Loading...
1/*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14#include <linux/cpu.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/smp.h>
18#include <linux/preempt.h>
19#include <linux/hardirq.h>
20#include <linux/percpu.h>
21#include <linux/delay.h>
22#include <linux/start_kernel.h>
23#include <linux/sched.h>
24#include <linux/kprobes.h>
25#include <linux/bootmem.h>
26#include <linux/module.h>
27#include <linux/mm.h>
28#include <linux/page-flags.h>
29#include <linux/highmem.h>
30#include <linux/console.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/memblock.h>
34
35#include <xen/xen.h>
36#include <xen/interface/xen.h>
37#include <xen/interface/version.h>
38#include <xen/interface/physdev.h>
39#include <xen/interface/vcpu.h>
40#include <xen/interface/memory.h>
41#include <xen/features.h>
42#include <xen/page.h>
43#include <xen/hvm.h>
44#include <xen/hvc-console.h>
45#include <xen/acpi.h>
46
47#include <asm/paravirt.h>
48#include <asm/apic.h>
49#include <asm/page.h>
50#include <asm/xen/pci.h>
51#include <asm/xen/hypercall.h>
52#include <asm/xen/hypervisor.h>
53#include <asm/fixmap.h>
54#include <asm/processor.h>
55#include <asm/proto.h>
56#include <asm/msr-index.h>
57#include <asm/traps.h>
58#include <asm/setup.h>
59#include <asm/desc.h>
60#include <asm/pgalloc.h>
61#include <asm/pgtable.h>
62#include <asm/tlbflush.h>
63#include <asm/reboot.h>
64#include <asm/stackprotector.h>
65#include <asm/hypervisor.h>
66#include <asm/mwait.h>
67#include <asm/pci_x86.h>
68
69#ifdef CONFIG_ACPI
70#include <linux/acpi.h>
71#include <asm/acpi.h>
72#include <acpi/pdc_intel.h>
73#include <acpi/processor.h>
74#include <xen/interface/platform.h>
75#endif
76
77#include "xen-ops.h"
78#include "mmu.h"
79#include "smp.h"
80#include "multicalls.h"
81
82EXPORT_SYMBOL_GPL(hypercall_page);
83
84DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
85DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
86
87enum xen_domain_type xen_domain_type = XEN_NATIVE;
88EXPORT_SYMBOL_GPL(xen_domain_type);
89
90unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
91EXPORT_SYMBOL(machine_to_phys_mapping);
92unsigned long machine_to_phys_nr;
93EXPORT_SYMBOL(machine_to_phys_nr);
94
95struct start_info *xen_start_info;
96EXPORT_SYMBOL_GPL(xen_start_info);
97
98struct shared_info xen_dummy_shared_info;
99
100void *xen_initial_gdt;
101
102RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
103__read_mostly int xen_have_vector_callback;
104EXPORT_SYMBOL_GPL(xen_have_vector_callback);
105
106/*
107 * Point at some empty memory to start with. We map the real shared_info
108 * page as soon as fixmap is up and running.
109 */
110struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
111
112/*
113 * Flag to determine whether vcpu info placement is available on all
114 * VCPUs. We assume it is to start with, and then set it to zero on
115 * the first failure. This is because it can succeed on some VCPUs
116 * and not others, since it can involve hypervisor memory allocation,
117 * or because the guest failed to guarantee all the appropriate
118 * constraints on all VCPUs (ie buffer can't cross a page boundary).
119 *
120 * Note that any particular CPU may be using a placed vcpu structure,
121 * but we can only optimise if the all are.
122 *
123 * 0: not available, 1: available
124 */
125static int have_vcpu_info_placement = 1;
126
127static void clamp_max_cpus(void)
128{
129#ifdef CONFIG_SMP
130 if (setup_max_cpus > MAX_VIRT_CPUS)
131 setup_max_cpus = MAX_VIRT_CPUS;
132#endif
133}
134
135static void xen_vcpu_setup(int cpu)
136{
137 struct vcpu_register_vcpu_info info;
138 int err;
139 struct vcpu_info *vcpup;
140
141 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
142
143 if (cpu < MAX_VIRT_CPUS)
144 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
145
146 if (!have_vcpu_info_placement) {
147 if (cpu >= MAX_VIRT_CPUS)
148 clamp_max_cpus();
149 return;
150 }
151
152 vcpup = &per_cpu(xen_vcpu_info, cpu);
153 info.mfn = arbitrary_virt_to_mfn(vcpup);
154 info.offset = offset_in_page(vcpup);
155
156 /* Check to see if the hypervisor will put the vcpu_info
157 structure where we want it, which allows direct access via
158 a percpu-variable. */
159 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
160
161 if (err) {
162 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
163 have_vcpu_info_placement = 0;
164 clamp_max_cpus();
165 } else {
166 /* This cpu is using the registered vcpu info, even if
167 later ones fail to. */
168 per_cpu(xen_vcpu, cpu) = vcpup;
169 }
170}
171
172/*
173 * On restore, set the vcpu placement up again.
174 * If it fails, then we're in a bad state, since
175 * we can't back out from using it...
176 */
177void xen_vcpu_restore(void)
178{
179 int cpu;
180
181 for_each_online_cpu(cpu) {
182 bool other_cpu = (cpu != smp_processor_id());
183
184 if (other_cpu &&
185 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
186 BUG();
187
188 xen_setup_runstate_info(cpu);
189
190 if (have_vcpu_info_placement)
191 xen_vcpu_setup(cpu);
192
193 if (other_cpu &&
194 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
195 BUG();
196 }
197}
198
199static void __init xen_banner(void)
200{
201 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
202 struct xen_extraversion extra;
203 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
204
205 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
206 pv_info.name);
207 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
208 version >> 16, version & 0xffff, extra.extraversion,
209 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
210}
211
212#define CPUID_THERM_POWER_LEAF 6
213#define APERFMPERF_PRESENT 0
214
215static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
216static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
217
218static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
219static __read_mostly unsigned int cpuid_leaf5_ecx_val;
220static __read_mostly unsigned int cpuid_leaf5_edx_val;
221
222static void xen_cpuid(unsigned int *ax, unsigned int *bx,
223 unsigned int *cx, unsigned int *dx)
224{
225 unsigned maskebx = ~0;
226 unsigned maskecx = ~0;
227 unsigned maskedx = ~0;
228 unsigned setecx = 0;
229 /*
230 * Mask out inconvenient features, to try and disable as many
231 * unsupported kernel subsystems as possible.
232 */
233 switch (*ax) {
234 case 1:
235 maskecx = cpuid_leaf1_ecx_mask;
236 setecx = cpuid_leaf1_ecx_set_mask;
237 maskedx = cpuid_leaf1_edx_mask;
238 break;
239
240 case CPUID_MWAIT_LEAF:
241 /* Synthesize the values.. */
242 *ax = 0;
243 *bx = 0;
244 *cx = cpuid_leaf5_ecx_val;
245 *dx = cpuid_leaf5_edx_val;
246 return;
247
248 case CPUID_THERM_POWER_LEAF:
249 /* Disabling APERFMPERF for kernel usage */
250 maskecx = ~(1 << APERFMPERF_PRESENT);
251 break;
252
253 case 0xb:
254 /* Suppress extended topology stuff */
255 maskebx = 0;
256 break;
257 }
258
259 asm(XEN_EMULATE_PREFIX "cpuid"
260 : "=a" (*ax),
261 "=b" (*bx),
262 "=c" (*cx),
263 "=d" (*dx)
264 : "0" (*ax), "2" (*cx));
265
266 *bx &= maskebx;
267 *cx &= maskecx;
268 *cx |= setecx;
269 *dx &= maskedx;
270
271}
272
273static bool __init xen_check_mwait(void)
274{
275#if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
276 !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
277 struct xen_platform_op op = {
278 .cmd = XENPF_set_processor_pminfo,
279 .u.set_pminfo.id = -1,
280 .u.set_pminfo.type = XEN_PM_PDC,
281 };
282 uint32_t buf[3];
283 unsigned int ax, bx, cx, dx;
284 unsigned int mwait_mask;
285
286 /* We need to determine whether it is OK to expose the MWAIT
287 * capability to the kernel to harvest deeper than C3 states from ACPI
288 * _CST using the processor_harvest_xen.c module. For this to work, we
289 * need to gather the MWAIT_LEAF values (which the cstate.c code
290 * checks against). The hypervisor won't expose the MWAIT flag because
291 * it would break backwards compatibility; so we will find out directly
292 * from the hardware and hypercall.
293 */
294 if (!xen_initial_domain())
295 return false;
296
297 ax = 1;
298 cx = 0;
299
300 native_cpuid(&ax, &bx, &cx, &dx);
301
302 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
303 (1 << (X86_FEATURE_MWAIT % 32));
304
305 if ((cx & mwait_mask) != mwait_mask)
306 return false;
307
308 /* We need to emulate the MWAIT_LEAF and for that we need both
309 * ecx and edx. The hypercall provides only partial information.
310 */
311
312 ax = CPUID_MWAIT_LEAF;
313 bx = 0;
314 cx = 0;
315 dx = 0;
316
317 native_cpuid(&ax, &bx, &cx, &dx);
318
319 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
320 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
321 */
322 buf[0] = ACPI_PDC_REVISION_ID;
323 buf[1] = 1;
324 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
325
326 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
327
328 if ((HYPERVISOR_dom0_op(&op) == 0) &&
329 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
330 cpuid_leaf5_ecx_val = cx;
331 cpuid_leaf5_edx_val = dx;
332 }
333 return true;
334#else
335 return false;
336#endif
337}
338static void __init xen_init_cpuid_mask(void)
339{
340 unsigned int ax, bx, cx, dx;
341 unsigned int xsave_mask;
342
343 cpuid_leaf1_edx_mask =
344 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
345 (1 << X86_FEATURE_MCA) | /* disable MCA */
346 (1 << X86_FEATURE_MTRR) | /* disable MTRR */
347 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
348
349 if (!xen_initial_domain())
350 cpuid_leaf1_edx_mask &=
351 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
352 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
353 ax = 1;
354 cx = 0;
355 xen_cpuid(&ax, &bx, &cx, &dx);
356
357 xsave_mask =
358 (1 << (X86_FEATURE_XSAVE % 32)) |
359 (1 << (X86_FEATURE_OSXSAVE % 32));
360
361 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
362 if ((cx & xsave_mask) != xsave_mask)
363 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
364 if (xen_check_mwait())
365 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
366}
367
368static void xen_set_debugreg(int reg, unsigned long val)
369{
370 HYPERVISOR_set_debugreg(reg, val);
371}
372
373static unsigned long xen_get_debugreg(int reg)
374{
375 return HYPERVISOR_get_debugreg(reg);
376}
377
378static void xen_end_context_switch(struct task_struct *next)
379{
380 xen_mc_flush();
381 paravirt_end_context_switch(next);
382}
383
384static unsigned long xen_store_tr(void)
385{
386 return 0;
387}
388
389/*
390 * Set the page permissions for a particular virtual address. If the
391 * address is a vmalloc mapping (or other non-linear mapping), then
392 * find the linear mapping of the page and also set its protections to
393 * match.
394 */
395static void set_aliased_prot(void *v, pgprot_t prot)
396{
397 int level;
398 pte_t *ptep;
399 pte_t pte;
400 unsigned long pfn;
401 struct page *page;
402
403 ptep = lookup_address((unsigned long)v, &level);
404 BUG_ON(ptep == NULL);
405
406 pfn = pte_pfn(*ptep);
407 page = pfn_to_page(pfn);
408
409 pte = pfn_pte(pfn, prot);
410
411 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
412 BUG();
413
414 if (!PageHighMem(page)) {
415 void *av = __va(PFN_PHYS(pfn));
416
417 if (av != v)
418 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
419 BUG();
420 } else
421 kmap_flush_unused();
422}
423
424static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
425{
426 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
427 int i;
428
429 for(i = 0; i < entries; i += entries_per_page)
430 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
431}
432
433static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
434{
435 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
436 int i;
437
438 for(i = 0; i < entries; i += entries_per_page)
439 set_aliased_prot(ldt + i, PAGE_KERNEL);
440}
441
442static void xen_set_ldt(const void *addr, unsigned entries)
443{
444 struct mmuext_op *op;
445 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
446
447 trace_xen_cpu_set_ldt(addr, entries);
448
449 op = mcs.args;
450 op->cmd = MMUEXT_SET_LDT;
451 op->arg1.linear_addr = (unsigned long)addr;
452 op->arg2.nr_ents = entries;
453
454 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
455
456 xen_mc_issue(PARAVIRT_LAZY_CPU);
457}
458
459static void xen_load_gdt(const struct desc_ptr *dtr)
460{
461 unsigned long va = dtr->address;
462 unsigned int size = dtr->size + 1;
463 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
464 unsigned long frames[pages];
465 int f;
466
467 /*
468 * A GDT can be up to 64k in size, which corresponds to 8192
469 * 8-byte entries, or 16 4k pages..
470 */
471
472 BUG_ON(size > 65536);
473 BUG_ON(va & ~PAGE_MASK);
474
475 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
476 int level;
477 pte_t *ptep;
478 unsigned long pfn, mfn;
479 void *virt;
480
481 /*
482 * The GDT is per-cpu and is in the percpu data area.
483 * That can be virtually mapped, so we need to do a
484 * page-walk to get the underlying MFN for the
485 * hypercall. The page can also be in the kernel's
486 * linear range, so we need to RO that mapping too.
487 */
488 ptep = lookup_address(va, &level);
489 BUG_ON(ptep == NULL);
490
491 pfn = pte_pfn(*ptep);
492 mfn = pfn_to_mfn(pfn);
493 virt = __va(PFN_PHYS(pfn));
494
495 frames[f] = mfn;
496
497 make_lowmem_page_readonly((void *)va);
498 make_lowmem_page_readonly(virt);
499 }
500
501 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
502 BUG();
503}
504
505/*
506 * load_gdt for early boot, when the gdt is only mapped once
507 */
508static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
509{
510 unsigned long va = dtr->address;
511 unsigned int size = dtr->size + 1;
512 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
513 unsigned long frames[pages];
514 int f;
515
516 /*
517 * A GDT can be up to 64k in size, which corresponds to 8192
518 * 8-byte entries, or 16 4k pages..
519 */
520
521 BUG_ON(size > 65536);
522 BUG_ON(va & ~PAGE_MASK);
523
524 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
525 pte_t pte;
526 unsigned long pfn, mfn;
527
528 pfn = virt_to_pfn(va);
529 mfn = pfn_to_mfn(pfn);
530
531 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
532
533 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
534 BUG();
535
536 frames[f] = mfn;
537 }
538
539 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
540 BUG();
541}
542
543static void load_TLS_descriptor(struct thread_struct *t,
544 unsigned int cpu, unsigned int i)
545{
546 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
547 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
548 struct multicall_space mc = __xen_mc_entry(0);
549
550 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
551}
552
553static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
554{
555 /*
556 * XXX sleazy hack: If we're being called in a lazy-cpu zone
557 * and lazy gs handling is enabled, it means we're in a
558 * context switch, and %gs has just been saved. This means we
559 * can zero it out to prevent faults on exit from the
560 * hypervisor if the next process has no %gs. Either way, it
561 * has been saved, and the new value will get loaded properly.
562 * This will go away as soon as Xen has been modified to not
563 * save/restore %gs for normal hypercalls.
564 *
565 * On x86_64, this hack is not used for %gs, because gs points
566 * to KERNEL_GS_BASE (and uses it for PDA references), so we
567 * must not zero %gs on x86_64
568 *
569 * For x86_64, we need to zero %fs, otherwise we may get an
570 * exception between the new %fs descriptor being loaded and
571 * %fs being effectively cleared at __switch_to().
572 */
573 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
574#ifdef CONFIG_X86_32
575 lazy_load_gs(0);
576#else
577 loadsegment(fs, 0);
578#endif
579 }
580
581 xen_mc_batch();
582
583 load_TLS_descriptor(t, cpu, 0);
584 load_TLS_descriptor(t, cpu, 1);
585 load_TLS_descriptor(t, cpu, 2);
586
587 xen_mc_issue(PARAVIRT_LAZY_CPU);
588}
589
590#ifdef CONFIG_X86_64
591static void xen_load_gs_index(unsigned int idx)
592{
593 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
594 BUG();
595}
596#endif
597
598static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
599 const void *ptr)
600{
601 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
602 u64 entry = *(u64 *)ptr;
603
604 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
605
606 preempt_disable();
607
608 xen_mc_flush();
609 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
610 BUG();
611
612 preempt_enable();
613}
614
615static int cvt_gate_to_trap(int vector, const gate_desc *val,
616 struct trap_info *info)
617{
618 unsigned long addr;
619
620 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
621 return 0;
622
623 info->vector = vector;
624
625 addr = gate_offset(*val);
626#ifdef CONFIG_X86_64
627 /*
628 * Look for known traps using IST, and substitute them
629 * appropriately. The debugger ones are the only ones we care
630 * about. Xen will handle faults like double_fault and
631 * machine_check, so we should never see them. Warn if
632 * there's an unexpected IST-using fault handler.
633 */
634 if (addr == (unsigned long)debug)
635 addr = (unsigned long)xen_debug;
636 else if (addr == (unsigned long)int3)
637 addr = (unsigned long)xen_int3;
638 else if (addr == (unsigned long)stack_segment)
639 addr = (unsigned long)xen_stack_segment;
640 else if (addr == (unsigned long)double_fault ||
641 addr == (unsigned long)nmi) {
642 /* Don't need to handle these */
643 return 0;
644#ifdef CONFIG_X86_MCE
645 } else if (addr == (unsigned long)machine_check) {
646 return 0;
647#endif
648 } else {
649 /* Some other trap using IST? */
650 if (WARN_ON(val->ist != 0))
651 return 0;
652 }
653#endif /* CONFIG_X86_64 */
654 info->address = addr;
655
656 info->cs = gate_segment(*val);
657 info->flags = val->dpl;
658 /* interrupt gates clear IF */
659 if (val->type == GATE_INTERRUPT)
660 info->flags |= 1 << 2;
661
662 return 1;
663}
664
665/* Locations of each CPU's IDT */
666static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
667
668/* Set an IDT entry. If the entry is part of the current IDT, then
669 also update Xen. */
670static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
671{
672 unsigned long p = (unsigned long)&dt[entrynum];
673 unsigned long start, end;
674
675 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
676
677 preempt_disable();
678
679 start = __this_cpu_read(idt_desc.address);
680 end = start + __this_cpu_read(idt_desc.size) + 1;
681
682 xen_mc_flush();
683
684 native_write_idt_entry(dt, entrynum, g);
685
686 if (p >= start && (p + 8) <= end) {
687 struct trap_info info[2];
688
689 info[1].address = 0;
690
691 if (cvt_gate_to_trap(entrynum, g, &info[0]))
692 if (HYPERVISOR_set_trap_table(info))
693 BUG();
694 }
695
696 preempt_enable();
697}
698
699static void xen_convert_trap_info(const struct desc_ptr *desc,
700 struct trap_info *traps)
701{
702 unsigned in, out, count;
703
704 count = (desc->size+1) / sizeof(gate_desc);
705 BUG_ON(count > 256);
706
707 for (in = out = 0; in < count; in++) {
708 gate_desc *entry = (gate_desc*)(desc->address) + in;
709
710 if (cvt_gate_to_trap(in, entry, &traps[out]))
711 out++;
712 }
713 traps[out].address = 0;
714}
715
716void xen_copy_trap_info(struct trap_info *traps)
717{
718 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
719
720 xen_convert_trap_info(desc, traps);
721}
722
723/* Load a new IDT into Xen. In principle this can be per-CPU, so we
724 hold a spinlock to protect the static traps[] array (static because
725 it avoids allocation, and saves stack space). */
726static void xen_load_idt(const struct desc_ptr *desc)
727{
728 static DEFINE_SPINLOCK(lock);
729 static struct trap_info traps[257];
730
731 trace_xen_cpu_load_idt(desc);
732
733 spin_lock(&lock);
734
735 __get_cpu_var(idt_desc) = *desc;
736
737 xen_convert_trap_info(desc, traps);
738
739 xen_mc_flush();
740 if (HYPERVISOR_set_trap_table(traps))
741 BUG();
742
743 spin_unlock(&lock);
744}
745
746/* Write a GDT descriptor entry. Ignore LDT descriptors, since
747 they're handled differently. */
748static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
749 const void *desc, int type)
750{
751 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
752
753 preempt_disable();
754
755 switch (type) {
756 case DESC_LDT:
757 case DESC_TSS:
758 /* ignore */
759 break;
760
761 default: {
762 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
763
764 xen_mc_flush();
765 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
766 BUG();
767 }
768
769 }
770
771 preempt_enable();
772}
773
774/*
775 * Version of write_gdt_entry for use at early boot-time needed to
776 * update an entry as simply as possible.
777 */
778static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
779 const void *desc, int type)
780{
781 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
782
783 switch (type) {
784 case DESC_LDT:
785 case DESC_TSS:
786 /* ignore */
787 break;
788
789 default: {
790 xmaddr_t maddr = virt_to_machine(&dt[entry]);
791
792 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
793 dt[entry] = *(struct desc_struct *)desc;
794 }
795
796 }
797}
798
799static void xen_load_sp0(struct tss_struct *tss,
800 struct thread_struct *thread)
801{
802 struct multicall_space mcs;
803
804 mcs = xen_mc_entry(0);
805 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
806 xen_mc_issue(PARAVIRT_LAZY_CPU);
807}
808
809static void xen_set_iopl_mask(unsigned mask)
810{
811 struct physdev_set_iopl set_iopl;
812
813 /* Force the change at ring 0. */
814 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
815 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
816}
817
818static void xen_io_delay(void)
819{
820}
821
822#ifdef CONFIG_X86_LOCAL_APIC
823static unsigned long xen_set_apic_id(unsigned int x)
824{
825 WARN_ON(1);
826 return x;
827}
828static unsigned int xen_get_apic_id(unsigned long x)
829{
830 return ((x)>>24) & 0xFFu;
831}
832static u32 xen_apic_read(u32 reg)
833{
834 struct xen_platform_op op = {
835 .cmd = XENPF_get_cpuinfo,
836 .interface_version = XENPF_INTERFACE_VERSION,
837 .u.pcpu_info.xen_cpuid = 0,
838 };
839 int ret = 0;
840
841 /* Shouldn't need this as APIC is turned off for PV, and we only
842 * get called on the bootup processor. But just in case. */
843 if (!xen_initial_domain() || smp_processor_id())
844 return 0;
845
846 if (reg == APIC_LVR)
847 return 0x10;
848
849 if (reg != APIC_ID)
850 return 0;
851
852 ret = HYPERVISOR_dom0_op(&op);
853 if (ret)
854 return 0;
855
856 return op.u.pcpu_info.apic_id << 24;
857}
858
859static void xen_apic_write(u32 reg, u32 val)
860{
861 /* Warn to see if there's any stray references */
862 WARN_ON(1);
863}
864
865static u64 xen_apic_icr_read(void)
866{
867 return 0;
868}
869
870static void xen_apic_icr_write(u32 low, u32 id)
871{
872 /* Warn to see if there's any stray references */
873 WARN_ON(1);
874}
875
876static void xen_apic_wait_icr_idle(void)
877{
878 return;
879}
880
881static u32 xen_safe_apic_wait_icr_idle(void)
882{
883 return 0;
884}
885
886static void set_xen_basic_apic_ops(void)
887{
888 apic->read = xen_apic_read;
889 apic->write = xen_apic_write;
890 apic->icr_read = xen_apic_icr_read;
891 apic->icr_write = xen_apic_icr_write;
892 apic->wait_icr_idle = xen_apic_wait_icr_idle;
893 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
894 apic->set_apic_id = xen_set_apic_id;
895 apic->get_apic_id = xen_get_apic_id;
896
897#ifdef CONFIG_SMP
898 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
899 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
900 apic->send_IPI_mask = xen_send_IPI_mask;
901 apic->send_IPI_all = xen_send_IPI_all;
902 apic->send_IPI_self = xen_send_IPI_self;
903#endif
904}
905
906#endif
907
908static void xen_clts(void)
909{
910 struct multicall_space mcs;
911
912 mcs = xen_mc_entry(0);
913
914 MULTI_fpu_taskswitch(mcs.mc, 0);
915
916 xen_mc_issue(PARAVIRT_LAZY_CPU);
917}
918
919static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
920
921static unsigned long xen_read_cr0(void)
922{
923 unsigned long cr0 = this_cpu_read(xen_cr0_value);
924
925 if (unlikely(cr0 == 0)) {
926 cr0 = native_read_cr0();
927 this_cpu_write(xen_cr0_value, cr0);
928 }
929
930 return cr0;
931}
932
933static void xen_write_cr0(unsigned long cr0)
934{
935 struct multicall_space mcs;
936
937 this_cpu_write(xen_cr0_value, cr0);
938
939 /* Only pay attention to cr0.TS; everything else is
940 ignored. */
941 mcs = xen_mc_entry(0);
942
943 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
944
945 xen_mc_issue(PARAVIRT_LAZY_CPU);
946}
947
948static void xen_write_cr4(unsigned long cr4)
949{
950 cr4 &= ~X86_CR4_PGE;
951 cr4 &= ~X86_CR4_PSE;
952
953 native_write_cr4(cr4);
954}
955
956static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
957{
958 int ret;
959
960 ret = 0;
961
962 switch (msr) {
963#ifdef CONFIG_X86_64
964 unsigned which;
965 u64 base;
966
967 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
968 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
969 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
970
971 set:
972 base = ((u64)high << 32) | low;
973 if (HYPERVISOR_set_segment_base(which, base) != 0)
974 ret = -EIO;
975 break;
976#endif
977
978 case MSR_STAR:
979 case MSR_CSTAR:
980 case MSR_LSTAR:
981 case MSR_SYSCALL_MASK:
982 case MSR_IA32_SYSENTER_CS:
983 case MSR_IA32_SYSENTER_ESP:
984 case MSR_IA32_SYSENTER_EIP:
985 /* Fast syscall setup is all done in hypercalls, so
986 these are all ignored. Stub them out here to stop
987 Xen console noise. */
988 break;
989
990 case MSR_IA32_CR_PAT:
991 if (smp_processor_id() == 0)
992 xen_set_pat(((u64)high << 32) | low);
993 break;
994
995 default:
996 ret = native_write_msr_safe(msr, low, high);
997 }
998
999 return ret;
1000}
1001
1002void xen_setup_shared_info(void)
1003{
1004 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1005 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1006 xen_start_info->shared_info);
1007
1008 HYPERVISOR_shared_info =
1009 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1010 } else
1011 HYPERVISOR_shared_info =
1012 (struct shared_info *)__va(xen_start_info->shared_info);
1013
1014#ifndef CONFIG_SMP
1015 /* In UP this is as good a place as any to set up shared info */
1016 xen_setup_vcpu_info_placement();
1017#endif
1018
1019 xen_setup_mfn_list_list();
1020}
1021
1022/* This is called once we have the cpu_possible_mask */
1023void xen_setup_vcpu_info_placement(void)
1024{
1025 int cpu;
1026
1027 for_each_possible_cpu(cpu)
1028 xen_vcpu_setup(cpu);
1029
1030 /* xen_vcpu_setup managed to place the vcpu_info within the
1031 percpu area for all cpus, so make use of it */
1032 if (have_vcpu_info_placement) {
1033 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1034 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1035 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1036 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1037 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1038 }
1039}
1040
1041static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1042 unsigned long addr, unsigned len)
1043{
1044 char *start, *end, *reloc;
1045 unsigned ret;
1046
1047 start = end = reloc = NULL;
1048
1049#define SITE(op, x) \
1050 case PARAVIRT_PATCH(op.x): \
1051 if (have_vcpu_info_placement) { \
1052 start = (char *)xen_##x##_direct; \
1053 end = xen_##x##_direct_end; \
1054 reloc = xen_##x##_direct_reloc; \
1055 } \
1056 goto patch_site
1057
1058 switch (type) {
1059 SITE(pv_irq_ops, irq_enable);
1060 SITE(pv_irq_ops, irq_disable);
1061 SITE(pv_irq_ops, save_fl);
1062 SITE(pv_irq_ops, restore_fl);
1063#undef SITE
1064
1065 patch_site:
1066 if (start == NULL || (end-start) > len)
1067 goto default_patch;
1068
1069 ret = paravirt_patch_insns(insnbuf, len, start, end);
1070
1071 /* Note: because reloc is assigned from something that
1072 appears to be an array, gcc assumes it's non-null,
1073 but doesn't know its relationship with start and
1074 end. */
1075 if (reloc > start && reloc < end) {
1076 int reloc_off = reloc - start;
1077 long *relocp = (long *)(insnbuf + reloc_off);
1078 long delta = start - (char *)addr;
1079
1080 *relocp += delta;
1081 }
1082 break;
1083
1084 default_patch:
1085 default:
1086 ret = paravirt_patch_default(type, clobbers, insnbuf,
1087 addr, len);
1088 break;
1089 }
1090
1091 return ret;
1092}
1093
1094static const struct pv_info xen_info __initconst = {
1095 .paravirt_enabled = 1,
1096 .shared_kernel_pmd = 0,
1097
1098#ifdef CONFIG_X86_64
1099 .extra_user_64bit_cs = FLAT_USER_CS64,
1100#endif
1101
1102 .name = "Xen",
1103};
1104
1105static const struct pv_init_ops xen_init_ops __initconst = {
1106 .patch = xen_patch,
1107};
1108
1109static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1110 .cpuid = xen_cpuid,
1111
1112 .set_debugreg = xen_set_debugreg,
1113 .get_debugreg = xen_get_debugreg,
1114
1115 .clts = xen_clts,
1116
1117 .read_cr0 = xen_read_cr0,
1118 .write_cr0 = xen_write_cr0,
1119
1120 .read_cr4 = native_read_cr4,
1121 .read_cr4_safe = native_read_cr4_safe,
1122 .write_cr4 = xen_write_cr4,
1123
1124 .wbinvd = native_wbinvd,
1125
1126 .read_msr = native_read_msr_safe,
1127 .rdmsr_regs = native_rdmsr_safe_regs,
1128 .write_msr = xen_write_msr_safe,
1129 .wrmsr_regs = native_wrmsr_safe_regs,
1130
1131 .read_tsc = native_read_tsc,
1132 .read_pmc = native_read_pmc,
1133
1134 .iret = xen_iret,
1135 .irq_enable_sysexit = xen_sysexit,
1136#ifdef CONFIG_X86_64
1137 .usergs_sysret32 = xen_sysret32,
1138 .usergs_sysret64 = xen_sysret64,
1139#endif
1140
1141 .load_tr_desc = paravirt_nop,
1142 .set_ldt = xen_set_ldt,
1143 .load_gdt = xen_load_gdt,
1144 .load_idt = xen_load_idt,
1145 .load_tls = xen_load_tls,
1146#ifdef CONFIG_X86_64
1147 .load_gs_index = xen_load_gs_index,
1148#endif
1149
1150 .alloc_ldt = xen_alloc_ldt,
1151 .free_ldt = xen_free_ldt,
1152
1153 .store_gdt = native_store_gdt,
1154 .store_idt = native_store_idt,
1155 .store_tr = xen_store_tr,
1156
1157 .write_ldt_entry = xen_write_ldt_entry,
1158 .write_gdt_entry = xen_write_gdt_entry,
1159 .write_idt_entry = xen_write_idt_entry,
1160 .load_sp0 = xen_load_sp0,
1161
1162 .set_iopl_mask = xen_set_iopl_mask,
1163 .io_delay = xen_io_delay,
1164
1165 /* Xen takes care of %gs when switching to usermode for us */
1166 .swapgs = paravirt_nop,
1167
1168 .start_context_switch = paravirt_start_context_switch,
1169 .end_context_switch = xen_end_context_switch,
1170};
1171
1172static const struct pv_apic_ops xen_apic_ops __initconst = {
1173#ifdef CONFIG_X86_LOCAL_APIC
1174 .startup_ipi_hook = paravirt_nop,
1175#endif
1176};
1177
1178static void xen_reboot(int reason)
1179{
1180 struct sched_shutdown r = { .reason = reason };
1181
1182 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1183 BUG();
1184}
1185
1186static void xen_restart(char *msg)
1187{
1188 xen_reboot(SHUTDOWN_reboot);
1189}
1190
1191static void xen_emergency_restart(void)
1192{
1193 xen_reboot(SHUTDOWN_reboot);
1194}
1195
1196static void xen_machine_halt(void)
1197{
1198 xen_reboot(SHUTDOWN_poweroff);
1199}
1200
1201static void xen_machine_power_off(void)
1202{
1203 if (pm_power_off)
1204 pm_power_off();
1205 xen_reboot(SHUTDOWN_poweroff);
1206}
1207
1208static void xen_crash_shutdown(struct pt_regs *regs)
1209{
1210 xen_reboot(SHUTDOWN_crash);
1211}
1212
1213static int
1214xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1215{
1216 xen_reboot(SHUTDOWN_crash);
1217 return NOTIFY_DONE;
1218}
1219
1220static struct notifier_block xen_panic_block = {
1221 .notifier_call= xen_panic_event,
1222};
1223
1224int xen_panic_handler_init(void)
1225{
1226 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1227 return 0;
1228}
1229
1230static const struct machine_ops xen_machine_ops __initconst = {
1231 .restart = xen_restart,
1232 .halt = xen_machine_halt,
1233 .power_off = xen_machine_power_off,
1234 .shutdown = xen_machine_halt,
1235 .crash_shutdown = xen_crash_shutdown,
1236 .emergency_restart = xen_emergency_restart,
1237};
1238
1239/*
1240 * Set up the GDT and segment registers for -fstack-protector. Until
1241 * we do this, we have to be careful not to call any stack-protected
1242 * function, which is most of the kernel.
1243 */
1244static void __init xen_setup_stackprotector(void)
1245{
1246 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1247 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1248
1249 setup_stack_canary_segment(0);
1250 switch_to_new_gdt(0);
1251
1252 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1253 pv_cpu_ops.load_gdt = xen_load_gdt;
1254}
1255
1256/* First C function to be called on Xen boot */
1257asmlinkage void __init xen_start_kernel(void)
1258{
1259 struct physdev_set_iopl set_iopl;
1260 int rc;
1261 pgd_t *pgd;
1262
1263 if (!xen_start_info)
1264 return;
1265
1266 xen_domain_type = XEN_PV_DOMAIN;
1267
1268 xen_setup_machphys_mapping();
1269
1270 /* Install Xen paravirt ops */
1271 pv_info = xen_info;
1272 pv_init_ops = xen_init_ops;
1273 pv_cpu_ops = xen_cpu_ops;
1274 pv_apic_ops = xen_apic_ops;
1275
1276 x86_init.resources.memory_setup = xen_memory_setup;
1277 x86_init.oem.arch_setup = xen_arch_setup;
1278 x86_init.oem.banner = xen_banner;
1279
1280 xen_init_time_ops();
1281
1282 /*
1283 * Set up some pagetable state before starting to set any ptes.
1284 */
1285
1286 xen_init_mmu_ops();
1287
1288 /* Prevent unwanted bits from being set in PTEs. */
1289 __supported_pte_mask &= ~_PAGE_GLOBAL;
1290#if 0
1291 if (!xen_initial_domain())
1292#endif
1293 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1294
1295 __supported_pte_mask |= _PAGE_IOMAP;
1296
1297 /*
1298 * Prevent page tables from being allocated in highmem, even
1299 * if CONFIG_HIGHPTE is enabled.
1300 */
1301 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1302
1303 /* Work out if we support NX */
1304 x86_configure_nx();
1305
1306 xen_setup_features();
1307
1308 /* Get mfn list */
1309 if (!xen_feature(XENFEAT_auto_translated_physmap))
1310 xen_build_dynamic_phys_to_machine();
1311
1312 /*
1313 * Set up kernel GDT and segment registers, mainly so that
1314 * -fstack-protector code can be executed.
1315 */
1316 xen_setup_stackprotector();
1317
1318 xen_init_irq_ops();
1319 xen_init_cpuid_mask();
1320
1321#ifdef CONFIG_X86_LOCAL_APIC
1322 /*
1323 * set up the basic apic ops.
1324 */
1325 set_xen_basic_apic_ops();
1326#endif
1327
1328 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1329 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1330 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1331 }
1332
1333 machine_ops = xen_machine_ops;
1334
1335 /*
1336 * The only reliable way to retain the initial address of the
1337 * percpu gdt_page is to remember it here, so we can go and
1338 * mark it RW later, when the initial percpu area is freed.
1339 */
1340 xen_initial_gdt = &per_cpu(gdt_page, 0);
1341
1342 xen_smp_init();
1343
1344#ifdef CONFIG_ACPI_NUMA
1345 /*
1346 * The pages we from Xen are not related to machine pages, so
1347 * any NUMA information the kernel tries to get from ACPI will
1348 * be meaningless. Prevent it from trying.
1349 */
1350 acpi_numa = -1;
1351#endif
1352
1353 pgd = (pgd_t *)xen_start_info->pt_base;
1354
1355 /* Don't do the full vcpu_info placement stuff until we have a
1356 possible map and a non-dummy shared_info. */
1357 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1358
1359 local_irq_disable();
1360 early_boot_irqs_disabled = true;
1361
1362 xen_raw_console_write("mapping kernel into physical memory\n");
1363 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1364
1365 /* Allocate and initialize top and mid mfn levels for p2m structure */
1366 xen_build_mfn_list_list();
1367
1368 /* keep using Xen gdt for now; no urgent need to change it */
1369
1370#ifdef CONFIG_X86_32
1371 pv_info.kernel_rpl = 1;
1372 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1373 pv_info.kernel_rpl = 0;
1374#else
1375 pv_info.kernel_rpl = 0;
1376#endif
1377 /* set the limit of our address space */
1378 xen_reserve_top();
1379
1380 /* We used to do this in xen_arch_setup, but that is too late on AMD
1381 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1382 * which pokes 0xcf8 port.
1383 */
1384 set_iopl.iopl = 1;
1385 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1386 if (rc != 0)
1387 xen_raw_printk("physdev_op failed %d\n", rc);
1388
1389#ifdef CONFIG_X86_32
1390 /* set up basic CPUID stuff */
1391 cpu_detect(&new_cpu_data);
1392 new_cpu_data.hard_math = 1;
1393 new_cpu_data.wp_works_ok = 1;
1394 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1395#endif
1396
1397 /* Poke various useful things into boot_params */
1398 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1399 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1400 ? __pa(xen_start_info->mod_start) : 0;
1401 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1402 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1403
1404 if (!xen_initial_domain()) {
1405 add_preferred_console("xenboot", 0, NULL);
1406 add_preferred_console("tty", 0, NULL);
1407 add_preferred_console("hvc", 0, NULL);
1408 if (pci_xen)
1409 x86_init.pci.arch_init = pci_xen_init;
1410 } else {
1411 const struct dom0_vga_console_info *info =
1412 (void *)((char *)xen_start_info +
1413 xen_start_info->console.dom0.info_off);
1414
1415 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1416 xen_start_info->console.domU.mfn = 0;
1417 xen_start_info->console.domU.evtchn = 0;
1418
1419 xen_init_apic();
1420
1421 /* Make sure ACS will be enabled */
1422 pci_request_acs();
1423
1424 xen_acpi_sleep_register();
1425
1426 /* Avoid searching for BIOS MP tables */
1427 x86_init.mpparse.find_smp_config = x86_init_noop;
1428 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1429 }
1430#ifdef CONFIG_PCI
1431 /* PCI BIOS service won't work from a PV guest. */
1432 pci_probe &= ~PCI_PROBE_BIOS;
1433#endif
1434 xen_raw_console_write("about to get started...\n");
1435
1436 xen_setup_runstate_info(0);
1437
1438 /* Start the world */
1439#ifdef CONFIG_X86_32
1440 i386_start_kernel();
1441#else
1442 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1443#endif
1444}
1445
1446static int init_hvm_pv_info(int *major, int *minor)
1447{
1448 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1449 u64 pfn;
1450
1451 base = xen_cpuid_base();
1452 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1453
1454 *major = eax >> 16;
1455 *minor = eax & 0xffff;
1456 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1457
1458 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1459
1460 pfn = __pa(hypercall_page);
1461 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1462
1463 xen_setup_features();
1464
1465 pv_info.name = "Xen HVM";
1466
1467 xen_domain_type = XEN_HVM_DOMAIN;
1468
1469 return 0;
1470}
1471
1472void __ref xen_hvm_init_shared_info(void)
1473{
1474 int cpu;
1475 struct xen_add_to_physmap xatp;
1476 static struct shared_info *shared_info_page = 0;
1477
1478 if (!shared_info_page)
1479 shared_info_page = (struct shared_info *)
1480 extend_brk(PAGE_SIZE, PAGE_SIZE);
1481 xatp.domid = DOMID_SELF;
1482 xatp.idx = 0;
1483 xatp.space = XENMAPSPACE_shared_info;
1484 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1485 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1486 BUG();
1487
1488 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1489
1490 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1491 * page, we use it in the event channel upcall and in some pvclock
1492 * related functions. We don't need the vcpu_info placement
1493 * optimizations because we don't use any pv_mmu or pv_irq op on
1494 * HVM.
1495 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1496 * online but xen_hvm_init_shared_info is run at resume time too and
1497 * in that case multiple vcpus might be online. */
1498 for_each_online_cpu(cpu) {
1499 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1500 }
1501}
1502
1503#ifdef CONFIG_XEN_PVHVM
1504static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1505 unsigned long action, void *hcpu)
1506{
1507 int cpu = (long)hcpu;
1508 switch (action) {
1509 case CPU_UP_PREPARE:
1510 xen_vcpu_setup(cpu);
1511 if (xen_have_vector_callback)
1512 xen_init_lock_cpu(cpu);
1513 break;
1514 default:
1515 break;
1516 }
1517 return NOTIFY_OK;
1518}
1519
1520static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1521 .notifier_call = xen_hvm_cpu_notify,
1522};
1523
1524static void __init xen_hvm_guest_init(void)
1525{
1526 int r;
1527 int major, minor;
1528
1529 r = init_hvm_pv_info(&major, &minor);
1530 if (r < 0)
1531 return;
1532
1533 xen_hvm_init_shared_info();
1534
1535 if (xen_feature(XENFEAT_hvm_callback_vector))
1536 xen_have_vector_callback = 1;
1537 xen_hvm_smp_init();
1538 register_cpu_notifier(&xen_hvm_cpu_notifier);
1539 xen_unplug_emulated_devices();
1540 x86_init.irqs.intr_init = xen_init_IRQ;
1541 xen_hvm_init_time_ops();
1542 xen_hvm_init_mmu_ops();
1543}
1544
1545static bool __init xen_hvm_platform(void)
1546{
1547 if (xen_pv_domain())
1548 return false;
1549
1550 if (!xen_cpuid_base())
1551 return false;
1552
1553 return true;
1554}
1555
1556bool xen_hvm_need_lapic(void)
1557{
1558 if (xen_pv_domain())
1559 return false;
1560 if (!xen_hvm_domain())
1561 return false;
1562 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1563 return false;
1564 return true;
1565}
1566EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1567
1568const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1569 .name = "Xen HVM",
1570 .detect = xen_hvm_platform,
1571 .init_platform = xen_hvm_guest_init,
1572};
1573EXPORT_SYMBOL(x86_hyper_xen_hvm);
1574#endif
1// SPDX-License-Identifier: GPL-2.0
2
3#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
4#include <linux/memblock.h>
5#endif
6#include <linux/console.h>
7#include <linux/cpu.h>
8#include <linux/kexec.h>
9#include <linux/slab.h>
10#include <linux/panic_notifier.h>
11
12#include <xen/xen.h>
13#include <xen/features.h>
14#include <xen/interface/sched.h>
15#include <xen/interface/version.h>
16#include <xen/page.h>
17
18#include <asm/xen/hypercall.h>
19#include <asm/xen/hypervisor.h>
20#include <asm/cpu.h>
21#include <asm/e820/api.h>
22#include <asm/setup.h>
23
24#include "xen-ops.h"
25#include "smp.h"
26#include "pmu.h"
27
28EXPORT_SYMBOL_GPL(hypercall_page);
29
30/*
31 * Pointer to the xen_vcpu_info structure or
32 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
33 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
34 * but during boot it is switched to point to xen_vcpu_info.
35 * The pointer is used in __xen_evtchn_do_upcall to acknowledge pending events.
36 */
37DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
38DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
39
40/* Linux <-> Xen vCPU id mapping */
41DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
42EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
43
44unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
45EXPORT_SYMBOL(machine_to_phys_mapping);
46unsigned long machine_to_phys_nr;
47EXPORT_SYMBOL(machine_to_phys_nr);
48
49struct start_info *xen_start_info;
50EXPORT_SYMBOL_GPL(xen_start_info);
51
52struct shared_info xen_dummy_shared_info;
53
54__read_mostly bool xen_have_vector_callback = true;
55EXPORT_SYMBOL_GPL(xen_have_vector_callback);
56
57/*
58 * NB: These need to live in .data or alike because they're used by
59 * xen_prepare_pvh() which runs before clearing the bss.
60 */
61enum xen_domain_type __ro_after_init xen_domain_type = XEN_NATIVE;
62EXPORT_SYMBOL_GPL(xen_domain_type);
63uint32_t __ro_after_init xen_start_flags;
64EXPORT_SYMBOL(xen_start_flags);
65
66/*
67 * Point at some empty memory to start with. We map the real shared_info
68 * page as soon as fixmap is up and running.
69 */
70struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
71
72static int xen_cpu_up_online(unsigned int cpu)
73{
74 xen_init_lock_cpu(cpu);
75 return 0;
76}
77
78int xen_cpuhp_setup(int (*cpu_up_prepare_cb)(unsigned int),
79 int (*cpu_dead_cb)(unsigned int))
80{
81 int rc;
82
83 rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
84 "x86/xen/guest:prepare",
85 cpu_up_prepare_cb, cpu_dead_cb);
86 if (rc >= 0) {
87 rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
88 "x86/xen/guest:online",
89 xen_cpu_up_online, NULL);
90 if (rc < 0)
91 cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
92 }
93
94 return rc >= 0 ? 0 : rc;
95}
96
97static void xen_vcpu_setup_restore(int cpu)
98{
99 /* Any per_cpu(xen_vcpu) is stale, so reset it */
100 xen_vcpu_info_reset(cpu);
101
102 /*
103 * For PVH and PVHVM, setup online VCPUs only. The rest will
104 * be handled by hotplug.
105 */
106 if (xen_pv_domain() ||
107 (xen_hvm_domain() && cpu_online(cpu)))
108 xen_vcpu_setup(cpu);
109}
110
111/*
112 * On restore, set the vcpu placement up again.
113 * If it fails, then we're in a bad state, since
114 * we can't back out from using it...
115 */
116void xen_vcpu_restore(void)
117{
118 int cpu;
119
120 for_each_possible_cpu(cpu) {
121 bool other_cpu = (cpu != smp_processor_id());
122 bool is_up;
123
124 if (xen_vcpu_nr(cpu) == XEN_VCPU_ID_INVALID)
125 continue;
126
127 /* Only Xen 4.5 and higher support this. */
128 is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up,
129 xen_vcpu_nr(cpu), NULL) > 0;
130
131 if (other_cpu && is_up &&
132 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
133 BUG();
134
135 if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
136 xen_setup_runstate_info(cpu);
137
138 xen_vcpu_setup_restore(cpu);
139
140 if (other_cpu && is_up &&
141 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
142 BUG();
143 }
144}
145
146void xen_vcpu_info_reset(int cpu)
147{
148 if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS) {
149 per_cpu(xen_vcpu, cpu) =
150 &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
151 } else {
152 /* Set to NULL so that if somebody accesses it we get an OOPS */
153 per_cpu(xen_vcpu, cpu) = NULL;
154 }
155}
156
157void xen_vcpu_setup(int cpu)
158{
159 struct vcpu_register_vcpu_info info;
160 int err;
161 struct vcpu_info *vcpup;
162
163 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
164
165 /*
166 * This path is called on PVHVM at bootup (xen_hvm_smp_prepare_boot_cpu)
167 * and at restore (xen_vcpu_restore). Also called for hotplugged
168 * VCPUs (cpu_init -> xen_hvm_cpu_prepare_hvm).
169 * However, the hypercall can only be done once (see below) so if a VCPU
170 * is offlined and comes back online then let's not redo the hypercall.
171 *
172 * For PV it is called during restore (xen_vcpu_restore) and bootup
173 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
174 * use this function.
175 */
176 if (xen_hvm_domain()) {
177 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
178 return;
179 }
180
181 vcpup = &per_cpu(xen_vcpu_info, cpu);
182 info.mfn = arbitrary_virt_to_mfn(vcpup);
183 info.offset = offset_in_page(vcpup);
184
185 /*
186 * N.B. This hypercall can _only_ be called once per CPU.
187 * Subsequent calls will error out with -EINVAL. This is due to
188 * the fact that hypervisor has no unregister variant and this
189 * hypercall does not allow to over-write info.mfn and
190 * info.offset.
191 */
192 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
193 &info);
194 if (err)
195 panic("register_vcpu_info failed: cpu=%d err=%d\n", cpu, err);
196
197 per_cpu(xen_vcpu, cpu) = vcpup;
198}
199
200void __init xen_banner(void)
201{
202 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
203 struct xen_extraversion extra;
204
205 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
206
207 pr_info("Booting kernel on %s\n", pv_info.name);
208 pr_info("Xen version: %u.%u%s%s\n",
209 version >> 16, version & 0xffff, extra.extraversion,
210 xen_feature(XENFEAT_mmu_pt_update_preserve_ad)
211 ? " (preserve-AD)" : "");
212}
213
214/* Check if running on Xen version (major, minor) or later */
215bool xen_running_on_version_or_later(unsigned int major, unsigned int minor)
216{
217 unsigned int version;
218
219 if (!xen_domain())
220 return false;
221
222 version = HYPERVISOR_xen_version(XENVER_version, NULL);
223 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
224 ((version >> 16) > major))
225 return true;
226 return false;
227}
228
229void __init xen_add_preferred_consoles(void)
230{
231 add_preferred_console("xenboot", 0, NULL);
232 if (!boot_params.screen_info.orig_video_isVGA)
233 add_preferred_console("tty", 0, NULL);
234 add_preferred_console("hvc", 0, NULL);
235 if (boot_params.screen_info.orig_video_isVGA)
236 add_preferred_console("tty", 0, NULL);
237}
238
239void xen_reboot(int reason)
240{
241 struct sched_shutdown r = { .reason = reason };
242 int cpu;
243
244 for_each_online_cpu(cpu)
245 xen_pmu_finish(cpu);
246
247 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
248 BUG();
249}
250
251static int reboot_reason = SHUTDOWN_reboot;
252static bool xen_legacy_crash;
253void xen_emergency_restart(void)
254{
255 xen_reboot(reboot_reason);
256}
257
258static int
259xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
260{
261 if (!kexec_crash_loaded()) {
262 if (xen_legacy_crash)
263 xen_reboot(SHUTDOWN_crash);
264
265 reboot_reason = SHUTDOWN_crash;
266
267 /*
268 * If panic_timeout==0 then we are supposed to wait forever.
269 * However, to preserve original dom0 behavior we have to drop
270 * into hypervisor. (domU behavior is controlled by its
271 * config file)
272 */
273 if (panic_timeout == 0)
274 panic_timeout = -1;
275 }
276 return NOTIFY_DONE;
277}
278
279static int __init parse_xen_legacy_crash(char *arg)
280{
281 xen_legacy_crash = true;
282 return 0;
283}
284early_param("xen_legacy_crash", parse_xen_legacy_crash);
285
286static struct notifier_block xen_panic_block = {
287 .notifier_call = xen_panic_event,
288 .priority = INT_MIN
289};
290
291int xen_panic_handler_init(void)
292{
293 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
294 return 0;
295}
296
297void xen_pin_vcpu(int cpu)
298{
299 static bool disable_pinning;
300 struct sched_pin_override pin_override;
301 int ret;
302
303 if (disable_pinning)
304 return;
305
306 pin_override.pcpu = cpu;
307 ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
308
309 /* Ignore errors when removing override. */
310 if (cpu < 0)
311 return;
312
313 switch (ret) {
314 case -ENOSYS:
315 pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
316 cpu);
317 disable_pinning = true;
318 break;
319 case -EPERM:
320 WARN(1, "Trying to pin vcpu without having privilege to do so\n");
321 disable_pinning = true;
322 break;
323 case -EINVAL:
324 case -EBUSY:
325 pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
326 cpu);
327 break;
328 case 0:
329 break;
330 default:
331 WARN(1, "rc %d while trying to pin vcpu\n", ret);
332 disable_pinning = true;
333 }
334}
335
336#ifdef CONFIG_HOTPLUG_CPU
337void xen_arch_register_cpu(int num)
338{
339 arch_register_cpu(num);
340}
341EXPORT_SYMBOL(xen_arch_register_cpu);
342
343void xen_arch_unregister_cpu(int num)
344{
345 arch_unregister_cpu(num);
346}
347EXPORT_SYMBOL(xen_arch_unregister_cpu);
348#endif