Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Core of Xen paravirt_ops implementation.
   3 *
   4 * This file contains the xen_paravirt_ops structure itself, and the
   5 * implementations for:
   6 * - privileged instructions
   7 * - interrupt flags
   8 * - segment operations
   9 * - booting and setup
  10 *
  11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12 */
  13
  14#include <linux/cpu.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/smp.h>
  18#include <linux/preempt.h>
  19#include <linux/hardirq.h>
  20#include <linux/percpu.h>
  21#include <linux/delay.h>
  22#include <linux/start_kernel.h>
  23#include <linux/sched.h>
  24#include <linux/kprobes.h>
  25#include <linux/bootmem.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/page-flags.h>
  29#include <linux/highmem.h>
  30#include <linux/console.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/memblock.h>
 
 
 
 
 
 
  34
  35#include <xen/xen.h>
  36#include <xen/interface/xen.h>
  37#include <xen/interface/version.h>
  38#include <xen/interface/physdev.h>
  39#include <xen/interface/vcpu.h>
  40#include <xen/interface/memory.h>
  41#include <xen/features.h>
 
 
  42#include <xen/page.h>
  43#include <xen/hvm.h>
  44#include <xen/hvc-console.h>
  45#include <xen/acpi.h>
  46
  47#include <asm/paravirt.h>
  48#include <asm/apic.h>
  49#include <asm/page.h>
  50#include <asm/xen/pci.h>
  51#include <asm/xen/hypercall.h>
  52#include <asm/xen/hypervisor.h>
  53#include <asm/fixmap.h>
  54#include <asm/processor.h>
  55#include <asm/proto.h>
  56#include <asm/msr-index.h>
  57#include <asm/traps.h>
  58#include <asm/setup.h>
  59#include <asm/desc.h>
  60#include <asm/pgalloc.h>
  61#include <asm/pgtable.h>
  62#include <asm/tlbflush.h>
  63#include <asm/reboot.h>
  64#include <asm/stackprotector.h>
  65#include <asm/hypervisor.h>
  66#include <asm/mwait.h>
  67#include <asm/pci_x86.h>
  68
  69#ifdef CONFIG_ACPI
  70#include <linux/acpi.h>
  71#include <asm/acpi.h>
  72#include <acpi/pdc_intel.h>
  73#include <acpi/processor.h>
  74#include <xen/interface/platform.h>
  75#endif
  76
  77#include "xen-ops.h"
  78#include "mmu.h"
  79#include "smp.h"
  80#include "multicalls.h"
  81
  82EXPORT_SYMBOL_GPL(hypercall_page);
  83
 
 
 
 
 
 
 
  84DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  85DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  86
  87enum xen_domain_type xen_domain_type = XEN_NATIVE;
  88EXPORT_SYMBOL_GPL(xen_domain_type);
 
  89
  90unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
  91EXPORT_SYMBOL(machine_to_phys_mapping);
  92unsigned long  machine_to_phys_nr;
  93EXPORT_SYMBOL(machine_to_phys_nr);
  94
  95struct start_info *xen_start_info;
  96EXPORT_SYMBOL_GPL(xen_start_info);
  97
  98struct shared_info xen_dummy_shared_info;
  99
 100void *xen_initial_gdt;
 101
 102RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
 103__read_mostly int xen_have_vector_callback;
 104EXPORT_SYMBOL_GPL(xen_have_vector_callback);
 105
 106/*
 107 * Point at some empty memory to start with. We map the real shared_info
 108 * page as soon as fixmap is up and running.
 109 */
 110struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
 
 
 
 111
 112/*
 113 * Flag to determine whether vcpu info placement is available on all
 114 * VCPUs.  We assume it is to start with, and then set it to zero on
 115 * the first failure.  This is because it can succeed on some VCPUs
 116 * and not others, since it can involve hypervisor memory allocation,
 117 * or because the guest failed to guarantee all the appropriate
 118 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 119 *
 120 * Note that any particular CPU may be using a placed vcpu structure,
 121 * but we can only optimise if the all are.
 122 *
 123 * 0: not available, 1: available
 124 */
 125static int have_vcpu_info_placement = 1;
 126
 127static void clamp_max_cpus(void)
 128{
 129#ifdef CONFIG_SMP
 130	if (setup_max_cpus > MAX_VIRT_CPUS)
 131		setup_max_cpus = MAX_VIRT_CPUS;
 132#endif
 133}
 134
 135static void xen_vcpu_setup(int cpu)
 
 136{
 137	struct vcpu_register_vcpu_info info;
 138	int err;
 139	struct vcpu_info *vcpup;
 140
 141	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 142
 143	if (cpu < MAX_VIRT_CPUS)
 144		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
 145
 146	if (!have_vcpu_info_placement) {
 147		if (cpu >= MAX_VIRT_CPUS)
 148			clamp_max_cpus();
 149		return;
 
 
 
 
 
 150	}
 151
 152	vcpup = &per_cpu(xen_vcpu_info, cpu);
 153	info.mfn = arbitrary_virt_to_mfn(vcpup);
 154	info.offset = offset_in_page(vcpup);
 155
 156	/* Check to see if the hypervisor will put the vcpu_info
 157	   structure where we want it, which allows direct access via
 158	   a percpu-variable. */
 159	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
 160
 161	if (err) {
 162		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 163		have_vcpu_info_placement = 0;
 164		clamp_max_cpus();
 165	} else {
 166		/* This cpu is using the registered vcpu info, even if
 167		   later ones fail to. */
 168		per_cpu(xen_vcpu, cpu) = vcpup;
 169	}
 170}
 171
 172/*
 173 * On restore, set the vcpu placement up again.
 174 * If it fails, then we're in a bad state, since
 175 * we can't back out from using it...
 176 */
 177void xen_vcpu_restore(void)
 178{
 179	int cpu;
 180
 181	for_each_online_cpu(cpu) {
 182		bool other_cpu = (cpu != smp_processor_id());
 
 183
 184		if (other_cpu &&
 185		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
 186			BUG();
 187
 188		xen_setup_runstate_info(cpu);
 189
 190		if (have_vcpu_info_placement)
 191			xen_vcpu_setup(cpu);
 
 192
 193		if (other_cpu &&
 194		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
 195			BUG();
 196	}
 197}
 198
 199static void __init xen_banner(void)
 200{
 201	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 202	struct xen_extraversion extra;
 203	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 204
 205	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
 206	       pv_info.name);
 207	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 208	       version >> 16, version & 0xffff, extra.extraversion,
 209	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 210}
 211
 212#define CPUID_THERM_POWER_LEAF 6
 213#define APERFMPERF_PRESENT 0
 214
 215static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 216static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 217
 218static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
 219static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 220static __read_mostly unsigned int cpuid_leaf5_edx_val;
 221
 222static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 223		      unsigned int *cx, unsigned int *dx)
 224{
 225	unsigned maskebx = ~0;
 226	unsigned maskecx = ~0;
 227	unsigned maskedx = ~0;
 228	unsigned setecx = 0;
 229	/*
 230	 * Mask out inconvenient features, to try and disable as many
 231	 * unsupported kernel subsystems as possible.
 232	 */
 233	switch (*ax) {
 234	case 1:
 235		maskecx = cpuid_leaf1_ecx_mask;
 236		setecx = cpuid_leaf1_ecx_set_mask;
 237		maskedx = cpuid_leaf1_edx_mask;
 238		break;
 239
 240	case CPUID_MWAIT_LEAF:
 241		/* Synthesize the values.. */
 242		*ax = 0;
 243		*bx = 0;
 244		*cx = cpuid_leaf5_ecx_val;
 245		*dx = cpuid_leaf5_edx_val;
 246		return;
 247
 248	case CPUID_THERM_POWER_LEAF:
 249		/* Disabling APERFMPERF for kernel usage */
 250		maskecx = ~(1 << APERFMPERF_PRESENT);
 251		break;
 252
 253	case 0xb:
 254		/* Suppress extended topology stuff */
 255		maskebx = 0;
 256		break;
 257	}
 258
 259	asm(XEN_EMULATE_PREFIX "cpuid"
 260		: "=a" (*ax),
 261		  "=b" (*bx),
 262		  "=c" (*cx),
 263		  "=d" (*dx)
 264		: "0" (*ax), "2" (*cx));
 265
 266	*bx &= maskebx;
 267	*cx &= maskecx;
 268	*cx |= setecx;
 269	*dx &= maskedx;
 270
 271}
 272
 273static bool __init xen_check_mwait(void)
 274{
 275#if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
 276	!defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
 277	struct xen_platform_op op = {
 278		.cmd			= XENPF_set_processor_pminfo,
 279		.u.set_pminfo.id	= -1,
 280		.u.set_pminfo.type	= XEN_PM_PDC,
 281	};
 282	uint32_t buf[3];
 283	unsigned int ax, bx, cx, dx;
 284	unsigned int mwait_mask;
 285
 286	/* We need to determine whether it is OK to expose the MWAIT
 287	 * capability to the kernel to harvest deeper than C3 states from ACPI
 288	 * _CST using the processor_harvest_xen.c module. For this to work, we
 289	 * need to gather the MWAIT_LEAF values (which the cstate.c code
 290	 * checks against). The hypervisor won't expose the MWAIT flag because
 291	 * it would break backwards compatibility; so we will find out directly
 292	 * from the hardware and hypercall.
 293	 */
 294	if (!xen_initial_domain())
 295		return false;
 296
 297	ax = 1;
 298	cx = 0;
 299
 300	native_cpuid(&ax, &bx, &cx, &dx);
 301
 302	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 303		     (1 << (X86_FEATURE_MWAIT % 32));
 304
 305	if ((cx & mwait_mask) != mwait_mask)
 306		return false;
 307
 308	/* We need to emulate the MWAIT_LEAF and for that we need both
 309	 * ecx and edx. The hypercall provides only partial information.
 310	 */
 311
 312	ax = CPUID_MWAIT_LEAF;
 313	bx = 0;
 314	cx = 0;
 315	dx = 0;
 316
 317	native_cpuid(&ax, &bx, &cx, &dx);
 
 318
 319	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 320	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 321	 */
 322	buf[0] = ACPI_PDC_REVISION_ID;
 323	buf[1] = 1;
 324	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 325
 326	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 327
 328	if ((HYPERVISOR_dom0_op(&op) == 0) &&
 329	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 330		cpuid_leaf5_ecx_val = cx;
 331		cpuid_leaf5_edx_val = dx;
 332	}
 333	return true;
 334#else
 335	return false;
 336#endif
 337}
 338static void __init xen_init_cpuid_mask(void)
 339{
 340	unsigned int ax, bx, cx, dx;
 341	unsigned int xsave_mask;
 342
 343	cpuid_leaf1_edx_mask =
 344		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
 345		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
 346		  (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
 347		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 348
 349	if (!xen_initial_domain())
 350		cpuid_leaf1_edx_mask &=
 351			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
 352			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
 353	ax = 1;
 354	cx = 0;
 355	xen_cpuid(&ax, &bx, &cx, &dx);
 356
 357	xsave_mask =
 358		(1 << (X86_FEATURE_XSAVE % 32)) |
 359		(1 << (X86_FEATURE_OSXSAVE % 32));
 360
 361	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 362	if ((cx & xsave_mask) != xsave_mask)
 363		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
 364	if (xen_check_mwait())
 365		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
 366}
 367
 368static void xen_set_debugreg(int reg, unsigned long val)
 369{
 370	HYPERVISOR_set_debugreg(reg, val);
 371}
 372
 373static unsigned long xen_get_debugreg(int reg)
 374{
 375	return HYPERVISOR_get_debugreg(reg);
 376}
 377
 378static void xen_end_context_switch(struct task_struct *next)
 379{
 380	xen_mc_flush();
 381	paravirt_end_context_switch(next);
 382}
 383
 384static unsigned long xen_store_tr(void)
 385{
 386	return 0;
 387}
 388
 389/*
 390 * Set the page permissions for a particular virtual address.  If the
 391 * address is a vmalloc mapping (or other non-linear mapping), then
 392 * find the linear mapping of the page and also set its protections to
 393 * match.
 394 */
 395static void set_aliased_prot(void *v, pgprot_t prot)
 396{
 397	int level;
 398	pte_t *ptep;
 399	pte_t pte;
 400	unsigned long pfn;
 401	struct page *page;
 402
 403	ptep = lookup_address((unsigned long)v, &level);
 404	BUG_ON(ptep == NULL);
 405
 406	pfn = pte_pfn(*ptep);
 407	page = pfn_to_page(pfn);
 408
 409	pte = pfn_pte(pfn, prot);
 410
 411	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 412		BUG();
 413
 414	if (!PageHighMem(page)) {
 415		void *av = __va(PFN_PHYS(pfn));
 416
 417		if (av != v)
 418			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 419				BUG();
 420	} else
 421		kmap_flush_unused();
 422}
 423
 424static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 425{
 426	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 427	int i;
 428
 429	for(i = 0; i < entries; i += entries_per_page)
 430		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 431}
 432
 433static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 434{
 435	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 436	int i;
 437
 438	for(i = 0; i < entries; i += entries_per_page)
 439		set_aliased_prot(ldt + i, PAGE_KERNEL);
 440}
 441
 442static void xen_set_ldt(const void *addr, unsigned entries)
 443{
 444	struct mmuext_op *op;
 445	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 446
 447	trace_xen_cpu_set_ldt(addr, entries);
 448
 449	op = mcs.args;
 450	op->cmd = MMUEXT_SET_LDT;
 451	op->arg1.linear_addr = (unsigned long)addr;
 452	op->arg2.nr_ents = entries;
 453
 454	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 455
 456	xen_mc_issue(PARAVIRT_LAZY_CPU);
 457}
 458
 459static void xen_load_gdt(const struct desc_ptr *dtr)
 460{
 461	unsigned long va = dtr->address;
 462	unsigned int size = dtr->size + 1;
 463	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 464	unsigned long frames[pages];
 465	int f;
 466
 467	/*
 468	 * A GDT can be up to 64k in size, which corresponds to 8192
 469	 * 8-byte entries, or 16 4k pages..
 470	 */
 471
 472	BUG_ON(size > 65536);
 473	BUG_ON(va & ~PAGE_MASK);
 474
 475	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 476		int level;
 477		pte_t *ptep;
 478		unsigned long pfn, mfn;
 479		void *virt;
 480
 481		/*
 482		 * The GDT is per-cpu and is in the percpu data area.
 483		 * That can be virtually mapped, so we need to do a
 484		 * page-walk to get the underlying MFN for the
 485		 * hypercall.  The page can also be in the kernel's
 486		 * linear range, so we need to RO that mapping too.
 487		 */
 488		ptep = lookup_address(va, &level);
 489		BUG_ON(ptep == NULL);
 490
 491		pfn = pte_pfn(*ptep);
 492		mfn = pfn_to_mfn(pfn);
 493		virt = __va(PFN_PHYS(pfn));
 494
 495		frames[f] = mfn;
 496
 497		make_lowmem_page_readonly((void *)va);
 498		make_lowmem_page_readonly(virt);
 499	}
 500
 501	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 502		BUG();
 503}
 504
 505/*
 506 * load_gdt for early boot, when the gdt is only mapped once
 507 */
 508static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 509{
 510	unsigned long va = dtr->address;
 511	unsigned int size = dtr->size + 1;
 512	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 513	unsigned long frames[pages];
 514	int f;
 515
 516	/*
 517	 * A GDT can be up to 64k in size, which corresponds to 8192
 518	 * 8-byte entries, or 16 4k pages..
 519	 */
 520
 521	BUG_ON(size > 65536);
 522	BUG_ON(va & ~PAGE_MASK);
 523
 524	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 525		pte_t pte;
 526		unsigned long pfn, mfn;
 527
 528		pfn = virt_to_pfn(va);
 529		mfn = pfn_to_mfn(pfn);
 530
 531		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 532
 533		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 534			BUG();
 535
 536		frames[f] = mfn;
 537	}
 538
 539	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 540		BUG();
 541}
 542
 543static void load_TLS_descriptor(struct thread_struct *t,
 544				unsigned int cpu, unsigned int i)
 545{
 546	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
 547	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 548	struct multicall_space mc = __xen_mc_entry(0);
 549
 550	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 551}
 552
 553static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 554{
 555	/*
 556	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
 557	 * and lazy gs handling is enabled, it means we're in a
 558	 * context switch, and %gs has just been saved.  This means we
 559	 * can zero it out to prevent faults on exit from the
 560	 * hypervisor if the next process has no %gs.  Either way, it
 561	 * has been saved, and the new value will get loaded properly.
 562	 * This will go away as soon as Xen has been modified to not
 563	 * save/restore %gs for normal hypercalls.
 564	 *
 565	 * On x86_64, this hack is not used for %gs, because gs points
 566	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
 567	 * must not zero %gs on x86_64
 568	 *
 569	 * For x86_64, we need to zero %fs, otherwise we may get an
 570	 * exception between the new %fs descriptor being loaded and
 571	 * %fs being effectively cleared at __switch_to().
 572	 */
 573	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 574#ifdef CONFIG_X86_32
 575		lazy_load_gs(0);
 576#else
 577		loadsegment(fs, 0);
 578#endif
 579	}
 580
 581	xen_mc_batch();
 582
 583	load_TLS_descriptor(t, cpu, 0);
 584	load_TLS_descriptor(t, cpu, 1);
 585	load_TLS_descriptor(t, cpu, 2);
 586
 587	xen_mc_issue(PARAVIRT_LAZY_CPU);
 588}
 589
 590#ifdef CONFIG_X86_64
 591static void xen_load_gs_index(unsigned int idx)
 592{
 593	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 594		BUG();
 595}
 596#endif
 597
 598static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 599				const void *ptr)
 600{
 601	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 602	u64 entry = *(u64 *)ptr;
 603
 604	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 605
 606	preempt_disable();
 607
 608	xen_mc_flush();
 609	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 610		BUG();
 611
 612	preempt_enable();
 613}
 614
 615static int cvt_gate_to_trap(int vector, const gate_desc *val,
 616			    struct trap_info *info)
 617{
 618	unsigned long addr;
 619
 620	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 621		return 0;
 622
 623	info->vector = vector;
 624
 625	addr = gate_offset(*val);
 626#ifdef CONFIG_X86_64
 627	/*
 628	 * Look for known traps using IST, and substitute them
 629	 * appropriately.  The debugger ones are the only ones we care
 630	 * about.  Xen will handle faults like double_fault and
 631	 * machine_check, so we should never see them.  Warn if
 632	 * there's an unexpected IST-using fault handler.
 633	 */
 634	if (addr == (unsigned long)debug)
 635		addr = (unsigned long)xen_debug;
 636	else if (addr == (unsigned long)int3)
 637		addr = (unsigned long)xen_int3;
 638	else if (addr == (unsigned long)stack_segment)
 639		addr = (unsigned long)xen_stack_segment;
 640	else if (addr == (unsigned long)double_fault ||
 641		 addr == (unsigned long)nmi) {
 642		/* Don't need to handle these */
 643		return 0;
 644#ifdef CONFIG_X86_MCE
 645	} else if (addr == (unsigned long)machine_check) {
 646		return 0;
 647#endif
 648	} else {
 649		/* Some other trap using IST? */
 650		if (WARN_ON(val->ist != 0))
 651			return 0;
 652	}
 653#endif	/* CONFIG_X86_64 */
 654	info->address = addr;
 655
 656	info->cs = gate_segment(*val);
 657	info->flags = val->dpl;
 658	/* interrupt gates clear IF */
 659	if (val->type == GATE_INTERRUPT)
 660		info->flags |= 1 << 2;
 661
 662	return 1;
 663}
 664
 665/* Locations of each CPU's IDT */
 666static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 667
 668/* Set an IDT entry.  If the entry is part of the current IDT, then
 669   also update Xen. */
 670static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 671{
 672	unsigned long p = (unsigned long)&dt[entrynum];
 673	unsigned long start, end;
 674
 675	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 676
 677	preempt_disable();
 678
 679	start = __this_cpu_read(idt_desc.address);
 680	end = start + __this_cpu_read(idt_desc.size) + 1;
 681
 682	xen_mc_flush();
 683
 684	native_write_idt_entry(dt, entrynum, g);
 685
 686	if (p >= start && (p + 8) <= end) {
 687		struct trap_info info[2];
 688
 689		info[1].address = 0;
 690
 691		if (cvt_gate_to_trap(entrynum, g, &info[0]))
 692			if (HYPERVISOR_set_trap_table(info))
 693				BUG();
 694	}
 695
 696	preempt_enable();
 697}
 698
 699static void xen_convert_trap_info(const struct desc_ptr *desc,
 700				  struct trap_info *traps)
 701{
 702	unsigned in, out, count;
 703
 704	count = (desc->size+1) / sizeof(gate_desc);
 705	BUG_ON(count > 256);
 706
 707	for (in = out = 0; in < count; in++) {
 708		gate_desc *entry = (gate_desc*)(desc->address) + in;
 709
 710		if (cvt_gate_to_trap(in, entry, &traps[out]))
 711			out++;
 712	}
 713	traps[out].address = 0;
 714}
 715
 716void xen_copy_trap_info(struct trap_info *traps)
 717{
 718	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
 719
 720	xen_convert_trap_info(desc, traps);
 721}
 722
 723/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 724   hold a spinlock to protect the static traps[] array (static because
 725   it avoids allocation, and saves stack space). */
 726static void xen_load_idt(const struct desc_ptr *desc)
 727{
 728	static DEFINE_SPINLOCK(lock);
 729	static struct trap_info traps[257];
 730
 731	trace_xen_cpu_load_idt(desc);
 732
 733	spin_lock(&lock);
 734
 735	__get_cpu_var(idt_desc) = *desc;
 736
 737	xen_convert_trap_info(desc, traps);
 738
 739	xen_mc_flush();
 740	if (HYPERVISOR_set_trap_table(traps))
 741		BUG();
 742
 743	spin_unlock(&lock);
 744}
 745
 746/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 747   they're handled differently. */
 748static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 749				const void *desc, int type)
 750{
 751	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 752
 753	preempt_disable();
 754
 755	switch (type) {
 756	case DESC_LDT:
 757	case DESC_TSS:
 758		/* ignore */
 759		break;
 760
 761	default: {
 762		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 763
 764		xen_mc_flush();
 765		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 766			BUG();
 767	}
 768
 769	}
 770
 771	preempt_enable();
 772}
 773
 774/*
 775 * Version of write_gdt_entry for use at early boot-time needed to
 776 * update an entry as simply as possible.
 777 */
 778static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 779					    const void *desc, int type)
 780{
 781	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 782
 783	switch (type) {
 784	case DESC_LDT:
 785	case DESC_TSS:
 786		/* ignore */
 787		break;
 788
 789	default: {
 790		xmaddr_t maddr = virt_to_machine(&dt[entry]);
 791
 792		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 793			dt[entry] = *(struct desc_struct *)desc;
 794	}
 795
 796	}
 797}
 798
 799static void xen_load_sp0(struct tss_struct *tss,
 800			 struct thread_struct *thread)
 801{
 802	struct multicall_space mcs;
 803
 804	mcs = xen_mc_entry(0);
 805	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 806	xen_mc_issue(PARAVIRT_LAZY_CPU);
 807}
 808
 809static void xen_set_iopl_mask(unsigned mask)
 810{
 811	struct physdev_set_iopl set_iopl;
 812
 813	/* Force the change at ring 0. */
 814	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 815	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 816}
 817
 818static void xen_io_delay(void)
 819{
 820}
 821
 822#ifdef CONFIG_X86_LOCAL_APIC
 823static unsigned long xen_set_apic_id(unsigned int x)
 824{
 825	WARN_ON(1);
 826	return x;
 827}
 828static unsigned int xen_get_apic_id(unsigned long x)
 829{
 830	return ((x)>>24) & 0xFFu;
 831}
 832static u32 xen_apic_read(u32 reg)
 833{
 834	struct xen_platform_op op = {
 835		.cmd = XENPF_get_cpuinfo,
 836		.interface_version = XENPF_INTERFACE_VERSION,
 837		.u.pcpu_info.xen_cpuid = 0,
 838	};
 839	int ret = 0;
 840
 841	/* Shouldn't need this as APIC is turned off for PV, and we only
 842	 * get called on the bootup processor. But just in case. */
 843	if (!xen_initial_domain() || smp_processor_id())
 844		return 0;
 845
 846	if (reg == APIC_LVR)
 847		return 0x10;
 848
 849	if (reg != APIC_ID)
 850		return 0;
 851
 852	ret = HYPERVISOR_dom0_op(&op);
 853	if (ret)
 854		return 0;
 855
 856	return op.u.pcpu_info.apic_id << 24;
 857}
 858
 859static void xen_apic_write(u32 reg, u32 val)
 860{
 861	/* Warn to see if there's any stray references */
 862	WARN_ON(1);
 863}
 864
 865static u64 xen_apic_icr_read(void)
 866{
 867	return 0;
 868}
 869
 870static void xen_apic_icr_write(u32 low, u32 id)
 871{
 872	/* Warn to see if there's any stray references */
 873	WARN_ON(1);
 874}
 875
 876static void xen_apic_wait_icr_idle(void)
 877{
 878        return;
 879}
 880
 881static u32 xen_safe_apic_wait_icr_idle(void)
 882{
 883        return 0;
 884}
 885
 886static void set_xen_basic_apic_ops(void)
 887{
 888	apic->read = xen_apic_read;
 889	apic->write = xen_apic_write;
 890	apic->icr_read = xen_apic_icr_read;
 891	apic->icr_write = xen_apic_icr_write;
 892	apic->wait_icr_idle = xen_apic_wait_icr_idle;
 893	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
 894	apic->set_apic_id = xen_set_apic_id;
 895	apic->get_apic_id = xen_get_apic_id;
 896
 897#ifdef CONFIG_SMP
 898	apic->send_IPI_allbutself = xen_send_IPI_allbutself;
 899	apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
 900	apic->send_IPI_mask = xen_send_IPI_mask;
 901	apic->send_IPI_all = xen_send_IPI_all;
 902	apic->send_IPI_self = xen_send_IPI_self;
 903#endif
 904}
 905
 906#endif
 907
 908static void xen_clts(void)
 909{
 910	struct multicall_space mcs;
 911
 912	mcs = xen_mc_entry(0);
 913
 914	MULTI_fpu_taskswitch(mcs.mc, 0);
 915
 916	xen_mc_issue(PARAVIRT_LAZY_CPU);
 917}
 918
 919static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 920
 921static unsigned long xen_read_cr0(void)
 922{
 923	unsigned long cr0 = this_cpu_read(xen_cr0_value);
 924
 925	if (unlikely(cr0 == 0)) {
 926		cr0 = native_read_cr0();
 927		this_cpu_write(xen_cr0_value, cr0);
 928	}
 929
 930	return cr0;
 931}
 932
 933static void xen_write_cr0(unsigned long cr0)
 934{
 935	struct multicall_space mcs;
 936
 937	this_cpu_write(xen_cr0_value, cr0);
 938
 939	/* Only pay attention to cr0.TS; everything else is
 940	   ignored. */
 941	mcs = xen_mc_entry(0);
 942
 943	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 944
 945	xen_mc_issue(PARAVIRT_LAZY_CPU);
 946}
 947
 948static void xen_write_cr4(unsigned long cr4)
 949{
 950	cr4 &= ~X86_CR4_PGE;
 951	cr4 &= ~X86_CR4_PSE;
 952
 953	native_write_cr4(cr4);
 
 
 
 
 954}
 955
 956static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
 
 957{
 958	int ret;
 959
 960	ret = 0;
 961
 962	switch (msr) {
 963#ifdef CONFIG_X86_64
 964		unsigned which;
 965		u64 base;
 966
 967	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
 968	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
 969	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
 970
 971	set:
 972		base = ((u64)high << 32) | low;
 973		if (HYPERVISOR_set_segment_base(which, base) != 0)
 974			ret = -EIO;
 975		break;
 976#endif
 977
 978	case MSR_STAR:
 979	case MSR_CSTAR:
 980	case MSR_LSTAR:
 981	case MSR_SYSCALL_MASK:
 982	case MSR_IA32_SYSENTER_CS:
 983	case MSR_IA32_SYSENTER_ESP:
 984	case MSR_IA32_SYSENTER_EIP:
 985		/* Fast syscall setup is all done in hypercalls, so
 986		   these are all ignored.  Stub them out here to stop
 987		   Xen console noise. */
 988		break;
 989
 990	case MSR_IA32_CR_PAT:
 991		if (smp_processor_id() == 0)
 992			xen_set_pat(((u64)high << 32) | low);
 993		break;
 994
 995	default:
 996		ret = native_write_msr_safe(msr, low, high);
 997	}
 998
 999	return ret;
 
 
 
 
1000}
1001
1002void xen_setup_shared_info(void)
1003{
1004	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1005		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1006			   xen_start_info->shared_info);
1007
1008		HYPERVISOR_shared_info =
1009			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1010	} else
1011		HYPERVISOR_shared_info =
1012			(struct shared_info *)__va(xen_start_info->shared_info);
1013
1014#ifndef CONFIG_SMP
1015	/* In UP this is as good a place as any to set up shared info */
1016	xen_setup_vcpu_info_placement();
1017#endif
1018
1019	xen_setup_mfn_list_list();
1020}
1021
1022/* This is called once we have the cpu_possible_mask */
1023void xen_setup_vcpu_info_placement(void)
1024{
 
1025	int cpu;
1026
1027	for_each_possible_cpu(cpu)
1028		xen_vcpu_setup(cpu);
1029
1030	/* xen_vcpu_setup managed to place the vcpu_info within the
1031	   percpu area for all cpus, so make use of it */
1032	if (have_vcpu_info_placement) {
1033		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1034		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1035		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1036		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1037		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1038	}
1039}
1040
1041static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1042			  unsigned long addr, unsigned len)
1043{
1044	char *start, *end, *reloc;
1045	unsigned ret;
1046
1047	start = end = reloc = NULL;
1048
1049#define SITE(op, x)							\
1050	case PARAVIRT_PATCH(op.x):					\
1051	if (have_vcpu_info_placement) {					\
1052		start = (char *)xen_##x##_direct;			\
1053		end = xen_##x##_direct_end;				\
1054		reloc = xen_##x##_direct_reloc;				\
1055	}								\
1056	goto patch_site
1057
1058	switch (type) {
1059		SITE(pv_irq_ops, irq_enable);
1060		SITE(pv_irq_ops, irq_disable);
1061		SITE(pv_irq_ops, save_fl);
1062		SITE(pv_irq_ops, restore_fl);
1063#undef SITE
1064
1065	patch_site:
1066		if (start == NULL || (end-start) > len)
1067			goto default_patch;
1068
1069		ret = paravirt_patch_insns(insnbuf, len, start, end);
1070
1071		/* Note: because reloc is assigned from something that
1072		   appears to be an array, gcc assumes it's non-null,
1073		   but doesn't know its relationship with start and
1074		   end. */
1075		if (reloc > start && reloc < end) {
1076			int reloc_off = reloc - start;
1077			long *relocp = (long *)(insnbuf + reloc_off);
1078			long delta = start - (char *)addr;
1079
1080			*relocp += delta;
1081		}
1082		break;
1083
1084	default_patch:
1085	default:
1086		ret = paravirt_patch_default(type, clobbers, insnbuf,
1087					     addr, len);
1088		break;
1089	}
1090
1091	return ret;
1092}
1093
1094static const struct pv_info xen_info __initconst = {
1095	.paravirt_enabled = 1,
1096	.shared_kernel_pmd = 0,
1097
1098#ifdef CONFIG_X86_64
1099	.extra_user_64bit_cs = FLAT_USER_CS64,
1100#endif
1101
1102	.name = "Xen",
1103};
1104
1105static const struct pv_init_ops xen_init_ops __initconst = {
1106	.patch = xen_patch,
1107};
1108
1109static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1110	.cpuid = xen_cpuid,
1111
1112	.set_debugreg = xen_set_debugreg,
1113	.get_debugreg = xen_get_debugreg,
1114
1115	.clts = xen_clts,
1116
1117	.read_cr0 = xen_read_cr0,
1118	.write_cr0 = xen_write_cr0,
1119
1120	.read_cr4 = native_read_cr4,
1121	.read_cr4_safe = native_read_cr4_safe,
1122	.write_cr4 = xen_write_cr4,
1123
1124	.wbinvd = native_wbinvd,
1125
1126	.read_msr = native_read_msr_safe,
1127	.rdmsr_regs = native_rdmsr_safe_regs,
1128	.write_msr = xen_write_msr_safe,
1129	.wrmsr_regs = native_wrmsr_safe_regs,
1130
1131	.read_tsc = native_read_tsc,
1132	.read_pmc = native_read_pmc,
1133
1134	.iret = xen_iret,
1135	.irq_enable_sysexit = xen_sysexit,
1136#ifdef CONFIG_X86_64
1137	.usergs_sysret32 = xen_sysret32,
1138	.usergs_sysret64 = xen_sysret64,
1139#endif
1140
1141	.load_tr_desc = paravirt_nop,
1142	.set_ldt = xen_set_ldt,
1143	.load_gdt = xen_load_gdt,
1144	.load_idt = xen_load_idt,
1145	.load_tls = xen_load_tls,
1146#ifdef CONFIG_X86_64
1147	.load_gs_index = xen_load_gs_index,
1148#endif
1149
1150	.alloc_ldt = xen_alloc_ldt,
1151	.free_ldt = xen_free_ldt,
1152
1153	.store_gdt = native_store_gdt,
1154	.store_idt = native_store_idt,
1155	.store_tr = xen_store_tr,
1156
1157	.write_ldt_entry = xen_write_ldt_entry,
1158	.write_gdt_entry = xen_write_gdt_entry,
1159	.write_idt_entry = xen_write_idt_entry,
1160	.load_sp0 = xen_load_sp0,
1161
1162	.set_iopl_mask = xen_set_iopl_mask,
1163	.io_delay = xen_io_delay,
1164
1165	/* Xen takes care of %gs when switching to usermode for us */
1166	.swapgs = paravirt_nop,
1167
1168	.start_context_switch = paravirt_start_context_switch,
1169	.end_context_switch = xen_end_context_switch,
1170};
1171
1172static const struct pv_apic_ops xen_apic_ops __initconst = {
1173#ifdef CONFIG_X86_LOCAL_APIC
1174	.startup_ipi_hook = paravirt_nop,
1175#endif
1176};
1177
1178static void xen_reboot(int reason)
1179{
1180	struct sched_shutdown r = { .reason = reason };
1181
1182	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1183		BUG();
1184}
1185
1186static void xen_restart(char *msg)
 
 
1187{
1188	xen_reboot(SHUTDOWN_reboot);
1189}
1190
1191static void xen_emergency_restart(void)
1192{
1193	xen_reboot(SHUTDOWN_reboot);
1194}
1195
1196static void xen_machine_halt(void)
1197{
1198	xen_reboot(SHUTDOWN_poweroff);
1199}
 
1200
1201static void xen_machine_power_off(void)
1202{
1203	if (pm_power_off)
1204		pm_power_off();
1205	xen_reboot(SHUTDOWN_poweroff);
1206}
1207
1208static void xen_crash_shutdown(struct pt_regs *regs)
1209{
1210	xen_reboot(SHUTDOWN_crash);
 
 
 
 
 
 
 
1211}
1212
1213static int
1214xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1215{
1216	xen_reboot(SHUTDOWN_crash);
1217	return NOTIFY_DONE;
1218}
 
1219
1220static struct notifier_block xen_panic_block = {
1221	.notifier_call= xen_panic_event,
 
1222};
1223
1224int xen_panic_handler_init(void)
1225{
1226	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1227	return 0;
1228}
1229
1230static const struct machine_ops xen_machine_ops __initconst = {
1231	.restart = xen_restart,
1232	.halt = xen_machine_halt,
1233	.power_off = xen_machine_power_off,
1234	.shutdown = xen_machine_halt,
1235	.crash_shutdown = xen_crash_shutdown,
1236	.emergency_restart = xen_emergency_restart,
1237};
1238
1239/*
1240 * Set up the GDT and segment registers for -fstack-protector.  Until
1241 * we do this, we have to be careful not to call any stack-protected
1242 * function, which is most of the kernel.
1243 */
1244static void __init xen_setup_stackprotector(void)
1245{
1246	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1247	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1248
1249	setup_stack_canary_segment(0);
1250	switch_to_new_gdt(0);
1251
1252	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1253	pv_cpu_ops.load_gdt = xen_load_gdt;
1254}
1255
1256/* First C function to be called on Xen boot */
1257asmlinkage void __init xen_start_kernel(void)
1258{
1259	struct physdev_set_iopl set_iopl;
1260	int rc;
1261	pgd_t *pgd;
1262
1263	if (!xen_start_info)
1264		return;
1265
1266	xen_domain_type = XEN_PV_DOMAIN;
1267
1268	xen_setup_machphys_mapping();
1269
1270	/* Install Xen paravirt ops */
1271	pv_info = xen_info;
1272	pv_init_ops = xen_init_ops;
1273	pv_cpu_ops = xen_cpu_ops;
1274	pv_apic_ops = xen_apic_ops;
1275
1276	x86_init.resources.memory_setup = xen_memory_setup;
1277	x86_init.oem.arch_setup = xen_arch_setup;
1278	x86_init.oem.banner = xen_banner;
1279
1280	xen_init_time_ops();
1281
1282	/*
1283	 * Set up some pagetable state before starting to set any ptes.
1284	 */
1285
1286	xen_init_mmu_ops();
1287
1288	/* Prevent unwanted bits from being set in PTEs. */
1289	__supported_pte_mask &= ~_PAGE_GLOBAL;
1290#if 0
1291	if (!xen_initial_domain())
1292#endif
1293		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1294
1295	__supported_pte_mask |= _PAGE_IOMAP;
1296
1297	/*
1298	 * Prevent page tables from being allocated in highmem, even
1299	 * if CONFIG_HIGHPTE is enabled.
1300	 */
1301	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1302
1303	/* Work out if we support NX */
1304	x86_configure_nx();
1305
1306	xen_setup_features();
1307
1308	/* Get mfn list */
1309	if (!xen_feature(XENFEAT_auto_translated_physmap))
1310		xen_build_dynamic_phys_to_machine();
1311
1312	/*
1313	 * Set up kernel GDT and segment registers, mainly so that
1314	 * -fstack-protector code can be executed.
1315	 */
1316	xen_setup_stackprotector();
1317
1318	xen_init_irq_ops();
1319	xen_init_cpuid_mask();
1320
1321#ifdef CONFIG_X86_LOCAL_APIC
1322	/*
1323	 * set up the basic apic ops.
1324	 */
1325	set_xen_basic_apic_ops();
1326#endif
1327
1328	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1329		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1330		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1331	}
1332
1333	machine_ops = xen_machine_ops;
1334
1335	/*
1336	 * The only reliable way to retain the initial address of the
1337	 * percpu gdt_page is to remember it here, so we can go and
1338	 * mark it RW later, when the initial percpu area is freed.
1339	 */
1340	xen_initial_gdt = &per_cpu(gdt_page, 0);
1341
1342	xen_smp_init();
1343
1344#ifdef CONFIG_ACPI_NUMA
1345	/*
1346	 * The pages we from Xen are not related to machine pages, so
1347	 * any NUMA information the kernel tries to get from ACPI will
1348	 * be meaningless.  Prevent it from trying.
1349	 */
1350	acpi_numa = -1;
1351#endif
1352
1353	pgd = (pgd_t *)xen_start_info->pt_base;
1354
1355	/* Don't do the full vcpu_info placement stuff until we have a
1356	   possible map and a non-dummy shared_info. */
1357	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1358
1359	local_irq_disable();
1360	early_boot_irqs_disabled = true;
1361
1362	xen_raw_console_write("mapping kernel into physical memory\n");
1363	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1364
1365	/* Allocate and initialize top and mid mfn levels for p2m structure */
1366	xen_build_mfn_list_list();
1367
1368	/* keep using Xen gdt for now; no urgent need to change it */
1369
1370#ifdef CONFIG_X86_32
1371	pv_info.kernel_rpl = 1;
1372	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1373		pv_info.kernel_rpl = 0;
1374#else
1375	pv_info.kernel_rpl = 0;
1376#endif
1377	/* set the limit of our address space */
1378	xen_reserve_top();
1379
1380	/* We used to do this in xen_arch_setup, but that is too late on AMD
1381	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1382	 * which pokes 0xcf8 port.
1383	 */
1384	set_iopl.iopl = 1;
1385	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1386	if (rc != 0)
1387		xen_raw_printk("physdev_op failed %d\n", rc);
1388
1389#ifdef CONFIG_X86_32
1390	/* set up basic CPUID stuff */
1391	cpu_detect(&new_cpu_data);
1392	new_cpu_data.hard_math = 1;
1393	new_cpu_data.wp_works_ok = 1;
1394	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1395#endif
1396
1397	/* Poke various useful things into boot_params */
1398	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1399	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1400		? __pa(xen_start_info->mod_start) : 0;
1401	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1402	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1403
1404	if (!xen_initial_domain()) {
1405		add_preferred_console("xenboot", 0, NULL);
1406		add_preferred_console("tty", 0, NULL);
1407		add_preferred_console("hvc", 0, NULL);
1408		if (pci_xen)
1409			x86_init.pci.arch_init = pci_xen_init;
1410	} else {
1411		const struct dom0_vga_console_info *info =
1412			(void *)((char *)xen_start_info +
1413				 xen_start_info->console.dom0.info_off);
1414
1415		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1416		xen_start_info->console.domU.mfn = 0;
1417		xen_start_info->console.domU.evtchn = 0;
1418
1419		xen_init_apic();
1420
1421		/* Make sure ACS will be enabled */
1422		pci_request_acs();
1423
1424		xen_acpi_sleep_register();
1425
1426		/* Avoid searching for BIOS MP tables */
1427		x86_init.mpparse.find_smp_config = x86_init_noop;
1428		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1429	}
1430#ifdef CONFIG_PCI
1431	/* PCI BIOS service won't work from a PV guest. */
1432	pci_probe &= ~PCI_PROBE_BIOS;
1433#endif
1434	xen_raw_console_write("about to get started...\n");
1435
1436	xen_setup_runstate_info(0);
1437
1438	/* Start the world */
1439#ifdef CONFIG_X86_32
1440	i386_start_kernel();
1441#else
1442	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1443#endif
1444}
1445
1446static int init_hvm_pv_info(int *major, int *minor)
1447{
1448	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1449	u64 pfn;
1450
1451	base = xen_cpuid_base();
1452	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1453
1454	*major = eax >> 16;
1455	*minor = eax & 0xffff;
1456	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1457
1458	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1459
1460	pfn = __pa(hypercall_page);
1461	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1462
1463	xen_setup_features();
1464
1465	pv_info.name = "Xen HVM";
1466
1467	xen_domain_type = XEN_HVM_DOMAIN;
1468
1469	return 0;
1470}
1471
1472void __ref xen_hvm_init_shared_info(void)
1473{
1474	int cpu;
1475	struct xen_add_to_physmap xatp;
1476	static struct shared_info *shared_info_page = 0;
1477
1478	if (!shared_info_page)
1479		shared_info_page = (struct shared_info *)
1480			extend_brk(PAGE_SIZE, PAGE_SIZE);
1481	xatp.domid = DOMID_SELF;
1482	xatp.idx = 0;
1483	xatp.space = XENMAPSPACE_shared_info;
1484	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1485	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1486		BUG();
1487
1488	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1489
1490	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1491	 * page, we use it in the event channel upcall and in some pvclock
1492	 * related functions. We don't need the vcpu_info placement
1493	 * optimizations because we don't use any pv_mmu or pv_irq op on
1494	 * HVM.
1495	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1496	 * online but xen_hvm_init_shared_info is run at resume time too and
1497	 * in that case multiple vcpus might be online. */
1498	for_each_online_cpu(cpu) {
1499		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1500	}
1501}
1502
1503#ifdef CONFIG_XEN_PVHVM
1504static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1505				    unsigned long action, void *hcpu)
1506{
1507	int cpu = (long)hcpu;
1508	switch (action) {
1509	case CPU_UP_PREPARE:
1510		xen_vcpu_setup(cpu);
1511		if (xen_have_vector_callback)
1512			xen_init_lock_cpu(cpu);
 
 
 
 
1513		break;
1514	default:
1515		break;
 
 
 
1516	}
1517	return NOTIFY_OK;
1518}
1519
1520static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1521	.notifier_call	= xen_hvm_cpu_notify,
1522};
1523
1524static void __init xen_hvm_guest_init(void)
1525{
1526	int r;
1527	int major, minor;
1528
1529	r = init_hvm_pv_info(&major, &minor);
1530	if (r < 0)
1531		return;
1532
1533	xen_hvm_init_shared_info();
1534
1535	if (xen_feature(XENFEAT_hvm_callback_vector))
1536		xen_have_vector_callback = 1;
1537	xen_hvm_smp_init();
1538	register_cpu_notifier(&xen_hvm_cpu_notifier);
1539	xen_unplug_emulated_devices();
1540	x86_init.irqs.intr_init = xen_init_IRQ;
1541	xen_hvm_init_time_ops();
1542	xen_hvm_init_mmu_ops();
1543}
1544
1545static bool __init xen_hvm_platform(void)
 
1546{
1547	if (xen_pv_domain())
1548		return false;
1549
1550	if (!xen_cpuid_base())
1551		return false;
1552
1553	return true;
1554}
 
1555
1556bool xen_hvm_need_lapic(void)
1557{
1558	if (xen_pv_domain())
1559		return false;
1560	if (!xen_hvm_domain())
1561		return false;
1562	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1563		return false;
1564	return true;
1565}
1566EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1567
1568const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1569	.name			= "Xen HVM",
1570	.detect			= xen_hvm_platform,
1571	.init_platform		= xen_hvm_guest_init,
1572};
1573EXPORT_SYMBOL(x86_hyper_xen_hvm);
1574#endif
v6.2
  1// SPDX-License-Identifier: GPL-2.0
 
 
 
 
 
 
 
 
 
 
 
  2
  3#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4#include <linux/memblock.h>
  5#endif
  6#include <linux/console.h>
  7#include <linux/cpu.h>
  8#include <linux/kexec.h>
  9#include <linux/slab.h>
 10#include <linux/panic_notifier.h>
 11
 12#include <xen/xen.h>
 
 
 
 
 
 13#include <xen/features.h>
 14#include <xen/interface/sched.h>
 15#include <xen/interface/version.h>
 16#include <xen/page.h>
 17
 
 
 
 
 
 
 
 18#include <asm/xen/hypercall.h>
 19#include <asm/xen/hypervisor.h>
 20#include <asm/cpu.h>
 21#include <asm/e820/api.h> 
 
 
 
 22#include <asm/setup.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24#include "xen-ops.h"
 
 25#include "smp.h"
 26#include "pmu.h"
 27
 28EXPORT_SYMBOL_GPL(hypercall_page);
 29
 30/*
 31 * Pointer to the xen_vcpu_info structure or
 32 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
 33 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
 34 * but during boot it is switched to point to xen_vcpu_info.
 35 * The pointer is used in __xen_evtchn_do_upcall to acknowledge pending events.
 36 */
 37DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
 38DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
 39
 40/* Linux <-> Xen vCPU id mapping */
 41DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
 42EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
 43
 44unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
 45EXPORT_SYMBOL(machine_to_phys_mapping);
 46unsigned long  machine_to_phys_nr;
 47EXPORT_SYMBOL(machine_to_phys_nr);
 48
 49struct start_info *xen_start_info;
 50EXPORT_SYMBOL_GPL(xen_start_info);
 51
 52struct shared_info xen_dummy_shared_info;
 53
 54__read_mostly bool xen_have_vector_callback = true;
 
 
 
 55EXPORT_SYMBOL_GPL(xen_have_vector_callback);
 56
 57/*
 58 * NB: These need to live in .data or alike because they're used by
 59 * xen_prepare_pvh() which runs before clearing the bss.
 60 */
 61enum xen_domain_type __ro_after_init xen_domain_type = XEN_NATIVE;
 62EXPORT_SYMBOL_GPL(xen_domain_type);
 63uint32_t __ro_after_init xen_start_flags;
 64EXPORT_SYMBOL(xen_start_flags);
 65
 66/*
 67 * Point at some empty memory to start with. We map the real shared_info
 68 * page as soon as fixmap is up and running.
 
 
 
 
 
 
 
 
 
 69 */
 70struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
 71
 72static int xen_cpu_up_online(unsigned int cpu)
 73{
 74	xen_init_lock_cpu(cpu);
 75	return 0;
 
 
 76}
 77
 78int xen_cpuhp_setup(int (*cpu_up_prepare_cb)(unsigned int),
 79		    int (*cpu_dead_cb)(unsigned int))
 80{
 81	int rc;
 
 
 
 
 
 
 
 82
 83	rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
 84				       "x86/xen/guest:prepare",
 85				       cpu_up_prepare_cb, cpu_dead_cb);
 86	if (rc >= 0) {
 87		rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 88					       "x86/xen/guest:online",
 89					       xen_cpu_up_online, NULL);
 90		if (rc < 0)
 91			cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
 92	}
 93
 94	return rc >= 0 ? 0 : rc;
 95}
 
 96
 97static void xen_vcpu_setup_restore(int cpu)
 98{
 99	/* Any per_cpu(xen_vcpu) is stale, so reset it */
100	xen_vcpu_info_reset(cpu);
101
102	/*
103	 * For PVH and PVHVM, setup online VCPUs only. The rest will
104	 * be handled by hotplug.
105	 */
106	if (xen_pv_domain() ||
107	    (xen_hvm_domain() && cpu_online(cpu)))
108		xen_vcpu_setup(cpu);
 
 
109}
110
111/*
112 * On restore, set the vcpu placement up again.
113 * If it fails, then we're in a bad state, since
114 * we can't back out from using it...
115 */
116void xen_vcpu_restore(void)
117{
118	int cpu;
119
120	for_each_possible_cpu(cpu) {
121		bool other_cpu = (cpu != smp_processor_id());
122		bool is_up;
123
124		if (xen_vcpu_nr(cpu) == XEN_VCPU_ID_INVALID)
125			continue;
 
 
 
126
127		/* Only Xen 4.5 and higher support this. */
128		is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up,
129					   xen_vcpu_nr(cpu), NULL) > 0;
130
131		if (other_cpu && is_up &&
132		    HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
133			BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
135		if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
136			xen_setup_runstate_info(cpu);
137
138		xen_vcpu_setup_restore(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
140		if (other_cpu && is_up &&
141		    HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
142			BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143	}
 
 
 
144}
145
146void xen_vcpu_info_reset(int cpu)
 
 
 
147{
148	if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS) {
149		per_cpu(xen_vcpu, cpu) =
150			&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
151	} else {
152		/* Set to NULL so that if somebody accesses it we get an OOPS */
153		per_cpu(xen_vcpu, cpu) = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154	}
 
 
 
155}
156
157void xen_vcpu_setup(int cpu)
 
158{
159	struct vcpu_register_vcpu_info info;
160	int err;
161	struct vcpu_info *vcpup;
162
163	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 
164
 
 
165	/*
166	 * This path is called on PVHVM at bootup (xen_hvm_smp_prepare_boot_cpu)
167	 * and at restore (xen_vcpu_restore). Also called for hotplugged
168	 * VCPUs (cpu_init -> xen_hvm_cpu_prepare_hvm).
169	 * However, the hypercall can only be done once (see below) so if a VCPU
170	 * is offlined and comes back online then let's not redo the hypercall.
 
 
 
 
 
 
 
171	 *
172	 * For PV it is called during restore (xen_vcpu_restore) and bootup
173	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
174	 * use this function.
175	 */
176	if (xen_hvm_domain()) {
177		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
178			return;
 
 
 
179	}
180
181	vcpup = &per_cpu(xen_vcpu_info, cpu);
182	info.mfn = arbitrary_virt_to_mfn(vcpup);
183	info.offset = offset_in_page(vcpup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
 
185	/*
186	 * N.B. This hypercall can _only_ be called once per CPU.
187	 * Subsequent calls will error out with -EINVAL. This is due to
188	 * the fact that hypervisor has no unregister variant and this
189	 * hypercall does not allow to over-write info.mfn and
190	 * info.offset.
191	 */
192	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
193				 &info);
194	if (err)
195		panic("register_vcpu_info failed: cpu=%d err=%d\n", cpu, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
197	per_cpu(xen_vcpu, cpu) = vcpup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198}
199
200void __init xen_banner(void)
 
201{
202	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
203	struct xen_extraversion extra;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
205	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 
 
 
206
207	pr_info("Booting kernel on %s\n", pv_info.name);
208	pr_info("Xen version: %u.%u%s%s\n",
209		version >> 16, version & 0xffff, extra.extraversion,
210		xen_feature(XENFEAT_mmu_pt_update_preserve_ad)
211		? " (preserve-AD)" : "");
212}
213
214/* Check if running on Xen version (major, minor) or later */
215bool xen_running_on_version_or_later(unsigned int major, unsigned int minor)
216{
217	unsigned int version;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
219	if (!xen_domain())
220		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	version = HYPERVISOR_xen_version(XENVER_version, NULL);
223	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
224		((version >> 16) > major))
225		return true;
226	return false;
227}
228
229void __init xen_add_preferred_consoles(void)
230{
231	add_preferred_console("xenboot", 0, NULL);
232	if (!boot_params.screen_info.orig_video_isVGA)
233		add_preferred_console("tty", 0, NULL);
234	add_preferred_console("hvc", 0, NULL);
235	if (boot_params.screen_info.orig_video_isVGA)
236		add_preferred_console("tty", 0, NULL);
 
 
 
 
 
 
 
 
 
 
237}
238
239void xen_reboot(int reason)
 
240{
241	struct sched_shutdown r = { .reason = reason };
242	int cpu;
243
244	for_each_online_cpu(cpu)
245		xen_pmu_finish(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
247	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
248		BUG();
249}
250
251static int reboot_reason = SHUTDOWN_reboot;
252static bool xen_legacy_crash;
253void xen_emergency_restart(void)
254{
255	xen_reboot(reboot_reason);
256}
257
258static int
259xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
 
 
 
 
260{
261	if (!kexec_crash_loaded()) {
262		if (xen_legacy_crash)
263			xen_reboot(SHUTDOWN_crash);
264
265		reboot_reason = SHUTDOWN_crash;
 
 
 
 
 
266
267		/*
268		 * If panic_timeout==0 then we are supposed to wait forever.
269		 * However, to preserve original dom0 behavior we have to drop
270		 * into hypervisor. (domU behavior is controlled by its
271		 * config file)
272		 */
273		if (panic_timeout == 0)
274			panic_timeout = -1;
275	}
276	return NOTIFY_DONE;
277}
278
279static int __init parse_xen_legacy_crash(char *arg)
 
280{
281	xen_legacy_crash = true;
282	return 0;
283}
284early_param("xen_legacy_crash", parse_xen_legacy_crash);
285
286static struct notifier_block xen_panic_block = {
287	.notifier_call = xen_panic_event,
288	.priority = INT_MIN
289};
290
291int xen_panic_handler_init(void)
292{
293	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
294	return 0;
295}
296
297void xen_pin_vcpu(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298{
299	static bool disable_pinning;
300	struct sched_pin_override pin_override;
301	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303	if (disable_pinning)
304		return;
305
306	pin_override.pcpu = cpu;
307	ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308
309	/* Ignore errors when removing override. */
310	if (cpu < 0)
311		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
313	switch (ret) {
314	case -ENOSYS:
315		pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
316			cpu);
317		disable_pinning = true;
318		break;
319	case -EPERM:
320		WARN(1, "Trying to pin vcpu without having privilege to do so\n");
321		disable_pinning = true;
322		break;
323	case -EINVAL:
324	case -EBUSY:
325		pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
326			cpu);
327		break;
328	case 0:
329		break;
330	default:
331		WARN(1, "rc %d while trying to pin vcpu\n", ret);
332		disable_pinning = true;
333	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334}
335
336#ifdef CONFIG_HOTPLUG_CPU
337void xen_arch_register_cpu(int num)
338{
339	arch_register_cpu(num);
 
 
 
 
 
 
340}
341EXPORT_SYMBOL(xen_arch_register_cpu);
342
343void xen_arch_unregister_cpu(int num)
344{
345	arch_unregister_cpu(num);
 
 
 
 
 
 
346}
347EXPORT_SYMBOL(xen_arch_unregister_cpu);
 
 
 
 
 
 
 
348#endif