Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Copyright (c) 2009, Microsoft Corporation.
  3 *
  4 * This program is free software; you can redistribute it and/or modify it
  5 * under the terms and conditions of the GNU General Public License,
  6 * version 2, as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope it will be useful, but WITHOUT
  9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11 * more details.
 12 *
 13 * You should have received a copy of the GNU General Public License along with
 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 15 * Place - Suite 330, Boston, MA 02111-1307 USA.
 16 *
 17 * Authors:
 18 *   Haiyang Zhang <haiyangz@microsoft.com>
 19 *   Hank Janssen  <hjanssen@microsoft.com>
 20 *   K. Y. Srinivasan <kys@microsoft.com>
 21 *
 22 */
 23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 24
 25#include <linux/init.h>
 26#include <linux/module.h>
 27#include <linux/device.h>
 28#include <linux/irq.h>
 29#include <linux/interrupt.h>
 30#include <linux/sysctl.h>
 31#include <linux/slab.h>
 32#include <linux/acpi.h>
 33#include <acpi/acpi_bus.h>
 34#include <linux/completion.h>
 35#include <linux/hyperv.h>
 36#include <asm/hyperv.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37#include "hyperv_vmbus.h"
 38
 
 
 
 
 39
 40static struct acpi_device  *hv_acpi_dev;
 41
 42static struct tasklet_struct msg_dpc;
 43static struct tasklet_struct event_dpc;
 44static struct completion probe_event;
 45static int irq;
 46
 47struct hv_device_info {
 48	u32 chn_id;
 49	u32 chn_state;
 50	uuid_le chn_type;
 51	uuid_le chn_instance;
 52
 53	u32 monitor_id;
 54	u32 server_monitor_pending;
 55	u32 server_monitor_latency;
 56	u32 server_monitor_conn_id;
 57	u32 client_monitor_pending;
 58	u32 client_monitor_latency;
 59	u32 client_monitor_conn_id;
 60
 61	struct hv_dev_port_info inbound;
 62	struct hv_dev_port_info outbound;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64
 65static int vmbus_exists(void)
 66{
 67	if (hv_acpi_dev == NULL)
 68		return -ENODEV;
 69
 70	return 0;
 71}
 72
 
 
 
 
 73
 74static void get_channel_info(struct hv_device *device,
 75			     struct hv_device_info *info)
 76{
 77	struct vmbus_channel_debug_info debug_info;
 
 78
 79	if (!device->channel)
 80		return;
 
 
 81
 82	vmbus_get_debug_info(device->channel, &debug_info);
 
 83
 84	info->chn_id = debug_info.relid;
 85	info->chn_state = debug_info.state;
 86	memcpy(&info->chn_type, &debug_info.interfacetype,
 87	       sizeof(uuid_le));
 88	memcpy(&info->chn_instance, &debug_info.interface_instance,
 89	       sizeof(uuid_le));
 90
 91	info->monitor_id = debug_info.monitorid;
 
 92
 93	info->server_monitor_pending = debug_info.servermonitor_pending;
 94	info->server_monitor_latency = debug_info.servermonitor_latency;
 95	info->server_monitor_conn_id = debug_info.servermonitor_connectionid;
 
 
 96
 97	info->client_monitor_pending = debug_info.clientmonitor_pending;
 98	info->client_monitor_latency = debug_info.clientmonitor_latency;
 99	info->client_monitor_conn_id = debug_info.clientmonitor_connectionid;
100
101	info->inbound.int_mask = debug_info.inbound.current_interrupt_mask;
102	info->inbound.read_idx = debug_info.inbound.current_read_index;
103	info->inbound.write_idx = debug_info.inbound.current_write_index;
104	info->inbound.bytes_avail_toread =
105		debug_info.inbound.bytes_avail_toread;
106	info->inbound.bytes_avail_towrite =
107		debug_info.inbound.bytes_avail_towrite;
108
109	info->outbound.int_mask =
110		debug_info.outbound.current_interrupt_mask;
111	info->outbound.read_idx = debug_info.outbound.current_read_index;
112	info->outbound.write_idx = debug_info.outbound.current_write_index;
113	info->outbound.bytes_avail_toread =
114		debug_info.outbound.bytes_avail_toread;
115	info->outbound.bytes_avail_towrite =
116		debug_info.outbound.bytes_avail_towrite;
117}
 
118
119#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
120static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
121{
122	int i;
123	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
124		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
 
 
125}
 
126
127/*
128 * vmbus_show_device_attr - Show the device attribute in sysfs.
129 *
130 * This is invoked when user does a
131 * "cat /sys/bus/vmbus/devices/<busdevice>/<attr name>"
132 */
133static ssize_t vmbus_show_device_attr(struct device *dev,
134				      struct device_attribute *dev_attr,
135				      char *buf)
136{
137	struct hv_device *hv_dev = device_to_hv_device(dev);
138	struct hv_device_info *device_info;
139	char alias_name[VMBUS_ALIAS_LEN + 1];
140	int ret = 0;
141
142	device_info = kzalloc(sizeof(struct hv_device_info), GFP_KERNEL);
143	if (!device_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144		return ret;
145
146	get_channel_info(hv_dev, device_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
148	if (!strcmp(dev_attr->attr.name, "class_id")) {
149		ret = sprintf(buf, "{%02x%02x%02x%02x-%02x%02x-%02x%02x-"
150			       "%02x%02x%02x%02x%02x%02x%02x%02x}\n",
151			       device_info->chn_type.b[3],
152			       device_info->chn_type.b[2],
153			       device_info->chn_type.b[1],
154			       device_info->chn_type.b[0],
155			       device_info->chn_type.b[5],
156			       device_info->chn_type.b[4],
157			       device_info->chn_type.b[7],
158			       device_info->chn_type.b[6],
159			       device_info->chn_type.b[8],
160			       device_info->chn_type.b[9],
161			       device_info->chn_type.b[10],
162			       device_info->chn_type.b[11],
163			       device_info->chn_type.b[12],
164			       device_info->chn_type.b[13],
165			       device_info->chn_type.b[14],
166			       device_info->chn_type.b[15]);
167	} else if (!strcmp(dev_attr->attr.name, "device_id")) {
168		ret = sprintf(buf, "{%02x%02x%02x%02x-%02x%02x-%02x%02x-"
169			       "%02x%02x%02x%02x%02x%02x%02x%02x}\n",
170			       device_info->chn_instance.b[3],
171			       device_info->chn_instance.b[2],
172			       device_info->chn_instance.b[1],
173			       device_info->chn_instance.b[0],
174			       device_info->chn_instance.b[5],
175			       device_info->chn_instance.b[4],
176			       device_info->chn_instance.b[7],
177			       device_info->chn_instance.b[6],
178			       device_info->chn_instance.b[8],
179			       device_info->chn_instance.b[9],
180			       device_info->chn_instance.b[10],
181			       device_info->chn_instance.b[11],
182			       device_info->chn_instance.b[12],
183			       device_info->chn_instance.b[13],
184			       device_info->chn_instance.b[14],
185			       device_info->chn_instance.b[15]);
186	} else if (!strcmp(dev_attr->attr.name, "modalias")) {
187		print_alias_name(hv_dev, alias_name);
188		ret = sprintf(buf, "vmbus:%s\n", alias_name);
189	} else if (!strcmp(dev_attr->attr.name, "state")) {
190		ret = sprintf(buf, "%d\n", device_info->chn_state);
191	} else if (!strcmp(dev_attr->attr.name, "id")) {
192		ret = sprintf(buf, "%d\n", device_info->chn_id);
193	} else if (!strcmp(dev_attr->attr.name, "out_intr_mask")) {
194		ret = sprintf(buf, "%d\n", device_info->outbound.int_mask);
195	} else if (!strcmp(dev_attr->attr.name, "out_read_index")) {
196		ret = sprintf(buf, "%d\n", device_info->outbound.read_idx);
197	} else if (!strcmp(dev_attr->attr.name, "out_write_index")) {
198		ret = sprintf(buf, "%d\n", device_info->outbound.write_idx);
199	} else if (!strcmp(dev_attr->attr.name, "out_read_bytes_avail")) {
200		ret = sprintf(buf, "%d\n",
201			       device_info->outbound.bytes_avail_toread);
202	} else if (!strcmp(dev_attr->attr.name, "out_write_bytes_avail")) {
203		ret = sprintf(buf, "%d\n",
204			       device_info->outbound.bytes_avail_towrite);
205	} else if (!strcmp(dev_attr->attr.name, "in_intr_mask")) {
206		ret = sprintf(buf, "%d\n", device_info->inbound.int_mask);
207	} else if (!strcmp(dev_attr->attr.name, "in_read_index")) {
208		ret = sprintf(buf, "%d\n", device_info->inbound.read_idx);
209	} else if (!strcmp(dev_attr->attr.name, "in_write_index")) {
210		ret = sprintf(buf, "%d\n", device_info->inbound.write_idx);
211	} else if (!strcmp(dev_attr->attr.name, "in_read_bytes_avail")) {
212		ret = sprintf(buf, "%d\n",
213			       device_info->inbound.bytes_avail_toread);
214	} else if (!strcmp(dev_attr->attr.name, "in_write_bytes_avail")) {
215		ret = sprintf(buf, "%d\n",
216			       device_info->inbound.bytes_avail_towrite);
217	} else if (!strcmp(dev_attr->attr.name, "monitor_id")) {
218		ret = sprintf(buf, "%d\n", device_info->monitor_id);
219	} else if (!strcmp(dev_attr->attr.name, "server_monitor_pending")) {
220		ret = sprintf(buf, "%d\n", device_info->server_monitor_pending);
221	} else if (!strcmp(dev_attr->attr.name, "server_monitor_latency")) {
222		ret = sprintf(buf, "%d\n", device_info->server_monitor_latency);
223	} else if (!strcmp(dev_attr->attr.name, "server_monitor_conn_id")) {
224		ret = sprintf(buf, "%d\n",
225			       device_info->server_monitor_conn_id);
226	} else if (!strcmp(dev_attr->attr.name, "client_monitor_pending")) {
227		ret = sprintf(buf, "%d\n", device_info->client_monitor_pending);
228	} else if (!strcmp(dev_attr->attr.name, "client_monitor_latency")) {
229		ret = sprintf(buf, "%d\n", device_info->client_monitor_latency);
230	} else if (!strcmp(dev_attr->attr.name, "client_monitor_conn_id")) {
231		ret = sprintf(buf, "%d\n",
232			       device_info->client_monitor_conn_id);
233	}
234
235	kfree(device_info);
236	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237}
 
238
239/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
240static struct device_attribute vmbus_device_attrs[] = {
241	__ATTR(id, S_IRUGO, vmbus_show_device_attr, NULL),
242	__ATTR(state, S_IRUGO, vmbus_show_device_attr, NULL),
243	__ATTR(class_id, S_IRUGO, vmbus_show_device_attr, NULL),
244	__ATTR(device_id, S_IRUGO, vmbus_show_device_attr, NULL),
245	__ATTR(monitor_id, S_IRUGO, vmbus_show_device_attr, NULL),
246	__ATTR(modalias, S_IRUGO, vmbus_show_device_attr, NULL),
247
248	__ATTR(server_monitor_pending, S_IRUGO, vmbus_show_device_attr, NULL),
249	__ATTR(server_monitor_latency, S_IRUGO, vmbus_show_device_attr, NULL),
250	__ATTR(server_monitor_conn_id, S_IRUGO, vmbus_show_device_attr, NULL),
251
252	__ATTR(client_monitor_pending, S_IRUGO, vmbus_show_device_attr, NULL),
253	__ATTR(client_monitor_latency, S_IRUGO, vmbus_show_device_attr, NULL),
254	__ATTR(client_monitor_conn_id, S_IRUGO, vmbus_show_device_attr, NULL),
255
256	__ATTR(out_intr_mask, S_IRUGO, vmbus_show_device_attr, NULL),
257	__ATTR(out_read_index, S_IRUGO, vmbus_show_device_attr, NULL),
258	__ATTR(out_write_index, S_IRUGO, vmbus_show_device_attr, NULL),
259	__ATTR(out_read_bytes_avail, S_IRUGO, vmbus_show_device_attr, NULL),
260	__ATTR(out_write_bytes_avail, S_IRUGO, vmbus_show_device_attr, NULL),
261
262	__ATTR(in_intr_mask, S_IRUGO, vmbus_show_device_attr, NULL),
263	__ATTR(in_read_index, S_IRUGO, vmbus_show_device_attr, NULL),
264	__ATTR(in_write_index, S_IRUGO, vmbus_show_device_attr, NULL),
265	__ATTR(in_read_bytes_avail, S_IRUGO, vmbus_show_device_attr, NULL),
266	__ATTR(in_write_bytes_avail, S_IRUGO, vmbus_show_device_attr, NULL),
267	__ATTR_NULL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268};
 
 
 
 
 
 
 
269
 
 
 
 
 
 
 
 
 
 
270
271/*
272 * vmbus_uevent - add uevent for our device
273 *
274 * This routine is invoked when a device is added or removed on the vmbus to
275 * generate a uevent to udev in the userspace. The udev will then look at its
276 * rule and the uevent generated here to load the appropriate driver
277 *
278 * The alias string will be of the form vmbus:guid where guid is the string
279 * representation of the device guid (each byte of the guid will be
280 * represented with two hex characters.
281 */
282static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
283{
284	struct hv_device *dev = device_to_hv_device(device);
285	int ret;
286	char alias_name[VMBUS_ALIAS_LEN + 1];
287
288	print_alias_name(dev, alias_name);
289	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
290	return ret;
291}
292
293static uuid_le null_guid;
 
 
 
 
294
295static inline bool is_null_guid(const __u8 *guid)
 
 
 
 
 
 
 
 
296{
297	if (memcmp(guid, &null_guid, sizeof(uuid_le)))
298		return false;
299	return true;
 
 
 
 
 
 
 
 
 
 
300}
301
 
 
302/*
303 * Return a matching hv_vmbus_device_id pointer.
304 * If there is no match, return NULL.
305 */
306static const struct hv_vmbus_device_id *hv_vmbus_get_id(
307					const struct hv_vmbus_device_id *id,
308					__u8 *guid)
309{
310	for (; !is_null_guid(id->guid); id++)
311		if (!memcmp(&id->guid, guid, sizeof(uuid_le)))
312			return id;
313
314	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316
 
 
 
 
 
 
 
 
 
 
317
318
319/*
320 * vmbus_match - Attempt to match the specified device to the specified driver
321 */
322static int vmbus_match(struct device *device, struct device_driver *driver)
323{
324	struct hv_driver *drv = drv_to_hv_drv(driver);
325	struct hv_device *hv_dev = device_to_hv_device(device);
326
327	if (hv_vmbus_get_id(drv->id_table, hv_dev->dev_type.b))
 
 
 
 
328		return 1;
329
330	return 0;
331}
332
333/*
334 * vmbus_probe - Add the new vmbus's child device
335 */
336static int vmbus_probe(struct device *child_device)
337{
338	int ret = 0;
339	struct hv_driver *drv =
340			drv_to_hv_drv(child_device->driver);
341	struct hv_device *dev = device_to_hv_device(child_device);
342	const struct hv_vmbus_device_id *dev_id;
343
344	dev_id = hv_vmbus_get_id(drv->id_table, dev->dev_type.b);
345	if (drv->probe) {
346		ret = drv->probe(dev, dev_id);
347		if (ret != 0)
348			pr_err("probe failed for device %s (%d)\n",
349			       dev_name(child_device), ret);
350
351	} else {
352		pr_err("probe not set for driver %s\n",
353		       dev_name(child_device));
354		ret = -ENODEV;
355	}
356	return ret;
357}
358
359/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360 * vmbus_remove - Remove a vmbus device
361 */
362static int vmbus_remove(struct device *child_device)
363{
364	struct hv_driver *drv = drv_to_hv_drv(child_device->driver);
365	struct hv_device *dev = device_to_hv_device(child_device);
366
367	if (drv->remove)
368		drv->remove(dev);
369	else
370		pr_err("remove not set for driver %s\n",
371			dev_name(child_device));
372
373	return 0;
374}
375
376
377/*
378 * vmbus_shutdown - Shutdown a vmbus device
379 */
380static void vmbus_shutdown(struct device *child_device)
381{
382	struct hv_driver *drv;
383	struct hv_device *dev = device_to_hv_device(child_device);
384
385
386	/* The device may not be attached yet */
387	if (!child_device->driver)
388		return;
389
390	drv = drv_to_hv_drv(child_device->driver);
391
392	if (drv->shutdown)
393		drv->shutdown(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
395	return;
396}
397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
399/*
400 * vmbus_device_release - Final callback release of the vmbus child device
401 */
402static void vmbus_device_release(struct device *device)
403{
404	struct hv_device *hv_dev = device_to_hv_device(device);
 
405
406	kfree(hv_dev);
407
 
 
 
 
408}
409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410/* The one and only one */
411static struct bus_type  hv_bus = {
412	.name =		"vmbus",
413	.match =		vmbus_match,
414	.shutdown =		vmbus_shutdown,
415	.remove =		vmbus_remove,
416	.probe =		vmbus_probe,
417	.uevent =		vmbus_uevent,
418	.dev_attrs =	vmbus_device_attrs,
 
 
 
 
419};
420
421static const char *driver_name = "hyperv";
422
423
424struct onmessage_work_context {
425	struct work_struct work;
426	struct hv_message msg;
 
 
 
427};
428
429static void vmbus_onmessage_work(struct work_struct *work)
430{
431	struct onmessage_work_context *ctx;
432
 
 
 
 
433	ctx = container_of(work, struct onmessage_work_context,
434			   work);
435	vmbus_onmessage(&ctx->msg);
 
436	kfree(ctx);
437}
438
439static void vmbus_on_msg_dpc(unsigned long data)
440{
441	int cpu = smp_processor_id();
442	void *page_addr = hv_context.synic_message_page[cpu];
443	struct hv_message *msg = (struct hv_message *)page_addr +
444				  VMBUS_MESSAGE_SINT;
 
 
 
445	struct onmessage_work_context *ctx;
 
 
446
447	while (1) {
448		if (msg->header.message_type == HVMSG_NONE) {
449			/* no msg */
450			break;
451		} else {
452			ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
453			if (ctx == NULL)
454				continue;
455			INIT_WORK(&ctx->work, vmbus_onmessage_work);
456			memcpy(&ctx->msg, msg, sizeof(*msg));
457			queue_work(vmbus_connection.work_queue, &ctx->work);
458		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459
460		msg->header.message_type = HVMSG_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
462		/*
463		 * Make sure the write to MessageType (ie set to
464		 * HVMSG_NONE) happens before we read the
465		 * MessagePending and EOMing. Otherwise, the EOMing
466		 * will not deliver any more messages since there is
467		 * no empty slot
468		 */
469		smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470
471		if (msg->header.message_flags.msg_pending) {
472			/*
473			 * This will cause message queue rescan to
474			 * possibly deliver another msg from the
475			 * hypervisor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476			 */
477			wrmsrl(HV_X64_MSR_EOM, 0);
 
 
 
 
 
 
478		}
479	}
 
 
 
 
480}
481
482static irqreturn_t vmbus_isr(int irq, void *dev_id)
 
 
 
 
 
483{
484	int cpu = smp_processor_id();
485	void *page_addr;
486	struct hv_message *msg;
487	union hv_synic_event_flags *event;
488	bool handled = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489
490	/*
491	 * Check for events before checking for messages. This is the order
492	 * in which events and messages are checked in Windows guests on
493	 * Hyper-V, and the Windows team suggested we do the same.
494	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496	page_addr = hv_context.synic_event_page[cpu];
497	event = (union hv_synic_event_flags *)page_addr + VMBUS_MESSAGE_SINT;
498
499	/* Since we are a child, we only need to check bit 0 */
500	if (sync_test_and_clear_bit(0, (unsigned long *) &event->flags32[0])) {
501		handled = true;
502		tasklet_schedule(&event_dpc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503	}
 
 
 
 
 
 
 
 
504
505	page_addr = hv_context.synic_message_page[cpu];
 
 
506	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
507
508	/* Check if there are actual msgs to be processed */
509	if (msg->header.message_type != HVMSG_NONE) {
510		handled = true;
511		tasklet_schedule(&msg_dpc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512	}
513
514	if (handled)
515		return IRQ_HANDLED;
516	else
517		return IRQ_NONE;
 
 
518}
519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520/*
521 * vmbus_bus_init -Main vmbus driver initialization routine.
522 *
523 * Here, we
524 *	- initialize the vmbus driver context
525 *	- invoke the vmbus hv main init routine
526 *	- get the irq resource
527 *	- retrieve the channel offers
528 */
529static int vmbus_bus_init(int irq)
530{
531	int ret;
532	unsigned int vector;
533
534	/* Hypervisor initialization...setup hypercall page..etc */
535	ret = hv_init();
536	if (ret != 0) {
537		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
538		return ret;
539	}
540
541	tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
542	tasklet_init(&event_dpc, vmbus_on_event, 0);
543
544	ret = bus_register(&hv_bus);
545	if (ret)
546		goto err_cleanup;
547
548	ret = request_irq(irq, vmbus_isr, IRQF_SAMPLE_RANDOM,
549			driver_name, hv_acpi_dev);
 
 
 
 
 
 
550
551	if (ret != 0) {
552		pr_err("Unable to request IRQ %d\n",
553			   irq);
554		goto err_unregister;
 
 
 
 
 
 
 
 
555	}
556
557	vector = IRQ0_VECTOR + irq;
 
 
558
559	/*
560	 * Notify the hypervisor of our irq and
561	 * connect to the host.
562	 */
563	on_each_cpu(hv_synic_init, (void *)&vector, 1);
 
 
 
 
 
564	ret = vmbus_connect();
565	if (ret)
566		goto err_irq;
567
568	vmbus_request_offers();
 
569
570	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571
572err_irq:
573	free_irq(irq, hv_acpi_dev);
 
 
 
 
574
575err_unregister:
576	bus_unregister(&hv_bus);
577
578err_cleanup:
579	hv_cleanup();
580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581	return ret;
582}
583
584/**
585 * __vmbus_child_driver_register - Register a vmbus's driver
586 * @drv: Pointer to driver structure you want to register
587 * @owner: owner module of the drv
588 * @mod_name: module name string
589 *
590 * Registers the given driver with Linux through the 'driver_register()' call
591 * and sets up the hyper-v vmbus handling for this driver.
592 * It will return the state of the 'driver_register()' call.
593 *
594 */
595int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
596{
597	int ret;
598
599	pr_info("registering driver %s\n", hv_driver->name);
600
601	ret = vmbus_exists();
602	if (ret < 0)
603		return ret;
604
605	hv_driver->driver.name = hv_driver->name;
606	hv_driver->driver.owner = owner;
607	hv_driver->driver.mod_name = mod_name;
608	hv_driver->driver.bus = &hv_bus;
609
610	ret = driver_register(&hv_driver->driver);
 
611
612	vmbus_request_offers();
613
614	return ret;
615}
616EXPORT_SYMBOL_GPL(__vmbus_driver_register);
617
618/**
619 * vmbus_driver_unregister() - Unregister a vmbus's driver
620 * @drv: Pointer to driver structure you want to un-register
 
621 *
622 * Un-register the given driver that was previous registered with a call to
623 * vmbus_driver_register()
624 */
625void vmbus_driver_unregister(struct hv_driver *hv_driver)
626{
627	pr_info("unregistering driver %s\n", hv_driver->name);
628
629	if (!vmbus_exists())
630		driver_unregister(&hv_driver->driver);
 
 
631}
632EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634/*
635 * vmbus_device_create - Creates and registers a new child device
636 * on the vmbus.
637 */
638struct hv_device *vmbus_device_create(uuid_le *type,
639					    uuid_le *instance,
640					    struct vmbus_channel *channel)
641{
642	struct hv_device *child_device_obj;
643
644	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
645	if (!child_device_obj) {
646		pr_err("Unable to allocate device object for child device\n");
647		return NULL;
648	}
649
650	child_device_obj->channel = channel;
651	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
652	memcpy(&child_device_obj->dev_instance, instance,
653	       sizeof(uuid_le));
654
655
656	return child_device_obj;
657}
658
659/*
660 * vmbus_device_register - Register the child device
661 */
662int vmbus_device_register(struct hv_device *child_device_obj)
663{
664	int ret = 0;
665
666	static atomic_t device_num = ATOMIC_INIT(0);
667
668	dev_set_name(&child_device_obj->device, "vmbus_0_%d",
669		     atomic_inc_return(&device_num));
670
671	child_device_obj->device.bus = &hv_bus;
672	child_device_obj->device.parent = &hv_acpi_dev->dev;
673	child_device_obj->device.release = vmbus_device_release;
674
 
 
 
 
675	/*
676	 * Register with the LDM. This will kick off the driver/device
677	 * binding...which will eventually call vmbus_match() and vmbus_probe()
678	 */
679	ret = device_register(&child_device_obj->device);
680
681	if (ret)
682		pr_err("Unable to register child device\n");
683	else
684		pr_info("child device %s registered\n",
685			dev_name(&child_device_obj->device));
686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687	return ret;
688}
689
690/*
691 * vmbus_device_unregister - Remove the specified child device
692 * from the vmbus.
693 */
694void vmbus_device_unregister(struct hv_device *device_obj)
695{
 
 
 
 
 
696	/*
697	 * Kick off the process of unregistering the device.
698	 * This will call vmbus_remove() and eventually vmbus_device_release()
699	 */
700	device_unregister(&device_obj->device);
701
702	pr_info("child device %s unregistered\n",
703		dev_name(&device_obj->device));
704}
705
706
707/*
708 * VMBUS is an acpi enumerated device. Get the the IRQ information
709 * from DSDT.
710 */
711
712static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *irq)
713{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714
715	if (res->type == ACPI_RESOURCE_TYPE_IRQ) {
716		struct acpi_resource_irq *irqp;
717		irqp = &res->data.irq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718
719		*((unsigned int *)irq) = irqp->interrupts[0];
720	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721
722	return AE_OK;
723}
724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725static int vmbus_acpi_add(struct acpi_device *device)
726{
727	acpi_status result;
 
 
728
729	hv_acpi_dev = device;
730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
732					vmbus_walk_resources, &irq);
733
734	if (ACPI_FAILURE(result)) {
735		complete(&probe_event);
736		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737	}
738	complete(&probe_event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739	return 0;
740}
 
 
 
 
741
742static const struct acpi_device_id vmbus_acpi_device_ids[] = {
743	{"VMBUS", 0},
744	{"VMBus", 0},
745	{"", 0},
746};
747MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749static struct acpi_driver vmbus_acpi_driver = {
750	.name = "vmbus",
751	.ids = vmbus_acpi_device_ids,
752	.ops = {
753		.add = vmbus_acpi_add,
 
754	},
 
 
755};
756
757static int __init hv_acpi_init(void)
 
 
 
 
 
 
 
 
 
758{
759	int ret, t;
760
761	init_completion(&probe_event);
 
 
 
 
 
 
 
 
 
762
 
 
763	/*
764	 * Get irq resources first.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765	 */
766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
768
769	if (ret)
770		return ret;
771
772	t = wait_for_completion_timeout(&probe_event, 5*HZ);
773	if (t == 0) {
774		ret = -ETIMEDOUT;
775		goto cleanup;
776	}
777
778	if (irq <= 0) {
779		ret = -ENODEV;
780		goto cleanup;
781	}
782
783	ret = vmbus_bus_init(irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
784	if (ret)
785		goto cleanup;
786
 
 
 
 
 
787	return 0;
788
789cleanup:
790	acpi_bus_unregister_driver(&vmbus_acpi_driver);
791	hv_acpi_dev = NULL;
792	return ret;
793}
794
795static void __exit vmbus_exit(void)
796{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797
798	free_irq(irq, hv_acpi_dev);
799	vmbus_free_channels();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800	bus_unregister(&hv_bus);
801	hv_cleanup();
 
 
802	acpi_bus_unregister_driver(&vmbus_acpi_driver);
803}
804
805
806MODULE_LICENSE("GPL");
807MODULE_VERSION(HV_DRV_VERSION);
808
809subsys_initcall(hv_acpi_init);
810module_exit(vmbus_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 *   K. Y. Srinivasan <kys@microsoft.com>
 
   9 */
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/device.h>
 
  15#include <linux/interrupt.h>
  16#include <linux/sysctl.h>
  17#include <linux/slab.h>
  18#include <linux/acpi.h>
 
  19#include <linux/completion.h>
  20#include <linux/hyperv.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/clockchips.h>
  23#include <linux/cpu.h>
  24#include <linux/sched/isolation.h>
  25#include <linux/sched/task_stack.h>
  26
  27#include <linux/delay.h>
  28#include <linux/panic_notifier.h>
  29#include <linux/ptrace.h>
  30#include <linux/screen_info.h>
  31#include <linux/kdebug.h>
  32#include <linux/efi.h>
  33#include <linux/random.h>
  34#include <linux/kernel.h>
  35#include <linux/syscore_ops.h>
  36#include <linux/dma-map-ops.h>
  37#include <linux/pci.h>
  38#include <clocksource/hyperv_timer.h>
  39#include <asm/mshyperv.h>
  40#include "hyperv_vmbus.h"
  41
  42struct vmbus_dynid {
  43	struct list_head node;
  44	struct hv_vmbus_device_id id;
  45};
  46
  47static struct acpi_device  *hv_acpi_dev;
  48
  49static int hyperv_cpuhp_online;
  50
  51static void *hv_panic_page;
  52
  53static long __percpu *vmbus_evt;
  54
  55/* Values parsed from ACPI DSDT */
  56int vmbus_irq;
  57int vmbus_interrupt;
  58
  59/*
  60 * Boolean to control whether to report panic messages over Hyper-V.
  61 *
  62 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
  63 */
  64static int sysctl_record_panic_msg = 1;
 
 
  65
  66static int hyperv_report_reg(void)
  67{
  68	return !sysctl_record_panic_msg || !hv_panic_page;
  69}
  70
  71/*
  72 * The panic notifier below is responsible solely for unloading the
  73 * vmbus connection, which is necessary in a panic event.
  74 *
  75 * Notice an intrincate relation of this notifier with Hyper-V
  76 * framebuffer panic notifier exists - we need vmbus connection alive
  77 * there in order to succeed, so we need to order both with each other
  78 * [see hvfb_on_panic()] - this is done using notifiers' priorities.
  79 */
  80static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
  81			      void *args)
  82{
  83	vmbus_initiate_unload(true);
  84	return NOTIFY_DONE;
  85}
  86static struct notifier_block hyperv_panic_vmbus_unload_block = {
  87	.notifier_call	= hv_panic_vmbus_unload,
  88	.priority	= INT_MIN + 1, /* almost the latest one to execute */
  89};
  90
  91static int hv_die_panic_notify_crash(struct notifier_block *self,
  92				     unsigned long val, void *args);
  93
  94static struct notifier_block hyperv_die_report_block = {
  95	.notifier_call = hv_die_panic_notify_crash,
  96};
  97static struct notifier_block hyperv_panic_report_block = {
  98	.notifier_call = hv_die_panic_notify_crash,
  99};
 100
 101/*
 102 * The following callback works both as die and panic notifier; its
 103 * goal is to provide panic information to the hypervisor unless the
 104 * kmsg dumper is used [see hv_kmsg_dump()], which provides more
 105 * information but isn't always available.
 106 *
 107 * Notice that both the panic/die report notifiers are registered only
 108 * if we have the capability HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE set.
 109 */
 110static int hv_die_panic_notify_crash(struct notifier_block *self,
 111				     unsigned long val, void *args)
 112{
 113	struct pt_regs *regs;
 114	bool is_die;
 115
 116	/* Don't notify Hyper-V unless we have a die oops event or panic. */
 117	if (self == &hyperv_panic_report_block) {
 118		is_die = false;
 119		regs = current_pt_regs();
 120	} else { /* die event */
 121		if (val != DIE_OOPS)
 122			return NOTIFY_DONE;
 123
 124		is_die = true;
 125		regs = ((struct die_args *)args)->regs;
 126	}
 127
 128	/*
 129	 * Hyper-V should be notified only once about a panic/die. If we will
 130	 * be calling hv_kmsg_dump() later with kmsg data, don't do the
 131	 * notification here.
 132	 */
 133	if (hyperv_report_reg())
 134		hyperv_report_panic(regs, val, is_die);
 135
 136	return NOTIFY_DONE;
 137}
 138
 139static const char *fb_mmio_name = "fb_range";
 140static struct resource *fb_mmio;
 141static struct resource *hyperv_mmio;
 142static DEFINE_MUTEX(hyperv_mmio_lock);
 143
 144static int vmbus_exists(void)
 145{
 146	if (hv_acpi_dev == NULL)
 147		return -ENODEV;
 148
 149	return 0;
 150}
 151
 152static u8 channel_monitor_group(const struct vmbus_channel *channel)
 153{
 154	return (u8)channel->offermsg.monitorid / 32;
 155}
 156
 157static u8 channel_monitor_offset(const struct vmbus_channel *channel)
 
 158{
 159	return (u8)channel->offermsg.monitorid % 32;
 160}
 161
 162static u32 channel_pending(const struct vmbus_channel *channel,
 163			   const struct hv_monitor_page *monitor_page)
 164{
 165	u8 monitor_group = channel_monitor_group(channel);
 166
 167	return monitor_page->trigger_group[monitor_group].pending;
 168}
 169
 170static u32 channel_latency(const struct vmbus_channel *channel,
 171			   const struct hv_monitor_page *monitor_page)
 172{
 173	u8 monitor_group = channel_monitor_group(channel);
 174	u8 monitor_offset = channel_monitor_offset(channel);
 
 175
 176	return monitor_page->latency[monitor_group][monitor_offset];
 177}
 178
 179static u32 channel_conn_id(struct vmbus_channel *channel,
 180			   struct hv_monitor_page *monitor_page)
 181{
 182	u8 monitor_group = channel_monitor_group(channel);
 183	u8 monitor_offset = channel_monitor_offset(channel);
 184
 185	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
 186}
 
 187
 188static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
 189		       char *buf)
 190{
 191	struct hv_device *hv_dev = device_to_hv_device(dev);
 
 
 
 192
 193	if (!hv_dev->channel)
 194		return -ENODEV;
 195	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
 
 
 
 
 
 196}
 197static DEVICE_ATTR_RO(id);
 198
 199static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
 200			  char *buf)
 201{
 202	struct hv_device *hv_dev = device_to_hv_device(dev);
 203
 204	if (!hv_dev->channel)
 205		return -ENODEV;
 206	return sprintf(buf, "%d\n", hv_dev->channel->state);
 207}
 208static DEVICE_ATTR_RO(state);
 209
 210static ssize_t monitor_id_show(struct device *dev,
 211			       struct device_attribute *dev_attr, char *buf)
 
 
 
 
 
 
 
 212{
 213	struct hv_device *hv_dev = device_to_hv_device(dev);
 
 
 
 214
 215	if (!hv_dev->channel)
 216		return -ENODEV;
 217	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
 218}
 219static DEVICE_ATTR_RO(monitor_id);
 220
 221static ssize_t class_id_show(struct device *dev,
 222			       struct device_attribute *dev_attr, char *buf)
 223{
 224	struct hv_device *hv_dev = device_to_hv_device(dev);
 225
 226	if (!hv_dev->channel)
 227		return -ENODEV;
 228	return sprintf(buf, "{%pUl}\n",
 229		       &hv_dev->channel->offermsg.offer.if_type);
 230}
 231static DEVICE_ATTR_RO(class_id);
 232
 233static ssize_t device_id_show(struct device *dev,
 234			      struct device_attribute *dev_attr, char *buf)
 235{
 236	struct hv_device *hv_dev = device_to_hv_device(dev);
 237
 238	if (!hv_dev->channel)
 239		return -ENODEV;
 240	return sprintf(buf, "{%pUl}\n",
 241		       &hv_dev->channel->offermsg.offer.if_instance);
 242}
 243static DEVICE_ATTR_RO(device_id);
 244
 245static ssize_t modalias_show(struct device *dev,
 246			     struct device_attribute *dev_attr, char *buf)
 247{
 248	struct hv_device *hv_dev = device_to_hv_device(dev);
 249
 250	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
 251}
 252static DEVICE_ATTR_RO(modalias);
 253
 254#ifdef CONFIG_NUMA
 255static ssize_t numa_node_show(struct device *dev,
 256			      struct device_attribute *attr, char *buf)
 257{
 258	struct hv_device *hv_dev = device_to_hv_device(dev);
 259
 260	if (!hv_dev->channel)
 261		return -ENODEV;
 262
 263	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
 264}
 265static DEVICE_ATTR_RO(numa_node);
 266#endif
 267
 268static ssize_t server_monitor_pending_show(struct device *dev,
 269					   struct device_attribute *dev_attr,
 270					   char *buf)
 271{
 272	struct hv_device *hv_dev = device_to_hv_device(dev);
 273
 274	if (!hv_dev->channel)
 275		return -ENODEV;
 276	return sprintf(buf, "%d\n",
 277		       channel_pending(hv_dev->channel,
 278				       vmbus_connection.monitor_pages[0]));
 279}
 280static DEVICE_ATTR_RO(server_monitor_pending);
 281
 282static ssize_t client_monitor_pending_show(struct device *dev,
 283					   struct device_attribute *dev_attr,
 284					   char *buf)
 285{
 286	struct hv_device *hv_dev = device_to_hv_device(dev);
 287
 288	if (!hv_dev->channel)
 289		return -ENODEV;
 290	return sprintf(buf, "%d\n",
 291		       channel_pending(hv_dev->channel,
 292				       vmbus_connection.monitor_pages[1]));
 293}
 294static DEVICE_ATTR_RO(client_monitor_pending);
 295
 296static ssize_t server_monitor_latency_show(struct device *dev,
 297					   struct device_attribute *dev_attr,
 298					   char *buf)
 299{
 300	struct hv_device *hv_dev = device_to_hv_device(dev);
 301
 302	if (!hv_dev->channel)
 303		return -ENODEV;
 304	return sprintf(buf, "%d\n",
 305		       channel_latency(hv_dev->channel,
 306				       vmbus_connection.monitor_pages[0]));
 307}
 308static DEVICE_ATTR_RO(server_monitor_latency);
 309
 310static ssize_t client_monitor_latency_show(struct device *dev,
 311					   struct device_attribute *dev_attr,
 312					   char *buf)
 313{
 314	struct hv_device *hv_dev = device_to_hv_device(dev);
 315
 316	if (!hv_dev->channel)
 317		return -ENODEV;
 318	return sprintf(buf, "%d\n",
 319		       channel_latency(hv_dev->channel,
 320				       vmbus_connection.monitor_pages[1]));
 321}
 322static DEVICE_ATTR_RO(client_monitor_latency);
 323
 324static ssize_t server_monitor_conn_id_show(struct device *dev,
 325					   struct device_attribute *dev_attr,
 326					   char *buf)
 327{
 328	struct hv_device *hv_dev = device_to_hv_device(dev);
 329
 330	if (!hv_dev->channel)
 331		return -ENODEV;
 332	return sprintf(buf, "%d\n",
 333		       channel_conn_id(hv_dev->channel,
 334				       vmbus_connection.monitor_pages[0]));
 335}
 336static DEVICE_ATTR_RO(server_monitor_conn_id);
 337
 338static ssize_t client_monitor_conn_id_show(struct device *dev,
 339					   struct device_attribute *dev_attr,
 340					   char *buf)
 341{
 342	struct hv_device *hv_dev = device_to_hv_device(dev);
 343
 344	if (!hv_dev->channel)
 345		return -ENODEV;
 346	return sprintf(buf, "%d\n",
 347		       channel_conn_id(hv_dev->channel,
 348				       vmbus_connection.monitor_pages[1]));
 349}
 350static DEVICE_ATTR_RO(client_monitor_conn_id);
 351
 352static ssize_t out_intr_mask_show(struct device *dev,
 353				  struct device_attribute *dev_attr, char *buf)
 354{
 355	struct hv_device *hv_dev = device_to_hv_device(dev);
 356	struct hv_ring_buffer_debug_info outbound;
 357	int ret;
 358
 359	if (!hv_dev->channel)
 360		return -ENODEV;
 361
 362	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 363					  &outbound);
 364	if (ret < 0)
 365		return ret;
 366
 367	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
 368}
 369static DEVICE_ATTR_RO(out_intr_mask);
 370
 371static ssize_t out_read_index_show(struct device *dev,
 372				   struct device_attribute *dev_attr, char *buf)
 373{
 374	struct hv_device *hv_dev = device_to_hv_device(dev);
 375	struct hv_ring_buffer_debug_info outbound;
 376	int ret;
 377
 378	if (!hv_dev->channel)
 379		return -ENODEV;
 380
 381	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 382					  &outbound);
 383	if (ret < 0)
 384		return ret;
 385	return sprintf(buf, "%d\n", outbound.current_read_index);
 386}
 387static DEVICE_ATTR_RO(out_read_index);
 388
 389static ssize_t out_write_index_show(struct device *dev,
 390				    struct device_attribute *dev_attr,
 391				    char *buf)
 392{
 393	struct hv_device *hv_dev = device_to_hv_device(dev);
 394	struct hv_ring_buffer_debug_info outbound;
 395	int ret;
 396
 397	if (!hv_dev->channel)
 398		return -ENODEV;
 399
 400	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 401					  &outbound);
 402	if (ret < 0)
 403		return ret;
 404	return sprintf(buf, "%d\n", outbound.current_write_index);
 405}
 406static DEVICE_ATTR_RO(out_write_index);
 407
 408static ssize_t out_read_bytes_avail_show(struct device *dev,
 409					 struct device_attribute *dev_attr,
 410					 char *buf)
 411{
 412	struct hv_device *hv_dev = device_to_hv_device(dev);
 413	struct hv_ring_buffer_debug_info outbound;
 414	int ret;
 415
 416	if (!hv_dev->channel)
 417		return -ENODEV;
 418
 419	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 420					  &outbound);
 421	if (ret < 0)
 422		return ret;
 423	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
 424}
 425static DEVICE_ATTR_RO(out_read_bytes_avail);
 426
 427static ssize_t out_write_bytes_avail_show(struct device *dev,
 428					  struct device_attribute *dev_attr,
 429					  char *buf)
 430{
 431	struct hv_device *hv_dev = device_to_hv_device(dev);
 432	struct hv_ring_buffer_debug_info outbound;
 433	int ret;
 434
 435	if (!hv_dev->channel)
 436		return -ENODEV;
 437
 438	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 439					  &outbound);
 440	if (ret < 0)
 441		return ret;
 442	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
 443}
 444static DEVICE_ATTR_RO(out_write_bytes_avail);
 445
 446static ssize_t in_intr_mask_show(struct device *dev,
 447				 struct device_attribute *dev_attr, char *buf)
 448{
 449	struct hv_device *hv_dev = device_to_hv_device(dev);
 450	struct hv_ring_buffer_debug_info inbound;
 451	int ret;
 452
 453	if (!hv_dev->channel)
 454		return -ENODEV;
 455
 456	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 457	if (ret < 0)
 458		return ret;
 459
 460	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
 461}
 462static DEVICE_ATTR_RO(in_intr_mask);
 463
 464static ssize_t in_read_index_show(struct device *dev,
 465				  struct device_attribute *dev_attr, char *buf)
 466{
 467	struct hv_device *hv_dev = device_to_hv_device(dev);
 468	struct hv_ring_buffer_debug_info inbound;
 469	int ret;
 470
 471	if (!hv_dev->channel)
 472		return -ENODEV;
 473
 474	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 475	if (ret < 0)
 476		return ret;
 477
 478	return sprintf(buf, "%d\n", inbound.current_read_index);
 479}
 480static DEVICE_ATTR_RO(in_read_index);
 481
 482static ssize_t in_write_index_show(struct device *dev,
 483				   struct device_attribute *dev_attr, char *buf)
 484{
 485	struct hv_device *hv_dev = device_to_hv_device(dev);
 486	struct hv_ring_buffer_debug_info inbound;
 487	int ret;
 488
 489	if (!hv_dev->channel)
 490		return -ENODEV;
 491
 492	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 493	if (ret < 0)
 494		return ret;
 495
 496	return sprintf(buf, "%d\n", inbound.current_write_index);
 497}
 498static DEVICE_ATTR_RO(in_write_index);
 499
 500static ssize_t in_read_bytes_avail_show(struct device *dev,
 501					struct device_attribute *dev_attr,
 502					char *buf)
 503{
 504	struct hv_device *hv_dev = device_to_hv_device(dev);
 505	struct hv_ring_buffer_debug_info inbound;
 506	int ret;
 507
 508	if (!hv_dev->channel)
 509		return -ENODEV;
 510
 511	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 512	if (ret < 0)
 513		return ret;
 514
 515	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
 516}
 517static DEVICE_ATTR_RO(in_read_bytes_avail);
 518
 519static ssize_t in_write_bytes_avail_show(struct device *dev,
 520					 struct device_attribute *dev_attr,
 521					 char *buf)
 522{
 523	struct hv_device *hv_dev = device_to_hv_device(dev);
 524	struct hv_ring_buffer_debug_info inbound;
 525	int ret;
 526
 527	if (!hv_dev->channel)
 528		return -ENODEV;
 529
 530	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 531	if (ret < 0)
 532		return ret;
 533
 534	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
 535}
 536static DEVICE_ATTR_RO(in_write_bytes_avail);
 537
 538static ssize_t channel_vp_mapping_show(struct device *dev,
 539				       struct device_attribute *dev_attr,
 540				       char *buf)
 541{
 542	struct hv_device *hv_dev = device_to_hv_device(dev);
 543	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
 544	int buf_size = PAGE_SIZE, n_written, tot_written;
 545	struct list_head *cur;
 546
 547	if (!channel)
 548		return -ENODEV;
 549
 550	mutex_lock(&vmbus_connection.channel_mutex);
 551
 552	tot_written = snprintf(buf, buf_size, "%u:%u\n",
 553		channel->offermsg.child_relid, channel->target_cpu);
 554
 555	list_for_each(cur, &channel->sc_list) {
 556		if (tot_written >= buf_size - 1)
 557			break;
 558
 559		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
 560		n_written = scnprintf(buf + tot_written,
 561				     buf_size - tot_written,
 562				     "%u:%u\n",
 563				     cur_sc->offermsg.child_relid,
 564				     cur_sc->target_cpu);
 565		tot_written += n_written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566	}
 567
 568	mutex_unlock(&vmbus_connection.channel_mutex);
 569
 570	return tot_written;
 571}
 572static DEVICE_ATTR_RO(channel_vp_mapping);
 573
 574static ssize_t vendor_show(struct device *dev,
 575			   struct device_attribute *dev_attr,
 576			   char *buf)
 577{
 578	struct hv_device *hv_dev = device_to_hv_device(dev);
 579
 580	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
 581}
 582static DEVICE_ATTR_RO(vendor);
 583
 584static ssize_t device_show(struct device *dev,
 585			   struct device_attribute *dev_attr,
 586			   char *buf)
 587{
 588	struct hv_device *hv_dev = device_to_hv_device(dev);
 589
 590	return sprintf(buf, "0x%x\n", hv_dev->device_id);
 591}
 592static DEVICE_ATTR_RO(device);
 593
 594static ssize_t driver_override_store(struct device *dev,
 595				     struct device_attribute *attr,
 596				     const char *buf, size_t count)
 597{
 598	struct hv_device *hv_dev = device_to_hv_device(dev);
 599	int ret;
 600
 601	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
 602	if (ret)
 603		return ret;
 604
 605	return count;
 606}
 607
 608static ssize_t driver_override_show(struct device *dev,
 609				    struct device_attribute *attr, char *buf)
 610{
 611	struct hv_device *hv_dev = device_to_hv_device(dev);
 612	ssize_t len;
 613
 614	device_lock(dev);
 615	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
 616	device_unlock(dev);
 617
 618	return len;
 619}
 620static DEVICE_ATTR_RW(driver_override);
 621
 622/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
 623static struct attribute *vmbus_dev_attrs[] = {
 624	&dev_attr_id.attr,
 625	&dev_attr_state.attr,
 626	&dev_attr_monitor_id.attr,
 627	&dev_attr_class_id.attr,
 628	&dev_attr_device_id.attr,
 629	&dev_attr_modalias.attr,
 630#ifdef CONFIG_NUMA
 631	&dev_attr_numa_node.attr,
 632#endif
 633	&dev_attr_server_monitor_pending.attr,
 634	&dev_attr_client_monitor_pending.attr,
 635	&dev_attr_server_monitor_latency.attr,
 636	&dev_attr_client_monitor_latency.attr,
 637	&dev_attr_server_monitor_conn_id.attr,
 638	&dev_attr_client_monitor_conn_id.attr,
 639	&dev_attr_out_intr_mask.attr,
 640	&dev_attr_out_read_index.attr,
 641	&dev_attr_out_write_index.attr,
 642	&dev_attr_out_read_bytes_avail.attr,
 643	&dev_attr_out_write_bytes_avail.attr,
 644	&dev_attr_in_intr_mask.attr,
 645	&dev_attr_in_read_index.attr,
 646	&dev_attr_in_write_index.attr,
 647	&dev_attr_in_read_bytes_avail.attr,
 648	&dev_attr_in_write_bytes_avail.attr,
 649	&dev_attr_channel_vp_mapping.attr,
 650	&dev_attr_vendor.attr,
 651	&dev_attr_device.attr,
 652	&dev_attr_driver_override.attr,
 653	NULL,
 654};
 655
 656/*
 657 * Device-level attribute_group callback function. Returns the permission for
 658 * each attribute, and returns 0 if an attribute is not visible.
 659 */
 660static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
 661					 struct attribute *attr, int idx)
 662{
 663	struct device *dev = kobj_to_dev(kobj);
 664	const struct hv_device *hv_dev = device_to_hv_device(dev);
 665
 666	/* Hide the monitor attributes if the monitor mechanism is not used. */
 667	if (!hv_dev->channel->offermsg.monitor_allocated &&
 668	    (attr == &dev_attr_monitor_id.attr ||
 669	     attr == &dev_attr_server_monitor_pending.attr ||
 670	     attr == &dev_attr_client_monitor_pending.attr ||
 671	     attr == &dev_attr_server_monitor_latency.attr ||
 672	     attr == &dev_attr_client_monitor_latency.attr ||
 673	     attr == &dev_attr_server_monitor_conn_id.attr ||
 674	     attr == &dev_attr_client_monitor_conn_id.attr))
 675		return 0;
 676
 677	return attr->mode;
 678}
 679
 680static const struct attribute_group vmbus_dev_group = {
 681	.attrs = vmbus_dev_attrs,
 682	.is_visible = vmbus_dev_attr_is_visible
 683};
 684__ATTRIBUTE_GROUPS(vmbus_dev);
 685
 686/* Set up the attribute for /sys/bus/vmbus/hibernation */
 687static ssize_t hibernation_show(struct bus_type *bus, char *buf)
 688{
 689	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
 690}
 691
 692static BUS_ATTR_RO(hibernation);
 693
 694static struct attribute *vmbus_bus_attrs[] = {
 695	&bus_attr_hibernation.attr,
 696	NULL,
 697};
 698static const struct attribute_group vmbus_bus_group = {
 699	.attrs = vmbus_bus_attrs,
 700};
 701__ATTRIBUTE_GROUPS(vmbus_bus);
 702
 703/*
 704 * vmbus_uevent - add uevent for our device
 705 *
 706 * This routine is invoked when a device is added or removed on the vmbus to
 707 * generate a uevent to udev in the userspace. The udev will then look at its
 708 * rule and the uevent generated here to load the appropriate driver
 709 *
 710 * The alias string will be of the form vmbus:guid where guid is the string
 711 * representation of the device guid (each byte of the guid will be
 712 * represented with two hex characters.
 713 */
 714static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
 715{
 716	struct hv_device *dev = device_to_hv_device(device);
 717	const char *format = "MODALIAS=vmbus:%*phN";
 
 718
 719	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
 
 
 720}
 721
 722static const struct hv_vmbus_device_id *
 723hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
 724{
 725	if (id == NULL)
 726		return NULL; /* empty device table */
 727
 728	for (; !guid_is_null(&id->guid); id++)
 729		if (guid_equal(&id->guid, guid))
 730			return id;
 731
 732	return NULL;
 733}
 734
 735static const struct hv_vmbus_device_id *
 736hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
 737{
 738	const struct hv_vmbus_device_id *id = NULL;
 739	struct vmbus_dynid *dynid;
 740
 741	spin_lock(&drv->dynids.lock);
 742	list_for_each_entry(dynid, &drv->dynids.list, node) {
 743		if (guid_equal(&dynid->id.guid, guid)) {
 744			id = &dynid->id;
 745			break;
 746		}
 747	}
 748	spin_unlock(&drv->dynids.lock);
 749
 750	return id;
 751}
 752
 753static const struct hv_vmbus_device_id vmbus_device_null;
 754
 755/*
 756 * Return a matching hv_vmbus_device_id pointer.
 757 * If there is no match, return NULL.
 758 */
 759static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
 760							struct hv_device *dev)
 
 761{
 762	const guid_t *guid = &dev->dev_type;
 763	const struct hv_vmbus_device_id *id;
 
 764
 765	/* When driver_override is set, only bind to the matching driver */
 766	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
 767		return NULL;
 768
 769	/* Look at the dynamic ids first, before the static ones */
 770	id = hv_vmbus_dynid_match(drv, guid);
 771	if (!id)
 772		id = hv_vmbus_dev_match(drv->id_table, guid);
 773
 774	/* driver_override will always match, send a dummy id */
 775	if (!id && dev->driver_override)
 776		id = &vmbus_device_null;
 777
 778	return id;
 779}
 780
 781/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
 782static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
 783{
 784	struct vmbus_dynid *dynid;
 785
 786	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
 787	if (!dynid)
 788		return -ENOMEM;
 789
 790	dynid->id.guid = *guid;
 791
 792	spin_lock(&drv->dynids.lock);
 793	list_add_tail(&dynid->node, &drv->dynids.list);
 794	spin_unlock(&drv->dynids.lock);
 795
 796	return driver_attach(&drv->driver);
 797}
 798
 799static void vmbus_free_dynids(struct hv_driver *drv)
 800{
 801	struct vmbus_dynid *dynid, *n;
 802
 803	spin_lock(&drv->dynids.lock);
 804	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 805		list_del(&dynid->node);
 806		kfree(dynid);
 807	}
 808	spin_unlock(&drv->dynids.lock);
 809}
 810
 811/*
 812 * store_new_id - sysfs frontend to vmbus_add_dynid()
 813 *
 814 * Allow GUIDs to be added to an existing driver via sysfs.
 815 */
 816static ssize_t new_id_store(struct device_driver *driver, const char *buf,
 817			    size_t count)
 818{
 819	struct hv_driver *drv = drv_to_hv_drv(driver);
 820	guid_t guid;
 821	ssize_t retval;
 822
 823	retval = guid_parse(buf, &guid);
 824	if (retval)
 825		return retval;
 826
 827	if (hv_vmbus_dynid_match(drv, &guid))
 828		return -EEXIST;
 829
 830	retval = vmbus_add_dynid(drv, &guid);
 831	if (retval)
 832		return retval;
 833	return count;
 834}
 835static DRIVER_ATTR_WO(new_id);
 836
 837/*
 838 * store_remove_id - remove a PCI device ID from this driver
 839 *
 840 * Removes a dynamic pci device ID to this driver.
 841 */
 842static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
 843			       size_t count)
 844{
 845	struct hv_driver *drv = drv_to_hv_drv(driver);
 846	struct vmbus_dynid *dynid, *n;
 847	guid_t guid;
 848	ssize_t retval;
 849
 850	retval = guid_parse(buf, &guid);
 851	if (retval)
 852		return retval;
 853
 854	retval = -ENODEV;
 855	spin_lock(&drv->dynids.lock);
 856	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 857		struct hv_vmbus_device_id *id = &dynid->id;
 858
 859		if (guid_equal(&id->guid, &guid)) {
 860			list_del(&dynid->node);
 861			kfree(dynid);
 862			retval = count;
 863			break;
 864		}
 865	}
 866	spin_unlock(&drv->dynids.lock);
 867
 868	return retval;
 869}
 870static DRIVER_ATTR_WO(remove_id);
 871
 872static struct attribute *vmbus_drv_attrs[] = {
 873	&driver_attr_new_id.attr,
 874	&driver_attr_remove_id.attr,
 875	NULL,
 876};
 877ATTRIBUTE_GROUPS(vmbus_drv);
 878
 879
 880/*
 881 * vmbus_match - Attempt to match the specified device to the specified driver
 882 */
 883static int vmbus_match(struct device *device, struct device_driver *driver)
 884{
 885	struct hv_driver *drv = drv_to_hv_drv(driver);
 886	struct hv_device *hv_dev = device_to_hv_device(device);
 887
 888	/* The hv_sock driver handles all hv_sock offers. */
 889	if (is_hvsock_channel(hv_dev->channel))
 890		return drv->hvsock;
 891
 892	if (hv_vmbus_get_id(drv, hv_dev))
 893		return 1;
 894
 895	return 0;
 896}
 897
 898/*
 899 * vmbus_probe - Add the new vmbus's child device
 900 */
 901static int vmbus_probe(struct device *child_device)
 902{
 903	int ret = 0;
 904	struct hv_driver *drv =
 905			drv_to_hv_drv(child_device->driver);
 906	struct hv_device *dev = device_to_hv_device(child_device);
 907	const struct hv_vmbus_device_id *dev_id;
 908
 909	dev_id = hv_vmbus_get_id(drv, dev);
 910	if (drv->probe) {
 911		ret = drv->probe(dev, dev_id);
 912		if (ret != 0)
 913			pr_err("probe failed for device %s (%d)\n",
 914			       dev_name(child_device), ret);
 915
 916	} else {
 917		pr_err("probe not set for driver %s\n",
 918		       dev_name(child_device));
 919		ret = -ENODEV;
 920	}
 921	return ret;
 922}
 923
 924/*
 925 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
 926 */
 927static int vmbus_dma_configure(struct device *child_device)
 928{
 929	/*
 930	 * On ARM64, propagate the DMA coherence setting from the top level
 931	 * VMbus ACPI device to the child VMbus device being added here.
 932	 * On x86/x64 coherence is assumed and these calls have no effect.
 933	 */
 934	hv_setup_dma_ops(child_device,
 935		device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
 936	return 0;
 937}
 938
 939/*
 940 * vmbus_remove - Remove a vmbus device
 941 */
 942static void vmbus_remove(struct device *child_device)
 943{
 944	struct hv_driver *drv;
 945	struct hv_device *dev = device_to_hv_device(child_device);
 946
 947	if (child_device->driver) {
 948		drv = drv_to_hv_drv(child_device->driver);
 949		if (drv->remove)
 950			drv->remove(dev);
 951	}
 
 
 952}
 953
 
 954/*
 955 * vmbus_shutdown - Shutdown a vmbus device
 956 */
 957static void vmbus_shutdown(struct device *child_device)
 958{
 959	struct hv_driver *drv;
 960	struct hv_device *dev = device_to_hv_device(child_device);
 961
 962
 963	/* The device may not be attached yet */
 964	if (!child_device->driver)
 965		return;
 966
 967	drv = drv_to_hv_drv(child_device->driver);
 968
 969	if (drv->shutdown)
 970		drv->shutdown(dev);
 971}
 972
 973#ifdef CONFIG_PM_SLEEP
 974/*
 975 * vmbus_suspend - Suspend a vmbus device
 976 */
 977static int vmbus_suspend(struct device *child_device)
 978{
 979	struct hv_driver *drv;
 980	struct hv_device *dev = device_to_hv_device(child_device);
 981
 982	/* The device may not be attached yet */
 983	if (!child_device->driver)
 984		return 0;
 985
 986	drv = drv_to_hv_drv(child_device->driver);
 987	if (!drv->suspend)
 988		return -EOPNOTSUPP;
 989
 990	return drv->suspend(dev);
 991}
 992
 993/*
 994 * vmbus_resume - Resume a vmbus device
 995 */
 996static int vmbus_resume(struct device *child_device)
 997{
 998	struct hv_driver *drv;
 999	struct hv_device *dev = device_to_hv_device(child_device);
1000
1001	/* The device may not be attached yet */
1002	if (!child_device->driver)
1003		return 0;
1004
1005	drv = drv_to_hv_drv(child_device->driver);
1006	if (!drv->resume)
1007		return -EOPNOTSUPP;
1008
1009	return drv->resume(dev);
1010}
1011#else
1012#define vmbus_suspend NULL
1013#define vmbus_resume NULL
1014#endif /* CONFIG_PM_SLEEP */
1015
1016/*
1017 * vmbus_device_release - Final callback release of the vmbus child device
1018 */
1019static void vmbus_device_release(struct device *device)
1020{
1021	struct hv_device *hv_dev = device_to_hv_device(device);
1022	struct vmbus_channel *channel = hv_dev->channel;
1023
1024	hv_debug_rm_dev_dir(hv_dev);
1025
1026	mutex_lock(&vmbus_connection.channel_mutex);
1027	hv_process_channel_removal(channel);
1028	mutex_unlock(&vmbus_connection.channel_mutex);
1029	kfree(hv_dev);
1030}
1031
1032/*
1033 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1034 *
1035 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1036 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1037 * is no way to wake up a Generation-2 VM.
1038 *
1039 * The other 4 ops are for hibernation.
1040 */
1041
1042static const struct dev_pm_ops vmbus_pm = {
1043	.suspend_noirq	= NULL,
1044	.resume_noirq	= NULL,
1045	.freeze_noirq	= vmbus_suspend,
1046	.thaw_noirq	= vmbus_resume,
1047	.poweroff_noirq	= vmbus_suspend,
1048	.restore_noirq	= vmbus_resume,
1049};
1050
1051/* The one and only one */
1052static struct bus_type  hv_bus = {
1053	.name =		"vmbus",
1054	.match =		vmbus_match,
1055	.shutdown =		vmbus_shutdown,
1056	.remove =		vmbus_remove,
1057	.probe =		vmbus_probe,
1058	.uevent =		vmbus_uevent,
1059	.dma_configure =	vmbus_dma_configure,
1060	.dev_groups =		vmbus_dev_groups,
1061	.drv_groups =		vmbus_drv_groups,
1062	.bus_groups =		vmbus_bus_groups,
1063	.pm =			&vmbus_pm,
1064};
1065
 
 
 
1066struct onmessage_work_context {
1067	struct work_struct work;
1068	struct {
1069		struct hv_message_header header;
1070		u8 payload[];
1071	} msg;
1072};
1073
1074static void vmbus_onmessage_work(struct work_struct *work)
1075{
1076	struct onmessage_work_context *ctx;
1077
1078	/* Do not process messages if we're in DISCONNECTED state */
1079	if (vmbus_connection.conn_state == DISCONNECTED)
1080		return;
1081
1082	ctx = container_of(work, struct onmessage_work_context,
1083			   work);
1084	vmbus_onmessage((struct vmbus_channel_message_header *)
1085			&ctx->msg.payload);
1086	kfree(ctx);
1087}
1088
1089void vmbus_on_msg_dpc(unsigned long data)
1090{
1091	struct hv_per_cpu_context *hv_cpu = (void *)data;
1092	void *page_addr = hv_cpu->synic_message_page;
1093	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1094				  VMBUS_MESSAGE_SINT;
1095	struct vmbus_channel_message_header *hdr;
1096	enum vmbus_channel_message_type msgtype;
1097	const struct vmbus_channel_message_table_entry *entry;
1098	struct onmessage_work_context *ctx;
1099	__u8 payload_size;
1100	u32 message_type;
1101
1102	/*
1103	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1104	 * it is being used in 'struct vmbus_channel_message_header' definition
1105	 * which is supposed to match hypervisor ABI.
1106	 */
1107	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1108
1109	/*
1110	 * Since the message is in memory shared with the host, an erroneous or
1111	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1112	 * or individual message handlers are executing; to prevent this, copy
1113	 * the message into private memory.
1114	 */
1115	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1116
1117	message_type = msg_copy.header.message_type;
1118	if (message_type == HVMSG_NONE)
1119		/* no msg */
1120		return;
1121
1122	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1123	msgtype = hdr->msgtype;
1124
1125	trace_vmbus_on_msg_dpc(hdr);
1126
1127	if (msgtype >= CHANNELMSG_COUNT) {
1128		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1129		goto msg_handled;
1130	}
1131
1132	payload_size = msg_copy.header.payload_size;
1133	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1134		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1135		goto msg_handled;
1136	}
1137
1138	entry = &channel_message_table[msgtype];
1139
1140	if (!entry->message_handler)
1141		goto msg_handled;
1142
1143	if (payload_size < entry->min_payload_len) {
1144		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1145		goto msg_handled;
1146	}
1147
1148	if (entry->handler_type	== VMHT_BLOCKING) {
1149		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1150		if (ctx == NULL)
1151			return;
1152
1153		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1154		ctx->msg.header = msg_copy.header;
1155		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1156
1157		/*
1158		 * The host can generate a rescind message while we
1159		 * may still be handling the original offer. We deal with
1160		 * this condition by relying on the synchronization provided
1161		 * by offer_in_progress and by channel_mutex.  See also the
1162		 * inline comments in vmbus_onoffer_rescind().
1163		 */
1164		switch (msgtype) {
1165		case CHANNELMSG_RESCIND_CHANNELOFFER:
1166			/*
1167			 * If we are handling the rescind message;
1168			 * schedule the work on the global work queue.
1169			 *
1170			 * The OFFER message and the RESCIND message should
1171			 * not be handled by the same serialized work queue,
1172			 * because the OFFER handler may call vmbus_open(),
1173			 * which tries to open the channel by sending an
1174			 * OPEN_CHANNEL message to the host and waits for
1175			 * the host's response; however, if the host has
1176			 * rescinded the channel before it receives the
1177			 * OPEN_CHANNEL message, the host just silently
1178			 * ignores the OPEN_CHANNEL message; as a result,
1179			 * the guest's OFFER handler hangs for ever, if we
1180			 * handle the RESCIND message in the same serialized
1181			 * work queue: the RESCIND handler can not start to
1182			 * run before the OFFER handler finishes.
1183			 */
1184			if (vmbus_connection.ignore_any_offer_msg)
1185				break;
1186			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1187			break;
1188
1189		case CHANNELMSG_OFFERCHANNEL:
1190			/*
1191			 * The host sends the offer message of a given channel
1192			 * before sending the rescind message of the same
1193			 * channel.  These messages are sent to the guest's
1194			 * connect CPU; the guest then starts processing them
1195			 * in the tasklet handler on this CPU:
1196			 *
1197			 * VMBUS_CONNECT_CPU
1198			 *
1199			 * [vmbus_on_msg_dpc()]
1200			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1201			 * queue_work()
1202			 * ...
1203			 * [vmbus_on_msg_dpc()]
1204			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1205			 *
1206			 * We rely on the memory-ordering properties of the
1207			 * queue_work() and schedule_work() primitives, which
1208			 * guarantee that the atomic increment will be visible
1209			 * to the CPUs which will execute the offer & rescind
1210			 * works by the time these works will start execution.
1211			 */
1212			if (vmbus_connection.ignore_any_offer_msg)
1213				break;
1214			atomic_inc(&vmbus_connection.offer_in_progress);
1215			fallthrough;
1216
1217		default:
1218			queue_work(vmbus_connection.work_queue, &ctx->work);
1219		}
1220	} else
1221		entry->message_handler(hdr);
1222
1223msg_handled:
1224	vmbus_signal_eom(msg, message_type);
1225}
1226
1227#ifdef CONFIG_PM_SLEEP
1228/*
1229 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1230 * hibernation, because hv_sock connections can not persist across hibernation.
1231 */
1232static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1233{
1234	struct onmessage_work_context *ctx;
1235	struct vmbus_channel_rescind_offer *rescind;
1236
1237	WARN_ON(!is_hvsock_channel(channel));
1238
1239	/*
1240	 * Allocation size is small and the allocation should really not fail,
1241	 * otherwise the state of the hv_sock connections ends up in limbo.
1242	 */
1243	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1244		      GFP_KERNEL | __GFP_NOFAIL);
1245
1246	/*
1247	 * So far, these are not really used by Linux. Just set them to the
1248	 * reasonable values conforming to the definitions of the fields.
1249	 */
1250	ctx->msg.header.message_type = 1;
1251	ctx->msg.header.payload_size = sizeof(*rescind);
1252
1253	/* These values are actually used by Linux. */
1254	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1255	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1256	rescind->child_relid = channel->offermsg.child_relid;
1257
1258	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1259
1260	queue_work(vmbus_connection.work_queue, &ctx->work);
1261}
1262#endif /* CONFIG_PM_SLEEP */
1263
1264/*
1265 * Schedule all channels with events pending
1266 */
1267static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1268{
1269	unsigned long *recv_int_page;
1270	u32 maxbits, relid;
1271
1272	/*
1273	 * The event page can be directly checked to get the id of
1274	 * the channel that has the interrupt pending.
 
1275	 */
1276	void *page_addr = hv_cpu->synic_event_page;
1277	union hv_synic_event_flags *event
1278		= (union hv_synic_event_flags *)page_addr +
1279					 VMBUS_MESSAGE_SINT;
1280
1281	maxbits = HV_EVENT_FLAGS_COUNT;
1282	recv_int_page = event->flags;
1283
1284	if (unlikely(!recv_int_page))
1285		return;
1286
1287	for_each_set_bit(relid, recv_int_page, maxbits) {
1288		void (*callback_fn)(void *context);
1289		struct vmbus_channel *channel;
1290
1291		if (!sync_test_and_clear_bit(relid, recv_int_page))
1292			continue;
1293
1294		/* Special case - vmbus channel protocol msg */
1295		if (relid == 0)
1296			continue;
1297
1298		/*
1299		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1300		 * Guarantees that the channel data structure doesn't
1301		 * get freed while the channel pointer below is being
1302		 * dereferenced.
1303		 */
1304		rcu_read_lock();
1305
1306		/* Find channel based on relid */
1307		channel = relid2channel(relid);
1308		if (channel == NULL)
1309			goto sched_unlock_rcu;
1310
1311		if (channel->rescind)
1312			goto sched_unlock_rcu;
1313
1314		/*
1315		 * Make sure that the ring buffer data structure doesn't get
1316		 * freed while we dereference the ring buffer pointer.  Test
1317		 * for the channel's onchannel_callback being NULL within a
1318		 * sched_lock critical section.  See also the inline comments
1319		 * in vmbus_reset_channel_cb().
1320		 */
1321		spin_lock(&channel->sched_lock);
1322
1323		callback_fn = channel->onchannel_callback;
1324		if (unlikely(callback_fn == NULL))
1325			goto sched_unlock;
1326
1327		trace_vmbus_chan_sched(channel);
1328
1329		++channel->interrupts;
1330
1331		switch (channel->callback_mode) {
1332		case HV_CALL_ISR:
1333			(*callback_fn)(channel->channel_callback_context);
1334			break;
1335
1336		case HV_CALL_BATCHED:
1337			hv_begin_read(&channel->inbound);
1338			fallthrough;
1339		case HV_CALL_DIRECT:
1340			tasklet_schedule(&channel->callback_event);
1341		}
1342
1343sched_unlock:
1344		spin_unlock(&channel->sched_lock);
1345sched_unlock_rcu:
1346		rcu_read_unlock();
1347	}
1348}
1349
1350static void vmbus_isr(void)
1351{
1352	struct hv_per_cpu_context *hv_cpu
1353		= this_cpu_ptr(hv_context.cpu_context);
1354	void *page_addr;
1355	struct hv_message *msg;
1356
1357	vmbus_chan_sched(hv_cpu);
1358
1359	page_addr = hv_cpu->synic_message_page;
1360	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1361
1362	/* Check if there are actual msgs to be processed */
1363	if (msg->header.message_type != HVMSG_NONE) {
1364		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1365			hv_stimer0_isr();
1366			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1367		} else
1368			tasklet_schedule(&hv_cpu->msg_dpc);
1369	}
1370
1371	add_interrupt_randomness(vmbus_interrupt);
1372}
1373
1374static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1375{
1376	vmbus_isr();
1377	return IRQ_HANDLED;
1378}
1379
1380/*
1381 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1382 * buffer and call into Hyper-V to transfer the data.
1383 */
1384static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1385			 enum kmsg_dump_reason reason)
1386{
1387	struct kmsg_dump_iter iter;
1388	size_t bytes_written;
1389
1390	/* We are only interested in panics. */
1391	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1392		return;
1393
1394	/*
1395	 * Write dump contents to the page. No need to synchronize; panic should
1396	 * be single-threaded.
1397	 */
1398	kmsg_dump_rewind(&iter);
1399	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1400			     &bytes_written);
1401	if (!bytes_written)
1402		return;
1403	/*
1404	 * P3 to contain the physical address of the panic page & P4 to
1405	 * contain the size of the panic data in that page. Rest of the
1406	 * registers are no-op when the NOTIFY_MSG flag is set.
1407	 */
1408	hv_set_register(HV_REGISTER_CRASH_P0, 0);
1409	hv_set_register(HV_REGISTER_CRASH_P1, 0);
1410	hv_set_register(HV_REGISTER_CRASH_P2, 0);
1411	hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1412	hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1413
1414	/*
1415	 * Let Hyper-V know there is crash data available along with
1416	 * the panic message.
1417	 */
1418	hv_set_register(HV_REGISTER_CRASH_CTL,
1419	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1420}
1421
1422static struct kmsg_dumper hv_kmsg_dumper = {
1423	.dump = hv_kmsg_dump,
1424};
1425
1426static void hv_kmsg_dump_register(void)
1427{
1428	int ret;
1429
1430	hv_panic_page = hv_alloc_hyperv_zeroed_page();
1431	if (!hv_panic_page) {
1432		pr_err("Hyper-V: panic message page memory allocation failed\n");
1433		return;
1434	}
1435
1436	ret = kmsg_dump_register(&hv_kmsg_dumper);
1437	if (ret) {
1438		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1439		hv_free_hyperv_page((unsigned long)hv_panic_page);
1440		hv_panic_page = NULL;
1441	}
1442}
1443
1444static struct ctl_table_header *hv_ctl_table_hdr;
1445
1446/*
1447 * sysctl option to allow the user to control whether kmsg data should be
1448 * reported to Hyper-V on panic.
1449 */
1450static struct ctl_table hv_ctl_table[] = {
1451	{
1452		.procname       = "hyperv_record_panic_msg",
1453		.data           = &sysctl_record_panic_msg,
1454		.maxlen         = sizeof(int),
1455		.mode           = 0644,
1456		.proc_handler   = proc_dointvec_minmax,
1457		.extra1		= SYSCTL_ZERO,
1458		.extra2		= SYSCTL_ONE
1459	},
1460	{}
1461};
1462
1463static struct ctl_table hv_root_table[] = {
1464	{
1465		.procname	= "kernel",
1466		.mode		= 0555,
1467		.child		= hv_ctl_table
1468	},
1469	{}
1470};
1471
1472/*
1473 * vmbus_bus_init -Main vmbus driver initialization routine.
1474 *
1475 * Here, we
1476 *	- initialize the vmbus driver context
1477 *	- invoke the vmbus hv main init routine
 
1478 *	- retrieve the channel offers
1479 */
1480static int vmbus_bus_init(void)
1481{
1482	int ret;
 
1483
 
1484	ret = hv_init();
1485	if (ret != 0) {
1486		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1487		return ret;
1488	}
1489
 
 
 
1490	ret = bus_register(&hv_bus);
1491	if (ret)
1492		return ret;
1493
1494	/*
1495	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1496	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1497	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1498	 * If not on such an architecture (e.g., x86/x64), then rely on
1499	 * code in the arch-specific portion of the code tree to connect
1500	 * the VMbus interrupt handler.
1501	 */
1502
1503	if (vmbus_irq == -1) {
1504		hv_setup_vmbus_handler(vmbus_isr);
1505	} else {
1506		vmbus_evt = alloc_percpu(long);
1507		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1508				"Hyper-V VMbus", vmbus_evt);
1509		if (ret) {
1510			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1511					vmbus_irq, ret);
1512			free_percpu(vmbus_evt);
1513			goto err_setup;
1514		}
1515	}
1516
1517	ret = hv_synic_alloc();
1518	if (ret)
1519		goto err_alloc;
1520
1521	/*
1522	 * Initialize the per-cpu interrupt state and stimer state.
1523	 * Then connect to the host.
1524	 */
1525	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1526				hv_synic_init, hv_synic_cleanup);
1527	if (ret < 0)
1528		goto err_cpuhp;
1529	hyperv_cpuhp_online = ret;
1530
1531	ret = vmbus_connect();
1532	if (ret)
1533		goto err_connect;
1534
1535	if (hv_is_isolation_supported())
1536		sysctl_record_panic_msg = 0;
1537
1538	/*
1539	 * Only register if the crash MSRs are available
1540	 */
1541	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1542		u64 hyperv_crash_ctl;
1543		/*
1544		 * Panic message recording (sysctl_record_panic_msg)
1545		 * is enabled by default in non-isolated guests and
1546		 * disabled by default in isolated guests; the panic
1547		 * message recording won't be available in isolated
1548		 * guests should the following registration fail.
1549		 */
1550		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1551		if (!hv_ctl_table_hdr)
1552			pr_err("Hyper-V: sysctl table register error");
1553
1554		/*
1555		 * Register for panic kmsg callback only if the right
1556		 * capability is supported by the hypervisor.
1557		 */
1558		hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1559		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1560			hv_kmsg_dump_register();
1561
1562		register_die_notifier(&hyperv_die_report_block);
1563		atomic_notifier_chain_register(&panic_notifier_list,
1564						&hyperv_panic_report_block);
1565	}
1566
1567	/*
1568	 * Always register the vmbus unload panic notifier because we
1569	 * need to shut the VMbus channel connection on panic.
1570	 */
1571	atomic_notifier_chain_register(&panic_notifier_list,
1572			       &hyperv_panic_vmbus_unload_block);
1573
1574	vmbus_request_offers();
 
1575
1576	return 0;
 
1577
1578err_connect:
1579	cpuhp_remove_state(hyperv_cpuhp_online);
1580err_cpuhp:
1581	hv_synic_free();
1582err_alloc:
1583	if (vmbus_irq == -1) {
1584		hv_remove_vmbus_handler();
1585	} else {
1586		free_percpu_irq(vmbus_irq, vmbus_evt);
1587		free_percpu(vmbus_evt);
1588	}
1589err_setup:
1590	bus_unregister(&hv_bus);
1591	unregister_sysctl_table(hv_ctl_table_hdr);
1592	hv_ctl_table_hdr = NULL;
1593	return ret;
1594}
1595
1596/**
1597 * __vmbus_driver_register() - Register a vmbus's driver
1598 * @hv_driver: Pointer to driver structure you want to register
1599 * @owner: owner module of the drv
1600 * @mod_name: module name string
1601 *
1602 * Registers the given driver with Linux through the 'driver_register()' call
1603 * and sets up the hyper-v vmbus handling for this driver.
1604 * It will return the state of the 'driver_register()' call.
1605 *
1606 */
1607int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1608{
1609	int ret;
1610
1611	pr_info("registering driver %s\n", hv_driver->name);
1612
1613	ret = vmbus_exists();
1614	if (ret < 0)
1615		return ret;
1616
1617	hv_driver->driver.name = hv_driver->name;
1618	hv_driver->driver.owner = owner;
1619	hv_driver->driver.mod_name = mod_name;
1620	hv_driver->driver.bus = &hv_bus;
1621
1622	spin_lock_init(&hv_driver->dynids.lock);
1623	INIT_LIST_HEAD(&hv_driver->dynids.list);
1624
1625	ret = driver_register(&hv_driver->driver);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1630
1631/**
1632 * vmbus_driver_unregister() - Unregister a vmbus's driver
1633 * @hv_driver: Pointer to driver structure you want to
1634 *             un-register
1635 *
1636 * Un-register the given driver that was previous registered with a call to
1637 * vmbus_driver_register()
1638 */
1639void vmbus_driver_unregister(struct hv_driver *hv_driver)
1640{
1641	pr_info("unregistering driver %s\n", hv_driver->name);
1642
1643	if (!vmbus_exists()) {
1644		driver_unregister(&hv_driver->driver);
1645		vmbus_free_dynids(hv_driver);
1646	}
1647}
1648EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1649
1650
1651/*
1652 * Called when last reference to channel is gone.
1653 */
1654static void vmbus_chan_release(struct kobject *kobj)
1655{
1656	struct vmbus_channel *channel
1657		= container_of(kobj, struct vmbus_channel, kobj);
1658
1659	kfree_rcu(channel, rcu);
1660}
1661
1662struct vmbus_chan_attribute {
1663	struct attribute attr;
1664	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1665	ssize_t (*store)(struct vmbus_channel *chan,
1666			 const char *buf, size_t count);
1667};
1668#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1669	struct vmbus_chan_attribute chan_attr_##_name \
1670		= __ATTR(_name, _mode, _show, _store)
1671#define VMBUS_CHAN_ATTR_RW(_name) \
1672	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1673#define VMBUS_CHAN_ATTR_RO(_name) \
1674	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1675#define VMBUS_CHAN_ATTR_WO(_name) \
1676	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1677
1678static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1679				    struct attribute *attr, char *buf)
1680{
1681	const struct vmbus_chan_attribute *attribute
1682		= container_of(attr, struct vmbus_chan_attribute, attr);
1683	struct vmbus_channel *chan
1684		= container_of(kobj, struct vmbus_channel, kobj);
1685
1686	if (!attribute->show)
1687		return -EIO;
1688
1689	return attribute->show(chan, buf);
1690}
1691
1692static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1693				     struct attribute *attr, const char *buf,
1694				     size_t count)
1695{
1696	const struct vmbus_chan_attribute *attribute
1697		= container_of(attr, struct vmbus_chan_attribute, attr);
1698	struct vmbus_channel *chan
1699		= container_of(kobj, struct vmbus_channel, kobj);
1700
1701	if (!attribute->store)
1702		return -EIO;
1703
1704	return attribute->store(chan, buf, count);
1705}
1706
1707static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1708	.show = vmbus_chan_attr_show,
1709	.store = vmbus_chan_attr_store,
1710};
1711
1712static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1713{
1714	struct hv_ring_buffer_info *rbi = &channel->outbound;
1715	ssize_t ret;
1716
1717	mutex_lock(&rbi->ring_buffer_mutex);
1718	if (!rbi->ring_buffer) {
1719		mutex_unlock(&rbi->ring_buffer_mutex);
1720		return -EINVAL;
1721	}
1722
1723	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1724	mutex_unlock(&rbi->ring_buffer_mutex);
1725	return ret;
1726}
1727static VMBUS_CHAN_ATTR_RO(out_mask);
1728
1729static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1730{
1731	struct hv_ring_buffer_info *rbi = &channel->inbound;
1732	ssize_t ret;
1733
1734	mutex_lock(&rbi->ring_buffer_mutex);
1735	if (!rbi->ring_buffer) {
1736		mutex_unlock(&rbi->ring_buffer_mutex);
1737		return -EINVAL;
1738	}
1739
1740	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1741	mutex_unlock(&rbi->ring_buffer_mutex);
1742	return ret;
1743}
1744static VMBUS_CHAN_ATTR_RO(in_mask);
1745
1746static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1747{
1748	struct hv_ring_buffer_info *rbi = &channel->inbound;
1749	ssize_t ret;
1750
1751	mutex_lock(&rbi->ring_buffer_mutex);
1752	if (!rbi->ring_buffer) {
1753		mutex_unlock(&rbi->ring_buffer_mutex);
1754		return -EINVAL;
1755	}
1756
1757	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1758	mutex_unlock(&rbi->ring_buffer_mutex);
1759	return ret;
1760}
1761static VMBUS_CHAN_ATTR_RO(read_avail);
1762
1763static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1764{
1765	struct hv_ring_buffer_info *rbi = &channel->outbound;
1766	ssize_t ret;
1767
1768	mutex_lock(&rbi->ring_buffer_mutex);
1769	if (!rbi->ring_buffer) {
1770		mutex_unlock(&rbi->ring_buffer_mutex);
1771		return -EINVAL;
1772	}
1773
1774	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1775	mutex_unlock(&rbi->ring_buffer_mutex);
1776	return ret;
1777}
1778static VMBUS_CHAN_ATTR_RO(write_avail);
1779
1780static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1781{
1782	return sprintf(buf, "%u\n", channel->target_cpu);
1783}
1784static ssize_t target_cpu_store(struct vmbus_channel *channel,
1785				const char *buf, size_t count)
1786{
1787	u32 target_cpu, origin_cpu;
1788	ssize_t ret = count;
1789
1790	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1791		return -EIO;
1792
1793	if (sscanf(buf, "%uu", &target_cpu) != 1)
1794		return -EIO;
1795
1796	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1797	if (target_cpu >= nr_cpumask_bits)
1798		return -EINVAL;
1799
1800	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1801		return -EINVAL;
1802
1803	/* No CPUs should come up or down during this. */
1804	cpus_read_lock();
1805
1806	if (!cpu_online(target_cpu)) {
1807		cpus_read_unlock();
1808		return -EINVAL;
1809	}
1810
1811	/*
1812	 * Synchronizes target_cpu_store() and channel closure:
1813	 *
1814	 * { Initially: state = CHANNEL_OPENED }
1815	 *
1816	 * CPU1				CPU2
1817	 *
1818	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1819	 *
1820	 * LOCK channel_mutex		LOCK channel_mutex
1821	 * LOAD r1 = state		LOAD r2 = state
1822	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1823	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1824	 *   [...]			  SEND CLOSECHANNEL
1825	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1826	 *
1827	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1828	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1829	 *
1830	 * Note.  The host processes the channel messages "sequentially", in
1831	 * the order in which they are received on a per-partition basis.
1832	 */
1833	mutex_lock(&vmbus_connection.channel_mutex);
1834
1835	/*
1836	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1837	 * avoid sending the message and fail here for such channels.
1838	 */
1839	if (channel->state != CHANNEL_OPENED_STATE) {
1840		ret = -EIO;
1841		goto cpu_store_unlock;
1842	}
1843
1844	origin_cpu = channel->target_cpu;
1845	if (target_cpu == origin_cpu)
1846		goto cpu_store_unlock;
1847
1848	if (vmbus_send_modifychannel(channel,
1849				     hv_cpu_number_to_vp_number(target_cpu))) {
1850		ret = -EIO;
1851		goto cpu_store_unlock;
1852	}
1853
1854	/*
1855	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1856	 *
1857	 * Warning.  At this point, there is *no* guarantee that the host will
1858	 * have successfully processed the vmbus_send_modifychannel() request.
1859	 * See the header comment of vmbus_send_modifychannel() for more info.
1860	 *
1861	 * Lags in the processing of the above vmbus_send_modifychannel() can
1862	 * result in missed interrupts if the "old" target CPU is taken offline
1863	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1864	 * But apart from this offlining scenario, the code tolerates such
1865	 * lags.  It will function correctly even if a channel interrupt comes
1866	 * in on a CPU that is different from the channel target_cpu value.
1867	 */
1868
1869	channel->target_cpu = target_cpu;
1870
1871	/* See init_vp_index(). */
1872	if (hv_is_perf_channel(channel))
1873		hv_update_allocated_cpus(origin_cpu, target_cpu);
1874
1875	/* Currently set only for storvsc channels. */
1876	if (channel->change_target_cpu_callback) {
1877		(*channel->change_target_cpu_callback)(channel,
1878				origin_cpu, target_cpu);
1879	}
1880
1881cpu_store_unlock:
1882	mutex_unlock(&vmbus_connection.channel_mutex);
1883	cpus_read_unlock();
1884	return ret;
1885}
1886static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1887
1888static ssize_t channel_pending_show(struct vmbus_channel *channel,
1889				    char *buf)
1890{
1891	return sprintf(buf, "%d\n",
1892		       channel_pending(channel,
1893				       vmbus_connection.monitor_pages[1]));
1894}
1895static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1896
1897static ssize_t channel_latency_show(struct vmbus_channel *channel,
1898				    char *buf)
1899{
1900	return sprintf(buf, "%d\n",
1901		       channel_latency(channel,
1902				       vmbus_connection.monitor_pages[1]));
1903}
1904static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1905
1906static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1907{
1908	return sprintf(buf, "%llu\n", channel->interrupts);
1909}
1910static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1911
1912static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1913{
1914	return sprintf(buf, "%llu\n", channel->sig_events);
1915}
1916static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1917
1918static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1919					 char *buf)
1920{
1921	return sprintf(buf, "%llu\n",
1922		       (unsigned long long)channel->intr_in_full);
1923}
1924static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1925
1926static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1927					   char *buf)
1928{
1929	return sprintf(buf, "%llu\n",
1930		       (unsigned long long)channel->intr_out_empty);
1931}
1932static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1933
1934static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1935					   char *buf)
1936{
1937	return sprintf(buf, "%llu\n",
1938		       (unsigned long long)channel->out_full_first);
1939}
1940static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1941
1942static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1943					   char *buf)
1944{
1945	return sprintf(buf, "%llu\n",
1946		       (unsigned long long)channel->out_full_total);
1947}
1948static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1949
1950static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1951					  char *buf)
1952{
1953	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1954}
1955static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1956
1957static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1958				  char *buf)
1959{
1960	return sprintf(buf, "%u\n",
1961		       channel->offermsg.offer.sub_channel_index);
1962}
1963static VMBUS_CHAN_ATTR_RO(subchannel_id);
1964
1965static struct attribute *vmbus_chan_attrs[] = {
1966	&chan_attr_out_mask.attr,
1967	&chan_attr_in_mask.attr,
1968	&chan_attr_read_avail.attr,
1969	&chan_attr_write_avail.attr,
1970	&chan_attr_cpu.attr,
1971	&chan_attr_pending.attr,
1972	&chan_attr_latency.attr,
1973	&chan_attr_interrupts.attr,
1974	&chan_attr_events.attr,
1975	&chan_attr_intr_in_full.attr,
1976	&chan_attr_intr_out_empty.attr,
1977	&chan_attr_out_full_first.attr,
1978	&chan_attr_out_full_total.attr,
1979	&chan_attr_monitor_id.attr,
1980	&chan_attr_subchannel_id.attr,
1981	NULL
1982};
1983
1984/*
1985 * Channel-level attribute_group callback function. Returns the permission for
1986 * each attribute, and returns 0 if an attribute is not visible.
1987 */
1988static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1989					  struct attribute *attr, int idx)
1990{
1991	const struct vmbus_channel *channel =
1992		container_of(kobj, struct vmbus_channel, kobj);
1993
1994	/* Hide the monitor attributes if the monitor mechanism is not used. */
1995	if (!channel->offermsg.monitor_allocated &&
1996	    (attr == &chan_attr_pending.attr ||
1997	     attr == &chan_attr_latency.attr ||
1998	     attr == &chan_attr_monitor_id.attr))
1999		return 0;
2000
2001	return attr->mode;
2002}
2003
2004static struct attribute_group vmbus_chan_group = {
2005	.attrs = vmbus_chan_attrs,
2006	.is_visible = vmbus_chan_attr_is_visible
2007};
2008
2009static struct kobj_type vmbus_chan_ktype = {
2010	.sysfs_ops = &vmbus_chan_sysfs_ops,
2011	.release = vmbus_chan_release,
2012};
2013
2014/*
2015 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
2016 */
2017int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
2018{
2019	const struct device *device = &dev->device;
2020	struct kobject *kobj = &channel->kobj;
2021	u32 relid = channel->offermsg.child_relid;
2022	int ret;
2023
2024	kobj->kset = dev->channels_kset;
2025	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2026				   "%u", relid);
2027	if (ret) {
2028		kobject_put(kobj);
2029		return ret;
2030	}
2031
2032	ret = sysfs_create_group(kobj, &vmbus_chan_group);
2033
2034	if (ret) {
2035		/*
2036		 * The calling functions' error handling paths will cleanup the
2037		 * empty channel directory.
2038		 */
2039		kobject_put(kobj);
2040		dev_err(device, "Unable to set up channel sysfs files\n");
2041		return ret;
2042	}
2043
2044	kobject_uevent(kobj, KOBJ_ADD);
2045
2046	return 0;
2047}
2048
2049/*
2050 * vmbus_remove_channel_attr_group - remove the channel's attribute group
2051 */
2052void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2053{
2054	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2055}
2056
2057/*
2058 * vmbus_device_create - Creates and registers a new child device
2059 * on the vmbus.
2060 */
2061struct hv_device *vmbus_device_create(const guid_t *type,
2062				      const guid_t *instance,
2063				      struct vmbus_channel *channel)
2064{
2065	struct hv_device *child_device_obj;
2066
2067	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2068	if (!child_device_obj) {
2069		pr_err("Unable to allocate device object for child device\n");
2070		return NULL;
2071	}
2072
2073	child_device_obj->channel = channel;
2074	guid_copy(&child_device_obj->dev_type, type);
2075	guid_copy(&child_device_obj->dev_instance, instance);
2076	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
 
2077
2078	return child_device_obj;
2079}
2080
2081/*
2082 * vmbus_device_register - Register the child device
2083 */
2084int vmbus_device_register(struct hv_device *child_device_obj)
2085{
2086	struct kobject *kobj = &child_device_obj->device.kobj;
2087	int ret;
 
2088
2089	dev_set_name(&child_device_obj->device, "%pUl",
2090		     &child_device_obj->channel->offermsg.offer.if_instance);
2091
2092	child_device_obj->device.bus = &hv_bus;
2093	child_device_obj->device.parent = &hv_acpi_dev->dev;
2094	child_device_obj->device.release = vmbus_device_release;
2095
2096	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2097	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2098	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2099
2100	/*
2101	 * Register with the LDM. This will kick off the driver/device
2102	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2103	 */
2104	ret = device_register(&child_device_obj->device);
2105	if (ret) {
 
2106		pr_err("Unable to register child device\n");
2107		put_device(&child_device_obj->device);
2108		return ret;
2109	}
2110
2111	child_device_obj->channels_kset = kset_create_and_add("channels",
2112							      NULL, kobj);
2113	if (!child_device_obj->channels_kset) {
2114		ret = -ENOMEM;
2115		goto err_dev_unregister;
2116	}
2117
2118	ret = vmbus_add_channel_kobj(child_device_obj,
2119				     child_device_obj->channel);
2120	if (ret) {
2121		pr_err("Unable to register primary channeln");
2122		goto err_kset_unregister;
2123	}
2124	hv_debug_add_dev_dir(child_device_obj);
2125
2126	return 0;
2127
2128err_kset_unregister:
2129	kset_unregister(child_device_obj->channels_kset);
2130
2131err_dev_unregister:
2132	device_unregister(&child_device_obj->device);
2133	return ret;
2134}
2135
2136/*
2137 * vmbus_device_unregister - Remove the specified child device
2138 * from the vmbus.
2139 */
2140void vmbus_device_unregister(struct hv_device *device_obj)
2141{
2142	pr_debug("child device %s unregistered\n",
2143		dev_name(&device_obj->device));
2144
2145	kset_unregister(device_obj->channels_kset);
2146
2147	/*
2148	 * Kick off the process of unregistering the device.
2149	 * This will call vmbus_remove() and eventually vmbus_device_release()
2150	 */
2151	device_unregister(&device_obj->device);
 
 
 
2152}
2153
2154
2155/*
2156 * VMBUS is an acpi enumerated device. Get the information we
2157 * need from DSDT.
2158 */
2159#define VTPM_BASE_ADDRESS 0xfed40000
2160static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2161{
2162	resource_size_t start = 0;
2163	resource_size_t end = 0;
2164	struct resource *new_res;
2165	struct resource **old_res = &hyperv_mmio;
2166	struct resource **prev_res = NULL;
2167	struct resource r;
2168
2169	switch (res->type) {
2170
2171	/*
2172	 * "Address" descriptors are for bus windows. Ignore
2173	 * "memory" descriptors, which are for registers on
2174	 * devices.
2175	 */
2176	case ACPI_RESOURCE_TYPE_ADDRESS32:
2177		start = res->data.address32.address.minimum;
2178		end = res->data.address32.address.maximum;
2179		break;
2180
2181	case ACPI_RESOURCE_TYPE_ADDRESS64:
2182		start = res->data.address64.address.minimum;
2183		end = res->data.address64.address.maximum;
2184		break;
2185
2186	/*
2187	 * The IRQ information is needed only on ARM64, which Hyper-V
2188	 * sets up in the extended format. IRQ information is present
2189	 * on x86/x64 in the non-extended format but it is not used by
2190	 * Linux. So don't bother checking for the non-extended format.
2191	 */
2192	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2193		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2194			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2195			return AE_ERROR;
2196		}
2197		/* ARM64 INTID for VMbus */
2198		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2199		/* Linux IRQ number */
2200		vmbus_irq = r.start;
2201		return AE_OK;
2202
2203	default:
2204		/* Unused resource type */
2205		return AE_OK;
2206
 
2207	}
2208	/*
2209	 * Ignore ranges that are below 1MB, as they're not
2210	 * necessary or useful here.
2211	 */
2212	if (end < 0x100000)
2213		return AE_OK;
2214
2215	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2216	if (!new_res)
2217		return AE_NO_MEMORY;
2218
2219	/* If this range overlaps the virtual TPM, truncate it. */
2220	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2221		end = VTPM_BASE_ADDRESS;
2222
2223	new_res->name = "hyperv mmio";
2224	new_res->flags = IORESOURCE_MEM;
2225	new_res->start = start;
2226	new_res->end = end;
2227
2228	/*
2229	 * If two ranges are adjacent, merge them.
2230	 */
2231	do {
2232		if (!*old_res) {
2233			*old_res = new_res;
2234			break;
2235		}
2236
2237		if (((*old_res)->end + 1) == new_res->start) {
2238			(*old_res)->end = new_res->end;
2239			kfree(new_res);
2240			break;
2241		}
2242
2243		if ((*old_res)->start == new_res->end + 1) {
2244			(*old_res)->start = new_res->start;
2245			kfree(new_res);
2246			break;
2247		}
2248
2249		if ((*old_res)->start > new_res->end) {
2250			new_res->sibling = *old_res;
2251			if (prev_res)
2252				(*prev_res)->sibling = new_res;
2253			*old_res = new_res;
2254			break;
2255		}
2256
2257		prev_res = old_res;
2258		old_res = &(*old_res)->sibling;
2259
2260	} while (1);
2261
2262	return AE_OK;
2263}
2264
2265static void vmbus_acpi_remove(struct acpi_device *device)
2266{
2267	struct resource *cur_res;
2268	struct resource *next_res;
2269
2270	if (hyperv_mmio) {
2271		if (fb_mmio) {
2272			__release_region(hyperv_mmio, fb_mmio->start,
2273					 resource_size(fb_mmio));
2274			fb_mmio = NULL;
2275		}
2276
2277		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2278			next_res = cur_res->sibling;
2279			kfree(cur_res);
2280		}
2281	}
2282}
2283
2284static void vmbus_reserve_fb(void)
2285{
2286	resource_size_t start = 0, size;
2287	struct pci_dev *pdev;
2288
2289	if (efi_enabled(EFI_BOOT)) {
2290		/* Gen2 VM: get FB base from EFI framebuffer */
2291		start = screen_info.lfb_base;
2292		size = max_t(__u32, screen_info.lfb_size, 0x800000);
2293	} else {
2294		/* Gen1 VM: get FB base from PCI */
2295		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2296				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2297		if (!pdev)
2298			return;
2299
2300		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2301			start = pci_resource_start(pdev, 0);
2302			size = pci_resource_len(pdev, 0);
2303		}
2304
2305		/*
2306		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2307		 * grab it later.
2308		 */
2309		pci_dev_put(pdev);
2310	}
2311
2312	if (!start)
2313		return;
2314
2315	/*
2316	 * Make a claim for the frame buffer in the resource tree under the
2317	 * first node, which will be the one below 4GB.  The length seems to
2318	 * be underreported, particularly in a Generation 1 VM.  So start out
2319	 * reserving a larger area and make it smaller until it succeeds.
2320	 */
2321	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2322		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2323}
2324
2325/**
2326 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2327 * @new:		If successful, supplied a pointer to the
2328 *			allocated MMIO space.
2329 * @device_obj:		Identifies the caller
2330 * @min:		Minimum guest physical address of the
2331 *			allocation
2332 * @max:		Maximum guest physical address
2333 * @size:		Size of the range to be allocated
2334 * @align:		Alignment of the range to be allocated
2335 * @fb_overlap_ok:	Whether this allocation can be allowed
2336 *			to overlap the video frame buffer.
2337 *
2338 * This function walks the resources granted to VMBus by the
2339 * _CRS object in the ACPI namespace underneath the parent
2340 * "bridge" whether that's a root PCI bus in the Generation 1
2341 * case or a Module Device in the Generation 2 case.  It then
2342 * attempts to allocate from the global MMIO pool in a way that
2343 * matches the constraints supplied in these parameters and by
2344 * that _CRS.
2345 *
2346 * Return: 0 on success, -errno on failure
2347 */
2348int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2349			resource_size_t min, resource_size_t max,
2350			resource_size_t size, resource_size_t align,
2351			bool fb_overlap_ok)
2352{
2353	struct resource *iter, *shadow;
2354	resource_size_t range_min, range_max, start, end;
2355	const char *dev_n = dev_name(&device_obj->device);
2356	int retval;
2357
2358	retval = -ENXIO;
2359	mutex_lock(&hyperv_mmio_lock);
2360
2361	/*
2362	 * If overlaps with frame buffers are allowed, then first attempt to
2363	 * make the allocation from within the reserved region.  Because it
2364	 * is already reserved, no shadow allocation is necessary.
2365	 */
2366	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2367	    !(max < fb_mmio->start)) {
2368
2369		range_min = fb_mmio->start;
2370		range_max = fb_mmio->end;
2371		start = (range_min + align - 1) & ~(align - 1);
2372		for (; start + size - 1 <= range_max; start += align) {
2373			*new = request_mem_region_exclusive(start, size, dev_n);
2374			if (*new) {
2375				retval = 0;
2376				goto exit;
2377			}
2378		}
2379	}
2380
2381	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2382		if ((iter->start >= max) || (iter->end <= min))
2383			continue;
2384
2385		range_min = iter->start;
2386		range_max = iter->end;
2387		start = (range_min + align - 1) & ~(align - 1);
2388		for (; start + size - 1 <= range_max; start += align) {
2389			end = start + size - 1;
2390
2391			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2392			if (!fb_overlap_ok && fb_mmio &&
2393			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2394			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2395				continue;
2396
2397			shadow = __request_region(iter, start, size, NULL,
2398						  IORESOURCE_BUSY);
2399			if (!shadow)
2400				continue;
2401
2402			*new = request_mem_region_exclusive(start, size, dev_n);
2403			if (*new) {
2404				shadow->name = (char *)*new;
2405				retval = 0;
2406				goto exit;
2407			}
2408
2409			__release_region(iter, start, size);
2410		}
2411	}
2412
2413exit:
2414	mutex_unlock(&hyperv_mmio_lock);
2415	return retval;
2416}
2417EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2418
2419/**
2420 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2421 * @start:		Base address of region to release.
2422 * @size:		Size of the range to be allocated
2423 *
2424 * This function releases anything requested by
2425 * vmbus_mmio_allocate().
2426 */
2427void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2428{
2429	struct resource *iter;
2430
2431	mutex_lock(&hyperv_mmio_lock);
2432	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2433		if ((iter->start >= start + size) || (iter->end <= start))
2434			continue;
2435
2436		__release_region(iter, start, size);
2437	}
2438	release_mem_region(start, size);
2439	mutex_unlock(&hyperv_mmio_lock);
2440
2441}
2442EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2443
2444static int vmbus_acpi_add(struct acpi_device *device)
2445{
2446	acpi_status result;
2447	int ret_val = -ENODEV;
2448	struct acpi_device *ancestor;
2449
2450	hv_acpi_dev = device;
2451
2452	/*
2453	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2454	 * method on the top level VMbus device in the DSDT. But devices
2455	 * are hardware coherent in all current Hyper-V use cases, so fix
2456	 * up the ACPI device to behave as if _CCA is present and indicates
2457	 * hardware coherence.
2458	 */
2459	ACPI_COMPANION_SET(&device->dev, device);
2460	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2461	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2462		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2463		device->flags.cca_seen = true;
2464		device->flags.coherent_dma = true;
2465	}
2466
2467	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2468					vmbus_walk_resources, NULL);
2469
2470	if (ACPI_FAILURE(result))
2471		goto acpi_walk_err;
2472	/*
2473	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2474	 * firmware) is the VMOD that has the mmio ranges. Get that.
2475	 */
2476	for (ancestor = acpi_dev_parent(device); ancestor;
2477	     ancestor = acpi_dev_parent(ancestor)) {
2478		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2479					     vmbus_walk_resources, NULL);
2480
2481		if (ACPI_FAILURE(result))
2482			continue;
2483		if (hyperv_mmio) {
2484			vmbus_reserve_fb();
2485			break;
2486		}
2487	}
2488	ret_val = 0;
2489
2490acpi_walk_err:
2491	if (ret_val)
2492		vmbus_acpi_remove(device);
2493	return ret_val;
2494}
2495
2496#ifdef CONFIG_PM_SLEEP
2497static int vmbus_bus_suspend(struct device *dev)
2498{
2499	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2500			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2501	struct vmbus_channel *channel, *sc;
2502
2503	tasklet_disable(&hv_cpu->msg_dpc);
2504	vmbus_connection.ignore_any_offer_msg = true;
2505	/* The tasklet_enable() takes care of providing a memory barrier */
2506	tasklet_enable(&hv_cpu->msg_dpc);
2507
2508	/* Drain all the workqueues as we are in suspend */
2509	drain_workqueue(vmbus_connection.rescind_work_queue);
2510	drain_workqueue(vmbus_connection.work_queue);
2511	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2512	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2513
2514	mutex_lock(&vmbus_connection.channel_mutex);
2515	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2516		if (!is_hvsock_channel(channel))
2517			continue;
2518
2519		vmbus_force_channel_rescinded(channel);
2520	}
2521	mutex_unlock(&vmbus_connection.channel_mutex);
2522
2523	/*
2524	 * Wait until all the sub-channels and hv_sock channels have been
2525	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2526	 * they would conflict with the new sub-channels that will be created
2527	 * in the resume path. hv_sock channels should also be destroyed, but
2528	 * a hv_sock channel of an established hv_sock connection can not be
2529	 * really destroyed since it may still be referenced by the userspace
2530	 * application, so we just force the hv_sock channel to be rescinded
2531	 * by vmbus_force_channel_rescinded(), and the userspace application
2532	 * will thoroughly destroy the channel after hibernation.
2533	 *
2534	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2535	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2536	 */
2537	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2538		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2539
2540	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2541		pr_err("Can not suspend due to a previous failed resuming\n");
2542		return -EBUSY;
2543	}
2544
2545	mutex_lock(&vmbus_connection.channel_mutex);
2546
2547	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2548		/*
2549		 * Remove the channel from the array of channels and invalidate
2550		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2551		 * up the relid (and other fields, if necessary) and add the
2552		 * channel back to the array.
2553		 */
2554		vmbus_channel_unmap_relid(channel);
2555		channel->offermsg.child_relid = INVALID_RELID;
2556
2557		if (is_hvsock_channel(channel)) {
2558			if (!channel->rescind) {
2559				pr_err("hv_sock channel not rescinded!\n");
2560				WARN_ON_ONCE(1);
2561			}
2562			continue;
2563		}
2564
2565		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2566			pr_err("Sub-channel not deleted!\n");
2567			WARN_ON_ONCE(1);
2568		}
2569
2570		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2571	}
2572
2573	mutex_unlock(&vmbus_connection.channel_mutex);
2574
2575	vmbus_initiate_unload(false);
2576
2577	/* Reset the event for the next resume. */
2578	reinit_completion(&vmbus_connection.ready_for_resume_event);
2579
2580	return 0;
2581}
2582
2583static int vmbus_bus_resume(struct device *dev)
2584{
2585	struct vmbus_channel_msginfo *msginfo;
2586	size_t msgsize;
2587	int ret;
2588
2589	vmbus_connection.ignore_any_offer_msg = false;
2590
2591	/*
2592	 * We only use the 'vmbus_proto_version', which was in use before
2593	 * hibernation, to re-negotiate with the host.
2594	 */
2595	if (!vmbus_proto_version) {
2596		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2597		return -EINVAL;
2598	}
2599
2600	msgsize = sizeof(*msginfo) +
2601		  sizeof(struct vmbus_channel_initiate_contact);
2602
2603	msginfo = kzalloc(msgsize, GFP_KERNEL);
2604
2605	if (msginfo == NULL)
2606		return -ENOMEM;
2607
2608	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2609
2610	kfree(msginfo);
2611
2612	if (ret != 0)
2613		return ret;
2614
2615	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2616
2617	vmbus_request_offers();
2618
2619	if (wait_for_completion_timeout(
2620		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2621		pr_err("Some vmbus device is missing after suspending?\n");
2622
2623	/* Reset the event for the next suspend. */
2624	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2625
2626	return 0;
2627}
2628#else
2629#define vmbus_bus_suspend NULL
2630#define vmbus_bus_resume NULL
2631#endif /* CONFIG_PM_SLEEP */
2632
2633static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2634	{"VMBUS", 0},
2635	{"VMBus", 0},
2636	{"", 0},
2637};
2638MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2639
2640/*
2641 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2642 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2643 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2644 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2645 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2646 * resume callback must also run via the "noirq" ops.
2647 *
2648 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2649 * earlier in this file before vmbus_pm.
2650 */
2651
2652static const struct dev_pm_ops vmbus_bus_pm = {
2653	.suspend_noirq	= NULL,
2654	.resume_noirq	= NULL,
2655	.freeze_noirq	= vmbus_bus_suspend,
2656	.thaw_noirq	= vmbus_bus_resume,
2657	.poweroff_noirq	= vmbus_bus_suspend,
2658	.restore_noirq	= vmbus_bus_resume
2659};
2660
2661static struct acpi_driver vmbus_acpi_driver = {
2662	.name = "vmbus",
2663	.ids = vmbus_acpi_device_ids,
2664	.ops = {
2665		.add = vmbus_acpi_add,
2666		.remove = vmbus_acpi_remove,
2667	},
2668	.drv.pm = &vmbus_bus_pm,
2669	.drv.probe_type = PROBE_FORCE_SYNCHRONOUS,
2670};
2671
2672static void hv_kexec_handler(void)
2673{
2674	hv_stimer_global_cleanup();
2675	vmbus_initiate_unload(false);
2676	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2677	mb();
2678	cpuhp_remove_state(hyperv_cpuhp_online);
2679};
2680
2681static void hv_crash_handler(struct pt_regs *regs)
2682{
2683	int cpu;
2684
2685	vmbus_initiate_unload(true);
2686	/*
2687	 * In crash handler we can't schedule synic cleanup for all CPUs,
2688	 * doing the cleanup for current CPU only. This should be sufficient
2689	 * for kdump.
2690	 */
2691	cpu = smp_processor_id();
2692	hv_stimer_cleanup(cpu);
2693	hv_synic_disable_regs(cpu);
2694};
2695
2696static int hv_synic_suspend(void)
2697{
2698	/*
2699	 * When we reach here, all the non-boot CPUs have been offlined.
2700	 * If we're in a legacy configuration where stimer Direct Mode is
2701	 * not enabled, the stimers on the non-boot CPUs have been unbound
2702	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2703	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2704	 *
2705	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2706	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2707	 * 1) it's unnecessary as interrupts remain disabled between
2708	 * syscore_suspend() and syscore_resume(): see create_image() and
2709	 * resume_target_kernel()
2710	 * 2) the stimer on CPU0 is automatically disabled later by
2711	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2712	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2713	 * 3) a warning would be triggered if we call
2714	 * clockevents_unbind_device(), which may sleep, in an
2715	 * interrupts-disabled context.
2716	 */
2717
2718	hv_synic_disable_regs(0);
2719
2720	return 0;
2721}
2722
2723static void hv_synic_resume(void)
2724{
2725	hv_synic_enable_regs(0);
2726
2727	/*
2728	 * Note: we don't need to call hv_stimer_init(0), because the timer
2729	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2730	 * automatically re-enabled in timekeeping_resume().
2731	 */
2732}
2733
2734/* The callbacks run only on CPU0, with irqs_disabled. */
2735static struct syscore_ops hv_synic_syscore_ops = {
2736	.suspend = hv_synic_suspend,
2737	.resume = hv_synic_resume,
2738};
2739
2740static int __init hv_acpi_init(void)
2741{
2742	int ret;
2743
2744	if (!hv_is_hyperv_initialized())
2745		return -ENODEV;
2746
2747	if (hv_root_partition)
2748		return 0;
2749
2750	/*
2751	 * Get ACPI resources first.
2752	 */
2753	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2754
2755	if (ret)
2756		return ret;
2757
2758	if (!hv_acpi_dev) {
 
 
 
 
 
 
2759		ret = -ENODEV;
2760		goto cleanup;
2761	}
2762
2763	/*
2764	 * If we're on an architecture with a hardcoded hypervisor
2765	 * vector (i.e. x86/x64), override the VMbus interrupt found
2766	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2767	 * normal Linux IRQ mechanism is not used in this case.
2768	 */
2769#ifdef HYPERVISOR_CALLBACK_VECTOR
2770	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2771	vmbus_irq = -1;
2772#endif
2773
2774	hv_debug_init();
2775
2776	ret = vmbus_bus_init();
2777	if (ret)
2778		goto cleanup;
2779
2780	hv_setup_kexec_handler(hv_kexec_handler);
2781	hv_setup_crash_handler(hv_crash_handler);
2782
2783	register_syscore_ops(&hv_synic_syscore_ops);
2784
2785	return 0;
2786
2787cleanup:
2788	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2789	hv_acpi_dev = NULL;
2790	return ret;
2791}
2792
2793static void __exit vmbus_exit(void)
2794{
2795	int cpu;
2796
2797	unregister_syscore_ops(&hv_synic_syscore_ops);
2798
2799	hv_remove_kexec_handler();
2800	hv_remove_crash_handler();
2801	vmbus_connection.conn_state = DISCONNECTED;
2802	hv_stimer_global_cleanup();
2803	vmbus_disconnect();
2804	if (vmbus_irq == -1) {
2805		hv_remove_vmbus_handler();
2806	} else {
2807		free_percpu_irq(vmbus_irq, vmbus_evt);
2808		free_percpu(vmbus_evt);
2809	}
2810	for_each_online_cpu(cpu) {
2811		struct hv_per_cpu_context *hv_cpu
2812			= per_cpu_ptr(hv_context.cpu_context, cpu);
2813
2814		tasklet_kill(&hv_cpu->msg_dpc);
2815	}
2816	hv_debug_rm_all_dir();
2817
 
2818	vmbus_free_channels();
2819	kfree(vmbus_connection.channels);
2820
2821	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2822		kmsg_dump_unregister(&hv_kmsg_dumper);
2823		unregister_die_notifier(&hyperv_die_report_block);
2824		atomic_notifier_chain_unregister(&panic_notifier_list,
2825						&hyperv_panic_report_block);
2826	}
2827
2828	/*
2829	 * The vmbus panic notifier is always registered, hence we should
2830	 * also unconditionally unregister it here as well.
2831	 */
2832	atomic_notifier_chain_unregister(&panic_notifier_list,
2833					&hyperv_panic_vmbus_unload_block);
2834
2835	free_page((unsigned long)hv_panic_page);
2836	unregister_sysctl_table(hv_ctl_table_hdr);
2837	hv_ctl_table_hdr = NULL;
2838	bus_unregister(&hv_bus);
2839
2840	cpuhp_remove_state(hyperv_cpuhp_online);
2841	hv_synic_free();
2842	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2843}
2844
2845
2846MODULE_LICENSE("GPL");
2847MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2848
2849subsys_initcall(hv_acpi_init);
2850module_exit(vmbus_exit);