Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*  arch/sparc64/kernel/process.c
  2 *
  3 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  5 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling..
 10 */
 11
 12#include <stdarg.h>
 13
 14#include <linux/errno.h>
 15#include <linux/export.h>
 16#include <linux/sched.h>
 
 
 
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/fs.h>
 20#include <linux/smp.h>
 21#include <linux/stddef.h>
 22#include <linux/ptrace.h>
 23#include <linux/slab.h>
 24#include <linux/user.h>
 25#include <linux/delay.h>
 26#include <linux/compat.h>
 27#include <linux/tick.h>
 28#include <linux/init.h>
 29#include <linux/cpu.h>
 
 30#include <linux/elfcore.h>
 31#include <linux/sysrq.h>
 32#include <linux/nmi.h>
 
 
 33
 34#include <asm/uaccess.h>
 35#include <asm/page.h>
 36#include <asm/pgalloc.h>
 37#include <asm/pgtable.h>
 38#include <asm/processor.h>
 39#include <asm/pstate.h>
 40#include <asm/elf.h>
 41#include <asm/fpumacro.h>
 42#include <asm/head.h>
 43#include <asm/cpudata.h>
 44#include <asm/mmu_context.h>
 45#include <asm/unistd.h>
 46#include <asm/hypervisor.h>
 47#include <asm/syscalls.h>
 48#include <asm/irq_regs.h>
 49#include <asm/smp.h>
 
 50
 51#include "kstack.h"
 52
 53static void sparc64_yield(int cpu)
 
 54{
 55	if (tlb_type != hypervisor) {
 56		touch_nmi_watchdog();
 57		return;
 58	}
 59
 60	clear_thread_flag(TIF_POLLING_NRFLAG);
 61	smp_mb__after_clear_bit();
 62
 63	while (!need_resched() && !cpu_is_offline(cpu)) {
 64		unsigned long pstate;
 65
 66		/* Disable interrupts. */
 
 
 
 
 67		__asm__ __volatile__(
 68			"rdpr %%pstate, %0\n\t"
 69			"andn %0, %1, %0\n\t"
 70			"wrpr %0, %%g0, %%pstate"
 71			: "=&r" (pstate)
 72			: "i" (PSTATE_IE));
 73
 74		if (!need_resched() && !cpu_is_offline(cpu))
 75			sun4v_cpu_yield();
 
 
 
 
 
 76
 77		/* Re-enable interrupts. */
 78		__asm__ __volatile__(
 79			"rdpr %%pstate, %0\n\t"
 80			"or %0, %1, %0\n\t"
 81			"wrpr %0, %%g0, %%pstate"
 82			: "=&r" (pstate)
 83			: "i" (PSTATE_IE));
 84	}
 85
 86	set_thread_flag(TIF_POLLING_NRFLAG);
 87}
 88
 89/* The idle loop on sparc64. */
 90void cpu_idle(void)
 91{
 92	int cpu = smp_processor_id();
 93
 94	set_thread_flag(TIF_POLLING_NRFLAG);
 95
 96	while(1) {
 97		tick_nohz_idle_enter();
 98		rcu_idle_enter();
 99
100		while (!need_resched() && !cpu_is_offline(cpu))
101			sparc64_yield(cpu);
102
103		rcu_idle_exit();
104		tick_nohz_idle_exit();
105
106#ifdef CONFIG_HOTPLUG_CPU
107		if (cpu_is_offline(cpu)) {
108			sched_preempt_enable_no_resched();
109			cpu_play_dead();
110		}
111#endif
112		schedule_preempt_disabled();
113	}
114}
 
115
116#ifdef CONFIG_COMPAT
117static void show_regwindow32(struct pt_regs *regs)
118{
119	struct reg_window32 __user *rw;
120	struct reg_window32 r_w;
121	mm_segment_t old_fs;
122	
123	__asm__ __volatile__ ("flushw");
124	rw = compat_ptr((unsigned)regs->u_regs[14]);
125	old_fs = get_fs();
126	set_fs (USER_DS);
127	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
128		set_fs (old_fs);
129		return;
130	}
131
132	set_fs (old_fs);			
133	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
134	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
135	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
136	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
137	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
138	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
139	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
140	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
141}
142#else
143#define show_regwindow32(regs)	do { } while (0)
144#endif
145
146static void show_regwindow(struct pt_regs *regs)
147{
148	struct reg_window __user *rw;
149	struct reg_window *rwk;
150	struct reg_window r_w;
151	mm_segment_t old_fs;
152
153	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
154		__asm__ __volatile__ ("flushw");
155		rw = (struct reg_window __user *)
156			(regs->u_regs[14] + STACK_BIAS);
157		rwk = (struct reg_window *)
158			(regs->u_regs[14] + STACK_BIAS);
159		if (!(regs->tstate & TSTATE_PRIV)) {
160			old_fs = get_fs();
161			set_fs (USER_DS);
162			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
163				set_fs (old_fs);
164				return;
165			}
166			rwk = &r_w;
167			set_fs (old_fs);			
168		}
169	} else {
170		show_regwindow32(regs);
171		return;
172	}
173	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
174	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
175	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
176	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
177	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
178	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
179	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
180	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
181	if (regs->tstate & TSTATE_PRIV)
182		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
183}
184
185void show_regs(struct pt_regs *regs)
186{
 
 
187	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
188	       regs->tpc, regs->tnpc, regs->y, print_tainted());
189	printk("TPC: <%pS>\n", (void *) regs->tpc);
190	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
191	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
192	       regs->u_regs[3]);
193	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
194	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
195	       regs->u_regs[7]);
196	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
197	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
198	       regs->u_regs[11]);
199	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
200	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
201	       regs->u_regs[15]);
202	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
203	show_regwindow(regs);
204	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
205}
206
207struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208static DEFINE_SPINLOCK(global_reg_snapshot_lock);
209
210static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211			      int this_cpu)
212{
 
 
213	flushw_all();
214
215	global_reg_snapshot[this_cpu].tstate = regs->tstate;
216	global_reg_snapshot[this_cpu].tpc = regs->tpc;
217	global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218	global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
 
 
219
220	if (regs->tstate & TSTATE_PRIV) {
221		struct reg_window *rw;
222
223		rw = (struct reg_window *)
224			(regs->u_regs[UREG_FP] + STACK_BIAS);
225		if (kstack_valid(tp, (unsigned long) rw)) {
226			global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227			rw = (struct reg_window *)
228				(rw->ins[6] + STACK_BIAS);
229			if (kstack_valid(tp, (unsigned long) rw))
230				global_reg_snapshot[this_cpu].rpc = rw->ins[7];
231		}
232	} else {
233		global_reg_snapshot[this_cpu].i7 = 0;
234		global_reg_snapshot[this_cpu].rpc = 0;
235	}
236	global_reg_snapshot[this_cpu].thread = tp;
237}
238
239/* In order to avoid hangs we do not try to synchronize with the
240 * global register dump client cpus.  The last store they make is to
241 * the thread pointer, so do a short poll waiting for that to become
242 * non-NULL.
243 */
244static void __global_reg_poll(struct global_reg_snapshot *gp)
245{
246	int limit = 0;
247
248	while (!gp->thread && ++limit < 100) {
249		barrier();
250		udelay(1);
251	}
252}
253
254void arch_trigger_all_cpu_backtrace(void)
255{
256	struct thread_info *tp = current_thread_info();
257	struct pt_regs *regs = get_irq_regs();
258	unsigned long flags;
259	int this_cpu, cpu;
260
261	if (!regs)
262		regs = tp->kregs;
263
264	spin_lock_irqsave(&global_reg_snapshot_lock, flags);
265
266	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
267
268	this_cpu = raw_smp_processor_id();
269
270	__global_reg_self(tp, regs, this_cpu);
 
 
 
271
272	smp_fetch_global_regs();
273
274	for_each_online_cpu(cpu) {
275		struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
 
 
 
 
 
276
277		__global_reg_poll(gp);
278
279		tp = gp->thread;
280		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281		       (cpu == this_cpu ? '*' : ' '), cpu,
282		       gp->tstate, gp->tpc, gp->tnpc,
283		       ((tp && tp->task) ? tp->task->comm : "NULL"),
284		       ((tp && tp->task) ? tp->task->pid : -1));
285
286		if (gp->tstate & TSTATE_PRIV) {
287			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288			       (void *) gp->tpc,
289			       (void *) gp->o7,
290			       (void *) gp->i7,
291			       (void *) gp->rpc);
292		} else {
293			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294			       gp->tpc, gp->o7, gp->i7, gp->rpc);
295		}
 
 
296	}
297
298	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
299
300	spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
301}
302
303#ifdef CONFIG_MAGIC_SYSRQ
304
305static void sysrq_handle_globreg(int key)
306{
307	arch_trigger_all_cpu_backtrace();
308}
309
310static struct sysrq_key_op sparc_globalreg_op = {
311	.handler	= sysrq_handle_globreg,
312	.help_msg	= "Globalregs",
313	.action_msg	= "Show Global CPU Regs",
314};
315
316static int __init sparc_globreg_init(void)
317{
318	return register_sysrq_key('y', &sparc_globalreg_op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319}
320
321core_initcall(sparc_globreg_init);
 
 
322
323#endif
 
 
 
 
324
325unsigned long thread_saved_pc(struct task_struct *tsk)
326{
327	struct thread_info *ti = task_thread_info(tsk);
328	unsigned long ret = 0xdeadbeefUL;
329	
330	if (ti && ti->ksp) {
331		unsigned long *sp;
332		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334		    sp[14]) {
335			unsigned long *fp;
336			fp = (unsigned long *)(sp[14] + STACK_BIAS);
337			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338				ret = fp[15];
339		}
 
 
 
 
 
 
 
 
 
 
 
340	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341	return ret;
342}
343
 
 
 
 
344/* Free current thread data structures etc.. */
345void exit_thread(void)
346{
347	struct thread_info *t = current_thread_info();
348
349	if (t->utraps) {
350		if (t->utraps[0] < 2)
351			kfree (t->utraps);
352		else
353			t->utraps[0]--;
354	}
355}
356
357void flush_thread(void)
358{
359	struct thread_info *t = current_thread_info();
360	struct mm_struct *mm;
361
362	mm = t->task->mm;
363	if (mm)
364		tsb_context_switch(mm);
365
366	set_thread_wsaved(0);
367
368	/* Clear FPU register state. */
369	t->fpsaved[0] = 0;
370}
371
372/* It's a bit more tricky when 64-bit tasks are involved... */
373static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
374{
 
375	unsigned long fp, distance, rval;
376
377	if (!(test_thread_flag(TIF_32BIT))) {
378		csp += STACK_BIAS;
379		psp += STACK_BIAS;
380		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
381		fp += STACK_BIAS;
 
 
382	} else
383		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
384
385	/* Now align the stack as this is mandatory in the Sparc ABI
386	 * due to how register windows work.  This hides the
387	 * restriction from thread libraries etc.
388	 */
389	csp &= ~15UL;
390
391	distance = fp - psp;
392	rval = (csp - distance);
393	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
394		rval = 0;
395	else if (test_thread_flag(TIF_32BIT)) {
396		if (put_user(((u32)csp),
397			     &(((struct reg_window32 __user *)rval)->ins[6])))
398			rval = 0;
399	} else {
400		if (put_user(((u64)csp - STACK_BIAS),
401			     &(((struct reg_window __user *)rval)->ins[6])))
402			rval = 0;
403		else
404			rval = rval - STACK_BIAS;
405	}
406
407	return rval;
408}
409
410/* Standard stuff. */
411static inline void shift_window_buffer(int first_win, int last_win,
412				       struct thread_info *t)
413{
414	int i;
415
416	for (i = first_win; i < last_win; i++) {
417		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
418		memcpy(&t->reg_window[i], &t->reg_window[i+1],
419		       sizeof(struct reg_window));
420	}
421}
422
423void synchronize_user_stack(void)
424{
425	struct thread_info *t = current_thread_info();
426	unsigned long window;
427
428	flush_user_windows();
429	if ((window = get_thread_wsaved()) != 0) {
430		int winsize = sizeof(struct reg_window);
431		int bias = 0;
432
433		if (test_thread_flag(TIF_32BIT))
434			winsize = sizeof(struct reg_window32);
435		else
436			bias = STACK_BIAS;
437
438		window -= 1;
439		do {
440			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
441			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
442
443			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
444				shift_window_buffer(window, get_thread_wsaved() - 1, t);
445				set_thread_wsaved(get_thread_wsaved() - 1);
446			}
447		} while (window--);
448	}
449}
450
451static void stack_unaligned(unsigned long sp)
452{
453	siginfo_t info;
454
455	info.si_signo = SIGBUS;
456	info.si_errno = 0;
457	info.si_code = BUS_ADRALN;
458	info.si_addr = (void __user *) sp;
459	info.si_trapno = 0;
460	force_sig_info(SIGBUS, &info, current);
461}
462
463void fault_in_user_windows(void)
 
 
 
 
 
464{
465	struct thread_info *t = current_thread_info();
466	unsigned long window;
467	int winsize = sizeof(struct reg_window);
468	int bias = 0;
469
470	if (test_thread_flag(TIF_32BIT))
471		winsize = sizeof(struct reg_window32);
472	else
473		bias = STACK_BIAS;
474
475	flush_user_windows();
476	window = get_thread_wsaved();
477
478	if (likely(window != 0)) {
479		window -= 1;
480		do {
481			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
482			struct reg_window *rwin = &t->reg_window[window];
 
 
 
 
 
 
 
 
 
483
484			if (unlikely(sp & 0x7UL))
485				stack_unaligned(sp);
486
487			if (unlikely(copy_to_user((char __user *)sp,
488						  rwin, winsize)))
 
 
 
 
 
 
 
489				goto barf;
 
490		} while (window--);
491	}
492	set_thread_wsaved(0);
493	return;
494
495barf:
496	set_thread_wsaved(window + 1);
497	do_exit(SIGILL);
498}
499
500asmlinkage long sparc_do_fork(unsigned long clone_flags,
501			      unsigned long stack_start,
502			      struct pt_regs *regs,
503			      unsigned long stack_size)
504{
505	int __user *parent_tid_ptr, *child_tid_ptr;
506	unsigned long orig_i1 = regs->u_regs[UREG_I1];
507	long ret;
508
509#ifdef CONFIG_COMPAT
510	if (test_thread_flag(TIF_32BIT)) {
511		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
512		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
513	} else
514#endif
515	{
516		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
517		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
518	}
519
520	ret = do_fork(clone_flags, stack_start,
521		      regs, stack_size,
522		      parent_tid_ptr, child_tid_ptr);
523
524	/* If we get an error and potentially restart the system
525	 * call, we're screwed because copy_thread() clobbered
526	 * the parent's %o1.  So detect that case and restore it
527	 * here.
528	 */
529	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
530		regs->u_regs[UREG_I1] = orig_i1;
531
532	return ret;
533}
534
535/* Copy a Sparc thread.  The fork() return value conventions
536 * under SunOS are nothing short of bletcherous:
537 * Parent -->  %o0 == childs  pid, %o1 == 0
538 * Child  -->  %o0 == parents pid, %o1 == 1
539 */
540int copy_thread(unsigned long clone_flags, unsigned long sp,
541		unsigned long unused,
542		struct task_struct *p, struct pt_regs *regs)
543{
 
 
 
544	struct thread_info *t = task_thread_info(p);
 
545	struct sparc_stackf *parent_sf;
546	unsigned long child_stack_sz;
547	char *child_trap_frame;
548	int kernel_thread;
549
550	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
551	parent_sf = ((struct sparc_stackf *) regs) - 1;
552
553	/* Calculate offset to stack_frame & pt_regs */
554	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
555			  (kernel_thread ? STACKFRAME_SZ : 0));
556	child_trap_frame = (task_stack_page(p) +
557			    (THREAD_SIZE - child_stack_sz));
558	memcpy(child_trap_frame, parent_sf, child_stack_sz);
559
560	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
561				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
562		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
563	t->new_child = 1;
564	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
565	t->kregs = (struct pt_regs *) (child_trap_frame +
566				       sizeof(struct sparc_stackf));
567	t->fpsaved[0] = 0;
568
569	if (kernel_thread) {
570		struct sparc_stackf *child_sf = (struct sparc_stackf *)
571			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
572
573		/* Zero terminate the stack backtrace.  */
574		child_sf->fp = NULL;
575		t->kregs->u_regs[UREG_FP] =
576		  ((unsigned long) child_sf) - STACK_BIAS;
577
578		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
579		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
580		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
581	} else {
582		if (t->flags & _TIF_32BIT) {
583			sp &= 0x00000000ffffffffUL;
584			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
585		}
586		t->kregs->u_regs[UREG_FP] = sp;
587		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
588		if (sp != regs->u_regs[UREG_FP]) {
589			unsigned long csp;
590
591			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
592			if (!csp)
593				return -EFAULT;
594			t->kregs->u_regs[UREG_FP] = csp;
595		}
596		if (t->utraps)
597			t->utraps[0]++;
598	}
599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600	/* Set the return value for the child. */
601	t->kregs->u_regs[UREG_I0] = current->pid;
602	t->kregs->u_regs[UREG_I1] = 1;
603
604	/* Set the second return value for the parent. */
605	regs->u_regs[UREG_I1] = 0;
606
607	if (clone_flags & CLONE_SETTLS)
608		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
609
610	return 0;
611}
612
613/*
614 * This is the mechanism for creating a new kernel thread.
615 *
616 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
617 * who haven't done an "execve()") should use this: it will work within
618 * a system call from a "real" process, but the process memory space will
619 * not be freed until both the parent and the child have exited.
620 */
621pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
622{
623	long retval;
624
625	/* If the parent runs before fn(arg) is called by the child,
626	 * the input registers of this function can be clobbered.
627	 * So we stash 'fn' and 'arg' into global registers which
628	 * will not be modified by the parent.
629	 */
630	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
631			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
632			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
633			     "mov %2, %%o0\n\t"	   /* Clone flags. */
634			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
635			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
636			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
637			     " mov %%o0, %0\n\t"
638			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
639			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
640			     "mov %3, %%g1\n\t"
641			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
642			     /* Notreached by child. */
643			     "1:" :
644			     "=r" (retval) :
645			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
646			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
647			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
648	return retval;
649}
650EXPORT_SYMBOL(kernel_thread);
651
652typedef struct {
653	union {
654		unsigned int	pr_regs[32];
655		unsigned long	pr_dregs[16];
656	} pr_fr;
657	unsigned int __unused;
658	unsigned int	pr_fsr;
659	unsigned char	pr_qcnt;
660	unsigned char	pr_q_entrysize;
661	unsigned char	pr_en;
662	unsigned int	pr_q[64];
663} elf_fpregset_t32;
664
665/*
666 * fill in the fpu structure for a core dump.
667 */
668int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
669{
670	unsigned long *kfpregs = current_thread_info()->fpregs;
671	unsigned long fprs = current_thread_info()->fpsaved[0];
672
673	if (test_thread_flag(TIF_32BIT)) {
674		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
675
676		if (fprs & FPRS_DL)
677			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
678			       sizeof(unsigned int) * 32);
679		else
680			memset(&fpregs32->pr_fr.pr_regs[0], 0,
681			       sizeof(unsigned int) * 32);
682		fpregs32->pr_qcnt = 0;
683		fpregs32->pr_q_entrysize = 8;
684		memset(&fpregs32->pr_q[0], 0,
685		       (sizeof(unsigned int) * 64));
686		if (fprs & FPRS_FEF) {
687			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
688			fpregs32->pr_en = 1;
689		} else {
690			fpregs32->pr_fsr = 0;
691			fpregs32->pr_en = 0;
692		}
693	} else {
694		if(fprs & FPRS_DL)
695			memcpy(&fpregs->pr_regs[0], kfpregs,
696			       sizeof(unsigned int) * 32);
697		else
698			memset(&fpregs->pr_regs[0], 0,
699			       sizeof(unsigned int) * 32);
700		if(fprs & FPRS_DU)
701			memcpy(&fpregs->pr_regs[16], kfpregs+16,
702			       sizeof(unsigned int) * 32);
703		else
704			memset(&fpregs->pr_regs[16], 0,
705			       sizeof(unsigned int) * 32);
706		if(fprs & FPRS_FEF) {
707			fpregs->pr_fsr = current_thread_info()->xfsr[0];
708			fpregs->pr_gsr = current_thread_info()->gsr[0];
709		} else {
710			fpregs->pr_fsr = fpregs->pr_gsr = 0;
711		}
712		fpregs->pr_fprs = fprs;
713	}
714	return 1;
715}
716EXPORT_SYMBOL(dump_fpu);
717
718/*
719 * sparc_execve() executes a new program after the asm stub has set
720 * things up for us.  This should basically do what I want it to.
721 */
722asmlinkage int sparc_execve(struct pt_regs *regs)
723{
724	int error, base = 0;
725	char *filename;
726
727	/* User register window flush is done by entry.S */
728
729	/* Check for indirect call. */
730	if (regs->u_regs[UREG_G1] == 0)
731		base = 1;
732
733	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
734	error = PTR_ERR(filename);
735	if (IS_ERR(filename))
736		goto out;
737	error = do_execve(filename,
738			  (const char __user *const __user *)
739			  regs->u_regs[base + UREG_I1],
740			  (const char __user *const __user *)
741			  regs->u_regs[base + UREG_I2], regs);
742	putname(filename);
743	if (!error) {
744		fprs_write(0);
745		current_thread_info()->xfsr[0] = 0;
746		current_thread_info()->fpsaved[0] = 0;
747		regs->tstate &= ~TSTATE_PEF;
748	}
749out:
750	return error;
751}
752
753unsigned long get_wchan(struct task_struct *task)
754{
755	unsigned long pc, fp, bias = 0;
756	struct thread_info *tp;
757	struct reg_window *rw;
758        unsigned long ret = 0;
759	int count = 0; 
760
761	if (!task || task == current ||
762            task->state == TASK_RUNNING)
763		goto out;
764
765	tp = task_thread_info(task);
766	bias = STACK_BIAS;
767	fp = task_thread_info(task)->ksp + bias;
768
769	do {
770		if (!kstack_valid(tp, fp))
771			break;
772		rw = (struct reg_window *) fp;
773		pc = rw->ins[7];
774		if (!in_sched_functions(pc)) {
775			ret = pc;
776			goto out;
777		}
778		fp = rw->ins[6] + bias;
779	} while (++count < 16);
780
781out:
782	return ret;
783}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*  arch/sparc64/kernel/process.c
  3 *
  4 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  5 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
  6 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9/*
 10 * This file handles the architecture-dependent parts of process handling..
 11 */
 
 
 
 12#include <linux/errno.h>
 13#include <linux/export.h>
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/sched/task.h>
 17#include <linux/sched/task_stack.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/fs.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/ptrace.h>
 24#include <linux/slab.h>
 25#include <linux/user.h>
 26#include <linux/delay.h>
 27#include <linux/compat.h>
 28#include <linux/tick.h>
 29#include <linux/init.h>
 30#include <linux/cpu.h>
 31#include <linux/perf_event.h>
 32#include <linux/elfcore.h>
 33#include <linux/sysrq.h>
 34#include <linux/nmi.h>
 35#include <linux/context_tracking.h>
 36#include <linux/signal.h>
 37
 38#include <linux/uaccess.h>
 39#include <asm/page.h>
 40#include <asm/pgalloc.h>
 
 41#include <asm/processor.h>
 42#include <asm/pstate.h>
 43#include <asm/elf.h>
 44#include <asm/fpumacro.h>
 45#include <asm/head.h>
 46#include <asm/cpudata.h>
 47#include <asm/mmu_context.h>
 48#include <asm/unistd.h>
 49#include <asm/hypervisor.h>
 50#include <asm/syscalls.h>
 51#include <asm/irq_regs.h>
 52#include <asm/smp.h>
 53#include <asm/pcr.h>
 54
 55#include "kstack.h"
 56
 57/* Idle loop support on sparc64. */
 58void arch_cpu_idle(void)
 59{
 60	if (tlb_type != hypervisor) {
 61		touch_nmi_watchdog();
 62		raw_local_irq_enable();
 63	} else {
 
 
 
 
 
 64		unsigned long pstate;
 65
 66		raw_local_irq_enable();
 67
 68                /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
 69                 * the cpu sleep hypervisor call.
 70                 */
 71		__asm__ __volatile__(
 72			"rdpr %%pstate, %0\n\t"
 73			"andn %0, %1, %0\n\t"
 74			"wrpr %0, %%g0, %%pstate"
 75			: "=&r" (pstate)
 76			: "i" (PSTATE_IE));
 77
 78		if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
 79			sun4v_cpu_yield();
 80			/* If resumed by cpu_poke then we need to explicitly
 81			 * call scheduler_ipi().
 82			 */
 83			scheduler_poke();
 84		}
 85
 86		/* Re-enable interrupts. */
 87		__asm__ __volatile__(
 88			"rdpr %%pstate, %0\n\t"
 89			"or %0, %1, %0\n\t"
 90			"wrpr %0, %%g0, %%pstate"
 91			: "=&r" (pstate)
 92			: "i" (PSTATE_IE));
 93	}
 
 
 94}
 95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96#ifdef CONFIG_HOTPLUG_CPU
 97void arch_cpu_idle_dead(void)
 98{
 99	sched_preempt_enable_no_resched();
100	cpu_play_dead();
 
 
 
101}
102#endif
103
104#ifdef CONFIG_COMPAT
105static void show_regwindow32(struct pt_regs *regs)
106{
107	struct reg_window32 __user *rw;
108	struct reg_window32 r_w;
 
109	
110	__asm__ __volatile__ ("flushw");
111	rw = compat_ptr((unsigned int)regs->u_regs[14]);
 
 
112	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 
113		return;
114	}
115
 
116	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
117	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
118	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
119	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
120	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
121	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
122	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
123	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
124}
125#else
126#define show_regwindow32(regs)	do { } while (0)
127#endif
128
129static void show_regwindow(struct pt_regs *regs)
130{
131	struct reg_window __user *rw;
132	struct reg_window *rwk;
133	struct reg_window r_w;
 
134
135	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
136		__asm__ __volatile__ ("flushw");
137		rw = (struct reg_window __user *)
138			(regs->u_regs[14] + STACK_BIAS);
139		rwk = (struct reg_window *)
140			(regs->u_regs[14] + STACK_BIAS);
141		if (!(regs->tstate & TSTATE_PRIV)) {
 
 
142			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 
143				return;
144			}
145			rwk = &r_w;
 
146		}
147	} else {
148		show_regwindow32(regs);
149		return;
150	}
151	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
152	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
153	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
154	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
155	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
156	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
157	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
158	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
159	if (regs->tstate & TSTATE_PRIV)
160		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
161}
162
163void show_regs(struct pt_regs *regs)
164{
165	show_regs_print_info(KERN_DEFAULT);
166
167	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
168	       regs->tpc, regs->tnpc, regs->y, print_tainted());
169	printk("TPC: <%pS>\n", (void *) regs->tpc);
170	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
171	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
172	       regs->u_regs[3]);
173	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
174	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
175	       regs->u_regs[7]);
176	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
177	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
178	       regs->u_regs[11]);
179	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
180	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
181	       regs->u_regs[15]);
182	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
183	show_regwindow(regs);
184	show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
185}
186
187union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
188static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
189
190static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
191			      int this_cpu)
192{
193	struct global_reg_snapshot *rp;
194
195	flushw_all();
196
197	rp = &global_cpu_snapshot[this_cpu].reg;
198
199	rp->tstate = regs->tstate;
200	rp->tpc = regs->tpc;
201	rp->tnpc = regs->tnpc;
202	rp->o7 = regs->u_regs[UREG_I7];
203
204	if (regs->tstate & TSTATE_PRIV) {
205		struct reg_window *rw;
206
207		rw = (struct reg_window *)
208			(regs->u_regs[UREG_FP] + STACK_BIAS);
209		if (kstack_valid(tp, (unsigned long) rw)) {
210			rp->i7 = rw->ins[7];
211			rw = (struct reg_window *)
212				(rw->ins[6] + STACK_BIAS);
213			if (kstack_valid(tp, (unsigned long) rw))
214				rp->rpc = rw->ins[7];
215		}
216	} else {
217		rp->i7 = 0;
218		rp->rpc = 0;
219	}
220	rp->thread = tp;
221}
222
223/* In order to avoid hangs we do not try to synchronize with the
224 * global register dump client cpus.  The last store they make is to
225 * the thread pointer, so do a short poll waiting for that to become
226 * non-NULL.
227 */
228static void __global_reg_poll(struct global_reg_snapshot *gp)
229{
230	int limit = 0;
231
232	while (!gp->thread && ++limit < 100) {
233		barrier();
234		udelay(1);
235	}
236}
237
238void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
239{
240	struct thread_info *tp = current_thread_info();
241	struct pt_regs *regs = get_irq_regs();
242	unsigned long flags;
243	int this_cpu, cpu;
244
245	if (!regs)
246		regs = tp->kregs;
247
248	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 
 
249
250	this_cpu = raw_smp_processor_id();
251
252	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
253
254	if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
255		__global_reg_self(tp, regs, this_cpu);
256
257	smp_fetch_global_regs();
258
259	for_each_cpu(cpu, mask) {
260		struct global_reg_snapshot *gp;
261
262		if (exclude_self && cpu == this_cpu)
263			continue;
264
265		gp = &global_cpu_snapshot[cpu].reg;
266
267		__global_reg_poll(gp);
268
269		tp = gp->thread;
270		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
271		       (cpu == this_cpu ? '*' : ' '), cpu,
272		       gp->tstate, gp->tpc, gp->tnpc,
273		       ((tp && tp->task) ? tp->task->comm : "NULL"),
274		       ((tp && tp->task) ? tp->task->pid : -1));
275
276		if (gp->tstate & TSTATE_PRIV) {
277			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
278			       (void *) gp->tpc,
279			       (void *) gp->o7,
280			       (void *) gp->i7,
281			       (void *) gp->rpc);
282		} else {
283			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
284			       gp->tpc, gp->o7, gp->i7, gp->rpc);
285		}
286
287		touch_nmi_watchdog();
288	}
289
290	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
291
292	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
293}
294
295#ifdef CONFIG_MAGIC_SYSRQ
296
297static void sysrq_handle_globreg(int key)
298{
299	trigger_all_cpu_backtrace();
300}
301
302static const struct sysrq_key_op sparc_globalreg_op = {
303	.handler	= sysrq_handle_globreg,
304	.help_msg	= "global-regs(y)",
305	.action_msg	= "Show Global CPU Regs",
306};
307
308static void __global_pmu_self(int this_cpu)
309{
310	struct global_pmu_snapshot *pp;
311	int i, num;
312
313	if (!pcr_ops)
314		return;
315
316	pp = &global_cpu_snapshot[this_cpu].pmu;
317
318	num = 1;
319	if (tlb_type == hypervisor &&
320	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
321		num = 4;
322
323	for (i = 0; i < num; i++) {
324		pp->pcr[i] = pcr_ops->read_pcr(i);
325		pp->pic[i] = pcr_ops->read_pic(i);
326	}
327}
328
329static void __global_pmu_poll(struct global_pmu_snapshot *pp)
330{
331	int limit = 0;
332
333	while (!pp->pcr[0] && ++limit < 100) {
334		barrier();
335		udelay(1);
336	}
337}
338
339static void pmu_snapshot_all_cpus(void)
340{
341	unsigned long flags;
342	int this_cpu, cpu;
343
344	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
345
346	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
347
348	this_cpu = raw_smp_processor_id();
349
350	__global_pmu_self(this_cpu);
351
352	smp_fetch_global_pmu();
353
354	for_each_online_cpu(cpu) {
355		struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
356
357		__global_pmu_poll(pp);
358
359		printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
360		       (cpu == this_cpu ? '*' : ' '), cpu,
361		       pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
362		       pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
363
364		touch_nmi_watchdog();
365	}
366
367	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
368
369	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
370}
371
372static void sysrq_handle_globpmu(int key)
373{
374	pmu_snapshot_all_cpus();
375}
376
377static const struct sysrq_key_op sparc_globalpmu_op = {
378	.handler	= sysrq_handle_globpmu,
379	.help_msg	= "global-pmu(x)",
380	.action_msg	= "Show Global PMU Regs",
381};
382
383static int __init sparc_sysrq_init(void)
384{
385	int ret = register_sysrq_key('y', &sparc_globalreg_op);
386
387	if (!ret)
388		ret = register_sysrq_key('x', &sparc_globalpmu_op);
389	return ret;
390}
391
392core_initcall(sparc_sysrq_init);
393
394#endif
395
396/* Free current thread data structures etc.. */
397void exit_thread(struct task_struct *tsk)
398{
399	struct thread_info *t = task_thread_info(tsk);
400
401	if (t->utraps) {
402		if (t->utraps[0] < 2)
403			kfree (t->utraps);
404		else
405			t->utraps[0]--;
406	}
407}
408
409void flush_thread(void)
410{
411	struct thread_info *t = current_thread_info();
412	struct mm_struct *mm;
413
414	mm = t->task->mm;
415	if (mm)
416		tsb_context_switch(mm);
417
418	set_thread_wsaved(0);
419
420	/* Clear FPU register state. */
421	t->fpsaved[0] = 0;
422}
423
424/* It's a bit more tricky when 64-bit tasks are involved... */
425static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
426{
427	bool stack_64bit = test_thread_64bit_stack(psp);
428	unsigned long fp, distance, rval;
429
430	if (stack_64bit) {
431		csp += STACK_BIAS;
432		psp += STACK_BIAS;
433		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
434		fp += STACK_BIAS;
435		if (test_thread_flag(TIF_32BIT))
436			fp &= 0xffffffff;
437	} else
438		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
439
440	/* Now align the stack as this is mandatory in the Sparc ABI
441	 * due to how register windows work.  This hides the
442	 * restriction from thread libraries etc.
443	 */
444	csp &= ~15UL;
445
446	distance = fp - psp;
447	rval = (csp - distance);
448	if (raw_copy_in_user((void __user *)rval, (void __user *)psp, distance))
449		rval = 0;
450	else if (!stack_64bit) {
451		if (put_user(((u32)csp),
452			     &(((struct reg_window32 __user *)rval)->ins[6])))
453			rval = 0;
454	} else {
455		if (put_user(((u64)csp - STACK_BIAS),
456			     &(((struct reg_window __user *)rval)->ins[6])))
457			rval = 0;
458		else
459			rval = rval - STACK_BIAS;
460	}
461
462	return rval;
463}
464
465/* Standard stuff. */
466static inline void shift_window_buffer(int first_win, int last_win,
467				       struct thread_info *t)
468{
469	int i;
470
471	for (i = first_win; i < last_win; i++) {
472		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
473		memcpy(&t->reg_window[i], &t->reg_window[i+1],
474		       sizeof(struct reg_window));
475	}
476}
477
478void synchronize_user_stack(void)
479{
480	struct thread_info *t = current_thread_info();
481	unsigned long window;
482
483	flush_user_windows();
484	if ((window = get_thread_wsaved()) != 0) {
 
 
 
 
 
 
 
 
485		window -= 1;
486		do {
 
487			struct reg_window *rwin = &t->reg_window[window];
488			int winsize = sizeof(struct reg_window);
489			unsigned long sp;
490
491			sp = t->rwbuf_stkptrs[window];
492
493			if (test_thread_64bit_stack(sp))
494				sp += STACK_BIAS;
495			else
496				winsize = sizeof(struct reg_window32);
497
498			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
499				shift_window_buffer(window, get_thread_wsaved() - 1, t);
500				set_thread_wsaved(get_thread_wsaved() - 1);
501			}
502		} while (window--);
503	}
504}
505
506static void stack_unaligned(unsigned long sp)
507{
508	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp);
 
 
 
 
 
 
 
509}
510
511static const char uwfault32[] = KERN_INFO \
512	"%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
513static const char uwfault64[] = KERN_INFO \
514	"%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
515
516void fault_in_user_windows(struct pt_regs *regs)
517{
518	struct thread_info *t = current_thread_info();
519	unsigned long window;
 
 
 
 
 
 
 
520
521	flush_user_windows();
522	window = get_thread_wsaved();
523
524	if (likely(window != 0)) {
525		window -= 1;
526		do {
 
527			struct reg_window *rwin = &t->reg_window[window];
528			int winsize = sizeof(struct reg_window);
529			unsigned long sp, orig_sp;
530
531			orig_sp = sp = t->rwbuf_stkptrs[window];
532
533			if (test_thread_64bit_stack(sp))
534				sp += STACK_BIAS;
535			else
536				winsize = sizeof(struct reg_window32);
537
538			if (unlikely(sp & 0x7UL))
539				stack_unaligned(sp);
540
541			if (unlikely(copy_to_user((char __user *)sp,
542						  rwin, winsize))) {
543				if (show_unhandled_signals)
544					printk_ratelimited(is_compat_task() ?
545							   uwfault32 : uwfault64,
546							   current->comm, current->pid,
547							   sp, orig_sp,
548							   regs->tpc,
549							   regs->u_regs[UREG_I7]);
550				goto barf;
551			}
552		} while (window--);
553	}
554	set_thread_wsaved(0);
555	return;
556
557barf:
558	set_thread_wsaved(window + 1);
559	force_sig(SIGSEGV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560}
561
562/* Copy a Sparc thread.  The fork() return value conventions
563 * under SunOS are nothing short of bletcherous:
564 * Parent -->  %o0 == childs  pid, %o1 == 0
565 * Child  -->  %o0 == parents pid, %o1 == 1
566 */
567int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
 
568{
569	unsigned long clone_flags = args->flags;
570	unsigned long sp = args->stack;
571	unsigned long tls = args->tls;
572	struct thread_info *t = task_thread_info(p);
573	struct pt_regs *regs = current_pt_regs();
574	struct sparc_stackf *parent_sf;
575	unsigned long child_stack_sz;
576	char *child_trap_frame;
 
 
 
 
577
578	/* Calculate offset to stack_frame & pt_regs */
579	child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
 
580	child_trap_frame = (task_stack_page(p) +
581			    (THREAD_SIZE - child_stack_sz));
 
582
 
 
 
583	t->new_child = 1;
584	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
585	t->kregs = (struct pt_regs *) (child_trap_frame +
586				       sizeof(struct sparc_stackf));
587	t->fpsaved[0] = 0;
588
589	if (unlikely(args->fn)) {
590		memset(child_trap_frame, 0, child_stack_sz);
591		__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
592			(current_pt_regs()->tstate + 1) & TSTATE_CWP;
593		t->kregs->u_regs[UREG_G1] = (unsigned long) args->fn;
594		t->kregs->u_regs[UREG_G2] = (unsigned long) args->fn_arg;
595		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596	}
597
598	parent_sf = ((struct sparc_stackf *) regs) - 1;
599	memcpy(child_trap_frame, parent_sf, child_stack_sz);
600	if (t->flags & _TIF_32BIT) {
601		sp &= 0x00000000ffffffffUL;
602		regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
603	}
604	t->kregs->u_regs[UREG_FP] = sp;
605	__thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
606		(regs->tstate + 1) & TSTATE_CWP;
607	if (sp != regs->u_regs[UREG_FP]) {
608		unsigned long csp;
609
610		csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
611		if (!csp)
612			return -EFAULT;
613		t->kregs->u_regs[UREG_FP] = csp;
614	}
615	if (t->utraps)
616		t->utraps[0]++;
617
618	/* Set the return value for the child. */
619	t->kregs->u_regs[UREG_I0] = current->pid;
620	t->kregs->u_regs[UREG_I1] = 1;
621
622	/* Set the second return value for the parent. */
623	regs->u_regs[UREG_I1] = 0;
624
625	if (clone_flags & CLONE_SETTLS)
626		t->kregs->u_regs[UREG_G7] = tls;
627
628	return 0;
629}
630
631/* TIF_MCDPER in thread info flags for current task is updated lazily upon
632 * a context switch. Update this flag in current task's thread flags
633 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634 */
635int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
636{
637	if (adi_capable()) {
638		register unsigned long tmp_mcdper;
 
 
 
639
640		__asm__ __volatile__(
641			".word 0x83438000\n\t"	/* rd  %mcdper, %g1 */
642			"mov %%g1, %0\n\t"
643			: "=r" (tmp_mcdper)
644			:
645			: "g1");
646		if (tmp_mcdper)
647			set_thread_flag(TIF_MCDPER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648		else
649			clear_thread_flag(TIF_MCDPER);
 
 
 
 
 
 
 
 
650	}
 
 
 
651
652	*dst = *src;
653	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654}
655
656unsigned long __get_wchan(struct task_struct *task)
657{
658	unsigned long pc, fp, bias = 0;
659	struct thread_info *tp;
660	struct reg_window *rw;
661        unsigned long ret = 0;
662	int count = 0; 
 
 
 
 
663
664	tp = task_thread_info(task);
665	bias = STACK_BIAS;
666	fp = task_thread_info(task)->ksp + bias;
667
668	do {
669		if (!kstack_valid(tp, fp))
670			break;
671		rw = (struct reg_window *) fp;
672		pc = rw->ins[7];
673		if (!in_sched_functions(pc)) {
674			ret = pc;
675			goto out;
676		}
677		fp = rw->ins[6] + bias;
678	} while (++count < 16);
679
680out:
681	return ret;
682}