Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2012, Microsoft Corporation.
   4 *
   5 * Author:
   6 *   K. Y. Srinivasan <kys@microsoft.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/jiffies.h>
  13#include <linux/mman.h>
  14#include <linux/debugfs.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/kthread.h>
  20#include <linux/completion.h>
  21#include <linux/count_zeros.h>
  22#include <linux/memory_hotplug.h>
  23#include <linux/memory.h>
  24#include <linux/notifier.h>
  25#include <linux/percpu_counter.h>
  26#include <linux/page_reporting.h>
  27
  28#include <linux/hyperv.h>
  29#include <asm/hyperv-tlfs.h>
  30
  31#include <asm/mshyperv.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include "hv_trace_balloon.h"
  35
  36/*
  37 * We begin with definitions supporting the Dynamic Memory protocol
  38 * with the host.
  39 *
  40 * Begin protocol definitions.
  41 */
  42
  43
  44
  45/*
  46 * Protocol versions. The low word is the minor version, the high word the major
  47 * version.
  48 *
  49 * History:
  50 * Initial version 1.0
  51 * Changed to 0.1 on 2009/03/25
  52 * Changes to 0.2 on 2009/05/14
  53 * Changes to 0.3 on 2009/12/03
  54 * Changed to 1.0 on 2011/04/05
  55 */
  56
  57#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  58#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  59#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  60
  61enum {
  62	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  63	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  64	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  65
  66	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  67	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  68	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  69
  70	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  71};
  72
  73
  74
  75/*
  76 * Message Types
  77 */
  78
  79enum dm_message_type {
  80	/*
  81	 * Version 0.3
  82	 */
  83	DM_ERROR			= 0,
  84	DM_VERSION_REQUEST		= 1,
  85	DM_VERSION_RESPONSE		= 2,
  86	DM_CAPABILITIES_REPORT		= 3,
  87	DM_CAPABILITIES_RESPONSE	= 4,
  88	DM_STATUS_REPORT		= 5,
  89	DM_BALLOON_REQUEST		= 6,
  90	DM_BALLOON_RESPONSE		= 7,
  91	DM_UNBALLOON_REQUEST		= 8,
  92	DM_UNBALLOON_RESPONSE		= 9,
  93	DM_MEM_HOT_ADD_REQUEST		= 10,
  94	DM_MEM_HOT_ADD_RESPONSE		= 11,
  95	DM_VERSION_03_MAX		= 11,
  96	/*
  97	 * Version 1.0.
  98	 */
  99	DM_INFO_MESSAGE			= 12,
 100	DM_VERSION_1_MAX		= 12
 101};
 102
 103
 104/*
 105 * Structures defining the dynamic memory management
 106 * protocol.
 107 */
 108
 109union dm_version {
 110	struct {
 111		__u16 minor_version;
 112		__u16 major_version;
 113	};
 114	__u32 version;
 115} __packed;
 116
 117
 118union dm_caps {
 119	struct {
 120		__u64 balloon:1;
 121		__u64 hot_add:1;
 122		/*
 123		 * To support guests that may have alignment
 124		 * limitations on hot-add, the guest can specify
 125		 * its alignment requirements; a value of n
 126		 * represents an alignment of 2^n in mega bytes.
 127		 */
 128		__u64 hot_add_alignment:4;
 129		__u64 reservedz:58;
 130	} cap_bits;
 131	__u64 caps;
 132} __packed;
 133
 134union dm_mem_page_range {
 135	struct  {
 136		/*
 137		 * The PFN number of the first page in the range.
 138		 * 40 bits is the architectural limit of a PFN
 139		 * number for AMD64.
 140		 */
 141		__u64 start_page:40;
 142		/*
 143		 * The number of pages in the range.
 144		 */
 145		__u64 page_cnt:24;
 146	} finfo;
 147	__u64  page_range;
 148} __packed;
 149
 150
 151
 152/*
 153 * The header for all dynamic memory messages:
 154 *
 155 * type: Type of the message.
 156 * size: Size of the message in bytes; including the header.
 157 * trans_id: The guest is responsible for manufacturing this ID.
 158 */
 159
 160struct dm_header {
 161	__u16 type;
 162	__u16 size;
 163	__u32 trans_id;
 164} __packed;
 165
 166/*
 167 * A generic message format for dynamic memory.
 168 * Specific message formats are defined later in the file.
 169 */
 170
 171struct dm_message {
 172	struct dm_header hdr;
 173	__u8 data[]; /* enclosed message */
 174} __packed;
 175
 176
 177/*
 178 * Specific message types supporting the dynamic memory protocol.
 179 */
 180
 181/*
 182 * Version negotiation message. Sent from the guest to the host.
 183 * The guest is free to try different versions until the host
 184 * accepts the version.
 185 *
 186 * dm_version: The protocol version requested.
 187 * is_last_attempt: If TRUE, this is the last version guest will request.
 188 * reservedz: Reserved field, set to zero.
 189 */
 190
 191struct dm_version_request {
 192	struct dm_header hdr;
 193	union dm_version version;
 194	__u32 is_last_attempt:1;
 195	__u32 reservedz:31;
 196} __packed;
 197
 198/*
 199 * Version response message; Host to Guest and indicates
 200 * if the host has accepted the version sent by the guest.
 201 *
 202 * is_accepted: If TRUE, host has accepted the version and the guest
 203 * should proceed to the next stage of the protocol. FALSE indicates that
 204 * guest should re-try with a different version.
 205 *
 206 * reservedz: Reserved field, set to zero.
 207 */
 208
 209struct dm_version_response {
 210	struct dm_header hdr;
 211	__u64 is_accepted:1;
 212	__u64 reservedz:63;
 213} __packed;
 214
 215/*
 216 * Message reporting capabilities. This is sent from the guest to the
 217 * host.
 218 */
 219
 220struct dm_capabilities {
 221	struct dm_header hdr;
 222	union dm_caps caps;
 223	__u64 min_page_cnt;
 224	__u64 max_page_number;
 225} __packed;
 226
 227/*
 228 * Response to the capabilities message. This is sent from the host to the
 229 * guest. This message notifies if the host has accepted the guest's
 230 * capabilities. If the host has not accepted, the guest must shutdown
 231 * the service.
 232 *
 233 * is_accepted: Indicates if the host has accepted guest's capabilities.
 234 * reservedz: Must be 0.
 235 */
 236
 237struct dm_capabilities_resp_msg {
 238	struct dm_header hdr;
 239	__u64 is_accepted:1;
 240	__u64 reservedz:63;
 241} __packed;
 242
 243/*
 244 * This message is used to report memory pressure from the guest.
 245 * This message is not part of any transaction and there is no
 246 * response to this message.
 247 *
 248 * num_avail: Available memory in pages.
 249 * num_committed: Committed memory in pages.
 250 * page_file_size: The accumulated size of all page files
 251 *		   in the system in pages.
 252 * zero_free: The number of zero and free pages.
 253 * page_file_writes: The writes to the page file in pages.
 254 * io_diff: An indicator of file cache efficiency or page file activity,
 255 *	    calculated as File Cache Page Fault Count - Page Read Count.
 256 *	    This value is in pages.
 257 *
 258 * Some of these metrics are Windows specific and fortunately
 259 * the algorithm on the host side that computes the guest memory
 260 * pressure only uses num_committed value.
 261 */
 262
 263struct dm_status {
 264	struct dm_header hdr;
 265	__u64 num_avail;
 266	__u64 num_committed;
 267	__u64 page_file_size;
 268	__u64 zero_free;
 269	__u32 page_file_writes;
 270	__u32 io_diff;
 271} __packed;
 272
 273
 274/*
 275 * Message to ask the guest to allocate memory - balloon up message.
 276 * This message is sent from the host to the guest. The guest may not be
 277 * able to allocate as much memory as requested.
 278 *
 279 * num_pages: number of pages to allocate.
 280 */
 281
 282struct dm_balloon {
 283	struct dm_header hdr;
 284	__u32 num_pages;
 285	__u32 reservedz;
 286} __packed;
 287
 288
 289/*
 290 * Balloon response message; this message is sent from the guest
 291 * to the host in response to the balloon message.
 292 *
 293 * reservedz: Reserved; must be set to zero.
 294 * more_pages: If FALSE, this is the last message of the transaction.
 295 * if TRUE there will atleast one more message from the guest.
 296 *
 297 * range_count: The number of ranges in the range array.
 298 *
 299 * range_array: An array of page ranges returned to the host.
 300 *
 301 */
 302
 303struct dm_balloon_response {
 304	struct dm_header hdr;
 305	__u32 reservedz;
 306	__u32 more_pages:1;
 307	__u32 range_count:31;
 308	union dm_mem_page_range range_array[];
 309} __packed;
 310
 311/*
 312 * Un-balloon message; this message is sent from the host
 313 * to the guest to give guest more memory.
 314 *
 315 * more_pages: If FALSE, this is the last message of the transaction.
 316 * if TRUE there will atleast one more message from the guest.
 317 *
 318 * reservedz: Reserved; must be set to zero.
 319 *
 320 * range_count: The number of ranges in the range array.
 321 *
 322 * range_array: An array of page ranges returned to the host.
 323 *
 324 */
 325
 326struct dm_unballoon_request {
 327	struct dm_header hdr;
 328	__u32 more_pages:1;
 329	__u32 reservedz:31;
 330	__u32 range_count;
 331	union dm_mem_page_range range_array[];
 332} __packed;
 333
 334/*
 335 * Un-balloon response message; this message is sent from the guest
 336 * to the host in response to an unballoon request.
 337 *
 338 */
 339
 340struct dm_unballoon_response {
 341	struct dm_header hdr;
 342} __packed;
 343
 344
 345/*
 346 * Hot add request message. Message sent from the host to the guest.
 347 *
 348 * mem_range: Memory range to hot add.
 349 *
 350 */
 351
 352struct dm_hot_add {
 353	struct dm_header hdr;
 354	union dm_mem_page_range range;
 355} __packed;
 356
 357/*
 358 * Hot add response message.
 359 * This message is sent by the guest to report the status of a hot add request.
 360 * If page_count is less than the requested page count, then the host should
 361 * assume all further hot add requests will fail, since this indicates that
 362 * the guest has hit an upper physical memory barrier.
 363 *
 364 * Hot adds may also fail due to low resources; in this case, the guest must
 365 * not complete this message until the hot add can succeed, and the host must
 366 * not send a new hot add request until the response is sent.
 367 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 368 * times it fails the request.
 369 *
 370 *
 371 * page_count: number of pages that were successfully hot added.
 372 *
 373 * result: result of the operation 1: success, 0: failure.
 374 *
 375 */
 376
 377struct dm_hot_add_response {
 378	struct dm_header hdr;
 379	__u32 page_count;
 380	__u32 result;
 381} __packed;
 382
 383/*
 384 * Types of information sent from host to the guest.
 385 */
 386
 387enum dm_info_type {
 388	INFO_TYPE_MAX_PAGE_CNT = 0,
 389	MAX_INFO_TYPE
 390};
 391
 392
 393/*
 394 * Header for the information message.
 395 */
 396
 397struct dm_info_header {
 398	enum dm_info_type type;
 399	__u32 data_size;
 400} __packed;
 401
 402/*
 403 * This message is sent from the host to the guest to pass
 404 * some relevant information (win8 addition).
 405 *
 406 * reserved: no used.
 407 * info_size: size of the information blob.
 408 * info: information blob.
 409 */
 410
 411struct dm_info_msg {
 412	struct dm_header hdr;
 413	__u32 reserved;
 414	__u32 info_size;
 415	__u8  info[];
 416};
 417
 418/*
 419 * End protocol definitions.
 420 */
 421
 422/*
 423 * State to manage hot adding memory into the guest.
 424 * The range start_pfn : end_pfn specifies the range
 425 * that the host has asked us to hot add. The range
 426 * start_pfn : ha_end_pfn specifies the range that we have
 427 * currently hot added. We hot add in multiples of 128M
 428 * chunks; it is possible that we may not be able to bring
 429 * online all the pages in the region. The range
 430 * covered_start_pfn:covered_end_pfn defines the pages that can
 431 * be brough online.
 432 */
 433
 434struct hv_hotadd_state {
 435	struct list_head list;
 436	unsigned long start_pfn;
 437	unsigned long covered_start_pfn;
 438	unsigned long covered_end_pfn;
 439	unsigned long ha_end_pfn;
 440	unsigned long end_pfn;
 441	/*
 442	 * A list of gaps.
 443	 */
 444	struct list_head gap_list;
 445};
 446
 447struct hv_hotadd_gap {
 448	struct list_head list;
 449	unsigned long start_pfn;
 450	unsigned long end_pfn;
 451};
 452
 453struct balloon_state {
 454	__u32 num_pages;
 455	struct work_struct wrk;
 456};
 457
 458struct hot_add_wrk {
 459	union dm_mem_page_range ha_page_range;
 460	union dm_mem_page_range ha_region_range;
 461	struct work_struct wrk;
 462};
 463
 464static bool allow_hibernation;
 465static bool hot_add = true;
 466static bool do_hot_add;
 467/*
 468 * Delay reporting memory pressure by
 469 * the specified number of seconds.
 470 */
 471static uint pressure_report_delay = 45;
 472extern unsigned int page_reporting_order;
 473#define HV_MAX_FAILURES	2
 474
 475/*
 476 * The last time we posted a pressure report to host.
 477 */
 478static unsigned long last_post_time;
 479
 480static int hv_hypercall_multi_failure;
 481
 482module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 483MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 484
 485module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 486MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 487static atomic_t trans_id = ATOMIC_INIT(0);
 488
 489static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
 490
 491/*
 492 * Driver specific state.
 493 */
 494
 495enum hv_dm_state {
 496	DM_INITIALIZING = 0,
 497	DM_INITIALIZED,
 498	DM_BALLOON_UP,
 499	DM_BALLOON_DOWN,
 500	DM_HOT_ADD,
 501	DM_INIT_ERROR
 502};
 503
 504
 505static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
 506static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
 507#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
 508#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
 509
 510struct hv_dynmem_device {
 511	struct hv_device *dev;
 512	enum hv_dm_state state;
 513	struct completion host_event;
 514	struct completion config_event;
 515
 516	/*
 517	 * Number of pages we have currently ballooned out.
 518	 */
 519	unsigned int num_pages_ballooned;
 520	unsigned int num_pages_onlined;
 521	unsigned int num_pages_added;
 522
 523	/*
 524	 * State to manage the ballooning (up) operation.
 525	 */
 526	struct balloon_state balloon_wrk;
 527
 528	/*
 529	 * State to execute the "hot-add" operation.
 530	 */
 531	struct hot_add_wrk ha_wrk;
 532
 533	/*
 534	 * This state tracks if the host has specified a hot-add
 535	 * region.
 536	 */
 537	bool host_specified_ha_region;
 538
 539	/*
 540	 * State to synchronize hot-add.
 541	 */
 542	struct completion  ol_waitevent;
 543	/*
 544	 * This thread handles hot-add
 545	 * requests from the host as well as notifying
 546	 * the host with regards to memory pressure in
 547	 * the guest.
 548	 */
 549	struct task_struct *thread;
 550
 551	/*
 552	 * Protects ha_region_list, num_pages_onlined counter and individual
 553	 * regions from ha_region_list.
 554	 */
 555	spinlock_t ha_lock;
 556
 557	/*
 558	 * A list of hot-add regions.
 559	 */
 560	struct list_head ha_region_list;
 561
 562	/*
 563	 * We start with the highest version we can support
 564	 * and downgrade based on the host; we save here the
 565	 * next version to try.
 566	 */
 567	__u32 next_version;
 568
 569	/*
 570	 * The negotiated version agreed by host.
 571	 */
 572	__u32 version;
 573
 574	struct page_reporting_dev_info pr_dev_info;
 575
 576	/*
 577	 * Maximum number of pages that can be hot_add-ed
 578	 */
 579	__u64 max_dynamic_page_count;
 580};
 581
 582static struct hv_dynmem_device dm_device;
 583
 584static void post_status(struct hv_dynmem_device *dm);
 585
 586static void enable_page_reporting(void);
 587
 588static void disable_page_reporting(void);
 589
 590#ifdef CONFIG_MEMORY_HOTPLUG
 591static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
 592				     unsigned long pfn)
 593{
 594	struct hv_hotadd_gap *gap;
 595
 596	/* The page is not backed. */
 597	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
 598		return false;
 599
 600	/* Check for gaps. */
 601	list_for_each_entry(gap, &has->gap_list, list) {
 602		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
 603			return false;
 604	}
 605
 606	return true;
 607}
 608
 609static unsigned long hv_page_offline_check(unsigned long start_pfn,
 610					   unsigned long nr_pages)
 611{
 612	unsigned long pfn = start_pfn, count = 0;
 613	struct hv_hotadd_state *has;
 614	bool found;
 615
 616	while (pfn < start_pfn + nr_pages) {
 617		/*
 618		 * Search for HAS which covers the pfn and when we find one
 619		 * count how many consequitive PFNs are covered.
 620		 */
 621		found = false;
 622		list_for_each_entry(has, &dm_device.ha_region_list, list) {
 623			while ((pfn >= has->start_pfn) &&
 624			       (pfn < has->end_pfn) &&
 625			       (pfn < start_pfn + nr_pages)) {
 626				found = true;
 627				if (has_pfn_is_backed(has, pfn))
 628					count++;
 629				pfn++;
 630			}
 631		}
 632
 633		/*
 634		 * This PFN is not in any HAS (e.g. we're offlining a region
 635		 * which was present at boot), no need to account for it. Go
 636		 * to the next one.
 637		 */
 638		if (!found)
 639			pfn++;
 640	}
 641
 642	return count;
 643}
 644
 645static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 646			      void *v)
 647{
 648	struct memory_notify *mem = (struct memory_notify *)v;
 649	unsigned long flags, pfn_count;
 650
 651	switch (val) {
 652	case MEM_ONLINE:
 653	case MEM_CANCEL_ONLINE:
 654		complete(&dm_device.ol_waitevent);
 655		break;
 656
 657	case MEM_OFFLINE:
 658		spin_lock_irqsave(&dm_device.ha_lock, flags);
 659		pfn_count = hv_page_offline_check(mem->start_pfn,
 660						  mem->nr_pages);
 661		if (pfn_count <= dm_device.num_pages_onlined) {
 662			dm_device.num_pages_onlined -= pfn_count;
 663		} else {
 664			/*
 665			 * We're offlining more pages than we managed to online.
 666			 * This is unexpected. In any case don't let
 667			 * num_pages_onlined wrap around zero.
 668			 */
 669			WARN_ON_ONCE(1);
 670			dm_device.num_pages_onlined = 0;
 671		}
 672		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 673		break;
 674	case MEM_GOING_ONLINE:
 675	case MEM_GOING_OFFLINE:
 676	case MEM_CANCEL_OFFLINE:
 677		break;
 678	}
 679	return NOTIFY_OK;
 680}
 681
 682static struct notifier_block hv_memory_nb = {
 683	.notifier_call = hv_memory_notifier,
 684	.priority = 0
 685};
 686
 687/* Check if the particular page is backed and can be onlined and online it. */
 688static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
 689{
 690	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
 691		if (!PageOffline(pg))
 692			__SetPageOffline(pg);
 693		return;
 694	}
 695	if (PageOffline(pg))
 696		__ClearPageOffline(pg);
 697
 698	/* This frame is currently backed; online the page. */
 699	generic_online_page(pg, 0);
 700
 701	lockdep_assert_held(&dm_device.ha_lock);
 702	dm_device.num_pages_onlined++;
 703}
 704
 705static void hv_bring_pgs_online(struct hv_hotadd_state *has,
 706				unsigned long start_pfn, unsigned long size)
 707{
 708	int i;
 709
 710	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
 711	for (i = 0; i < size; i++)
 712		hv_page_online_one(has, pfn_to_page(start_pfn + i));
 713}
 714
 715static void hv_mem_hot_add(unsigned long start, unsigned long size,
 716				unsigned long pfn_count,
 717				struct hv_hotadd_state *has)
 718{
 719	int ret = 0;
 720	int i, nid;
 721	unsigned long start_pfn;
 722	unsigned long processed_pfn;
 723	unsigned long total_pfn = pfn_count;
 724	unsigned long flags;
 725
 726	for (i = 0; i < (size/HA_CHUNK); i++) {
 727		start_pfn = start + (i * HA_CHUNK);
 728
 729		spin_lock_irqsave(&dm_device.ha_lock, flags);
 730		has->ha_end_pfn +=  HA_CHUNK;
 731
 732		if (total_pfn > HA_CHUNK) {
 733			processed_pfn = HA_CHUNK;
 734			total_pfn -= HA_CHUNK;
 735		} else {
 736			processed_pfn = total_pfn;
 737			total_pfn = 0;
 738		}
 739
 740		has->covered_end_pfn +=  processed_pfn;
 741		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 742
 743		reinit_completion(&dm_device.ol_waitevent);
 744
 745		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 746		ret = add_memory(nid, PFN_PHYS((start_pfn)),
 747				(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
 748
 749		if (ret) {
 750			pr_err("hot_add memory failed error is %d\n", ret);
 751			if (ret == -EEXIST) {
 752				/*
 753				 * This error indicates that the error
 754				 * is not a transient failure. This is the
 755				 * case where the guest's physical address map
 756				 * precludes hot adding memory. Stop all further
 757				 * memory hot-add.
 758				 */
 759				do_hot_add = false;
 760			}
 761			spin_lock_irqsave(&dm_device.ha_lock, flags);
 762			has->ha_end_pfn -= HA_CHUNK;
 763			has->covered_end_pfn -=  processed_pfn;
 764			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 765			break;
 766		}
 767
 768		/*
 769		 * Wait for memory to get onlined. If the kernel onlined the
 770		 * memory when adding it, this will return directly. Otherwise,
 771		 * it will wait for user space to online the memory. This helps
 772		 * to avoid adding memory faster than it is getting onlined. As
 773		 * adding succeeded, it is ok to proceed even if the memory was
 774		 * not onlined in time.
 775		 */
 776		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
 777		post_status(&dm_device);
 778	}
 779}
 780
 781static void hv_online_page(struct page *pg, unsigned int order)
 782{
 783	struct hv_hotadd_state *has;
 784	unsigned long flags;
 785	unsigned long pfn = page_to_pfn(pg);
 786
 787	spin_lock_irqsave(&dm_device.ha_lock, flags);
 788	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 789		/* The page belongs to a different HAS. */
 790		if ((pfn < has->start_pfn) ||
 791				(pfn + (1UL << order) > has->end_pfn))
 792			continue;
 793
 794		hv_bring_pgs_online(has, pfn, 1UL << order);
 795		break;
 796	}
 797	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 798}
 799
 800static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 801{
 802	struct hv_hotadd_state *has;
 803	struct hv_hotadd_gap *gap;
 804	unsigned long residual, new_inc;
 805	int ret = 0;
 806	unsigned long flags;
 807
 808	spin_lock_irqsave(&dm_device.ha_lock, flags);
 809	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 810		/*
 811		 * If the pfn range we are dealing with is not in the current
 812		 * "hot add block", move on.
 813		 */
 814		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 815			continue;
 816
 817		/*
 818		 * If the current start pfn is not where the covered_end
 819		 * is, create a gap and update covered_end_pfn.
 820		 */
 821		if (has->covered_end_pfn != start_pfn) {
 822			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
 823			if (!gap) {
 824				ret = -ENOMEM;
 825				break;
 826			}
 827
 828			INIT_LIST_HEAD(&gap->list);
 829			gap->start_pfn = has->covered_end_pfn;
 830			gap->end_pfn = start_pfn;
 831			list_add_tail(&gap->list, &has->gap_list);
 832
 833			has->covered_end_pfn = start_pfn;
 834		}
 835
 836		/*
 837		 * If the current hot add-request extends beyond
 838		 * our current limit; extend it.
 839		 */
 840		if ((start_pfn + pfn_cnt) > has->end_pfn) {
 841			residual = (start_pfn + pfn_cnt - has->end_pfn);
 842			/*
 843			 * Extend the region by multiples of HA_CHUNK.
 844			 */
 845			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 846			if (residual % HA_CHUNK)
 847				new_inc += HA_CHUNK;
 848
 849			has->end_pfn += new_inc;
 850		}
 851
 852		ret = 1;
 853		break;
 854	}
 855	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 856
 857	return ret;
 858}
 859
 860static unsigned long handle_pg_range(unsigned long pg_start,
 861					unsigned long pg_count)
 862{
 863	unsigned long start_pfn = pg_start;
 864	unsigned long pfn_cnt = pg_count;
 865	unsigned long size;
 866	struct hv_hotadd_state *has;
 867	unsigned long pgs_ol = 0;
 868	unsigned long old_covered_state;
 869	unsigned long res = 0, flags;
 870
 871	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
 872		pg_start);
 873
 874	spin_lock_irqsave(&dm_device.ha_lock, flags);
 875	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 876		/*
 877		 * If the pfn range we are dealing with is not in the current
 878		 * "hot add block", move on.
 879		 */
 880		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 881			continue;
 882
 883		old_covered_state = has->covered_end_pfn;
 884
 885		if (start_pfn < has->ha_end_pfn) {
 886			/*
 887			 * This is the case where we are backing pages
 888			 * in an already hot added region. Bring
 889			 * these pages online first.
 890			 */
 891			pgs_ol = has->ha_end_pfn - start_pfn;
 892			if (pgs_ol > pfn_cnt)
 893				pgs_ol = pfn_cnt;
 894
 895			has->covered_end_pfn +=  pgs_ol;
 896			pfn_cnt -= pgs_ol;
 897			/*
 898			 * Check if the corresponding memory block is already
 899			 * online. It is possible to observe struct pages still
 900			 * being uninitialized here so check section instead.
 901			 * In case the section is online we need to bring the
 902			 * rest of pfns (which were not backed previously)
 903			 * online too.
 904			 */
 905			if (start_pfn > has->start_pfn &&
 906			    online_section_nr(pfn_to_section_nr(start_pfn)))
 907				hv_bring_pgs_online(has, start_pfn, pgs_ol);
 908
 909		}
 910
 911		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 912			/*
 913			 * We have some residual hot add range
 914			 * that needs to be hot added; hot add
 915			 * it now. Hot add a multiple of
 916			 * HA_CHUNK that fully covers the pages
 917			 * we have.
 918			 */
 919			size = (has->end_pfn - has->ha_end_pfn);
 920			if (pfn_cnt <= size) {
 921				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 922				if (pfn_cnt % HA_CHUNK)
 923					size += HA_CHUNK;
 924			} else {
 925				pfn_cnt = size;
 926			}
 927			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 928			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 929			spin_lock_irqsave(&dm_device.ha_lock, flags);
 930		}
 931		/*
 932		 * If we managed to online any pages that were given to us,
 933		 * we declare success.
 934		 */
 935		res = has->covered_end_pfn - old_covered_state;
 936		break;
 937	}
 938	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 939
 940	return res;
 941}
 942
 943static unsigned long process_hot_add(unsigned long pg_start,
 944					unsigned long pfn_cnt,
 945					unsigned long rg_start,
 946					unsigned long rg_size)
 947{
 948	struct hv_hotadd_state *ha_region = NULL;
 949	int covered;
 950	unsigned long flags;
 951
 952	if (pfn_cnt == 0)
 953		return 0;
 954
 955	if (!dm_device.host_specified_ha_region) {
 956		covered = pfn_covered(pg_start, pfn_cnt);
 957		if (covered < 0)
 958			return 0;
 959
 960		if (covered)
 961			goto do_pg_range;
 962	}
 963
 964	/*
 965	 * If the host has specified a hot-add range; deal with it first.
 966	 */
 967
 968	if (rg_size != 0) {
 969		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 970		if (!ha_region)
 971			return 0;
 972
 973		INIT_LIST_HEAD(&ha_region->list);
 974		INIT_LIST_HEAD(&ha_region->gap_list);
 975
 976		ha_region->start_pfn = rg_start;
 977		ha_region->ha_end_pfn = rg_start;
 978		ha_region->covered_start_pfn = pg_start;
 979		ha_region->covered_end_pfn = pg_start;
 980		ha_region->end_pfn = rg_start + rg_size;
 981
 982		spin_lock_irqsave(&dm_device.ha_lock, flags);
 983		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 984		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 985	}
 986
 987do_pg_range:
 988	/*
 989	 * Process the page range specified; bringing them
 990	 * online if possible.
 991	 */
 992	return handle_pg_range(pg_start, pfn_cnt);
 993}
 994
 995#endif
 996
 997static void hot_add_req(struct work_struct *dummy)
 998{
 999	struct dm_hot_add_response resp;
1000#ifdef CONFIG_MEMORY_HOTPLUG
1001	unsigned long pg_start, pfn_cnt;
1002	unsigned long rg_start, rg_sz;
1003#endif
1004	struct hv_dynmem_device *dm = &dm_device;
1005
1006	memset(&resp, 0, sizeof(struct dm_hot_add_response));
1007	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1008	resp.hdr.size = sizeof(struct dm_hot_add_response);
1009
1010#ifdef CONFIG_MEMORY_HOTPLUG
1011	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1012	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1013
1014	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1015	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1016
1017	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1018		unsigned long region_size;
1019		unsigned long region_start;
1020
1021		/*
1022		 * The host has not specified the hot-add region.
1023		 * Based on the hot-add page range being specified,
1024		 * compute a hot-add region that can cover the pages
1025		 * that need to be hot-added while ensuring the alignment
1026		 * and size requirements of Linux as it relates to hot-add.
1027		 */
1028		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1029		if (pfn_cnt % HA_CHUNK)
1030			region_size += HA_CHUNK;
1031
1032		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1033
1034		rg_start = region_start;
1035		rg_sz = region_size;
1036	}
1037
1038	if (do_hot_add)
1039		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1040						rg_start, rg_sz);
1041
1042	dm->num_pages_added += resp.page_count;
1043#endif
1044	/*
1045	 * The result field of the response structure has the
1046	 * following semantics:
1047	 *
1048	 * 1. If all or some pages hot-added: Guest should return success.
1049	 *
1050	 * 2. If no pages could be hot-added:
1051	 *
1052	 * If the guest returns success, then the host
1053	 * will not attempt any further hot-add operations. This
1054	 * signifies a permanent failure.
1055	 *
1056	 * If the guest returns failure, then this failure will be
1057	 * treated as a transient failure and the host may retry the
1058	 * hot-add operation after some delay.
1059	 */
1060	if (resp.page_count > 0)
1061		resp.result = 1;
1062	else if (!do_hot_add)
1063		resp.result = 1;
1064	else
1065		resp.result = 0;
1066
1067	if (!do_hot_add || resp.page_count == 0) {
1068		if (!allow_hibernation)
1069			pr_err("Memory hot add failed\n");
1070		else
1071			pr_info("Ignore hot-add request!\n");
1072	}
1073
1074	dm->state = DM_INITIALIZED;
1075	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1076	vmbus_sendpacket(dm->dev->channel, &resp,
1077			sizeof(struct dm_hot_add_response),
1078			(unsigned long)NULL,
1079			VM_PKT_DATA_INBAND, 0);
1080}
1081
1082static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1083{
1084	struct dm_info_header *info_hdr;
1085
1086	info_hdr = (struct dm_info_header *)msg->info;
1087
1088	switch (info_hdr->type) {
1089	case INFO_TYPE_MAX_PAGE_CNT:
1090		if (info_hdr->data_size == sizeof(__u64)) {
1091			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1092
1093			pr_info("Max. dynamic memory size: %llu MB\n",
1094				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1095			dm->max_dynamic_page_count = *max_page_count;
1096		}
1097
1098		break;
1099	default:
1100		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1101	}
1102}
1103
1104static unsigned long compute_balloon_floor(void)
1105{
1106	unsigned long min_pages;
1107	unsigned long nr_pages = totalram_pages();
1108#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1109	/* Simple continuous piecewiese linear function:
1110	 *  max MiB -> min MiB  gradient
1111	 *       0         0
1112	 *      16        16
1113	 *      32        24
1114	 *     128        72    (1/2)
1115	 *     512       168    (1/4)
1116	 *    2048       360    (1/8)
1117	 *    8192       744    (1/16)
1118	 *   32768      1512	(1/32)
1119	 */
1120	if (nr_pages < MB2PAGES(128))
1121		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1122	else if (nr_pages < MB2PAGES(512))
1123		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1124	else if (nr_pages < MB2PAGES(2048))
1125		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1126	else if (nr_pages < MB2PAGES(8192))
1127		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1128	else
1129		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1130#undef MB2PAGES
1131	return min_pages;
1132}
1133
1134/*
1135 * Compute total committed memory pages
1136 */
1137
1138static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1139{
1140	return vm_memory_committed() +
1141		dm->num_pages_ballooned +
1142		(dm->num_pages_added > dm->num_pages_onlined ?
1143		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1144		compute_balloon_floor();
1145}
1146
1147/*
1148 * Post our status as it relates memory pressure to the
1149 * host. Host expects the guests to post this status
1150 * periodically at 1 second intervals.
1151 *
1152 * The metrics specified in this protocol are very Windows
1153 * specific and so we cook up numbers here to convey our memory
1154 * pressure.
1155 */
1156
1157static void post_status(struct hv_dynmem_device *dm)
1158{
1159	struct dm_status status;
1160	unsigned long now = jiffies;
1161	unsigned long last_post = last_post_time;
1162	unsigned long num_pages_avail, num_pages_committed;
1163
1164	if (pressure_report_delay > 0) {
1165		--pressure_report_delay;
1166		return;
1167	}
1168
1169	if (!time_after(now, (last_post_time + HZ)))
1170		return;
1171
1172	memset(&status, 0, sizeof(struct dm_status));
1173	status.hdr.type = DM_STATUS_REPORT;
1174	status.hdr.size = sizeof(struct dm_status);
1175	status.hdr.trans_id = atomic_inc_return(&trans_id);
1176
1177	/*
1178	 * The host expects the guest to report free and committed memory.
1179	 * Furthermore, the host expects the pressure information to include
1180	 * the ballooned out pages. For a given amount of memory that we are
1181	 * managing we need to compute a floor below which we should not
1182	 * balloon. Compute this and add it to the pressure report.
1183	 * We also need to report all offline pages (num_pages_added -
1184	 * num_pages_onlined) as committed to the host, otherwise it can try
1185	 * asking us to balloon them out.
1186	 */
1187	num_pages_avail = si_mem_available();
1188	num_pages_committed = get_pages_committed(dm);
1189
1190	trace_balloon_status(num_pages_avail, num_pages_committed,
1191			     vm_memory_committed(), dm->num_pages_ballooned,
1192			     dm->num_pages_added, dm->num_pages_onlined);
1193
1194	/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1195	status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1196	status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1197
1198	/*
1199	 * If our transaction ID is no longer current, just don't
1200	 * send the status. This can happen if we were interrupted
1201	 * after we picked our transaction ID.
1202	 */
1203	if (status.hdr.trans_id != atomic_read(&trans_id))
1204		return;
1205
1206	/*
1207	 * If the last post time that we sampled has changed,
1208	 * we have raced, don't post the status.
1209	 */
1210	if (last_post != last_post_time)
1211		return;
1212
1213	last_post_time = jiffies;
1214	vmbus_sendpacket(dm->dev->channel, &status,
1215				sizeof(struct dm_status),
1216				(unsigned long)NULL,
1217				VM_PKT_DATA_INBAND, 0);
1218
1219}
1220
1221static void free_balloon_pages(struct hv_dynmem_device *dm,
1222			 union dm_mem_page_range *range_array)
1223{
1224	int num_pages = range_array->finfo.page_cnt;
1225	__u64 start_frame = range_array->finfo.start_page;
1226	struct page *pg;
1227	int i;
1228
1229	for (i = 0; i < num_pages; i++) {
1230		pg = pfn_to_page(i + start_frame);
1231		__ClearPageOffline(pg);
1232		__free_page(pg);
1233		dm->num_pages_ballooned--;
1234		adjust_managed_page_count(pg, 1);
1235	}
1236}
1237
1238
1239
1240static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1241					unsigned int num_pages,
1242					struct dm_balloon_response *bl_resp,
1243					int alloc_unit)
1244{
1245	unsigned int i, j;
1246	struct page *pg;
1247
1248	for (i = 0; i < num_pages / alloc_unit; i++) {
1249		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1250			HV_HYP_PAGE_SIZE)
1251			return i * alloc_unit;
1252
1253		/*
1254		 * We execute this code in a thread context. Furthermore,
1255		 * we don't want the kernel to try too hard.
1256		 */
1257		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1258				__GFP_NOMEMALLOC | __GFP_NOWARN,
1259				get_order(alloc_unit << PAGE_SHIFT));
1260
1261		if (!pg)
1262			return i * alloc_unit;
1263
1264		dm->num_pages_ballooned += alloc_unit;
1265
1266		/*
1267		 * If we allocatted 2M pages; split them so we
1268		 * can free them in any order we get.
1269		 */
1270
1271		if (alloc_unit != 1)
1272			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1273
1274		/* mark all pages offline */
1275		for (j = 0; j < alloc_unit; j++) {
1276			__SetPageOffline(pg + j);
1277			adjust_managed_page_count(pg + j, -1);
1278		}
1279
1280		bl_resp->range_count++;
1281		bl_resp->range_array[i].finfo.start_page =
1282			page_to_pfn(pg);
1283		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1284		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1285
1286	}
1287
1288	return i * alloc_unit;
1289}
1290
1291static void balloon_up(struct work_struct *dummy)
1292{
1293	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1294	unsigned int num_ballooned = 0;
1295	struct dm_balloon_response *bl_resp;
1296	int alloc_unit;
1297	int ret;
1298	bool done = false;
1299	int i;
1300	long avail_pages;
1301	unsigned long floor;
1302
1303	/*
1304	 * We will attempt 2M allocations. However, if we fail to
1305	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1306	 */
1307	alloc_unit = PAGES_IN_2M;
1308
1309	avail_pages = si_mem_available();
1310	floor = compute_balloon_floor();
1311
1312	/* Refuse to balloon below the floor. */
1313	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1314		pr_info("Balloon request will be partially fulfilled. %s\n",
1315			avail_pages < num_pages ? "Not enough memory." :
1316			"Balloon floor reached.");
1317
1318		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1319	}
1320
1321	while (!done) {
1322		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1323		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1324		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1325		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1326		bl_resp->more_pages = 1;
1327
1328		num_pages -= num_ballooned;
1329		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1330						    bl_resp, alloc_unit);
1331
1332		if (alloc_unit != 1 && num_ballooned == 0) {
1333			alloc_unit = 1;
1334			continue;
1335		}
1336
1337		if (num_ballooned == 0 || num_ballooned == num_pages) {
1338			pr_debug("Ballooned %u out of %u requested pages.\n",
1339				num_pages, dm_device.balloon_wrk.num_pages);
1340
1341			bl_resp->more_pages = 0;
1342			done = true;
1343			dm_device.state = DM_INITIALIZED;
1344		}
1345
1346		/*
1347		 * We are pushing a lot of data through the channel;
1348		 * deal with transient failures caused because of the
1349		 * lack of space in the ring buffer.
1350		 */
1351
1352		do {
1353			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1354			ret = vmbus_sendpacket(dm_device.dev->channel,
1355						bl_resp,
1356						bl_resp->hdr.size,
1357						(unsigned long)NULL,
1358						VM_PKT_DATA_INBAND, 0);
1359
1360			if (ret == -EAGAIN)
1361				msleep(20);
1362			post_status(&dm_device);
1363		} while (ret == -EAGAIN);
1364
1365		if (ret) {
1366			/*
1367			 * Free up the memory we allocatted.
1368			 */
1369			pr_err("Balloon response failed\n");
1370
1371			for (i = 0; i < bl_resp->range_count; i++)
1372				free_balloon_pages(&dm_device,
1373						 &bl_resp->range_array[i]);
1374
1375			done = true;
1376		}
1377	}
1378
1379}
1380
1381static void balloon_down(struct hv_dynmem_device *dm,
1382			struct dm_unballoon_request *req)
1383{
1384	union dm_mem_page_range *range_array = req->range_array;
1385	int range_count = req->range_count;
1386	struct dm_unballoon_response resp;
1387	int i;
1388	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1389
1390	for (i = 0; i < range_count; i++) {
1391		free_balloon_pages(dm, &range_array[i]);
1392		complete(&dm_device.config_event);
1393	}
1394
1395	pr_debug("Freed %u ballooned pages.\n",
1396		prev_pages_ballooned - dm->num_pages_ballooned);
1397
1398	if (req->more_pages == 1)
1399		return;
1400
1401	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1402	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1403	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1404	resp.hdr.size = sizeof(struct dm_unballoon_response);
1405
1406	vmbus_sendpacket(dm_device.dev->channel, &resp,
1407				sizeof(struct dm_unballoon_response),
1408				(unsigned long)NULL,
1409				VM_PKT_DATA_INBAND, 0);
1410
1411	dm->state = DM_INITIALIZED;
1412}
1413
1414static void balloon_onchannelcallback(void *context);
1415
1416static int dm_thread_func(void *dm_dev)
1417{
1418	struct hv_dynmem_device *dm = dm_dev;
1419
1420	while (!kthread_should_stop()) {
1421		wait_for_completion_interruptible_timeout(
1422						&dm_device.config_event, 1*HZ);
1423		/*
1424		 * The host expects us to post information on the memory
1425		 * pressure every second.
1426		 */
1427		reinit_completion(&dm_device.config_event);
1428		post_status(dm);
1429		/*
1430		 * disable free page reporting if multiple hypercall
1431		 * failure flag set. It is not done in the page_reporting
1432		 * callback context as that causes a deadlock between
1433		 * page_reporting_process() and page_reporting_unregister()
1434		 */
1435		if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1436			pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1437			disable_page_reporting();
1438			/* Reset the flag after disabling reporting */
1439			hv_hypercall_multi_failure = 0;
1440		}
1441	}
1442
1443	return 0;
1444}
1445
1446
1447static void version_resp(struct hv_dynmem_device *dm,
1448			struct dm_version_response *vresp)
1449{
1450	struct dm_version_request version_req;
1451	int ret;
1452
1453	if (vresp->is_accepted) {
1454		/*
1455		 * We are done; wakeup the
1456		 * context waiting for version
1457		 * negotiation.
1458		 */
1459		complete(&dm->host_event);
1460		return;
1461	}
1462	/*
1463	 * If there are more versions to try, continue
1464	 * with negotiations; if not
1465	 * shutdown the service since we are not able
1466	 * to negotiate a suitable version number
1467	 * with the host.
1468	 */
1469	if (dm->next_version == 0)
1470		goto version_error;
1471
1472	memset(&version_req, 0, sizeof(struct dm_version_request));
1473	version_req.hdr.type = DM_VERSION_REQUEST;
1474	version_req.hdr.size = sizeof(struct dm_version_request);
1475	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1476	version_req.version.version = dm->next_version;
1477	dm->version = version_req.version.version;
1478
1479	/*
1480	 * Set the next version to try in case current version fails.
1481	 * Win7 protocol ought to be the last one to try.
1482	 */
1483	switch (version_req.version.version) {
1484	case DYNMEM_PROTOCOL_VERSION_WIN8:
1485		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1486		version_req.is_last_attempt = 0;
1487		break;
1488	default:
1489		dm->next_version = 0;
1490		version_req.is_last_attempt = 1;
1491	}
1492
1493	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1494				sizeof(struct dm_version_request),
1495				(unsigned long)NULL,
1496				VM_PKT_DATA_INBAND, 0);
1497
1498	if (ret)
1499		goto version_error;
1500
1501	return;
1502
1503version_error:
1504	dm->state = DM_INIT_ERROR;
1505	complete(&dm->host_event);
1506}
1507
1508static void cap_resp(struct hv_dynmem_device *dm,
1509			struct dm_capabilities_resp_msg *cap_resp)
1510{
1511	if (!cap_resp->is_accepted) {
1512		pr_err("Capabilities not accepted by host\n");
1513		dm->state = DM_INIT_ERROR;
1514	}
1515	complete(&dm->host_event);
1516}
1517
1518static void balloon_onchannelcallback(void *context)
1519{
1520	struct hv_device *dev = context;
1521	u32 recvlen;
1522	u64 requestid;
1523	struct dm_message *dm_msg;
1524	struct dm_header *dm_hdr;
1525	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1526	struct dm_balloon *bal_msg;
1527	struct dm_hot_add *ha_msg;
1528	union dm_mem_page_range *ha_pg_range;
1529	union dm_mem_page_range *ha_region;
1530
1531	memset(recv_buffer, 0, sizeof(recv_buffer));
1532	vmbus_recvpacket(dev->channel, recv_buffer,
1533			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1534
1535	if (recvlen > 0) {
1536		dm_msg = (struct dm_message *)recv_buffer;
1537		dm_hdr = &dm_msg->hdr;
1538
1539		switch (dm_hdr->type) {
1540		case DM_VERSION_RESPONSE:
1541			version_resp(dm,
1542				 (struct dm_version_response *)dm_msg);
1543			break;
1544
1545		case DM_CAPABILITIES_RESPONSE:
1546			cap_resp(dm,
1547				 (struct dm_capabilities_resp_msg *)dm_msg);
1548			break;
1549
1550		case DM_BALLOON_REQUEST:
1551			if (allow_hibernation) {
1552				pr_info("Ignore balloon-up request!\n");
1553				break;
1554			}
1555
1556			if (dm->state == DM_BALLOON_UP)
1557				pr_warn("Currently ballooning\n");
1558			bal_msg = (struct dm_balloon *)recv_buffer;
1559			dm->state = DM_BALLOON_UP;
1560			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1561			schedule_work(&dm_device.balloon_wrk.wrk);
1562			break;
1563
1564		case DM_UNBALLOON_REQUEST:
1565			if (allow_hibernation) {
1566				pr_info("Ignore balloon-down request!\n");
1567				break;
1568			}
1569
1570			dm->state = DM_BALLOON_DOWN;
1571			balloon_down(dm,
1572				 (struct dm_unballoon_request *)recv_buffer);
1573			break;
1574
1575		case DM_MEM_HOT_ADD_REQUEST:
1576			if (dm->state == DM_HOT_ADD)
1577				pr_warn("Currently hot-adding\n");
1578			dm->state = DM_HOT_ADD;
1579			ha_msg = (struct dm_hot_add *)recv_buffer;
1580			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1581				/*
1582				 * This is a normal hot-add request specifying
1583				 * hot-add memory.
1584				 */
1585				dm->host_specified_ha_region = false;
1586				ha_pg_range = &ha_msg->range;
1587				dm->ha_wrk.ha_page_range = *ha_pg_range;
1588				dm->ha_wrk.ha_region_range.page_range = 0;
1589			} else {
1590				/*
1591				 * Host is specifying that we first hot-add
1592				 * a region and then partially populate this
1593				 * region.
1594				 */
1595				dm->host_specified_ha_region = true;
1596				ha_pg_range = &ha_msg->range;
1597				ha_region = &ha_pg_range[1];
1598				dm->ha_wrk.ha_page_range = *ha_pg_range;
1599				dm->ha_wrk.ha_region_range = *ha_region;
1600			}
1601			schedule_work(&dm_device.ha_wrk.wrk);
1602			break;
1603
1604		case DM_INFO_MESSAGE:
1605			process_info(dm, (struct dm_info_msg *)dm_msg);
1606			break;
1607
1608		default:
1609			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1610
1611		}
1612	}
1613
1614}
1615
1616#define HV_LARGE_REPORTING_ORDER	9
1617#define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1618		HV_LARGE_REPORTING_ORDER)
1619static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1620		    struct scatterlist *sgl, unsigned int nents)
1621{
1622	unsigned long flags;
1623	struct hv_memory_hint *hint;
1624	int i, order;
1625	u64 status;
1626	struct scatterlist *sg;
1627
1628	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1629	WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1630	local_irq_save(flags);
1631	hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1632	if (!hint) {
1633		local_irq_restore(flags);
1634		return -ENOSPC;
1635	}
1636
1637	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1638	hint->reserved = 0;
1639	for_each_sg(sgl, sg, nents, i) {
1640		union hv_gpa_page_range *range;
1641
1642		range = &hint->ranges[i];
1643		range->address_space = 0;
1644		order = get_order(sg->length);
1645		/*
1646		 * Hyper-V expects the additional_pages field in the units
1647		 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1648		 * This is dictated by the values of the fields page.largesize
1649		 * and page_size.
1650		 * This code however, only uses 4Kbytes and 2Mbytes units
1651		 * and not 1Gbytes unit.
1652		 */
1653
1654		/* page reporting for pages 2MB or higher */
1655		if (order >= HV_LARGE_REPORTING_ORDER ) {
1656			range->page.largepage = 1;
1657			range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1658			range->base_large_pfn = page_to_hvpfn(
1659					sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1660			range->page.additional_pages =
1661				(sg->length / HV_LARGE_REPORTING_LEN) - 1;
1662		} else {
1663			/* Page reporting for pages below 2MB */
1664			range->page.basepfn = page_to_hvpfn(sg_page(sg));
1665			range->page.largepage = false;
1666			range->page.additional_pages =
1667				(sg->length / HV_HYP_PAGE_SIZE) - 1;
1668		}
1669
1670	}
1671
1672	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1673				     hint, NULL);
1674	local_irq_restore(flags);
1675	if (!hv_result_success(status)) {
1676
1677		pr_err("Cold memory discard hypercall failed with status %llx\n",
1678				status);
1679		if (hv_hypercall_multi_failure > 0)
1680			hv_hypercall_multi_failure++;
1681
1682		if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1683			pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1684			pr_err("Defaulting to page_reporting_order %d\n",
1685					pageblock_order);
1686			page_reporting_order = pageblock_order;
1687			hv_hypercall_multi_failure++;
1688			return -EINVAL;
1689		}
1690
1691		return -EINVAL;
1692	}
1693
1694	return 0;
1695}
1696
1697static void enable_page_reporting(void)
1698{
1699	int ret;
1700
1701	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1702		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1703		return;
1704	}
1705
1706	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1707	dm_device.pr_dev_info.report = hv_free_page_report;
1708	/*
1709	 * We let the page_reporting_order parameter decide the order
1710	 * in the page_reporting code
1711	 */
1712	dm_device.pr_dev_info.order = 0;
1713	ret = page_reporting_register(&dm_device.pr_dev_info);
1714	if (ret < 0) {
1715		dm_device.pr_dev_info.report = NULL;
1716		pr_err("Failed to enable cold memory discard: %d\n", ret);
1717	} else {
1718		pr_info("Cold memory discard hint enabled with order %d\n",
1719				page_reporting_order);
1720	}
1721}
1722
1723static void disable_page_reporting(void)
1724{
1725	if (dm_device.pr_dev_info.report) {
1726		page_reporting_unregister(&dm_device.pr_dev_info);
1727		dm_device.pr_dev_info.report = NULL;
1728	}
1729}
1730
1731static int ballooning_enabled(void)
1732{
1733	/*
1734	 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1735	 * since currently it's unclear to us whether an unballoon request can
1736	 * make sure all page ranges are guest page size aligned.
1737	 */
1738	if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1739		pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1740		return 0;
1741	}
1742
1743	return 1;
1744}
1745
1746static int hot_add_enabled(void)
1747{
1748	/*
1749	 * Disable hot add on ARM64, because we currently rely on
1750	 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1751	 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1752	 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1753	 * add_memory().
1754	 */
1755	if (IS_ENABLED(CONFIG_ARM64)) {
1756		pr_info("Memory hot add disabled on ARM64\n");
1757		return 0;
1758	}
1759
1760	return 1;
1761}
1762
1763static int balloon_connect_vsp(struct hv_device *dev)
1764{
1765	struct dm_version_request version_req;
1766	struct dm_capabilities cap_msg;
1767	unsigned long t;
1768	int ret;
1769
1770	/*
1771	 * max_pkt_size should be large enough for one vmbus packet header plus
1772	 * our receive buffer size. Hyper-V sends messages up to
1773	 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1774	 */
1775	dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1776
1777	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1778			 balloon_onchannelcallback, dev);
1779	if (ret)
1780		return ret;
1781
1782	/*
1783	 * Initiate the hand shake with the host and negotiate
1784	 * a version that the host can support. We start with the
1785	 * highest version number and go down if the host cannot
1786	 * support it.
1787	 */
1788	memset(&version_req, 0, sizeof(struct dm_version_request));
1789	version_req.hdr.type = DM_VERSION_REQUEST;
1790	version_req.hdr.size = sizeof(struct dm_version_request);
1791	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1792	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1793	version_req.is_last_attempt = 0;
1794	dm_device.version = version_req.version.version;
1795
1796	ret = vmbus_sendpacket(dev->channel, &version_req,
1797			       sizeof(struct dm_version_request),
1798			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1799	if (ret)
1800		goto out;
1801
1802	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1803	if (t == 0) {
1804		ret = -ETIMEDOUT;
1805		goto out;
1806	}
1807
1808	/*
1809	 * If we could not negotiate a compatible version with the host
1810	 * fail the probe function.
1811	 */
1812	if (dm_device.state == DM_INIT_ERROR) {
1813		ret = -EPROTO;
1814		goto out;
1815	}
1816
1817	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1818		DYNMEM_MAJOR_VERSION(dm_device.version),
1819		DYNMEM_MINOR_VERSION(dm_device.version));
1820
1821	/*
1822	 * Now submit our capabilities to the host.
1823	 */
1824	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1825	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1826	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1827	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1828
1829	/*
1830	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1831	 * currently still requires the bits to be set, so we have to add code
1832	 * to fail the host's hot-add and balloon up/down requests, if any.
1833	 */
1834	cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1835	cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1836
1837	/*
1838	 * Specify our alignment requirements as it relates
1839	 * memory hot-add. Specify 128MB alignment.
1840	 */
1841	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1842
1843	/*
1844	 * Currently the host does not use these
1845	 * values and we set them to what is done in the
1846	 * Windows driver.
1847	 */
1848	cap_msg.min_page_cnt = 0;
1849	cap_msg.max_page_number = -1;
1850
1851	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1852			       sizeof(struct dm_capabilities),
1853			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1854	if (ret)
1855		goto out;
1856
1857	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1858	if (t == 0) {
1859		ret = -ETIMEDOUT;
1860		goto out;
1861	}
1862
1863	/*
1864	 * If the host does not like our capabilities,
1865	 * fail the probe function.
1866	 */
1867	if (dm_device.state == DM_INIT_ERROR) {
1868		ret = -EPROTO;
1869		goto out;
1870	}
1871
1872	return 0;
1873out:
1874	vmbus_close(dev->channel);
1875	return ret;
1876}
1877
1878/*
1879 * DEBUGFS Interface
1880 */
1881#ifdef CONFIG_DEBUG_FS
1882
1883/**
1884 * hv_balloon_debug_show - shows statistics of balloon operations.
1885 * @f: pointer to the &struct seq_file.
1886 * @offset: ignored.
1887 *
1888 * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1889 *
1890 * Return: zero on success or an error code.
1891 */
1892static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1893{
1894	struct hv_dynmem_device *dm = f->private;
1895	char *sname;
1896
1897	seq_printf(f, "%-22s: %u.%u\n", "host_version",
1898				DYNMEM_MAJOR_VERSION(dm->version),
1899				DYNMEM_MINOR_VERSION(dm->version));
1900
1901	seq_printf(f, "%-22s:", "capabilities");
1902	if (ballooning_enabled())
1903		seq_puts(f, " enabled");
1904
1905	if (hot_add_enabled())
1906		seq_puts(f, " hot_add");
1907
1908	seq_puts(f, "\n");
1909
1910	seq_printf(f, "%-22s: %u", "state", dm->state);
1911	switch (dm->state) {
1912	case DM_INITIALIZING:
1913			sname = "Initializing";
1914			break;
1915	case DM_INITIALIZED:
1916			sname = "Initialized";
1917			break;
1918	case DM_BALLOON_UP:
1919			sname = "Balloon Up";
1920			break;
1921	case DM_BALLOON_DOWN:
1922			sname = "Balloon Down";
1923			break;
1924	case DM_HOT_ADD:
1925			sname = "Hot Add";
1926			break;
1927	case DM_INIT_ERROR:
1928			sname = "Error";
1929			break;
1930	default:
1931			sname = "Unknown";
1932	}
1933	seq_printf(f, " (%s)\n", sname);
1934
1935	/* HV Page Size */
1936	seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1937
1938	/* Pages added with hot_add */
1939	seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1940
1941	/* pages that are "onlined"/used from pages_added */
1942	seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1943
1944	/* pages we have given back to host */
1945	seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1946
1947	seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1948				get_pages_committed(dm));
1949
1950	seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1951				dm->max_dynamic_page_count);
1952
1953	return 0;
1954}
1955
1956DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1957
1958static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1959{
1960	debugfs_create_file("hv-balloon", 0444, NULL, b,
1961			&hv_balloon_debug_fops);
1962}
1963
1964static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1965{
1966	debugfs_lookup_and_remove("hv-balloon", NULL);
1967}
1968
1969#else
1970
1971static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1972{
1973}
1974
1975static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1976{
1977}
1978
1979#endif	/* CONFIG_DEBUG_FS */
1980
1981static int balloon_probe(struct hv_device *dev,
1982			 const struct hv_vmbus_device_id *dev_id)
1983{
1984	int ret;
1985
1986	allow_hibernation = hv_is_hibernation_supported();
1987	if (allow_hibernation)
1988		hot_add = false;
1989
1990#ifdef CONFIG_MEMORY_HOTPLUG
1991	do_hot_add = hot_add;
1992#else
1993	do_hot_add = false;
1994#endif
1995	dm_device.dev = dev;
1996	dm_device.state = DM_INITIALIZING;
1997	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1998	init_completion(&dm_device.host_event);
1999	init_completion(&dm_device.config_event);
2000	INIT_LIST_HEAD(&dm_device.ha_region_list);
2001	spin_lock_init(&dm_device.ha_lock);
2002	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
2003	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
2004	dm_device.host_specified_ha_region = false;
2005
2006#ifdef CONFIG_MEMORY_HOTPLUG
2007	set_online_page_callback(&hv_online_page);
2008	init_completion(&dm_device.ol_waitevent);
2009	register_memory_notifier(&hv_memory_nb);
2010#endif
2011
2012	hv_set_drvdata(dev, &dm_device);
2013
2014	ret = balloon_connect_vsp(dev);
2015	if (ret != 0)
2016		goto connect_error;
2017
2018	enable_page_reporting();
2019	dm_device.state = DM_INITIALIZED;
2020
2021	dm_device.thread =
2022		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2023	if (IS_ERR(dm_device.thread)) {
2024		ret = PTR_ERR(dm_device.thread);
2025		goto probe_error;
2026	}
2027
2028	hv_balloon_debugfs_init(&dm_device);
2029
2030	return 0;
2031
2032probe_error:
2033	dm_device.state = DM_INIT_ERROR;
2034	dm_device.thread  = NULL;
2035	disable_page_reporting();
2036	vmbus_close(dev->channel);
2037connect_error:
2038#ifdef CONFIG_MEMORY_HOTPLUG
2039	unregister_memory_notifier(&hv_memory_nb);
2040	restore_online_page_callback(&hv_online_page);
2041#endif
2042	return ret;
2043}
2044
2045static int balloon_remove(struct hv_device *dev)
2046{
2047	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2048	struct hv_hotadd_state *has, *tmp;
2049	struct hv_hotadd_gap *gap, *tmp_gap;
2050	unsigned long flags;
2051
2052	if (dm->num_pages_ballooned != 0)
2053		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2054
2055	hv_balloon_debugfs_exit(dm);
2056
2057	cancel_work_sync(&dm->balloon_wrk.wrk);
2058	cancel_work_sync(&dm->ha_wrk.wrk);
2059
2060	kthread_stop(dm->thread);
2061
2062	/*
2063	 * This is to handle the case when balloon_resume()
2064	 * call has failed and some cleanup has been done as
2065	 * a part of the error handling.
2066	 */
2067	if (dm_device.state != DM_INIT_ERROR) {
2068		disable_page_reporting();
2069		vmbus_close(dev->channel);
2070#ifdef CONFIG_MEMORY_HOTPLUG
2071		unregister_memory_notifier(&hv_memory_nb);
2072		restore_online_page_callback(&hv_online_page);
2073#endif
2074	}
2075
2076	spin_lock_irqsave(&dm_device.ha_lock, flags);
2077	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2078		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2079			list_del(&gap->list);
2080			kfree(gap);
2081		}
2082		list_del(&has->list);
2083		kfree(has);
2084	}
2085	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2086
2087	return 0;
2088}
2089
2090static int balloon_suspend(struct hv_device *hv_dev)
2091{
2092	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2093
2094	tasklet_disable(&hv_dev->channel->callback_event);
2095
2096	cancel_work_sync(&dm->balloon_wrk.wrk);
2097	cancel_work_sync(&dm->ha_wrk.wrk);
2098
2099	if (dm->thread) {
2100		kthread_stop(dm->thread);
2101		dm->thread = NULL;
2102		vmbus_close(hv_dev->channel);
2103	}
2104
2105	tasklet_enable(&hv_dev->channel->callback_event);
2106
2107	return 0;
2108
2109}
2110
2111static int balloon_resume(struct hv_device *dev)
2112{
2113	int ret;
2114
2115	dm_device.state = DM_INITIALIZING;
2116
2117	ret = balloon_connect_vsp(dev);
2118
2119	if (ret != 0)
2120		goto out;
2121
2122	dm_device.thread =
2123		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2124	if (IS_ERR(dm_device.thread)) {
2125		ret = PTR_ERR(dm_device.thread);
2126		dm_device.thread = NULL;
2127		goto close_channel;
2128	}
2129
2130	dm_device.state = DM_INITIALIZED;
2131	return 0;
2132close_channel:
2133	vmbus_close(dev->channel);
2134out:
2135	dm_device.state = DM_INIT_ERROR;
2136	disable_page_reporting();
2137#ifdef CONFIG_MEMORY_HOTPLUG
2138	unregister_memory_notifier(&hv_memory_nb);
2139	restore_online_page_callback(&hv_online_page);
2140#endif
2141	return ret;
2142}
2143
2144static const struct hv_vmbus_device_id id_table[] = {
2145	/* Dynamic Memory Class ID */
2146	/* 525074DC-8985-46e2-8057-A307DC18A502 */
2147	{ HV_DM_GUID, },
2148	{ },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153static  struct hv_driver balloon_drv = {
2154	.name = "hv_balloon",
2155	.id_table = id_table,
2156	.probe =  balloon_probe,
2157	.remove =  balloon_remove,
2158	.suspend = balloon_suspend,
2159	.resume = balloon_resume,
2160	.driver = {
2161		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2162	},
2163};
2164
2165static int __init init_balloon_drv(void)
2166{
2167
2168	return vmbus_driver_register(&balloon_drv);
2169}
2170
2171module_init(init_balloon_drv);
2172
2173MODULE_DESCRIPTION("Hyper-V Balloon");
2174MODULE_LICENSE("GPL");