Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2021-2022 NVIDIA Corporation
  4 *
  5 * Author: Dipen Patel <dipenp@nvidia.com>
  6 */
  7
  8#include <linux/err.h>
  9#include <linux/io.h>
 10#include <linux/module.h>
 11#include <linux/slab.h>
 12#include <linux/stat.h>
 13#include <linux/interrupt.h>
 14#include <linux/of.h>
 15#include <linux/of_device.h>
 16#include <linux/platform_device.h>
 17#include <linux/hte.h>
 18#include <linux/uaccess.h>
 19#include <linux/gpio/driver.h>
 20#include <linux/gpio/consumer.h>
 21
 22#define HTE_SUSPEND	0
 23
 24/* HTE source clock TSC is 31.25MHz */
 25#define HTE_TS_CLK_RATE_HZ	31250000ULL
 26#define HTE_CLK_RATE_NS		32
 27#define HTE_TS_NS_SHIFT	__builtin_ctz(HTE_CLK_RATE_NS)
 28
 29#define NV_AON_SLICE_INVALID	-1
 30#define NV_LINES_IN_SLICE	32
 31
 32/* AON HTE line map For slice 1 */
 33#define NV_AON_HTE_SLICE1_IRQ_GPIO_28	12
 34#define NV_AON_HTE_SLICE1_IRQ_GPIO_29	13
 35
 36/* AON HTE line map For slice 2 */
 37#define NV_AON_HTE_SLICE2_IRQ_GPIO_0	0
 38#define NV_AON_HTE_SLICE2_IRQ_GPIO_1	1
 39#define NV_AON_HTE_SLICE2_IRQ_GPIO_2	2
 40#define NV_AON_HTE_SLICE2_IRQ_GPIO_3	3
 41#define NV_AON_HTE_SLICE2_IRQ_GPIO_4	4
 42#define NV_AON_HTE_SLICE2_IRQ_GPIO_5	5
 43#define NV_AON_HTE_SLICE2_IRQ_GPIO_6	6
 44#define NV_AON_HTE_SLICE2_IRQ_GPIO_7	7
 45#define NV_AON_HTE_SLICE2_IRQ_GPIO_8	8
 46#define NV_AON_HTE_SLICE2_IRQ_GPIO_9	9
 47#define NV_AON_HTE_SLICE2_IRQ_GPIO_10	10
 48#define NV_AON_HTE_SLICE2_IRQ_GPIO_11	11
 49#define NV_AON_HTE_SLICE2_IRQ_GPIO_12	12
 50#define NV_AON_HTE_SLICE2_IRQ_GPIO_13	13
 51#define NV_AON_HTE_SLICE2_IRQ_GPIO_14	14
 52#define NV_AON_HTE_SLICE2_IRQ_GPIO_15	15
 53#define NV_AON_HTE_SLICE2_IRQ_GPIO_16	16
 54#define NV_AON_HTE_SLICE2_IRQ_GPIO_17	17
 55#define NV_AON_HTE_SLICE2_IRQ_GPIO_18	18
 56#define NV_AON_HTE_SLICE2_IRQ_GPIO_19	19
 57#define NV_AON_HTE_SLICE2_IRQ_GPIO_20	20
 58#define NV_AON_HTE_SLICE2_IRQ_GPIO_21	21
 59#define NV_AON_HTE_SLICE2_IRQ_GPIO_22	22
 60#define NV_AON_HTE_SLICE2_IRQ_GPIO_23	23
 61#define NV_AON_HTE_SLICE2_IRQ_GPIO_24	24
 62#define NV_AON_HTE_SLICE2_IRQ_GPIO_25	25
 63#define NV_AON_HTE_SLICE2_IRQ_GPIO_26	26
 64#define NV_AON_HTE_SLICE2_IRQ_GPIO_27	27
 65
 66#define HTE_TECTRL		0x0
 67#define HTE_TETSCH		0x4
 68#define HTE_TETSCL		0x8
 69#define HTE_TESRC		0xC
 70#define HTE_TECCV		0x10
 71#define HTE_TEPCV		0x14
 72#define HTE_TECMD		0x1C
 73#define HTE_TESTATUS		0x20
 74#define HTE_SLICE0_TETEN	0x40
 75#define HTE_SLICE1_TETEN	0x60
 76
 77#define HTE_SLICE_SIZE		(HTE_SLICE1_TETEN - HTE_SLICE0_TETEN)
 78
 79#define HTE_TECTRL_ENABLE_ENABLE	0x1
 80
 81#define HTE_TECTRL_OCCU_SHIFT		0x8
 82#define HTE_TECTRL_INTR_SHIFT		0x1
 83#define HTE_TECTRL_INTR_ENABLE		0x1
 84
 85#define HTE_TESRC_SLICE_SHIFT		16
 86#define HTE_TESRC_SLICE_DEFAULT_MASK	0xFF
 87
 88#define HTE_TECMD_CMD_POP		0x1
 89
 90#define HTE_TESTATUS_OCCUPANCY_SHIFT	8
 91#define HTE_TESTATUS_OCCUPANCY_MASK	0xFF
 92
 93enum tegra_hte_type {
 94	HTE_TEGRA_TYPE_GPIO = 1U << 0,
 95	HTE_TEGRA_TYPE_LIC = 1U << 1,
 96};
 97
 98struct hte_slices {
 99	u32 r_val;
100	unsigned long flags;
101	/* to prevent lines mapped to same slice updating its register */
102	spinlock_t s_lock;
103};
104
105struct tegra_hte_line_mapped {
106	int slice;
107	u32 bit_index;
108};
109
110struct tegra_hte_line_data {
111	unsigned long flags;
112	void *data;
113};
114
115struct tegra_hte_data {
116	enum tegra_hte_type type;
117	u32 map_sz;
118	u32 sec_map_sz;
119	const struct tegra_hte_line_mapped *map;
120	const struct tegra_hte_line_mapped *sec_map;
121};
122
123struct tegra_hte_soc {
124	int hte_irq;
125	u32 itr_thrshld;
126	u32 conf_rval;
127	struct hte_slices *sl;
128	const struct tegra_hte_data *prov_data;
129	struct tegra_hte_line_data *line_data;
130	struct hte_chip *chip;
131	struct gpio_chip *c;
132	void __iomem *regs;
133};
134
135static const struct tegra_hte_line_mapped tegra194_aon_gpio_map[] = {
136	/* gpio, slice, bit_index */
137	/* AA port */
138	[0]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_11},
139	[1]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_10},
140	[2]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_9},
141	[3]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_8},
142	[4]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_7},
143	[5]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_6},
144	[6]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_5},
145	[7]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_4},
146	/* BB port */
147	[8]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_3},
148	[9]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_2},
149	[10] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_1},
150	[11] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_0},
151	/* CC port */
152	[12] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_22},
153	[13] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_21},
154	[14] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_20},
155	[15] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_19},
156	[16] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_18},
157	[17] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_17},
158	[18] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_16},
159	[19] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_15},
160	/* DD port */
161	[20] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_14},
162	[21] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_13},
163	[22] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_12},
164	/* EE port */
165	[23] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_29},
166	[24] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_28},
167	[25] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_27},
168	[26] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_26},
169	[27] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_25},
170	[28] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_24},
171	[29] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_23},
172};
173
174static const struct tegra_hte_line_mapped tegra194_aon_gpio_sec_map[] = {
175	/* gpio, slice, bit_index */
176	/* AA port */
177	[0]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_11},
178	[1]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_10},
179	[2]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_9},
180	[3]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_8},
181	[4]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_7},
182	[5]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_6},
183	[6]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_5},
184	[7]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_4},
185	/* BB port */
186	[8]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_3},
187	[9]  = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_2},
188	[10] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_1},
189	[11] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_0},
190	[12]  = {NV_AON_SLICE_INVALID, 0},
191	[13]  = {NV_AON_SLICE_INVALID, 0},
192	[14] = {NV_AON_SLICE_INVALID, 0},
193	[15] = {NV_AON_SLICE_INVALID, 0},
194	/* CC port */
195	[16] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_22},
196	[17] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_21},
197	[18] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_20},
198	[19] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_19},
199	[20] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_18},
200	[21] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_17},
201	[22] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_16},
202	[23] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_15},
203	/* DD port */
204	[24] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_14},
205	[25] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_13},
206	[26] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_12},
207	[27] = {NV_AON_SLICE_INVALID, 0},
208	[28] = {NV_AON_SLICE_INVALID, 0},
209	[29] = {NV_AON_SLICE_INVALID, 0},
210	[30] = {NV_AON_SLICE_INVALID, 0},
211	[31] = {NV_AON_SLICE_INVALID, 0},
212	/* EE port */
213	[32] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_29},
214	[33] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_28},
215	[34] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_27},
216	[35] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_26},
217	[36] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_25},
218	[37] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_24},
219	[38] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_23},
220	[39] = {NV_AON_SLICE_INVALID, 0},
221};
222
223static const struct tegra_hte_data aon_hte = {
224	.map_sz = ARRAY_SIZE(tegra194_aon_gpio_map),
225	.map = tegra194_aon_gpio_map,
226	.sec_map_sz = ARRAY_SIZE(tegra194_aon_gpio_sec_map),
227	.sec_map = tegra194_aon_gpio_sec_map,
228	.type = HTE_TEGRA_TYPE_GPIO,
229};
230
231static const struct tegra_hte_data lic_hte = {
232	.map_sz = 0,
233	.map = NULL,
234	.type = HTE_TEGRA_TYPE_LIC,
235};
236
237static inline u32 tegra_hte_readl(struct tegra_hte_soc *hte, u32 reg)
238{
239	return readl(hte->regs + reg);
240}
241
242static inline void tegra_hte_writel(struct tegra_hte_soc *hte, u32 reg,
243				    u32 val)
244{
245	writel(val, hte->regs + reg);
246}
247
248static int tegra_hte_map_to_line_id(u32 eid,
249				    const struct tegra_hte_line_mapped *m,
250				    u32 map_sz, u32 *mapped)
251{
252
253	if (m) {
254		if (eid > map_sz)
255			return -EINVAL;
256		if (m[eid].slice == NV_AON_SLICE_INVALID)
257			return -EINVAL;
258
259		*mapped = (m[eid].slice << 5) + m[eid].bit_index;
260	} else {
261		*mapped = eid;
262	}
263
264	return 0;
265}
266
267static int tegra_hte_line_xlate(struct hte_chip *gc,
268				const struct of_phandle_args *args,
269				struct hte_ts_desc *desc, u32 *xlated_id)
270{
271	int ret = 0;
272	u32 line_id;
273	struct tegra_hte_soc *gs;
274	const struct tegra_hte_line_mapped *map = NULL;
275	u32 map_sz = 0;
276
277	if (!gc || !desc || !xlated_id)
278		return -EINVAL;
279
280	if (args) {
281		if (gc->of_hte_n_cells < 1)
282			return -EINVAL;
283
284		if (args->args_count != gc->of_hte_n_cells)
285			return -EINVAL;
286
287		desc->attr.line_id = args->args[0];
288	}
289
290	gs = gc->data;
291	if (!gs || !gs->prov_data)
292		return -EINVAL;
293
294	/*
295	 *
296	 * There are two paths GPIO consumers can take as follows:
297	 * 1) The consumer (gpiolib-cdev for example) which uses GPIO global
298	 * number which gets assigned run time.
299	 * 2) The consumer passing GPIO from the DT which is assigned
300	 * statically for example by using TEGRA194_AON_GPIO gpio DT binding.
301	 *
302	 * The code below addresses both the consumer use cases and maps into
303	 * HTE/GTE namespace.
304	 */
305	if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO && !args) {
306		line_id = desc->attr.line_id - gs->c->base;
307		map = gs->prov_data->map;
308		map_sz = gs->prov_data->map_sz;
309	} else if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO && args) {
310		line_id = desc->attr.line_id;
311		map = gs->prov_data->sec_map;
312		map_sz = gs->prov_data->sec_map_sz;
313	} else {
314		line_id = desc->attr.line_id;
315	}
316
317	ret = tegra_hte_map_to_line_id(line_id, map, map_sz, xlated_id);
318	if (ret < 0) {
319		dev_err(gc->dev, "line_id:%u mapping failed\n",
320			desc->attr.line_id);
321		return ret;
322	}
323
324	if (*xlated_id > gc->nlines)
325		return -EINVAL;
326
327	dev_dbg(gc->dev, "requested id:%u, xlated id:%u\n",
328		desc->attr.line_id, *xlated_id);
329
330	return 0;
331}
332
333static int tegra_hte_line_xlate_plat(struct hte_chip *gc,
334				     struct hte_ts_desc *desc, u32 *xlated_id)
335{
336	return tegra_hte_line_xlate(gc, NULL, desc, xlated_id);
337}
338
339static int tegra_hte_en_dis_common(struct hte_chip *chip, u32 line_id, bool en)
340{
341	u32 slice, sl_bit_shift, line_bit, val, reg;
342	struct tegra_hte_soc *gs;
343
344	sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE);
345
346	if (!chip)
347		return -EINVAL;
348
349	gs = chip->data;
350
351	if (line_id > chip->nlines) {
352		dev_err(chip->dev,
353			"line id: %u is not supported by this controller\n",
354			line_id);
355		return -EINVAL;
356	}
357
358	slice = line_id >> sl_bit_shift;
359	line_bit = line_id & (HTE_SLICE_SIZE - 1);
360	reg = (slice << sl_bit_shift) + HTE_SLICE0_TETEN;
361
362	spin_lock(&gs->sl[slice].s_lock);
363
364	if (test_bit(HTE_SUSPEND, &gs->sl[slice].flags)) {
365		spin_unlock(&gs->sl[slice].s_lock);
366		dev_dbg(chip->dev, "device suspended");
367		return -EBUSY;
368	}
369
370	val = tegra_hte_readl(gs, reg);
371	if (en)
372		val = val | (1 << line_bit);
373	else
374		val = val & (~(1 << line_bit));
375	tegra_hte_writel(gs, reg, val);
376
377	spin_unlock(&gs->sl[slice].s_lock);
378
379	dev_dbg(chip->dev, "line: %u, slice %u, line_bit %u, reg:0x%x\n",
380		line_id, slice, line_bit, reg);
381
382	return 0;
383}
384
385static int tegra_hte_enable(struct hte_chip *chip, u32 line_id)
386{
387	if (!chip)
388		return -EINVAL;
389
390	return tegra_hte_en_dis_common(chip, line_id, true);
391}
392
393static int tegra_hte_disable(struct hte_chip *chip, u32 line_id)
394{
395	if (!chip)
396		return -EINVAL;
397
398	return tegra_hte_en_dis_common(chip, line_id, false);
399}
400
401static int tegra_hte_request(struct hte_chip *chip, struct hte_ts_desc *desc,
402			     u32 line_id)
403{
404	int ret;
405	struct tegra_hte_soc *gs;
406	struct hte_line_attr *attr;
407
408	if (!chip || !chip->data || !desc)
409		return -EINVAL;
410
411	gs = chip->data;
412	attr = &desc->attr;
413
414	if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
415		if (!attr->line_data)
416			return -EINVAL;
417
418		ret = gpiod_enable_hw_timestamp_ns(attr->line_data,
419						   attr->edge_flags);
420		if (ret)
421			return ret;
422
423		gs->line_data[line_id].data = attr->line_data;
424		gs->line_data[line_id].flags = attr->edge_flags;
425	}
426
427	return tegra_hte_en_dis_common(chip, line_id, true);
428}
429
430static int tegra_hte_release(struct hte_chip *chip, struct hte_ts_desc *desc,
431			     u32 line_id)
432{
433	struct tegra_hte_soc *gs;
434	struct hte_line_attr *attr;
435	int ret;
436
437	if (!chip || !chip->data || !desc)
438		return -EINVAL;
439
440	gs = chip->data;
441	attr = &desc->attr;
442
443	if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
444		ret = gpiod_disable_hw_timestamp_ns(attr->line_data,
445						    gs->line_data[line_id].flags);
446		if (ret)
447			return ret;
448
449		gs->line_data[line_id].data = NULL;
450		gs->line_data[line_id].flags = 0;
451	}
452
453	return tegra_hte_en_dis_common(chip, line_id, false);
454}
455
456static int tegra_hte_clk_src_info(struct hte_chip *chip,
457				  struct hte_clk_info *ci)
458{
459	(void)chip;
460
461	if (!ci)
462		return -EINVAL;
463
464	ci->hz = HTE_TS_CLK_RATE_HZ;
465	ci->type = CLOCK_MONOTONIC;
466
467	return 0;
468}
469
470static int tegra_hte_get_level(struct tegra_hte_soc *gs, u32 line_id)
471{
472	struct gpio_desc *desc;
473
474	if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
475		desc = gs->line_data[line_id].data;
476		if (desc)
477			return gpiod_get_raw_value(desc);
478	}
479
480	return -1;
481}
482
483static void tegra_hte_read_fifo(struct tegra_hte_soc *gs)
484{
485	u32 tsh, tsl, src, pv, cv, acv, slice, bit_index, line_id;
486	u64 tsc;
487	struct hte_ts_data el;
488
489	while ((tegra_hte_readl(gs, HTE_TESTATUS) >>
490		HTE_TESTATUS_OCCUPANCY_SHIFT) &
491		HTE_TESTATUS_OCCUPANCY_MASK) {
492		tsh = tegra_hte_readl(gs, HTE_TETSCH);
493		tsl = tegra_hte_readl(gs, HTE_TETSCL);
494		tsc = (((u64)tsh << 32) | tsl);
495
496		src = tegra_hte_readl(gs, HTE_TESRC);
497		slice = (src >> HTE_TESRC_SLICE_SHIFT) &
498			    HTE_TESRC_SLICE_DEFAULT_MASK;
499
500		pv = tegra_hte_readl(gs, HTE_TEPCV);
501		cv = tegra_hte_readl(gs, HTE_TECCV);
502		acv = pv ^ cv;
503		while (acv) {
504			bit_index = __builtin_ctz(acv);
505			line_id = bit_index + (slice << 5);
506			el.tsc = tsc << HTE_TS_NS_SHIFT;
507			el.raw_level = tegra_hte_get_level(gs, line_id);
508			hte_push_ts_ns(gs->chip, line_id, &el);
509			acv &= ~BIT(bit_index);
510		}
511		tegra_hte_writel(gs, HTE_TECMD, HTE_TECMD_CMD_POP);
512	}
513}
514
515static irqreturn_t tegra_hte_isr(int irq, void *dev_id)
516{
517	struct tegra_hte_soc *gs = dev_id;
518	(void)irq;
519
520	tegra_hte_read_fifo(gs);
521
522	return IRQ_HANDLED;
523}
524
525static bool tegra_hte_match_from_linedata(const struct hte_chip *chip,
526					  const struct hte_ts_desc *hdesc)
527{
528	struct tegra_hte_soc *hte_dev = chip->data;
529
530	if (!hte_dev || (hte_dev->prov_data->type != HTE_TEGRA_TYPE_GPIO))
531		return false;
532
533	return hte_dev->c == gpiod_to_chip(hdesc->attr.line_data);
534}
535
536static const struct of_device_id tegra_hte_of_match[] = {
537	{ .compatible = "nvidia,tegra194-gte-lic", .data = &lic_hte},
538	{ .compatible = "nvidia,tegra194-gte-aon", .data = &aon_hte},
539	{ }
540};
541MODULE_DEVICE_TABLE(of, tegra_hte_of_match);
542
543static const struct hte_ops g_ops = {
544	.request = tegra_hte_request,
545	.release = tegra_hte_release,
546	.enable = tegra_hte_enable,
547	.disable = tegra_hte_disable,
548	.get_clk_src_info = tegra_hte_clk_src_info,
549};
550
551static void tegra_gte_disable(void *data)
552{
553	struct platform_device *pdev = data;
554	struct tegra_hte_soc *gs = dev_get_drvdata(&pdev->dev);
555
556	tegra_hte_writel(gs, HTE_TECTRL, 0);
557}
558
559static int tegra_get_gpiochip_from_name(struct gpio_chip *chip, void *data)
560{
561	return !strcmp(chip->label, data);
562}
563
564static int tegra_hte_probe(struct platform_device *pdev)
565{
566	int ret;
567	u32 i, slices, val = 0;
568	u32 nlines;
569	struct device *dev;
570	struct tegra_hte_soc *hte_dev;
571	struct hte_chip *gc;
572
573	dev = &pdev->dev;
574
575	ret = of_property_read_u32(dev->of_node, "nvidia,slices", &slices);
576	if (ret != 0) {
577		dev_err(dev, "Could not read slices\n");
578		return -EINVAL;
579	}
580	nlines = slices << 5;
581
582	hte_dev = devm_kzalloc(dev, sizeof(*hte_dev), GFP_KERNEL);
583	if (!hte_dev)
584		return -ENOMEM;
585
586	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
587	if (!gc)
588		return -ENOMEM;
589
590	dev_set_drvdata(&pdev->dev, hte_dev);
591	hte_dev->prov_data = of_device_get_match_data(&pdev->dev);
592
593	hte_dev->regs = devm_platform_ioremap_resource(pdev, 0);
594	if (IS_ERR(hte_dev->regs))
595		return PTR_ERR(hte_dev->regs);
596
597	ret = of_property_read_u32(dev->of_node, "nvidia,int-threshold",
598				   &hte_dev->itr_thrshld);
599	if (ret != 0)
600		hte_dev->itr_thrshld = 1;
601
602	hte_dev->sl = devm_kcalloc(dev, slices, sizeof(*hte_dev->sl),
603				   GFP_KERNEL);
604	if (!hte_dev->sl)
605		return -ENOMEM;
606
607	ret = platform_get_irq(pdev, 0);
608	if (ret < 0) {
609		dev_err_probe(dev, ret, "failed to get irq\n");
610		return ret;
611	}
612	hte_dev->hte_irq = ret;
613	ret = devm_request_irq(dev, hte_dev->hte_irq, tegra_hte_isr, 0,
614			       dev_name(dev), hte_dev);
615	if (ret < 0) {
616		dev_err(dev, "request irq failed.\n");
617		return ret;
618	}
619
620	gc->nlines = nlines;
621	gc->ops = &g_ops;
622	gc->dev = dev;
623	gc->data = hte_dev;
624	gc->xlate_of = tegra_hte_line_xlate;
625	gc->xlate_plat = tegra_hte_line_xlate_plat;
626	gc->of_hte_n_cells = 1;
627
628	if (hte_dev->prov_data &&
629	    hte_dev->prov_data->type == HTE_TEGRA_TYPE_GPIO) {
630		hte_dev->line_data = devm_kcalloc(dev, nlines,
631						  sizeof(*hte_dev->line_data),
632						  GFP_KERNEL);
633		if (!hte_dev->line_data)
634			return -ENOMEM;
635
636		gc->match_from_linedata = tegra_hte_match_from_linedata;
637
638		hte_dev->c = gpiochip_find("tegra194-gpio-aon",
639					   tegra_get_gpiochip_from_name);
640		if (!hte_dev->c)
641			return dev_err_probe(dev, -EPROBE_DEFER,
642					     "wait for gpio controller\n");
643	}
644
645	hte_dev->chip = gc;
646
647	ret = devm_hte_register_chip(hte_dev->chip);
648	if (ret) {
649		dev_err(gc->dev, "hte chip register failed");
650		return ret;
651	}
652
653	for (i = 0; i < slices; i++) {
654		hte_dev->sl[i].flags = 0;
655		spin_lock_init(&hte_dev->sl[i].s_lock);
656	}
657
658	val = HTE_TECTRL_ENABLE_ENABLE |
659	      (HTE_TECTRL_INTR_ENABLE << HTE_TECTRL_INTR_SHIFT) |
660	      (hte_dev->itr_thrshld << HTE_TECTRL_OCCU_SHIFT);
661	tegra_hte_writel(hte_dev, HTE_TECTRL, val);
662
663	ret = devm_add_action_or_reset(&pdev->dev, tegra_gte_disable, pdev);
664	if (ret)
665		return ret;
666
667	dev_dbg(gc->dev, "lines: %d, slices:%d", gc->nlines, slices);
668
669	return 0;
670}
671
672static int __maybe_unused tegra_hte_resume_early(struct device *dev)
673{
674	u32 i;
675	struct tegra_hte_soc *gs = dev_get_drvdata(dev);
676	u32 slices = gs->chip->nlines / NV_LINES_IN_SLICE;
677	u32 sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE);
678
679	tegra_hte_writel(gs, HTE_TECTRL, gs->conf_rval);
680
681	for (i = 0; i < slices; i++) {
682		spin_lock(&gs->sl[i].s_lock);
683		tegra_hte_writel(gs,
684				 ((i << sl_bit_shift) + HTE_SLICE0_TETEN),
685				 gs->sl[i].r_val);
686		clear_bit(HTE_SUSPEND, &gs->sl[i].flags);
687		spin_unlock(&gs->sl[i].s_lock);
688	}
689
690	return 0;
691}
692
693static int __maybe_unused tegra_hte_suspend_late(struct device *dev)
694{
695	u32 i;
696	struct tegra_hte_soc *gs = dev_get_drvdata(dev);
697	u32 slices = gs->chip->nlines / NV_LINES_IN_SLICE;
698	u32 sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE);
699
700	gs->conf_rval = tegra_hte_readl(gs, HTE_TECTRL);
701	for (i = 0; i < slices; i++) {
702		spin_lock(&gs->sl[i].s_lock);
703		gs->sl[i].r_val = tegra_hte_readl(gs,
704				((i << sl_bit_shift) + HTE_SLICE0_TETEN));
705		set_bit(HTE_SUSPEND, &gs->sl[i].flags);
706		spin_unlock(&gs->sl[i].s_lock);
707	}
708
709	return 0;
710}
711
712static const struct dev_pm_ops tegra_hte_pm = {
713	SET_LATE_SYSTEM_SLEEP_PM_OPS(tegra_hte_suspend_late,
714				     tegra_hte_resume_early)
715};
716
717static struct platform_driver tegra_hte_driver = {
718	.probe = tegra_hte_probe,
719	.driver = {
720		.name = "tegra_hte",
721		.pm = &tegra_hte_pm,
722		.of_match_table = tegra_hte_of_match,
723	},
724};
725
726module_platform_driver(tegra_hte_driver);
727
728MODULE_AUTHOR("Dipen Patel <dipenp@nvidia.com>");
729MODULE_DESCRIPTION("NVIDIA Tegra HTE (Hardware Timestamping Engine) driver");
730MODULE_LICENSE("GPL");