e1000_hw *hw)
4481{
4482	u32 ledctl;
4483	const u32 ledctl_mask = 0x000000FF;
4484	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4485	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4486	u16 eeprom_data, i, temp;
4487	const u16 led_mask = 0x0F;
4488
4489	e_dbg("e1000_id_led_init");
4490
4491	if (hw->mac_type < e1000_82540) {
4492		/* Nothing to do */
4493		return E1000_SUCCESS;
4494	}
4495
4496	ledctl = er32(LEDCTL);
4497	hw->ledctl_default = ledctl;
4498	hw->ledctl_mode1 = hw->ledctl_default;
4499	hw->ledctl_mode2 = hw->ledctl_default;
4500
4501	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4502		e_dbg("EEPROM Read Error\n");
4503		return -E1000_ERR_EEPROM;
4504	}
4505
4506	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4507	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4508		eeprom_data = ID_LED_DEFAULT;
4509	}
4510
4511	for (i = 0; i < 4; i++) {
4512		temp = (eeprom_data >> (i << 2)) & led_mask;
4513		switch (temp) {
4514		case ID_LED_ON1_DEF2:
4515		case ID_LED_ON1_ON2:
4516		case ID_LED_ON1_OFF2:
4517			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4518			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4519			break;
4520		case ID_LED_OFF1_DEF2:
4521		case ID_LED_OFF1_ON2:
4522		case ID_LED_OFF1_OFF2:
4523			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4524			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4525			break;
4526		default:
4527			/* Do nothing */
4528			break;
4529		}
4530		switch (temp) {
4531		case ID_LED_DEF1_ON2:
4532		case ID_LED_ON1_ON2:
4533		case ID_LED_OFF1_ON2:
4534			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4535			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4536			break;
4537		case ID_LED_DEF1_OFF2:
4538		case ID_LED_ON1_OFF2:
4539		case ID_LED_OFF1_OFF2:
4540			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4541			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4542			break;
4543		default:
4544			/* Do nothing */
4545			break;
4546		}
4547	}
4548	return E1000_SUCCESS;
4549}
4550
4551/**
4552 * e1000_setup_led
4553 * @hw: Struct containing variables accessed by shared code
4554 *
4555 * Prepares SW controlable LED for use and saves the current state of the LED.
4556 */
4557s32 e1000_setup_led(struct e1000_hw *hw)
4558{
4559	u32 ledctl;
4560	s32 ret_val = E1000_SUCCESS;
4561
4562	e_dbg("e1000_setup_led");
4563
4564	switch (hw->mac_type) {
4565	case e1000_82542_rev2_0:
4566	case e1000_82542_rev2_1:
4567	case e1000_82543:
4568	case e1000_82544:
4569		/* No setup necessary */
4570		break;
4571	case e1000_82541:
4572	case e1000_82547:
4573	case e1000_82541_rev_2:
4574	case e1000_82547_rev_2:
4575		/* Turn off PHY Smart Power Down (if enabled) */
4576		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4577					     &hw->phy_spd_default);
4578		if (ret_val)
4579			return ret_val;
4580		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4581					      (u16) (hw->phy_spd_default &
4582						     ~IGP01E1000_GMII_SPD));
4583		if (ret_val)
4584			return ret_val;
4585		/* Fall Through */
4586	default:
4587		if (hw->media_type == e1000_media_type_fiber) {
4588			ledctl = er32(LEDCTL);
4589			/* Save current LEDCTL settings */
4590			hw->ledctl_default = ledctl;
4591			/* Turn off LED0 */
4592			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4593				    E1000_LEDCTL_LED0_BLINK |
4594				    E1000_LEDCTL_LED0_MODE_MASK);
4595			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4596				   E1000_LEDCTL_LED0_MODE_SHIFT);
4597			ew32(LEDCTL, ledctl);
4598		} else if (hw->media_type == e1000_media_type_copper)
4599			ew32(LEDCTL, hw->ledctl_mode1);
4600		break;
4601	}
4602
4603	return E1000_SUCCESS;
4604}
4605
4606/**
4607 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4608 * @hw: Struct containing variables accessed by shared code
4609 */
4610s32 e1000_cleanup_led(struct e1000_hw *hw)
4611{
4612	s32 ret_val = E1000_SUCCESS;
4613
4614	e_dbg("e1000_cleanup_led");
4615
4616	switch (hw->mac_type) {
4617	case e1000_82542_rev2_0:
4618	case e1000_82542_rev2_1:
4619	case e1000_82543:
4620	case e1000_82544:
4621		/* No cleanup necessary */
4622		break;
4623	case e1000_82541:
4624	case e1000_82547:
4625	case e1000_82541_rev_2:
4626	case e1000_82547_rev_2:
4627		/* Turn on PHY Smart Power Down (if previously enabled) */
4628		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4629					      hw->phy_spd_default);
4630		if (ret_val)
4631			return ret_val;
4632		/* Fall Through */
4633	default:
4634		/* Restore LEDCTL settings */
4635		ew32(LEDCTL, hw->ledctl_default);
4636		break;
4637	}
4638
4639	return E1000_SUCCESS;
4640}
4641
4642/**
4643 * e1000_led_on - Turns on the software controllable LED
4644 * @hw: Struct containing variables accessed by shared code
4645 */
4646s32 e1000_led_on(struct e1000_hw *hw)
4647{
4648	u32 ctrl = er32(CTRL);
4649
4650	e_dbg("e1000_led_on");
4651
4652	switch (hw->mac_type) {
4653	case e1000_82542_rev2_0:
4654	case e1000_82542_rev2_1:
4655	case e1000_82543:
4656		/* Set SW Defineable Pin 0 to turn on the LED */
4657		ctrl |= E1000_CTRL_SWDPIN0;
4658		ctrl |= E1000_CTRL_SWDPIO0;
4659		break;
4660	case e1000_82544:
4661		if (hw->media_type == e1000_media_type_fiber) {
4662			/* Set SW Defineable Pin 0 to turn on the LED */
4663			ctrl |= E1000_CTRL_SWDPIN0;
4664			ctrl |= E1000_CTRL_SWDPIO0;
4665		} else {
4666			/* Clear SW Defineable Pin 0 to turn on the LED */
4667			ctrl &= ~E1000_CTRL_SWDPIN0;
4668			ctrl |= E1000_CTRL_SWDPIO0;
4669		}
4670		break;
4671	default:
4672		if (hw->media_type == e1000_media_type_fiber) {
4673			/* Clear SW Defineable Pin 0 to turn on the LED */
4674			ctrl &= ~E1000_CTRL_SWDPIN0;
4675			ctrl |= E1000_CTRL_SWDPIO0;
4676		} else if (hw->media_type == e1000_media_type_copper) {
4677			ew32(LEDCTL, hw->ledctl_mode2);
4678			return E1000_SUCCESS;
4679		}
4680		break;
4681	}
4682
4683	ew32(CTRL, ctrl);
4684
4685	return E1000_SUCCESS;
4686}
4687
4688/**
4689 * e1000_led_off - Turns off the software controllable LED
4690 * @hw: Struct containing variables accessed by shared code
4691 */
4692s32 e1000_led_off(struct e1000_hw *hw)
4693{
4694	u32 ctrl = er32(CTRL);
4695
4696	e_dbg("e1000_led_off");
4697
4698	switch (hw->mac_type) {
4699	case e1000_82542_rev2_0:
4700	case e1000_82542_rev2_1:
4701	case e1000_82543:
4702		/* Clear SW Defineable Pin 0 to turn off the LED */
4703		ctrl &= ~E1000_CTRL_SWDPIN0;
4704		ctrl |= E1000_CTRL_SWDPIO0;
4705		break;
4706	case e1000_82544:
4707		if (hw->media_type == e1000_media_type_fiber) {
4708			/* Clear SW Defineable Pin 0 to turn off the LED */
4709			ctrl &= ~E1000_CTRL_SWDPIN0;
4710			ctrl |= E1000_CTRL_SWDPIO0;
4711		} else {
4712			/* Set SW Defineable Pin 0 to turn off the LED */
4713			ctrl |= E1000_CTRL_SWDPIN0;
4714			ctrl |= E1000_CTRL_SWDPIO0;
4715		}
4716		break;
4717	default:
4718		if (hw->media_type == e1000_media_type_fiber) {
4719			/* Set SW Defineable Pin 0 to turn off the LED */
4720			ctrl |= E1000_CTRL_SWDPIN0;
4721			ctrl |= E1000_CTRL_SWDPIO0;
4722		} else if (hw->media_type == e1000_media_type_copper) {
4723			ew32(LEDCTL, hw->ledctl_mode1);
4724			return E1000_SUCCESS;
4725		}
4726		break;
4727	}
4728
4729	ew32(CTRL, ctrl);
4730
4731	return E1000_SUCCESS;
4732}
4733
4734/**
4735 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4736 * @hw: Struct containing variables accessed by shared code
4737 */
4738static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4739{
4740	volatile u32 temp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741
4742	temp = er32(CRCERRS);
4743	temp = er32(SYMERRS);
4744	temp = er32(MPC);
4745	temp = er32(SCC);
4746	temp = er32(ECOL);
4747	temp = er32(MCC);
4748	temp = er32(LATECOL);
4749	temp = er32(COLC);
4750	temp = er32(DC);
4751	temp = er32(SEC);
4752	temp = er32(RLEC);
4753	temp = er32(XONRXC);
4754	temp = er32(XONTXC);
4755	temp = er32(XOFFRXC);
4756	temp = er32(XOFFTXC);
4757	temp = er32(FCRUC);
4758
4759	temp = er32(PRC64);
4760	temp = er32(PRC127);
4761	temp = er32(PRC255);
4762	temp = er32(PRC511);
4763	temp = er32(PRC1023);
4764	temp = er32(PRC1522);
4765
4766	temp = er32(GPRC);
4767	temp = er32(BPRC);
4768	temp = er32(MPRC);
4769	temp = er32(GPTC);
4770	temp = er32(GORCL);
4771	temp = er32(GORCH);
4772	temp = er32(GOTCL);
4773	temp = er32(GOTCH);
4774	temp = er32(RNBC);
4775	temp = er32(RUC);
4776	temp = er32(RFC);
4777	temp = er32(ROC);
4778	temp = er32(RJC);
4779	temp = er32(TORL);
4780	temp = er32(TORH);
4781	temp = er32(TOTL);
4782	temp = er32(TOTH);
4783	temp = er32(TPR);
4784	temp = er32(TPT);
4785
4786	temp = er32(PTC64);
4787	temp = er32(PTC127);
4788	temp = er32(PTC255);
4789	temp = er32(PTC511);
4790	temp = er32(PTC1023);
4791	temp = er32(PTC1522);
4792
4793	temp = er32(MPTC);
4794	temp = er32(BPTC);
4795
4796	if (hw->mac_type < e1000_82543)
4797		return;
4798
4799	temp = er32(ALGNERRC);
4800	temp = er32(RXERRC);
4801	temp = er32(TNCRS);
4802	temp = er32(CEXTERR);
4803	temp = er32(TSCTC);
4804	temp = er32(TSCTFC);
4805
4806	if (hw->mac_type <= e1000_82544)
4807		return;
4808
4809	temp = er32(MGTPRC);
4810	temp = er32(MGTPDC);
4811	temp = er32(MGTPTC);
4812}
4813
4814/**
4815 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4816 * @hw: Struct containing variables accessed by shared code
4817 *
4818 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4819 * hw->ifs_params_forced to true. However, you must initialize hw->
4820 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4821 * before calling this function.
4822 */
4823void e1000_reset_adaptive(struct e1000_hw *hw)
4824{
4825	e_dbg("e1000_reset_adaptive");
4826
4827	if (hw->adaptive_ifs) {
4828		if (!hw->ifs_params_forced) {
4829			hw->current_ifs_val = 0;
4830			hw->ifs_min_val = IFS_MIN;
4831			hw->ifs_max_val = IFS_MAX;
4832			hw->ifs_step_size = IFS_STEP;
4833			hw->ifs_ratio = IFS_RATIO;
4834		}
4835		hw->in_ifs_mode = false;
4836		ew32(AIT, 0);
4837	} else {
4838		e_dbg("Not in Adaptive IFS mode!\n");
4839	}
4840}
4841
4842/**
4843 * e1000_update_adaptive - update adaptive IFS
4844 * @hw: Struct containing variables accessed by shared code
4845 * @tx_packets: Number of transmits since last callback
4846 * @total_collisions: Number of collisions since last callback
4847 *
4848 * Called during the callback/watchdog routine to update IFS value based on
4849 * the ratio of transmits to collisions.
4850 */
4851void e1000_update_adaptive(struct e1000_hw *hw)
4852{
4853	e_dbg("e1000_update_adaptive");
4854
4855	if (hw->adaptive_ifs) {
4856		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4857			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4858				hw->in_ifs_mode = true;
4859				if (hw->current_ifs_val < hw->ifs_max_val) {
4860					if (hw->current_ifs_val == 0)
4861						hw->current_ifs_val =
4862						    hw->ifs_min_val;
4863					else
4864						hw->current_ifs_val +=
4865						    hw->ifs_step_size;
4866					ew32(AIT, hw->current_ifs_val);
4867				}
4868			}
4869		} else {
4870			if (hw->in_ifs_mode
4871			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4872				hw->current_ifs_val = 0;
4873				hw->in_ifs_mode = false;
4874				ew32(AIT, 0);
4875			}
4876		}
4877	} else {
4878		e_dbg("Not in Adaptive IFS mode!\n");
4879	}
4880}
4881
4882/**
4883 * e1000_tbi_adjust_stats
4884 * @hw: Struct containing variables accessed by shared code
4885 * @frame_len: The length of the frame in question
4886 * @mac_addr: The Ethernet destination address of the frame in question
4887 *
4888 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4889 */
4890void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4891			    u32 frame_len, u8 *mac_addr)
4892{
4893	u64 carry_bit;
4894
4895	/* First adjust the frame length. */
4896	frame_len--;
4897	/* We need to adjust the statistics counters, since the hardware
4898	 * counters overcount this packet as a CRC error and undercount
4899	 * the packet as a good packet
4900	 */
4901	/* This packet should not be counted as a CRC error.    */
4902	stats->crcerrs--;
4903	/* This packet does count as a Good Packet Received.    */
4904	stats->gprc++;
4905
4906	/* Adjust the Good Octets received counters             */
4907	carry_bit = 0x80000000 & stats->gorcl;
4908	stats->gorcl += frame_len;
4909	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4910	 * Received Count) was one before the addition,
4911	 * AND it is zero after, then we lost the carry out,
4912	 * need to add one to Gorch (Good Octets Received Count High).
4913	 * This could be simplified if all environments supported
4914	 * 64-bit integers.
4915	 */
4916	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4917		stats->gorch++;
4918	/* Is this a broadcast or multicast?  Check broadcast first,
4919	 * since the test for a multicast frame will test positive on
4920	 * a broadcast frame.
4921	 */
4922	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4923		/* Broadcast packet */
4924		stats->bprc++;
4925	else if (*mac_addr & 0x01)
4926		/* Multicast packet */
4927		stats->mprc++;
4928
4929	if (frame_len == hw->max_frame_size) {
4930		/* In this case, the hardware has overcounted the number of
4931		 * oversize frames.
4932		 */
4933		if (stats->roc > 0)
4934			stats->roc--;
4935	}
4936
4937	/* Adjust the bin counters when the extra byte put the frame in the
4938	 * wrong bin. Remember that the frame_len was adjusted above.
4939	 */
4940	if (frame_len == 64) {
4941		stats->prc64++;
4942		stats->prc127--;
4943	} else if (frame_len == 127) {
4944		stats->prc127++;
4945		stats->prc255--;
4946	} else if (frame_len == 255) {
4947		stats->prc255++;
4948		stats->prc511--;
4949	} else if (frame_len == 511) {
4950		stats->prc511++;
4951		stats->prc1023--;
4952	} else if (frame_len == 1023) {
4953		stats->prc1023++;
4954		stats->prc1522--;
4955	} else if (frame_len == 1522) {
4956		stats->prc1522++;
4957	}
4958}
4959
4960/**
4961 * e1000_get_bus_info
4962 * @hw: Struct containing variables accessed by shared code
4963 *
4964 * Gets the current PCI bus type, speed, and width of the hardware
4965 */
4966void e1000_get_bus_info(struct e1000_hw *hw)
4967{
4968	u32 status;
4969
4970	switch (hw->mac_type) {
4971	case e1000_82542_rev2_0:
4972	case e1000_82542_rev2_1:
4973		hw->bus_type = e1000_bus_type_pci;
4974		hw->bus_speed = e1000_bus_speed_unknown;
4975		hw->bus_width = e1000_bus_width_unknown;
4976		break;
4977	default:
4978		status = er32(STATUS);
4979		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4980		    e1000_bus_type_pcix : e1000_bus_type_pci;
4981
4982		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4983			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4984			    e1000_bus_speed_66 : e1000_bus_speed_120;
4985		} else if (hw->bus_type == e1000_bus_type_pci) {
4986			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4987			    e1000_bus_speed_66 : e1000_bus_speed_33;
4988		} else {
4989			switch (status & E1000_STATUS_PCIX_SPEED) {
4990			case E1000_STATUS_PCIX_SPEED_66:
4991				hw->bus_speed = e1000_bus_speed_66;
4992				break;
4993			case E1000_STATUS_PCIX_SPEED_100:
4994				hw->bus_speed = e1000_bus_speed_100;
4995				break;
4996			case E1000_STATUS_PCIX_SPEED_133:
4997				hw->bus_speed = e1000_bus_speed_133;
4998				break;
4999			default:
5000				hw->bus_speed = e1000_bus_speed_reserved;
5001				break;
5002			}
5003		}
5004		hw->bus_width = (status & E1000_STATUS_BUS64) ?
5005		    e1000_bus_width_64 : e1000_bus_width_32;
5006		break;
5007	}
5008}
5009
5010/**
5011 * e1000_write_reg_io
5012 * @hw: Struct containing variables accessed by shared code
5013 * @offset: offset to write to
5014 * @value: value to write
5015 *
5016 * Writes a value to one of the devices registers using port I/O (as opposed to
5017 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5018 */
5019static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
5020{
5021	unsigned long io_addr = hw->io_base;
5022	unsigned long io_data = hw->io_base + 4;
5023
5024	e1000_io_write(hw, io_addr, offset);
5025	e1000_io_write(hw, io_data, value);
5026}
5027
5028/**
5029 * e1000_get_cable_length - Estimates the cable length.
5030 * @hw: Struct containing variables accessed by shared code
5031 * @min_length: The estimated minimum length
5032 * @max_length: The estimated maximum length
5033 *
5034 * returns: - E1000_ERR_XXX
5035 *            E1000_SUCCESS
5036 *
5037 * This function always returns a ranged length (minimum & maximum).
5038 * So for M88 phy's, this function interprets the one value returned from the
5039 * register to the minimum and maximum range.
5040 * For IGP phy's, the function calculates the range by the AGC registers.
5041 */
5042static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5043				  u16 *max_length)
5044{
5045	s32 ret_val;
5046	u16 agc_value = 0;
5047	u16 i, phy_data;
5048	u16 cable_length;
5049
5050	e_dbg("e1000_get_cable_length");
5051
5052	*min_length = *max_length = 0;
5053
5054	/* Use old method for Phy older than IGP */
5055	if (hw->phy_type == e1000_phy_m88) {
5056
5057		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5058					     &phy_data);
5059		if (ret_val)
5060			return ret_val;
5061		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5062		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5063
5064		/* Convert the enum value to ranged values */
5065		switch (cable_length) {
5066		case e1000_cable_length_50:
5067			*min_length = 0;
5068			*max_length = e1000_igp_cable_length_50;
5069			break;
5070		case e1000_cable_length_50_80:
5071			*min_length = e1000_igp_cable_length_50;
5072			*max_length = e1000_igp_cable_length_80;
5073			break;
5074		case e1000_cable_length_80_110:
5075			*min_length = e1000_igp_cable_length_80;
5076			*max_length = e1000_igp_cable_length_110;
5077			break;
5078		case e1000_cable_length_110_140:
5079			*min_length = e1000_igp_cable_length_110;
5080			*max_length = e1000_igp_cable_length_140;
5081			break;
5082		case e1000_cable_length_140:
5083			*min_length = e1000_igp_cable_length_140;
5084			*max_length = e1000_igp_cable_length_170;
5085			break;
5086		default:
5087			return -E1000_ERR_PHY;
5088			break;
5089		}
5090	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
5091		u16 cur_agc_value;
5092		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5093		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5094		       IGP01E1000_PHY_AGC_A,
5095		       IGP01E1000_PHY_AGC_B,
5096		       IGP01E1000_PHY_AGC_C,
5097		       IGP01E1000_PHY_AGC_D
5098		};
5099		/* Read the AGC registers for all channels */
5100		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5101
5102			ret_val =
5103			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5104			if (ret_val)
5105				return ret_val;
5106
5107			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5108
5109			/* Value bound check. */
5110			if ((cur_agc_value >=
5111			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5112			    || (cur_agc_value == 0))
5113				return -E1000_ERR_PHY;
5114
5115			agc_value += cur_agc_value;
5116
5117			/* Update minimal AGC value. */
5118			if (min_agc_value > cur_agc_value)
5119				min_agc_value = cur_agc_value;
5120		}
5121
5122		/* Remove the minimal AGC result for length < 50m */
5123		if (agc_value <
5124		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5125			agc_value -= min_agc_value;
5126
5127			/* Get the average length of the remaining 3 channels */
5128			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5129		} else {
5130			/* Get the average length of all the 4 channels. */
5131			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5132		}
5133
5134		/* Set the range of the calculated length. */
5135		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5136				IGP01E1000_AGC_RANGE) > 0) ?
5137		    (e1000_igp_cable_length_table[agc_value] -
5138		     IGP01E1000_AGC_RANGE) : 0;
5139		*max_length = e1000_igp_cable_length_table[agc_value] +
5140		    IGP01E1000_AGC_RANGE;
5141	}
5142
5143	return E1000_SUCCESS;
5144}
5145
5146/**
5147 * e1000_check_polarity - Check the cable polarity
5148 * @hw: Struct containing variables accessed by shared code
5149 * @polarity: output parameter : 0 - Polarity is not reversed
5150 *                               1 - Polarity is reversed.
5151 *
5152 * returns: - E1000_ERR_XXX
5153 *            E1000_SUCCESS
5154 *
5155 * For phy's older than IGP, this function simply reads the polarity bit in the
5156 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5157 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5158 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5159 * IGP01E1000_PHY_PCS_INIT_REG.
5160 */
5161static s32 e1000_check_polarity(struct e1000_hw *hw,
5162				e1000_rev_polarity *polarity)
5163{
5164	s32 ret_val;
5165	u16 phy_data;
5166
5167	e_dbg("e1000_check_polarity");
5168
5169	if (hw->phy_type == e1000_phy_m88) {
5170		/* return the Polarity bit in the Status register. */
5171		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5172					     &phy_data);
5173		if (ret_val)
5174			return ret_val;
5175		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5176			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5177		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5178
5179	} else if (hw->phy_type == e1000_phy_igp) {
5180		/* Read the Status register to check the speed */
5181		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5182					     &phy_data);
5183		if (ret_val)
5184			return ret_val;
5185
5186		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5187		 * find the polarity status */
 
5188		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5189		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5190
5191			/* Read the GIG initialization PCS register (0x00B4) */
5192			ret_val =
5193			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5194					       &phy_data);
5195			if (ret_val)
5196				return ret_val;
5197
5198			/* Check the polarity bits */
5199			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5200			    e1000_rev_polarity_reversed :
5201			    e1000_rev_polarity_normal;
5202		} else {
5203			/* For 10 Mbps, read the polarity bit in the status register. (for
5204			 * 100 Mbps this bit is always 0) */
 
5205			*polarity =
5206			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5207			    e1000_rev_polarity_reversed :
5208			    e1000_rev_polarity_normal;
5209		}
5210	}
5211	return E1000_SUCCESS;
5212}
5213
5214/**
5215 * e1000_check_downshift - Check if Downshift occurred
5216 * @hw: Struct containing variables accessed by shared code
5217 * @downshift: output parameter : 0 - No Downshift occurred.
5218 *                                1 - Downshift occurred.
5219 *
5220 * returns: - E1000_ERR_XXX
5221 *            E1000_SUCCESS
5222 *
5223 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5224 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5225 * Link Health register.  In IGP this bit is latched high, so the driver must
5226 * read it immediately after link is established.
5227 */
5228static s32 e1000_check_downshift(struct e1000_hw *hw)
5229{
5230	s32 ret_val;
5231	u16 phy_data;
5232
5233	e_dbg("e1000_check_downshift");
5234
5235	if (hw->phy_type == e1000_phy_igp) {
5236		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5237					     &phy_data);
5238		if (ret_val)
5239			return ret_val;
5240
5241		hw->speed_downgraded =
5242		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5243	} else if (hw->phy_type == e1000_phy_m88) {
5244		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5245					     &phy_data);
5246		if (ret_val)
5247			return ret_val;
5248
5249		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5250		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5251	}
5252
5253	return E1000_SUCCESS;
5254}
5255
5256static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5257	IGP01E1000_PHY_AGC_PARAM_A,
5258	IGP01E1000_PHY_AGC_PARAM_B,
5259	IGP01E1000_PHY_AGC_PARAM_C,
5260	IGP01E1000_PHY_AGC_PARAM_D
5261};
5262
5263static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5264{
5265	u16 min_length, max_length;
5266	u16 phy_data, i;
5267	s32 ret_val;
5268
5269	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5270	if (ret_val)
5271		return ret_val;
5272
5273	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5274		return 0;
5275
5276	if (min_length >= e1000_igp_cable_length_50) {
5277		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5278			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5279						     &phy_data);
5280			if (ret_val)
5281				return ret_val;
5282
5283			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5284
5285			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5286						      phy_data);
5287			if (ret_val)
5288				return ret_val;
5289		}
5290		hw->dsp_config_state = e1000_dsp_config_activated;
5291	} else {
5292		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5293		u32 idle_errs = 0;
5294
5295		/* clear previous idle error counts */
5296		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5297		if (ret_val)
5298			return ret_val;
5299
5300		for (i = 0; i < ffe_idle_err_timeout; i++) {
5301			udelay(1000);
5302			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5303						     &phy_data);
5304			if (ret_val)
5305				return ret_val;
5306
5307			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5308			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5309				hw->ffe_config_state = e1000_ffe_config_active;
5310
5311				ret_val = e1000_write_phy_reg(hw,
5312					      IGP01E1000_PHY_DSP_FFE,
5313					      IGP01E1000_PHY_DSP_FFE_CM_CP);
5314				if (ret_val)
5315					return ret_val;
5316				break;
5317			}
5318
5319			if (idle_errs)
5320				ffe_idle_err_timeout =
5321					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5322		}
5323	}
5324
5325	return 0;
5326}
5327
5328/**
5329 * e1000_config_dsp_after_link_change
5330 * @hw: Struct containing variables accessed by shared code
5331 * @link_up: was link up at the time this was called
5332 *
5333 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5334 *            E1000_SUCCESS at any other case.
5335 *
5336 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5337 * gigabit link is achieved to improve link quality.
5338 */
5339
5340static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5341{
5342	s32 ret_val;
5343	u16 phy_data, phy_saved_data, speed, duplex, i;
5344
5345	e_dbg("e1000_config_dsp_after_link_change");
5346
5347	if (hw->phy_type != e1000_phy_igp)
5348		return E1000_SUCCESS;
5349
5350	if (link_up) {
5351		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5352		if (ret_val) {
5353			e_dbg("Error getting link speed and duplex\n");
5354			return ret_val;
5355		}
5356
5357		if (speed == SPEED_1000) {
5358			ret_val = e1000_1000Mb_check_cable_length(hw);
5359			if (ret_val)
5360				return ret_val;
5361		}
5362	} else {
5363		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5364			/* Save off the current value of register 0x2F5B to be restored at
5365			 * the end of the routines. */
 
5366			ret_val =
5367			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5368
5369			if (ret_val)
5370				return ret_val;
5371
5372			/* Disable the PHY transmitter */
5373			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5374
5375			if (ret_val)
5376				return ret_val;
5377
5378			msleep(20);
5379
5380			ret_val = e1000_write_phy_reg(hw, 0x0000,
5381						      IGP01E1000_IEEE_FORCE_GIGA);
5382			if (ret_val)
5383				return ret_val;
5384			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5385				ret_val =
5386				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5387						       &phy_data);
5388				if (ret_val)
5389					return ret_val;
5390
5391				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5392				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5393
5394				ret_val =
5395				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5396							phy_data);
5397				if (ret_val)
5398					return ret_val;
5399			}
5400
5401			ret_val = e1000_write_phy_reg(hw, 0x0000,
5402						      IGP01E1000_IEEE_RESTART_AUTONEG);
5403			if (ret_val)
5404				return ret_val;
5405
5406			msleep(20);
5407
5408			/* Now enable the transmitter */
5409			ret_val =
5410			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5411
5412			if (ret_val)
5413				return ret_val;
5414
5415			hw->dsp_config_state = e1000_dsp_config_enabled;
5416		}
5417
5418		if (hw->ffe_config_state == e1000_ffe_config_active) {
5419			/* Save off the current value of register 0x2F5B to be restored at
5420			 * the end of the routines. */
 
5421			ret_val =
5422			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5423
5424			if (ret_val)
5425				return ret_val;
5426
5427			/* Disable the PHY transmitter */
5428			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5429
5430			if (ret_val)
5431				return ret_val;
5432
5433			msleep(20);
5434
5435			ret_val = e1000_write_phy_reg(hw, 0x0000,
5436						      IGP01E1000_IEEE_FORCE_GIGA);
5437			if (ret_val)
5438				return ret_val;
5439			ret_val =
5440			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5441						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5442			if (ret_val)
5443				return ret_val;
5444
5445			ret_val = e1000_write_phy_reg(hw, 0x0000,
5446						      IGP01E1000_IEEE_RESTART_AUTONEG);
5447			if (ret_val)
5448				return ret_val;
5449
5450			msleep(20);
5451
5452			/* Now enable the transmitter */
5453			ret_val =
5454			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5455
5456			if (ret_val)
5457				return ret_val;
5458
5459			hw->ffe_config_state = e1000_ffe_config_enabled;
5460		}
5461	}
5462	return E1000_SUCCESS;
5463}
5464
5465/**
5466 * e1000_set_phy_mode - Set PHY to class A mode
5467 * @hw: Struct containing variables accessed by shared code
5468 *
5469 * Assumes the following operations will follow to enable the new class mode.
5470 *  1. Do a PHY soft reset
5471 *  2. Restart auto-negotiation or force link.
5472 */
5473static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5474{
5475	s32 ret_val;
5476	u16 eeprom_data;
5477
5478	e_dbg("e1000_set_phy_mode");
5479
5480	if ((hw->mac_type == e1000_82545_rev_3) &&
5481	    (hw->media_type == e1000_media_type_copper)) {
5482		ret_val =
5483		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5484				      &eeprom_data);
5485		if (ret_val) {
5486			return ret_val;
5487		}
5488
5489		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5490		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5491			ret_val =
5492			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5493						0x000B);
5494			if (ret_val)
5495				return ret_val;
5496			ret_val =
5497			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5498						0x8104);
5499			if (ret_val)
5500				return ret_val;
5501
5502			hw->phy_reset_disable = false;
5503		}
5504	}
5505
5506	return E1000_SUCCESS;
5507}
5508
5509/**
5510 * e1000_set_d3_lplu_state - set d3 link power state
5511 * @hw: Struct containing variables accessed by shared code
5512 * @active: true to enable lplu false to disable lplu.
5513 *
5514 * This function sets the lplu state according to the active flag.  When
5515 * activating lplu this function also disables smart speed and vise versa.
5516 * lplu will not be activated unless the device autonegotiation advertisement
5517 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5518 *
5519 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5520 *            E1000_SUCCESS at any other case.
5521 */
5522static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5523{
5524	s32 ret_val;
5525	u16 phy_data;
5526	e_dbg("e1000_set_d3_lplu_state");
5527
5528	if (hw->phy_type != e1000_phy_igp)
5529		return E1000_SUCCESS;
5530
5531	/* During driver activity LPLU should not be used or it will attain link
5532	 * from the lowest speeds starting from 10Mbps. The capability is used for
5533	 * Dx transitions and states */
5534	if (hw->mac_type == e1000_82541_rev_2
5535	    || hw->mac_type == e1000_82547_rev_2) {
 
5536		ret_val =
5537		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5538		if (ret_val)
5539			return ret_val;
5540	}
5541
5542	if (!active) {
5543		if (hw->mac_type == e1000_82541_rev_2 ||
5544		    hw->mac_type == e1000_82547_rev_2) {
5545			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5546			ret_val =
5547			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5548						phy_data);
5549			if (ret_val)
5550				return ret_val;
5551		}
5552
5553		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
5554		 * Dx states where the power conservation is most important.  During
5555		 * driver activity we should enable SmartSpeed, so performance is
5556		 * maintained. */
 
5557		if (hw->smart_speed == e1000_smart_speed_on) {
5558			ret_val =
5559			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5560					       &phy_data);
5561			if (ret_val)
5562				return ret_val;
5563
5564			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5565			ret_val =
5566			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5567						phy_data);
5568			if (ret_val)
5569				return ret_val;
5570		} else if (hw->smart_speed == e1000_smart_speed_off) {
5571			ret_val =
5572			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5573					       &phy_data);
5574			if (ret_val)
5575				return ret_val;
5576
5577			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5578			ret_val =
5579			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5580						phy_data);
5581			if (ret_val)
5582				return ret_val;
5583		}
5584	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5585		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5586		   || (hw->autoneg_advertised ==
5587		       AUTONEG_ADVERTISE_10_100_ALL)) {
5588
5589		if (hw->mac_type == e1000_82541_rev_2 ||
5590		    hw->mac_type == e1000_82547_rev_2) {
5591			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5592			ret_val =
5593			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5594						phy_data);
5595			if (ret_val)
5596				return ret_val;
5597		}
5598
5599		/* When LPLU is enabled we should disable SmartSpeed */
5600		ret_val =
5601		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5602				       &phy_data);
5603		if (ret_val)
5604			return ret_val;
5605
5606		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5607		ret_val =
5608		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5609					phy_data);
5610		if (ret_val)
5611			return ret_val;
5612
5613	}
5614	return E1000_SUCCESS;
5615}
5616
5617/**
5618 * e1000_set_vco_speed
5619 * @hw: Struct containing variables accessed by shared code
5620 *
5621 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5622 */
5623static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5624{
5625	s32 ret_val;
5626	u16 default_page = 0;
5627	u16 phy_data;
5628
5629	e_dbg("e1000_set_vco_speed");
5630
5631	switch (hw->mac_type) {
5632	case e1000_82545_rev_3:
5633	case e1000_82546_rev_3:
5634		break;
5635	default:
5636		return E1000_SUCCESS;
5637	}
5638
5639	/* Set PHY register 30, page 5, bit 8 to 0 */
5640
5641	ret_val =
5642	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5643	if (ret_val)
5644		return ret_val;
5645
5646	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5647	if (ret_val)
5648		return ret_val;
5649
5650	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5651	if (ret_val)
5652		return ret_val;
5653
5654	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5655	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5656	if (ret_val)
5657		return ret_val;
5658
5659	/* Set PHY register 30, page 4, bit 11 to 1 */
5660
5661	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5662	if (ret_val)
5663		return ret_val;
5664
5665	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5666	if (ret_val)
5667		return ret_val;
5668
5669	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5670	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5671	if (ret_val)
5672		return ret_val;
5673
5674	ret_val =
5675	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5676	if (ret_val)
5677		return ret_val;
5678
5679	return E1000_SUCCESS;
5680}
5681
5682
5683/**
5684 * e1000_enable_mng_pass_thru - check for bmc pass through
5685 * @hw: Struct containing variables accessed by shared code
5686 *
5687 * Verifies the hardware needs to allow ARPs to be processed by the host
5688 * returns: - true/false
5689 */
5690u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5691{
5692	u32 manc;
5693
5694	if (hw->asf_firmware_present) {
5695		manc = er32(MANC);
5696
5697		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5698		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5699			return false;
5700		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5701			return true;
5702	}
5703	return false;
5704}
5705
5706static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5707{
5708	s32 ret_val;
5709	u16 mii_status_reg;
5710	u16 i;
5711
5712	/* Polarity reversal workaround for forced 10F/10H links. */
5713
5714	/* Disable the transmitter on the PHY */
5715
5716	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5717	if (ret_val)
5718		return ret_val;
5719	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5720	if (ret_val)
5721		return ret_val;
5722
5723	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5724	if (ret_val)
5725		return ret_val;
5726
5727	/* This loop will early-out if the NO link condition has been met. */
5728	for (i = PHY_FORCE_TIME; i > 0; i--) {
5729		/* Read the MII Status Register and wait for Link Status bit
5730		 * to be clear.
5731		 */
5732
5733		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5734		if (ret_val)
5735			return ret_val;
5736
5737		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5738		if (ret_val)
5739			return ret_val;
5740
5741		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5742			break;
5743		msleep(100);
5744	}
5745
5746	/* Recommended delay time after link has been lost */
5747	msleep(1000);
5748
5749	/* Now we will re-enable th transmitter on the PHY */
5750
5751	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5752	if (ret_val)
5753		return ret_val;
5754	msleep(50);
5755	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5756	if (ret_val)
5757		return ret_val;
5758	msleep(50);
5759	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5760	if (ret_val)
5761		return ret_val;
5762	msleep(50);
5763	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5764	if (ret_val)
5765		return ret_val;
5766
5767	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5768	if (ret_val)
5769		return ret_val;
5770
5771	/* This loop will early-out if the link condition has been met. */
5772	for (i = PHY_FORCE_TIME; i > 0; i--) {
5773		/* Read the MII Status Register and wait for Link Status bit
5774		 * to be set.
5775		 */
5776
5777		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5778		if (ret_val)
5779			return ret_val;
5780
5781		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5782		if (ret_val)
5783			return ret_val;
5784
5785		if (mii_status_reg & MII_SR_LINK_STATUS)
5786			break;
5787		msleep(100);
5788	}
5789	return E1000_SUCCESS;
5790}
5791
5792/**
5793 * e1000_get_auto_rd_done
5794 * @hw: Struct containing variables accessed by shared code
5795 *
5796 * Check for EEPROM Auto Read bit done.
5797 * returns: - E1000_ERR_RESET if fail to reset MAC
5798 *            E1000_SUCCESS at any other case.
5799 */
5800static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5801{
5802	e_dbg("e1000_get_auto_rd_done");
5803	msleep(5);
5804	return E1000_SUCCESS;
5805}
5806
5807/**
5808 * e1000_get_phy_cfg_done
5809 * @hw: Struct containing variables accessed by shared code
5810 *
5811 * Checks if the PHY configuration is done
5812 * returns: - E1000_ERR_RESET if fail to reset MAC
5813 *            E1000_SUCCESS at any other case.
5814 */
5815static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5816{
5817	e_dbg("e1000_get_phy_cfg_done");
5818	msleep(10);
5819	return E1000_SUCCESS;
5820}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* e1000_hw.c
   5 * Shared functions for accessing and configuring the MAC
   6 */
   7
   8#include "e1000.h"
   9
  10static s32 e1000_check_downshift(struct e1000_hw *hw);
  11static s32 e1000_check_polarity(struct e1000_hw *hw,
  12				e1000_rev_polarity *polarity);
  13static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  14static void e1000_clear_vfta(struct e1000_hw *hw);
  15static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  16					      bool link_up);
  17static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  18static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  19static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  20static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  21				  u16 *max_length);
  22static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  23static s32 e1000_id_led_init(struct e1000_hw *hw);
  24static void e1000_init_rx_addrs(struct e1000_hw *hw);
  25static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  26				  struct e1000_phy_info *phy_info);
  27static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  28				  struct e1000_phy_info *phy_info);
  29static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  30static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  31static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  32static s32 e1000_set_phy_type(struct e1000_hw *hw);
  33static void e1000_phy_init_script(struct e1000_hw *hw);
  34static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  35static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  36static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  37static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  38static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  39static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  40static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  41static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  42static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  43static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  44static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  45				  u16 words, u16 *data);
  46static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  47					u16 words, u16 *data);
  48static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  49static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  50static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  51static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  52static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  53				  u16 phy_data);
  54static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  55				 u16 *phy_data);
  56static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  57static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  58static void e1000_release_eeprom(struct e1000_hw *hw);
  59static void e1000_standby_eeprom(struct e1000_hw *hw);
  60static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  61static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  62static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  63static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  64				u16 *data);
  65static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  66				 u16 *data);
  67
  68/* IGP cable length table */
  69static const
  70u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  71	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  72	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  73	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  74	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
  75	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
  76	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
  77	    100,
  78	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
  79	    110, 110,
  80	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
  81	    120, 120
  82};
  83
  84static DEFINE_MUTEX(e1000_eeprom_lock);
  85static DEFINE_SPINLOCK(e1000_phy_lock);
  86
  87/**
  88 * e1000_set_phy_type - Set the phy type member in the hw struct.
  89 * @hw: Struct containing variables accessed by shared code
  90 */
  91static s32 e1000_set_phy_type(struct e1000_hw *hw)
  92{
 
 
  93	if (hw->mac_type == e1000_undefined)
  94		return -E1000_ERR_PHY_TYPE;
  95
  96	switch (hw->phy_id) {
  97	case M88E1000_E_PHY_ID:
  98	case M88E1000_I_PHY_ID:
  99	case M88E1011_I_PHY_ID:
 100	case M88E1111_I_PHY_ID:
 101	case M88E1118_E_PHY_ID:
 102		hw->phy_type = e1000_phy_m88;
 103		break;
 104	case IGP01E1000_I_PHY_ID:
 105		if (hw->mac_type == e1000_82541 ||
 106		    hw->mac_type == e1000_82541_rev_2 ||
 107		    hw->mac_type == e1000_82547 ||
 108		    hw->mac_type == e1000_82547_rev_2)
 109			hw->phy_type = e1000_phy_igp;
 110		break;
 111	case RTL8211B_PHY_ID:
 112		hw->phy_type = e1000_phy_8211;
 113		break;
 114	case RTL8201N_PHY_ID:
 115		hw->phy_type = e1000_phy_8201;
 116		break;
 117	default:
 118		/* Should never have loaded on this device */
 119		hw->phy_type = e1000_phy_undefined;
 120		return -E1000_ERR_PHY_TYPE;
 121	}
 122
 123	return E1000_SUCCESS;
 124}
 125
 126/**
 127 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 128 * @hw: Struct containing variables accessed by shared code
 129 */
 130static void e1000_phy_init_script(struct e1000_hw *hw)
 131{
 
 132	u16 phy_saved_data;
 133
 
 
 134	if (hw->phy_init_script) {
 135		msleep(20);
 136
 137		/* Save off the current value of register 0x2F5B to be restored
 138		 * at the end of this routine.
 139		 */
 140		e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 141
 142		/* Disabled the PHY transmitter */
 143		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 144		msleep(20);
 145
 146		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 147		msleep(5);
 148
 149		switch (hw->mac_type) {
 150		case e1000_82541:
 151		case e1000_82547:
 152			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 153			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 154			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 155			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 156			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 157			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 158			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 159			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 160			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 161			break;
 162
 163		case e1000_82541_rev_2:
 164		case e1000_82547_rev_2:
 165			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 166			break;
 167		default:
 168			break;
 169		}
 170
 171		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 172		msleep(20);
 173
 174		/* Now enable the transmitter */
 175		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 176
 177		if (hw->mac_type == e1000_82547) {
 178			u16 fused, fine, coarse;
 179
 180			/* Move to analog registers page */
 181			e1000_read_phy_reg(hw,
 182					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 183					   &fused);
 184
 185			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 186				e1000_read_phy_reg(hw,
 187						   IGP01E1000_ANALOG_FUSE_STATUS,
 188						   &fused);
 189
 190				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 191				coarse =
 192				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 193
 194				if (coarse >
 195				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 196					coarse -=
 197					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 198					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 199				} else if (coarse ==
 200					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 201					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 202
 203				fused =
 204				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 205				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 206				    (coarse &
 207				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 208
 209				e1000_write_phy_reg(hw,
 210						    IGP01E1000_ANALOG_FUSE_CONTROL,
 211						    fused);
 212				e1000_write_phy_reg(hw,
 213						    IGP01E1000_ANALOG_FUSE_BYPASS,
 214						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 215			}
 216		}
 217	}
 218}
 219
 220/**
 221 * e1000_set_mac_type - Set the mac type member in the hw struct.
 222 * @hw: Struct containing variables accessed by shared code
 223 */
 224s32 e1000_set_mac_type(struct e1000_hw *hw)
 225{
 
 
 226	switch (hw->device_id) {
 227	case E1000_DEV_ID_82542:
 228		switch (hw->revision_id) {
 229		case E1000_82542_2_0_REV_ID:
 230			hw->mac_type = e1000_82542_rev2_0;
 231			break;
 232		case E1000_82542_2_1_REV_ID:
 233			hw->mac_type = e1000_82542_rev2_1;
 234			break;
 235		default:
 236			/* Invalid 82542 revision ID */
 237			return -E1000_ERR_MAC_TYPE;
 238		}
 239		break;
 240	case E1000_DEV_ID_82543GC_FIBER:
 241	case E1000_DEV_ID_82543GC_COPPER:
 242		hw->mac_type = e1000_82543;
 243		break;
 244	case E1000_DEV_ID_82544EI_COPPER:
 245	case E1000_DEV_ID_82544EI_FIBER:
 246	case E1000_DEV_ID_82544GC_COPPER:
 247	case E1000_DEV_ID_82544GC_LOM:
 248		hw->mac_type = e1000_82544;
 249		break;
 250	case E1000_DEV_ID_82540EM:
 251	case E1000_DEV_ID_82540EM_LOM:
 252	case E1000_DEV_ID_82540EP:
 253	case E1000_DEV_ID_82540EP_LOM:
 254	case E1000_DEV_ID_82540EP_LP:
 255		hw->mac_type = e1000_82540;
 256		break;
 257	case E1000_DEV_ID_82545EM_COPPER:
 258	case E1000_DEV_ID_82545EM_FIBER:
 259		hw->mac_type = e1000_82545;
 260		break;
 261	case E1000_DEV_ID_82545GM_COPPER:
 262	case E1000_DEV_ID_82545GM_FIBER:
 263	case E1000_DEV_ID_82545GM_SERDES:
 264		hw->mac_type = e1000_82545_rev_3;
 265		break;
 266	case E1000_DEV_ID_82546EB_COPPER:
 267	case E1000_DEV_ID_82546EB_FIBER:
 268	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 269		hw->mac_type = e1000_82546;
 270		break;
 271	case E1000_DEV_ID_82546GB_COPPER:
 272	case E1000_DEV_ID_82546GB_FIBER:
 273	case E1000_DEV_ID_82546GB_SERDES:
 274	case E1000_DEV_ID_82546GB_PCIE:
 275	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 276	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 277		hw->mac_type = e1000_82546_rev_3;
 278		break;
 279	case E1000_DEV_ID_82541EI:
 280	case E1000_DEV_ID_82541EI_MOBILE:
 281	case E1000_DEV_ID_82541ER_LOM:
 282		hw->mac_type = e1000_82541;
 283		break;
 284	case E1000_DEV_ID_82541ER:
 285	case E1000_DEV_ID_82541GI:
 286	case E1000_DEV_ID_82541GI_LF:
 287	case E1000_DEV_ID_82541GI_MOBILE:
 288		hw->mac_type = e1000_82541_rev_2;
 289		break;
 290	case E1000_DEV_ID_82547EI:
 291	case E1000_DEV_ID_82547EI_MOBILE:
 292		hw->mac_type = e1000_82547;
 293		break;
 294	case E1000_DEV_ID_82547GI:
 295		hw->mac_type = e1000_82547_rev_2;
 296		break;
 297	case E1000_DEV_ID_INTEL_CE4100_GBE:
 298		hw->mac_type = e1000_ce4100;
 299		break;
 300	default:
 301		/* Should never have loaded on this device */
 302		return -E1000_ERR_MAC_TYPE;
 303	}
 304
 305	switch (hw->mac_type) {
 306	case e1000_82541:
 307	case e1000_82547:
 308	case e1000_82541_rev_2:
 309	case e1000_82547_rev_2:
 310		hw->asf_firmware_present = true;
 311		break;
 312	default:
 313		break;
 314	}
 315
 316	/* The 82543 chip does not count tx_carrier_errors properly in
 317	 * FD mode
 318	 */
 319	if (hw->mac_type == e1000_82543)
 320		hw->bad_tx_carr_stats_fd = true;
 321
 322	if (hw->mac_type > e1000_82544)
 323		hw->has_smbus = true;
 324
 325	return E1000_SUCCESS;
 326}
 327
 328/**
 329 * e1000_set_media_type - Set media type and TBI compatibility.
 330 * @hw: Struct containing variables accessed by shared code
 331 */
 332void e1000_set_media_type(struct e1000_hw *hw)
 333{
 334	u32 status;
 335
 
 
 336	if (hw->mac_type != e1000_82543) {
 337		/* tbi_compatibility is only valid on 82543 */
 338		hw->tbi_compatibility_en = false;
 339	}
 340
 341	switch (hw->device_id) {
 342	case E1000_DEV_ID_82545GM_SERDES:
 343	case E1000_DEV_ID_82546GB_SERDES:
 344		hw->media_type = e1000_media_type_internal_serdes;
 345		break;
 346	default:
 347		switch (hw->mac_type) {
 348		case e1000_82542_rev2_0:
 349		case e1000_82542_rev2_1:
 350			hw->media_type = e1000_media_type_fiber;
 351			break;
 352		case e1000_ce4100:
 353			hw->media_type = e1000_media_type_copper;
 354			break;
 355		default:
 356			status = er32(STATUS);
 357			if (status & E1000_STATUS_TBIMODE) {
 358				hw->media_type = e1000_media_type_fiber;
 359				/* tbi_compatibility not valid on fiber */
 360				hw->tbi_compatibility_en = false;
 361			} else {
 362				hw->media_type = e1000_media_type_copper;
 363			}
 364			break;
 365		}
 366	}
 367}
 368
 369/**
 370 * e1000_reset_hw - reset the hardware completely
 371 * @hw: Struct containing variables accessed by shared code
 372 *
 373 * Reset the transmit and receive units; mask and clear all interrupts.
 374 */
 375s32 e1000_reset_hw(struct e1000_hw *hw)
 376{
 377	u32 ctrl;
 378	u32 ctrl_ext;
 
 379	u32 manc;
 380	u32 led_ctrl;
 381	s32 ret_val;
 382
 
 
 383	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 384	if (hw->mac_type == e1000_82542_rev2_0) {
 385		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 386		e1000_pci_clear_mwi(hw);
 387	}
 388
 389	/* Clear interrupt mask to stop board from generating interrupts */
 390	e_dbg("Masking off all interrupts\n");
 391	ew32(IMC, 0xffffffff);
 392
 393	/* Disable the Transmit and Receive units.  Then delay to allow
 394	 * any pending transactions to complete before we hit the MAC with
 395	 * the global reset.
 396	 */
 397	ew32(RCTL, 0);
 398	ew32(TCTL, E1000_TCTL_PSP);
 399	E1000_WRITE_FLUSH();
 400
 401	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 402	hw->tbi_compatibility_on = false;
 403
 404	/* Delay to allow any outstanding PCI transactions to complete before
 405	 * resetting the device
 406	 */
 407	msleep(10);
 408
 409	ctrl = er32(CTRL);
 410
 411	/* Must reset the PHY before resetting the MAC */
 412	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 413		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 414		E1000_WRITE_FLUSH();
 415		msleep(5);
 416	}
 417
 418	/* Issue a global reset to the MAC.  This will reset the chip's
 419	 * transmit, receive, DMA, and link units.  It will not effect
 420	 * the current PCI configuration.  The global reset bit is self-
 421	 * clearing, and should clear within a microsecond.
 422	 */
 423	e_dbg("Issuing a global reset to MAC\n");
 424
 425	switch (hw->mac_type) {
 426	case e1000_82544:
 427	case e1000_82540:
 428	case e1000_82545:
 429	case e1000_82546:
 430	case e1000_82541:
 431	case e1000_82541_rev_2:
 432		/* These controllers can't ack the 64-bit write when issuing the
 433		 * reset, so use IO-mapping as a workaround to issue the reset
 434		 */
 435		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 436		break;
 437	case e1000_82545_rev_3:
 438	case e1000_82546_rev_3:
 439		/* Reset is performed on a shadow of the control register */
 440		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 441		break;
 442	case e1000_ce4100:
 443	default:
 444		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 445		break;
 446	}
 447
 448	/* After MAC reset, force reload of EEPROM to restore power-on settings
 449	 * to device.  Later controllers reload the EEPROM automatically, so
 450	 * just wait for reload to complete.
 451	 */
 452	switch (hw->mac_type) {
 453	case e1000_82542_rev2_0:
 454	case e1000_82542_rev2_1:
 455	case e1000_82543:
 456	case e1000_82544:
 457		/* Wait for reset to complete */
 458		udelay(10);
 459		ctrl_ext = er32(CTRL_EXT);
 460		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 461		ew32(CTRL_EXT, ctrl_ext);
 462		E1000_WRITE_FLUSH();
 463		/* Wait for EEPROM reload */
 464		msleep(2);
 465		break;
 466	case e1000_82541:
 467	case e1000_82541_rev_2:
 468	case e1000_82547:
 469	case e1000_82547_rev_2:
 470		/* Wait for EEPROM reload */
 471		msleep(20);
 472		break;
 473	default:
 474		/* Auto read done will delay 5ms or poll based on mac type */
 475		ret_val = e1000_get_auto_rd_done(hw);
 476		if (ret_val)
 477			return ret_val;
 478		break;
 479	}
 480
 481	/* Disable HW ARPs on ASF enabled adapters */
 482	if (hw->mac_type >= e1000_82540) {
 483		manc = er32(MANC);
 484		manc &= ~(E1000_MANC_ARP_EN);
 485		ew32(MANC, manc);
 486	}
 487
 488	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 489		e1000_phy_init_script(hw);
 490
 491		/* Configure activity LED after PHY reset */
 492		led_ctrl = er32(LEDCTL);
 493		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 494		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 495		ew32(LEDCTL, led_ctrl);
 496	}
 497
 498	/* Clear interrupt mask to stop board from generating interrupts */
 499	e_dbg("Masking off all interrupts\n");
 500	ew32(IMC, 0xffffffff);
 501
 502	/* Clear any pending interrupt events. */
 503	er32(ICR);
 504
 505	/* If MWI was previously enabled, reenable it. */
 506	if (hw->mac_type == e1000_82542_rev2_0) {
 507		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 508			e1000_pci_set_mwi(hw);
 509	}
 510
 511	return E1000_SUCCESS;
 512}
 513
 514/**
 515 * e1000_init_hw - Performs basic configuration of the adapter.
 516 * @hw: Struct containing variables accessed by shared code
 517 *
 518 * Assumes that the controller has previously been reset and is in a
 519 * post-reset uninitialized state. Initializes the receive address registers,
 520 * multicast table, and VLAN filter table. Calls routines to setup link
 521 * configuration and flow control settings. Clears all on-chip counters. Leaves
 522 * the transmit and receive units disabled and uninitialized.
 523 */
 524s32 e1000_init_hw(struct e1000_hw *hw)
 525{
 526	u32 ctrl;
 527	u32 i;
 528	s32 ret_val;
 529	u32 mta_size;
 530	u32 ctrl_ext;
 531
 
 
 532	/* Initialize Identification LED */
 533	ret_val = e1000_id_led_init(hw);
 534	if (ret_val) {
 535		e_dbg("Error Initializing Identification LED\n");
 536		return ret_val;
 537	}
 538
 539	/* Set the media type and TBI compatibility */
 540	e1000_set_media_type(hw);
 541
 542	/* Disabling VLAN filtering. */
 543	e_dbg("Initializing the IEEE VLAN\n");
 544	if (hw->mac_type < e1000_82545_rev_3)
 545		ew32(VET, 0);
 546	e1000_clear_vfta(hw);
 547
 548	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 549	if (hw->mac_type == e1000_82542_rev2_0) {
 550		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 551		e1000_pci_clear_mwi(hw);
 552		ew32(RCTL, E1000_RCTL_RST);
 553		E1000_WRITE_FLUSH();
 554		msleep(5);
 555	}
 556
 557	/* Setup the receive address. This involves initializing all of the
 558	 * Receive Address Registers (RARs 0 - 15).
 559	 */
 560	e1000_init_rx_addrs(hw);
 561
 562	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 563	if (hw->mac_type == e1000_82542_rev2_0) {
 564		ew32(RCTL, 0);
 565		E1000_WRITE_FLUSH();
 566		msleep(1);
 567		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 568			e1000_pci_set_mwi(hw);
 569	}
 570
 571	/* Zero out the Multicast HASH table */
 572	e_dbg("Zeroing the MTA\n");
 573	mta_size = E1000_MC_TBL_SIZE;
 574	for (i = 0; i < mta_size; i++) {
 575		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 576		/* use write flush to prevent Memory Write Block (MWB) from
 577		 * occurring when accessing our register space
 578		 */
 579		E1000_WRITE_FLUSH();
 580	}
 581
 582	/* Set the PCI priority bit correctly in the CTRL register.  This
 583	 * determines if the adapter gives priority to receives, or if it
 584	 * gives equal priority to transmits and receives.  Valid only on
 585	 * 82542 and 82543 silicon.
 586	 */
 587	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 588		ctrl = er32(CTRL);
 589		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 590	}
 591
 592	switch (hw->mac_type) {
 593	case e1000_82545_rev_3:
 594	case e1000_82546_rev_3:
 595		break;
 596	default:
 597		/* Workaround for PCI-X problem when BIOS sets MMRBC
 598		 * incorrectly.
 599		 */
 600		if (hw->bus_type == e1000_bus_type_pcix &&
 601		    e1000_pcix_get_mmrbc(hw) > 2048)
 602			e1000_pcix_set_mmrbc(hw, 2048);
 603		break;
 604	}
 605
 606	/* Call a subroutine to configure the link and setup flow control. */
 607	ret_val = e1000_setup_link(hw);
 608
 609	/* Set the transmit descriptor write-back policy */
 610	if (hw->mac_type > e1000_82544) {
 611		ctrl = er32(TXDCTL);
 612		ctrl =
 613		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 614		    E1000_TXDCTL_FULL_TX_DESC_WB;
 615		ew32(TXDCTL, ctrl);
 616	}
 617
 618	/* Clear all of the statistics registers (clear on read).  It is
 619	 * important that we do this after we have tried to establish link
 620	 * because the symbol error count will increment wildly if there
 621	 * is no link.
 622	 */
 623	e1000_clear_hw_cntrs(hw);
 624
 625	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 626	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 627		ctrl_ext = er32(CTRL_EXT);
 628		/* Relaxed ordering must be disabled to avoid a parity
 629		 * error crash in a PCI slot.
 630		 */
 631		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 632		ew32(CTRL_EXT, ctrl_ext);
 633	}
 634
 635	return ret_val;
 636}
 637
 638/**
 639 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 640 * @hw: Struct containing variables accessed by shared code.
 641 */
 642static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 643{
 644	u16 eeprom_data;
 645	s32 ret_val;
 646
 
 
 647	if (hw->media_type != e1000_media_type_internal_serdes)
 648		return E1000_SUCCESS;
 649
 650	switch (hw->mac_type) {
 651	case e1000_82545_rev_3:
 652	case e1000_82546_rev_3:
 653		break;
 654	default:
 655		return E1000_SUCCESS;
 656	}
 657
 658	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 659				    &eeprom_data);
 660	if (ret_val)
 661		return ret_val;
 
 662
 663	if (eeprom_data != EEPROM_RESERVED_WORD) {
 664		/* Adjust SERDES output amplitude only. */
 665		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 666		ret_val =
 667		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 668		if (ret_val)
 669			return ret_val;
 670	}
 671
 672	return E1000_SUCCESS;
 673}
 674
 675/**
 676 * e1000_setup_link - Configures flow control and link settings.
 677 * @hw: Struct containing variables accessed by shared code
 678 *
 679 * Determines which flow control settings to use. Calls the appropriate media-
 680 * specific link configuration function. Configures the flow control settings.
 681 * Assuming the adapter has a valid link partner, a valid link should be
 682 * established. Assumes the hardware has previously been reset and the
 683 * transmitter and receiver are not enabled.
 684 */
 685s32 e1000_setup_link(struct e1000_hw *hw)
 686{
 687	u32 ctrl_ext;
 688	s32 ret_val;
 689	u16 eeprom_data;
 690
 
 
 691	/* Read and store word 0x0F of the EEPROM. This word contains bits
 692	 * that determine the hardware's default PAUSE (flow control) mode,
 693	 * a bit that determines whether the HW defaults to enabling or
 694	 * disabling auto-negotiation, and the direction of the
 695	 * SW defined pins. If there is no SW over-ride of the flow
 696	 * control setting, then the variable hw->fc will
 697	 * be initialized based on a value in the EEPROM.
 698	 */
 699	if (hw->fc == E1000_FC_DEFAULT) {
 700		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 701					    1, &eeprom_data);
 702		if (ret_val) {
 703			e_dbg("EEPROM Read Error\n");
 704			return -E1000_ERR_EEPROM;
 705		}
 706		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 707			hw->fc = E1000_FC_NONE;
 708		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 709			 EEPROM_WORD0F_ASM_DIR)
 710			hw->fc = E1000_FC_TX_PAUSE;
 711		else
 712			hw->fc = E1000_FC_FULL;
 713	}
 714
 715	/* We want to save off the original Flow Control configuration just
 716	 * in case we get disconnected and then reconnected into a different
 717	 * hub or switch with different Flow Control capabilities.
 718	 */
 719	if (hw->mac_type == e1000_82542_rev2_0)
 720		hw->fc &= (~E1000_FC_TX_PAUSE);
 721
 722	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 723		hw->fc &= (~E1000_FC_RX_PAUSE);
 724
 725	hw->original_fc = hw->fc;
 726
 727	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 728
 729	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 730	 * polarity value for the SW controlled pins, and setup the
 731	 * Extended Device Control reg with that info.
 732	 * This is needed because one of the SW controlled pins is used for
 733	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 734	 * or e1000_phy_setup() is called.
 735	 */
 736	if (hw->mac_type == e1000_82543) {
 737		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 738					    1, &eeprom_data);
 739		if (ret_val) {
 740			e_dbg("EEPROM Read Error\n");
 741			return -E1000_ERR_EEPROM;
 742		}
 743		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 744			    SWDPIO__EXT_SHIFT);
 745		ew32(CTRL_EXT, ctrl_ext);
 746	}
 747
 748	/* Call the necessary subroutine to configure the link. */
 749	ret_val = (hw->media_type == e1000_media_type_copper) ?
 750	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 751
 752	/* Initialize the flow control address, type, and PAUSE timer
 753	 * registers to their default values.  This is done even if flow
 754	 * control is disabled, because it does not hurt anything to
 755	 * initialize these registers.
 756	 */
 757	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 758
 759	ew32(FCT, FLOW_CONTROL_TYPE);
 760	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 761	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 762
 763	ew32(FCTTV, hw->fc_pause_time);
 764
 765	/* Set the flow control receive threshold registers.  Normally,
 766	 * these registers will be set to a default threshold that may be
 767	 * adjusted later by the driver's runtime code.  However, if the
 768	 * ability to transmit pause frames in not enabled, then these
 769	 * registers will be set to 0.
 770	 */
 771	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 772		ew32(FCRTL, 0);
 773		ew32(FCRTH, 0);
 774	} else {
 775		/* We need to set up the Receive Threshold high and low water
 776		 * marks as well as (optionally) enabling the transmission of
 777		 * XON frames.
 778		 */
 779		if (hw->fc_send_xon) {
 780			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 781			ew32(FCRTH, hw->fc_high_water);
 782		} else {
 783			ew32(FCRTL, hw->fc_low_water);
 784			ew32(FCRTH, hw->fc_high_water);
 785		}
 786	}
 787	return ret_val;
 788}
 789
 790/**
 791 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 792 * @hw: Struct containing variables accessed by shared code
 793 *
 794 * Manipulates Physical Coding Sublayer functions in order to configure
 795 * link. Assumes the hardware has been previously reset and the transmitter
 796 * and receiver are not enabled.
 797 */
 798static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 799{
 800	u32 ctrl;
 801	u32 status;
 802	u32 txcw = 0;
 803	u32 i;
 804	u32 signal = 0;
 805	s32 ret_val;
 806
 
 
 807	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 808	 * set when the optics detect a signal. On older adapters, it will be
 809	 * cleared when there is a signal.  This applies to fiber media only.
 810	 * If we're on serdes media, adjust the output amplitude to value
 811	 * set in the EEPROM.
 812	 */
 813	ctrl = er32(CTRL);
 814	if (hw->media_type == e1000_media_type_fiber)
 815		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 816
 817	ret_val = e1000_adjust_serdes_amplitude(hw);
 818	if (ret_val)
 819		return ret_val;
 820
 821	/* Take the link out of reset */
 822	ctrl &= ~(E1000_CTRL_LRST);
 823
 824	/* Adjust VCO speed to improve BER performance */
 825	ret_val = e1000_set_vco_speed(hw);
 826	if (ret_val)
 827		return ret_val;
 828
 829	e1000_config_collision_dist(hw);
 830
 831	/* Check for a software override of the flow control settings, and setup
 832	 * the device accordingly.  If auto-negotiation is enabled, then
 833	 * software will have to set the "PAUSE" bits to the correct value in
 834	 * the Tranmsit Config Word Register (TXCW) and re-start
 835	 * auto-negotiation.  However, if auto-negotiation is disabled, then
 836	 * software will have to manually configure the two flow control enable
 837	 * bits in the CTRL register.
 838	 *
 839	 * The possible values of the "fc" parameter are:
 840	 *  0:  Flow control is completely disabled
 841	 *  1:  Rx flow control is enabled (we can receive pause frames, but
 842	 *      not send pause frames).
 843	 *  2:  Tx flow control is enabled (we can send pause frames but we do
 844	 *      not support receiving pause frames).
 845	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
 846	 */
 847	switch (hw->fc) {
 848	case E1000_FC_NONE:
 849		/* Flow ctrl is completely disabled by a software over-ride */
 850		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 851		break;
 852	case E1000_FC_RX_PAUSE:
 853		/* Rx Flow control is enabled and Tx Flow control is disabled by
 854		 * a software over-ride. Since there really isn't a way to
 855		 * advertise that we are capable of Rx Pause ONLY, we will
 856		 * advertise that we support both symmetric and asymmetric Rx
 857		 * PAUSE. Later, we will disable the adapter's ability to send
 858		 * PAUSE frames.
 859		 */
 860		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 861		break;
 862	case E1000_FC_TX_PAUSE:
 863		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 864		 * by a software over-ride.
 865		 */
 866		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 867		break;
 868	case E1000_FC_FULL:
 869		/* Flow control (both Rx and Tx) is enabled by a software
 870		 * over-ride.
 871		 */
 872		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 873		break;
 874	default:
 875		e_dbg("Flow control param set incorrectly\n");
 876		return -E1000_ERR_CONFIG;
 
 877	}
 878
 879	/* Since auto-negotiation is enabled, take the link out of reset (the
 880	 * link will be in reset, because we previously reset the chip). This
 881	 * will restart auto-negotiation.  If auto-negotiation is successful
 882	 * then the link-up status bit will be set and the flow control enable
 883	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 884	 */
 885	e_dbg("Auto-negotiation enabled\n");
 886
 887	ew32(TXCW, txcw);
 888	ew32(CTRL, ctrl);
 889	E1000_WRITE_FLUSH();
 890
 891	hw->txcw = txcw;
 892	msleep(1);
 893
 894	/* If we have a signal (the cable is plugged in) then poll for a
 895	 * "Link-Up" indication in the Device Status Register.  Time-out if a
 896	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
 897	 * complete in less than 500 milliseconds even if the other end is doing
 898	 * it in SW). For internal serdes, we just assume a signal is present,
 899	 * then poll.
 900	 */
 901	if (hw->media_type == e1000_media_type_internal_serdes ||
 902	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 903		e_dbg("Looking for Link\n");
 904		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 905			msleep(10);
 906			status = er32(STATUS);
 907			if (status & E1000_STATUS_LU)
 908				break;
 909		}
 910		if (i == (LINK_UP_TIMEOUT / 10)) {
 911			e_dbg("Never got a valid link from auto-neg!!!\n");
 912			hw->autoneg_failed = 1;
 913			/* AutoNeg failed to achieve a link, so we'll call
 914			 * e1000_check_for_link. This routine will force the
 915			 * link up if we detect a signal. This will allow us to
 916			 * communicate with non-autonegotiating link partners.
 917			 */
 918			ret_val = e1000_check_for_link(hw);
 919			if (ret_val) {
 920				e_dbg("Error while checking for link\n");
 921				return ret_val;
 922			}
 923			hw->autoneg_failed = 0;
 924		} else {
 925			hw->autoneg_failed = 0;
 926			e_dbg("Valid Link Found\n");
 927		}
 928	} else {
 929		e_dbg("No Signal Detected\n");
 930	}
 931	return E1000_SUCCESS;
 932}
 933
 934/**
 935 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 936 * @hw: Struct containing variables accessed by shared code
 937 *
 938 * Commits changes to PHY configuration by calling e1000_phy_reset().
 939 */
 940static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 941{
 942	s32 ret_val;
 943
 944	/* SW reset the PHY so all changes take effect */
 945	ret_val = e1000_phy_reset(hw);
 946	if (ret_val) {
 947		e_dbg("Error Resetting the PHY\n");
 948		return ret_val;
 949	}
 950
 951	return E1000_SUCCESS;
 952}
 953
 954static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 955{
 956	s32 ret_val;
 957	u32 ctrl_aux;
 958
 959	switch (hw->phy_type) {
 960	case e1000_phy_8211:
 961		ret_val = e1000_copper_link_rtl_setup(hw);
 962		if (ret_val) {
 963			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 964			return ret_val;
 965		}
 966		break;
 967	case e1000_phy_8201:
 968		/* Set RMII mode */
 969		ctrl_aux = er32(CTL_AUX);
 970		ctrl_aux |= E1000_CTL_AUX_RMII;
 971		ew32(CTL_AUX, ctrl_aux);
 972		E1000_WRITE_FLUSH();
 973
 974		/* Disable the J/K bits required for receive */
 975		ctrl_aux = er32(CTL_AUX);
 976		ctrl_aux |= 0x4;
 977		ctrl_aux &= ~0x2;
 978		ew32(CTL_AUX, ctrl_aux);
 979		E1000_WRITE_FLUSH();
 980		ret_val = e1000_copper_link_rtl_setup(hw);
 981
 982		if (ret_val) {
 983			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 984			return ret_val;
 985		}
 986		break;
 987	default:
 988		e_dbg("Error Resetting the PHY\n");
 989		return E1000_ERR_PHY_TYPE;
 990	}
 991
 992	return E1000_SUCCESS;
 993}
 994
 995/**
 996 * e1000_copper_link_preconfig - early configuration for copper
 997 * @hw: Struct containing variables accessed by shared code
 998 *
 999 * Make sure we have a valid PHY and change PHY mode before link setup.
1000 */
1001static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1002{
1003	u32 ctrl;
1004	s32 ret_val;
1005	u16 phy_data;
1006
 
 
1007	ctrl = er32(CTRL);
1008	/* With 82543, we need to force speed and duplex on the MAC equal to
1009	 * what the PHY speed and duplex configuration is. In addition, we need
1010	 * to perform a hardware reset on the PHY to take it out of reset.
1011	 */
1012	if (hw->mac_type > e1000_82543) {
1013		ctrl |= E1000_CTRL_SLU;
1014		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1015		ew32(CTRL, ctrl);
1016	} else {
1017		ctrl |=
1018		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1019		ew32(CTRL, ctrl);
1020		ret_val = e1000_phy_hw_reset(hw);
1021		if (ret_val)
1022			return ret_val;
1023	}
1024
1025	/* Make sure we have a valid PHY */
1026	ret_val = e1000_detect_gig_phy(hw);
1027	if (ret_val) {
1028		e_dbg("Error, did not detect valid phy.\n");
1029		return ret_val;
1030	}
1031	e_dbg("Phy ID = %x\n", hw->phy_id);
1032
1033	/* Set PHY to class A mode (if necessary) */
1034	ret_val = e1000_set_phy_mode(hw);
1035	if (ret_val)
1036		return ret_val;
1037
1038	if ((hw->mac_type == e1000_82545_rev_3) ||
1039	    (hw->mac_type == e1000_82546_rev_3)) {
1040		ret_val =
1041		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1042		phy_data |= 0x00000008;
1043		ret_val =
1044		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1045	}
1046
1047	if (hw->mac_type <= e1000_82543 ||
1048	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1049	    hw->mac_type == e1000_82541_rev_2 ||
1050	    hw->mac_type == e1000_82547_rev_2)
1051		hw->phy_reset_disable = false;
1052
1053	return E1000_SUCCESS;
1054}
1055
1056/**
1057 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1058 * @hw: Struct containing variables accessed by shared code
1059 */
1060static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1061{
1062	u32 led_ctrl;
1063	s32 ret_val;
1064	u16 phy_data;
1065
 
 
1066	if (hw->phy_reset_disable)
1067		return E1000_SUCCESS;
1068
1069	ret_val = e1000_phy_reset(hw);
1070	if (ret_val) {
1071		e_dbg("Error Resetting the PHY\n");
1072		return ret_val;
1073	}
1074
1075	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1076	msleep(15);
1077	/* Configure activity LED after PHY reset */
1078	led_ctrl = er32(LEDCTL);
1079	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1080	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1081	ew32(LEDCTL, led_ctrl);
1082
1083	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1084	if (hw->phy_type == e1000_phy_igp) {
1085		/* disable lplu d3 during driver init */
1086		ret_val = e1000_set_d3_lplu_state(hw, false);
1087		if (ret_val) {
1088			e_dbg("Error Disabling LPLU D3\n");
1089			return ret_val;
1090		}
1091	}
1092
1093	/* Configure mdi-mdix settings */
1094	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1095	if (ret_val)
1096		return ret_val;
1097
1098	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1099		hw->dsp_config_state = e1000_dsp_config_disabled;
1100		/* Force MDI for earlier revs of the IGP PHY */
1101		phy_data &=
1102		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1103		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1104		hw->mdix = 1;
1105
1106	} else {
1107		hw->dsp_config_state = e1000_dsp_config_enabled;
1108		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1109
1110		switch (hw->mdix) {
1111		case 1:
1112			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1113			break;
1114		case 2:
1115			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1116			break;
1117		case 0:
1118		default:
1119			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1120			break;
1121		}
1122	}
1123	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1124	if (ret_val)
1125		return ret_val;
1126
1127	/* set auto-master slave resolution settings */
1128	if (hw->autoneg) {
1129		e1000_ms_type phy_ms_setting = hw->master_slave;
1130
1131		if (hw->ffe_config_state == e1000_ffe_config_active)
1132			hw->ffe_config_state = e1000_ffe_config_enabled;
1133
1134		if (hw->dsp_config_state == e1000_dsp_config_activated)
1135			hw->dsp_config_state = e1000_dsp_config_enabled;
1136
1137		/* when autonegotiation advertisement is only 1000Mbps then we
1138		 * should disable SmartSpeed and enable Auto MasterSlave
1139		 * resolution as hardware default.
1140		 */
1141		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1142			/* Disable SmartSpeed */
1143			ret_val =
1144			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1145					       &phy_data);
1146			if (ret_val)
1147				return ret_val;
1148			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1149			ret_val =
1150			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1151						phy_data);
1152			if (ret_val)
1153				return ret_val;
1154			/* Set auto Master/Slave resolution process */
1155			ret_val =
1156			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1157			if (ret_val)
1158				return ret_val;
1159			phy_data &= ~CR_1000T_MS_ENABLE;
1160			ret_val =
1161			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1162			if (ret_val)
1163				return ret_val;
1164		}
1165
1166		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1167		if (ret_val)
1168			return ret_val;
1169
1170		/* load defaults for future use */
1171		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1172		    ((phy_data & CR_1000T_MS_VALUE) ?
1173		     e1000_ms_force_master :
1174		     e1000_ms_force_slave) : e1000_ms_auto;
1175
1176		switch (phy_ms_setting) {
1177		case e1000_ms_force_master:
1178			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1179			break;
1180		case e1000_ms_force_slave:
1181			phy_data |= CR_1000T_MS_ENABLE;
1182			phy_data &= ~(CR_1000T_MS_VALUE);
1183			break;
1184		case e1000_ms_auto:
1185			phy_data &= ~CR_1000T_MS_ENABLE;
1186			break;
1187		default:
1188			break;
1189		}
1190		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1191		if (ret_val)
1192			return ret_val;
1193	}
1194
1195	return E1000_SUCCESS;
1196}
1197
1198/**
1199 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1200 * @hw: Struct containing variables accessed by shared code
1201 */
1202static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1203{
1204	s32 ret_val;
1205	u16 phy_data;
1206
 
 
1207	if (hw->phy_reset_disable)
1208		return E1000_SUCCESS;
1209
1210	/* Enable CRS on TX. This must be set for half-duplex operation. */
1211	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1212	if (ret_val)
1213		return ret_val;
1214
1215	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1216
1217	/* Options:
1218	 *   MDI/MDI-X = 0 (default)
1219	 *   0 - Auto for all speeds
1220	 *   1 - MDI mode
1221	 *   2 - MDI-X mode
1222	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1223	 */
1224	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1225
1226	switch (hw->mdix) {
1227	case 1:
1228		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1229		break;
1230	case 2:
1231		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1232		break;
1233	case 3:
1234		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1235		break;
1236	case 0:
1237	default:
1238		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1239		break;
1240	}
1241
1242	/* Options:
1243	 *   disable_polarity_correction = 0 (default)
1244	 *       Automatic Correction for Reversed Cable Polarity
1245	 *   0 - Disabled
1246	 *   1 - Enabled
1247	 */
1248	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1249	if (hw->disable_polarity_correction == 1)
1250		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1251	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1252	if (ret_val)
1253		return ret_val;
1254
1255	if (hw->phy_revision < M88E1011_I_REV_4) {
1256		/* Force TX_CLK in the Extended PHY Specific Control Register
1257		 * to 25MHz clock.
1258		 */
1259		ret_val =
1260		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1261				       &phy_data);
1262		if (ret_val)
1263			return ret_val;
1264
1265		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1266
1267		if ((hw->phy_revision == E1000_REVISION_2) &&
1268		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1269			/* Vidalia Phy, set the downshift counter to 5x */
1270			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1271			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1272			ret_val = e1000_write_phy_reg(hw,
1273						      M88E1000_EXT_PHY_SPEC_CTRL,
1274						      phy_data);
1275			if (ret_val)
1276				return ret_val;
1277		} else {
1278			/* Configure Master and Slave downshift values */
1279			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1280				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1281			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1282				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1283			ret_val = e1000_write_phy_reg(hw,
1284						      M88E1000_EXT_PHY_SPEC_CTRL,
1285						      phy_data);
1286			if (ret_val)
1287				return ret_val;
1288		}
1289	}
1290
1291	/* SW Reset the PHY so all changes take effect */
1292	ret_val = e1000_phy_reset(hw);
1293	if (ret_val) {
1294		e_dbg("Error Resetting the PHY\n");
1295		return ret_val;
1296	}
1297
1298	return E1000_SUCCESS;
1299}
1300
1301/**
1302 * e1000_copper_link_autoneg - setup auto-neg
1303 * @hw: Struct containing variables accessed by shared code
1304 *
1305 * Setup auto-negotiation and flow control advertisements,
1306 * and then perform auto-negotiation.
1307 */
1308static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1309{
1310	s32 ret_val;
1311	u16 phy_data;
1312
 
 
1313	/* Perform some bounds checking on the hw->autoneg_advertised
1314	 * parameter.  If this variable is zero, then set it to the default.
1315	 */
1316	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1317
1318	/* If autoneg_advertised is zero, we assume it was not defaulted
1319	 * by the calling code so we set to advertise full capability.
1320	 */
1321	if (hw->autoneg_advertised == 0)
1322		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1323
1324	/* IFE/RTL8201N PHY only supports 10/100 */
1325	if (hw->phy_type == e1000_phy_8201)
1326		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1327
1328	e_dbg("Reconfiguring auto-neg advertisement params\n");
1329	ret_val = e1000_phy_setup_autoneg(hw);
1330	if (ret_val) {
1331		e_dbg("Error Setting up Auto-Negotiation\n");
1332		return ret_val;
1333	}
1334	e_dbg("Restarting Auto-Neg\n");
1335
1336	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1337	 * the Auto Neg Restart bit in the PHY control register.
1338	 */
1339	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1340	if (ret_val)
1341		return ret_val;
1342
1343	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1344	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1345	if (ret_val)
1346		return ret_val;
1347
1348	/* Does the user want to wait for Auto-Neg to complete here, or
1349	 * check at a later time (for example, callback routine).
1350	 */
1351	if (hw->wait_autoneg_complete) {
1352		ret_val = e1000_wait_autoneg(hw);
1353		if (ret_val) {
1354			e_dbg
1355			    ("Error while waiting for autoneg to complete\n");
1356			return ret_val;
1357		}
1358	}
1359
1360	hw->get_link_status = true;
1361
1362	return E1000_SUCCESS;
1363}
1364
1365/**
1366 * e1000_copper_link_postconfig - post link setup
1367 * @hw: Struct containing variables accessed by shared code
1368 *
1369 * Config the MAC and the PHY after link is up.
1370 *   1) Set up the MAC to the current PHY speed/duplex
1371 *      if we are on 82543.  If we
1372 *      are on newer silicon, we only need to configure
1373 *      collision distance in the Transmit Control Register.
1374 *   2) Set up flow control on the MAC to that established with
1375 *      the link partner.
1376 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1377 */
1378static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1379{
1380	s32 ret_val;
 
1381
1382	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1383		e1000_config_collision_dist(hw);
1384	} else {
1385		ret_val = e1000_config_mac_to_phy(hw);
1386		if (ret_val) {
1387			e_dbg("Error configuring MAC to PHY settings\n");
1388			return ret_val;
1389		}
1390	}
1391	ret_val = e1000_config_fc_after_link_up(hw);
1392	if (ret_val) {
1393		e_dbg("Error Configuring Flow Control\n");
1394		return ret_val;
1395	}
1396
1397	/* Config DSP to improve Giga link quality */
1398	if (hw->phy_type == e1000_phy_igp) {
1399		ret_val = e1000_config_dsp_after_link_change(hw, true);
1400		if (ret_val) {
1401			e_dbg("Error Configuring DSP after link up\n");
1402			return ret_val;
1403		}
1404	}
1405
1406	return E1000_SUCCESS;
1407}
1408
1409/**
1410 * e1000_setup_copper_link - phy/speed/duplex setting
1411 * @hw: Struct containing variables accessed by shared code
1412 *
1413 * Detects which PHY is present and sets up the speed and duplex
1414 */
1415static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1416{
1417	s32 ret_val;
1418	u16 i;
1419	u16 phy_data;
1420
 
 
1421	/* Check if it is a valid PHY and set PHY mode if necessary. */
1422	ret_val = e1000_copper_link_preconfig(hw);
1423	if (ret_val)
1424		return ret_val;
1425
1426	if (hw->phy_type == e1000_phy_igp) {
1427		ret_val = e1000_copper_link_igp_setup(hw);
1428		if (ret_val)
1429			return ret_val;
1430	} else if (hw->phy_type == e1000_phy_m88) {
1431		ret_val = e1000_copper_link_mgp_setup(hw);
1432		if (ret_val)
1433			return ret_val;
1434	} else {
1435		ret_val = gbe_dhg_phy_setup(hw);
1436		if (ret_val) {
1437			e_dbg("gbe_dhg_phy_setup failed!\n");
1438			return ret_val;
1439		}
1440	}
1441
1442	if (hw->autoneg) {
1443		/* Setup autoneg and flow control advertisement
1444		 * and perform autonegotiation
1445		 */
1446		ret_val = e1000_copper_link_autoneg(hw);
1447		if (ret_val)
1448			return ret_val;
1449	} else {
1450		/* PHY will be set to 10H, 10F, 100H,or 100F
1451		 * depending on value from forced_speed_duplex.
1452		 */
1453		e_dbg("Forcing speed and duplex\n");
1454		ret_val = e1000_phy_force_speed_duplex(hw);
1455		if (ret_val) {
1456			e_dbg("Error Forcing Speed and Duplex\n");
1457			return ret_val;
1458		}
1459	}
1460
1461	/* Check link status. Wait up to 100 microseconds for link to become
1462	 * valid.
1463	 */
1464	for (i = 0; i < 10; i++) {
1465		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1466		if (ret_val)
1467			return ret_val;
1468		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1469		if (ret_val)
1470			return ret_val;
1471
1472		if (phy_data & MII_SR_LINK_STATUS) {
1473			/* Config the MAC and PHY after link is up */
1474			ret_val = e1000_copper_link_postconfig(hw);
1475			if (ret_val)
1476				return ret_val;
1477
1478			e_dbg("Valid link established!!!\n");
1479			return E1000_SUCCESS;
1480		}
1481		udelay(10);
1482	}
1483
1484	e_dbg("Unable to establish link!!!\n");
1485	return E1000_SUCCESS;
1486}
1487
1488/**
1489 * e1000_phy_setup_autoneg - phy settings
1490 * @hw: Struct containing variables accessed by shared code
1491 *
1492 * Configures PHY autoneg and flow control advertisement settings
1493 */
1494s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1495{
1496	s32 ret_val;
1497	u16 mii_autoneg_adv_reg;
1498	u16 mii_1000t_ctrl_reg;
1499
 
 
1500	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1501	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1502	if (ret_val)
1503		return ret_val;
1504
1505	/* Read the MII 1000Base-T Control Register (Address 9). */
1506	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1507	if (ret_val)
1508		return ret_val;
1509	else if (hw->phy_type == e1000_phy_8201)
1510		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1511
1512	/* Need to parse both autoneg_advertised and fc and set up
1513	 * the appropriate PHY registers.  First we will parse for
1514	 * autoneg_advertised software override.  Since we can advertise
1515	 * a plethora of combinations, we need to check each bit
1516	 * individually.
1517	 */
1518
1519	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1520	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1521	 * the  1000Base-T Control Register (Address 9).
1522	 */
1523	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1524	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1525
1526	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1527
1528	/* Do we want to advertise 10 Mb Half Duplex? */
1529	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1530		e_dbg("Advertise 10mb Half duplex\n");
1531		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1532	}
1533
1534	/* Do we want to advertise 10 Mb Full Duplex? */
1535	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1536		e_dbg("Advertise 10mb Full duplex\n");
1537		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1538	}
1539
1540	/* Do we want to advertise 100 Mb Half Duplex? */
1541	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1542		e_dbg("Advertise 100mb Half duplex\n");
1543		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1544	}
1545
1546	/* Do we want to advertise 100 Mb Full Duplex? */
1547	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1548		e_dbg("Advertise 100mb Full duplex\n");
1549		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1550	}
1551
1552	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1553	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1554		e_dbg
1555		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1556	}
1557
1558	/* Do we want to advertise 1000 Mb Full Duplex? */
1559	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1560		e_dbg("Advertise 1000mb Full duplex\n");
1561		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1562	}
1563
1564	/* Check for a software override of the flow control settings, and
1565	 * setup the PHY advertisement registers accordingly.  If
1566	 * auto-negotiation is enabled, then software will have to set the
1567	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1568	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1569	 * auto-negotiation.
1570	 *
1571	 * The possible values of the "fc" parameter are:
1572	 *      0:  Flow control is completely disabled
1573	 *      1:  Rx flow control is enabled (we can receive pause frames
1574	 *          but not send pause frames).
1575	 *      2:  Tx flow control is enabled (we can send pause frames
1576	 *          but we do not support receiving pause frames).
1577	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1578	 *  other:  No software override.  The flow control configuration
1579	 *          in the EEPROM is used.
1580	 */
1581	switch (hw->fc) {
1582	case E1000_FC_NONE:	/* 0 */
1583		/* Flow control (RX & TX) is completely disabled by a
1584		 * software over-ride.
1585		 */
1586		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1587		break;
1588	case E1000_FC_RX_PAUSE:	/* 1 */
1589		/* RX Flow control is enabled, and TX Flow control is
1590		 * disabled, by a software over-ride.
1591		 */
1592		/* Since there really isn't a way to advertise that we are
1593		 * capable of RX Pause ONLY, we will advertise that we
1594		 * support both symmetric and asymmetric RX PAUSE.  Later
1595		 * (in e1000_config_fc_after_link_up) we will disable the
1596		 * hw's ability to send PAUSE frames.
1597		 */
1598		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1599		break;
1600	case E1000_FC_TX_PAUSE:	/* 2 */
1601		/* TX Flow control is enabled, and RX Flow control is
1602		 * disabled, by a software over-ride.
1603		 */
1604		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1605		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1606		break;
1607	case E1000_FC_FULL:	/* 3 */
1608		/* Flow control (both RX and TX) is enabled by a software
1609		 * over-ride.
1610		 */
1611		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1612		break;
1613	default:
1614		e_dbg("Flow control param set incorrectly\n");
1615		return -E1000_ERR_CONFIG;
1616	}
1617
1618	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1619	if (ret_val)
1620		return ret_val;
1621
1622	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1623
1624	if (hw->phy_type == e1000_phy_8201) {
1625		mii_1000t_ctrl_reg = 0;
1626	} else {
1627		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1628					      mii_1000t_ctrl_reg);
1629		if (ret_val)
1630			return ret_val;
1631	}
1632
1633	return E1000_SUCCESS;
1634}
1635
1636/**
1637 * e1000_phy_force_speed_duplex - force link settings
1638 * @hw: Struct containing variables accessed by shared code
1639 *
1640 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1641 */
1642static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1643{
1644	u32 ctrl;
1645	s32 ret_val;
1646	u16 mii_ctrl_reg;
1647	u16 mii_status_reg;
1648	u16 phy_data;
1649	u16 i;
1650
 
 
1651	/* Turn off Flow control if we are forcing speed and duplex. */
1652	hw->fc = E1000_FC_NONE;
1653
1654	e_dbg("hw->fc = %d\n", hw->fc);
1655
1656	/* Read the Device Control Register. */
1657	ctrl = er32(CTRL);
1658
1659	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1660	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1661	ctrl &= ~(DEVICE_SPEED_MASK);
1662
1663	/* Clear the Auto Speed Detect Enable bit. */
1664	ctrl &= ~E1000_CTRL_ASDE;
1665
1666	/* Read the MII Control Register. */
1667	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1668	if (ret_val)
1669		return ret_val;
1670
1671	/* We need to disable autoneg in order to force link and duplex. */
1672
1673	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1674
1675	/* Are we forcing Full or Half Duplex? */
1676	if (hw->forced_speed_duplex == e1000_100_full ||
1677	    hw->forced_speed_duplex == e1000_10_full) {
1678		/* We want to force full duplex so we SET the full duplex bits
1679		 * in the Device and MII Control Registers.
1680		 */
1681		ctrl |= E1000_CTRL_FD;
1682		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1683		e_dbg("Full Duplex\n");
1684	} else {
1685		/* We want to force half duplex so we CLEAR the full duplex bits
1686		 * in the Device and MII Control Registers.
1687		 */
1688		ctrl &= ~E1000_CTRL_FD;
1689		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1690		e_dbg("Half Duplex\n");
1691	}
1692
1693	/* Are we forcing 100Mbps??? */
1694	if (hw->forced_speed_duplex == e1000_100_full ||
1695	    hw->forced_speed_duplex == e1000_100_half) {
1696		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1697		ctrl |= E1000_CTRL_SPD_100;
1698		mii_ctrl_reg |= MII_CR_SPEED_100;
1699		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1700		e_dbg("Forcing 100mb ");
1701	} else {
1702		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1703		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1704		mii_ctrl_reg |= MII_CR_SPEED_10;
1705		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1706		e_dbg("Forcing 10mb ");
1707	}
1708
1709	e1000_config_collision_dist(hw);
1710
1711	/* Write the configured values back to the Device Control Reg. */
1712	ew32(CTRL, ctrl);
1713
1714	if (hw->phy_type == e1000_phy_m88) {
1715		ret_val =
1716		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1717		if (ret_val)
1718			return ret_val;
1719
1720		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1721		 * MDI forced whenever speed are duplex are forced.
1722		 */
1723		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1724		ret_val =
1725		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1726		if (ret_val)
1727			return ret_val;
1728
1729		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1730
1731		/* Need to reset the PHY or these changes will be ignored */
1732		mii_ctrl_reg |= MII_CR_RESET;
1733
1734		/* Disable MDI-X support for 10/100 */
1735	} else {
1736		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1737		 * forced whenever speed or duplex are forced.
1738		 */
1739		ret_val =
1740		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1741		if (ret_val)
1742			return ret_val;
1743
1744		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1745		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1746
1747		ret_val =
1748		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1749		if (ret_val)
1750			return ret_val;
1751	}
1752
1753	/* Write back the modified PHY MII control register. */
1754	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1755	if (ret_val)
1756		return ret_val;
1757
1758	udelay(1);
1759
1760	/* The wait_autoneg_complete flag may be a little misleading here.
1761	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1762	 * But we do want to delay for a period while forcing only so we
1763	 * don't generate false No Link messages.  So we will wait here
1764	 * only if the user has set wait_autoneg_complete to 1, which is
1765	 * the default.
1766	 */
1767	if (hw->wait_autoneg_complete) {
1768		/* We will wait for autoneg to complete. */
1769		e_dbg("Waiting for forced speed/duplex link.\n");
1770		mii_status_reg = 0;
1771
1772		/* Wait for autoneg to complete or 4.5 seconds to expire */
1773		for (i = PHY_FORCE_TIME; i > 0; i--) {
1774			/* Read the MII Status Register and wait for Auto-Neg
1775			 * Complete bit to be set.
1776			 */
1777			ret_val =
1778			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1779			if (ret_val)
1780				return ret_val;
1781
1782			ret_val =
1783			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1784			if (ret_val)
1785				return ret_val;
1786
1787			if (mii_status_reg & MII_SR_LINK_STATUS)
1788				break;
1789			msleep(100);
1790		}
1791		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1792			/* We didn't get link.  Reset the DSP and wait again
1793			 * for link.
1794			 */
1795			ret_val = e1000_phy_reset_dsp(hw);
1796			if (ret_val) {
1797				e_dbg("Error Resetting PHY DSP\n");
1798				return ret_val;
1799			}
1800		}
1801		/* This loop will early-out if the link condition has been
1802		 * met
1803		 */
1804		for (i = PHY_FORCE_TIME; i > 0; i--) {
1805			if (mii_status_reg & MII_SR_LINK_STATUS)
1806				break;
1807			msleep(100);
1808			/* Read the MII Status Register and wait for Auto-Neg
1809			 * Complete bit to be set.
1810			 */
1811			ret_val =
1812			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1813			if (ret_val)
1814				return ret_val;
1815
1816			ret_val =
1817			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1818			if (ret_val)
1819				return ret_val;
1820		}
1821	}
1822
1823	if (hw->phy_type == e1000_phy_m88) {
1824		/* Because we reset the PHY above, we need to re-force TX_CLK in
1825		 * the Extended PHY Specific Control Register to 25MHz clock.
1826		 * This value defaults back to a 2.5MHz clock when the PHY is
1827		 * reset.
1828		 */
1829		ret_val =
1830		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1831				       &phy_data);
1832		if (ret_val)
1833			return ret_val;
1834
1835		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1836		ret_val =
1837		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1838					phy_data);
1839		if (ret_val)
1840			return ret_val;
1841
1842		/* In addition, because of the s/w reset above, we need to
1843		 * enable CRS on Tx.  This must be set for both full and half
1844		 * duplex operation.
1845		 */
1846		ret_val =
1847		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1848		if (ret_val)
1849			return ret_val;
1850
1851		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1852		ret_val =
1853		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1854		if (ret_val)
1855			return ret_val;
1856
1857		if ((hw->mac_type == e1000_82544 ||
1858		     hw->mac_type == e1000_82543) &&
1859		    (!hw->autoneg) &&
1860		    (hw->forced_speed_duplex == e1000_10_full ||
1861		     hw->forced_speed_duplex == e1000_10_half)) {
1862			ret_val = e1000_polarity_reversal_workaround(hw);
1863			if (ret_val)
1864				return ret_val;
1865		}
1866	}
1867	return E1000_SUCCESS;
1868}
1869
1870/**
1871 * e1000_config_collision_dist - set collision distance register
1872 * @hw: Struct containing variables accessed by shared code
1873 *
1874 * Sets the collision distance in the Transmit Control register.
1875 * Link should have been established previously. Reads the speed and duplex
1876 * information from the Device Status register.
1877 */
1878void e1000_config_collision_dist(struct e1000_hw *hw)
1879{
1880	u32 tctl, coll_dist;
1881
 
 
1882	if (hw->mac_type < e1000_82543)
1883		coll_dist = E1000_COLLISION_DISTANCE_82542;
1884	else
1885		coll_dist = E1000_COLLISION_DISTANCE;
1886
1887	tctl = er32(TCTL);
1888
1889	tctl &= ~E1000_TCTL_COLD;
1890	tctl |= coll_dist << E1000_COLD_SHIFT;
1891
1892	ew32(TCTL, tctl);
1893	E1000_WRITE_FLUSH();
1894}
1895
1896/**
1897 * e1000_config_mac_to_phy - sync phy and mac settings
1898 * @hw: Struct containing variables accessed by shared code
 
1899 *
1900 * Sets MAC speed and duplex settings to reflect the those in the PHY
1901 * The contents of the PHY register containing the needed information need to
1902 * be passed in.
1903 */
1904static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1905{
1906	u32 ctrl;
1907	s32 ret_val;
1908	u16 phy_data;
1909
 
 
1910	/* 82544 or newer MAC, Auto Speed Detection takes care of
1911	 * MAC speed/duplex configuration.
1912	 */
1913	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1914		return E1000_SUCCESS;
1915
1916	/* Read the Device Control Register and set the bits to Force Speed
1917	 * and Duplex.
1918	 */
1919	ctrl = er32(CTRL);
1920	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1921	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1922
1923	switch (hw->phy_type) {
1924	case e1000_phy_8201:
1925		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1926		if (ret_val)
1927			return ret_val;
1928
1929		if (phy_data & RTL_PHY_CTRL_FD)
1930			ctrl |= E1000_CTRL_FD;
1931		else
1932			ctrl &= ~E1000_CTRL_FD;
1933
1934		if (phy_data & RTL_PHY_CTRL_SPD_100)
1935			ctrl |= E1000_CTRL_SPD_100;
1936		else
1937			ctrl |= E1000_CTRL_SPD_10;
1938
1939		e1000_config_collision_dist(hw);
1940		break;
1941	default:
1942		/* Set up duplex in the Device Control and Transmit Control
1943		 * registers depending on negotiated values.
1944		 */
1945		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1946					     &phy_data);
1947		if (ret_val)
1948			return ret_val;
1949
1950		if (phy_data & M88E1000_PSSR_DPLX)
1951			ctrl |= E1000_CTRL_FD;
1952		else
1953			ctrl &= ~E1000_CTRL_FD;
1954
1955		e1000_config_collision_dist(hw);
1956
1957		/* Set up speed in the Device Control register depending on
1958		 * negotiated values.
1959		 */
1960		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1961			ctrl |= E1000_CTRL_SPD_1000;
1962		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1963			 M88E1000_PSSR_100MBS)
1964			ctrl |= E1000_CTRL_SPD_100;
1965	}
1966
1967	/* Write the configured values back to the Device Control Reg. */
1968	ew32(CTRL, ctrl);
1969	return E1000_SUCCESS;
1970}
1971
1972/**
1973 * e1000_force_mac_fc - force flow control settings
1974 * @hw: Struct containing variables accessed by shared code
1975 *
1976 * Forces the MAC's flow control settings.
1977 * Sets the TFCE and RFCE bits in the device control register to reflect
1978 * the adapter settings. TFCE and RFCE need to be explicitly set by
1979 * software when a Copper PHY is used because autonegotiation is managed
1980 * by the PHY rather than the MAC. Software must also configure these
1981 * bits when link is forced on a fiber connection.
1982 */
1983s32 e1000_force_mac_fc(struct e1000_hw *hw)
1984{
1985	u32 ctrl;
1986
 
 
1987	/* Get the current configuration of the Device Control Register */
1988	ctrl = er32(CTRL);
1989
1990	/* Because we didn't get link via the internal auto-negotiation
1991	 * mechanism (we either forced link or we got link via PHY
1992	 * auto-neg), we have to manually enable/disable transmit an
1993	 * receive flow control.
1994	 *
1995	 * The "Case" statement below enables/disable flow control
1996	 * according to the "hw->fc" parameter.
1997	 *
1998	 * The possible values of the "fc" parameter are:
1999	 *      0:  Flow control is completely disabled
2000	 *      1:  Rx flow control is enabled (we can receive pause
2001	 *          frames but not send pause frames).
2002	 *      2:  Tx flow control is enabled (we can send pause frames
2003	 *          but we do not receive pause frames).
2004	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2005	 *  other:  No other values should be possible at this point.
2006	 */
2007
2008	switch (hw->fc) {
2009	case E1000_FC_NONE:
2010		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2011		break;
2012	case E1000_FC_RX_PAUSE:
2013		ctrl &= (~E1000_CTRL_TFCE);
2014		ctrl |= E1000_CTRL_RFCE;
2015		break;
2016	case E1000_FC_TX_PAUSE:
2017		ctrl &= (~E1000_CTRL_RFCE);
2018		ctrl |= E1000_CTRL_TFCE;
2019		break;
2020	case E1000_FC_FULL:
2021		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2022		break;
2023	default:
2024		e_dbg("Flow control param set incorrectly\n");
2025		return -E1000_ERR_CONFIG;
2026	}
2027
2028	/* Disable TX Flow Control for 82542 (rev 2.0) */
2029	if (hw->mac_type == e1000_82542_rev2_0)
2030		ctrl &= (~E1000_CTRL_TFCE);
2031
2032	ew32(CTRL, ctrl);
2033	return E1000_SUCCESS;
2034}
2035
2036/**
2037 * e1000_config_fc_after_link_up - configure flow control after autoneg
2038 * @hw: Struct containing variables accessed by shared code
2039 *
2040 * Configures flow control settings after link is established
2041 * Should be called immediately after a valid link has been established.
2042 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2043 * and autonegotiation is enabled, the MAC flow control settings will be set
2044 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2045 * and RFCE bits will be automatically set to the negotiated flow control mode.
2046 */
2047static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2048{
2049	s32 ret_val;
2050	u16 mii_status_reg;
2051	u16 mii_nway_adv_reg;
2052	u16 mii_nway_lp_ability_reg;
2053	u16 speed;
2054	u16 duplex;
2055
 
 
2056	/* Check for the case where we have fiber media and auto-neg failed
2057	 * so we had to force link.  In this case, we need to force the
2058	 * configuration of the MAC to match the "fc" parameter.
2059	 */
2060	if (((hw->media_type == e1000_media_type_fiber) &&
2061	     (hw->autoneg_failed)) ||
2062	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2063	     (hw->autoneg_failed)) ||
2064	    ((hw->media_type == e1000_media_type_copper) &&
2065	     (!hw->autoneg))) {
2066		ret_val = e1000_force_mac_fc(hw);
2067		if (ret_val) {
2068			e_dbg("Error forcing flow control settings\n");
2069			return ret_val;
2070		}
2071	}
2072
2073	/* Check for the case where we have copper media and auto-neg is
2074	 * enabled.  In this case, we need to check and see if Auto-Neg
2075	 * has completed, and if so, how the PHY and link partner has
2076	 * flow control configured.
2077	 */
2078	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2079		/* Read the MII Status Register and check to see if AutoNeg
2080		 * has completed.  We read this twice because this reg has
2081		 * some "sticky" (latched) bits.
2082		 */
2083		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2084		if (ret_val)
2085			return ret_val;
2086		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2087		if (ret_val)
2088			return ret_val;
2089
2090		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2091			/* The AutoNeg process has completed, so we now need to
2092			 * read both the Auto Negotiation Advertisement Register
2093			 * (Address 4) and the Auto_Negotiation Base Page
2094			 * Ability Register (Address 5) to determine how flow
2095			 * control was negotiated.
2096			 */
2097			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2098						     &mii_nway_adv_reg);
2099			if (ret_val)
2100				return ret_val;
2101			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2102						     &mii_nway_lp_ability_reg);
2103			if (ret_val)
2104				return ret_val;
2105
2106			/* Two bits in the Auto Negotiation Advertisement
2107			 * Register (Address 4) and two bits in the Auto
2108			 * Negotiation Base Page Ability Register (Address 5)
2109			 * determine flow control for both the PHY and the link
2110			 * partner.  The following table, taken out of the IEEE
2111			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2112			 * PAUSE resolution bits and how flow control is
2113			 * determined based upon these settings.
2114			 * NOTE:  DC = Don't Care
2115			 *
2116			 *   LOCAL DEVICE  |   LINK PARTNER
2117			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2118			 *-------|---------|-------|---------|------------------
2119			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2120			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2121			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2122			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2123			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2124			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2125			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2126			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2127			 *
2128			 */
2129			/* Are both PAUSE bits set to 1?  If so, this implies
2130			 * Symmetric Flow Control is enabled at both ends.  The
2131			 * ASM_DIR bits are irrelevant per the spec.
2132			 *
2133			 * For Symmetric Flow Control:
2134			 *
2135			 *   LOCAL DEVICE  |   LINK PARTNER
2136			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2137			 *-------|---------|-------|---------|------------------
2138			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2139			 *
2140			 */
2141			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2142			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2143				/* Now we need to check if the user selected Rx
2144				 * ONLY of pause frames.  In this case, we had
2145				 * to advertise FULL flow control because we
2146				 * could not advertise Rx ONLY. Hence, we must
2147				 * now check to see if we need to turn OFF the
2148				 * TRANSMISSION of PAUSE frames.
2149				 */
2150				if (hw->original_fc == E1000_FC_FULL) {
2151					hw->fc = E1000_FC_FULL;
2152					e_dbg("Flow Control = FULL.\n");
2153				} else {
2154					hw->fc = E1000_FC_RX_PAUSE;
2155					e_dbg
2156					    ("Flow Control = RX PAUSE frames only.\n");
2157				}
2158			}
2159			/* For receiving PAUSE frames ONLY.
2160			 *
2161			 *   LOCAL DEVICE  |   LINK PARTNER
2162			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2163			 *-------|---------|-------|---------|------------------
2164			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2165			 *
2166			 */
2167			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2168				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2169				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2170				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 
2171				hw->fc = E1000_FC_TX_PAUSE;
2172				e_dbg
2173				    ("Flow Control = TX PAUSE frames only.\n");
2174			}
2175			/* For transmitting PAUSE frames ONLY.
2176			 *
2177			 *   LOCAL DEVICE  |   LINK PARTNER
2178			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2179			 *-------|---------|-------|---------|------------------
2180			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2181			 *
2182			 */
2183			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2184				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2185				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2186				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 
2187				hw->fc = E1000_FC_RX_PAUSE;
2188				e_dbg
2189				    ("Flow Control = RX PAUSE frames only.\n");
2190			}
2191			/* Per the IEEE spec, at this point flow control should
2192			 * be disabled.  However, we want to consider that we
2193			 * could be connected to a legacy switch that doesn't
2194			 * advertise desired flow control, but can be forced on
2195			 * the link partner.  So if we advertised no flow
2196			 * control, that is what we will resolve to.  If we
2197			 * advertised some kind of receive capability (Rx Pause
2198			 * Only or Full Flow Control) and the link partner
2199			 * advertised none, we will configure ourselves to
2200			 * enable Rx Flow Control only.  We can do this safely
2201			 * for two reasons:  If the link partner really
2202			 * didn't want flow control enabled, and we enable Rx,
2203			 * no harm done since we won't be receiving any PAUSE
2204			 * frames anyway.  If the intent on the link partner was
2205			 * to have flow control enabled, then by us enabling Rx
2206			 * only, we can at least receive pause frames and
2207			 * process them. This is a good idea because in most
2208			 * cases, since we are predominantly a server NIC, more
2209			 * times than not we will be asked to delay transmission
2210			 * of packets than asking our link partner to pause
2211			 * transmission of frames.
2212			 */
2213			else if ((hw->original_fc == E1000_FC_NONE ||
2214				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2215				 hw->fc_strict_ieee) {
2216				hw->fc = E1000_FC_NONE;
2217				e_dbg("Flow Control = NONE.\n");
2218			} else {
2219				hw->fc = E1000_FC_RX_PAUSE;
2220				e_dbg
2221				    ("Flow Control = RX PAUSE frames only.\n");
2222			}
2223
2224			/* Now we need to do one last check...  If we auto-
2225			 * negotiated to HALF DUPLEX, flow control should not be
2226			 * enabled per IEEE 802.3 spec.
2227			 */
2228			ret_val =
2229			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2230			if (ret_val) {
2231				e_dbg
2232				    ("Error getting link speed and duplex\n");
2233				return ret_val;
2234			}
2235
2236			if (duplex == HALF_DUPLEX)
2237				hw->fc = E1000_FC_NONE;
2238
2239			/* Now we call a subroutine to actually force the MAC
2240			 * controller to use the correct flow control settings.
2241			 */
2242			ret_val = e1000_force_mac_fc(hw);
2243			if (ret_val) {
2244				e_dbg
2245				    ("Error forcing flow control settings\n");
2246				return ret_val;
2247			}
2248		} else {
2249			e_dbg
2250			    ("Copper PHY and Auto Neg has not completed.\n");
2251		}
2252	}
2253	return E1000_SUCCESS;
2254}
2255
2256/**
2257 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2258 * @hw: pointer to the HW structure
2259 *
2260 * Checks for link up on the hardware.  If link is not up and we have
2261 * a signal, then we need to force link up.
2262 */
2263static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2264{
2265	u32 rxcw;
2266	u32 ctrl;
2267	u32 status;
2268	s32 ret_val = E1000_SUCCESS;
2269
 
 
2270	ctrl = er32(CTRL);
2271	status = er32(STATUS);
2272	rxcw = er32(RXCW);
2273
2274	/* If we don't have link (auto-negotiation failed or link partner
 
2275	 * cannot auto-negotiate), and our link partner is not trying to
2276	 * auto-negotiate with us (we are receiving idles or data),
2277	 * we need to force link up. We also need to give auto-negotiation
2278	 * time to complete.
2279	 */
2280	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2281	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2282		if (hw->autoneg_failed == 0) {
2283			hw->autoneg_failed = 1;
2284			goto out;
2285		}
2286		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2287
2288		/* Disable auto-negotiation in the TXCW register */
2289		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2290
2291		/* Force link-up and also force full-duplex. */
2292		ctrl = er32(CTRL);
2293		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2294		ew32(CTRL, ctrl);
2295
2296		/* Configure Flow Control after forcing link up. */
2297		ret_val = e1000_config_fc_after_link_up(hw);
2298		if (ret_val) {
2299			e_dbg("Error configuring flow control\n");
2300			goto out;
2301		}
2302	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2303		/* If we are forcing link and we are receiving /C/ ordered
 
2304		 * sets, re-enable auto-negotiation in the TXCW register
2305		 * and disable forced link in the Device Control register
2306		 * in an attempt to auto-negotiate with our link partner.
2307		 */
2308		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2309		ew32(TXCW, hw->txcw);
2310		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2311
2312		hw->serdes_has_link = true;
2313	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2314		/* If we force link for non-auto-negotiation switch, check
 
2315		 * link status based on MAC synchronization for internal
2316		 * serdes media type.
2317		 */
2318		/* SYNCH bit and IV bit are sticky. */
2319		udelay(10);
2320		rxcw = er32(RXCW);
2321		if (rxcw & E1000_RXCW_SYNCH) {
2322			if (!(rxcw & E1000_RXCW_IV)) {
2323				hw->serdes_has_link = true;
2324				e_dbg("SERDES: Link up - forced.\n");
2325			}
2326		} else {
2327			hw->serdes_has_link = false;
2328			e_dbg("SERDES: Link down - force failed.\n");
2329		}
2330	}
2331
2332	if (E1000_TXCW_ANE & er32(TXCW)) {
2333		status = er32(STATUS);
2334		if (status & E1000_STATUS_LU) {
2335			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2336			udelay(10);
2337			rxcw = er32(RXCW);
2338			if (rxcw & E1000_RXCW_SYNCH) {
2339				if (!(rxcw & E1000_RXCW_IV)) {
2340					hw->serdes_has_link = true;
2341					e_dbg("SERDES: Link up - autoneg "
2342						 "completed successfully.\n");
2343				} else {
2344					hw->serdes_has_link = false;
2345					e_dbg("SERDES: Link down - invalid"
2346						 "codewords detected in autoneg.\n");
2347				}
2348			} else {
2349				hw->serdes_has_link = false;
2350				e_dbg("SERDES: Link down - no sync.\n");
2351			}
2352		} else {
2353			hw->serdes_has_link = false;
2354			e_dbg("SERDES: Link down - autoneg failed\n");
2355		}
2356	}
2357
2358      out:
2359	return ret_val;
2360}
2361
2362/**
2363 * e1000_check_for_link
2364 * @hw: Struct containing variables accessed by shared code
2365 *
2366 * Checks to see if the link status of the hardware has changed.
2367 * Called by any function that needs to check the link status of the adapter.
2368 */
2369s32 e1000_check_for_link(struct e1000_hw *hw)
2370{
 
 
2371	u32 status;
2372	u32 rctl;
2373	u32 icr;
 
2374	s32 ret_val;
2375	u16 phy_data;
2376
2377	er32(CTRL);
 
 
2378	status = er32(STATUS);
2379
2380	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2381	 * set when the optics detect a signal. On older adapters, it will be
2382	 * cleared when there is a signal.  This applies to fiber media only.
2383	 */
2384	if ((hw->media_type == e1000_media_type_fiber) ||
2385	    (hw->media_type == e1000_media_type_internal_serdes)) {
2386		er32(RXCW);
2387
2388		if (hw->media_type == e1000_media_type_fiber) {
 
 
 
2389			if (status & E1000_STATUS_LU)
2390				hw->get_link_status = false;
2391		}
2392	}
2393
2394	/* If we have a copper PHY then we only want to go out to the PHY
2395	 * registers to see if Auto-Neg has completed and/or if our link
2396	 * status has changed.  The get_link_status flag will be set if we
2397	 * receive a Link Status Change interrupt or we have Rx Sequence
2398	 * Errors.
2399	 */
2400	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2401		/* First we want to see if the MII Status Register reports
2402		 * link.  If so, then we want to get the current speed/duplex
2403		 * of the PHY.
2404		 * Read the register twice since the link bit is sticky.
2405		 */
2406		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2407		if (ret_val)
2408			return ret_val;
2409		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2410		if (ret_val)
2411			return ret_val;
2412
2413		if (phy_data & MII_SR_LINK_STATUS) {
2414			hw->get_link_status = false;
2415			/* Check if there was DownShift, must be checked
2416			 * immediately after link-up
2417			 */
2418			e1000_check_downshift(hw);
2419
2420			/* If we are on 82544 or 82543 silicon and speed/duplex
2421			 * are forced to 10H or 10F, then we will implement the
2422			 * polarity reversal workaround.  We disable interrupts
2423			 * first, and upon returning, place the devices
2424			 * interrupt state to its previous value except for the
2425			 * link status change interrupt which will
2426			 * happen due to the execution of this workaround.
2427			 */
2428
2429			if ((hw->mac_type == e1000_82544 ||
2430			     hw->mac_type == e1000_82543) &&
2431			    (!hw->autoneg) &&
2432			    (hw->forced_speed_duplex == e1000_10_full ||
2433			     hw->forced_speed_duplex == e1000_10_half)) {
2434				ew32(IMC, 0xffffffff);
2435				ret_val =
2436				    e1000_polarity_reversal_workaround(hw);
2437				icr = er32(ICR);
2438				ew32(ICS, (icr & ~E1000_ICS_LSC));
2439				ew32(IMS, IMS_ENABLE_MASK);
2440			}
2441
2442		} else {
2443			/* No link detected */
2444			e1000_config_dsp_after_link_change(hw, false);
2445			return 0;
2446		}
2447
2448		/* If we are forcing speed/duplex, then we simply return since
2449		 * we have already determined whether we have link or not.
2450		 */
2451		if (!hw->autoneg)
2452			return -E1000_ERR_CONFIG;
2453
2454		/* optimize the dsp settings for the igp phy */
2455		e1000_config_dsp_after_link_change(hw, true);
2456
2457		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2458		 * have Si on board that is 82544 or newer, Auto
2459		 * Speed Detection takes care of MAC speed/duplex
2460		 * configuration.  So we only need to configure Collision
2461		 * Distance in the MAC.  Otherwise, we need to force
2462		 * speed/duplex on the MAC to the current PHY speed/duplex
2463		 * settings.
2464		 */
2465		if ((hw->mac_type >= e1000_82544) &&
2466		    (hw->mac_type != e1000_ce4100))
2467			e1000_config_collision_dist(hw);
2468		else {
2469			ret_val = e1000_config_mac_to_phy(hw);
2470			if (ret_val) {
2471				e_dbg
2472				    ("Error configuring MAC to PHY settings\n");
2473				return ret_val;
2474			}
2475		}
2476
2477		/* Configure Flow Control now that Auto-Neg has completed.
2478		 * First, we need to restore the desired flow control settings
2479		 * because we may have had to re-autoneg with a different link
2480		 * partner.
2481		 */
2482		ret_val = e1000_config_fc_after_link_up(hw);
2483		if (ret_val) {
2484			e_dbg("Error configuring flow control\n");
2485			return ret_val;
2486		}
2487
2488		/* At this point we know that we are on copper and we have
2489		 * auto-negotiated link.  These are conditions for checking the
2490		 * link partner capability register.  We use the link speed to
2491		 * determine if TBI compatibility needs to be turned on or off.
2492		 * If the link is not at gigabit speed, then TBI compatibility
2493		 * is not needed.  If we are at gigabit speed, we turn on TBI
2494		 * compatibility.
2495		 */
2496		if (hw->tbi_compatibility_en) {
2497			u16 speed, duplex;
2498
2499			ret_val =
2500			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2501
2502			if (ret_val) {
2503				e_dbg
2504				    ("Error getting link speed and duplex\n");
2505				return ret_val;
2506			}
2507			if (speed != SPEED_1000) {
2508				/* If link speed is not set to gigabit speed, we
2509				 * do not need to enable TBI compatibility.
2510				 */
2511				if (hw->tbi_compatibility_on) {
2512					/* If we previously were in the mode,
2513					 * turn it off.
2514					 */
2515					rctl = er32(RCTL);
2516					rctl &= ~E1000_RCTL_SBP;
2517					ew32(RCTL, rctl);
2518					hw->tbi_compatibility_on = false;
2519				}
2520			} else {
2521				/* If TBI compatibility is was previously off,
2522				 * turn it on. For compatibility with a TBI link
2523				 * partner, we will store bad packets. Some
2524				 * frames have an additional byte on the end and
2525				 * will look like CRC errors to the hardware.
2526				 */
2527				if (!hw->tbi_compatibility_on) {
2528					hw->tbi_compatibility_on = true;
2529					rctl = er32(RCTL);
2530					rctl |= E1000_RCTL_SBP;
2531					ew32(RCTL, rctl);
2532				}
2533			}
2534		}
2535	}
2536
2537	if ((hw->media_type == e1000_media_type_fiber) ||
2538	    (hw->media_type == e1000_media_type_internal_serdes))
2539		e1000_check_for_serdes_link_generic(hw);
2540
2541	return E1000_SUCCESS;
2542}
2543
2544/**
2545 * e1000_get_speed_and_duplex
2546 * @hw: Struct containing variables accessed by shared code
2547 * @speed: Speed of the connection
2548 * @duplex: Duplex setting of the connection
2549 *
2550 * Detects the current speed and duplex settings of the hardware.
2551 */
2552s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2553{
2554	u32 status;
2555	s32 ret_val;
2556	u16 phy_data;
2557
 
 
2558	if (hw->mac_type >= e1000_82543) {
2559		status = er32(STATUS);
2560		if (status & E1000_STATUS_SPEED_1000) {
2561			*speed = SPEED_1000;
2562			e_dbg("1000 Mbs, ");
2563		} else if (status & E1000_STATUS_SPEED_100) {
2564			*speed = SPEED_100;
2565			e_dbg("100 Mbs, ");
2566		} else {
2567			*speed = SPEED_10;
2568			e_dbg("10 Mbs, ");
2569		}
2570
2571		if (status & E1000_STATUS_FD) {
2572			*duplex = FULL_DUPLEX;
2573			e_dbg("Full Duplex\n");
2574		} else {
2575			*duplex = HALF_DUPLEX;
2576			e_dbg(" Half Duplex\n");
2577		}
2578	} else {
2579		e_dbg("1000 Mbs, Full Duplex\n");
2580		*speed = SPEED_1000;
2581		*duplex = FULL_DUPLEX;
2582	}
2583
2584	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2585	 * even if it is operating at half duplex.  Here we set the duplex
2586	 * settings to match the duplex in the link partner's capabilities.
2587	 */
2588	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2589		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2590		if (ret_val)
2591			return ret_val;
2592
2593		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2594			*duplex = HALF_DUPLEX;
2595		else {
2596			ret_val =
2597			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2598			if (ret_val)
2599				return ret_val;
2600			if ((*speed == SPEED_100 &&
2601			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2602			    (*speed == SPEED_10 &&
2603			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2604				*duplex = HALF_DUPLEX;
2605		}
2606	}
2607
2608	return E1000_SUCCESS;
2609}
2610
2611/**
2612 * e1000_wait_autoneg
2613 * @hw: Struct containing variables accessed by shared code
2614 *
2615 * Blocks until autoneg completes or times out (~4.5 seconds)
2616 */
2617static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2618{
2619	s32 ret_val;
2620	u16 i;
2621	u16 phy_data;
2622
 
2623	e_dbg("Waiting for Auto-Neg to complete.\n");
2624
2625	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2626	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2627		/* Read the MII Status Register and wait for Auto-Neg
2628		 * Complete bit to be set.
2629		 */
2630		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2631		if (ret_val)
2632			return ret_val;
2633		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2634		if (ret_val)
2635			return ret_val;
2636		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2637			return E1000_SUCCESS;
2638
2639		msleep(100);
2640	}
2641	return E1000_SUCCESS;
2642}
2643
2644/**
2645 * e1000_raise_mdi_clk - Raises the Management Data Clock
2646 * @hw: Struct containing variables accessed by shared code
2647 * @ctrl: Device control register's current value
2648 */
2649static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2650{
2651	/* Raise the clock input to the Management Data Clock (by setting the
2652	 * MDC bit), and then delay 10 microseconds.
2653	 */
2654	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2655	E1000_WRITE_FLUSH();
2656	udelay(10);
2657}
2658
2659/**
2660 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2661 * @hw: Struct containing variables accessed by shared code
2662 * @ctrl: Device control register's current value
2663 */
2664static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2665{
2666	/* Lower the clock input to the Management Data Clock (by clearing the
2667	 * MDC bit), and then delay 10 microseconds.
2668	 */
2669	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2670	E1000_WRITE_FLUSH();
2671	udelay(10);
2672}
2673
2674/**
2675 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2676 * @hw: Struct containing variables accessed by shared code
2677 * @data: Data to send out to the PHY
2678 * @count: Number of bits to shift out
2679 *
2680 * Bits are shifted out in MSB to LSB order.
2681 */
2682static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2683{
2684	u32 ctrl;
2685	u32 mask;
2686
2687	/* We need to shift "count" number of bits out to the PHY. So, the value
2688	 * in the "data" parameter will be shifted out to the PHY one bit at a
2689	 * time. In order to do this, "data" must be broken down into bits.
2690	 */
2691	mask = 0x01;
2692	mask <<= (count - 1);
2693
2694	ctrl = er32(CTRL);
2695
2696	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2697	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2698
2699	while (mask) {
2700		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2701		 * "1" and then raising and lowering the Management Data Clock.
2702		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2703		 * "0" and then raising and lowering the clock.
2704		 */
2705		if (data & mask)
2706			ctrl |= E1000_CTRL_MDIO;
2707		else
2708			ctrl &= ~E1000_CTRL_MDIO;
2709
2710		ew32(CTRL, ctrl);
2711		E1000_WRITE_FLUSH();
2712
2713		udelay(10);
2714
2715		e1000_raise_mdi_clk(hw, &ctrl);
2716		e1000_lower_mdi_clk(hw, &ctrl);
2717
2718		mask = mask >> 1;
2719	}
2720}
2721
2722/**
2723 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2724 * @hw: Struct containing variables accessed by shared code
2725 *
2726 * Bits are shifted in MSB to LSB order.
2727 */
2728static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2729{
2730	u32 ctrl;
2731	u16 data = 0;
2732	u8 i;
2733
2734	/* In order to read a register from the PHY, we need to shift in a total
2735	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2736	 * used to avoid contention on the MDIO pin when a read operation is
2737	 * performed. These two bits are ignored by us and thrown away. Bits are
2738	 * "shifted in" by raising the input to the Management Data Clock
2739	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2740	 */
2741	ctrl = er32(CTRL);
2742
2743	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2744	 * input.
2745	 */
2746	ctrl &= ~E1000_CTRL_MDIO_DIR;
2747	ctrl &= ~E1000_CTRL_MDIO;
2748
2749	ew32(CTRL, ctrl);
2750	E1000_WRITE_FLUSH();
2751
2752	/* Raise and Lower the clock before reading in the data. This accounts
2753	 * for the turnaround bits. The first clock occurred when we clocked out
2754	 * the last bit of the Register Address.
2755	 */
2756	e1000_raise_mdi_clk(hw, &ctrl);
2757	e1000_lower_mdi_clk(hw, &ctrl);
2758
2759	for (data = 0, i = 0; i < 16; i++) {
2760		data = data << 1;
2761		e1000_raise_mdi_clk(hw, &ctrl);
2762		ctrl = er32(CTRL);
2763		/* Check to see if we shifted in a "1". */
2764		if (ctrl & E1000_CTRL_MDIO)
2765			data |= 1;
2766		e1000_lower_mdi_clk(hw, &ctrl);
2767	}
2768
2769	e1000_raise_mdi_clk(hw, &ctrl);
2770	e1000_lower_mdi_clk(hw, &ctrl);
2771
2772	return data;
2773}
2774
 
2775/**
2776 * e1000_read_phy_reg - read a phy register
2777 * @hw: Struct containing variables accessed by shared code
2778 * @reg_addr: address of the PHY register to read
2779 * @phy_data: pointer to the value on the PHY register
2780 *
2781 * Reads the value from a PHY register, if the value is on a specific non zero
2782 * page, sets the page first.
2783 */
2784s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2785{
2786	u32 ret_val;
2787	unsigned long flags;
2788
2789	spin_lock_irqsave(&e1000_phy_lock, flags);
2790
2791	if ((hw->phy_type == e1000_phy_igp) &&
2792	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2793		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2794						 (u16) reg_addr);
2795		if (ret_val)
2796			goto out;
2797	}
2798
2799	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2800					phy_data);
2801out:
2802	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2803
2804	return ret_val;
2805}
2806
2807static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2808				 u16 *phy_data)
2809{
2810	u32 i;
2811	u32 mdic = 0;
2812	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2813
 
 
2814	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2815		e_dbg("PHY Address %d is out of range\n", reg_addr);
2816		return -E1000_ERR_PARAM;
2817	}
2818
2819	if (hw->mac_type > e1000_82543) {
2820		/* Set up Op-code, Phy Address, and register address in the MDI
2821		 * Control register.  The MAC will take care of interfacing with
2822		 * the PHY to retrieve the desired data.
2823		 */
2824		if (hw->mac_type == e1000_ce4100) {
2825			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2826				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2827				(INTEL_CE_GBE_MDIC_OP_READ) |
2828				(INTEL_CE_GBE_MDIC_GO));
2829
2830			writel(mdic, E1000_MDIO_CMD);
2831
2832			/* Poll the ready bit to see if the MDI read
2833			 * completed
2834			 */
2835			for (i = 0; i < 64; i++) {
2836				udelay(50);
2837				mdic = readl(E1000_MDIO_CMD);
2838				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2839					break;
2840			}
2841
2842			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2843				e_dbg("MDI Read did not complete\n");
2844				return -E1000_ERR_PHY;
2845			}
2846
2847			mdic = readl(E1000_MDIO_STS);
2848			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2849				e_dbg("MDI Read Error\n");
2850				return -E1000_ERR_PHY;
2851			}
2852			*phy_data = (u16)mdic;
2853		} else {
2854			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2855				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2856				(E1000_MDIC_OP_READ));
2857
2858			ew32(MDIC, mdic);
2859
2860			/* Poll the ready bit to see if the MDI read
2861			 * completed
2862			 */
2863			for (i = 0; i < 64; i++) {
2864				udelay(50);
2865				mdic = er32(MDIC);
2866				if (mdic & E1000_MDIC_READY)
2867					break;
2868			}
2869			if (!(mdic & E1000_MDIC_READY)) {
2870				e_dbg("MDI Read did not complete\n");
2871				return -E1000_ERR_PHY;
2872			}
2873			if (mdic & E1000_MDIC_ERROR) {
2874				e_dbg("MDI Error\n");
2875				return -E1000_ERR_PHY;
2876			}
2877			*phy_data = (u16)mdic;
2878		}
2879	} else {
2880		/* We must first send a preamble through the MDIO pin to signal
2881		 * the beginning of an MII instruction.  This is done by sending
2882		 * 32 consecutive "1" bits.
2883		 */
2884		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2885
2886		/* Now combine the next few fields that are required for a read
2887		 * operation.  We use this method instead of calling the
2888		 * e1000_shift_out_mdi_bits routine five different times. The
2889		 * format of a MII read instruction consists of a shift out of
2890		 * 14 bits and is defined as follows:
2891		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2892		 * followed by a shift in of 18 bits.  This first two bits
2893		 * shifted in are TurnAround bits used to avoid contention on
2894		 * the MDIO pin when a READ operation is performed.  These two
2895		 * bits are thrown away followed by a shift in of 16 bits which
2896		 * contains the desired data.
2897		 */
2898		mdic = ((reg_addr) | (phy_addr << 5) |
2899			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2900
2901		e1000_shift_out_mdi_bits(hw, mdic, 14);
2902
2903		/* Now that we've shifted out the read command to the MII, we
2904		 * need to "shift in" the 16-bit value (18 total bits) of the
2905		 * requested PHY register address.
2906		 */
2907		*phy_data = e1000_shift_in_mdi_bits(hw);
2908	}
2909	return E1000_SUCCESS;
2910}
2911
2912/**
2913 * e1000_write_phy_reg - write a phy register
2914 *
2915 * @hw: Struct containing variables accessed by shared code
2916 * @reg_addr: address of the PHY register to write
2917 * @phy_data: data to write to the PHY
2918 *
2919 * Writes a value to a PHY register
2920 */
2921s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2922{
2923	u32 ret_val;
2924	unsigned long flags;
2925
2926	spin_lock_irqsave(&e1000_phy_lock, flags);
2927
2928	if ((hw->phy_type == e1000_phy_igp) &&
2929	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2930		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2931						 (u16)reg_addr);
2932		if (ret_val) {
2933			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2934			return ret_val;
2935		}
2936	}
2937
2938	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2939					 phy_data);
2940	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2941
2942	return ret_val;
2943}
2944
2945static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2946				  u16 phy_data)
2947{
2948	u32 i;
2949	u32 mdic = 0;
2950	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2951
 
 
2952	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2953		e_dbg("PHY Address %d is out of range\n", reg_addr);
2954		return -E1000_ERR_PARAM;
2955	}
2956
2957	if (hw->mac_type > e1000_82543) {
2958		/* Set up Op-code, Phy Address, register address, and data
2959		 * intended for the PHY register in the MDI Control register.
2960		 * The MAC will take care of interfacing with the PHY to send
2961		 * the desired data.
2962		 */
2963		if (hw->mac_type == e1000_ce4100) {
2964			mdic = (((u32)phy_data) |
2965				(reg_addr << E1000_MDIC_REG_SHIFT) |
2966				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2967				(INTEL_CE_GBE_MDIC_OP_WRITE) |
2968				(INTEL_CE_GBE_MDIC_GO));
2969
2970			writel(mdic, E1000_MDIO_CMD);
2971
2972			/* Poll the ready bit to see if the MDI read
2973			 * completed
2974			 */
2975			for (i = 0; i < 640; i++) {
2976				udelay(5);
2977				mdic = readl(E1000_MDIO_CMD);
2978				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2979					break;
2980			}
2981			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2982				e_dbg("MDI Write did not complete\n");
2983				return -E1000_ERR_PHY;
2984			}
2985		} else {
2986			mdic = (((u32)phy_data) |
2987				(reg_addr << E1000_MDIC_REG_SHIFT) |
2988				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2989				(E1000_MDIC_OP_WRITE));
2990
2991			ew32(MDIC, mdic);
2992
2993			/* Poll the ready bit to see if the MDI read
2994			 * completed
2995			 */
2996			for (i = 0; i < 641; i++) {
2997				udelay(5);
2998				mdic = er32(MDIC);
2999				if (mdic & E1000_MDIC_READY)
3000					break;
3001			}
3002			if (!(mdic & E1000_MDIC_READY)) {
3003				e_dbg("MDI Write did not complete\n");
3004				return -E1000_ERR_PHY;
3005			}
3006		}
3007	} else {
3008		/* We'll need to use the SW defined pins to shift the write
3009		 * command out to the PHY. We first send a preamble to the PHY
3010		 * to signal the beginning of the MII instruction.  This is done
3011		 * by sending 32 consecutive "1" bits.
3012		 */
3013		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3014
3015		/* Now combine the remaining required fields that will indicate
3016		 * a write operation. We use this method instead of calling the
3017		 * e1000_shift_out_mdi_bits routine for each field in the
3018		 * command. The format of a MII write instruction is as follows:
3019		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3020		 */
3021		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3022			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3023		mdic <<= 16;
3024		mdic |= (u32)phy_data;
3025
3026		e1000_shift_out_mdi_bits(hw, mdic, 32);
3027	}
3028
3029	return E1000_SUCCESS;
3030}
3031
3032/**
3033 * e1000_phy_hw_reset - reset the phy, hardware style
3034 * @hw: Struct containing variables accessed by shared code
3035 *
3036 * Returns the PHY to the power-on reset state
3037 */
3038s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3039{
3040	u32 ctrl, ctrl_ext;
3041	u32 led_ctrl;
3042
 
 
3043	e_dbg("Resetting Phy...\n");
3044
3045	if (hw->mac_type > e1000_82543) {
3046		/* Read the device control register and assert the
3047		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3048		 * For e1000 hardware, we delay for 10ms between the assert
3049		 * and de-assert.
3050		 */
3051		ctrl = er32(CTRL);
3052		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3053		E1000_WRITE_FLUSH();
3054
3055		msleep(10);
3056
3057		ew32(CTRL, ctrl);
3058		E1000_WRITE_FLUSH();
3059
3060	} else {
3061		/* Read the Extended Device Control Register, assert the
3062		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3063		 * out of reset.
3064		 */
3065		ctrl_ext = er32(CTRL_EXT);
3066		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3067		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3068		ew32(CTRL_EXT, ctrl_ext);
3069		E1000_WRITE_FLUSH();
3070		msleep(10);
3071		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3072		ew32(CTRL_EXT, ctrl_ext);
3073		E1000_WRITE_FLUSH();
3074	}
3075	udelay(150);
3076
3077	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3078		/* Configure activity LED after PHY reset */
3079		led_ctrl = er32(LEDCTL);
3080		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3081		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3082		ew32(LEDCTL, led_ctrl);
3083	}
3084
3085	/* Wait for FW to finish PHY configuration. */
3086	return e1000_get_phy_cfg_done(hw);
3087}
3088
3089/**
3090 * e1000_phy_reset - reset the phy to commit settings
3091 * @hw: Struct containing variables accessed by shared code
3092 *
3093 * Resets the PHY
3094 * Sets bit 15 of the MII Control register
3095 */
3096s32 e1000_phy_reset(struct e1000_hw *hw)
3097{
3098	s32 ret_val;
3099	u16 phy_data;
3100
 
 
3101	switch (hw->phy_type) {
3102	case e1000_phy_igp:
3103		ret_val = e1000_phy_hw_reset(hw);
3104		if (ret_val)
3105			return ret_val;
3106		break;
3107	default:
3108		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3109		if (ret_val)
3110			return ret_val;
3111
3112		phy_data |= MII_CR_RESET;
3113		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3114		if (ret_val)
3115			return ret_val;
3116
3117		udelay(1);
3118		break;
3119	}
3120
3121	if (hw->phy_type == e1000_phy_igp)
3122		e1000_phy_init_script(hw);
3123
3124	return E1000_SUCCESS;
3125}
3126
3127/**
3128 * e1000_detect_gig_phy - check the phy type
3129 * @hw: Struct containing variables accessed by shared code
3130 *
3131 * Probes the expected PHY address for known PHY IDs
3132 */
3133static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3134{
3135	s32 phy_init_status, ret_val;
3136	u16 phy_id_high, phy_id_low;
3137	bool match = false;
3138
 
 
3139	if (hw->phy_id != 0)
3140		return E1000_SUCCESS;
3141
3142	/* Read the PHY ID Registers to identify which PHY is onboard. */
3143	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3144	if (ret_val)
3145		return ret_val;
3146
3147	hw->phy_id = (u32)(phy_id_high << 16);
3148	udelay(20);
3149	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3150	if (ret_val)
3151		return ret_val;
3152
3153	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3154	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3155
3156	switch (hw->mac_type) {
3157	case e1000_82543:
3158		if (hw->phy_id == M88E1000_E_PHY_ID)
3159			match = true;
3160		break;
3161	case e1000_82544:
3162		if (hw->phy_id == M88E1000_I_PHY_ID)
3163			match = true;
3164		break;
3165	case e1000_82540:
3166	case e1000_82545:
3167	case e1000_82545_rev_3:
3168	case e1000_82546:
3169	case e1000_82546_rev_3:
3170		if (hw->phy_id == M88E1011_I_PHY_ID)
3171			match = true;
3172		break;
3173	case e1000_ce4100:
3174		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3175		    (hw->phy_id == RTL8201N_PHY_ID) ||
3176		    (hw->phy_id == M88E1118_E_PHY_ID))
3177			match = true;
3178		break;
3179	case e1000_82541:
3180	case e1000_82541_rev_2:
3181	case e1000_82547:
3182	case e1000_82547_rev_2:
3183		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3184			match = true;
3185		break;
3186	default:
3187		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3188		return -E1000_ERR_CONFIG;
3189	}
3190	phy_init_status = e1000_set_phy_type(hw);
3191
3192	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3193		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3194		return E1000_SUCCESS;
3195	}
3196	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3197	return -E1000_ERR_PHY;
3198}
3199
3200/**
3201 * e1000_phy_reset_dsp - reset DSP
3202 * @hw: Struct containing variables accessed by shared code
3203 *
3204 * Resets the PHY's DSP
3205 */
3206static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3207{
3208	s32 ret_val;
 
3209
3210	do {
3211		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3212		if (ret_val)
3213			break;
3214		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3215		if (ret_val)
3216			break;
3217		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3218		if (ret_val)
3219			break;
3220		ret_val = E1000_SUCCESS;
3221	} while (0);
3222
3223	return ret_val;
3224}
3225
3226/**
3227 * e1000_phy_igp_get_info - get igp specific registers
3228 * @hw: Struct containing variables accessed by shared code
3229 * @phy_info: PHY information structure
3230 *
3231 * Get PHY information from various PHY registers for igp PHY only.
3232 */
3233static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3234				  struct e1000_phy_info *phy_info)
3235{
3236	s32 ret_val;
3237	u16 phy_data, min_length, max_length, average;
3238	e1000_rev_polarity polarity;
3239
 
 
3240	/* The downshift status is checked only once, after link is established,
3241	 * and it stored in the hw->speed_downgraded parameter.
3242	 */
3243	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3244
3245	/* IGP01E1000 does not need to support it. */
3246	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3247
3248	/* IGP01E1000 always correct polarity reversal */
3249	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3250
3251	/* Check polarity status */
3252	ret_val = e1000_check_polarity(hw, &polarity);
3253	if (ret_val)
3254		return ret_val;
3255
3256	phy_info->cable_polarity = polarity;
3257
3258	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3259	if (ret_val)
3260		return ret_val;
3261
3262	phy_info->mdix_mode =
3263	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3264				 IGP01E1000_PSSR_MDIX_SHIFT);
3265
3266	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3267	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3268		/* Local/Remote Receiver Information are only valid @ 1000
3269		 * Mbps
3270		 */
3271		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3272		if (ret_val)
3273			return ret_val;
3274
3275		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3276				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3277		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3278		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3279				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3280		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3281
3282		/* Get cable length */
3283		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3284		if (ret_val)
3285			return ret_val;
3286
3287		/* Translate to old method */
3288		average = (max_length + min_length) / 2;
3289
3290		if (average <= e1000_igp_cable_length_50)
3291			phy_info->cable_length = e1000_cable_length_50;
3292		else if (average <= e1000_igp_cable_length_80)
3293			phy_info->cable_length = e1000_cable_length_50_80;
3294		else if (average <= e1000_igp_cable_length_110)
3295			phy_info->cable_length = e1000_cable_length_80_110;
3296		else if (average <= e1000_igp_cable_length_140)
3297			phy_info->cable_length = e1000_cable_length_110_140;
3298		else
3299			phy_info->cable_length = e1000_cable_length_140;
3300	}
3301
3302	return E1000_SUCCESS;
3303}
3304
3305/**
3306 * e1000_phy_m88_get_info - get m88 specific registers
3307 * @hw: Struct containing variables accessed by shared code
3308 * @phy_info: PHY information structure
3309 *
3310 * Get PHY information from various PHY registers for m88 PHY only.
3311 */
3312static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3313				  struct e1000_phy_info *phy_info)
3314{
3315	s32 ret_val;
3316	u16 phy_data;
3317	e1000_rev_polarity polarity;
3318
 
 
3319	/* The downshift status is checked only once, after link is established,
3320	 * and it stored in the hw->speed_downgraded parameter.
3321	 */
3322	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3323
3324	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3325	if (ret_val)
3326		return ret_val;
3327
3328	phy_info->extended_10bt_distance =
3329	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3330	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3331	    e1000_10bt_ext_dist_enable_lower :
3332	    e1000_10bt_ext_dist_enable_normal;
3333
3334	phy_info->polarity_correction =
3335	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3336	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3337	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3338
3339	/* Check polarity status */
3340	ret_val = e1000_check_polarity(hw, &polarity);
3341	if (ret_val)
3342		return ret_val;
3343	phy_info->cable_polarity = polarity;
3344
3345	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3346	if (ret_val)
3347		return ret_val;
3348
3349	phy_info->mdix_mode =
3350	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3351				 M88E1000_PSSR_MDIX_SHIFT);
3352
3353	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3354		/* Cable Length Estimation and Local/Remote Receiver Information
3355		 * are only valid at 1000 Mbps.
3356		 */
3357		phy_info->cable_length =
3358		    (e1000_cable_length) ((phy_data &
3359					   M88E1000_PSSR_CABLE_LENGTH) >>
3360					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3361
3362		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3363		if (ret_val)
3364			return ret_val;
3365
3366		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3367				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3368		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3369		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3370				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3371		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3372	}
3373
3374	return E1000_SUCCESS;
3375}
3376
3377/**
3378 * e1000_phy_get_info - request phy info
3379 * @hw: Struct containing variables accessed by shared code
3380 * @phy_info: PHY information structure
3381 *
3382 * Get PHY information from various PHY registers
3383 */
3384s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3385{
3386	s32 ret_val;
3387	u16 phy_data;
3388
 
 
3389	phy_info->cable_length = e1000_cable_length_undefined;
3390	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3391	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3392	phy_info->downshift = e1000_downshift_undefined;
3393	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3394	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3395	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3396	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3397
3398	if (hw->media_type != e1000_media_type_copper) {
3399		e_dbg("PHY info is only valid for copper media\n");
3400		return -E1000_ERR_CONFIG;
3401	}
3402
3403	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3404	if (ret_val)
3405		return ret_val;
3406
3407	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3408	if (ret_val)
3409		return ret_val;
3410
3411	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3412		e_dbg("PHY info is only valid if link is up\n");
3413		return -E1000_ERR_CONFIG;
3414	}
3415
3416	if (hw->phy_type == e1000_phy_igp)
3417		return e1000_phy_igp_get_info(hw, phy_info);
3418	else if ((hw->phy_type == e1000_phy_8211) ||
3419		 (hw->phy_type == e1000_phy_8201))
3420		return E1000_SUCCESS;
3421	else
3422		return e1000_phy_m88_get_info(hw, phy_info);
3423}
3424
3425s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3426{
 
 
3427	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3428		e_dbg("Invalid MDI setting detected\n");
3429		hw->mdix = 1;
3430		return -E1000_ERR_CONFIG;
3431	}
3432	return E1000_SUCCESS;
3433}
3434
3435/**
3436 * e1000_init_eeprom_params - initialize sw eeprom vars
3437 * @hw: Struct containing variables accessed by shared code
3438 *
3439 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3440 * is configured.
3441 */
3442s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3443{
3444	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3445	u32 eecd = er32(EECD);
3446	s32 ret_val = E1000_SUCCESS;
3447	u16 eeprom_size;
3448
 
 
3449	switch (hw->mac_type) {
3450	case e1000_82542_rev2_0:
3451	case e1000_82542_rev2_1:
3452	case e1000_82543:
3453	case e1000_82544:
3454		eeprom->type = e1000_eeprom_microwire;
3455		eeprom->word_size = 64;
3456		eeprom->opcode_bits = 3;
3457		eeprom->address_bits = 6;
3458		eeprom->delay_usec = 50;
3459		break;
3460	case e1000_82540:
3461	case e1000_82545:
3462	case e1000_82545_rev_3:
3463	case e1000_82546:
3464	case e1000_82546_rev_3:
3465		eeprom->type = e1000_eeprom_microwire;
3466		eeprom->opcode_bits = 3;
3467		eeprom->delay_usec = 50;
3468		if (eecd & E1000_EECD_SIZE) {
3469			eeprom->word_size = 256;
3470			eeprom->address_bits = 8;
3471		} else {
3472			eeprom->word_size = 64;
3473			eeprom->address_bits = 6;
3474		}
3475		break;
3476	case e1000_82541:
3477	case e1000_82541_rev_2:
3478	case e1000_82547:
3479	case e1000_82547_rev_2:
3480		if (eecd & E1000_EECD_TYPE) {
3481			eeprom->type = e1000_eeprom_spi;
3482			eeprom->opcode_bits = 8;
3483			eeprom->delay_usec = 1;
3484			if (eecd & E1000_EECD_ADDR_BITS) {
3485				eeprom->page_size = 32;
3486				eeprom->address_bits = 16;
3487			} else {
3488				eeprom->page_size = 8;
3489				eeprom->address_bits = 8;
3490			}
3491		} else {
3492			eeprom->type = e1000_eeprom_microwire;
3493			eeprom->opcode_bits = 3;
3494			eeprom->delay_usec = 50;
3495			if (eecd & E1000_EECD_ADDR_BITS) {
3496				eeprom->word_size = 256;
3497				eeprom->address_bits = 8;
3498			} else {
3499				eeprom->word_size = 64;
3500				eeprom->address_bits = 6;
3501			}
3502		}
3503		break;
3504	default:
3505		break;
3506	}
3507
3508	if (eeprom->type == e1000_eeprom_spi) {
3509		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3510		 * 128B to 32KB (incremented by powers of 2).
3511		 */
3512		/* Set to default value for initial eeprom read. */
3513		eeprom->word_size = 64;
3514		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3515		if (ret_val)
3516			return ret_val;
3517		eeprom_size =
3518		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3519		/* 256B eeprom size was not supported in earlier hardware, so we
3520		 * bump eeprom_size up one to ensure that "1" (which maps to
3521		 * 256B) is never the result used in the shifting logic below.
3522		 */
3523		if (eeprom_size)
3524			eeprom_size++;
3525
3526		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3527	}
3528	return ret_val;
3529}
3530
3531/**
3532 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3533 * @hw: Struct containing variables accessed by shared code
3534 * @eecd: EECD's current value
3535 */
3536static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3537{
3538	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3539	 * wait <delay> microseconds.
3540	 */
3541	*eecd = *eecd | E1000_EECD_SK;
3542	ew32(EECD, *eecd);
3543	E1000_WRITE_FLUSH();
3544	udelay(hw->eeprom.delay_usec);
3545}
3546
3547/**
3548 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3549 * @hw: Struct containing variables accessed by shared code
3550 * @eecd: EECD's current value
3551 */
3552static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3553{
3554	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3555	 * then wait 50 microseconds.
3556	 */
3557	*eecd = *eecd & ~E1000_EECD_SK;
3558	ew32(EECD, *eecd);
3559	E1000_WRITE_FLUSH();
3560	udelay(hw->eeprom.delay_usec);
3561}
3562
3563/**
3564 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3565 * @hw: Struct containing variables accessed by shared code
3566 * @data: data to send to the EEPROM
3567 * @count: number of bits to shift out
3568 */
3569static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3570{
3571	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3572	u32 eecd;
3573	u32 mask;
3574
3575	/* We need to shift "count" bits out to the EEPROM. So, value in the
3576	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3577	 * In order to do this, "data" must be broken down into bits.
3578	 */
3579	mask = 0x01 << (count - 1);
3580	eecd = er32(EECD);
3581	if (eeprom->type == e1000_eeprom_microwire)
3582		eecd &= ~E1000_EECD_DO;
3583	else if (eeprom->type == e1000_eeprom_spi)
3584		eecd |= E1000_EECD_DO;
3585
3586	do {
3587		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3588		 * "1", and then raising and then lowering the clock (the SK bit
3589		 * controls the clock input to the EEPROM).  A "0" is shifted
3590		 * out to the EEPROM by setting "DI" to "0" and then raising and
3591		 * then lowering the clock.
3592		 */
3593		eecd &= ~E1000_EECD_DI;
3594
3595		if (data & mask)
3596			eecd |= E1000_EECD_DI;
3597
3598		ew32(EECD, eecd);
3599		E1000_WRITE_FLUSH();
3600
3601		udelay(eeprom->delay_usec);
3602
3603		e1000_raise_ee_clk(hw, &eecd);
3604		e1000_lower_ee_clk(hw, &eecd);
3605
3606		mask = mask >> 1;
3607
3608	} while (mask);
3609
3610	/* We leave the "DI" bit set to "0" when we leave this routine. */
3611	eecd &= ~E1000_EECD_DI;
3612	ew32(EECD, eecd);
3613}
3614
3615/**
3616 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3617 * @hw: Struct containing variables accessed by shared code
3618 * @count: number of bits to shift in
3619 */
3620static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3621{
3622	u32 eecd;
3623	u32 i;
3624	u16 data;
3625
3626	/* In order to read a register from the EEPROM, we need to shift 'count'
3627	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3628	 * input to the EEPROM (setting the SK bit), and then reading the value
3629	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3630	 * should always be clear.
3631	 */
3632
3633	eecd = er32(EECD);
3634
3635	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3636	data = 0;
3637
3638	for (i = 0; i < count; i++) {
3639		data = data << 1;
3640		e1000_raise_ee_clk(hw, &eecd);
3641
3642		eecd = er32(EECD);
3643
3644		eecd &= ~(E1000_EECD_DI);
3645		if (eecd & E1000_EECD_DO)
3646			data |= 1;
3647
3648		e1000_lower_ee_clk(hw, &eecd);
3649	}
3650
3651	return data;
3652}
3653
3654/**
3655 * e1000_acquire_eeprom - Prepares EEPROM for access
3656 * @hw: Struct containing variables accessed by shared code
3657 *
3658 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3659 * function should be called before issuing a command to the EEPROM.
3660 */
3661static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3662{
3663	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3664	u32 eecd, i = 0;
3665
 
 
3666	eecd = er32(EECD);
3667
3668	/* Request EEPROM Access */
3669	if (hw->mac_type > e1000_82544) {
3670		eecd |= E1000_EECD_REQ;
3671		ew32(EECD, eecd);
3672		eecd = er32(EECD);
3673		while ((!(eecd & E1000_EECD_GNT)) &&
3674		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3675			i++;
3676			udelay(5);
3677			eecd = er32(EECD);
3678		}
3679		if (!(eecd & E1000_EECD_GNT)) {
3680			eecd &= ~E1000_EECD_REQ;
3681			ew32(EECD, eecd);
3682			e_dbg("Could not acquire EEPROM grant\n");
3683			return -E1000_ERR_EEPROM;
3684		}
3685	}
3686
3687	/* Setup EEPROM for Read/Write */
3688
3689	if (eeprom->type == e1000_eeprom_microwire) {
3690		/* Clear SK and DI */
3691		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3692		ew32(EECD, eecd);
3693
3694		/* Set CS */
3695		eecd |= E1000_EECD_CS;
3696		ew32(EECD, eecd);
3697	} else if (eeprom->type == e1000_eeprom_spi) {
3698		/* Clear SK and CS */
3699		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3700		ew32(EECD, eecd);
3701		E1000_WRITE_FLUSH();
3702		udelay(1);
3703	}
3704
3705	return E1000_SUCCESS;
3706}
3707
3708/**
3709 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3710 * @hw: Struct containing variables accessed by shared code
3711 */
3712static void e1000_standby_eeprom(struct e1000_hw *hw)
3713{
3714	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3715	u32 eecd;
3716
3717	eecd = er32(EECD);
3718
3719	if (eeprom->type == e1000_eeprom_microwire) {
3720		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3721		ew32(EECD, eecd);
3722		E1000_WRITE_FLUSH();
3723		udelay(eeprom->delay_usec);
3724
3725		/* Clock high */
3726		eecd |= E1000_EECD_SK;
3727		ew32(EECD, eecd);
3728		E1000_WRITE_FLUSH();
3729		udelay(eeprom->delay_usec);
3730
3731		/* Select EEPROM */
3732		eecd |= E1000_EECD_CS;
3733		ew32(EECD, eecd);
3734		E1000_WRITE_FLUSH();
3735		udelay(eeprom->delay_usec);
3736
3737		/* Clock low */
3738		eecd &= ~E1000_EECD_SK;
3739		ew32(EECD, eecd);
3740		E1000_WRITE_FLUSH();
3741		udelay(eeprom->delay_usec);
3742	} else if (eeprom->type == e1000_eeprom_spi) {
3743		/* Toggle CS to flush commands */
3744		eecd |= E1000_EECD_CS;
3745		ew32(EECD, eecd);
3746		E1000_WRITE_FLUSH();
3747		udelay(eeprom->delay_usec);
3748		eecd &= ~E1000_EECD_CS;
3749		ew32(EECD, eecd);
3750		E1000_WRITE_FLUSH();
3751		udelay(eeprom->delay_usec);
3752	}
3753}
3754
3755/**
3756 * e1000_release_eeprom - drop chip select
3757 * @hw: Struct containing variables accessed by shared code
3758 *
3759 * Terminates a command by inverting the EEPROM's chip select pin
3760 */
3761static void e1000_release_eeprom(struct e1000_hw *hw)
3762{
3763	u32 eecd;
3764
 
 
3765	eecd = er32(EECD);
3766
3767	if (hw->eeprom.type == e1000_eeprom_spi) {
3768		eecd |= E1000_EECD_CS;	/* Pull CS high */
3769		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3770
3771		ew32(EECD, eecd);
3772		E1000_WRITE_FLUSH();
3773
3774		udelay(hw->eeprom.delay_usec);
3775	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3776		/* cleanup eeprom */
3777
3778		/* CS on Microwire is active-high */
3779		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3780
3781		ew32(EECD, eecd);
3782
3783		/* Rising edge of clock */
3784		eecd |= E1000_EECD_SK;
3785		ew32(EECD, eecd);
3786		E1000_WRITE_FLUSH();
3787		udelay(hw->eeprom.delay_usec);
3788
3789		/* Falling edge of clock */
3790		eecd &= ~E1000_EECD_SK;
3791		ew32(EECD, eecd);
3792		E1000_WRITE_FLUSH();
3793		udelay(hw->eeprom.delay_usec);
3794	}
3795
3796	/* Stop requesting EEPROM access */
3797	if (hw->mac_type > e1000_82544) {
3798		eecd &= ~E1000_EECD_REQ;
3799		ew32(EECD, eecd);
3800	}
3801}
3802
3803/**
3804 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3805 * @hw: Struct containing variables accessed by shared code
3806 */
3807static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3808{
3809	u16 retry_count = 0;
3810	u8 spi_stat_reg;
3811
 
 
3812	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3813	 * EEPROM will signal that the command has been completed by clearing
3814	 * bit 0 of the internal status register.  If it's not cleared within
3815	 * 5 milliseconds, then error out.
3816	 */
3817	retry_count = 0;
3818	do {
3819		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3820					hw->eeprom.opcode_bits);
3821		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3822		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3823			break;
3824
3825		udelay(5);
3826		retry_count += 5;
3827
3828		e1000_standby_eeprom(hw);
3829	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3830
3831	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3832	 * only 0-5mSec on 5V devices)
3833	 */
3834	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3835		e_dbg("SPI EEPROM Status error\n");
3836		return -E1000_ERR_EEPROM;
3837	}
3838
3839	return E1000_SUCCESS;
3840}
3841
3842/**
3843 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3844 * @hw: Struct containing variables accessed by shared code
3845 * @offset: offset of  word in the EEPROM to read
3846 * @data: word read from the EEPROM
3847 * @words: number of words to read
3848 */
3849s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3850{
3851	s32 ret;
3852
3853	mutex_lock(&e1000_eeprom_lock);
3854	ret = e1000_do_read_eeprom(hw, offset, words, data);
3855	mutex_unlock(&e1000_eeprom_lock);
3856	return ret;
3857}
3858
3859static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3860				u16 *data)
3861{
3862	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3863	u32 i = 0;
3864
 
 
3865	if (hw->mac_type == e1000_ce4100) {
3866		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3867				      data);
3868		return E1000_SUCCESS;
3869	}
3870
3871	/* A check for invalid values:  offset too large, too many words, and
3872	 * not enough words.
 
 
 
 
3873	 */
3874	if ((offset >= eeprom->word_size) ||
3875	    (words > eeprom->word_size - offset) ||
3876	    (words == 0)) {
3877		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3878		      "size = %d\n", offset, eeprom->word_size);
3879		return -E1000_ERR_EEPROM;
3880	}
3881
3882	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3883	 * directly. In this case, we need to acquire the EEPROM so that
3884	 * FW or other port software does not interrupt.
3885	 */
3886	/* Prepare the EEPROM for bit-bang reading */
3887	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3888		return -E1000_ERR_EEPROM;
3889
3890	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3891	 * acquired the EEPROM at this point, so any returns should release it
3892	 */
3893	if (eeprom->type == e1000_eeprom_spi) {
3894		u16 word_in;
3895		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3896
3897		if (e1000_spi_eeprom_ready(hw)) {
3898			e1000_release_eeprom(hw);
3899			return -E1000_ERR_EEPROM;
3900		}
3901
3902		e1000_standby_eeprom(hw);
3903
3904		/* Some SPI eeproms use the 8th address bit embedded in the
3905		 * opcode
3906		 */
3907		if ((eeprom->address_bits == 8) && (offset >= 128))
3908			read_opcode |= EEPROM_A8_OPCODE_SPI;
3909
3910		/* Send the READ command (opcode + addr)  */
3911		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3912		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3913					eeprom->address_bits);
3914
3915		/* Read the data.  The address of the eeprom internally
3916		 * increments with each byte (spi) being read, saving on the
3917		 * overhead of eeprom setup and tear-down.  The address counter
3918		 * will roll over if reading beyond the size of the eeprom, thus
3919		 * allowing the entire memory to be read starting from any
3920		 * offset.
3921		 */
3922		for (i = 0; i < words; i++) {
3923			word_in = e1000_shift_in_ee_bits(hw, 16);
3924			data[i] = (word_in >> 8) | (word_in << 8);
3925		}
3926	} else if (eeprom->type == e1000_eeprom_microwire) {
3927		for (i = 0; i < words; i++) {
3928			/* Send the READ command (opcode + addr)  */
3929			e1000_shift_out_ee_bits(hw,
3930						EEPROM_READ_OPCODE_MICROWIRE,
3931						eeprom->opcode_bits);
3932			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3933						eeprom->address_bits);
3934
3935			/* Read the data.  For microwire, each word requires the
3936			 * overhead of eeprom setup and tear-down.
3937			 */
3938			data[i] = e1000_shift_in_ee_bits(hw, 16);
3939			e1000_standby_eeprom(hw);
3940			cond_resched();
3941		}
3942	}
3943
3944	/* End this read operation */
3945	e1000_release_eeprom(hw);
3946
3947	return E1000_SUCCESS;
3948}
3949
3950/**
3951 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3952 * @hw: Struct containing variables accessed by shared code
3953 *
3954 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3955 * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3956 * valid.
3957 */
3958s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3959{
3960	u16 checksum = 0;
3961	u16 i, eeprom_data;
3962
 
 
3963	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3964		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3965			e_dbg("EEPROM Read Error\n");
3966			return -E1000_ERR_EEPROM;
3967		}
3968		checksum += eeprom_data;
3969	}
3970
3971#ifdef CONFIG_PARISC
3972	/* This is a signature and not a checksum on HP c8000 */
3973	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3974		return E1000_SUCCESS;
3975
3976#endif
3977	if (checksum == (u16)EEPROM_SUM)
3978		return E1000_SUCCESS;
3979	else {
3980		e_dbg("EEPROM Checksum Invalid\n");
3981		return -E1000_ERR_EEPROM;
3982	}
3983}
3984
3985/**
3986 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3987 * @hw: Struct containing variables accessed by shared code
3988 *
3989 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3990 * Writes the difference to word offset 63 of the EEPROM.
3991 */
3992s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
3993{
3994	u16 checksum = 0;
3995	u16 i, eeprom_data;
3996
 
 
3997	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3998		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3999			e_dbg("EEPROM Read Error\n");
4000			return -E1000_ERR_EEPROM;
4001		}
4002		checksum += eeprom_data;
4003	}
4004	checksum = (u16)EEPROM_SUM - checksum;
4005	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4006		e_dbg("EEPROM Write Error\n");
4007		return -E1000_ERR_EEPROM;
4008	}
4009	return E1000_SUCCESS;
4010}
4011
4012/**
4013 * e1000_write_eeprom - write words to the different EEPROM types.
4014 * @hw: Struct containing variables accessed by shared code
4015 * @offset: offset within the EEPROM to be written to
4016 * @words: number of words to write
4017 * @data: 16 bit word to be written to the EEPROM
4018 *
4019 * If e1000_update_eeprom_checksum is not called after this function, the
4020 * EEPROM will most likely contain an invalid checksum.
4021 */
4022s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4023{
4024	s32 ret;
4025
4026	mutex_lock(&e1000_eeprom_lock);
4027	ret = e1000_do_write_eeprom(hw, offset, words, data);
4028	mutex_unlock(&e1000_eeprom_lock);
4029	return ret;
4030}
4031
4032static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4033				 u16 *data)
4034{
4035	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4036	s32 status = 0;
4037
 
 
4038	if (hw->mac_type == e1000_ce4100) {
4039		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4040				       data);
4041		return E1000_SUCCESS;
4042	}
4043
4044	/* A check for invalid values:  offset too large, too many words, and
4045	 * not enough words.
 
 
 
 
4046	 */
4047	if ((offset >= eeprom->word_size) ||
4048	    (words > eeprom->word_size - offset) ||
4049	    (words == 0)) {
4050		e_dbg("\"words\" parameter out of bounds\n");
4051		return -E1000_ERR_EEPROM;
4052	}
4053
4054	/* Prepare the EEPROM for writing  */
4055	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4056		return -E1000_ERR_EEPROM;
4057
4058	if (eeprom->type == e1000_eeprom_microwire) {
4059		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4060	} else {
4061		status = e1000_write_eeprom_spi(hw, offset, words, data);
4062		msleep(10);
4063	}
4064
4065	/* Done with writing */
4066	e1000_release_eeprom(hw);
4067
4068	return status;
4069}
4070
4071/**
4072 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4073 * @hw: Struct containing variables accessed by shared code
4074 * @offset: offset within the EEPROM to be written to
4075 * @words: number of words to write
4076 * @data: pointer to array of 8 bit words to be written to the EEPROM
4077 */
4078static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4079				  u16 *data)
4080{
4081	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4082	u16 widx = 0;
4083
 
 
4084	while (widx < words) {
4085		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4086
4087		if (e1000_spi_eeprom_ready(hw))
4088			return -E1000_ERR_EEPROM;
4089
4090		e1000_standby_eeprom(hw);
4091		cond_resched();
4092
4093		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4094		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4095					eeprom->opcode_bits);
4096
4097		e1000_standby_eeprom(hw);
4098
4099		/* Some SPI eeproms use the 8th address bit embedded in the
4100		 * opcode
4101		 */
4102		if ((eeprom->address_bits == 8) && (offset >= 128))
4103			write_opcode |= EEPROM_A8_OPCODE_SPI;
4104
4105		/* Send the Write command (8-bit opcode + addr) */
4106		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4107
4108		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4109					eeprom->address_bits);
4110
4111		/* Send the data */
4112
4113		/* Loop to allow for up to whole page write (32 bytes) of
4114		 * eeprom
4115		 */
4116		while (widx < words) {
4117			u16 word_out = data[widx];
4118
4119			word_out = (word_out >> 8) | (word_out << 8);
4120			e1000_shift_out_ee_bits(hw, word_out, 16);
4121			widx++;
4122
4123			/* Some larger eeprom sizes are capable of a 32-byte
4124			 * PAGE WRITE operation, while the smaller eeproms are
4125			 * capable of an 8-byte PAGE WRITE operation.  Break the
4126			 * inner loop to pass new address
4127			 */
4128			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4129				e1000_standby_eeprom(hw);
4130				break;
4131			}
4132		}
4133	}
4134
4135	return E1000_SUCCESS;
4136}
4137
4138/**
4139 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4140 * @hw: Struct containing variables accessed by shared code
4141 * @offset: offset within the EEPROM to be written to
4142 * @words: number of words to write
4143 * @data: pointer to array of 8 bit words to be written to the EEPROM
4144 */
4145static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4146					u16 words, u16 *data)
4147{
4148	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4149	u32 eecd;
4150	u16 words_written = 0;
4151	u16 i = 0;
4152
 
 
4153	/* Send the write enable command to the EEPROM (3-bit opcode plus
4154	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4155	 * the 11 of the dummy address as part of the opcode than it is to shift
4156	 * it over the correct number of bits for the address.  This puts the
4157	 * EEPROM into write/erase mode.
4158	 */
4159	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4160				(u16)(eeprom->opcode_bits + 2));
4161
4162	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4163
4164	/* Prepare the EEPROM */
4165	e1000_standby_eeprom(hw);
4166
4167	while (words_written < words) {
4168		/* Send the Write command (3-bit opcode + addr) */
4169		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4170					eeprom->opcode_bits);
4171
4172		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4173					eeprom->address_bits);
4174
4175		/* Send the data */
4176		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4177
4178		/* Toggle the CS line.  This in effect tells the EEPROM to
4179		 * execute the previous command.
4180		 */
4181		e1000_standby_eeprom(hw);
4182
4183		/* Read DO repeatedly until it is high (equal to '1').  The
4184		 * EEPROM will signal that the command has been completed by
4185		 * raising the DO signal. If DO does not go high in 10
4186		 * milliseconds, then error out.
4187		 */
4188		for (i = 0; i < 200; i++) {
4189			eecd = er32(EECD);
4190			if (eecd & E1000_EECD_DO)
4191				break;
4192			udelay(50);
4193		}
4194		if (i == 200) {
4195			e_dbg("EEPROM Write did not complete\n");
4196			return -E1000_ERR_EEPROM;
4197		}
4198
4199		/* Recover from write */
4200		e1000_standby_eeprom(hw);
4201		cond_resched();
4202
4203		words_written++;
4204	}
4205
4206	/* Send the write disable command to the EEPROM (3-bit opcode plus
4207	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4208	 * the 10 of the dummy address as part of the opcode than it is to shift
4209	 * it over the correct number of bits for the address.  This takes the
4210	 * EEPROM out of write/erase mode.
4211	 */
4212	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4213				(u16)(eeprom->opcode_bits + 2));
4214
4215	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4216
4217	return E1000_SUCCESS;
4218}
4219
4220/**
4221 * e1000_read_mac_addr - read the adapters MAC from eeprom
4222 * @hw: Struct containing variables accessed by shared code
4223 *
4224 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4225 * second function of dual function devices
4226 */
4227s32 e1000_read_mac_addr(struct e1000_hw *hw)
4228{
4229	u16 offset;
4230	u16 eeprom_data, i;
4231
 
 
4232	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4233		offset = i >> 1;
4234		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4235			e_dbg("EEPROM Read Error\n");
4236			return -E1000_ERR_EEPROM;
4237		}
4238		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4239		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4240	}
4241
4242	switch (hw->mac_type) {
4243	default:
4244		break;
4245	case e1000_82546:
4246	case e1000_82546_rev_3:
4247		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4248			hw->perm_mac_addr[5] ^= 0x01;
4249		break;
4250	}
4251
4252	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4253		hw->mac_addr[i] = hw->perm_mac_addr[i];
4254	return E1000_SUCCESS;
4255}
4256
4257/**
4258 * e1000_init_rx_addrs - Initializes receive address filters.
4259 * @hw: Struct containing variables accessed by shared code
4260 *
4261 * Places the MAC address in receive address register 0 and clears the rest
4262 * of the receive address registers. Clears the multicast table. Assumes
4263 * the receiver is in reset when the routine is called.
4264 */
4265static void e1000_init_rx_addrs(struct e1000_hw *hw)
4266{
4267	u32 i;
4268	u32 rar_num;
4269
 
 
4270	/* Setup the receive address. */
4271	e_dbg("Programming MAC Address into RAR[0]\n");
4272
4273	e1000_rar_set(hw, hw->mac_addr, 0);
4274
4275	rar_num = E1000_RAR_ENTRIES;
4276
4277	/* Zero out the following 14 receive addresses. RAR[15] is for
4278	 * manageability
4279	 */
4280	e_dbg("Clearing RAR[1-14]\n");
4281	for (i = 1; i < rar_num; i++) {
4282		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4283		E1000_WRITE_FLUSH();
4284		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4285		E1000_WRITE_FLUSH();
4286	}
4287}
4288
4289/**
4290 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4291 * @hw: Struct containing variables accessed by shared code
4292 * @mc_addr: the multicast address to hash
4293 */
4294u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4295{
4296	u32 hash_value = 0;
4297
4298	/* The portion of the address that is used for the hash table is
4299	 * determined by the mc_filter_type setting.
4300	 */
4301	switch (hw->mc_filter_type) {
4302		/* [0] [1] [2] [3] [4] [5]
4303		 * 01  AA  00  12  34  56
4304		 * LSB                 MSB
4305		 */
4306	case 0:
4307		/* [47:36] i.e. 0x563 for above example address */
4308		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4309		break;
4310	case 1:
4311		/* [46:35] i.e. 0xAC6 for above example address */
4312		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4313		break;
4314	case 2:
4315		/* [45:34] i.e. 0x5D8 for above example address */
4316		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4317		break;
4318	case 3:
4319		/* [43:32] i.e. 0x634 for above example address */
4320		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4321		break;
4322	}
4323
4324	hash_value &= 0xFFF;
4325	return hash_value;
4326}
4327
4328/**
4329 * e1000_rar_set - Puts an ethernet address into a receive address register.
4330 * @hw: Struct containing variables accessed by shared code
4331 * @addr: Address to put into receive address register
4332 * @index: Receive address register to write
4333 */
4334void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4335{
4336	u32 rar_low, rar_high;
4337
4338	/* HW expects these in little endian so we reverse the byte order
4339	 * from network order (big endian) to little endian
4340	 */
4341	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4342		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4343	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4344
4345	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4346	 * unit hang.
4347	 *
4348	 * Description:
4349	 * If there are any Rx frames queued up or otherwise present in the HW
4350	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4351	 * hang.  To work around this issue, we have to disable receives and
4352	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4353	 * redirect all Rx traffic to manageability and then reset the HW.
4354	 * This flushes away Rx frames, and (since the redirections to
4355	 * manageability persists across resets) keeps new ones from coming in
4356	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4357	 * addresses and undo the re-direction to manageability.
4358	 * Now, frames are coming in again, but the MAC won't accept them, so
4359	 * far so good.  We now proceed to initialize RSS (if necessary) and
4360	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4361	 * on our merry way.
4362	 */
4363	switch (hw->mac_type) {
4364	default:
4365		/* Indicate to hardware the Address is Valid. */
4366		rar_high |= E1000_RAH_AV;
4367		break;
4368	}
4369
4370	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4371	E1000_WRITE_FLUSH();
4372	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4373	E1000_WRITE_FLUSH();
4374}
4375
4376/**
4377 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4378 * @hw: Struct containing variables accessed by shared code
4379 * @offset: Offset in VLAN filter table to write
4380 * @value: Value to write into VLAN filter table
4381 */
4382void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4383{
4384	u32 temp;
4385
4386	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4387		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4388		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4389		E1000_WRITE_FLUSH();
4390		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4391		E1000_WRITE_FLUSH();
4392	} else {
4393		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4394		E1000_WRITE_FLUSH();
4395	}
4396}
4397
4398/**
4399 * e1000_clear_vfta - Clears the VLAN filter table
4400 * @hw: Struct containing variables accessed by shared code
4401 */
4402static void e1000_clear_vfta(struct e1000_hw *hw)
4403{
4404	u32 offset;
 
 
 
4405
4406	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4407		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 
 
 
 
4408		E1000_WRITE_FLUSH();
4409	}
4410}
4411
4412static s32 e1000_id_led_init(struct e1000_hw *hw)
4413{
4414	u32 ledctl;
4415	const u32 ledctl_mask = 0x000000FF;
4416	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4417	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4418	u16 eeprom_data, i, temp;
4419	const u16 led_mask = 0x0F;
4420
 
 
4421	if (hw->mac_type < e1000_82540) {
4422		/* Nothing to do */
4423		return E1000_SUCCESS;
4424	}
4425
4426	ledctl = er32(LEDCTL);
4427	hw->ledctl_default = ledctl;
4428	hw->ledctl_mode1 = hw->ledctl_default;
4429	hw->ledctl_mode2 = hw->ledctl_default;
4430
4431	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4432		e_dbg("EEPROM Read Error\n");
4433		return -E1000_ERR_EEPROM;
4434	}
4435
4436	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4437	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4438		eeprom_data = ID_LED_DEFAULT;
4439	}
4440
4441	for (i = 0; i < 4; i++) {
4442		temp = (eeprom_data >> (i << 2)) & led_mask;
4443		switch (temp) {
4444		case ID_LED_ON1_DEF2:
4445		case ID_LED_ON1_ON2:
4446		case ID_LED_ON1_OFF2:
4447			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4448			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4449			break;
4450		case ID_LED_OFF1_DEF2:
4451		case ID_LED_OFF1_ON2:
4452		case ID_LED_OFF1_OFF2:
4453			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4454			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4455			break;
4456		default:
4457			/* Do nothing */
4458			break;
4459		}
4460		switch (temp) {
4461		case ID_LED_DEF1_ON2:
4462		case ID_LED_ON1_ON2:
4463		case ID_LED_OFF1_ON2:
4464			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4465			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4466			break;
4467		case ID_LED_DEF1_OFF2:
4468		case ID_LED_ON1_OFF2:
4469		case ID_LED_OFF1_OFF2:
4470			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4471			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4472			break;
4473		default:
4474			/* Do nothing */
4475			break;
4476		}
4477	}
4478	return E1000_SUCCESS;
4479}
4480
4481/**
4482 * e1000_setup_led
4483 * @hw: Struct containing variables accessed by shared code
4484 *
4485 * Prepares SW controlable LED for use and saves the current state of the LED.
4486 */
4487s32 e1000_setup_led(struct e1000_hw *hw)
4488{
4489	u32 ledctl;
4490	s32 ret_val = E1000_SUCCESS;
4491
 
 
4492	switch (hw->mac_type) {
4493	case e1000_82542_rev2_0:
4494	case e1000_82542_rev2_1:
4495	case e1000_82543:
4496	case e1000_82544:
4497		/* No setup necessary */
4498		break;
4499	case e1000_82541:
4500	case e1000_82547:
4501	case e1000_82541_rev_2:
4502	case e1000_82547_rev_2:
4503		/* Turn off PHY Smart Power Down (if enabled) */
4504		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4505					     &hw->phy_spd_default);
4506		if (ret_val)
4507			return ret_val;
4508		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4509					      (u16)(hw->phy_spd_default &
4510						     ~IGP01E1000_GMII_SPD));
4511		if (ret_val)
4512			return ret_val;
4513		fallthrough;
4514	default:
4515		if (hw->media_type == e1000_media_type_fiber) {
4516			ledctl = er32(LEDCTL);
4517			/* Save current LEDCTL settings */
4518			hw->ledctl_default = ledctl;
4519			/* Turn off LED0 */
4520			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4521				    E1000_LEDCTL_LED0_BLINK |
4522				    E1000_LEDCTL_LED0_MODE_MASK);
4523			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4524				   E1000_LEDCTL_LED0_MODE_SHIFT);
4525			ew32(LEDCTL, ledctl);
4526		} else if (hw->media_type == e1000_media_type_copper)
4527			ew32(LEDCTL, hw->ledctl_mode1);
4528		break;
4529	}
4530
4531	return E1000_SUCCESS;
4532}
4533
4534/**
4535 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4536 * @hw: Struct containing variables accessed by shared code
4537 */
4538s32 e1000_cleanup_led(struct e1000_hw *hw)
4539{
4540	s32 ret_val = E1000_SUCCESS;
4541
 
 
4542	switch (hw->mac_type) {
4543	case e1000_82542_rev2_0:
4544	case e1000_82542_rev2_1:
4545	case e1000_82543:
4546	case e1000_82544:
4547		/* No cleanup necessary */
4548		break;
4549	case e1000_82541:
4550	case e1000_82547:
4551	case e1000_82541_rev_2:
4552	case e1000_82547_rev_2:
4553		/* Turn on PHY Smart Power Down (if previously enabled) */
4554		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4555					      hw->phy_spd_default);
4556		if (ret_val)
4557			return ret_val;
4558		fallthrough;
4559	default:
4560		/* Restore LEDCTL settings */
4561		ew32(LEDCTL, hw->ledctl_default);
4562		break;
4563	}
4564
4565	return E1000_SUCCESS;
4566}
4567
4568/**
4569 * e1000_led_on - Turns on the software controllable LED
4570 * @hw: Struct containing variables accessed by shared code
4571 */
4572s32 e1000_led_on(struct e1000_hw *hw)
4573{
4574	u32 ctrl = er32(CTRL);
4575
 
 
4576	switch (hw->mac_type) {
4577	case e1000_82542_rev2_0:
4578	case e1000_82542_rev2_1:
4579	case e1000_82543:
4580		/* Set SW Defineable Pin 0 to turn on the LED */
4581		ctrl |= E1000_CTRL_SWDPIN0;
4582		ctrl |= E1000_CTRL_SWDPIO0;
4583		break;
4584	case e1000_82544:
4585		if (hw->media_type == e1000_media_type_fiber) {
4586			/* Set SW Defineable Pin 0 to turn on the LED */
4587			ctrl |= E1000_CTRL_SWDPIN0;
4588			ctrl |= E1000_CTRL_SWDPIO0;
4589		} else {
4590			/* Clear SW Defineable Pin 0 to turn on the LED */
4591			ctrl &= ~E1000_CTRL_SWDPIN0;
4592			ctrl |= E1000_CTRL_SWDPIO0;
4593		}
4594		break;
4595	default:
4596		if (hw->media_type == e1000_media_type_fiber) {
4597			/* Clear SW Defineable Pin 0 to turn on the LED */
4598			ctrl &= ~E1000_CTRL_SWDPIN0;
4599			ctrl |= E1000_CTRL_SWDPIO0;
4600		} else if (hw->media_type == e1000_media_type_copper) {
4601			ew32(LEDCTL, hw->ledctl_mode2);
4602			return E1000_SUCCESS;
4603		}
4604		break;
4605	}
4606
4607	ew32(CTRL, ctrl);
4608
4609	return E1000_SUCCESS;
4610}
4611
4612/**
4613 * e1000_led_off - Turns off the software controllable LED
4614 * @hw: Struct containing variables accessed by shared code
4615 */
4616s32 e1000_led_off(struct e1000_hw *hw)
4617{
4618	u32 ctrl = er32(CTRL);
4619
 
 
4620	switch (hw->mac_type) {
4621	case e1000_82542_rev2_0:
4622	case e1000_82542_rev2_1:
4623	case e1000_82543:
4624		/* Clear SW Defineable Pin 0 to turn off the LED */
4625		ctrl &= ~E1000_CTRL_SWDPIN0;
4626		ctrl |= E1000_CTRL_SWDPIO0;
4627		break;
4628	case e1000_82544:
4629		if (hw->media_type == e1000_media_type_fiber) {
4630			/* Clear SW Defineable Pin 0 to turn off the LED */
4631			ctrl &= ~E1000_CTRL_SWDPIN0;
4632			ctrl |= E1000_CTRL_SWDPIO0;
4633		} else {
4634			/* Set SW Defineable Pin 0 to turn off the LED */
4635			ctrl |= E1000_CTRL_SWDPIN0;
4636			ctrl |= E1000_CTRL_SWDPIO0;
4637		}
4638		break;
4639	default:
4640		if (hw->media_type == e1000_media_type_fiber) {
4641			/* Set SW Defineable Pin 0 to turn off the LED */
4642			ctrl |= E1000_CTRL_SWDPIN0;
4643			ctrl |= E1000_CTRL_SWDPIO0;
4644		} else if (hw->media_type == e1000_media_type_copper) {
4645			ew32(LEDCTL, hw->ledctl_mode1);
4646			return E1000_SUCCESS;
4647		}
4648		break;
4649	}
4650
4651	ew32(CTRL, ctrl);
4652
4653	return E1000_SUCCESS;
4654}
4655
4656/**
4657 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4658 * @hw: Struct containing variables accessed by shared code
4659 */
4660static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4661{
4662	er32(CRCERRS);
4663	er32(SYMERRS);
4664	er32(MPC);
4665	er32(SCC);
4666	er32(ECOL);
4667	er32(MCC);
4668	er32(LATECOL);
4669	er32(COLC);
4670	er32(DC);
4671	er32(SEC);
4672	er32(RLEC);
4673	er32(XONRXC);
4674	er32(XONTXC);
4675	er32(XOFFRXC);
4676	er32(XOFFTXC);
4677	er32(FCRUC);
4678
4679	er32(PRC64);
4680	er32(PRC127);
4681	er32(PRC255);
4682	er32(PRC511);
4683	er32(PRC1023);
4684	er32(PRC1522);
4685
4686	er32(GPRC);
4687	er32(BPRC);
4688	er32(MPRC);
4689	er32(GPTC);
4690	er32(GORCL);
4691	er32(GORCH);
4692	er32(GOTCL);
4693	er32(GOTCH);
4694	er32(RNBC);
4695	er32(RUC);
4696	er32(RFC);
4697	er32(ROC);
4698	er32(RJC);
4699	er32(TORL);
4700	er32(TORH);
4701	er32(TOTL);
4702	er32(TOTH);
4703	er32(TPR);
4704	er32(TPT);
4705
4706	er32(PTC64);
4707	er32(PTC127);
4708	er32(PTC255);
4709	er32(PTC511);
4710	er32(PTC1023);
4711	er32(PTC1522);
4712
4713	er32(MPTC);
4714	er32(BPTC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4715
4716	if (hw->mac_type < e1000_82543)
4717		return;
4718
4719	er32(ALGNERRC);
4720	er32(RXERRC);
4721	er32(TNCRS);
4722	er32(CEXTERR);
4723	er32(TSCTC);
4724	er32(TSCTFC);
4725
4726	if (hw->mac_type <= e1000_82544)
4727		return;
4728
4729	er32(MGTPRC);
4730	er32(MGTPDC);
4731	er32(MGTPTC);
4732}
4733
4734/**
4735 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4736 * @hw: Struct containing variables accessed by shared code
4737 *
4738 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4739 * hw->ifs_params_forced to true. However, you must initialize hw->
4740 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4741 * before calling this function.
4742 */
4743void e1000_reset_adaptive(struct e1000_hw *hw)
4744{
 
 
4745	if (hw->adaptive_ifs) {
4746		if (!hw->ifs_params_forced) {
4747			hw->current_ifs_val = 0;
4748			hw->ifs_min_val = IFS_MIN;
4749			hw->ifs_max_val = IFS_MAX;
4750			hw->ifs_step_size = IFS_STEP;
4751			hw->ifs_ratio = IFS_RATIO;
4752		}
4753		hw->in_ifs_mode = false;
4754		ew32(AIT, 0);
4755	} else {
4756		e_dbg("Not in Adaptive IFS mode!\n");
4757	}
4758}
4759
4760/**
4761 * e1000_update_adaptive - update adaptive IFS
4762 * @hw: Struct containing variables accessed by shared code
 
 
4763 *
4764 * Called during the callback/watchdog routine to update IFS value based on
4765 * the ratio of transmits to collisions.
4766 */
4767void e1000_update_adaptive(struct e1000_hw *hw)
4768{
 
 
4769	if (hw->adaptive_ifs) {
4770		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4771			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4772				hw->in_ifs_mode = true;
4773				if (hw->current_ifs_val < hw->ifs_max_val) {
4774					if (hw->current_ifs_val == 0)
4775						hw->current_ifs_val =
4776						    hw->ifs_min_val;
4777					else
4778						hw->current_ifs_val +=
4779						    hw->ifs_step_size;
4780					ew32(AIT, hw->current_ifs_val);
4781				}
4782			}
4783		} else {
4784			if (hw->in_ifs_mode &&
4785			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4786				hw->current_ifs_val = 0;
4787				hw->in_ifs_mode = false;
4788				ew32(AIT, 0);
4789			}
4790		}
4791	} else {
4792		e_dbg("Not in Adaptive IFS mode!\n");
4793	}
4794}
4795
4796/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4797 * e1000_get_bus_info
4798 * @hw: Struct containing variables accessed by shared code
4799 *
4800 * Gets the current PCI bus type, speed, and width of the hardware
4801 */
4802void e1000_get_bus_info(struct e1000_hw *hw)
4803{
4804	u32 status;
4805
4806	switch (hw->mac_type) {
4807	case e1000_82542_rev2_0:
4808	case e1000_82542_rev2_1:
4809		hw->bus_type = e1000_bus_type_pci;
4810		hw->bus_speed = e1000_bus_speed_unknown;
4811		hw->bus_width = e1000_bus_width_unknown;
4812		break;
4813	default:
4814		status = er32(STATUS);
4815		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4816		    e1000_bus_type_pcix : e1000_bus_type_pci;
4817
4818		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4819			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4820			    e1000_bus_speed_66 : e1000_bus_speed_120;
4821		} else if (hw->bus_type == e1000_bus_type_pci) {
4822			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4823			    e1000_bus_speed_66 : e1000_bus_speed_33;
4824		} else {
4825			switch (status & E1000_STATUS_PCIX_SPEED) {
4826			case E1000_STATUS_PCIX_SPEED_66:
4827				hw->bus_speed = e1000_bus_speed_66;
4828				break;
4829			case E1000_STATUS_PCIX_SPEED_100:
4830				hw->bus_speed = e1000_bus_speed_100;
4831				break;
4832			case E1000_STATUS_PCIX_SPEED_133:
4833				hw->bus_speed = e1000_bus_speed_133;
4834				break;
4835			default:
4836				hw->bus_speed = e1000_bus_speed_reserved;
4837				break;
4838			}
4839		}
4840		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4841		    e1000_bus_width_64 : e1000_bus_width_32;
4842		break;
4843	}
4844}
4845
4846/**
4847 * e1000_write_reg_io
4848 * @hw: Struct containing variables accessed by shared code
4849 * @offset: offset to write to
4850 * @value: value to write
4851 *
4852 * Writes a value to one of the devices registers using port I/O (as opposed to
4853 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4854 */
4855static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4856{
4857	unsigned long io_addr = hw->io_base;
4858	unsigned long io_data = hw->io_base + 4;
4859
4860	e1000_io_write(hw, io_addr, offset);
4861	e1000_io_write(hw, io_data, value);
4862}
4863
4864/**
4865 * e1000_get_cable_length - Estimates the cable length.
4866 * @hw: Struct containing variables accessed by shared code
4867 * @min_length: The estimated minimum length
4868 * @max_length: The estimated maximum length
4869 *
4870 * returns: - E1000_ERR_XXX
4871 *            E1000_SUCCESS
4872 *
4873 * This function always returns a ranged length (minimum & maximum).
4874 * So for M88 phy's, this function interprets the one value returned from the
4875 * register to the minimum and maximum range.
4876 * For IGP phy's, the function calculates the range by the AGC registers.
4877 */
4878static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4879				  u16 *max_length)
4880{
4881	s32 ret_val;
4882	u16 agc_value = 0;
4883	u16 i, phy_data;
4884	u16 cable_length;
4885
 
 
4886	*min_length = *max_length = 0;
4887
4888	/* Use old method for Phy older than IGP */
4889	if (hw->phy_type == e1000_phy_m88) {
 
4890		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4891					     &phy_data);
4892		if (ret_val)
4893			return ret_val;
4894		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4895		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4896
4897		/* Convert the enum value to ranged values */
4898		switch (cable_length) {
4899		case e1000_cable_length_50:
4900			*min_length = 0;
4901			*max_length = e1000_igp_cable_length_50;
4902			break;
4903		case e1000_cable_length_50_80:
4904			*min_length = e1000_igp_cable_length_50;
4905			*max_length = e1000_igp_cable_length_80;
4906			break;
4907		case e1000_cable_length_80_110:
4908			*min_length = e1000_igp_cable_length_80;
4909			*max_length = e1000_igp_cable_length_110;
4910			break;
4911		case e1000_cable_length_110_140:
4912			*min_length = e1000_igp_cable_length_110;
4913			*max_length = e1000_igp_cable_length_140;
4914			break;
4915		case e1000_cable_length_140:
4916			*min_length = e1000_igp_cable_length_140;
4917			*max_length = e1000_igp_cable_length_170;
4918			break;
4919		default:
4920			return -E1000_ERR_PHY;
 
4921		}
4922	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4923		u16 cur_agc_value;
4924		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4925		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4926		       IGP01E1000_PHY_AGC_A,
4927		       IGP01E1000_PHY_AGC_B,
4928		       IGP01E1000_PHY_AGC_C,
4929		       IGP01E1000_PHY_AGC_D
4930		};
4931		/* Read the AGC registers for all channels */
4932		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
 
4933			ret_val =
4934			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4935			if (ret_val)
4936				return ret_val;
4937
4938			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4939
4940			/* Value bound check. */
4941			if ((cur_agc_value >=
4942			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4943			    (cur_agc_value == 0))
4944				return -E1000_ERR_PHY;
4945
4946			agc_value += cur_agc_value;
4947
4948			/* Update minimal AGC value. */
4949			if (min_agc_value > cur_agc_value)
4950				min_agc_value = cur_agc_value;
4951		}
4952
4953		/* Remove the minimal AGC result for length < 50m */
4954		if (agc_value <
4955		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4956			agc_value -= min_agc_value;
4957
4958			/* Get the average length of the remaining 3 channels */
4959			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4960		} else {
4961			/* Get the average length of all the 4 channels. */
4962			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4963		}
4964
4965		/* Set the range of the calculated length. */
4966		*min_length = ((e1000_igp_cable_length_table[agc_value] -
4967				IGP01E1000_AGC_RANGE) > 0) ?
4968		    (e1000_igp_cable_length_table[agc_value] -
4969		     IGP01E1000_AGC_RANGE) : 0;
4970		*max_length = e1000_igp_cable_length_table[agc_value] +
4971		    IGP01E1000_AGC_RANGE;
4972	}
4973
4974	return E1000_SUCCESS;
4975}
4976
4977/**
4978 * e1000_check_polarity - Check the cable polarity
4979 * @hw: Struct containing variables accessed by shared code
4980 * @polarity: output parameter : 0 - Polarity is not reversed
4981 *                               1 - Polarity is reversed.
4982 *
4983 * returns: - E1000_ERR_XXX
4984 *            E1000_SUCCESS
4985 *
4986 * For phy's older than IGP, this function simply reads the polarity bit in the
4987 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
4988 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
4989 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
4990 * IGP01E1000_PHY_PCS_INIT_REG.
4991 */
4992static s32 e1000_check_polarity(struct e1000_hw *hw,
4993				e1000_rev_polarity *polarity)
4994{
4995	s32 ret_val;
4996	u16 phy_data;
4997
 
 
4998	if (hw->phy_type == e1000_phy_m88) {
4999		/* return the Polarity bit in the Status register. */
5000		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5001					     &phy_data);
5002		if (ret_val)
5003			return ret_val;
5004		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5005			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5006		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5007
5008	} else if (hw->phy_type == e1000_phy_igp) {
5009		/* Read the Status register to check the speed */
5010		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5011					     &phy_data);
5012		if (ret_val)
5013			return ret_val;
5014
5015		/* If speed is 1000 Mbps, must read the
5016		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5017		 */
5018		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5019		    IGP01E1000_PSSR_SPEED_1000MBPS) {
 
5020			/* Read the GIG initialization PCS register (0x00B4) */
5021			ret_val =
5022			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5023					       &phy_data);
5024			if (ret_val)
5025				return ret_val;
5026
5027			/* Check the polarity bits */
5028			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5029			    e1000_rev_polarity_reversed :
5030			    e1000_rev_polarity_normal;
5031		} else {
5032			/* For 10 Mbps, read the polarity bit in the status
5033			 * register. (for 100 Mbps this bit is always 0)
5034			 */
5035			*polarity =
5036			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5037			    e1000_rev_polarity_reversed :
5038			    e1000_rev_polarity_normal;
5039		}
5040	}
5041	return E1000_SUCCESS;
5042}
5043
5044/**
5045 * e1000_check_downshift - Check if Downshift occurred
5046 * @hw: Struct containing variables accessed by shared code
 
 
5047 *
5048 * returns: - E1000_ERR_XXX
5049 *            E1000_SUCCESS
5050 *
5051 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5052 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5053 * Link Health register.  In IGP this bit is latched high, so the driver must
5054 * read it immediately after link is established.
5055 */
5056static s32 e1000_check_downshift(struct e1000_hw *hw)
5057{
5058	s32 ret_val;
5059	u16 phy_data;
5060
 
 
5061	if (hw->phy_type == e1000_phy_igp) {
5062		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5063					     &phy_data);
5064		if (ret_val)
5065			return ret_val;
5066
5067		hw->speed_downgraded =
5068		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5069	} else if (hw->phy_type == e1000_phy_m88) {
5070		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5071					     &phy_data);
5072		if (ret_val)
5073			return ret_val;
5074
5075		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5076		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5077	}
5078
5079	return E1000_SUCCESS;
5080}
5081
5082static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5083	IGP01E1000_PHY_AGC_PARAM_A,
5084	IGP01E1000_PHY_AGC_PARAM_B,
5085	IGP01E1000_PHY_AGC_PARAM_C,
5086	IGP01E1000_PHY_AGC_PARAM_D
5087};
5088
5089static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5090{
5091	u16 min_length, max_length;
5092	u16 phy_data, i;
5093	s32 ret_val;
5094
5095	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5096	if (ret_val)
5097		return ret_val;
5098
5099	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5100		return 0;
5101
5102	if (min_length >= e1000_igp_cable_length_50) {
5103		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5104			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5105						     &phy_data);
5106			if (ret_val)
5107				return ret_val;
5108
5109			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5110
5111			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5112						      phy_data);
5113			if (ret_val)
5114				return ret_val;
5115		}
5116		hw->dsp_config_state = e1000_dsp_config_activated;
5117	} else {
5118		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5119		u32 idle_errs = 0;
5120
5121		/* clear previous idle error counts */
5122		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5123		if (ret_val)
5124			return ret_val;
5125
5126		for (i = 0; i < ffe_idle_err_timeout; i++) {
5127			udelay(1000);
5128			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5129						     &phy_data);
5130			if (ret_val)
5131				return ret_val;
5132
5133			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5134			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5135				hw->ffe_config_state = e1000_ffe_config_active;
5136
5137				ret_val = e1000_write_phy_reg(hw,
5138							      IGP01E1000_PHY_DSP_FFE,
5139							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5140				if (ret_val)
5141					return ret_val;
5142				break;
5143			}
5144
5145			if (idle_errs)
5146				ffe_idle_err_timeout =
5147					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5148		}
5149	}
5150
5151	return 0;
5152}
5153
5154/**
5155 * e1000_config_dsp_after_link_change
5156 * @hw: Struct containing variables accessed by shared code
5157 * @link_up: was link up at the time this was called
5158 *
5159 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5160 *            E1000_SUCCESS at any other case.
5161 *
5162 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5163 * gigabit link is achieved to improve link quality.
5164 */
5165
5166static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5167{
5168	s32 ret_val;
5169	u16 phy_data, phy_saved_data, speed, duplex, i;
5170
 
 
5171	if (hw->phy_type != e1000_phy_igp)
5172		return E1000_SUCCESS;
5173
5174	if (link_up) {
5175		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5176		if (ret_val) {
5177			e_dbg("Error getting link speed and duplex\n");
5178			return ret_val;
5179		}
5180
5181		if (speed == SPEED_1000) {
5182			ret_val = e1000_1000Mb_check_cable_length(hw);
5183			if (ret_val)
5184				return ret_val;
5185		}
5186	} else {
5187		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5188			/* Save off the current value of register 0x2F5B to be
5189			 * restored at the end of the routines.
5190			 */
5191			ret_val =
5192			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5193
5194			if (ret_val)
5195				return ret_val;
5196
5197			/* Disable the PHY transmitter */
5198			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5199
5200			if (ret_val)
5201				return ret_val;
5202
5203			msleep(20);
5204
5205			ret_val = e1000_write_phy_reg(hw, 0x0000,
5206						      IGP01E1000_IEEE_FORCE_GIGA);
5207			if (ret_val)
5208				return ret_val;
5209			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5210				ret_val =
5211				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5212						       &phy_data);
5213				if (ret_val)
5214					return ret_val;
5215
5216				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5217				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5218
5219				ret_val =
5220				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5221							phy_data);
5222				if (ret_val)
5223					return ret_val;
5224			}
5225
5226			ret_val = e1000_write_phy_reg(hw, 0x0000,
5227						      IGP01E1000_IEEE_RESTART_AUTONEG);
5228			if (ret_val)
5229				return ret_val;
5230
5231			msleep(20);
5232
5233			/* Now enable the transmitter */
5234			ret_val =
5235			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5236
5237			if (ret_val)
5238				return ret_val;
5239
5240			hw->dsp_config_state = e1000_dsp_config_enabled;
5241		}
5242
5243		if (hw->ffe_config_state == e1000_ffe_config_active) {
5244			/* Save off the current value of register 0x2F5B to be
5245			 * restored at the end of the routines.
5246			 */
5247			ret_val =
5248			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5249
5250			if (ret_val)
5251				return ret_val;
5252
5253			/* Disable the PHY transmitter */
5254			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5255
5256			if (ret_val)
5257				return ret_val;
5258
5259			msleep(20);
5260
5261			ret_val = e1000_write_phy_reg(hw, 0x0000,
5262						      IGP01E1000_IEEE_FORCE_GIGA);
5263			if (ret_val)
5264				return ret_val;
5265			ret_val =
5266			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5267						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5268			if (ret_val)
5269				return ret_val;
5270
5271			ret_val = e1000_write_phy_reg(hw, 0x0000,
5272						      IGP01E1000_IEEE_RESTART_AUTONEG);
5273			if (ret_val)
5274				return ret_val;
5275
5276			msleep(20);
5277
5278			/* Now enable the transmitter */
5279			ret_val =
5280			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5281
5282			if (ret_val)
5283				return ret_val;
5284
5285			hw->ffe_config_state = e1000_ffe_config_enabled;
5286		}
5287	}
5288	return E1000_SUCCESS;
5289}
5290
5291/**
5292 * e1000_set_phy_mode - Set PHY to class A mode
5293 * @hw: Struct containing variables accessed by shared code
5294 *
5295 * Assumes the following operations will follow to enable the new class mode.
5296 *  1. Do a PHY soft reset
5297 *  2. Restart auto-negotiation or force link.
5298 */
5299static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5300{
5301	s32 ret_val;
5302	u16 eeprom_data;
5303
 
 
5304	if ((hw->mac_type == e1000_82545_rev_3) &&
5305	    (hw->media_type == e1000_media_type_copper)) {
5306		ret_val =
5307		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5308				      &eeprom_data);
5309		if (ret_val)
5310			return ret_val;
 
5311
5312		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5313		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5314			ret_val =
5315			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5316						0x000B);
5317			if (ret_val)
5318				return ret_val;
5319			ret_val =
5320			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5321						0x8104);
5322			if (ret_val)
5323				return ret_val;
5324
5325			hw->phy_reset_disable = false;
5326		}
5327	}
5328
5329	return E1000_SUCCESS;
5330}
5331
5332/**
5333 * e1000_set_d3_lplu_state - set d3 link power state
5334 * @hw: Struct containing variables accessed by shared code
5335 * @active: true to enable lplu false to disable lplu.
5336 *
5337 * This function sets the lplu state according to the active flag.  When
5338 * activating lplu this function also disables smart speed and vise versa.
5339 * lplu will not be activated unless the device autonegotiation advertisement
5340 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5341 *
5342 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5343 *            E1000_SUCCESS at any other case.
5344 */
5345static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5346{
5347	s32 ret_val;
5348	u16 phy_data;
 
5349
5350	if (hw->phy_type != e1000_phy_igp)
5351		return E1000_SUCCESS;
5352
5353	/* During driver activity LPLU should not be used or it will attain link
5354	 * from the lowest speeds starting from 10Mbps. The capability is used
5355	 * for Dx transitions and states
5356	 */
5357	if (hw->mac_type == e1000_82541_rev_2 ||
5358	    hw->mac_type == e1000_82547_rev_2) {
5359		ret_val =
5360		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5361		if (ret_val)
5362			return ret_val;
5363	}
5364
5365	if (!active) {
5366		if (hw->mac_type == e1000_82541_rev_2 ||
5367		    hw->mac_type == e1000_82547_rev_2) {
5368			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5369			ret_val =
5370			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5371						phy_data);
5372			if (ret_val)
5373				return ret_val;
5374		}
5375
5376		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5377		 * during Dx states where the power conservation is most
5378		 * important.  During driver activity we should enable
5379		 * SmartSpeed, so performance is maintained.
5380		 */
5381		if (hw->smart_speed == e1000_smart_speed_on) {
5382			ret_val =
5383			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5384					       &phy_data);
5385			if (ret_val)
5386				return ret_val;
5387
5388			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5389			ret_val =
5390			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5391						phy_data);
5392			if (ret_val)
5393				return ret_val;
5394		} else if (hw->smart_speed == e1000_smart_speed_off) {
5395			ret_val =
5396			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5397					       &phy_data);
5398			if (ret_val)
5399				return ret_val;
5400
5401			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5402			ret_val =
5403			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5404						phy_data);
5405			if (ret_val)
5406				return ret_val;
5407		}
5408	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5409		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5410		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
 
 
5411		if (hw->mac_type == e1000_82541_rev_2 ||
5412		    hw->mac_type == e1000_82547_rev_2) {
5413			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5414			ret_val =
5415			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5416						phy_data);
5417			if (ret_val)
5418				return ret_val;
5419		}
5420
5421		/* When LPLU is enabled we should disable SmartSpeed */
5422		ret_val =
5423		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5424				       &phy_data);
5425		if (ret_val)
5426			return ret_val;
5427
5428		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5429		ret_val =
5430		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5431					phy_data);
5432		if (ret_val)
5433			return ret_val;
 
5434	}
5435	return E1000_SUCCESS;
5436}
5437
5438/**
5439 * e1000_set_vco_speed
5440 * @hw: Struct containing variables accessed by shared code
5441 *
5442 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5443 */
5444static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5445{
5446	s32 ret_val;
5447	u16 default_page = 0;
5448	u16 phy_data;
5449
 
 
5450	switch (hw->mac_type) {
5451	case e1000_82545_rev_3:
5452	case e1000_82546_rev_3:
5453		break;
5454	default:
5455		return E1000_SUCCESS;
5456	}
5457
5458	/* Set PHY register 30, page 5, bit 8 to 0 */
5459
5460	ret_val =
5461	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5462	if (ret_val)
5463		return ret_val;
5464
5465	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5466	if (ret_val)
5467		return ret_val;
5468
5469	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5470	if (ret_val)
5471		return ret_val;
5472
5473	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5474	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5475	if (ret_val)
5476		return ret_val;
5477
5478	/* Set PHY register 30, page 4, bit 11 to 1 */
5479
5480	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5481	if (ret_val)
5482		return ret_val;
5483
5484	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5485	if (ret_val)
5486		return ret_val;
5487
5488	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5489	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5490	if (ret_val)
5491		return ret_val;
5492
5493	ret_val =
5494	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5495	if (ret_val)
5496		return ret_val;
5497
5498	return E1000_SUCCESS;
5499}
5500
 
5501/**
5502 * e1000_enable_mng_pass_thru - check for bmc pass through
5503 * @hw: Struct containing variables accessed by shared code
5504 *
5505 * Verifies the hardware needs to allow ARPs to be processed by the host
5506 * returns: - true/false
5507 */
5508u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5509{
5510	u32 manc;
5511
5512	if (hw->asf_firmware_present) {
5513		manc = er32(MANC);
5514
5515		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5516		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5517			return false;
5518		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5519			return true;
5520	}
5521	return false;
5522}
5523
5524static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5525{
5526	s32 ret_val;
5527	u16 mii_status_reg;
5528	u16 i;
5529
5530	/* Polarity reversal workaround for forced 10F/10H links. */
5531
5532	/* Disable the transmitter on the PHY */
5533
5534	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5535	if (ret_val)
5536		return ret_val;
5537	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5538	if (ret_val)
5539		return ret_val;
5540
5541	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5542	if (ret_val)
5543		return ret_val;
5544
5545	/* This loop will early-out if the NO link condition has been met. */
5546	for (i = PHY_FORCE_TIME; i > 0; i--) {
5547		/* Read the MII Status Register and wait for Link Status bit
5548		 * to be clear.
5549		 */
5550
5551		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5552		if (ret_val)
5553			return ret_val;
5554
5555		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5556		if (ret_val)
5557			return ret_val;
5558
5559		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5560			break;
5561		msleep(100);
5562	}
5563
5564	/* Recommended delay time after link has been lost */
5565	msleep(1000);
5566
5567	/* Now we will re-enable th transmitter on the PHY */
5568
5569	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5570	if (ret_val)
5571		return ret_val;
5572	msleep(50);
5573	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5574	if (ret_val)
5575		return ret_val;
5576	msleep(50);
5577	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5578	if (ret_val)
5579		return ret_val;
5580	msleep(50);
5581	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5582	if (ret_val)
5583		return ret_val;
5584
5585	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5586	if (ret_val)
5587		return ret_val;
5588
5589	/* This loop will early-out if the link condition has been met. */
5590	for (i = PHY_FORCE_TIME; i > 0; i--) {
5591		/* Read the MII Status Register and wait for Link Status bit
5592		 * to be set.
5593		 */
5594
5595		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5596		if (ret_val)
5597			return ret_val;
5598
5599		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5600		if (ret_val)
5601			return ret_val;
5602
5603		if (mii_status_reg & MII_SR_LINK_STATUS)
5604			break;
5605		msleep(100);
5606	}
5607	return E1000_SUCCESS;
5608}
5609
5610/**
5611 * e1000_get_auto_rd_done
5612 * @hw: Struct containing variables accessed by shared code
5613 *
5614 * Check for EEPROM Auto Read bit done.
5615 * returns: - E1000_ERR_RESET if fail to reset MAC
5616 *            E1000_SUCCESS at any other case.
5617 */
5618static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5619{
 
5620	msleep(5);
5621	return E1000_SUCCESS;
5622}
5623
5624/**
5625 * e1000_get_phy_cfg_done
5626 * @hw: Struct containing variables accessed by shared code
5627 *
5628 * Checks if the PHY configuration is done
5629 * returns: - E1000_ERR_RESET if fail to reset MAC
5630 *            E1000_SUCCESS at any other case.
5631 */
5632static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5633{
 
5634	msleep(10);
5635	return E1000_SUCCESS;
5636}