Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Freescale General-purpose Timers Module
  3 *
  4 * Copyright (c) Freescale Semicondutor, Inc. 2006.
  5 *               Shlomi Gridish <gridish@freescale.com>
  6 *               Jerry Huang <Chang-Ming.Huang@freescale.com>
  7 * Copyright (c) MontaVista Software, Inc. 2008.
  8 *               Anton Vorontsov <avorontsov@ru.mvista.com>
  9 *
 10 * This program is free software; you can redistribute  it and/or modify it
 11 * under  the terms of  the GNU General  Public License as published by the
 12 * Free Software Foundation;  either version 2 of the  License, or (at your
 13 * option) any later version.
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/err.h>
 18#include <linux/errno.h>
 19#include <linux/list.h>
 20#include <linux/io.h>
 21#include <linux/of.h>
 
 
 22#include <linux/spinlock.h>
 23#include <linux/bitops.h>
 24#include <linux/slab.h>
 25#include <linux/export.h>
 26#include <asm/fsl_gtm.h>
 27
 28#define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1)
 29#define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0)
 30
 31#define GTMDR_ICLK_MASK		(3 << 1)
 32#define GTMDR_ICLK_ICAS		(0 << 1)
 33#define GTMDR_ICLK_ICLK		(1 << 1)
 34#define GTMDR_ICLK_SLGO		(2 << 1)
 35#define GTMDR_FRR		(1 << 3)
 36#define GTMDR_ORI		(1 << 4)
 37#define GTMDR_SPS(x)		((x) << 8)
 38
 39struct gtm_timers_regs {
 40	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */
 41	u8	res0[0x3];
 42	u8	gtcfr2;		/* Timer 3, timer 4 global config register */
 43	u8	res1[0xB];
 44	__be16	gtmdr1;		/* Timer 1 mode register */
 45	__be16	gtmdr2;		/* Timer 2 mode register */
 46	__be16	gtrfr1;		/* Timer 1 reference register */
 47	__be16	gtrfr2;		/* Timer 2 reference register */
 48	__be16	gtcpr1;		/* Timer 1 capture register */
 49	__be16	gtcpr2;		/* Timer 2 capture register */
 50	__be16	gtcnr1;		/* Timer 1 counter */
 51	__be16	gtcnr2;		/* Timer 2 counter */
 52	__be16	gtmdr3;		/* Timer 3 mode register */
 53	__be16	gtmdr4;		/* Timer 4 mode register */
 54	__be16	gtrfr3;		/* Timer 3 reference register */
 55	__be16	gtrfr4;		/* Timer 4 reference register */
 56	__be16	gtcpr3;		/* Timer 3 capture register */
 57	__be16	gtcpr4;		/* Timer 4 capture register */
 58	__be16	gtcnr3;		/* Timer 3 counter */
 59	__be16	gtcnr4;		/* Timer 4 counter */
 60	__be16	gtevr1;		/* Timer 1 event register */
 61	__be16	gtevr2;		/* Timer 2 event register */
 62	__be16	gtevr3;		/* Timer 3 event register */
 63	__be16	gtevr4;		/* Timer 4 event register */
 64	__be16	gtpsr1;		/* Timer 1 prescale register */
 65	__be16	gtpsr2;		/* Timer 2 prescale register */
 66	__be16	gtpsr3;		/* Timer 3 prescale register */
 67	__be16	gtpsr4;		/* Timer 4 prescale register */
 68	u8 res2[0x40];
 69} __attribute__ ((packed));
 70
 71struct gtm {
 72	unsigned int clock;
 73	struct gtm_timers_regs __iomem *regs;
 74	struct gtm_timer timers[4];
 75	spinlock_t lock;
 76	struct list_head list_node;
 77};
 78
 79static LIST_HEAD(gtms);
 80
 81/**
 82 * gtm_get_timer - request GTM timer to use it with the rest of GTM API
 83 * Context:	non-IRQ
 84 *
 85 * This function reserves GTM timer for later use. It returns gtm_timer
 86 * structure to use with the rest of GTM API, you should use timer->irq
 87 * to manage timer interrupt.
 88 */
 89struct gtm_timer *gtm_get_timer16(void)
 90{
 91	struct gtm *gtm = NULL;
 92	int i;
 93
 94	list_for_each_entry(gtm, &gtms, list_node) {
 95		spin_lock_irq(&gtm->lock);
 96
 97		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
 98			if (!gtm->timers[i].requested) {
 99				gtm->timers[i].requested = true;
100				spin_unlock_irq(&gtm->lock);
101				return &gtm->timers[i];
102			}
103		}
104
105		spin_unlock_irq(&gtm->lock);
106	}
107
108	if (gtm)
109		return ERR_PTR(-EBUSY);
110	return ERR_PTR(-ENODEV);
111}
112EXPORT_SYMBOL(gtm_get_timer16);
113
114/**
115 * gtm_get_specific_timer - request specific GTM timer
116 * @gtm:	specific GTM, pass here GTM's device_node->data
117 * @timer:	specific timer number, Timer1 is 0.
118 * Context:	non-IRQ
119 *
120 * This function reserves GTM timer for later use. It returns gtm_timer
121 * structure to use with the rest of GTM API, you should use timer->irq
122 * to manage timer interrupt.
123 */
124struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
125					   unsigned int timer)
126{
127	struct gtm_timer *ret = ERR_PTR(-EBUSY);
128
129	if (timer > 3)
130		return ERR_PTR(-EINVAL);
131
132	spin_lock_irq(&gtm->lock);
133
134	if (gtm->timers[timer].requested)
135		goto out;
136
137	ret = &gtm->timers[timer];
138	ret->requested = true;
139
140out:
141	spin_unlock_irq(&gtm->lock);
142	return ret;
143}
144EXPORT_SYMBOL(gtm_get_specific_timer16);
145
146/**
147 * gtm_put_timer16 - release 16 bits GTM timer
148 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
149 * Context:	any
150 *
151 * This function releases GTM timer so others may request it.
152 */
153void gtm_put_timer16(struct gtm_timer *tmr)
154{
155	gtm_stop_timer16(tmr);
156
157	spin_lock_irq(&tmr->gtm->lock);
158	tmr->requested = false;
159	spin_unlock_irq(&tmr->gtm->lock);
160}
161EXPORT_SYMBOL(gtm_put_timer16);
162
163/*
164 * This is back-end for the exported functions, it's used to reset single
165 * timer in reference mode.
166 */
167static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
168			       int reference_value, bool free_run)
169{
170	struct gtm *gtm = tmr->gtm;
171	int num = tmr - &gtm->timers[0];
172	unsigned int prescaler;
173	u8 iclk = GTMDR_ICLK_ICLK;
174	u8 psr;
175	u8 sps;
176	unsigned long flags;
177	int max_prescaler = 256 * 256 * 16;
178
179	/* CPM2 doesn't have primary prescaler */
180	if (!tmr->gtpsr)
181		max_prescaler /= 256;
182
183	prescaler = gtm->clock / frequency;
184	/*
185	 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
186	 * plus "slow go" mode (clk / 16). So, total prescale value is
187	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
188	 */
189	if (prescaler > max_prescaler)
190		return -EINVAL;
191
192	if (prescaler > max_prescaler / 16) {
193		iclk = GTMDR_ICLK_SLGO;
194		prescaler /= 16;
195	}
196
197	if (prescaler <= 256) {
198		psr = 0;
199		sps = prescaler - 1;
200	} else {
201		psr = 256 - 1;
202		sps = prescaler / 256 - 1;
203	}
204
205	spin_lock_irqsave(&gtm->lock, flags);
206
207	/*
208	 * Properly reset timers: stop, reset, set up prescalers, reference
209	 * value and clear event register.
210	 */
211	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
212				 GTCFR_STP(num) | GTCFR_RST(num));
213
214	setbits8(tmr->gtcfr, GTCFR_STP(num));
215
216	if (tmr->gtpsr)
217		out_be16(tmr->gtpsr, psr);
218	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
219			GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
220	out_be16(tmr->gtcnr, 0);
221	out_be16(tmr->gtrfr, reference_value);
222	out_be16(tmr->gtevr, 0xFFFF);
223
224	/* Let it be. */
225	clrbits8(tmr->gtcfr, GTCFR_STP(num));
226
227	spin_unlock_irqrestore(&gtm->lock, flags);
228
229	return 0;
230}
231
232/**
233 * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
234 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
235 * @usec:	timer interval in microseconds
236 * @reload:	if set, the timer will reset upon expiry rather than
237 *         	continue running free.
238 * Context:	any
239 *
240 * This function (re)sets the GTM timer so that it counts up to the requested
241 * interval value, and fires the interrupt when the value is reached. This
242 * function will reduce the precision of the timer as needed in order for the
243 * requested timeout to fit in a 16-bit register.
244 */
245int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
246{
247	/* quite obvious, frequency which is enough for µSec precision */
248	int freq = 1000000;
249	unsigned int bit;
250
251	bit = fls_long(usec);
252	if (bit > 15) {
253		freq >>= bit - 15;
254		usec >>= bit - 15;
255	}
256
257	if (!freq)
258		return -EINVAL;
259
260	return gtm_set_ref_timer16(tmr, freq, usec, reload);
261}
262EXPORT_SYMBOL(gtm_set_timer16);
263
264/**
265 * gtm_set_exact_utimer16 - (re)set 16 bits timer
266 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
267 * @usec:	timer interval in microseconds
268 * @reload:	if set, the timer will reset upon expiry rather than
269 *         	continue running free.
270 * Context:	any
271 *
272 * This function (re)sets GTM timer so that it counts up to the requested
273 * interval value, and fires the interrupt when the value is reached. If reload
274 * flag was set, timer will also reset itself upon reference value, otherwise
275 * it continues to increment.
276 *
277 * The _exact_ bit in the function name states that this function will not
278 * crop precision of the "usec" argument, thus usec is limited to 16 bits
279 * (single timer width).
280 */
281int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
282{
283	/* quite obvious, frequency which is enough for µSec precision */
284	const int freq = 1000000;
285
286	/*
287	 * We can lower the frequency (and probably power consumption) by
288	 * dividing both frequency and usec by 2 until there is no remainder.
289	 * But we won't bother with this unless savings are measured, so just
290	 * run the timer as is.
291	 */
292
293	return gtm_set_ref_timer16(tmr, freq, usec, reload);
294}
295EXPORT_SYMBOL(gtm_set_exact_timer16);
296
297/**
298 * gtm_stop_timer16 - stop single timer
299 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
300 * Context:	any
301 *
302 * This function simply stops the GTM timer.
303 */
304void gtm_stop_timer16(struct gtm_timer *tmr)
305{
306	struct gtm *gtm = tmr->gtm;
307	int num = tmr - &gtm->timers[0];
308	unsigned long flags;
309
310	spin_lock_irqsave(&gtm->lock, flags);
311
312	setbits8(tmr->gtcfr, GTCFR_STP(num));
313	out_be16(tmr->gtevr, 0xFFFF);
314
315	spin_unlock_irqrestore(&gtm->lock, flags);
316}
317EXPORT_SYMBOL(gtm_stop_timer16);
318
319/**
320 * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
321 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
322 * @events:	events mask to ack
323 * Context:	any
324 *
325 * Thus function used to acknowledge timer interrupt event, use it inside the
326 * interrupt handler.
327 */
328void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
329{
330	out_be16(tmr->gtevr, events);
331}
332EXPORT_SYMBOL(gtm_ack_timer16);
333
334static void __init gtm_set_shortcuts(struct device_node *np,
335				     struct gtm_timer *timers,
336				     struct gtm_timers_regs __iomem *regs)
337{
338	/*
339	 * Yeah, I don't like this either, but timers' registers a bit messed,
340	 * so we have to provide shortcuts to write timer independent code.
341	 * Alternative option is to create gt*() accessors, but that will be
342	 * even uglier and cryptic.
343	 */
344	timers[0].gtcfr = &regs->gtcfr1;
345	timers[0].gtmdr = &regs->gtmdr1;
346	timers[0].gtcnr = &regs->gtcnr1;
347	timers[0].gtrfr = &regs->gtrfr1;
348	timers[0].gtevr = &regs->gtevr1;
349
350	timers[1].gtcfr = &regs->gtcfr1;
351	timers[1].gtmdr = &regs->gtmdr2;
352	timers[1].gtcnr = &regs->gtcnr2;
353	timers[1].gtrfr = &regs->gtrfr2;
354	timers[1].gtevr = &regs->gtevr2;
355
356	timers[2].gtcfr = &regs->gtcfr2;
357	timers[2].gtmdr = &regs->gtmdr3;
358	timers[2].gtcnr = &regs->gtcnr3;
359	timers[2].gtrfr = &regs->gtrfr3;
360	timers[2].gtevr = &regs->gtevr3;
361
362	timers[3].gtcfr = &regs->gtcfr2;
363	timers[3].gtmdr = &regs->gtmdr4;
364	timers[3].gtcnr = &regs->gtcnr4;
365	timers[3].gtrfr = &regs->gtrfr4;
366	timers[3].gtevr = &regs->gtevr4;
367
368	/* CPM2 doesn't have primary prescaler */
369	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
370		timers[0].gtpsr = &regs->gtpsr1;
371		timers[1].gtpsr = &regs->gtpsr2;
372		timers[2].gtpsr = &regs->gtpsr3;
373		timers[3].gtpsr = &regs->gtpsr4;
374	}
375}
376
377static int __init fsl_gtm_init(void)
378{
379	struct device_node *np;
380
381	for_each_compatible_node(np, NULL, "fsl,gtm") {
382		int i;
383		struct gtm *gtm;
384		const u32 *clock;
385		int size;
386
387		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
388		if (!gtm) {
389			pr_err("%s: unable to allocate memory\n",
390				np->full_name);
391			continue;
392		}
393
394		spin_lock_init(&gtm->lock);
395
396		clock = of_get_property(np, "clock-frequency", &size);
397		if (!clock || size != sizeof(*clock)) {
398			pr_err("%s: no clock-frequency\n", np->full_name);
399			goto err;
400		}
401		gtm->clock = *clock;
402
403		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
404			int ret;
405			struct resource irq;
406
407			ret = of_irq_to_resource(np, i, &irq);
408			if (ret == NO_IRQ) {
409				pr_err("%s: not enough interrupts specified\n",
410				       np->full_name);
411				goto err;
412			}
413			gtm->timers[i].irq = irq.start;
414			gtm->timers[i].gtm = gtm;
415		}
416
417		gtm->regs = of_iomap(np, 0);
418		if (!gtm->regs) {
419			pr_err("%s: unable to iomap registers\n",
420			       np->full_name);
421			goto err;
422		}
423
424		gtm_set_shortcuts(np, gtm->timers, gtm->regs);
425		list_add(&gtm->list_node, &gtms);
426
427		/* We don't want to lose the node and its ->data */
428		np->data = gtm;
429		of_node_get(np);
430
431		continue;
432err:
433		kfree(gtm);
434	}
435	return 0;
436}
437arch_initcall(fsl_gtm_init);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Freescale General-purpose Timers Module
  4 *
  5 * Copyright (c) Freescale Semiconductor, Inc. 2006.
  6 *               Shlomi Gridish <gridish@freescale.com>
  7 *               Jerry Huang <Chang-Ming.Huang@freescale.com>
  8 * Copyright (c) MontaVista Software, Inc. 2008.
  9 *               Anton Vorontsov <avorontsov@ru.mvista.com>
 
 
 
 
 
 10 */
 11
 12#include <linux/kernel.h>
 13#include <linux/err.h>
 14#include <linux/errno.h>
 15#include <linux/list.h>
 16#include <linux/io.h>
 17#include <linux/of.h>
 18#include <linux/of_address.h>
 19#include <linux/of_irq.h>
 20#include <linux/spinlock.h>
 21#include <linux/bitops.h>
 22#include <linux/slab.h>
 23#include <linux/export.h>
 24#include <asm/fsl_gtm.h>
 25
 26#define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1)
 27#define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0)
 28
 29#define GTMDR_ICLK_MASK		(3 << 1)
 30#define GTMDR_ICLK_ICAS		(0 << 1)
 31#define GTMDR_ICLK_ICLK		(1 << 1)
 32#define GTMDR_ICLK_SLGO		(2 << 1)
 33#define GTMDR_FRR		(1 << 3)
 34#define GTMDR_ORI		(1 << 4)
 35#define GTMDR_SPS(x)		((x) << 8)
 36
 37struct gtm_timers_regs {
 38	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */
 39	u8	res0[0x3];
 40	u8	gtcfr2;		/* Timer 3, timer 4 global config register */
 41	u8	res1[0xB];
 42	__be16	gtmdr1;		/* Timer 1 mode register */
 43	__be16	gtmdr2;		/* Timer 2 mode register */
 44	__be16	gtrfr1;		/* Timer 1 reference register */
 45	__be16	gtrfr2;		/* Timer 2 reference register */
 46	__be16	gtcpr1;		/* Timer 1 capture register */
 47	__be16	gtcpr2;		/* Timer 2 capture register */
 48	__be16	gtcnr1;		/* Timer 1 counter */
 49	__be16	gtcnr2;		/* Timer 2 counter */
 50	__be16	gtmdr3;		/* Timer 3 mode register */
 51	__be16	gtmdr4;		/* Timer 4 mode register */
 52	__be16	gtrfr3;		/* Timer 3 reference register */
 53	__be16	gtrfr4;		/* Timer 4 reference register */
 54	__be16	gtcpr3;		/* Timer 3 capture register */
 55	__be16	gtcpr4;		/* Timer 4 capture register */
 56	__be16	gtcnr3;		/* Timer 3 counter */
 57	__be16	gtcnr4;		/* Timer 4 counter */
 58	__be16	gtevr1;		/* Timer 1 event register */
 59	__be16	gtevr2;		/* Timer 2 event register */
 60	__be16	gtevr3;		/* Timer 3 event register */
 61	__be16	gtevr4;		/* Timer 4 event register */
 62	__be16	gtpsr1;		/* Timer 1 prescale register */
 63	__be16	gtpsr2;		/* Timer 2 prescale register */
 64	__be16	gtpsr3;		/* Timer 3 prescale register */
 65	__be16	gtpsr4;		/* Timer 4 prescale register */
 66	u8 res2[0x40];
 67} __attribute__ ((packed));
 68
 69struct gtm {
 70	unsigned int clock;
 71	struct gtm_timers_regs __iomem *regs;
 72	struct gtm_timer timers[4];
 73	spinlock_t lock;
 74	struct list_head list_node;
 75};
 76
 77static LIST_HEAD(gtms);
 78
 79/**
 80 * gtm_get_timer - request GTM timer to use it with the rest of GTM API
 81 * Context:	non-IRQ
 82 *
 83 * This function reserves GTM timer for later use. It returns gtm_timer
 84 * structure to use with the rest of GTM API, you should use timer->irq
 85 * to manage timer interrupt.
 86 */
 87struct gtm_timer *gtm_get_timer16(void)
 88{
 89	struct gtm *gtm;
 90	int i;
 91
 92	list_for_each_entry(gtm, &gtms, list_node) {
 93		spin_lock_irq(&gtm->lock);
 94
 95		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
 96			if (!gtm->timers[i].requested) {
 97				gtm->timers[i].requested = true;
 98				spin_unlock_irq(&gtm->lock);
 99				return &gtm->timers[i];
100			}
101		}
102
103		spin_unlock_irq(&gtm->lock);
104	}
105
106	if (!list_empty(&gtms))
107		return ERR_PTR(-EBUSY);
108	return ERR_PTR(-ENODEV);
109}
110EXPORT_SYMBOL(gtm_get_timer16);
111
112/**
113 * gtm_get_specific_timer - request specific GTM timer
114 * @gtm:	specific GTM, pass here GTM's device_node->data
115 * @timer:	specific timer number, Timer1 is 0.
116 * Context:	non-IRQ
117 *
118 * This function reserves GTM timer for later use. It returns gtm_timer
119 * structure to use with the rest of GTM API, you should use timer->irq
120 * to manage timer interrupt.
121 */
122struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
123					   unsigned int timer)
124{
125	struct gtm_timer *ret = ERR_PTR(-EBUSY);
126
127	if (timer > 3)
128		return ERR_PTR(-EINVAL);
129
130	spin_lock_irq(&gtm->lock);
131
132	if (gtm->timers[timer].requested)
133		goto out;
134
135	ret = &gtm->timers[timer];
136	ret->requested = true;
137
138out:
139	spin_unlock_irq(&gtm->lock);
140	return ret;
141}
142EXPORT_SYMBOL(gtm_get_specific_timer16);
143
144/**
145 * gtm_put_timer16 - release 16 bits GTM timer
146 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
147 * Context:	any
148 *
149 * This function releases GTM timer so others may request it.
150 */
151void gtm_put_timer16(struct gtm_timer *tmr)
152{
153	gtm_stop_timer16(tmr);
154
155	spin_lock_irq(&tmr->gtm->lock);
156	tmr->requested = false;
157	spin_unlock_irq(&tmr->gtm->lock);
158}
159EXPORT_SYMBOL(gtm_put_timer16);
160
161/*
162 * This is back-end for the exported functions, it's used to reset single
163 * timer in reference mode.
164 */
165static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
166			       int reference_value, bool free_run)
167{
168	struct gtm *gtm = tmr->gtm;
169	int num = tmr - &gtm->timers[0];
170	unsigned int prescaler;
171	u8 iclk = GTMDR_ICLK_ICLK;
172	u8 psr;
173	u8 sps;
174	unsigned long flags;
175	int max_prescaler = 256 * 256 * 16;
176
177	/* CPM2 doesn't have primary prescaler */
178	if (!tmr->gtpsr)
179		max_prescaler /= 256;
180
181	prescaler = gtm->clock / frequency;
182	/*
183	 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
184	 * plus "slow go" mode (clk / 16). So, total prescale value is
185	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
186	 */
187	if (prescaler > max_prescaler)
188		return -EINVAL;
189
190	if (prescaler > max_prescaler / 16) {
191		iclk = GTMDR_ICLK_SLGO;
192		prescaler /= 16;
193	}
194
195	if (prescaler <= 256) {
196		psr = 0;
197		sps = prescaler - 1;
198	} else {
199		psr = 256 - 1;
200		sps = prescaler / 256 - 1;
201	}
202
203	spin_lock_irqsave(&gtm->lock, flags);
204
205	/*
206	 * Properly reset timers: stop, reset, set up prescalers, reference
207	 * value and clear event register.
208	 */
209	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
210				 GTCFR_STP(num) | GTCFR_RST(num));
211
212	setbits8(tmr->gtcfr, GTCFR_STP(num));
213
214	if (tmr->gtpsr)
215		out_be16(tmr->gtpsr, psr);
216	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
217			GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
218	out_be16(tmr->gtcnr, 0);
219	out_be16(tmr->gtrfr, reference_value);
220	out_be16(tmr->gtevr, 0xFFFF);
221
222	/* Let it be. */
223	clrbits8(tmr->gtcfr, GTCFR_STP(num));
224
225	spin_unlock_irqrestore(&gtm->lock, flags);
226
227	return 0;
228}
229
230/**
231 * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
232 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
233 * @usec:	timer interval in microseconds
234 * @reload:	if set, the timer will reset upon expiry rather than
235 *         	continue running free.
236 * Context:	any
237 *
238 * This function (re)sets the GTM timer so that it counts up to the requested
239 * interval value, and fires the interrupt when the value is reached. This
240 * function will reduce the precision of the timer as needed in order for the
241 * requested timeout to fit in a 16-bit register.
242 */
243int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
244{
245	/* quite obvious, frequency which is enough for µSec precision */
246	int freq = 1000000;
247	unsigned int bit;
248
249	bit = fls_long(usec);
250	if (bit > 15) {
251		freq >>= bit - 15;
252		usec >>= bit - 15;
253	}
254
255	if (!freq)
256		return -EINVAL;
257
258	return gtm_set_ref_timer16(tmr, freq, usec, reload);
259}
260EXPORT_SYMBOL(gtm_set_timer16);
261
262/**
263 * gtm_set_exact_utimer16 - (re)set 16 bits timer
264 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
265 * @usec:	timer interval in microseconds
266 * @reload:	if set, the timer will reset upon expiry rather than
267 *         	continue running free.
268 * Context:	any
269 *
270 * This function (re)sets GTM timer so that it counts up to the requested
271 * interval value, and fires the interrupt when the value is reached. If reload
272 * flag was set, timer will also reset itself upon reference value, otherwise
273 * it continues to increment.
274 *
275 * The _exact_ bit in the function name states that this function will not
276 * crop precision of the "usec" argument, thus usec is limited to 16 bits
277 * (single timer width).
278 */
279int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
280{
281	/* quite obvious, frequency which is enough for µSec precision */
282	const int freq = 1000000;
283
284	/*
285	 * We can lower the frequency (and probably power consumption) by
286	 * dividing both frequency and usec by 2 until there is no remainder.
287	 * But we won't bother with this unless savings are measured, so just
288	 * run the timer as is.
289	 */
290
291	return gtm_set_ref_timer16(tmr, freq, usec, reload);
292}
293EXPORT_SYMBOL(gtm_set_exact_timer16);
294
295/**
296 * gtm_stop_timer16 - stop single timer
297 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
298 * Context:	any
299 *
300 * This function simply stops the GTM timer.
301 */
302void gtm_stop_timer16(struct gtm_timer *tmr)
303{
304	struct gtm *gtm = tmr->gtm;
305	int num = tmr - &gtm->timers[0];
306	unsigned long flags;
307
308	spin_lock_irqsave(&gtm->lock, flags);
309
310	setbits8(tmr->gtcfr, GTCFR_STP(num));
311	out_be16(tmr->gtevr, 0xFFFF);
312
313	spin_unlock_irqrestore(&gtm->lock, flags);
314}
315EXPORT_SYMBOL(gtm_stop_timer16);
316
317/**
318 * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
319 * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
320 * @events:	events mask to ack
321 * Context:	any
322 *
323 * Thus function used to acknowledge timer interrupt event, use it inside the
324 * interrupt handler.
325 */
326void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
327{
328	out_be16(tmr->gtevr, events);
329}
330EXPORT_SYMBOL(gtm_ack_timer16);
331
332static void __init gtm_set_shortcuts(struct device_node *np,
333				     struct gtm_timer *timers,
334				     struct gtm_timers_regs __iomem *regs)
335{
336	/*
337	 * Yeah, I don't like this either, but timers' registers a bit messed,
338	 * so we have to provide shortcuts to write timer independent code.
339	 * Alternative option is to create gt*() accessors, but that will be
340	 * even uglier and cryptic.
341	 */
342	timers[0].gtcfr = &regs->gtcfr1;
343	timers[0].gtmdr = &regs->gtmdr1;
344	timers[0].gtcnr = &regs->gtcnr1;
345	timers[0].gtrfr = &regs->gtrfr1;
346	timers[0].gtevr = &regs->gtevr1;
347
348	timers[1].gtcfr = &regs->gtcfr1;
349	timers[1].gtmdr = &regs->gtmdr2;
350	timers[1].gtcnr = &regs->gtcnr2;
351	timers[1].gtrfr = &regs->gtrfr2;
352	timers[1].gtevr = &regs->gtevr2;
353
354	timers[2].gtcfr = &regs->gtcfr2;
355	timers[2].gtmdr = &regs->gtmdr3;
356	timers[2].gtcnr = &regs->gtcnr3;
357	timers[2].gtrfr = &regs->gtrfr3;
358	timers[2].gtevr = &regs->gtevr3;
359
360	timers[3].gtcfr = &regs->gtcfr2;
361	timers[3].gtmdr = &regs->gtmdr4;
362	timers[3].gtcnr = &regs->gtcnr4;
363	timers[3].gtrfr = &regs->gtrfr4;
364	timers[3].gtevr = &regs->gtevr4;
365
366	/* CPM2 doesn't have primary prescaler */
367	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
368		timers[0].gtpsr = &regs->gtpsr1;
369		timers[1].gtpsr = &regs->gtpsr2;
370		timers[2].gtpsr = &regs->gtpsr3;
371		timers[3].gtpsr = &regs->gtpsr4;
372	}
373}
374
375static int __init fsl_gtm_init(void)
376{
377	struct device_node *np;
378
379	for_each_compatible_node(np, NULL, "fsl,gtm") {
380		int i;
381		struct gtm *gtm;
382		const u32 *clock;
383		int size;
384
385		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
386		if (!gtm) {
387			pr_err("%pOF: unable to allocate memory\n",
388				np);
389			continue;
390		}
391
392		spin_lock_init(&gtm->lock);
393
394		clock = of_get_property(np, "clock-frequency", &size);
395		if (!clock || size != sizeof(*clock)) {
396			pr_err("%pOF: no clock-frequency\n", np);
397			goto err;
398		}
399		gtm->clock = *clock;
400
401		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
402			unsigned int irq;
 
403
404			irq = irq_of_parse_and_map(np, i);
405			if (!irq) {
406				pr_err("%pOF: not enough interrupts specified\n",
407				       np);
408				goto err;
409			}
410			gtm->timers[i].irq = irq;
411			gtm->timers[i].gtm = gtm;
412		}
413
414		gtm->regs = of_iomap(np, 0);
415		if (!gtm->regs) {
416			pr_err("%pOF: unable to iomap registers\n",
417			       np);
418			goto err;
419		}
420
421		gtm_set_shortcuts(np, gtm->timers, gtm->regs);
422		list_add(&gtm->list_node, &gtms);
423
424		/* We don't want to lose the node and its ->data */
425		np->data = gtm;
426		of_node_get(np);
427
428		continue;
429err:
430		kfree(gtm);
431	}
432	return 0;
433}
434arch_initcall(fsl_gtm_init);