Loading...
1/*
2 * Ram backed block device driver.
3 *
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
6 *
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/moduleparam.h>
14#include <linux/major.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/highmem.h>
18#include <linux/mutex.h>
19#include <linux/radix-tree.h>
20#include <linux/fs.h>
21#include <linux/slab.h>
22
23#include <asm/uaccess.h>
24
25#define SECTOR_SHIFT 9
26#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
28
29/*
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
34 * device).
35 */
36struct brd_device {
37 int brd_number;
38
39 struct request_queue *brd_queue;
40 struct gendisk *brd_disk;
41 struct list_head brd_list;
42
43 /*
44 * Backing store of pages and lock to protect it. This is the contents
45 * of the block device.
46 */
47 spinlock_t brd_lock;
48 struct radix_tree_root brd_pages;
49};
50
51/*
52 * Look up and return a brd's page for a given sector.
53 */
54static DEFINE_MUTEX(brd_mutex);
55static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56{
57 pgoff_t idx;
58 struct page *page;
59
60 /*
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
64 *
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
70 */
71 rcu_read_lock();
72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 page = radix_tree_lookup(&brd->brd_pages, idx);
74 rcu_read_unlock();
75
76 BUG_ON(page && page->index != idx);
77
78 return page;
79}
80
81/*
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
84 * return it.
85 */
86static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87{
88 pgoff_t idx;
89 struct page *page;
90 gfp_t gfp_flags;
91
92 page = brd_lookup_page(brd, sector);
93 if (page)
94 return page;
95
96 /*
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
99 *
100 * Cannot support XIP and highmem, because our ->direct_access
101 * routine for XIP must return memory that is always addressable.
102 * If XIP was reworked to use pfns and kmap throughout, this
103 * restriction might be able to be lifted.
104 */
105 gfp_flags = GFP_NOIO | __GFP_ZERO;
106#ifndef CONFIG_BLK_DEV_XIP
107 gfp_flags |= __GFP_HIGHMEM;
108#endif
109 page = alloc_page(gfp_flags);
110 if (!page)
111 return NULL;
112
113 if (radix_tree_preload(GFP_NOIO)) {
114 __free_page(page);
115 return NULL;
116 }
117
118 spin_lock(&brd->brd_lock);
119 idx = sector >> PAGE_SECTORS_SHIFT;
120 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
121 __free_page(page);
122 page = radix_tree_lookup(&brd->brd_pages, idx);
123 BUG_ON(!page);
124 BUG_ON(page->index != idx);
125 } else
126 page->index = idx;
127 spin_unlock(&brd->brd_lock);
128
129 radix_tree_preload_end();
130
131 return page;
132}
133
134static void brd_free_page(struct brd_device *brd, sector_t sector)
135{
136 struct page *page;
137 pgoff_t idx;
138
139 spin_lock(&brd->brd_lock);
140 idx = sector >> PAGE_SECTORS_SHIFT;
141 page = radix_tree_delete(&brd->brd_pages, idx);
142 spin_unlock(&brd->brd_lock);
143 if (page)
144 __free_page(page);
145}
146
147static void brd_zero_page(struct brd_device *brd, sector_t sector)
148{
149 struct page *page;
150
151 page = brd_lookup_page(brd, sector);
152 if (page)
153 clear_highpage(page);
154}
155
156/*
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
159 */
160#define FREE_BATCH 16
161static void brd_free_pages(struct brd_device *brd)
162{
163 unsigned long pos = 0;
164 struct page *pages[FREE_BATCH];
165 int nr_pages;
166
167 do {
168 int i;
169
170 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171 (void **)pages, pos, FREE_BATCH);
172
173 for (i = 0; i < nr_pages; i++) {
174 void *ret;
175
176 BUG_ON(pages[i]->index < pos);
177 pos = pages[i]->index;
178 ret = radix_tree_delete(&brd->brd_pages, pos);
179 BUG_ON(!ret || ret != pages[i]);
180 __free_page(pages[i]);
181 }
182
183 pos++;
184
185 /*
186 * This assumes radix_tree_gang_lookup always returns as
187 * many pages as possible. If the radix-tree code changes,
188 * so will this have to.
189 */
190 } while (nr_pages == FREE_BATCH);
191}
192
193/*
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195 */
196static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197{
198 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199 size_t copy;
200
201 copy = min_t(size_t, n, PAGE_SIZE - offset);
202 if (!brd_insert_page(brd, sector))
203 return -ENOMEM;
204 if (copy < n) {
205 sector += copy >> SECTOR_SHIFT;
206 if (!brd_insert_page(brd, sector))
207 return -ENOMEM;
208 }
209 return 0;
210}
211
212static void discard_from_brd(struct brd_device *brd,
213 sector_t sector, size_t n)
214{
215 while (n >= PAGE_SIZE) {
216 /*
217 * Don't want to actually discard pages here because
218 * re-allocating the pages can result in writeback
219 * deadlocks under heavy load.
220 */
221 if (0)
222 brd_free_page(brd, sector);
223 else
224 brd_zero_page(brd, sector);
225 sector += PAGE_SIZE >> SECTOR_SHIFT;
226 n -= PAGE_SIZE;
227 }
228}
229
230/*
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
232 */
233static void copy_to_brd(struct brd_device *brd, const void *src,
234 sector_t sector, size_t n)
235{
236 struct page *page;
237 void *dst;
238 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 size_t copy;
240
241 copy = min_t(size_t, n, PAGE_SIZE - offset);
242 page = brd_lookup_page(brd, sector);
243 BUG_ON(!page);
244
245 dst = kmap_atomic(page);
246 memcpy(dst + offset, src, copy);
247 kunmap_atomic(dst);
248
249 if (copy < n) {
250 src += copy;
251 sector += copy >> SECTOR_SHIFT;
252 copy = n - copy;
253 page = brd_lookup_page(brd, sector);
254 BUG_ON(!page);
255
256 dst = kmap_atomic(page);
257 memcpy(dst, src, copy);
258 kunmap_atomic(dst);
259 }
260}
261
262/*
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264 */
265static void copy_from_brd(void *dst, struct brd_device *brd,
266 sector_t sector, size_t n)
267{
268 struct page *page;
269 void *src;
270 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271 size_t copy;
272
273 copy = min_t(size_t, n, PAGE_SIZE - offset);
274 page = brd_lookup_page(brd, sector);
275 if (page) {
276 src = kmap_atomic(page);
277 memcpy(dst, src + offset, copy);
278 kunmap_atomic(src);
279 } else
280 memset(dst, 0, copy);
281
282 if (copy < n) {
283 dst += copy;
284 sector += copy >> SECTOR_SHIFT;
285 copy = n - copy;
286 page = brd_lookup_page(brd, sector);
287 if (page) {
288 src = kmap_atomic(page);
289 memcpy(dst, src, copy);
290 kunmap_atomic(src);
291 } else
292 memset(dst, 0, copy);
293 }
294}
295
296/*
297 * Process a single bvec of a bio.
298 */
299static int brd_do_bvec(struct brd_device *brd, struct page *page,
300 unsigned int len, unsigned int off, int rw,
301 sector_t sector)
302{
303 void *mem;
304 int err = 0;
305
306 if (rw != READ) {
307 err = copy_to_brd_setup(brd, sector, len);
308 if (err)
309 goto out;
310 }
311
312 mem = kmap_atomic(page);
313 if (rw == READ) {
314 copy_from_brd(mem + off, brd, sector, len);
315 flush_dcache_page(page);
316 } else {
317 flush_dcache_page(page);
318 copy_to_brd(brd, mem + off, sector, len);
319 }
320 kunmap_atomic(mem);
321
322out:
323 return err;
324}
325
326static void brd_make_request(struct request_queue *q, struct bio *bio)
327{
328 struct block_device *bdev = bio->bi_bdev;
329 struct brd_device *brd = bdev->bd_disk->private_data;
330 int rw;
331 struct bio_vec *bvec;
332 sector_t sector;
333 int i;
334 int err = -EIO;
335
336 sector = bio->bi_sector;
337 if (sector + (bio->bi_size >> SECTOR_SHIFT) >
338 get_capacity(bdev->bd_disk))
339 goto out;
340
341 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
342 err = 0;
343 discard_from_brd(brd, sector, bio->bi_size);
344 goto out;
345 }
346
347 rw = bio_rw(bio);
348 if (rw == READA)
349 rw = READ;
350
351 bio_for_each_segment(bvec, bio, i) {
352 unsigned int len = bvec->bv_len;
353 err = brd_do_bvec(brd, bvec->bv_page, len,
354 bvec->bv_offset, rw, sector);
355 if (err)
356 break;
357 sector += len >> SECTOR_SHIFT;
358 }
359
360out:
361 bio_endio(bio, err);
362}
363
364#ifdef CONFIG_BLK_DEV_XIP
365static int brd_direct_access(struct block_device *bdev, sector_t sector,
366 void **kaddr, unsigned long *pfn)
367{
368 struct brd_device *brd = bdev->bd_disk->private_data;
369 struct page *page;
370
371 if (!brd)
372 return -ENODEV;
373 if (sector & (PAGE_SECTORS-1))
374 return -EINVAL;
375 if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
376 return -ERANGE;
377 page = brd_insert_page(brd, sector);
378 if (!page)
379 return -ENOMEM;
380 *kaddr = page_address(page);
381 *pfn = page_to_pfn(page);
382
383 return 0;
384}
385#endif
386
387static int brd_ioctl(struct block_device *bdev, fmode_t mode,
388 unsigned int cmd, unsigned long arg)
389{
390 int error;
391 struct brd_device *brd = bdev->bd_disk->private_data;
392
393 if (cmd != BLKFLSBUF)
394 return -ENOTTY;
395
396 /*
397 * ram device BLKFLSBUF has special semantics, we want to actually
398 * release and destroy the ramdisk data.
399 */
400 mutex_lock(&brd_mutex);
401 mutex_lock(&bdev->bd_mutex);
402 error = -EBUSY;
403 if (bdev->bd_openers <= 1) {
404 /*
405 * Kill the cache first, so it isn't written back to the
406 * device.
407 *
408 * Another thread might instantiate more buffercache here,
409 * but there is not much we can do to close that race.
410 */
411 kill_bdev(bdev);
412 brd_free_pages(brd);
413 error = 0;
414 }
415 mutex_unlock(&bdev->bd_mutex);
416 mutex_unlock(&brd_mutex);
417
418 return error;
419}
420
421static const struct block_device_operations brd_fops = {
422 .owner = THIS_MODULE,
423 .ioctl = brd_ioctl,
424#ifdef CONFIG_BLK_DEV_XIP
425 .direct_access = brd_direct_access,
426#endif
427};
428
429/*
430 * And now the modules code and kernel interface.
431 */
432static int rd_nr;
433int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
434static int max_part;
435static int part_shift;
436module_param(rd_nr, int, S_IRUGO);
437MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
438module_param(rd_size, int, S_IRUGO);
439MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
440module_param(max_part, int, S_IRUGO);
441MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
442MODULE_LICENSE("GPL");
443MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
444MODULE_ALIAS("rd");
445
446#ifndef MODULE
447/* Legacy boot options - nonmodular */
448static int __init ramdisk_size(char *str)
449{
450 rd_size = simple_strtol(str, NULL, 0);
451 return 1;
452}
453__setup("ramdisk_size=", ramdisk_size);
454#endif
455
456/*
457 * The device scheme is derived from loop.c. Keep them in synch where possible
458 * (should share code eventually).
459 */
460static LIST_HEAD(brd_devices);
461static DEFINE_MUTEX(brd_devices_mutex);
462
463static struct brd_device *brd_alloc(int i)
464{
465 struct brd_device *brd;
466 struct gendisk *disk;
467
468 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
469 if (!brd)
470 goto out;
471 brd->brd_number = i;
472 spin_lock_init(&brd->brd_lock);
473 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
474
475 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
476 if (!brd->brd_queue)
477 goto out_free_dev;
478 blk_queue_make_request(brd->brd_queue, brd_make_request);
479 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
480 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
481
482 brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
483 brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
484 brd->brd_queue->limits.discard_zeroes_data = 1;
485 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
486
487 disk = brd->brd_disk = alloc_disk(1 << part_shift);
488 if (!disk)
489 goto out_free_queue;
490 disk->major = RAMDISK_MAJOR;
491 disk->first_minor = i << part_shift;
492 disk->fops = &brd_fops;
493 disk->private_data = brd;
494 disk->queue = brd->brd_queue;
495 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
496 sprintf(disk->disk_name, "ram%d", i);
497 set_capacity(disk, rd_size * 2);
498
499 return brd;
500
501out_free_queue:
502 blk_cleanup_queue(brd->brd_queue);
503out_free_dev:
504 kfree(brd);
505out:
506 return NULL;
507}
508
509static void brd_free(struct brd_device *brd)
510{
511 put_disk(brd->brd_disk);
512 blk_cleanup_queue(brd->brd_queue);
513 brd_free_pages(brd);
514 kfree(brd);
515}
516
517static struct brd_device *brd_init_one(int i)
518{
519 struct brd_device *brd;
520
521 list_for_each_entry(brd, &brd_devices, brd_list) {
522 if (brd->brd_number == i)
523 goto out;
524 }
525
526 brd = brd_alloc(i);
527 if (brd) {
528 add_disk(brd->brd_disk);
529 list_add_tail(&brd->brd_list, &brd_devices);
530 }
531out:
532 return brd;
533}
534
535static void brd_del_one(struct brd_device *brd)
536{
537 list_del(&brd->brd_list);
538 del_gendisk(brd->brd_disk);
539 brd_free(brd);
540}
541
542static struct kobject *brd_probe(dev_t dev, int *part, void *data)
543{
544 struct brd_device *brd;
545 struct kobject *kobj;
546
547 mutex_lock(&brd_devices_mutex);
548 brd = brd_init_one(MINOR(dev) >> part_shift);
549 kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
550 mutex_unlock(&brd_devices_mutex);
551
552 *part = 0;
553 return kobj;
554}
555
556static int __init brd_init(void)
557{
558 int i, nr;
559 unsigned long range;
560 struct brd_device *brd, *next;
561
562 /*
563 * brd module now has a feature to instantiate underlying device
564 * structure on-demand, provided that there is an access dev node.
565 * However, this will not work well with user space tool that doesn't
566 * know about such "feature". In order to not break any existing
567 * tool, we do the following:
568 *
569 * (1) if rd_nr is specified, create that many upfront, and this
570 * also becomes a hard limit.
571 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
572 * (default 16) rd device on module load, user can further
573 * extend brd device by create dev node themselves and have
574 * kernel automatically instantiate actual device on-demand.
575 */
576
577 part_shift = 0;
578 if (max_part > 0) {
579 part_shift = fls(max_part);
580
581 /*
582 * Adjust max_part according to part_shift as it is exported
583 * to user space so that user can decide correct minor number
584 * if [s]he want to create more devices.
585 *
586 * Note that -1 is required because partition 0 is reserved
587 * for the whole disk.
588 */
589 max_part = (1UL << part_shift) - 1;
590 }
591
592 if ((1UL << part_shift) > DISK_MAX_PARTS)
593 return -EINVAL;
594
595 if (rd_nr > 1UL << (MINORBITS - part_shift))
596 return -EINVAL;
597
598 if (rd_nr) {
599 nr = rd_nr;
600 range = rd_nr << part_shift;
601 } else {
602 nr = CONFIG_BLK_DEV_RAM_COUNT;
603 range = 1UL << MINORBITS;
604 }
605
606 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
607 return -EIO;
608
609 for (i = 0; i < nr; i++) {
610 brd = brd_alloc(i);
611 if (!brd)
612 goto out_free;
613 list_add_tail(&brd->brd_list, &brd_devices);
614 }
615
616 /* point of no return */
617
618 list_for_each_entry(brd, &brd_devices, brd_list)
619 add_disk(brd->brd_disk);
620
621 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
622 THIS_MODULE, brd_probe, NULL, NULL);
623
624 printk(KERN_INFO "brd: module loaded\n");
625 return 0;
626
627out_free:
628 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
629 list_del(&brd->brd_list);
630 brd_free(brd);
631 }
632 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
633
634 return -ENOMEM;
635}
636
637static void __exit brd_exit(void)
638{
639 unsigned long range;
640 struct brd_device *brd, *next;
641
642 range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
643
644 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
645 brd_del_one(brd);
646
647 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
648 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
649}
650
651module_init(brd_init);
652module_exit(brd_exit);
653
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Ram backed block device driver.
4 *
5 * Copyright (C) 2007 Nick Piggin
6 * Copyright (C) 2007 Novell Inc.
7 *
8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9 * of their respective owners.
10 */
11
12#include <linux/init.h>
13#include <linux/initrd.h>
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/major.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
19#include <linux/highmem.h>
20#include <linux/mutex.h>
21#include <linux/pagemap.h>
22#include <linux/radix-tree.h>
23#include <linux/fs.h>
24#include <linux/slab.h>
25#include <linux/backing-dev.h>
26#include <linux/debugfs.h>
27
28#include <linux/uaccess.h>
29
30/*
31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
32 * the pages containing the block device's contents. A brd page's ->index is
33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34 * with, the kernel's pagecache or buffer cache (which sit above our block
35 * device).
36 */
37struct brd_device {
38 int brd_number;
39 struct gendisk *brd_disk;
40 struct list_head brd_list;
41
42 /*
43 * Backing store of pages and lock to protect it. This is the contents
44 * of the block device.
45 */
46 spinlock_t brd_lock;
47 struct radix_tree_root brd_pages;
48 u64 brd_nr_pages;
49};
50
51/*
52 * Look up and return a brd's page for a given sector.
53 */
54static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
55{
56 pgoff_t idx;
57 struct page *page;
58
59 /*
60 * The page lifetime is protected by the fact that we have opened the
61 * device node -- brd pages will never be deleted under us, so we
62 * don't need any further locking or refcounting.
63 *
64 * This is strictly true for the radix-tree nodes as well (ie. we
65 * don't actually need the rcu_read_lock()), however that is not a
66 * documented feature of the radix-tree API so it is better to be
67 * safe here (we don't have total exclusion from radix tree updates
68 * here, only deletes).
69 */
70 rcu_read_lock();
71 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
72 page = radix_tree_lookup(&brd->brd_pages, idx);
73 rcu_read_unlock();
74
75 BUG_ON(page && page->index != idx);
76
77 return page;
78}
79
80/*
81 * Look up and return a brd's page for a given sector.
82 * If one does not exist, allocate an empty page, and insert that. Then
83 * return it.
84 */
85static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
86{
87 pgoff_t idx;
88 struct page *page;
89 gfp_t gfp_flags;
90
91 page = brd_lookup_page(brd, sector);
92 if (page)
93 return page;
94
95 /*
96 * Must use NOIO because we don't want to recurse back into the
97 * block or filesystem layers from page reclaim.
98 */
99 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
100 page = alloc_page(gfp_flags);
101 if (!page)
102 return NULL;
103
104 if (radix_tree_preload(GFP_NOIO)) {
105 __free_page(page);
106 return NULL;
107 }
108
109 spin_lock(&brd->brd_lock);
110 idx = sector >> PAGE_SECTORS_SHIFT;
111 page->index = idx;
112 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
113 __free_page(page);
114 page = radix_tree_lookup(&brd->brd_pages, idx);
115 BUG_ON(!page);
116 BUG_ON(page->index != idx);
117 } else {
118 brd->brd_nr_pages++;
119 }
120 spin_unlock(&brd->brd_lock);
121
122 radix_tree_preload_end();
123
124 return page;
125}
126
127/*
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
130 */
131#define FREE_BATCH 16
132static void brd_free_pages(struct brd_device *brd)
133{
134 unsigned long pos = 0;
135 struct page *pages[FREE_BATCH];
136 int nr_pages;
137
138 do {
139 int i;
140
141 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142 (void **)pages, pos, FREE_BATCH);
143
144 for (i = 0; i < nr_pages; i++) {
145 void *ret;
146
147 BUG_ON(pages[i]->index < pos);
148 pos = pages[i]->index;
149 ret = radix_tree_delete(&brd->brd_pages, pos);
150 BUG_ON(!ret || ret != pages[i]);
151 __free_page(pages[i]);
152 }
153
154 pos++;
155
156 /*
157 * It takes 3.4 seconds to remove 80GiB ramdisk.
158 * So, we need cond_resched to avoid stalling the CPU.
159 */
160 cond_resched();
161
162 /*
163 * This assumes radix_tree_gang_lookup always returns as
164 * many pages as possible. If the radix-tree code changes,
165 * so will this have to.
166 */
167 } while (nr_pages == FREE_BATCH);
168}
169
170/*
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172 */
173static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174{
175 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176 size_t copy;
177
178 copy = min_t(size_t, n, PAGE_SIZE - offset);
179 if (!brd_insert_page(brd, sector))
180 return -ENOSPC;
181 if (copy < n) {
182 sector += copy >> SECTOR_SHIFT;
183 if (!brd_insert_page(brd, sector))
184 return -ENOSPC;
185 }
186 return 0;
187}
188
189/*
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
191 */
192static void copy_to_brd(struct brd_device *brd, const void *src,
193 sector_t sector, size_t n)
194{
195 struct page *page;
196 void *dst;
197 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198 size_t copy;
199
200 copy = min_t(size_t, n, PAGE_SIZE - offset);
201 page = brd_lookup_page(brd, sector);
202 BUG_ON(!page);
203
204 dst = kmap_atomic(page);
205 memcpy(dst + offset, src, copy);
206 kunmap_atomic(dst);
207
208 if (copy < n) {
209 src += copy;
210 sector += copy >> SECTOR_SHIFT;
211 copy = n - copy;
212 page = brd_lookup_page(brd, sector);
213 BUG_ON(!page);
214
215 dst = kmap_atomic(page);
216 memcpy(dst, src, copy);
217 kunmap_atomic(dst);
218 }
219}
220
221/*
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223 */
224static void copy_from_brd(void *dst, struct brd_device *brd,
225 sector_t sector, size_t n)
226{
227 struct page *page;
228 void *src;
229 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230 size_t copy;
231
232 copy = min_t(size_t, n, PAGE_SIZE - offset);
233 page = brd_lookup_page(brd, sector);
234 if (page) {
235 src = kmap_atomic(page);
236 memcpy(dst, src + offset, copy);
237 kunmap_atomic(src);
238 } else
239 memset(dst, 0, copy);
240
241 if (copy < n) {
242 dst += copy;
243 sector += copy >> SECTOR_SHIFT;
244 copy = n - copy;
245 page = brd_lookup_page(brd, sector);
246 if (page) {
247 src = kmap_atomic(page);
248 memcpy(dst, src, copy);
249 kunmap_atomic(src);
250 } else
251 memset(dst, 0, copy);
252 }
253}
254
255/*
256 * Process a single bvec of a bio.
257 */
258static int brd_do_bvec(struct brd_device *brd, struct page *page,
259 unsigned int len, unsigned int off, enum req_op op,
260 sector_t sector)
261{
262 void *mem;
263 int err = 0;
264
265 if (op_is_write(op)) {
266 err = copy_to_brd_setup(brd, sector, len);
267 if (err)
268 goto out;
269 }
270
271 mem = kmap_atomic(page);
272 if (!op_is_write(op)) {
273 copy_from_brd(mem + off, brd, sector, len);
274 flush_dcache_page(page);
275 } else {
276 flush_dcache_page(page);
277 copy_to_brd(brd, mem + off, sector, len);
278 }
279 kunmap_atomic(mem);
280
281out:
282 return err;
283}
284
285static void brd_submit_bio(struct bio *bio)
286{
287 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
288 sector_t sector = bio->bi_iter.bi_sector;
289 struct bio_vec bvec;
290 struct bvec_iter iter;
291
292 bio_for_each_segment(bvec, bio, iter) {
293 unsigned int len = bvec.bv_len;
294 int err;
295
296 /* Don't support un-aligned buffer */
297 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
298 (len & (SECTOR_SIZE - 1)));
299
300 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
301 bio_op(bio), sector);
302 if (err) {
303 bio_io_error(bio);
304 return;
305 }
306 sector += len >> SECTOR_SHIFT;
307 }
308
309 bio_endio(bio);
310}
311
312static int brd_rw_page(struct block_device *bdev, sector_t sector,
313 struct page *page, enum req_op op)
314{
315 struct brd_device *brd = bdev->bd_disk->private_data;
316 int err;
317
318 if (PageTransHuge(page))
319 return -ENOTSUPP;
320 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
321 page_endio(page, op_is_write(op), err);
322 return err;
323}
324
325static const struct block_device_operations brd_fops = {
326 .owner = THIS_MODULE,
327 .submit_bio = brd_submit_bio,
328 .rw_page = brd_rw_page,
329};
330
331/*
332 * And now the modules code and kernel interface.
333 */
334static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
335module_param(rd_nr, int, 0444);
336MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337
338unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
339module_param(rd_size, ulong, 0444);
340MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341
342static int max_part = 1;
343module_param(max_part, int, 0444);
344MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345
346MODULE_LICENSE("GPL");
347MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
348MODULE_ALIAS("rd");
349
350#ifndef MODULE
351/* Legacy boot options - nonmodular */
352static int __init ramdisk_size(char *str)
353{
354 rd_size = simple_strtol(str, NULL, 0);
355 return 1;
356}
357__setup("ramdisk_size=", ramdisk_size);
358#endif
359
360/*
361 * The device scheme is derived from loop.c. Keep them in synch where possible
362 * (should share code eventually).
363 */
364static LIST_HEAD(brd_devices);
365static struct dentry *brd_debugfs_dir;
366
367static int brd_alloc(int i)
368{
369 struct brd_device *brd;
370 struct gendisk *disk;
371 char buf[DISK_NAME_LEN];
372 int err = -ENOMEM;
373
374 list_for_each_entry(brd, &brd_devices, brd_list)
375 if (brd->brd_number == i)
376 return -EEXIST;
377 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
378 if (!brd)
379 return -ENOMEM;
380 brd->brd_number = i;
381 list_add_tail(&brd->brd_list, &brd_devices);
382
383 spin_lock_init(&brd->brd_lock);
384 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
385
386 snprintf(buf, DISK_NAME_LEN, "ram%d", i);
387 if (!IS_ERR_OR_NULL(brd_debugfs_dir))
388 debugfs_create_u64(buf, 0444, brd_debugfs_dir,
389 &brd->brd_nr_pages);
390
391 disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
392 if (!disk)
393 goto out_free_dev;
394
395 disk->major = RAMDISK_MAJOR;
396 disk->first_minor = i * max_part;
397 disk->minors = max_part;
398 disk->fops = &brd_fops;
399 disk->private_data = brd;
400 strscpy(disk->disk_name, buf, DISK_NAME_LEN);
401 set_capacity(disk, rd_size * 2);
402
403 /*
404 * This is so fdisk will align partitions on 4k, because of
405 * direct_access API needing 4k alignment, returning a PFN
406 * (This is only a problem on very small devices <= 4M,
407 * otherwise fdisk will align on 1M. Regardless this call
408 * is harmless)
409 */
410 blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
411
412 /* Tell the block layer that this is not a rotational device */
413 blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
414 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
415 err = add_disk(disk);
416 if (err)
417 goto out_cleanup_disk;
418
419 return 0;
420
421out_cleanup_disk:
422 put_disk(disk);
423out_free_dev:
424 list_del(&brd->brd_list);
425 kfree(brd);
426 return err;
427}
428
429static void brd_probe(dev_t dev)
430{
431 brd_alloc(MINOR(dev) / max_part);
432}
433
434static void brd_cleanup(void)
435{
436 struct brd_device *brd, *next;
437
438 debugfs_remove_recursive(brd_debugfs_dir);
439
440 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
441 del_gendisk(brd->brd_disk);
442 put_disk(brd->brd_disk);
443 brd_free_pages(brd);
444 list_del(&brd->brd_list);
445 kfree(brd);
446 }
447}
448
449static inline void brd_check_and_reset_par(void)
450{
451 if (unlikely(!max_part))
452 max_part = 1;
453
454 /*
455 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
456 * otherwise, it is possiable to get same dev_t when adding partitions.
457 */
458 if ((1U << MINORBITS) % max_part != 0)
459 max_part = 1UL << fls(max_part);
460
461 if (max_part > DISK_MAX_PARTS) {
462 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
463 DISK_MAX_PARTS, DISK_MAX_PARTS);
464 max_part = DISK_MAX_PARTS;
465 }
466}
467
468static int __init brd_init(void)
469{
470 int err, i;
471
472 brd_check_and_reset_par();
473
474 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
475
476 for (i = 0; i < rd_nr; i++) {
477 err = brd_alloc(i);
478 if (err)
479 goto out_free;
480 }
481
482 /*
483 * brd module now has a feature to instantiate underlying device
484 * structure on-demand, provided that there is an access dev node.
485 *
486 * (1) if rd_nr is specified, create that many upfront. else
487 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
488 * (2) User can further extend brd devices by create dev node themselves
489 * and have kernel automatically instantiate actual device
490 * on-demand. Example:
491 * mknod /path/devnod_name b 1 X # 1 is the rd major
492 * fdisk -l /path/devnod_name
493 * If (X / max_part) was not already created it will be created
494 * dynamically.
495 */
496
497 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
498 err = -EIO;
499 goto out_free;
500 }
501
502 pr_info("brd: module loaded\n");
503 return 0;
504
505out_free:
506 brd_cleanup();
507
508 pr_info("brd: module NOT loaded !!!\n");
509 return err;
510}
511
512static void __exit brd_exit(void)
513{
514
515 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
516 brd_cleanup();
517
518 pr_info("brd: module unloaded\n");
519}
520
521module_init(brd_init);
522module_exit(brd_exit);
523