Linux Audio

Check our new training course

Loading...
v3.5.6
 
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
 
 
 
 
 
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 15#include <linux/stackprotector.h>
 16#include <linux/tick.h>
 17#include <linux/cpuidle.h>
 
 
 18#include <trace/events/power.h>
 19#include <linux/hw_breakpoint.h>
 20#include <asm/cpu.h>
 21#include <asm/apic.h>
 22#include <asm/syscalls.h>
 23#include <asm/idle.h>
 24#include <asm/uaccess.h>
 25#include <asm/i387.h>
 26#include <asm/fpu-internal.h>
 27#include <asm/debugreg.h>
 28#include <asm/nmi.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30/*
 31 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 32 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 33 * so they are allowed to end up in the .data..cacheline_aligned
 34 * section. Since TSS's are completely CPU-local, we want them
 35 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 36 */
 37DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 38
 39#ifdef CONFIG_X86_64
 40static DEFINE_PER_CPU(unsigned char, is_idle);
 41static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 
 
 
 
 42
 43void idle_notifier_register(struct notifier_block *n)
 44{
 45	atomic_notifier_chain_register(&idle_notifier, n);
 46}
 47EXPORT_SYMBOL_GPL(idle_notifier_register);
 48
 49void idle_notifier_unregister(struct notifier_block *n)
 50{
 51	atomic_notifier_chain_unregister(&idle_notifier, n);
 52}
 53EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 54#endif
 
 
 
 
 55
 56struct kmem_cache *task_xstate_cachep;
 57EXPORT_SYMBOL_GPL(task_xstate_cachep);
 58
 59/*
 60 * this gets called so that we can store lazy state into memory and copy the
 61 * current task into the new thread.
 62 */
 63int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 64{
 65	int ret;
 66
 67	unlazy_fpu(src);
 
 
 
 68
 69	*dst = *src;
 70	if (fpu_allocated(&src->thread.fpu)) {
 71		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 72		ret = fpu_alloc(&dst->thread.fpu);
 73		if (ret)
 74			return ret;
 75		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 76	}
 77	return 0;
 78}
 79
 80void free_thread_xstate(struct task_struct *tsk)
 
 81{
 82	fpu_free(&tsk->thread.fpu);
 
 83}
 
 84
 85void arch_release_task_struct(struct task_struct *tsk)
 
 
 
 86{
 87	free_thread_xstate(tsk);
 
 
 
 
 
 
 
 
 88}
 89
 90void arch_task_cache_init(void)
 91{
 92        task_xstate_cachep =
 93        	kmem_cache_create("task_xstate", xstate_size,
 94				  __alignof__(union thread_xstate),
 95				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 
 
 96}
 97
 98static inline void drop_fpu(struct task_struct *tsk)
 99{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100	/*
101	 * Forget coprocessor state..
 
 
 
102	 */
103	tsk->fpu_counter = 0;
104	clear_fpu(tsk);
105	clear_used_math();
106}
107
108/*
109 * Free current thread data structures etc..
110 */
111void exit_thread(void)
112{
113	struct task_struct *me = current;
114	struct thread_struct *t = &me->thread;
115	unsigned long *bp = t->io_bitmap_ptr;
 
 
 
 
 
 
 
116
117	if (bp) {
118		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 
 
 
119
120		t->io_bitmap_ptr = NULL;
121		clear_thread_flag(TIF_IO_BITMAP);
122		/*
123		 * Careful, clear this in the TSS too:
 
 
 
 
 
 
 
124		 */
125		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
126		t->io_bitmap_max = 0;
127		put_cpu();
128		kfree(bp);
129	}
130
131	drop_fpu(me);
132}
133
134void show_regs_common(void)
135{
136	const char *vendor, *product, *board;
137
138	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
139	if (!vendor)
140		vendor = "";
141	product = dmi_get_system_info(DMI_PRODUCT_NAME);
142	if (!product)
143		product = "";
144
145	/* Board Name is optional */
146	board = dmi_get_system_info(DMI_BOARD_NAME);
147
148	printk(KERN_CONT "\n");
149	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
150		current->pid, current->comm, print_tainted(),
151		init_utsname()->release,
152		(int)strcspn(init_utsname()->version, " "),
153		init_utsname()->version);
154	printk(KERN_CONT " %s %s", vendor, product);
155	if (board)
156		printk(KERN_CONT "/%s", board);
157	printk(KERN_CONT "\n");
158}
159
160void flush_thread(void)
161{
162	struct task_struct *tsk = current;
163
164	flush_ptrace_hw_breakpoint(tsk);
165	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
166	drop_fpu(tsk);
167}
168
169static void hard_disable_TSC(void)
170{
171	write_cr4(read_cr4() | X86_CR4_TSD);
172}
173
174void disable_TSC(void)
175{
176	preempt_disable();
177	if (!test_and_set_thread_flag(TIF_NOTSC))
178		/*
179		 * Must flip the CPU state synchronously with
180		 * TIF_NOTSC in the current running context.
181		 */
182		hard_disable_TSC();
183	preempt_enable();
184}
185
186static void hard_enable_TSC(void)
187{
188	write_cr4(read_cr4() & ~X86_CR4_TSD);
189}
190
191static void enable_TSC(void)
192{
193	preempt_disable();
194	if (test_and_clear_thread_flag(TIF_NOTSC))
195		/*
196		 * Must flip the CPU state synchronously with
197		 * TIF_NOTSC in the current running context.
198		 */
199		hard_enable_TSC();
200	preempt_enable();
201}
202
203int get_tsc_mode(unsigned long adr)
204{
205	unsigned int val;
206
207	if (test_thread_flag(TIF_NOTSC))
208		val = PR_TSC_SIGSEGV;
209	else
210		val = PR_TSC_ENABLE;
211
212	return put_user(val, (unsigned int __user *)adr);
213}
214
215int set_tsc_mode(unsigned int val)
216{
217	if (val == PR_TSC_SIGSEGV)
218		disable_TSC();
219	else if (val == PR_TSC_ENABLE)
220		enable_TSC();
221	else
222		return -EINVAL;
223
224	return 0;
225}
226
227void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
228		      struct tss_struct *tss)
229{
230	struct thread_struct *prev, *next;
231
232	prev = &prev_p->thread;
233	next = &next_p->thread;
234
235	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
236	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
237		unsigned long debugctl = get_debugctlmsr();
238
239		debugctl &= ~DEBUGCTLMSR_BTF;
240		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
241			debugctl |= DEBUGCTLMSR_BTF;
242
243		update_debugctlmsr(debugctl);
244	}
 
245
246	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
247	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
248		/* prev and next are different */
249		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
250			hard_disable_TSC();
251		else
252			hard_enable_TSC();
253	}
254
255	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
256		/*
257		 * Copy the relevant range of the IO bitmap.
258		 * Normally this is 128 bytes or less:
259		 */
260		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261		       max(prev->io_bitmap_max, next->io_bitmap_max));
262	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
 
263		/*
264		 * Clear any possible leftover bits:
 
265		 */
266		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
267	}
268	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
 
269}
270
271int sys_fork(struct pt_regs *regs)
272{
273	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 
 
 
 
 
 
 
 
274}
275
276/*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
286int sys_vfork(struct pt_regs *regs)
287{
288	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
289		       NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
290}
291
292long
293sys_clone(unsigned long clone_flags, unsigned long newsp,
294	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
295{
296	if (!newsp)
297		newsp = regs->sp;
298	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 
 
 
 
 
 
299}
300
301/*
302 * This gets run with %si containing the
303 * function to call, and %di containing
304 * the "args".
305 */
306extern void kernel_thread_helper(void);
 
 
 
 
 
 
307
308/*
309 * Create a kernel thread
 
 
 
 
 
 
 
 
310 */
311int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
312{
313	struct pt_regs regs;
 
 
 
 
 
 
 
314
315	memset(&regs, 0, sizeof(regs));
 
 
 
316
317	regs.si = (unsigned long) fn;
318	regs.di = (unsigned long) arg;
 
 
 
 
319
320#ifdef CONFIG_X86_32
321	regs.ds = __USER_DS;
322	regs.es = __USER_DS;
323	regs.fs = __KERNEL_PERCPU;
324	regs.gs = __KERNEL_STACK_CANARY;
325#else
326	regs.ss = __KERNEL_DS;
 
 
 
 
 
 
 
327#endif
328
329	regs.orig_ax = -1;
330	regs.ip = (unsigned long) kernel_thread_helper;
331	regs.cs = __KERNEL_CS | get_kernel_rpl();
332	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334	/* Ok, create the new process.. */
335	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
336}
337EXPORT_SYMBOL(kernel_thread);
338
339/*
340 * sys_execve() executes a new program.
 
 
 
 
341 */
342long sys_execve(const char __user *name,
343		const char __user *const __user *argv,
344		const char __user *const __user *envp, struct pt_regs *regs)
345{
346	long error;
347	char *filename;
348
349	filename = getname(name);
350	error = PTR_ERR(filename);
351	if (IS_ERR(filename))
352		return error;
353	error = do_execve(filename, argv, envp, regs);
354
355#ifdef CONFIG_X86_32
356	if (error == 0) {
357		/* Make sure we don't return using sysenter.. */
358                set_thread_flag(TIF_IRET);
359        }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360#endif
361
362	putname(filename);
363	return error;
 
 
 
 
 
364}
365
366/*
367 * Idle related variables and functions
 
 
 
368 */
369unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
370EXPORT_SYMBOL(boot_option_idle_override);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371
372/*
373 * Powermanagement idle function, if any..
374 */
375void (*pm_idle)(void);
376#ifdef CONFIG_APM_MODULE
377EXPORT_SYMBOL(pm_idle);
378#endif
379
380static inline int hlt_use_halt(void)
381{
382	return 1;
383}
384
385#ifndef CONFIG_SMP
386static inline void play_dead(void)
387{
388	BUG();
 
 
 
 
 
 
 
 
 
 
 
 
389}
390#endif
391
392#ifdef CONFIG_X86_64
393void enter_idle(void)
394{
395	this_cpu_write(is_idle, 1);
396	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 
 
 
 
397}
398
399static void __exit_idle(void)
 
400{
401	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
402		return;
403	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
404}
405
406/* Called from interrupts to signify idle end */
407void exit_idle(void)
408{
409	/* idle loop has pid 0 */
410	if (current->pid)
411		return;
412	__exit_idle();
 
 
 
413}
414#endif
415
416/*
417 * The idle thread. There's no useful work to be
418 * done, so just try to conserve power and have a
419 * low exit latency (ie sit in a loop waiting for
420 * somebody to say that they'd like to reschedule)
421 */
422void cpu_idle(void)
423{
424	/*
425	 * If we're the non-boot CPU, nothing set the stack canary up
426	 * for us.  CPU0 already has it initialized but no harm in
427	 * doing it again.  This is a good place for updating it, as
428	 * we wont ever return from this function (so the invalid
429	 * canaries already on the stack wont ever trigger).
430	 */
431	boot_init_stack_canary();
432	current_thread_info()->status |= TS_POLLING;
433
434	while (1) {
435		tick_nohz_idle_enter();
436
437		while (!need_resched()) {
438			rmb();
439
440			if (cpu_is_offline(smp_processor_id()))
441				play_dead();
442
443			/*
444			 * Idle routines should keep interrupts disabled
445			 * from here on, until they go to idle.
446			 * Otherwise, idle callbacks can misfire.
447			 */
448			local_touch_nmi();
449			local_irq_disable();
450
451			enter_idle();
 
 
 
 
 
452
453			/* Don't trace irqs off for idle */
454			stop_critical_timings();
455
456			/* enter_idle() needs rcu for notifiers */
457			rcu_idle_enter();
458
459			if (cpuidle_idle_call())
460				pm_idle();
 
 
 
461
462			rcu_idle_exit();
463			start_critical_timings();
 
 
464
465			/* In many cases the interrupt that ended idle
466			   has already called exit_idle. But some idle
467			   loops can be woken up without interrupt. */
468			__exit_idle();
469		}
470
471		tick_nohz_idle_exit();
472		preempt_enable_no_resched();
473		schedule();
474		preempt_disable();
475	}
 
 
 
 
 
 
 
 
 
 
 
 
 
476}
477
478/*
479 * We use this if we don't have any better
480 * idle routine..
481 */
482void default_idle(void)
483{
484	if (hlt_use_halt()) {
485		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
486		trace_cpu_idle_rcuidle(1, smp_processor_id());
487		current_thread_info()->status &= ~TS_POLLING;
488		/*
489		 * TS_POLLING-cleared state must be visible before we
490		 * test NEED_RESCHED:
491		 */
492		smp_mb();
493
494		if (!need_resched())
495			safe_halt();	/* enables interrupts racelessly */
496		else
497			local_irq_enable();
498		current_thread_info()->status |= TS_POLLING;
499		trace_power_end_rcuidle(smp_processor_id());
500		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
501	} else {
502		local_irq_enable();
503		/* loop is done by the caller */
504		cpu_relax();
505	}
506}
507#ifdef CONFIG_APM_MODULE
508EXPORT_SYMBOL(default_idle);
509#endif
510
511bool set_pm_idle_to_default(void)
 
512{
513	bool ret = !!pm_idle;
514
515	pm_idle = default_idle;
516
517	return ret;
518}
519void stop_this_cpu(void *dummy)
 
 
520{
521	local_irq_disable();
522	/*
523	 * Remove this CPU:
524	 */
525	set_cpu_online(smp_processor_id(), false);
526	disable_local_APIC();
 
527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528	for (;;) {
529		if (hlt_works(smp_processor_id()))
530			halt();
 
 
 
 
531	}
532}
533
534/* Default MONITOR/MWAIT with no hints, used for default C1 state */
535static void mwait_idle(void)
536{
537	if (!need_resched()) {
538		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
539		trace_cpu_idle_rcuidle(1, smp_processor_id());
540		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
541			clflush((void *)&current_thread_info()->flags);
542
543		__monitor((void *)&current_thread_info()->flags, 0, 0);
544		smp_mb();
545		if (!need_resched())
546			__sti_mwait(0, 0);
547		else
548			local_irq_enable();
549		trace_power_end_rcuidle(smp_processor_id());
550		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
551	} else
552		local_irq_enable();
553}
554
555/*
556 * On SMP it's slightly faster (but much more power-consuming!)
557 * to poll the ->work.need_resched flag instead of waiting for the
558 * cross-CPU IPI to arrive. Use this option with caution.
 
559 */
560static void poll_idle(void)
561{
562	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
563	trace_cpu_idle_rcuidle(0, smp_processor_id());
564	local_irq_enable();
565	while (!need_resched())
566		cpu_relax();
567	trace_power_end_rcuidle(smp_processor_id());
568	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569}
570
571/*
572 * mwait selection logic:
573 *
574 * It depends on the CPU. For AMD CPUs that support MWAIT this is
575 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
576 * then depend on a clock divisor and current Pstate of the core. If
577 * all cores of a processor are in halt state (C1) the processor can
578 * enter the C1E (C1 enhanced) state. If mwait is used this will never
579 * happen.
580 *
581 * idle=mwait overrides this decision and forces the usage of mwait.
 
582 */
583
584#define MWAIT_INFO			0x05
585#define MWAIT_ECX_EXTENDED_INFO		0x01
586#define MWAIT_EDX_C1			0xf0
587
588int mwait_usable(const struct cpuinfo_x86 *c)
589{
590	u32 eax, ebx, ecx, edx;
591
592	/* Use mwait if idle=mwait boot option is given */
593	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
594		return 1;
595
596	/*
597	 * Any idle= boot option other than idle=mwait means that we must not
598	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
599	 */
600	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
601		return 0;
602
603	if (c->cpuid_level < MWAIT_INFO)
 
604		return 0;
605
606	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
607	/* Check, whether EDX has extended info about MWAIT */
608	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
609		return 1;
610
611	/*
612	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
613	 * C1  supports MWAIT
614	 */
615	return (edx & MWAIT_EDX_C1);
616}
617
618bool amd_e400_c1e_detected;
619EXPORT_SYMBOL(amd_e400_c1e_detected);
620
621static cpumask_var_t amd_e400_c1e_mask;
622
623void amd_e400_remove_cpu(int cpu)
624{
625	if (amd_e400_c1e_mask != NULL)
626		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
631 * pending message MSR. If we detect C1E, then we handle it the same
632 * way as C3 power states (local apic timer and TSC stop)
633 */
634static void amd_e400_idle(void)
635{
636	if (need_resched())
637		return;
638
639	if (!amd_e400_c1e_detected) {
640		u32 lo, hi;
641
642		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
643
644		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
645			amd_e400_c1e_detected = true;
646			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
647				mark_tsc_unstable("TSC halt in AMD C1E");
648			printk(KERN_INFO "System has AMD C1E enabled\n");
649		}
650	}
651
652	if (amd_e400_c1e_detected) {
653		int cpu = smp_processor_id();
654
655		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
656			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
657			/*
658			 * Force broadcast so ACPI can not interfere.
659			 */
660			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
661					   &cpu);
662			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
663			       cpu);
664		}
665		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
666
667		default_idle();
668
669		/*
670		 * The switch back from broadcast mode needs to be
671		 * called with interrupts disabled.
672		 */
673		 local_irq_disable();
674		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
675		 local_irq_enable();
676	} else
677		default_idle();
678}
679
680void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_SMP
683	if (pm_idle == poll_idle && smp_num_siblings > 1) {
684		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
685			" performance may degrade.\n");
686	}
687#endif
688	if (pm_idle)
689		return;
690
691	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
692		/*
693		 * One CPU supports mwait => All CPUs supports mwait
694		 */
695		printk(KERN_INFO "using mwait in idle threads.\n");
696		pm_idle = mwait_idle;
697	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
698		/* E400: APIC timer interrupt does not wake up CPU from C1e */
699		printk(KERN_INFO "using AMD E400 aware idle routine\n");
700		pm_idle = amd_e400_idle;
701	} else
702		pm_idle = default_idle;
 
 
 
 
 
 
 
 
 
 
703}
704
705void __init init_amd_e400_c1e_mask(void)
706{
707	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
708	if (pm_idle == amd_e400_idle)
709		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710}
711
712static int __init idle_setup(char *str)
713{
714	if (!str)
715		return -EINVAL;
716
717	if (!strcmp(str, "poll")) {
718		printk("using polling idle threads.\n");
719		pm_idle = poll_idle;
720		boot_option_idle_override = IDLE_POLL;
721	} else if (!strcmp(str, "mwait")) {
722		boot_option_idle_override = IDLE_FORCE_MWAIT;
723		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
724	} else if (!strcmp(str, "halt")) {
725		/*
726		 * When the boot option of idle=halt is added, halt is
727		 * forced to be used for CPU idle. In such case CPU C2/C3
728		 * won't be used again.
729		 * To continue to load the CPU idle driver, don't touch
730		 * the boot_option_idle_override.
731		 */
732		pm_idle = default_idle;
733		boot_option_idle_override = IDLE_HALT;
734	} else if (!strcmp(str, "nomwait")) {
735		/*
736		 * If the boot option of "idle=nomwait" is added,
737		 * it means that mwait will be disabled for CPU C2/C3
738		 * states. In such case it won't touch the variable
739		 * of boot_option_idle_override.
740		 */
741		boot_option_idle_override = IDLE_NOMWAIT;
742	} else
743		return -1;
744
745	return 0;
746}
747early_param("idle", idle_setup);
748
749unsigned long arch_align_stack(unsigned long sp)
750{
751	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
752		sp -= get_random_int() % 8192;
753	return sp & ~0xf;
754}
755
756unsigned long arch_randomize_brk(struct mm_struct *mm)
757{
758	unsigned long range_end = mm->brk + 0x02000000;
759	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760}
761
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/prctl.h>
   9#include <linux/slab.h>
  10#include <linux/sched.h>
  11#include <linux/sched/idle.h>
  12#include <linux/sched/debug.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/pm.h>
  18#include <linux/tick.h>
  19#include <linux/random.h>
  20#include <linux/user-return-notifier.h>
  21#include <linux/dmi.h>
  22#include <linux/utsname.h>
  23#include <linux/stackprotector.h>
 
  24#include <linux/cpuidle.h>
  25#include <linux/acpi.h>
  26#include <linux/elf-randomize.h>
  27#include <trace/events/power.h>
  28#include <linux/hw_breakpoint.h>
  29#include <asm/cpu.h>
  30#include <asm/apic.h>
  31#include <linux/uaccess.h>
  32#include <asm/mwait.h>
  33#include <asm/fpu/api.h>
  34#include <asm/fpu/sched.h>
  35#include <asm/fpu/xstate.h>
  36#include <asm/debugreg.h>
  37#include <asm/nmi.h>
  38#include <asm/tlbflush.h>
  39#include <asm/mce.h>
  40#include <asm/vm86.h>
  41#include <asm/switch_to.h>
  42#include <asm/desc.h>
  43#include <asm/prctl.h>
  44#include <asm/spec-ctrl.h>
  45#include <asm/io_bitmap.h>
  46#include <asm/proto.h>
  47#include <asm/frame.h>
  48#include <asm/unwind.h>
  49#include <asm/tdx.h>
  50
  51#include "process.h"
  52
  53/*
  54 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  55 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  56 * so they are allowed to end up in the .data..cacheline_aligned
  57 * section. Since TSS's are completely CPU-local, we want them
  58 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  59 */
  60__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  61	.x86_tss = {
  62		/*
  63		 * .sp0 is only used when entering ring 0 from a lower
  64		 * privilege level.  Since the init task never runs anything
  65		 * but ring 0 code, there is no need for a valid value here.
  66		 * Poison it.
  67		 */
  68		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  69
  70#ifdef CONFIG_X86_32
  71		.sp1 = TOP_OF_INIT_STACK,
 
 
 
  72
  73		.ss0 = __KERNEL_DS,
  74		.ss1 = __KERNEL_CS,
 
 
 
  75#endif
  76		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  77	 },
  78};
  79EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  80
  81DEFINE_PER_CPU(bool, __tss_limit_invalid);
  82EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  83
  84/*
  85 * this gets called so that we can store lazy state into memory and copy the
  86 * current task into the new thread.
  87 */
  88int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  89{
  90	memcpy(dst, src, arch_task_struct_size);
  91#ifdef CONFIG_VM86
  92	dst->thread.vm86 = NULL;
  93#endif
  94	/* Drop the copied pointer to current's fpstate */
  95	dst->thread.fpu.fpstate = NULL;
  96
 
 
 
 
 
 
 
 
  97	return 0;
  98}
  99
 100#ifdef CONFIG_X86_64
 101void arch_release_task_struct(struct task_struct *tsk)
 102{
 103	if (fpu_state_size_dynamic())
 104		fpstate_free(&tsk->thread.fpu);
 105}
 106#endif
 107
 108/*
 109 * Free thread data structures etc..
 110 */
 111void exit_thread(struct task_struct *tsk)
 112{
 113	struct thread_struct *t = &tsk->thread;
 114	struct fpu *fpu = &t->fpu;
 115
 116	if (test_thread_flag(TIF_IO_BITMAP))
 117		io_bitmap_exit(tsk);
 118
 119	free_vm86(t);
 120
 121	fpu__drop(fpu);
 122}
 123
 124static int set_new_tls(struct task_struct *p, unsigned long tls)
 125{
 126	struct user_desc __user *utls = (struct user_desc __user *)tls;
 127
 128	if (in_ia32_syscall())
 129		return do_set_thread_area(p, -1, utls, 0);
 130	else
 131		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 132}
 133
 134int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 135{
 136	unsigned long clone_flags = args->flags;
 137	unsigned long sp = args->stack;
 138	unsigned long tls = args->tls;
 139	struct inactive_task_frame *frame;
 140	struct fork_frame *fork_frame;
 141	struct pt_regs *childregs;
 142	int ret = 0;
 143
 144	childregs = task_pt_regs(p);
 145	fork_frame = container_of(childregs, struct fork_frame, regs);
 146	frame = &fork_frame->frame;
 147
 148	frame->bp = encode_frame_pointer(childregs);
 149	frame->ret_addr = (unsigned long) ret_from_fork;
 150	p->thread.sp = (unsigned long) fork_frame;
 151	p->thread.io_bitmap = NULL;
 152	p->thread.iopl_warn = 0;
 153	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 154
 155#ifdef CONFIG_X86_64
 156	current_save_fsgs();
 157	p->thread.fsindex = current->thread.fsindex;
 158	p->thread.fsbase = current->thread.fsbase;
 159	p->thread.gsindex = current->thread.gsindex;
 160	p->thread.gsbase = current->thread.gsbase;
 161
 162	savesegment(es, p->thread.es);
 163	savesegment(ds, p->thread.ds);
 164#else
 165	p->thread.sp0 = (unsigned long) (childregs + 1);
 166	savesegment(gs, p->thread.gs);
 167	/*
 168	 * Clear all status flags including IF and set fixed bit. 64bit
 169	 * does not have this initialization as the frame does not contain
 170	 * flags. The flags consistency (especially vs. AC) is there
 171	 * ensured via objtool, which lacks 32bit support.
 172	 */
 173	frame->flags = X86_EFLAGS_FIXED;
 174#endif
 
 
 175
 176	fpu_clone(p, clone_flags, args->fn);
 177
 178	/* Kernel thread ? */
 179	if (unlikely(p->flags & PF_KTHREAD)) {
 180		p->thread.pkru = pkru_get_init_value();
 181		memset(childregs, 0, sizeof(struct pt_regs));
 182		kthread_frame_init(frame, args->fn, args->fn_arg);
 183		return 0;
 184	}
 185
 186	/*
 187	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 188	 * is only valid when scheduled out.
 189	 */
 190	p->thread.pkru = read_pkru();
 191
 192	frame->bx = 0;
 193	*childregs = *current_pt_regs();
 194	childregs->ax = 0;
 195	if (sp)
 196		childregs->sp = sp;
 197
 198	if (unlikely(args->fn)) {
 
 199		/*
 200		 * A user space thread, but it doesn't return to
 201		 * ret_after_fork().
 202		 *
 203		 * In order to indicate that to tools like gdb,
 204		 * we reset the stack and instruction pointers.
 205		 *
 206		 * It does the same kernel frame setup to return to a kernel
 207		 * function that a kernel thread does.
 208		 */
 209		childregs->sp = 0;
 210		childregs->ip = 0;
 211		kthread_frame_init(frame, args->fn, args->fn_arg);
 212		return 0;
 213	}
 214
 215	/* Set a new TLS for the child thread? */
 216	if (clone_flags & CLONE_SETTLS)
 217		ret = set_new_tls(p, tls);
 
 
 
 218
 219	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 220		io_bitmap_share(p);
 
 
 
 
 221
 222	return ret;
 223}
 224
 225static void pkru_flush_thread(void)
 226{
 227	/*
 228	 * If PKRU is enabled the default PKRU value has to be loaded into
 229	 * the hardware right here (similar to context switch).
 230	 */
 231	pkru_write_default();
 
 
 
 232}
 233
 234void flush_thread(void)
 235{
 236	struct task_struct *tsk = current;
 237
 238	flush_ptrace_hw_breakpoint(tsk);
 239	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 
 
 240
 241	fpu_flush_thread();
 242	pkru_flush_thread();
 
 243}
 244
 245void disable_TSC(void)
 246{
 247	preempt_disable();
 248	if (!test_and_set_thread_flag(TIF_NOTSC))
 249		/*
 250		 * Must flip the CPU state synchronously with
 251		 * TIF_NOTSC in the current running context.
 252		 */
 253		cr4_set_bits(X86_CR4_TSD);
 254	preempt_enable();
 255}
 256
 
 
 
 
 
 257static void enable_TSC(void)
 258{
 259	preempt_disable();
 260	if (test_and_clear_thread_flag(TIF_NOTSC))
 261		/*
 262		 * Must flip the CPU state synchronously with
 263		 * TIF_NOTSC in the current running context.
 264		 */
 265		cr4_clear_bits(X86_CR4_TSD);
 266	preempt_enable();
 267}
 268
 269int get_tsc_mode(unsigned long adr)
 270{
 271	unsigned int val;
 272
 273	if (test_thread_flag(TIF_NOTSC))
 274		val = PR_TSC_SIGSEGV;
 275	else
 276		val = PR_TSC_ENABLE;
 277
 278	return put_user(val, (unsigned int __user *)adr);
 279}
 280
 281int set_tsc_mode(unsigned int val)
 282{
 283	if (val == PR_TSC_SIGSEGV)
 284		disable_TSC();
 285	else if (val == PR_TSC_ENABLE)
 286		enable_TSC();
 287	else
 288		return -EINVAL;
 289
 290	return 0;
 291}
 292
 293DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294
 295static void set_cpuid_faulting(bool on)
 296{
 297	u64 msrval;
 298
 299	msrval = this_cpu_read(msr_misc_features_shadow);
 300	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 301	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 302	this_cpu_write(msr_misc_features_shadow, msrval);
 303	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 304}
 
 
 305
 306static void disable_cpuid(void)
 307{
 308	preempt_disable();
 309	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 310		/*
 311		 * Must flip the CPU state synchronously with
 312		 * TIF_NOCPUID in the current running context.
 313		 */
 314		set_cpuid_faulting(true);
 315	}
 316	preempt_enable();
 317}
 318
 319static void enable_cpuid(void)
 320{
 321	preempt_disable();
 322	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 323		/*
 324		 * Must flip the CPU state synchronously with
 325		 * TIF_NOCPUID in the current running context.
 326		 */
 327		set_cpuid_faulting(false);
 328	}
 329	preempt_enable();
 330}
 331
 332static int get_cpuid_mode(void)
 333{
 334	return !test_thread_flag(TIF_NOCPUID);
 335}
 336
 337static int set_cpuid_mode(unsigned long cpuid_enabled)
 338{
 339	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 340		return -ENODEV;
 341
 342	if (cpuid_enabled)
 343		enable_cpuid();
 344	else
 345		disable_cpuid();
 346
 347	return 0;
 348}
 349
 350/*
 351 * Called immediately after a successful exec.
 
 
 
 
 
 
 
 352 */
 353void arch_setup_new_exec(void)
 354{
 355	/* If cpuid was previously disabled for this task, re-enable it. */
 356	if (test_thread_flag(TIF_NOCPUID))
 357		enable_cpuid();
 358
 359	/*
 360	 * Don't inherit TIF_SSBD across exec boundary when
 361	 * PR_SPEC_DISABLE_NOEXEC is used.
 362	 */
 363	if (test_thread_flag(TIF_SSBD) &&
 364	    task_spec_ssb_noexec(current)) {
 365		clear_thread_flag(TIF_SSBD);
 366		task_clear_spec_ssb_disable(current);
 367		task_clear_spec_ssb_noexec(current);
 368		speculation_ctrl_update(read_thread_flags());
 369	}
 370}
 371
 372#ifdef CONFIG_X86_IOPL_IOPERM
 373static inline void switch_to_bitmap(unsigned long tifp)
 
 374{
 375	/*
 376	 * Invalidate I/O bitmap if the previous task used it. This prevents
 377	 * any possible leakage of an active I/O bitmap.
 378	 *
 379	 * If the next task has an I/O bitmap it will handle it on exit to
 380	 * user mode.
 381	 */
 382	if (tifp & _TIF_IO_BITMAP)
 383		tss_invalidate_io_bitmap();
 384}
 385
 386static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 387{
 388	/*
 389	 * Copy at least the byte range of the incoming tasks bitmap which
 390	 * covers the permitted I/O ports.
 391	 *
 392	 * If the previous task which used an I/O bitmap had more bits
 393	 * permitted, then the copy needs to cover those as well so they
 394	 * get turned off.
 395	 */
 396	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 397	       max(tss->io_bitmap.prev_max, iobm->max));
 398
 399	/*
 400	 * Store the new max and the sequence number of this bitmap
 401	 * and a pointer to the bitmap itself.
 402	 */
 403	tss->io_bitmap.prev_max = iobm->max;
 404	tss->io_bitmap.prev_sequence = iobm->sequence;
 405}
 406
 407/**
 408 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
 409 */
 410void native_tss_update_io_bitmap(void)
 411{
 412	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 413	struct thread_struct *t = &current->thread;
 414	u16 *base = &tss->x86_tss.io_bitmap_base;
 415
 416	if (!test_thread_flag(TIF_IO_BITMAP)) {
 417		native_tss_invalidate_io_bitmap();
 418		return;
 419	}
 420
 421	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 422		*base = IO_BITMAP_OFFSET_VALID_ALL;
 423	} else {
 424		struct io_bitmap *iobm = t->io_bitmap;
 425
 426		/*
 427		 * Only copy bitmap data when the sequence number differs. The
 428		 * update time is accounted to the incoming task.
 429		 */
 430		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 431			tss_copy_io_bitmap(tss, iobm);
 432
 433		/* Enable the bitmap */
 434		*base = IO_BITMAP_OFFSET_VALID_MAP;
 435	}
 436
 437	/*
 438	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 439	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 440	 * access from user space to trigger a #GP because tbe bitmap is outside
 441	 * the TSS limit.
 442	 */
 443	refresh_tss_limit();
 444}
 445#else /* CONFIG_X86_IOPL_IOPERM */
 446static inline void switch_to_bitmap(unsigned long tifp) { }
 447#endif
 448
 449#ifdef CONFIG_SMP
 450
 451struct ssb_state {
 452	struct ssb_state	*shared_state;
 453	raw_spinlock_t		lock;
 454	unsigned int		disable_state;
 455	unsigned long		local_state;
 456};
 457
 458#define LSTATE_SSB	0
 459
 460static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 461
 462void speculative_store_bypass_ht_init(void)
 463{
 464	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 465	unsigned int this_cpu = smp_processor_id();
 466	unsigned int cpu;
 467
 468	st->local_state = 0;
 469
 470	/*
 471	 * Shared state setup happens once on the first bringup
 472	 * of the CPU. It's not destroyed on CPU hotunplug.
 473	 */
 474	if (st->shared_state)
 475		return;
 476
 477	raw_spin_lock_init(&st->lock);
 478
 479	/*
 480	 * Go over HT siblings and check whether one of them has set up the
 481	 * shared state pointer already.
 482	 */
 483	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 484		if (cpu == this_cpu)
 485			continue;
 486
 487		if (!per_cpu(ssb_state, cpu).shared_state)
 488			continue;
 489
 490		/* Link it to the state of the sibling: */
 491		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 492		return;
 493	}
 494
 495	/*
 496	 * First HT sibling to come up on the core.  Link shared state of
 497	 * the first HT sibling to itself. The siblings on the same core
 498	 * which come up later will see the shared state pointer and link
 499	 * themselves to the state of this CPU.
 500	 */
 501	st->shared_state = st;
 502}
 
 503
 504/*
 505 * Logic is: First HT sibling enables SSBD for both siblings in the core
 506 * and last sibling to disable it, disables it for the whole core. This how
 507 * MSR_SPEC_CTRL works in "hardware":
 508 *
 509 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 510 */
 511static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 
 
 512{
 513	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 514	u64 msr = x86_amd_ls_cfg_base;
 515
 516	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 517		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 518		wrmsrl(MSR_AMD64_LS_CFG, msr);
 519		return;
 520	}
 521
 522	if (tifn & _TIF_SSBD) {
 523		/*
 524		 * Since this can race with prctl(), block reentry on the
 525		 * same CPU.
 526		 */
 527		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 528			return;
 529
 530		msr |= x86_amd_ls_cfg_ssbd_mask;
 531
 532		raw_spin_lock(&st->shared_state->lock);
 533		/* First sibling enables SSBD: */
 534		if (!st->shared_state->disable_state)
 535			wrmsrl(MSR_AMD64_LS_CFG, msr);
 536		st->shared_state->disable_state++;
 537		raw_spin_unlock(&st->shared_state->lock);
 538	} else {
 539		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 540			return;
 541
 542		raw_spin_lock(&st->shared_state->lock);
 543		st->shared_state->disable_state--;
 544		if (!st->shared_state->disable_state)
 545			wrmsrl(MSR_AMD64_LS_CFG, msr);
 546		raw_spin_unlock(&st->shared_state->lock);
 547	}
 548}
 549#else
 550static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 551{
 552	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 553
 554	wrmsrl(MSR_AMD64_LS_CFG, msr);
 555}
 556#endif
 557
 558static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 559{
 560	/*
 561	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 562	 * so ssbd_tif_to_spec_ctrl() just works.
 563	 */
 564	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 565}
 566
 567/*
 568 * Update the MSRs managing speculation control, during context switch.
 569 *
 570 * tifp: Previous task's thread flags
 571 * tifn: Next task's thread flags
 572 */
 573static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 574						      unsigned long tifn)
 575{
 576	unsigned long tif_diff = tifp ^ tifn;
 577	u64 msr = x86_spec_ctrl_base;
 578	bool updmsr = false;
 579
 580	lockdep_assert_irqs_disabled();
 581
 582	/* Handle change of TIF_SSBD depending on the mitigation method. */
 583	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 584		if (tif_diff & _TIF_SSBD)
 585			amd_set_ssb_virt_state(tifn);
 586	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 587		if (tif_diff & _TIF_SSBD)
 588			amd_set_core_ssb_state(tifn);
 589	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 590		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 591		updmsr |= !!(tif_diff & _TIF_SSBD);
 592		msr |= ssbd_tif_to_spec_ctrl(tifn);
 593	}
 594
 595	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 596	if (IS_ENABLED(CONFIG_SMP) &&
 597	    static_branch_unlikely(&switch_to_cond_stibp)) {
 598		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 599		msr |= stibp_tif_to_spec_ctrl(tifn);
 600	}
 
 601
 602	if (updmsr)
 603		update_spec_ctrl_cond(msr);
 
 604}
 605
 606static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 
 607{
 608	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 609		if (task_spec_ssb_disable(tsk))
 610			set_tsk_thread_flag(tsk, TIF_SSBD);
 611		else
 612			clear_tsk_thread_flag(tsk, TIF_SSBD);
 613
 614		if (task_spec_ib_disable(tsk))
 615			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 616		else
 617			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 618	}
 619	/* Return the updated threadinfo flags*/
 620	return read_task_thread_flags(tsk);
 621}
 
 622
 623void speculation_ctrl_update(unsigned long tif)
 
 624{
 625	unsigned long flags;
 626
 627	/* Forced update. Make sure all relevant TIF flags are different */
 628	local_irq_save(flags);
 629	__speculation_ctrl_update(~tif, tif);
 630	local_irq_restore(flags);
 631}
 632
 633/* Called from seccomp/prctl update */
 634void speculation_ctrl_update_current(void)
 635{
 636	preempt_disable();
 637	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 638	preempt_enable();
 639}
 640
 641static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 
 642{
 643	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 644
 645	newval = cr4 ^ mask;
 646	if (newval != cr4) {
 647		this_cpu_write(cpu_tlbstate.cr4, newval);
 648		__write_cr4(newval);
 649	}
 650}
 
 651
 652void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 
 
 
 
 
 
 653{
 654	unsigned long tifp, tifn;
 
 
 
 
 
 
 
 
 655
 656	tifn = read_task_thread_flags(next_p);
 657	tifp = read_task_thread_flags(prev_p);
 658
 659	switch_to_bitmap(tifp);
 
 660
 661	propagate_user_return_notify(prev_p, next_p);
 
 662
 663	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 664	    arch_has_block_step()) {
 665		unsigned long debugctl, msk;
 
 
 
 
 666
 667		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 668		debugctl &= ~DEBUGCTLMSR_BTF;
 669		msk = tifn & _TIF_BLOCKSTEP;
 670		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 671		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 672	}
 673
 674	if ((tifp ^ tifn) & _TIF_NOTSC)
 675		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 676
 677	if ((tifp ^ tifn) & _TIF_NOCPUID)
 678		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 679
 680	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 681		__speculation_ctrl_update(tifp, tifn);
 682	} else {
 683		speculation_ctrl_update_tif(prev_p);
 684		tifn = speculation_ctrl_update_tif(next_p);
 685
 686		/* Enforce MSR update to ensure consistent state */
 687		__speculation_ctrl_update(~tifn, tifn);
 688	}
 689}
 690
 691/*
 692 * Idle related variables and functions
 693 */
 694unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 695EXPORT_SYMBOL(boot_option_idle_override);
 696
 697static void (*x86_idle)(void);
 698
 699#ifndef CONFIG_SMP
 700static inline void play_dead(void)
 701{
 702	BUG();
 703}
 704#endif
 705
 706void arch_cpu_idle_enter(void)
 707{
 708	tsc_verify_tsc_adjust(false);
 709	local_touch_nmi();
 710}
 711
 712void arch_cpu_idle_dead(void)
 713{
 714	play_dead();
 715}
 716
 717/*
 718 * Called from the generic idle code.
 
 719 */
 720void arch_cpu_idle(void)
 721{
 722	x86_idle();
 723}
 
 
 
 
 
 
 
 724
 725/*
 726 * We use this if we don't have any better idle routine..
 727 */
 728void __cpuidle default_idle(void)
 729{
 730	raw_safe_halt();
 
 
 
 
 
 
 731}
 732#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 733EXPORT_SYMBOL(default_idle);
 734#endif
 735
 736#ifdef CONFIG_XEN
 737bool xen_set_default_idle(void)
 738{
 739	bool ret = !!x86_idle;
 740
 741	x86_idle = default_idle;
 742
 743	return ret;
 744}
 745#endif
 746
 747void __noreturn stop_this_cpu(void *dummy)
 748{
 749	local_irq_disable();
 750	/*
 751	 * Remove this CPU:
 752	 */
 753	set_cpu_online(smp_processor_id(), false);
 754	disable_local_APIC();
 755	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 756
 757	/*
 758	 * Use wbinvd on processors that support SME. This provides support
 759	 * for performing a successful kexec when going from SME inactive
 760	 * to SME active (or vice-versa). The cache must be cleared so that
 761	 * if there are entries with the same physical address, both with and
 762	 * without the encryption bit, they don't race each other when flushed
 763	 * and potentially end up with the wrong entry being committed to
 764	 * memory.
 765	 *
 766	 * Test the CPUID bit directly because the machine might've cleared
 767	 * X86_FEATURE_SME due to cmdline options.
 768	 */
 769	if (cpuid_eax(0x8000001f) & BIT(0))
 770		native_wbinvd();
 771	for (;;) {
 772		/*
 773		 * Use native_halt() so that memory contents don't change
 774		 * (stack usage and variables) after possibly issuing the
 775		 * native_wbinvd() above.
 776		 */
 777		native_halt();
 778	}
 779}
 780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781/*
 782 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 783 * states (local apic timer and TSC stop).
 784 *
 785 * XXX this function is completely buggered vs RCU and tracing.
 786 */
 787static void amd_e400_idle(void)
 788{
 789	/*
 790	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 791	 * gets set after static_cpu_has() places have been converted via
 792	 * alternatives.
 793	 */
 794	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 795		default_idle();
 796		return;
 797	}
 798
 799	tick_broadcast_enter();
 800
 801	default_idle();
 802
 803	/*
 804	 * The switch back from broadcast mode needs to be called with
 805	 * interrupts disabled.
 806	 */
 807	raw_local_irq_disable();
 808	tick_broadcast_exit();
 809	raw_local_irq_enable();
 810}
 811
 812/*
 813 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
 814 * exists and whenever MONITOR/MWAIT extensions are present there is at
 815 * least one C1 substate.
 
 
 
 
 
 816 *
 817 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
 818 * is passed to kernel commandline parameter.
 819 */
 820static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 
 
 
 
 
 821{
 822	u32 eax, ebx, ecx, edx;
 823
 824	/* User has disallowed the use of MWAIT. Fallback to HALT */
 825	if (boot_option_idle_override == IDLE_NOMWAIT)
 826		return 0;
 827
 828	/* MWAIT is not supported on this platform. Fallback to HALT */
 829	if (!cpu_has(c, X86_FEATURE_MWAIT))
 
 
 
 830		return 0;
 831
 832	/* Monitor has a bug. Fallback to HALT */
 833	if (boot_cpu_has_bug(X86_BUG_MONITOR))
 834		return 0;
 835
 836	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 
 
 
 837
 838	/*
 839	 * If MWAIT extensions are not available, it is safe to use MWAIT
 840	 * with EAX=0, ECX=0.
 841	 */
 842	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
 843		return 1;
 
 
 
 
 
 844
 845	/*
 846	 * If MWAIT extensions are available, there should be at least one
 847	 * MWAIT C1 substate present.
 848	 */
 849	return (edx & MWAIT_C1_SUBSTATE_MASK);
 850}
 851
 852/*
 853 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 854 * with interrupts enabled and no flags, which is backwards compatible with the
 855 * original MWAIT implementation.
 856 */
 857static __cpuidle void mwait_idle(void)
 858{
 859	if (!current_set_polling_and_test()) {
 860		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 861			mb(); /* quirk */
 862			clflush((void *)&current_thread_info()->flags);
 863			mb(); /* quirk */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864		}
 
 865
 866		__monitor((void *)&current_thread_info()->flags, 0, 0);
 867		if (!need_resched())
 868			__sti_mwait(0, 0);
 869		else
 870			raw_local_irq_enable();
 871	} else {
 872		raw_local_irq_enable();
 873	}
 874	__current_clr_polling();
 
 
 875}
 876
 877void select_idle_routine(const struct cpuinfo_x86 *c)
 878{
 879#ifdef CONFIG_SMP
 880	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 881		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 
 
 882#endif
 883	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 884		return;
 885
 886	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 887		pr_info("using AMD E400 aware idle routine\n");
 888		x86_idle = amd_e400_idle;
 889	} else if (prefer_mwait_c1_over_halt(c)) {
 890		pr_info("using mwait in idle threads\n");
 891		x86_idle = mwait_idle;
 892	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
 893		pr_info("using TDX aware idle routine\n");
 894		x86_idle = tdx_safe_halt;
 
 895	} else
 896		x86_idle = default_idle;
 897}
 898
 899void amd_e400_c1e_apic_setup(void)
 900{
 901	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 902		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 903		local_irq_disable();
 904		tick_broadcast_force();
 905		local_irq_enable();
 906	}
 907}
 908
 909void __init arch_post_acpi_subsys_init(void)
 910{
 911	u32 lo, hi;
 912
 913	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 914		return;
 915
 916	/*
 917	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 918	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 919	 * MSR_K8_INT_PENDING_MSG.
 920	 */
 921	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 922	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 923		return;
 924
 925	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 926
 927	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 928		mark_tsc_unstable("TSC halt in AMD C1E");
 929	pr_info("System has AMD C1E enabled\n");
 930}
 931
 932static int __init idle_setup(char *str)
 933{
 934	if (!str)
 935		return -EINVAL;
 936
 937	if (!strcmp(str, "poll")) {
 938		pr_info("using polling idle threads\n");
 
 939		boot_option_idle_override = IDLE_POLL;
 940		cpu_idle_poll_ctrl(true);
 
 
 941	} else if (!strcmp(str, "halt")) {
 942		/*
 943		 * When the boot option of idle=halt is added, halt is
 944		 * forced to be used for CPU idle. In such case CPU C2/C3
 945		 * won't be used again.
 946		 * To continue to load the CPU idle driver, don't touch
 947		 * the boot_option_idle_override.
 948		 */
 949		x86_idle = default_idle;
 950		boot_option_idle_override = IDLE_HALT;
 951	} else if (!strcmp(str, "nomwait")) {
 952		/*
 953		 * If the boot option of "idle=nomwait" is added,
 954		 * it means that mwait will be disabled for CPU C1/C2/C3
 955		 * states.
 
 956		 */
 957		boot_option_idle_override = IDLE_NOMWAIT;
 958	} else
 959		return -1;
 960
 961	return 0;
 962}
 963early_param("idle", idle_setup);
 964
 965unsigned long arch_align_stack(unsigned long sp)
 966{
 967	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 968		sp -= get_random_u32_below(8192);
 969	return sp & ~0xf;
 970}
 971
 972unsigned long arch_randomize_brk(struct mm_struct *mm)
 973{
 974	return randomize_page(mm->brk, 0x02000000);
 975}
 976
 977/*
 978 * Called from fs/proc with a reference on @p to find the function
 979 * which called into schedule(). This needs to be done carefully
 980 * because the task might wake up and we might look at a stack
 981 * changing under us.
 982 */
 983unsigned long __get_wchan(struct task_struct *p)
 984{
 985	struct unwind_state state;
 986	unsigned long addr = 0;
 987
 988	if (!try_get_task_stack(p))
 989		return 0;
 990
 991	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
 992	     unwind_next_frame(&state)) {
 993		addr = unwind_get_return_address(&state);
 994		if (!addr)
 995			break;
 996		if (in_sched_functions(addr))
 997			continue;
 998		break;
 999	}
1000
1001	put_task_stack(p);
1002
1003	return addr;
1004}
1005
1006long do_arch_prctl_common(int option, unsigned long arg2)
1007{
1008	switch (option) {
1009	case ARCH_GET_CPUID:
1010		return get_cpuid_mode();
1011	case ARCH_SET_CPUID:
1012		return set_cpuid_mode(arg2);
1013	case ARCH_GET_XCOMP_SUPP:
1014	case ARCH_GET_XCOMP_PERM:
1015	case ARCH_REQ_XCOMP_PERM:
1016	case ARCH_GET_XCOMP_GUEST_PERM:
1017	case ARCH_REQ_XCOMP_GUEST_PERM:
1018		return fpu_xstate_prctl(option, arg2);
1019	}
1020
1021	return -EINVAL;
1022}