Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.5.6
 
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 25#include <linux/hardirq.h>
 
 
 
 
 
 
 
 26
 
 27#include <asm/x86_init.h>
 28#include <asm/reboot.h>
 29
 30static int kvmclock = 1;
 31static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 32static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 
 
 33
 34static int parse_no_kvmclock(char *arg)
 35{
 36	kvmclock = 0;
 37	return 0;
 38}
 39early_param("no-kvmclock", parse_no_kvmclock);
 40
 41/* The hypervisor will put information about time periodically here */
 42static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
 43static struct pvclock_wall_clock wall_clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45/*
 46 * The wallclock is the time of day when we booted. Since then, some time may
 47 * have elapsed since the hypervisor wrote the data. So we try to account for
 48 * that with system time
 49 */
 50static unsigned long kvm_get_wallclock(void)
 51{
 52	struct pvclock_vcpu_time_info *vcpu_time;
 53	struct timespec ts;
 54	int low, high;
 55
 56	low = (int)__pa_symbol(&wall_clock);
 57	high = ((u64)__pa_symbol(&wall_clock) >> 32);
 58
 59	native_write_msr(msr_kvm_wall_clock, low, high);
 60
 61	vcpu_time = &get_cpu_var(hv_clock);
 62	pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
 63	put_cpu_var(hv_clock);
 64
 65	return ts.tv_sec;
 66}
 67
 68static int kvm_set_wallclock(unsigned long now)
 69{
 70	return -1;
 71}
 72
 73static cycle_t kvm_clock_read(void)
 74{
 75	struct pvclock_vcpu_time_info *src;
 76	cycle_t ret;
 77
 78	preempt_disable_notrace();
 79	src = &__get_cpu_var(hv_clock);
 80	ret = pvclock_clocksource_read(src);
 81	preempt_enable_notrace();
 82	return ret;
 83}
 84
 85static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
 86{
 87	return kvm_clock_read();
 88}
 89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90/*
 91 * If we don't do that, there is the possibility that the guest
 92 * will calibrate under heavy load - thus, getting a lower lpj -
 93 * and execute the delays themselves without load. This is wrong,
 94 * because no delay loop can finish beforehand.
 95 * Any heuristics is subject to fail, because ultimately, a large
 96 * poll of guests can be running and trouble each other. So we preset
 97 * lpj here
 98 */
 99static unsigned long kvm_get_tsc_khz(void)
100{
101	struct pvclock_vcpu_time_info *src;
102	src = &per_cpu(hv_clock, 0);
103	return pvclock_tsc_khz(src);
104}
105
106static void kvm_get_preset_lpj(void)
107{
108	unsigned long khz;
109	u64 lpj;
110
111	khz = kvm_get_tsc_khz();
112
113	lpj = ((u64)khz * 1000);
114	do_div(lpj, HZ);
115	preset_lpj = lpj;
116}
117
118bool kvm_check_and_clear_guest_paused(void)
119{
 
120	bool ret = false;
121	struct pvclock_vcpu_time_info *src;
122
123	src = &__get_cpu_var(hv_clock);
124	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
125		__this_cpu_and(hv_clock.flags, ~PVCLOCK_GUEST_STOPPED);
 
 
 
126		ret = true;
127	}
128
129	return ret;
130}
131
132static struct clocksource kvm_clock = {
133	.name = "kvm-clock",
134	.read = kvm_clock_get_cycles,
135	.rating = 400,
136	.mask = CLOCKSOURCE_MASK(64),
137	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
 
 
 
 
 
 
138};
 
139
140int kvm_register_clock(char *txt)
141{
142	int cpu = smp_processor_id();
143	int low, high, ret;
144
145	low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
146	high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
147	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
148	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
149	       cpu, high, low, txt);
150
151	return ret;
 
 
152}
153
154static void kvm_save_sched_clock_state(void)
155{
156}
157
158static void kvm_restore_sched_clock_state(void)
159{
160	kvm_register_clock("primary cpu clock, resume");
161}
162
163#ifdef CONFIG_X86_LOCAL_APIC
164static void __cpuinit kvm_setup_secondary_clock(void)
165{
166	/*
167	 * Now that the first cpu already had this clocksource initialized,
168	 * we shouldn't fail.
169	 */
170	WARN_ON(kvm_register_clock("secondary cpu clock"));
171}
172#endif
173
174/*
175 * After the clock is registered, the host will keep writing to the
176 * registered memory location. If the guest happens to shutdown, this memory
177 * won't be valid. In cases like kexec, in which you install a new kernel, this
178 * means a random memory location will be kept being written. So before any
179 * kind of shutdown from our side, we unregister the clock by writting anything
180 * that does not have the 'enable' bit set in the msr
181 */
182#ifdef CONFIG_KEXEC
183static void kvm_crash_shutdown(struct pt_regs *regs)
184{
185	native_write_msr(msr_kvm_system_time, 0, 0);
186	kvm_disable_steal_time();
187	native_machine_crash_shutdown(regs);
188}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189#endif
190
191static void kvm_shutdown(void)
 
 
 
 
192{
193	native_write_msr(msr_kvm_system_time, 0, 0);
194	kvm_disable_steal_time();
195	native_machine_shutdown();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196}
197
198void __init kvmclock_init(void)
199{
200	if (!kvm_para_available())
 
 
201		return;
202
203	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
204		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
205		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
206	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
207		return;
 
 
 
 
 
 
208
209	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
210		msr_kvm_system_time, msr_kvm_wall_clock);
211
212	if (kvm_register_clock("boot clock"))
213		return;
214	pv_time_ops.sched_clock = kvm_clock_read;
 
 
 
 
 
 
 
215	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 
216	x86_platform.get_wallclock = kvm_get_wallclock;
217	x86_platform.set_wallclock = kvm_set_wallclock;
218#ifdef CONFIG_X86_LOCAL_APIC
219	x86_cpuinit.early_percpu_clock_init =
220		kvm_setup_secondary_clock;
221#endif
222	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
223	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
224	machine_ops.shutdown  = kvm_shutdown;
225#ifdef CONFIG_KEXEC
226	machine_ops.crash_shutdown  = kvm_crash_shutdown;
227#endif
228	kvm_get_preset_lpj();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
230	pv_info.paravirt_enabled = 1;
231	pv_info.name = "KVM";
232
233	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
234		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
235}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*  KVM paravirtual clock driver. A clocksource implementation
  3    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4*/
  5
  6#include <linux/clocksource.h>
  7#include <linux/kvm_para.h>
  8#include <asm/pvclock.h>
  9#include <asm/msr.h>
 10#include <asm/apic.h>
 11#include <linux/percpu.h>
 12#include <linux/hardirq.h>
 13#include <linux/cpuhotplug.h>
 14#include <linux/sched.h>
 15#include <linux/sched/clock.h>
 16#include <linux/mm.h>
 17#include <linux/slab.h>
 18#include <linux/set_memory.h>
 19#include <linux/cc_platform.h>
 20
 21#include <asm/hypervisor.h>
 22#include <asm/x86_init.h>
 23#include <asm/kvmclock.h>
 24
 25static int kvmclock __initdata = 1;
 26static int kvmclock_vsyscall __initdata = 1;
 27static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
 28static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
 29static u64 kvm_sched_clock_offset __ro_after_init;
 30
 31static int __init parse_no_kvmclock(char *arg)
 32{
 33	kvmclock = 0;
 34	return 0;
 35}
 36early_param("no-kvmclock", parse_no_kvmclock);
 37
 38static int __init parse_no_kvmclock_vsyscall(char *arg)
 39{
 40	kvmclock_vsyscall = 0;
 41	return 0;
 42}
 43early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
 44
 45/* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
 46#define HVC_BOOT_ARRAY_SIZE \
 47	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
 48
 49static struct pvclock_vsyscall_time_info
 50			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
 51static struct pvclock_wall_clock wall_clock __bss_decrypted;
 52static struct pvclock_vsyscall_time_info *hvclock_mem;
 53DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
 54EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu);
 55
 56/*
 57 * The wallclock is the time of day when we booted. Since then, some time may
 58 * have elapsed since the hypervisor wrote the data. So we try to account for
 59 * that with system time
 60 */
 61static void kvm_get_wallclock(struct timespec64 *now)
 62{
 63	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
 64	preempt_disable();
 65	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
 66	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 67}
 68
 69static int kvm_set_wallclock(const struct timespec64 *now)
 70{
 71	return -ENODEV;
 72}
 73
 74static u64 kvm_clock_read(void)
 75{
 76	u64 ret;
 
 77
 78	preempt_disable_notrace();
 79	ret = pvclock_clocksource_read(this_cpu_pvti());
 
 80	preempt_enable_notrace();
 81	return ret;
 82}
 83
 84static u64 kvm_clock_get_cycles(struct clocksource *cs)
 85{
 86	return kvm_clock_read();
 87}
 88
 89static u64 kvm_sched_clock_read(void)
 90{
 91	return kvm_clock_read() - kvm_sched_clock_offset;
 92}
 93
 94static inline void kvm_sched_clock_init(bool stable)
 95{
 96	if (!stable)
 97		clear_sched_clock_stable();
 98	kvm_sched_clock_offset = kvm_clock_read();
 99	paravirt_set_sched_clock(kvm_sched_clock_read);
100
101	pr_info("kvm-clock: using sched offset of %llu cycles",
102		kvm_sched_clock_offset);
103
104	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
105		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
106}
107
108/*
109 * If we don't do that, there is the possibility that the guest
110 * will calibrate under heavy load - thus, getting a lower lpj -
111 * and execute the delays themselves without load. This is wrong,
112 * because no delay loop can finish beforehand.
113 * Any heuristics is subject to fail, because ultimately, a large
114 * poll of guests can be running and trouble each other. So we preset
115 * lpj here
116 */
117static unsigned long kvm_get_tsc_khz(void)
118{
119	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
120	return pvclock_tsc_khz(this_cpu_pvti());
 
121}
122
123static void __init kvm_get_preset_lpj(void)
124{
125	unsigned long khz;
126	u64 lpj;
127
128	khz = kvm_get_tsc_khz();
129
130	lpj = ((u64)khz * 1000);
131	do_div(lpj, HZ);
132	preset_lpj = lpj;
133}
134
135bool kvm_check_and_clear_guest_paused(void)
136{
137	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
138	bool ret = false;
 
139
140	if (!src)
141		return ret;
142
143	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
144		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
145		pvclock_touch_watchdogs();
146		ret = true;
147	}
 
148	return ret;
149}
150
151static int kvm_cs_enable(struct clocksource *cs)
152{
153	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
154	return 0;
155}
156
157struct clocksource kvm_clock = {
158	.name	= "kvm-clock",
159	.read	= kvm_clock_get_cycles,
160	.rating	= 400,
161	.mask	= CLOCKSOURCE_MASK(64),
162	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
163	.enable	= kvm_cs_enable,
164};
165EXPORT_SYMBOL_GPL(kvm_clock);
166
167static void kvm_register_clock(char *txt)
168{
169	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
170	u64 pa;
171
172	if (!src)
173		return;
 
 
 
174
175	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
176	wrmsrl(msr_kvm_system_time, pa);
177	pr_debug("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
178}
179
180static void kvm_save_sched_clock_state(void)
181{
182}
183
184static void kvm_restore_sched_clock_state(void)
185{
186	kvm_register_clock("primary cpu clock, resume");
187}
188
189#ifdef CONFIG_X86_LOCAL_APIC
190static void kvm_setup_secondary_clock(void)
191{
192	kvm_register_clock("secondary cpu clock");
 
 
 
 
193}
194#endif
195
196void kvmclock_disable(void)
 
 
 
 
 
 
 
 
 
197{
198	native_write_msr(msr_kvm_system_time, 0, 0);
 
 
199}
200
201static void __init kvmclock_init_mem(void)
202{
203	unsigned long ncpus;
204	unsigned int order;
205	struct page *p;
206	int r;
207
208	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
209		return;
210
211	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
212	order = get_order(ncpus * sizeof(*hvclock_mem));
213
214	p = alloc_pages(GFP_KERNEL, order);
215	if (!p) {
216		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
217		return;
218	}
219
220	hvclock_mem = page_address(p);
221
222	/*
223	 * hvclock is shared between the guest and the hypervisor, must
224	 * be mapped decrypted.
225	 */
226	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
227		r = set_memory_decrypted((unsigned long) hvclock_mem,
228					 1UL << order);
229		if (r) {
230			__free_pages(p, order);
231			hvclock_mem = NULL;
232			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
233			return;
234		}
235	}
236
237	memset(hvclock_mem, 0, PAGE_SIZE << order);
238}
239
240static int __init kvm_setup_vsyscall_timeinfo(void)
241{
242	if (!kvm_para_available() || !kvmclock || nopv)
243		return 0;
244
245	kvmclock_init_mem();
246
247#ifdef CONFIG_X86_64
248	if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) {
249		u8 flags;
250
251		flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
252		if (!(flags & PVCLOCK_TSC_STABLE_BIT))
253			return 0;
254
255		kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
256	}
257#endif
258
259	return 0;
260}
261early_initcall(kvm_setup_vsyscall_timeinfo);
262
263static int kvmclock_setup_percpu(unsigned int cpu)
264{
265	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
266
267	/*
268	 * The per cpu area setup replicates CPU0 data to all cpu
269	 * pointers. So carefully check. CPU0 has been set up in init
270	 * already.
271	 */
272	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
273		return 0;
274
275	/* Use the static page for the first CPUs, allocate otherwise */
276	if (cpu < HVC_BOOT_ARRAY_SIZE)
277		p = &hv_clock_boot[cpu];
278	else if (hvclock_mem)
279		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
280	else
281		return -ENOMEM;
282
283	per_cpu(hv_clock_per_cpu, cpu) = p;
284	return p ? 0 : -ENOMEM;
285}
286
287void __init kvmclock_init(void)
288{
289	u8 flags;
290
291	if (!kvm_para_available() || !kvmclock)
292		return;
293
294	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
295		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
296		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
297	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
298		return;
299	}
300
301	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
302			      kvmclock_setup_percpu, NULL) < 0) {
303		return;
304	}
305
306	pr_info("kvm-clock: Using msrs %x and %x",
307		msr_kvm_system_time, msr_kvm_wall_clock);
308
309	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
310	kvm_register_clock("primary cpu clock");
311	pvclock_set_pvti_cpu0_va(hv_clock_boot);
312
313	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
314		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
315
316	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
317	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
318
319	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
320	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
321	x86_platform.get_wallclock = kvm_get_wallclock;
322	x86_platform.set_wallclock = kvm_set_wallclock;
323#ifdef CONFIG_X86_LOCAL_APIC
324	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
 
325#endif
326	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
327	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
 
 
 
 
328	kvm_get_preset_lpj();
329
330	/*
331	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
332	 * with P/T states and does not stop in deep C-states.
333	 *
334	 * Invariant TSC exposed by host means kvmclock is not necessary:
335	 * can use TSC as clocksource.
336	 *
337	 */
338	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
339	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
340	    !check_tsc_unstable())
341		kvm_clock.rating = 299;
342
343	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 
344	pv_info.name = "KVM";
 
 
 
345}